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ABSTRACT Wine is a relevant part of the diet in many countries, showing significant nutritional properties,
providing health benefits to consumers, and having a significant weight in economy. Also, wine plays an
important role in many cultures as a part of their social relationships, feasts, or religion where some of
them may become a sign of luxury and distinction. For those reasons, objective and subjective quality of
wines is an important issue in their production and marketing. To improve wine excellence, some production
methods try to relate its physicochemical properties to the quality as it is perceived by humans. Then,
modern data prescriptive analysis can be applied to measure the importance (the influence) of each wine
attribute. This paper examines and compare several metrics of the attribute importance and its application
to the quality-aware design and production of wines. Moreover, for the cases where the perceived quality is
characterized using a discrete value, a novel importance metric, based on the Jensen-Shannon Divergence
(JSD) is introduced and compared to the existing ones. The results show that JSD clearly overperforms
other metrics previously proposed in the literature. Also, it can be asserted that JSD properly reflects the
importance of discrete multivalued functions. The results, using this metric in an importance performance
analysis of a public wine dataset, show that the main physicochemical attributes of a red wine are citric
acidity, alcohol, sulphates and fixed acidity. As for the white wine case, the main attributes are alcohol, free
sulfure dioxide and pH.

INDEX TERMS Importance metric, importance performance analysis, Jensen Shannon divergence, wine
quality.

I. INTRODUCTION
Wine production and consumption have a significant weight
in food (and general) economy [1]. This is particularly true
for Mediterranean countries like Italy [2], Spain [3] and other
European Union states [4]. Wine is undoubtedly a relevant
part of the diet in many countries, having significant nutri-
tional properties [5] and being able to provide positive health
benefits [6], [7].
Also, wine plays an important role in many cultures [8]

as a part of their social relationships, feasts or religion.

The associate editor coordinating the review of this manuscript and

approving it for publication was Xiao-Sheng Si .

Wine is appreciated not only by its euphoric properties
but also some of them may become a sign of luxury and
distinction [9]. For those reasons, objective and subjective
quality of wines is an important issue in their production and
marketing [10], [11].

Quality perception of the wine drinking experience is a
multidimensional issue where the level of consumers’ exper-
tise and involvement must be considered [12]. This quality
can be obtained using implicit measures, such as electroen-
cephalography (EEG), skin conductance, heart rate, eyes
movements, or speed of drinking [13]. However, most of the
quality assessment of wines (and other food products) are
based on explicit methods, that is, on verbal self-reported
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measurements that ask participants to report their feelings and
emotions about consumption [14].

To improve wine excellence, some production methods
try to relate its physicochemical properties to the quality
as it is perceived by humans [15], [16]. Then, modern data
analytics methods can be employed to description, diagnostic
and prediction of the quality of wines [17], [18]. But for
product design, the most interesting data analytic methods
involve some kind of prescriptive assessment, indicating what
should be done to improve the quality of the products [19].
A comprehensive conceptual framework for the optimiza-
tion of environmental sustainability in engineering projects,
both for products and industrial facilities or processes is
described in [20].
One key element in prescriptive analysis is to measure

the importance (the influence) that a certain physicochemical
attribute has on the perceived quality of the wine [21]. The
degree of influence of a certain driving attribute on a target
variable is commonly measured using linear regression or
Pearson’s correlation coefficients [22]. They work quite well
on linear relationships between variables but fail on more
complex functions [23]. To address those cases (nonlinear,
non-monotonic or multivalued relationships), other authors
have proposed more advanced metrics that will be further
described.

This paper examines and compares those metrics and their
application to the quality-aware design and production of
wines. Moreover, for the cases where the perceived quality
is characterized using a discrete value, a novel importance
metric, based on the Jensen-Shannon Divergence (JSD) is
introduced and compared to the existing ones [24].
Finally, for the prescriptive analysis, that is, to suggest

the physicochemical properties of the wine that should be
specially considered, an Importance Performance Analysis
(IPA) is proposed [25], [26]. Then, applying an IPA with a
JSD-based importance, the most quality-driving attributes of
wines are identified in two public datasets.

This prescriptive analysis is carried out using a data-driven
approach where statistical methods are applied to unveil the
strength of the relationship between each objective physico-
chemical property and the subjective perceived quality. But,
like any data-driven method, it works like a black box that
does not report of the causes of these relationships as there is
no underlying causal model.

Although the research is centered around wine production,
their methodologies and conclusions can easily be extended
to many other fields and applications. For instance, in the
electric and electronic disciplines, it could be applied to the
characterization of a semiconductor using specialized equip-
ment which shows an analogous relationship between the
multiple factors that define the measuring process, and the
value obtained for the electrical property [27], [28], [29], [30].

The practical application of this research is dual. First,
it has a straightforward impact on the winemaking process by
identifying the physical properties with the greatest influence

on the perceived quality and, therefore, those subject to their
preferential optimization. And second, the methodology and
the metric derived for measuring the importance of each
physical property can be easily extended to the production
of many other food and beverage products and can even be
applied to much broader engineering fields.

The body of the paper starts in section II, where the wine
dataset and the methodology employed through the paper are
formalized. The methodology description includes the con-
cept of importance, how this concept is implemented using
simple metrics (based on linear regression and correlation)
and how it should be interpreted in the cases of multivalued
functions. It also describes a set of synthetic datasets and
defines performance metrics to compare different definitions
of importance.

The remaining of the paper is organized as follows: in
section III, different importance metrics are detailed and
applied to the synthetic datasets; then, the main results
obtained applying these techniques are summarized in section
IV; and finally, these results are discussed in section V,
presenting the main conclusions in section VI.

II. MATERIAL AND METHODS
A. WINE DATASETS
For the application of the ideas presented in this paper, one
of the most popular datasets by the University of California
Irvine (UCI) Machine Learning Repository [31] will be used.
In particular, we will focus on the Wine Quality Data Set
[32], containing two datasets related to red and white vinho
verde wine samples, from the north of Portugal. The first
dataset contains 1599 samples of different red wines, while
the second dataset includes 4898 samples of white wines.
Each sample is characterized by 11 physicochemical features
(see Table 1) and a quality score (q) from 0 (very bad) to
10 (excellent), obtained as the median value of the blind
evaluations of, at least, 3 sensory assessors. It must be noted
that the quality score (q) is an integer number. A discussion
on the required number of samples for validation purposes
can be found in [33].
For the red wine dataset, the values of each feature for

the samples with the same quality are distributed according
to the estimated probability density functions (pdfs) depicted
in Fig.1. A similar result can be obtained for the white wine
dataset.

In these plots a first insight of the influence of each physic-
ochemical feature in the perceived quality can be obtained.
Those features presenting more separated pdfs will probably
have a higher impact on the quality. This intuition will be
justified through the paper.

Amore direct way to represent the relationship between the
values of a certain feature and the perceived quality would
be by drawing each sample as a dot in the feature-quality
plane. But as there are more than one thousand samples
and the quality has only integer values, these plots would
show a high density of dots which would hide the pursued
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FIGURE 1. Probability density function of the values of each physicochemical property for the red wine dataset,
considering different quality levels.

TABLE 1. Physicochemical features characterizing each wine sample.

FIGURE 2. Relationship between physicochemical properties and
perceived quality of red wines. The feature values are normalized in the
0-10 range and represent the median of the values with the same quality.

relationship. To overcome this difficulty, and just for graphic
representation purposes, each of the quality values is depicted
as a function of the median value of the features for the
wines with that quality. For a better comparison, the features
values are converted to the range 0 (minimum) to 10 (max-
imum), the same range used for the perceived quality. The
result is depicted in Fig.2. This graphic provides a good
perspective on the intensity and direction of the influence

of each physicochemical property on the perceived quality.
However, to determine the importance of each feature a single
metric would be advisable.

B. THE CONCEPT OF IMPORTANCE
The importance of a feature is a concept that can be intu-
itively understood but needs to be elucidated more formally.
Importance is a variable that can be evaluated referring to
different mathematical and statistical indicators [26]. In our
context, a physicochemical feature of a wine is said to be
important if, by changing its value, a different perceived
quality is obtained. To formalize and quantify the concept
of importance, and then summarize it in a single metric, two
main basic approaches have been proposed: regression and
correlation.

1) IMPORTANCE BASED ON REGRESSION
A regression analysis models the perceived quality q as
a function of the set of d physicochemical features x =

(x1, x2, · · · , xd ), according to the expression

q = f (x) + ν, (1)

where ν is a random variable (a noise) modelling the influ-
ence of other unknown factors. Then, the influence of the j-th
feature can be modelled by the function

rj (x) =
∂f (x)
∂xj

. (2)

This influence is different for each value of x, that is, for each
sample in the dataset. For the i-th sample, the influence can
be formulated as

r (i)
j =

[
∂f (x)
∂xj

]
x=x(i)

≈
1q(i)

1x(i)
j

, (3)

which is an estimation of the change in the quality of the
i-th sample that can be expected using a small change in
the value of its j-th feature. So, regression models provide
local measures of the influence, that is, individual values
for each sample. If a global indication of the influence of
the j-th feature is required, the different values of local r (i)

j
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can be statistically summarized, for instance, using the mean
value. In this case, the global influence of the j-th feature
considering the n samples of the dataset can be expressed as

Rj =
1
n

n∑
i=1

r (i)
j . (4)

The simplest and probably most used regression analysis
is based on a multiple linear regression model; see, for
instance, [34]. In this case the estimated quality of the i-th
sample, q̂(i), is modelled as the linear combination of their
physicochemical features, according to the expression

q̂(i)
= f (x) =

d∑
j=1

wjx
(i)
j , (5)

where wj is the weight of the j-th feature in the linear
regression. The error of the estimation on the i-th sample is
ε(i) = q̂(i) − q(i), and the total loss for the dataset is defined
as the mean square of these errors (MSE), obtained as

J =
1
n

n∑
i=1

ε(i)2
=

1
n

n∑
i=1

(
q̂(i)

− q(i)
)2

. (6)

Then, the values of theweightswj are those thatminimizes the
total loss J . In this model, the influence for the i-th sample is

r (i)
j =

[
∂f (x)
∂xj

]
x=x(i)

=

[
∂

∑d
j=1 wjxj
∂xj

]
x=x(i)

=
[
wj

]
x=x(i) = wj, ∀i, (7)

that is, it is the same for all the samples. Then, the local and
global influence have also the same value: Rj = wj = r (i)

j , ∀i.

If the feature values and the quality are normalized in the
same range of values, then the regression coefficients are
in the range [−1, 1]. But the feature xj is also important to
improve the quality q if its corresponding weight wj is nega-
tive. In fact, a negative coefficient means that, by increasing
the value of the feature, the quality decreases on average,
meaning that it is important to consider this feature (decreas-
ing its value) to improve the quality. Then, an important result
of this subsection, is that the importance Ij of the j-th feature
could be measured in the linear case using the absolute value
of the regression coefficient, that is, Ij =

∣∣wj∣∣, which is in the
range [0, 1].

2) IMPORTANCE BASED ON CORRELATION
Using regression models to determine the importance
requires a previous estimation of the function f , which is
a cumbersome task except for the simplest cases (as in the
linear regression). As an alternative, the correlation approach
avoids the necessity to determine f . The term correlation
indicates a relationship or interdependence between two vari-
ables. It is commonly employed in statistics, where several
tools have been designed to grab this concept. In the case of

the j-th feature xj and the perceived quality q, the relationship
can be expressed as

q = fj
(
xj

)
+ νj, (8)

where fj is an unknown function describing the influence
of xj on q, and νj is a random variable (a noise) modelling
the influence of the remaining known features and other
unknown factors. The highest correlation corresponds to a
target variable q completely determined by the independent
variable xj, that is, the case when νj = 0 and then q =

fj
(
xj

)
. On the contrary, the lowest correlation occurs when

the variable xj has no influence on q, that is, when they are
statistically independent: q⊥xj.
Probably the most popular metric used in science and engi-

neering for measuring the relationship between two variables
is the Pearson’s correlation coefficient ϱP [22], which is in
the range [−1, +1]. So, in the case of the j-th feature xj
and the perceived quality q, its relationship can be measured
using the expression

ϱP
(
xj, q

)
=

cov
(
xj, q

)√
var

(
xj

)
var (q)

. (9)

As for the regression, also the correlation coefficient can be
negative. Then, an important result of this subsection, is that
the importance Ij of the j-th feature could be measured in the
linear case using its absolute value, that is, Ij =

∣∣ϱP (
xj, q

)∣∣,
which is in the range [0, 1].

3) IMPORTANCE FOR THE WINE DATASETS
In order to compare several metrics of the importance, it is
convenient to convert them to a common range. In this paper
it is proposed to use the same range that the quality’s, that is,
the range [0, 10] . So the normalized importance Ij of the j-th
feature on the perceived quality q can be defined as

Ij = 10
Ij − inf Ij

sup Ij − inf Ij
, (10)

where sup Ij and inf Ij are the supremum and infimum values
of Ij. In the case of using the regression coefficients or the
Pearson’s correlation coefficients, sup Ij = 1 and inf Ij = 0,
then Ij = 10Ij. Applying this metric to the red wine dataset,
the importance value Ij of every feature are depicted in Fig.3.
The values of the importance so obtained, are compatible
in most cases with the results shown in Fig.1 and Fig.2.
However, if the relationship between feature and quality is
not very linear, the metric obtained shows a lower importance
value. For instance, although citric acidity shows in those
figures a similar influence on quality than volatile acidity, its
importance metric is significantly lower. Even more, the free
sulfur dioxide has a very low importance metric while the
quality is significantly influenced by its value.

C. PERFORMANCE EVALUATION OF THE
IMPORTANCE METRICS
As the Pearson’s correlation coefficients and linear regres-
sion coefficients have shown important biases for non-linear
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FIGURE 3. Importance of every physicochemical feature obtained using
linear regression coefficients and Pearson’s correlation coefficients.

relationships, it is advised to use another metrics. To explore
and compare these alternatives methods, a collection of syn-
thetic datasets is proposed using 8 types of relationships
between a dependent variable q, an independent variable
xj, and a noise ν. The independent variable and noise are
uniformly distributed in the range [−1, +1]. The dependent
variable is obtained using the expression

q = (1 − β) fj
(
xj

)
+ βν. (11)

The value of β, in the range [0, 1], indicates how much noise
is added. The relationships fj

(
xj

)
used are: linear, logarith-

mic, cubic, quadratic, sinusoidal, piecewise, semielliptical
and vertical sine. All of them are built in a way that fj

(
xj

)
is also in the range [−1,+1]. Finally, the independent and
dependent variables are converted to the [0, 10] range, using
expressions similar to Eq. 10. The resulting synthetic datasets
are depicted in Fig. 4 for β = 0.
In the set previously described there are linear, mono-

tonic non-linear (logarithmic and cubic), non-monotonic
(quadratic, sinusoidal and piecewise), and multivalued
(semielliptical and vertical sine) functions. The impact of
adding noise to three of these examples is depicted in Fig. 5
for five values of β.

To evaluate and compare the metrics of attribute impor-
tance, three performance indicators will be employed: power,
equitability and linearity. They are described in the next
subsections where the Pearson-based importance metric is
used as an example.

1) POWER
The first performance indicator of an importance metric
derives from the concept of the statistical power of a hypoth-
esis test [35].
It has been stated above that the importance Ij = I

(
xj, q

)
measures the dependence of the quality q on the values of the
feature xj. But also, this metric can be used in a hypothesis
test to determine if xj and q are independent or not.
In first place, let us consider a feature z that has no influ-

ence on the quality q, that is, z⊥q. An individual experiment

takes n random samples of values
(
z(i), q(i)

)
, yielding an

importance metric Iind = I (z, q). Repeating the experiment
several times a set of importance metrics are obtained. These
values are statistically distributed according to a probability
distribution function Fz (Iz). For a confidence level of α, the
critical value of the importance metric, Icr , is defined as
the value fulfilling the equation Pr ob [Iind > Icr ] = 1 −

Fz (Icr ) = α.
Now, for the feature xj, the null-hypothesis H0 asserts that

xj and q are independent, formally, H0 : xj⊥q. As in the pre-
vious case, the importance metric Ij = Ij

(
xj, q

)
is statistically

distributed according to a probability distribution function
Fj

(
Ij
)
. Then, the power of Ij is defined as the probability of

rejecting H0, that is,

WIj = Prob
[
Ij > Icr

]
= 1 − Fj (Icr ) . (12)

If q is obtained as a certain function of xj, combined with
some proportion of noise β (according (11)), then the power
of Ij,WIj , can be written as a function of β, that is, asWIj (β).
The mean value of the powerWIj in the interval β ∈ [0, 1] can
be used as an indicator of the performance of the importance
metric. It is defined as

W̄Ij =

∫ 1

0
WIj (β) dβ. (13)

Additionally, it is defined the critical amount of noise
attainable by an importance metric, or critical noise in short,
as the proportion of noise, βcr , such that the null hypothesis
(xj and q are independent) is rejected with a confidence level
of α. More formally,

WIj (βcr ) = Prob
[
Ij > Icr

]
> 1 − α. (14)

The critical noise βcr is an indicator of the performance
of the importance metric. It is in the range [0, 1] and the
greater the critical noise, the better the importance metric.

These concepts are graphically explained in Fig 6 using an
example, where the Pearson-based importancemetric defined
in (9), and a monotonic (cubic) relationship are used. The
upper left plot represents the case of a feature z that has no
influence on the quality q, that is, z⊥q. This is equivalent to
say that they do have a cubic relationship but with a 100% of
noise (β = 1 in (11)). In the plot, the blue line represents the
probability density function of the importance metric, and the
red-shadowed area is the probability that Pr ob [Iz > Icr ] =

α = 5%. The resulting critical value is Icr = 0.064. The
two other plots on the left represents the case of a feature xj
that has cubic influence on the quality q, according to (11),
with a noise level of β = 0.9 and β = 0.8 respectively.
The shadowed areas represent the respective powers. Finally,
the right plot depicts the power of the importance metric for
different experiments with a continuous set of values of noise,
WI (β), and a mean power W̄I = 0.916. The three black dots
correspond to each graph on the left-hand side of the figure.
The blue dot indicates the critical noise βcr which results to
be βcr = 0.839.
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FIGURE 4. Synthetic datasets without noise (β = 0).

FIGURE 5. Examples of synthetic datasets for an increasing level of noise.

2) EQUITABILITY
It is said that an importance metric is fully equitable if it has
the same value for different types of relationships between
a dependent variable q, an independent variable xj, with the
same level of noise β [36]. Let us consider a set of relation-
ships defined by the functions fk ∈ F : q = (1 − β) fk

(
xj

)
+

βν. The importance of the feature xj on obtaining q using
the k-th relationship fk is assessed by the importance metric
Ik (β; fk). Then, the equitability of this metric for a certain
level of noise can be defined as a function of the maximum
range of its values, that is,

Q (β) = 1 −

[
max
k

Ik (β; fk) − min
k
Ik (β; fk)

]
, (15)

which is in the range [0, 1]. An example of equitability is
shown in Fig. 7, where the Pearson-based importance metric
defined in Eq. 9 is used. Each line depicts the evolution of
the importance metric as the level of noise increases, for the
8 functions described in Fig.4. The range of values for every
β is shown as a blue shadowed area where, the wider the area,
the lesser the equitability Q (β). The equitability coefficient
of the importance metric (for any level of noise), κ , is defined
as the minimum value of Q (β), that is,

κ = min
β
Q (β) . (16)

If the set of relationships, F , contains discrete multivalued
functions, it is previously separated in subsets with the same
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FIGURE 6. Power of the (Pearson-based) importance metric for the cubic synthetic dataset. Left: noise of 100%
(top), 90% (middle), and 80% (bottom). Right: power for a continuous set of noise values.

FIGURE 7. Equitability of the (Pearson-based) importance metric. Top:
importance metric versus noise for the eight functions defined in section
II-C. Bottom: equitability as a function of noise.

number of multiple values. For the subset containing func-
tions with m multiples values, its equitability coefficient is
computed as κm. Finally, the equitability coefficient of the
correlation coefficient is derived as κ = min

m
κm. In the

example, the equitability coefficient results to be κ = 0.

3) LINEARITY
Besides power and equitability, proposed as performance
indicators in previous works, we also consider that a perfect
metric of importance should have three additional character-
istics:

1) Be linear with respect to the noise. That is, it is desirable
that the relationship between the amount of randomness
in the dataset (the noise coefficient β in Eq. 11) and the
importance metric Ij (β), be as much linear as possible.

2) Have theminimum value for completely noisy datasets,
that is, Ij (1) = 0.

3) Have the maximum value for noiseless datasets. This
maximum value is discussed below.

The highest importance corresponds to a target variable q
completely determined by the independent variable xj, that
is, the noiseless case when νj = 0 and then q = fj

(
xj

)
.

If the concept of importance is mathematically defined by a

function in the range [0, 1] (as in Pearson’s, and for most of
the correlation coefficients), then the straightforward answer
for the quest about its maximum value is Ij = 1. But there are
certain particular cases where the intuitive concept of impor-
tance should not have the maximum value in the noiseless
case. Let us examine them in detail.

Consider a target variable q, which can take only one
out of Lq discrete levels (in the wine datasets Lq = 11),
and a relationship with the u-th feature fu : q = fu (xu),
which is a single valued function, that is, only one value of q
corresponds to each value of xu. In this noiseless scenario, xu
fully determines the quality q. Then, the importance of this
feature should be Iu = 1.
Consider now the v-th feature whose noiseless relationship

with the quality is defined by fv : q = fv (xv), which is a
multivalued function with mj values of q for each value of xv.
The free sulfur dioxide in the red wine dataset is an example
of such multivalued function (mj = 2) as it is shown in Fig. 2.
As a value of xv determines mv out of Lq possible values,
then xv is not so determinant to define the quality q, as xu
is. Then, a good metric of its noiseless importance should be
Iv < Iu = 1. This effect can be expressed adding a correcting
term, θv, to the importance such that Iv = 1 − θv.

The correction term should be θv = 0 for the single valued
functions. And in the other extreme, for a feature xw defined
by a multivalued function fw with mw = Lq, choosing a value
for xw determines Lq possible values of q, which is equivalent
to a random selection of the quality. So, the importance of
this feature should be Iw = 0, which is equivalent to say
that the corresponding correction term should be θw = 1.
The simplest function which fulfills those conditions is a
piecewise linear function defined as

θj = max
(
0,
mj − 1
Lq − 1

)
. (17)

To clarify the concept of linearity, two examples of impor-
tance metrics are applied to the linear and to the semielliptical
synthetic datasets with different levels of noise. The result is
depicted as a blue line in Fig. 8 where it is compared with
an optimal metric I∗j (β) (dashed line). The semielliptical is
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FIGURE 8. Linearity of the importance metric. An example importance metric (blue line) is compared to the
optimal (dashed line) and worst (orange line) possible metrics. The areas between each metric and the
optimal one, have been filled. Left: single valued linear function; Right: multivalued semielliptical function.
Power of the (Pearson-based) importance metric for the cubic synthetic dataset.

FIGURE 9. Left: Pearson’s-based importance for the synthetic datasets as a function of the noise level (β).
Right: Power of the importance metric.

FIGURE 10. Left: Importance based on the regression coefficient for the synthetic datasets as a function of the noise
level (β). Right: Power of the importance metric.

a discrete multivalued function with mj = 2 and Lq = 11.
Then, for this example, the optimal noiseless importance is

I∗j (0) = 1 −
mj − 1
Lq − 1

= 1 −
2 − 1
11 − 1

= 0.9. (18)

To assess the linearity of the example metric, the difference
between Ij (β) and I∗j (β) is considered. In particular, the

area between these two functions (the blue region in Fig. 8)
provides a good understanding of this concept. This area is
defined by

Aj =

∫ 1

0

∣∣∣Ij (β) − I∗j (β)

∣∣∣ dβ. (19)
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It has an opposite meaning that performance, as the lower
the value of Aj, the higher the performance. Also, it can be
easily derived that the maximum value of Aj, corresponding
to the worst case of the importance metric (the orange line
and region in Fig. 8, is

maxAj =
3 − 2θ2

4
. (20)

Then, to obtain an indicator in the range [0, 1], a linearity
coefficient is defined as

λj = 1 −
Aj

maxAj
= 1 −

4
3 − 2θ2

∫ 1

0

∣∣∣Ij (β) − I∗j (β)

∣∣∣ dβ.

(21)

In the examples, the linearity coefficient results to be λj =

0.835 (left) and λj = 0.897 (right).

D. IMPORTANCE METRICS FOR LINEAR RELATIONSHIP
By applying the Pearson’s-based importance to the synthetic
datasets, the results depicted in Fig. 9 are obtained. It can
be clearly seen that this definition of importance shows three
problems. Firstly, for the linear dataset, importance does not
linearly decrease as the noise increases. For instance, for
25% noise (β = 0.25) an importance Ij = 0.95 is obtained
(only a 5% decrease in the importance metric). Secondly, the
noise-free (β = 0) non-linear monotonic (logarithmic and
cubic) relationships do not obtain the maximum importance,
Ij (0) ̸= 1. And finally, the non-monotonic functions show
a low (or very low) importance for any value of the noise
level, β. Alternatively, if the power of the importance met-
ric is considered, Pearson’s based importance also shows a
low or very low performance for several relationships in the
synthetic dataset.

Similar results are obtained when the regression coefficient
is used to define the importance metric (Fig.10). In com-
parison to Pearson’s based metrics, they show a more linear
behavior with respect to the noise and a high power, but
significantly lower values for non-linear datasets.

III. IMPROVED IMPORTANCE METRICS
A. IMPORTANCE METRICS FOR NON
LINEAR RELATIONSHIP
The previous sections have clearly demonstrated the low
performance of the Pearson’s and regression-based impor-
tance Ij, when they are applied to the synthetic datasets. The
problems of Pearson’s correlation and regression coefficients
to properly identify correlations in non-linear functions are
widely known and have been extensively documented [23].
To tackle these problems several solutions have been pro-
posed. Among them, Spearman’s correlation coefficient [37]
is probably one of the first and best-known methods. It relies
on obtaining the Pearson’s correlation coefficient between the
rank values of the variables, instead of their values. The rank
value of the i-th value of a variable, rank

(
z(i)

)
, is defined

as its index after ordering the complete set of values of that
variable of z. As the Pearson’s, also Spearman’s is in the

range [−1, 1]. So, the importance based on the Spearman’s
correlation coefficient between the j-th feature xj and the
quality q, can be defined as

Ij =
∣∣ϱS (

xj, q
)∣∣ =

∣∣∣∣∣∣ cov
[
rank

(
xj

)
, rank (q)

]√
var

[
rank

(
xj

)]
var [rank (q)]

∣∣∣∣∣∣ . (22)

The results obtained for the synthetic datasets are shown
in Fig. 11. It can be seen that, now, linear and non-linear
monotonic (logarithmic and cubic) relationships do obtain
the maximum importance, Ij (0) = 1, for noise-free datasets.
However, the relationships in the remaining datasets are not
properly reflected by Spearman’s metric.

Even for monotonic relationships, Spearman-based impor-
tance does not linearly decrease as the noise increases.
To obtain a better linearity in those cases, the Kendall’s
correlation coefficient [38] has been proposed. The u-th
pair of values

(
x(u)
j , q(u)

)
and the v-th pair of values(

x(v)
j , q(v)

)
, where u < v, are said to be concor-

dant if
[ (
x(u)
j < x(v)

j

) ∧ (
q(u) < q(v)

) ]
∨

[ (
x(u)
j > x(v)

j

) ∧(
q(u) > q(v)

) ]
. Calling nc and nd the number of concordant

and discordant pairs respectively, the Kendall’s correlation
coefficient is defined as

τ
(
xj, q

)
=
nc − nd
nc + nd

. (23)

To solve the tied pairs, that is, those where either x(u)
j = x(v)

j
or q(u) = q(v), several variants have been proposed. In this
research the τb formulation is used [39]. As the Kendall’s
correlation coefficient is in the range [−1, 1], the importance
based on it is defined as Ij =

∣∣τb (
xj, q

)∣∣.
The results obtained for the synthetic datasets are shown in

Fig.12. They are like those obtained using Spearman’s, but the
linearity for monotonic relationships has significantly been
improved.

The Spearman’s and Kendall’s correlation coefficient
extend the usability of Pearson’s to non-linear monotonic
relationships by using some rank-based functions of the
values

(
x(i)
j , q(i)

)
instead of the values themselves [40].

The maximal correlation coefficient extends this idea by
exploring all real-valued functions with zero mean and finite
variance, fxj

(
xj

)
and fq (q), and applying the Pearson’s cor-

relation coefficient to the new transformed variables. The
maximal correlation coefficient is then the supremum of the
set of Pearson’s correlation coefficients for every fxj and
fq [41]. More formally, it is defined as

ϱM
(
xj, q

)
= sup

fxj ,fq
ϱP

[
fxj

(
xj

)
, fq (q)

]
. (24)

The direct calculation of this value is usually very diffi-
cult [42]. Instead, a good estimation can be obtained using the
Alternating Conditional Expectations (ACE) algorithm [43].
The results obtained for the synthetic datasets are shown

in Fig.13. It can be seen that now, even non-monotonic
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FIGURE 11. Left: Importance based on the Spearman’s correlation coefficient for the synthetic datasets as a function
of the noise level (β). Right: Power of the importance metric.

FIGURE 12. Left: Importance based on the Kendall’s correlation coefficient for the synthetic datasets as a function of
the noise level (β). Right: Power of the importance metric.

FIGURE 13. Left: Importance based on the maximal correlation coefficient for the synthetic datasets as a function of
the noise level (β). Right: Power of the importance metric.

relationships, are properly captured by the metric. For the
case of noise-free relationships, maximal correlation obtains
a convenient value ϱM

(
xj, q

)
= 1. However, for q com-

pletely independent of xj (which is equivalent to β = 1),
maximal correlation is not null, but ϱM

(
xj, q

)
= ϱMmin ̸=

0. This drawback can easily be overcome by normal-
izing its value. Then, the importance metric can be

defined as

Ij =
ϱM

(
xj, q

)
− ϱMmin

1 − ϱMmin

, (25)

which is in the range [0, 1].
Although this metric properly behaves for any type of

relationships, it lacks some linearity as defined in Section III).
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FIGURE 14. Left: Importance based on the mutual information for the synthetic datasets as a function of the noise
level (β). Right: Power of the importance metric.

Also, the ACE algorithm requires a very high computational
effort in comparison with other alternatives. This problem
will be addressed in more detail in Section 0.

B. IMPORTANCE METRICS BASED ON
INFORMATION THEORY
In previous sections, the relationship between a certain fea-
ture and the perceived quality has been addressed using
either linear regression or some kind of statistical correlation.
An alternative to that approach is to look for the metric of
the relationship in the information theory [44]. A first metric
based on this methodology is the mutual information [45] of
the variables xj and q, defined as

MI j = MI
(
xj, q

)
=

∫
xj∈Xj

∫
q∈Q

p
(
xj, q

)
log

p
(
xj, q

)
p

(
xj

)
p (q)

dxjdq. (26)

The results obtained for the synthetic datasets are shown
in Fig. 14. It can be seen that all relationships, even non-
monotonic ones, show a similar behavior. For the case of q
completely independent of xj (β = 1) mutual information
obtains a convenient value MI j = 0. However, for noise-free
relationships (β = 0) maximal correlation is greater than one,
MI j > 1.
The straighforwardway to compute themutual information

of two variables, xj and q, relies on, firstly, estimate the
probabilities p

(
xj

)
, p (q) and p

(
xj, q

)
. And this estimation

can be obtained by dividing the
(
xj, q

)
plane in a grid of

size Nx × Nq. Let us count the samples in each bin, calling
nu the number of them in the u-th row, nv their number in
the v-th column, and nuv the samples in the uv-th cell. For
a total number of samples n, the mutual information can be
approximated by its binned version defined as

MI
(
xj, q

)
≈ MIb

(
xj, q

)
=

Nx∑
u=1

Nq∑
v=1

MIuv, (27)

where

MIuv =

Nx∑
u=1

Nq∑
v=1

puv log
puv
pupv

≈

Nx∑
u=1

Nq∑
v=1

nuv
n

log
nuv
n

nu
n ·

nv
n

.

(28)

If mutual information is obtained using this approach, then
it can be converted to the range [0, 1] using the Maximal
Information Coefficient (MIC) [46] defined as

MIC
(
xj, q

)
= max

Nx×Nq

maxu,vMIuv
log

(
min

{
Nx ,Nq

}) . (29)

However, bin-based estimations of mutual information have
been proved to show systematics errors caused, first,
by approximating MI by its binned version MIb and, sec-
ond, by approximating the probabilities by the frequency
ratios [47].

Alternatively, this research follows a different approach
based on the k-nearest neighbours (kNN) which clearly out-
performs bin-based approaches [48]. Then, instead of using
the MIC, mutual information is normalized by dividing its
value by the maximum MI, which is obtained as the mutual
information of a feature with itself, that is, MI

(
xj, xj

)
. Then,

an importance metric can be derived by the expression

Ij =
MI

(
xj, q

)
MI

(
xj, xj

) , (30)

which is in the range [0, 1]. The normalizing divisor,
MI

(
xj, xj

)
, can be obtained as the MI

(
xj, q

)
when q has a

noise-free (β = 0) linear relationship with xj, that is, q = xj.
This value corresponds to the blue line for β = 0 in Fig.14,
MI

(
xj, xj

)
= 5.651 for the synthetic datasets described in

Section 0.
Although the range problem has been fixed by normalizing

the mutual information, it still shows a significant non-linear
behavior. So, another way of normalizing its value, while
seeking a more linear dependence of noise (β), mutual infor-
mation can be transformed into the Linfoot’s information
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FIGURE 15. Left: Importance based on the Linfoot’s information coefficient of correlation for the synthetic datasets
as a function of the noise level (β). Right: Power of the importance metric.

FIGURE 16. Probability density functions of the feature values for the
10 possible values of the target variable (the perceived quality q), using
the synthetic dataset with a noisy logarithmic relationship. Top:
noise-free dataset (β = 0). Bottom: noise level, β = 10%.

coefficient of correlation [49], defined as

ϱL
(
xj, q

)
=

√
1 − e−2·MI(xj,q), (31)

which is in the range [0, 1]. The results obtained applying
the corresponding importance metric, Ij = ϱL

(
xj, q

)
, to the

synthetic datasets are shown in Fig.15. It can be seen that:
all relationships are properly modelled (even non-monotonic
ones); in the case of q completely independent of xj (β = 1),
it is obtained a convenient value Ij = 0; and for noise-free
relationships (β = 0), Ij = 0. Also, the linearity of the
dependence of noise is significantly better than for the mutual
information.

C. THE JENSEN-SHANNON DIVERGENCE
None of the previously described methods have successfully
met the power, equitability, and linearity criteria for impor-
tance metrics. For this reason, in this research an alternative
importance metric is proposed based on the consideration
that quality q has discrete values. Let us consider the same

synthetic datasets described in Section 0 but now assuming
that q is an integer in the range [0, 10]. As an example, the
probability density functions corresponding to the values of
xj for each value of q, are depicted in Fig.16. They have
been obtained for a synthetic dataset with 10,000 samples
and a logarithmic relationship with no noise (top), and a level
of noise β = 0.1 (bottom). In the noise-free example the
pdfs corresponding to each value of q are clearly separated.
On the other hand, the noisy example shows a certain overlap
between pdfs. Then, the level of overlapping may be used
as an indication of the independence between variables: the
larger is the divergence between pdfs, the more intense the
relationship.

To formalize the divergence between two pdfs, the Jensen-
Shannon Divergence (JSD) is employed [24]. Calling pu to
the pdf of the samples x(i)

j such that q(i) = u and, analogously,

pv to the pdf of the samples x(i)
j such that q(i) = v, the JSD of

these two pdfs is defined as

JSD (pu, pv) =
1
2
KLD (pu, pw)

+
1
2
KLD (pu, pw) ; pw =

pu + pv
2

, (32)

where KLD represents the Kullback-Leibler Divergence [50]
obtained as

KLD (pu, pw) =

∫
∞

−∞

pu
(
xj

)
log2

[
pu

(
xj

)
pw

(
xj

)]
dxj. (33)

It should be noted that the JSD is always in the range [0, 1].
Based on these expressions, the importance metric is defined
as the mean of the JSD for every pair of pdfs,

ϱJ
(
xj, q

)
=

2

nq
(
nq − 1

) nq−1∑
u=1

nq∑
v=u+1

JSD (pu, pv). (34)

Applying these definitions to the synthetic datasets, the
results depicted in Fig.17 are obtained. It can be observed
that JSD shows a high power for all the relationships between
feature and quality. It also has a very high linearity for most
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FIGURE 17. Left: Importance based on the Jensen-Shannon Divergence (JSD) for the synthetic
datasets as a function of the noise level (β). Right: Power of the importance metric.

functions, with a not so good performance in the cases of mul-
tivalued functions (semielliptical and vertical sine) whichwill
be later addressed. Finally, JSD has a value ϱJ ≈ 1 for most
of the noiseless cases (β = 0), but a value ϱJ = ϱJmin > 0 for
the case of no relationship between quality and feature values
(β = 1). Then, it is easy to obtain an importance metric in the
range [0, 1] using the expression

Ij =
ϱJ − ϱJmin

1 − ϱJmin
. (35)

In the previous analysis, it has been shown that JSD impor-
tance metric has a very good behavior. Then, this will be the
importance metric employed in the next Sections, where it
will be applied to the wine datasets. A more detailed compar-
ison of importance metrics will be undertaken in Section 0.

IV. RESULTS
A. THE IMPORTANT OF THE WINE PROPERTIES
Each wine feature can be characterized by its importance
metrics obtained by the eight methods previously described.
Then, wine features can be represented by an 11 × 8 matrix
design Xf where each of the 11 rows defines a wine feature
using a vector with the 8 importance metrics, one in each
column.

The application of these eight importance metrics to the
red wine dataset offers the results depicted in Fig.18. It can
be seen that the JSD-based metric has a smoother evolution
than the first four metrics (regression, Pearson, Spearman and
Kendall). This is probably due to the fact that these metrics
do not properly reflect non-monotonic and/or multivalued
functions as, for instance, free sulfur dioxide (fsd) or ph. Also,
the JSD-based metric has similar values for citric acidity
(ca) and volatile acidity (va) fixing the problem indicated in
Section III).
Fig 18 also shows that JSD and Linfoot importance metric,

two of the most successful metrics in the synthetic datasets,
obtain similar results for most of the features. The main
exception to this rule is the ph, that, in Linfoot metric, has a
significant lower value than density (den), while in JSD met-
ric both have similar results. By comparing the dependance
of quality on these two features shown in Fig 1 and Fig 2, it is

FIGURE 18. Importance metrics of the red wine dataset.

clear that their importance should be similar, that is, that JSD
metric more properly reflects the first sight intuition.

It has been demonstrated in the synthetic datasets that
regression coefficient perfectly capture the importance of
linear relationships (Fig 10), while JSD metric is able to
reflect non-linear ones (Fig 17). Then, by comparing the
importance metric based on JSD and regression, an indication
of the linearity of the relationship between each feature and
the perceived quality can be obtained. The result is shown in
Fig 19 where, for instance citric acidity (ca) is more distant
to the diagonal (that is, JSD much greater than regression
coefficient) than alcohol (alc). Then amore non-linear behav-
ior should be expected on ca than on alc, which is shown in
Fig. 2. In this plot it is clear than the most important features
are va, alc and sul.

By reducing the dimensionality of the 11×8 matrix design
Xf to 11 × 2, each wine feature can be plotted in a bidi-
mensional (2D) graph. The result obtained using Principal
Component Analysis (PCA) [51] is depicted in Fig. 20, show-
ing a circle for each feature (each row in Xf ). The information
conveyed by this graph can be improved by adding biplots
vectors [52], displayed as an arrow for each importance met-
ric (each column inXf ). Th resulting biplots show that vertical
component of PCA representation is mainly determined by
the maximal correlation, while the remaining importance
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FIGURE 19. Comparison of the importance metric for each feature of the
red wine dataset. The importance is obtained using regression
coefficients (horizontal) and JSD (vertical). Any noiseless linear
relationship between features and the perceived quality should be in the
diagonal (dotted line). The features negatively related to quality are
depicted in orange.

FIGURE 20. Principal component analysis of the red wine features. Biplot
vectors represent the contribution of each importance metric to its
principal components. The features negatively related to quality are
depicted in orange.

metrics are approximately aligned in the horizontal direction.
Then, it can be interpreted that features placed in the right-
hand side of the plot (alc, va and sul) have an impact on
quality over the mean in at least 7 importance metrics. Then,
they clearly should be considered as important features.

B. IMPORTANCE PERFORMANCE ANALYSIS
The importance of a feature is the main element to be consid-
ered in a prescriptive analysis prior tomake the decision about
what to do to obtain an improved perceived quality. However,
if the value of the feature has already been optimized, then
it does not make sense to dedicate more efforts to continue
improving that feature. The decision about what to do is then
bidimensional.

This intuitive idea can be formalized using the importance-
performance analysis (IPA) [26] where the importance is
complemented with a performance dimension. The perfor-
mance of the j-th feature of the i-th wine sample, if it
is positively related to the quality, that is ϱ

(
xj, q

)
> 0,

is defined as its value x(i)
j . To compare the performance of

FIGURE 21. Importance performance analysis for the red wine dataset.

different attributes, they must be normalized to the same
range, for instance to the [0, 10] range. Then, the normalized
performance P(i)

j can be obtained by using the expression

P(i)
j = 10

x(i)
j − min

i
x(i)
j

max
i
x(i)
j − min

i
x(i)
j

, ∀j|ϱ
(
xj, q

)
> 0. (36)

But the performance of a feature is not only related to its

value x(i)
j . Indeed, for a feature negatively related to the

quality, the meaning of well-performing is to have a low value
of the feature. For these features the definition of performance
must be inverted, obtaining the expression

P(i)
j = 10

max
i
x(i)
j − x(i)

j

max
i
x(i)
j − min

i
x(i)
j

, ∀j|ϱ
(
xj, q

)
< 0. (37)

The Pearson’s correlation coefficient is used in this research
to know if a feature is positively or negatively related to
the quality, that is, in the previous equations ϱ

(
xj, q

)
=

ϱP
(
xj, q

)
.

The value P(i)
j is called a local performance as it refers to

a single wine in the dataset. The performance of a feature in
the whole dataset (global performance) is defined as the mean
performance of their individual elements, that is,

Pj =
1
n

n∑
i=1

P(i)
j . (38)

The global performance of symmetrically distributed fea-
tures is just in the middle of the range, Pj = 5 in this
case. The results of applying these definitions of global
performance and a JSD-based importance to the red wine
datasets is depicted in Fig. 21. Themean values of importance
and performance are plotted as dotted lines, dividing the
plane in four quadrants. The meaning of each quadrant is
detailed in Table 2.

In quadrant I, there are the wine features with a high impor-
tance (an impact on perceived quality over the mean value of
importance), and a low performance (a performance under the
mean value of performance). So, the features in this quad-
rant are the primary goal on which to focus design efforts.
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FIGURE 22. Importance performance analysis for two examples of red wines of low (left) and high (right) perceived
quality.

TABLE 2. Quadrants of the importance performance analysis.

FIGURE 23. Importance performance analysis for the white wine dataset.

This quadrant is usually labelled as ‘‘concentrate here’’ in the
IPA terminology. It indicates that the main physicochemical
attributes of a redwinewhere to concentrate efforts should be,
in an ordered list, citric acidity (ca), alcohol (alc), sulphates
(sul) and fixed acidity (fa).

Similar analysis can be developed for a particular wine.
Then, given a certain wine, an informed decision can be taken
to improve the perceived quality of that wine. In this case, the

local performance is employed instead of the global one. The
IPA for two examples of low and high quality red wines are
depicted in Fig. 22.

As for the white wine dataset, the global IPA is depicted in
Fig. 23. It indicates that the main physicochemical attributes
of a white wine where to concentrate efforts should be, in an
ordered list, alcohol (alc), free sulfure dioxide (fsd) and ph.
Alcohol is, therefore, a main vector of perceived quality for
both red and white wines.

V. DISCUSSION
A. COMPARISON OF IMPORTANCE METRICS
In Section III-A, up to 8 importance metrics and their
behavior on synthetic datasets have been presented. Then,
in Section IV-A, these 8 importance metrics have been
applied to the wine datasets. Finally, in Section IV-B, one
of the importance metrics, that based on JSD, has been
informally selected for its use in IPA. Now, a more detailed
comparison of importance metric is undertaken.

For this purpose, the importance values are calculated
when they are applied to the synthetic data sets (detailed
in Section 0). Then several indicators, also defined in that
Section, are obtained and compared. In Fig 24, the linearity
coefficient and the statistical mean power for each importance
metric are depicted. Firstly, it can be seen that importance
based on mutual information shows a high mean power but a
low linearity for most of the datasets.

Secondly, monotonic functions (linear, logarithmic and
cubic) show a high linearity for most of the importance met-
rics. However, non-monotonic relationships are unproperly
characterized by the simplest and most common methods:
regression, Pearson, Spearman and Kendall. On the other
hand, maximal correlation and Linfoot metrics obtain good
results on non-monotonic functions but relatively fail on
the multivalued vertical sine relationship. These results are
compatible with other previous studies [53]. On the contrary,
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FIGURE 24. Linearity coefficient (left) and statistical mean power (right) of several importance metrics and
relationships. These values have been obtained using the synthetic datasets.

FIGURE 25. Time required to compute the importance metric as a
function of the number of samples in the dataset. Values obtained on
a standard desktop computer using a monotonic cubic relationship with a
medium level of noise (β = 0.5).

JSD shows a very good statistical mean power for every rela-
tionship, while it has an excellent linearity for single-valued
functions and a good linearity for multivalued dependances
(semielliptical and vertical sine).

Another issue that should be discussed in the comparison
of different importance metrics is the computational effort
required to obtain them. The time required to compute any
importance mainly depends on the number of samples in the
dataset, as it is depicted in Fig. 25 (in logarithmic scale).
These times have been obtained on a standard desktop com-
puter by calculating the importance metrics of a monotonic
cubic relationship, with a medium level of noise (β = 0.5).
It can be observed that Pearson has the lowest computing

times. The remaining most common methods (regression,
Spearman, and Kendall) show computing times about an
order of magnitude higher. On the other hand, importance
metrics based on information theory (mutual, Linfoot and
JSD) require a computing effort about two orders of mag-
nitude higher than Pearson. Finally, maximal correlation
method demands a huge computing effort (about four orders

FIGURE 26. Comparison of different importance metrics when they are
applied to the eight synthetic datasets (with 10^5 samples each one).
Linearity coefficient, mean power and critical noise values have been
averaged among the eight datasets.

of magnitude over Pearson) limiting their use in many
situations.

A summary of the performance obtained by every impor-
tance metric is depicted in Fig 26. Firstly, equitability is
shown which, by definition, has a single value for each
importance metric. Secondly, the values of linearity coeffi-
cient, mean power and critical noises have been averaged
from those obtained for every synthetic dataset. And finally,
computer speed is obtained as the inverse of the computation
time for a dataset with 105 samples and a cubic relationship
between quality and feature.

As for equitability, it presents a very low value for classical
metrics (regression, Pearson, Spearman and Kendall) as they
fail to seize non-monotonic relationships. JSD excels on equi-
tability, with Linfoot obtaining slightly lower values. On the
other hand, linearity coefficient shows intermediate values for
almost every importance metric, as it is an average for several
synthetic datasets. However, JSD stands out as it has a very
high linearity for all the analyzed datasets.

Statistical power of the importance metrics is mea-
sured using two indicators: mean power and critical noise.
Both offer similar results with excellent results for regression,
closely followed by JSD. Finally, computing speed is high

VOLUME 11, 2023 115445



A. Luque et al.: Determining the Importance of Physicochemical Properties

FIGURE 27. Importance based on the Jensen-Shannon Divergence (JSD)
for the semielliptical synthetic datasets as a function of the noise
level (β). Continuous lines correspond to datasets with 1000 samples;
dashed lines correspond to 10000 samples. Each line represents the
estimation of JSD for a certain a number of bins (as a percentage of the
dataset size).

for classical methods, medium for information-basedmetrics,
and very low for maximal correlation.

According to this analysis, the use of JSD in Section 0 for
wine datasets is fully justified, as it shows the best equitabil-
ity, the best linearity, and the second best statistical power
while it requires a medium and affordable computational
effort.

All the importance metrics described and compared
through the article can be defined as model-free, in the sense
that they do not rely on any underlying model (neither algo-
rithmic nor machine learning) of the relationship between
properties and quality (the only exception is the importance
based on regression where a very simple linear model is
assumed, as expressed in Eq. 5).

Alternatively, when a machine learning model is trained
for any other purpose (i.e. prediction of quality for a new
wine), some additional importance metrics wrapped to that
model can be defined, such as SHAP [54], Lime [55] or
Tree Importance Scores [56]. However, these metrics, as a
posteriori to the training, are better interpreted as an expla-
nation of the model predictions. Furthermore, they can lead
to different importance values when several machine learning
algorithms are considered and, additionally, more computing
resources are required due to the previous training process.
For these reasons, the model-wrapped importance metrics
have not been considered in this research although they could
be contemplated in further developments.

The wine dataset described in Section 0 has been used as
an example of application of the methodologies proposed in
this research. In the case of using a different wine dataset,
where some context variables differ (e.g., vineyard location,
temperature, humidity, rainfall, soil composition . . . ) or other
physicochemical properties (features) of the wine were mea-
sured, the same procedure to obtain each importance feature
should be employed. Obviously, in these cases, different
results could be obtained.

The importance metrics studied in this research consider
the effect of individual physicochemical properties (features)
on the perceived quality of thewine. However, the features are

not independent, and their values can be correlated (for exam-
ple, fixed, volatile, and citric acidity are correlated with each
other and with pH). The combined impact of several features
(even the full set of properties) on the quality would require
an expanded definition of the importance metrics, which
deserves more detailed analysis in future developments.

Although the quality of the wine has been the target vari-
able in this study, some other subjective characteristics can be
analyzed such as, for example, sweetness, balance, harmony,
complexity, precision, elegance, power, etc. These subjective
perceptions, in addition to quality, can be used as a basis
for commercial strategies, which must also consider some
other aspects such as price, bottle design, labeling, etc. These
commercial aspects go beyond the scope of the present work.

B. BIN SIZE FOR JSD
As it has been explained in Section III-C, computing Jensen-
Shannon Divergence requires to estimate the probabilities of
the feature values for every value of the quality. To obtain
these probabilities, the full range of the feature values
[xmin, xmax] is divided into a certain number of bins, nb.
Then, the k-th bin has a central value xk , while it contains
a number of samples, nk . If the total number of samples
is n, the (density of) probability that x = xk (be in the
k-th bin) is pk = nk/n. As any other bin-based method,
the value of JSD may depend on the number of bins used
and the number of instances in the dataset. Fortunately, it has
been observed in the synthetic dataset that these parameters
have very little influence on the value of JSD. As an example,
Fig. 27 shows the evolution of JSD for one of the most prob-
lematic functions (semielliptical relationship) when two sizes
of the dataset and various number of bins (as a percentage
of the dataset size) are used. Similar results are obtained for
other relationships.

C. JSD FOR DISCRETE MULTIVALUED FUNCTIONS
In Section III) the theoretical importance value for noiseless
relationships was corrected for discrete multivalued func-
tions. To show the behavior of JSD when faced with this type
of difficult relationships, several multivalued functions, with
five different shapes, have been synthetized as it is depicted in
Fig 28. Then for each of these shapes, the number of quality
values for each feature value is changed. For instance, the first
column in Fig 28 shows a linear multivalued function with
m = 4 (top) and m = 2.5 (bottom) values of quality for each
feature value.

Then, the quality values are discretized using Lq levels
(Lq = 11 has been used in the previous sections). Finally, for
all the noiseless functions, the JSD is obtained as a function of
Lq, and the number of quality values for each feature value,m.
The result is depicted in Fig 29. The theoretical value derived
in Section III) is also shown as a dotted line.
It can be observed that single-valued functions (m = 1)

obtains an importance Ij ≈ 1. However, in the case of
multivalued functions, the importance for the noiseless lin-
early decreases with m and Lq, following a behavior very
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FIGURE 28. Examples of noiseless multivalued functions with m=4 (top) and m=2.5 (bottom) values of
quality for each feature value.

FIGURE 29. Importance of five noiseless relationships as a function of the number of quality values for
each feature value. Each plot is obtained for the quality discretized in different number of levels.

similar to the theoretical model. Then, it can be asserted that
JSD properly reflects the importance of discrete multivalued
functions.

VI. CONCLUSION
Through the paper, a systematic comparison of different
importance metrics has been undertaken using eight synthetic
qualitatively different relationships with numerous levels of
randomness (noise). For that comparison five measurable
indicators have been employed, three of them proposed in
previous works (equitability, statistical power and computa-
tion speed) and two novel indicators: linearity coefficient and
critical noise.

The cases of relationships with a discrete-valued target
variable (as the perceived quality of wines) have been exten-
sively studied. For them, a novel importance metric based
on JSD has been introduced. Additionally, the usual con-
cept of importance has been adapted to properly reflect the
multivalued functions and a novel correction factor has been
introduced.

In the synthetic datasets explored in this research, the JSD-
based importance metric clearly overperforms other metrics
previously proposed in the literature, at a very moderate and
affordable computational cost. Also, it can be asserted that
JSD properly reflects the importance of discrete multivalued
functions.

The use of eight importance metrics to describe the impor-
tance of each feature in the wine datasets has been explored.
Then these metrics are combined using PCA, obtaining a
novel 2D map of features which can be used to prescribe the
physicochemical properties to be addressed in the design and
production process.

Finally, the JSD-based metric has been applied as the
key element of an updated importance performance analysis
in the wine datasets. This IPA has indicated that the main
physicochemical attributes of a red wine where to concentrate
efforts should be, in an ordered list, citric acidity (ca), alcohol
(alc), sulphates (sul) and fixed acidity (fa). As for the white
wine dataset, the main attributes are alcohol (alc), free sulfure
dioxide (fsd) and ph. Alcohol is, therefore, a main vector of
perceived quality for both red and white wines.
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Identifying the physicochemical properties of wines with
the greatest impact on perceived quality is a powerful tool to
tune the winemaking process with the aim of improving per-
ceived quality. This conclusion is not limited to the datasets
analyzed in the paper but can also be extended to differ-
ent wine production processes and many other engineering
applications.

Themain limitation of the proposed JSD-based importance
metric is that it requires a discrete target variable (wine
quality in this case). For its application to continuous target
variables, they should be quantized previously, which could
introduce some distortion which should be analyzed.

Future research developing the methodologies presented
though this article could focus, first, on the impact of non-
independent (correlated) features, extending the definition of
importance to these cases and studying the combined effect
of several correlated features (physicochemical properties) on
the target variable (quality). This work can also be extended
by considering and comparing importance metrics wrapped
to a certain machine learning model. Also, commercially
focused analysis of the importance metric and its application
to other food and beverage products or other engineering
fields deserve further investigation.
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