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Abstract

There will always be stochastic programs that are too large or complex to be solved in their basic form. In this
article, we review, discuss, and compare different ways such stochastic programs can be handled using bounds
and approximations, all based on manipulations of the random variables. We are particularly interested in
how methods based on different underlying ideas can be combined or possibly are the same.
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1. Introduction

Stochastic programming is an important tool for dealing with decision problems when the outcome
of a decision is stochastic. This is qualitatively different from deterministic approaches and consid-
ers concepts such as options, hedging and risk that do not exist in a deterministic world. Optimal de-
cisions to stochastic programs consider different future outcomes simultaneously and consequently
allocate resources to obtain flexibility in dealing with these futures effectively if they occur.

The advantage of stochastic programming, as opposed to other approaches to decision-making
under uncertainty, is its tight link to mathematical programming and its tools to solve large-scale
constrained optimisation problems that may include combinatorial considerations by integers. The
field of mathematical programming has seen immense improvements in the ability to get precise
solutions to optimisation problems; however, stochastic programs also require approximation of the
stochastics. As a result, the mathematical program solved may be very close to, or at times very far
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from, the underlying problem with its stochastics. It all depends on the quality of the approxima-
tion.

Stochastic programming problems are formulated as optimising the expectation (or some other
risk measure) over stochastic variables that take the role of parameters in an optimisation problem.
Exact solutions to these are, in general, fundamentally intractable.

This paper gives an overview of bounds and approximations with respect to the distributional
aspects of stochastic programming. Our primary goal is to give an intuitive overview to provide an
understanding of the underlying ideas of these bounds. While there are many associated technical
details, we aim to simplify the exposition as much as possible while still conveying the principal
ideas, distinctions and connections between different approaches. References are listed throughout
for the interested reader to explore in more detail.

We refer readers to the book by King and Wallace (2012) for the modelling aspects of stochastic
programming while Kall and Wallace (1994), Birge and Louveaux (2011) and Shapiro et al. (2014)
explain the mathematical background, solution procedures and more detailed technical properties.
This section discusses the uses of bounds and some of their implications for modelling.

Motivation on bounds. Models in stochastic programming aim to optimise a current decision
while additionally accounting for the limitations this puts on future decisions determined once the
outcomes of uncertain parameters are revealed. Future decisions reflect reactive actions once more
information is known and are usually determined by an optimisation model with no closed-form
solution. This means the objective function of the current decision is to optimise the expectation
of another optimisation problem. Needless to say, evaluation of this expectation poses a great chal-
lenge (especially if the distribution is continuous) and must be approximated in some way. Further-
more, we also aim to optimise this expected value (whose evaluation is intractable) with respect to
the current decision. The literature on bounds aims to find tight interval estimates of these quanti-
ties. In this paper, we explore bounds both on the evaluation of expected values and on the optimised
expected values. The distinction between these is important because they elicit different kinds of ar-
gumentation.

In a mathematical and algorithmic sense, bounds are important to determine if an error gap is
sufficiently low so that the problem can be considered solved or that estimates of certain quantities
are sufficiently accurate. The former relies on some version of the latter but has different conceptual
purposes. Bounds on the evaluation of expectations can be used to reveal the current performance
of a given solution in terms of the original (intractable) objective function, but we are also interested
in whether the solution could have been better by comparing it to an interval estimate of the optimal
objective value. This distinction is especially interesting since finding a solution is subject to (an
often different) approximation, and the effectiveness of this approximation can be benchmarked by
first estimating its performance and then deciding if this is sufficiently close to being optimal.

There is also an application side of bounds. In the context of minimisation (which we use
throughout), a lower bound is optimistic while an upper bound is conservative. This means we are
generally more interested in upper bounds since these are more informative of our true exposure.
Investment and pricing problems are especially interesting areas to apply the evaluation bounds in
Section 3 because such problems consist of deciding whether to get exposed or not, and evaluat-
ing this exposure is essential. An overly optimistic account of the objective value may lead to the
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phenomenon known as the winner’s curse (Thaler, 1988), where the bidder having the worst value
estimate wins the bid. If we are already invested, the perspective changes and we mostly care about
making good decisions. The bounds in Section 4 are then of particular interest since these can be
used to evaluate how close a solution is to the actual optimal objective value.

Generally, more uncertainty leads to a worse performance if we do not plan for it. Ignoring un-
certainty produces a decision whose real performance is an upper bound on the best attainable
performance and gets better with a better account of uncertainty. This is worth remembering when
deterministic models are applied in stochastic environments. A naive approximation of the under-
lying distribution may also lead to bounds instead of estimates, a surprisingly easily made mistake.

The structure of the paper is as follows: background and notation are described in Section 2.
In Section 3, we explore bounds on the evaluation of expected values, while Section 4 emphasises
bounds on the optimal value of such expected values. The argumentation of the approaches in these
two sections is fundamentally different but has interesting connections. In Section 5, we conclude
the paper.

2. Background and notation

We present the notation used throughout the paper for minimisation of stochastic programs under
uncertainty. Such formulations may be stated as two-stage or multistage problems, but the same
notation is used for both. Unless explicitly stated otherwise, we refer to both kinds of formulations.
Risk aversion is omitted, which is why these two formulations are very similar in notation. We
assume all relevant optimisation problems in the paper have finite optimal solutions.

We consider a finite-horizon sequential decision-making problem under uncertainty where deci-
sions are made at discrete stages t ∈ {0, . . . , T } and T denotes the (finite) planning horizon, while
[t] := {0, . . . , t} denotes all stages up to t. The uncertain data ξ := (ξ1, . . . , ξT ) are revealed gradu-
ally over time from stage t = 1, and our decisions should be adapted to this process. The decision
process takes the form

x0
decision

→ ξ1
observation

→ x1
decision

→ · · · → ξT
observation

→ xT
decision

,

where each ξt has support �t ∈ R
dt , and overall ξ has support � := �1 × · · · × �T . The history up

to stage t is denoted ξ[t] := (ξ1, . . . , ξt ). For consistency, we let ξ0 represent an initial deterministic
state known in advance of the first decision. The decision process begins with initial decision x0 at
stage t = 0, called the first-stage or here-and-now decision, followed by sequential decisions xt at
stages t = 1, . . . , T . The history of the decision process, at a given point in time t, is denoted by
x[t] := (x0, x1, . . . , xt ).

An important concept associated with uncertainty is the corresponding information structure
F := (F0, . . . ,FT ), which describes the availability of information at each stage. We refer to out-
comes by the underlying outcome space �, and information is encoded by whether such outcomes
can be distinguished at a given point in time. Here, Ft denotes the available information at stage t,
and we have the criterion that Ft ⊆ Ft+1 which signifies that information is gained over time. Con-
tinuous outcome spaces require the notion of nested σ -algebras over � to encode the revelation
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Fig. 1. A scenario tree representing the information structure and the objective value associated with different nodes.

of information, while for discrete outcome spaces, this can also be represented by a tree structure
(see Fig. 1). Implicitly, ξt : � → R

dt is here a mapping from outcomes ω to realisations of the un-
certain data ξt (ω), and similarly for the decision process xt : � → R

nt . We generally also refer to
x(ω) = (x0, x1(ω), . . . , xT (ω)) as a decision policy, which is said to be feasible if it satisfies the con-
straints x(ω) ∈ X (ω) := X0(ω) × · · · × XT (ω), where Xt (ω) ⊆ R

nt . Whenever the specific value of
the uncertain data process matters, we refer to it by ξ , while we generally use ω as a generic referral
to outcomes. Note that processes ξ (ω) and x(ω) must always adhere to the information structure
F , meaning they are defined with respect to it. This also means the decision policy xt (ω) at stage t
may only depend on information Ft available up to stage t, also known as nonanticipativity.

We let ft (x[t](ω), ξ[t](ω)) denote the cost incurred at stage t given the decisions x[t](ω) and stochas-
tic process ξ[t](ω) up to stage t, given by outcome ω. Let E

P
t [·] := E

P
Ft

[·] denote the conditional ex-
pectation with respect to all information up to stage t using distribution P, and let E

P[·] denote the
unconditional expectation.

A (T + 1)-stage stochastic programming problem can be formulated as

v(P) := min
x0∈X0

f0(x0, ξ0) + E
P
0

[
min

x1(ω)∈X1(ω)
f1(x[1], ξ[1] ) + E

P
1

[
· · ·

· · · + E
P
T−1

[
min

xT (ω)∈XT (ω)
fT (x[T ], ξ[T ] )

]]]
, (1a)

= min
x(ω)∈X (ω)

E
P

[
T∑

t=0

ft (x[t](ω), ξ[t](ω))

]
= min

x(ω)∈X (ω)
E

P[ f (x(ω), ξ (ω))], (1b)

where v(P) is the optimal objective value under distribution P and the shorthand notation
f (x(ω), ξ (ω)) in (1b) denotes the total incurred cost for the given process ξ and decision x in out-
come ω. Notice that the cost functions ft can possibly be non-linear.

For discrete outcome spaces �, it is useful to depict the principle of information structure as a
tree where each ω represents a path from the root to the leaves. This is illustrated in Fig. 1 with the
associated notation. The tree has nodes organised in levels corresponding to stages t ∈ {0, . . . , T }.
At level t = 0, we have a single root node associated with the known quantity ξ0 and the first-
stage decision x0. At level t = 1, we have multiple nodes representing different realisations of
ξ1 and associated decisions x1 that depend on this realisation. Generally, nodes correspond to
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possible realisations of uncertainty, and each node has an associated set of outcomes that describes
which paths pass through it. Information consists of knowing this set of outcomes but without the
ability to distinguish exactly which one occurs in the future. Hence, we must plan for all of them
simultaneously (weighted by probability).

By the theory of duality in optimisation, we may dualise this optimisation problem (1) with
respect to its constraints X (ω), and obtain

v(P) = min
x(ω)∈X (ω)

E
P[ f (x(ω), ξ (ω))] ≥ max

λ(ω)∈�(ω)
E

P[ f ∗(λ(ω), ξ (ω))] = v∗(P), (2)

by weak duality, where f ∗(λ(ω), ξ (ω)) is the dual objective function, v∗(P) its optimal objective
value, λ(ω) a dual policy and �(ω) the dual constraints. All quantities in the dual problem also
adhere to the same information structure F and follow the same notation conventions.

2.1. Stochastic linear programs

Stochastic linear programs are the primary formulation used for applications of stochastic pro-
gramming and may also be extended by including integer variables. These take a particu-
lar form with linear objective f (x(ω), ξ (ω)) = c(ω)�x(ω) and linear constraints X (ω) = {x(ω) :
A(ω)x(ω) ≥ b(ω)}. Properties of these are used as assumptions in Sections 3.4 and 4.3.3, while
its parametric shape is important for the discussion in Section 3.3. The stochastic linear program
(SLP) has formulation

min
x(ω)

E
P[

c(ω)�x(ω)
]

s.t. A(ω)x(ω) ≥ b(ω), ∀ω ∈ � (SLP)

x(ω) ≥ 0

with dual

max
λ(ω)

E
P[

b(ω)�λ(ω)
]

A(ω)�λ(ω) ≤ c(ω), ∀ω ∈ � (D-SLP)

λ(ω) ≥ 0,

where ξ (ω) is represented by the random parameters c(ω), A(ω) and b(ω) while λ(ω) denotes the
dual multiplier of the constraints of (SLP). This general formulation of the constraints has a time
structure such that ξt (ω) denotes the parameters ct (ω), At (ω) := (Bt (ω),Wt (ω)) and bt (ω) specific
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to stage t. The constraint matrix A(ω) has a block structure incorporating decisions at previous
stages. In particular, the constraints in the primal take the more specific form

A(ω)x(ω) ≥ b(ω) ⇐⇒

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

A0x0 ≥ b0,

B1(ω)x0 + W1(ω)x1(ω) ≥ b1(ω),
B2(ω)x[1](ω) + W2(ω)x2(ω) ≥ b1(ω),
...
BT (ω)x[T ](ω) + WT (ω)xT (ω) ≥ bT (ω),

where the first constraint is deterministic, and the consecutive ones are stochastic.
There are some specific shapes and properties of (SLP) to take into consideration:

• Right-hand side uncertainty: If only the right-hand side b(ω) is random, (SLP) is convex and
piecewise linear in the random parameters.

• Objective uncertainty: If only the objective coefficient c(ω) is uncertain, (SLP) is concave and
piecewise linear in the random parameters.

• Convex-concave saddle: If we have both right-hand side b(ω) and objective c(ω) uncertainty, (SLP)
is piecewise bi-linear in the random parameters and is also a convex-concave saddle function.

• Fixed recourse: If Wt is deterministic, this is referred to as fixed recourse, while otherwise this it is
called random recourse. The shape of (SLP) in W is generally non-convex.

• Complete recourse: The assumption that (SLP) is always feasible, i.e., taking finite values, is re-
ferred to as complete recourse. Relatively complete recourse means feasibility in stage t is ensured
for all previous feasible decisions X[t−1].

These shapes follow from the parametric shape of LPs (Bertsimas and Tsitsiklis, 1997). Notice
that bounds based on convexity are generally not applicable to mixed-integer linear programs .

2.1.1. Penalty formulations and soft-constraints
Penalty formulations of (SLP) using soft-constraints are especially useful to consider in the con-
text of bounds. These can be used to define finite growth conditions (Section 3.3.5), to construct
majorising functions (Section 3.4), and to have well-defined behaviour for sub-optimal candidate
policies (Section 4). Soft constraints are constructed by adding non-negative auxiliary variables
z(ω) to the constraints as

A(ω)x(ω) + z(ω) ≥ b(ω), (3)

that have associated penalties μ ≥ 0 in the objective. This special form of constraint allows us to
determine the solution of z easily as

z(ω) = (b(ω) − A(ω)x(ω))+ := max{0, b(ω) − A(ω)x(ω)}, (4)
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whose form is similar to those of simple recourse problems (Birge and Louveaux, 2011, sec-
tion 3.1d). Observe also that this reduces projection onto the feasible set to a trivial max operation.
The primal objective can then be restated as

c(ω)�x(ω) + μ�(b(ω) − A(ω)x(ω))+, (5)

while relaxing all constraints but the variable bounds on x(ω). A direct consequence of soft con-
straints is that we have bounds 0 ≤ λ(ω) ≤ μ on the dual variables. Intuitively, whenever the dual
multiplier (the shadow price) reaches μ, the penalty takes over instead by violating the constraint.
Consequently, penalties should be chosen according to the true marginal cost of violating these
constraints. Analogously, soft constraints in the dual formulation using penalties ν give bounds
0 ≤ x(ω) ≤ ν on the primal variable, and the dual formulation is always feasible. The dual objec-
tive can then be restated as

b(ω)�λ(ω) + ν�(
A(ω)�λ(ω) − c(ω)

)+
, (6)

while relaxing all constraints but the variable bounds on λ(ω).
The geometric interpretation of these penalty formulations is that the optimal objective values

of the primal and dual formulations, as functions of the stochastic parameters, are enclosed in
pointed cones whose growth rate is determined by the penalties μ and ν. In the special case of
simple recourse, the objective function is equal to this cone.

3. Bounds on the evaluation of expectations

When the underlying distribution P is known, for example, by an analytical expression or by spe-
cific information about its moments, there exist methods to get guaranteed (as opposed to statisti-
cal) bounds on the expected objective value without solving the intractable integral implied by the
original problem formulation (1). An essential property of the bounds reviewed in this section is
that they require evaluating the objective function only on a finite set of outcomes, also when the
underlying distribution is continuous.

In this section, we primarily address two-stage problems (i.e., T = 1) for a fixed first-stage deci-
sion x0 and uncertainty in the form of a random vector ξ on support � ⊆ R

d . For ease of notation
in this section (Section 3), we let ξi denote component i of the random vector and omit the time
index of ξ . The function to be approximated is then stated as

φ(ξ ) := ξ �→ min
x1∈X1(ω)

f1(x[1], ξ ), x0 fixed, (7)

which represents the optimisation problem solved once the uncertainty ξ is revealed. This can be
time-consuming to evaluate, which motivates having few evaluation points to determine bounds on
its expectation E

P[φ(ξ )]. Extension to multistage problems is discussed in Section 3.3.6.
Guaranteed bounds are mainly based on the shape of φ. These bounds have two closely linked

interpretations, but many of the bounds we discuss have been developed primarily with one per-
spective in mind. The two interpretations of guaranteed bounds are
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1. Distribution approximation: Find an alternative distribution Q whose evaluation of the expected
objective function gives a bound.

2. Function approximation: Find a simpler function that is strictly equal or larger/smaller than φ

and whose expectation is easily evaluated.

Distribution approximation can intuitively be understood as moving probability mass to parts of
the distribution support that combined has a larger/smaller objective value. Function approxima-
tion is intuitively understood by the fact that a function that is larger than another must also have
a larger expectation.

The link between distribution approximation and function approximation and the more general
framework of generalised moment problems are discussed in Section 3.1. An interesting generalis-
ing property of distributional bounds is discussed in Section 3.2. Bounding approaches primarily
motivated by distribution approximation are discussed in Section 3.3 and those motivated by func-
tion approximations in Section 3.4. Lastly, Monte Carlo integration is an often used alternative
approach to evaluate expectations, discussed in Section 3.5.

3.1. Guaranteed bounds as a generalised moment problem

The generalised moment problem (GMP) has important implications for deriving bounds on the ex-
pectation of a function when certain limited information about the distribution is known. To some
degree, this underlies all of the guaranteed bounds. The GMP is a semi-infinite program whose
formulation aims to optimise the expectation of a function over an altered distribution that is sub-
ject to certain generalised moment constraints. While its formulation is very general and solutions
are not always easily given, certain setups of the GMP give easily found or even analytical solu-
tions. We primarily explore these easily found solutions in this paper and leave out details about
semi-infinite programs.

The link to bounds in stochastic programming started with Madansky (1959), who used the mo-
ment problem to prove upper bounds on convex functions and was later tied to optimisation of
the distribution to get upper and lower bounds by Dupačová (1987), Klein Haneveld (1986) and
Kall (1988), originally pioneered by Dupačová (1966) with the minimax formulation of stochastic
programs. The optimal distribution of the GMP has also been referred to as an extreme measure
which is particularly interesting because it has been shown that these are discrete and finite, even
if the original distribution P is continuous (Kemperman, 1968; Karr, 1983). Duality further shows
that the distribution approximation by the GMP has dual formulation with the direct interpreta-
tion of function approximation, which makes these two perspectives particularly tightly connected.
The GMP can be solved directly to obtain bounds but is based on an iterative procedure that in-
volves solving non-convex sub-problems (Birge and Wets, 1987), and we instead emphasise simpler
procedures.

We now state the mathematical framework of guaranteed bounds starting at the interpretation
of distribution approximation, function approximation and implications of their link by strong
duality. Lastly, we give an illustrative example in Section 3.1.1.
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Distribution approximation. Consider that we want to find an alternative distribution Q on sup-
port � to evaluate the expectation E

Q[φ(ξ )] such that it bounds the true objective E
P[φ(ξ )] from

above or below. The first observation to make is that the expectation is linear in the distribution
(namely, in the probability assigned to each outcome) irrespective of the functional shape of φ(ξ ).
This means we can pose the bounding problem as a (semi-infinite) linear program where the distri-
bution Q is optimised with respect to the expectation Q �→ E

Q[φ(ξ )], subject to constraints Q ∈ P
where P is a specific class of probability distributions. We may then intuitively maximise to get an
upper bound and minimise to get a lower bound. The formulation for obtaining a lower bound by
distribution alteration (thereof the abbreviation D) is

min
Q∈P

E
Q[φ(ξ )], (D-LB)

and

max
Q∈P

E
Q[φ(ξ )], (D-UB)

for the upper bound. An optimal solution to such formulations is denoted Q∗. In general, we must
assume the support � is bounded for Q∗ to be well defined (extensions to unbounded support are
discussed in Section 3.3.5).

Conveniently, the optimisation problems (D-LB) and (D-UB) are optimal at discrete distribu-
tions Q∗, even if P is continuous. This is given that we have a finite number of constraints of the
general form

E
Q[gi(ξ )] = mi := E

P[gi(ξ )], ∀i ∈ I, (8)

where I is a finite index set of constraints (Kemperman, 1968, Theorem 1). The generalised moment
functions gi(ξ ) for i ∈ I can take various forms but should be linearly independent. Common ex-
pressions for these are linear functions, moment functions or multi-linear functions. We also require
that probabilities under Q sum to one, which can be stated in the same form,

E
Q[1] = Q(�) = 1 = P(�) = E

P[1].

The constraint set on Q is then summarised as

P :=
{

Q :
Q(�) = 1,

E
Q[gi(ξ )] = mi, ∀i ∈ I

}
. (9)

We assume that the prescribed values mi are easily found and that they are consistent with each
other.1 According to the definition of mi. we always have that P ∈ P , which means P is always
feasible to (D-LB) and (D-UB). Their respective optimal solutions Q∗ must thus indeed provide
bounds on E

P[φ(ξ )] by optimising over the same set P . Furthermore, the optimal approximating
distribution Q∗ has at most |I| + 1 points in its support (Kemperman, 1968). The contributions on
different bounds in the literature lie in choosing generalised moment functions gi(ξ ) such that Q∗

is easily found, which is treated in more detail in Section 3.3.
1If freely specified, it is possible to choose mi so that P is empty.
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10 B. S. Narum et al. / Intl. Trans. in Op. Res. 0 (2023) 1–37

Function approximation. We now turn to the perspective of function approximation. Instead of
looking for a new distribution Q to evaluate expectations over basis functions gi(ξ ), we now aim to
find an affine combination of them

φ̃(ξ ) := u0 +
∑
i∈I

uigi(ξ ), (10)

that approximates φ well from either above or below, where u is a vector of |I| + 1 elements that
must be chosen appropriately. Recall that the true expectations of gi(ξ ) are known to be mi, so

E
P[

φ̃(ξ )
] = u0 +

∑
i∈I

uimi. (11)

In the case of a lower bound, we constrain u such that φ̃(ξ ) approximates φ(ξ ) from below, while
for the upper bound, u is constrained such that φ̃(ξ ) approximates φ(ξ ) from above. The approxi-
mating problem from the perspective of function approximation (thereof the abbreviations F) has
the formulation

max
u

{
E

P[
φ̃(ξ )

] = u0 +
∑
i∈I

uimi s.t. φ̃(ξ ) ≤ φ(ξ ), ∀ξ ∈ �

}
, (F-LB)

for a lower bound and

min
u

{
E

P[
φ̃(ξ )

] = u0 +
∑
i∈I

uimi s.t. φ̃(ξ ) ≥ φ(ξ ), ∀ξ ∈ �

}
, (F-UB)

for an upper bound. An optimal solution to these formulations is denoted u∗.

Duality. Distribution approximation and function approximation are really two sides of the
same coin: they are linked by strong duality. This means the distribution alteration problem (D-LB)
has dual formulation (F-LB), and these have respective solutions Q∗ and u∗ whose objective values
are equal. Correspondingly for (D-UB) and (F-UB). Strong duality holds by the insightful property
that the approximating function φ̃(ξ ) is equal to φ(ξ ) at values of ξ where Q assigns probability
mass. This follows from complementarity slackness of the primal-dual pair, which states that

Q
(
φ̃(ξ ) = φ(ξ )

) = 1, (12)

namely, the probability under Q that the approximating function φ̃(ξ ) is equal to φ(ξ ) is one. In-
tuitively, this means the optimal function approximation meets the true function in the support of
the optimal approximating distribution.

3.1.1. Example: One-dimensional bounded support
We present an example to illustrate these results on distribution alteration and function approxi-
mation to obtain bounds (see Fig. 2). Assume we have a one-dimensional uniform distribution P

© 2023 The Authors.
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B. S. Narum et al. / Intl. Trans. in Op. Res. 0 (2023) 1–37 11

Fig. 2. Examples of lower (left) and upper (right) approximations, with points at the position of the discrete distribution
Q support where the approximations meet φ(ξ ).

on support � = [0, 1] with expectation 0.5. Given this distribution, we want to solve (D-LB) and
(D-UB) where

φ(ξ ) = ξ 4, gi(ξ ) = ξ i, ∀i ∈ {0, 1, 2},

are the objective and (generalised) moment functions, respectively, where i are the different mo-
ments we want to be consistent in the approximating distribution Q. The lower bounding problem
is then formulated as

min
Q

{
E

Q[φ(ξ )] s.t. E
Q[

ξ i] = E
P[

ξ i], ∀i ∈ {0, 1, 2}}, (13)

and maximising gives an upper bound instead. Denoting with ui the dual variable of each con-
straint, the corresponding approximating functions are

φ̃
L/U
M (ξ ) =

M∑
i=0

uiξ
i.

where M + 1 denotes the number of moments enforced, (L) refers to lower and (U) upper bounding
functions, respectively. When solving the problem, we incrementally add each moment constraint
to illustrate their differences. The lower bounding approximating functions have been found to have
expressions

φ̃L
0 (ξ ) = 0, φ̃L

1 (ξ ) = − 3
16

+ 1
2
ξ, φ̃L

2 (ξ ) = −16
27

ξ + 4
3
ξ 2,

© 2023 The Authors.
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12 B. S. Narum et al. / Intl. Trans. in Op. Res. 0 (2023) 1–37

where the approximating distribution supports are {0}, {1/2}, {0, 2/3}, respectively. The upper
bounding approximating functions have expressions

φ̃U
0 (ξ ) = 1, φ̃U

1 (ξ ) = ξ, φ̃U
2 (ξ ) = 3

16
− 19

16
ξ + 2ξ 2,

where the approximating distribution supports are {1}, {0, 1}, {1/3, 1}, respectively. These are plot-
ted in Fig. 2.

Observe (in Fig. 2) that the zeroth moment approximation places all probability mass on the
lowest and highest points of φ(ξ ) and the corresponding function approximation φ̃ is constant.
This is an intuitive way of making conservative bounds but requires knowledge of the curve’s lowest
or highest point. When adding the first-moment basis function, we see that the lower bound places
all probability mass in the expectation of ξ (not a coincidence) while the upper bound places all
probability mass at the ends of the interval support of ξ . These are recoveries of the Jensen lower
bound and the Edmund–Mandansky upper bound discussed in Section 3.3. We have also added
the second-moment basis function as an illustration that this generalises for further basis functions.
However, the support of the optimal Q∗ is generally not as easily found, and there are fewer practical
bounds based on this kind of information.

3.2. Generalisation to every decision and stochastic dominance

An important additional property of some of the bounds discussed in this section is that the ap-
proximating distribution Q may allow to bound E

P[ f (x, ξ )] for any decision x. When this is the
case, we may solve the stochastic program in terms of the objective E

Q[ f (x, ξ )] to obtain a tighter
upper bound on the optimal value v(P) than possible when using only a single sub-optimal candi-
date solution.2 Formally, this requires finding a Q such that

E
P[ f (x, ξ )] ≤ E

Q[ f (x, ξ )], ∀x ∈ X , (14)

for an upper bound (or reversing the inequality for a lower bound). The relevance of this is limited
to situations where a specific property of ξ �→ f (x, ξ ) for all x ∈ X is in itself sufficient to obtain
the bounding distribution Q without explicit knowledge of the function. The property (14) is re-
ferred to as stochastic dominance (a wide area of research in itself), but for now, the most relevant
property of ξ �→ f (x, ξ ) is convexity, under which (14) is referred to as convex stochastic dominance.
Under convexity, we may establish to a great extent where the approximating distribution Q should
reside in its support � without further information on the function itself. Finding Q then comes
down to properties of the support �, multivariate dependence in P, and the choice of generalised
moment functions g(ξ ). Overall, the property of convex stochastic dominance greatly simplifies
finding solutions to the bounding problems (D-UB) and (D-LB).

Majorising probability measures by ordering relations was explored first by Birge and Wets
(1986) and pointed out by Wets (1984). Edirisinghe and Ziemba (1992) used the property of convex

2More generally, the aim of minimising maxQ∈P E
Q[ f (x, ξ )] in terms of x is referred to as Distributionally Robust Opti-

misation (DRO) in the literature.
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B. S. Narum et al. / Intl. Trans. in Op. Res. 0 (2023) 1–37 13

dominance to get optimised upper bounds, while Frauendorfer (1996), Kuhn (2005) and Frauen-
dorfer et al. (2011) apply this to convex-concave multistage problems with linear time dependence.
Maggioni and Pflug (2019) apply convex stochastic dominance to bound multistage problems with
more general stochastic processes and risk-averse objective functions.

3.3. Distribution approximations

This section discusses approaches that are primarily motivated by distribution approximation to
find bounds, where some are also solutions to the GMP. The bounds in this section make assump-
tions on the shape of φ, multivariate dependence in P, the kind of support � and which generalised
moment functions g(ξ ) are used in the approximation. Table 1 gives an overview of different ap-
proaches.

There are four relevant shapes of φ to consider: (i) convex, (ii) concave, (iii) convex-concave
and (iv) monotonous. Convexity serves as a base case for our analysis. If it is instead concave,
the analysis is the same, but lower and upper bounds must be switched. If it is instead convex-
concave, these must be dealt with in an opposing manner, but the analysis is still largely the same
(Section 3.3.4). Monotonous functions can be dealt with (although less effectively) by finding the
highest or lowest evaluations in the support and may be considered a special case of the GMP using
only zeroth-order conditions (see Example 3.1.1).

3.3.1. Jensen, Edmund–Madansky and hyper-planes on simplicial support
Jensen (1906) proved the (now classic) result that, for a convex function φ of a random variable ξ ,
its expectation E

P[φ(ξ )] is bounded from below by the evaluation in the expectation of the random
variable:

φ(EP[ξ ]) ≤ E
P[φ(ξ )]. (15)

Furthermore, this only requires evaluation of φ in a single point, which is of great practical impor-
tance when function evaluations can be time-consuming.

Edmundson (1957) showed how the expectation of a convex function of a one-dimensional ran-
dom variable with a bounded interval support could be upper bounded by a linear function going
through the end-points of the interval. Madansky (1959) posed this in the form of moment prob-
lems and showed it could be applied repeatedly for multivariate distributions with independence on
rectangular support. Frauendorfer (1988) generalised these results to distributions with dependence
by instead using multi-linear (generalised) moment functions

gI (ξ ) =
∏
i∈I

ξi, ∀I ⊆ {1, . . . , d}, (16)

where I are all combinations of each of the dependent random variables (i.e., in the power-set of
{1, . . . , d}). This gives an analytical expression for optimal probability mass to place in the extreme
points on the rectangular support, while Kall (1987) showed this solution is unique. Furthermore,
it was shown that the Edmund–Madansky result is a special case of the same expression where
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Fig. 3. Moving probability mass on convex functions to obtain bounds with respect to linear approximating functions.
Dashed lines illustrate the corresponding function approximations.

independence simplifies the expression. A disadvantage of the Edmund–Madansky (EM) type up-
per bound is that the number of evaluation points for the altered distribution scales exponentially
as 2d in the dimensionality d of �. Furthermore, it is often unrealistic to have accurate estimates of
the expectations of the multi-linear generalised moment functions (16) in real-world settings.

These limitations of the EM type upper bound were mitigated by Birge and Wets (1986) and
Gassmann and Ziemba (1986) who, effectively, used first-order moment functions

gi(ξ ) = ξi, ∀i ∈ {1, . . . , d}, (17)

assuming simplicial support � and general dependence structure. Birge and Wets (1986, Corol-
lary 6.16) show that, under the assumption of convex φ(ξ ) and polytopal support � the bounding
problem (D-UB) attains a solution on the extreme points of the polytope. When the polytope is
simplicial (defined to have d + 1 extreme points), the weights on the extreme points are uniquely
determined by the set of d equations E

P[ξi] = E
Q[ξi] for all i ∈ {1, . . . , d}, as well as the conditions

that probabilities sum to one. From the perspective of function approximation, this corresponds
to finding an affine hyper-plane that meets φ(ξ ) in the extreme points of �. Although this makes
finding the upper bounding distribution approximation much simpler, the EM type bound is still
tighter (Kall, 1987).

Consider also that a bounded interval [a, b] is a simplicial set in one dimension, which means
the EM bound is the one-dimensional counterpart of the hyper-plane approach. Independence and
rectangular support mean the probabilities can be determined in each dimension separately, and
the overall probability in each rectangular corner is determined as the product of the probability in
each dimension.

The bounds based on zeroth- and first-order moments can intuitively be understood by directly
applying the definition of convexity (see Fig. 3). An affine line can be defined as a convex com-
bination of two points. Placing these points closer to the expectation gives lower evaluations, and
placing them further out gives higher evaluations. This observation is generalised by the concept of
barycentric approximation for upper bounds.
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3.3.2. Barycentric approximation
More generally, we may state upper bounds as making convex combinations of the extreme points
of a polytopal support (that is not simplicial) since the probability mass from upper bounding dis-
tribution approximations of convex functions always resides at the extreme points of the support
(Birge and Wets, 1986). This representation also goes under the name of barycentric approxima-
tion, referring to the interpretation that a convex combination of the weighted extreme points is a
barycentre (centre of mass). These developments are due to Birge and Wets (1986) and Frauendor-
fer (1992).

First, we express any point ξ within a polytopal set � as a convex combination of its extreme
points {ξ (1), . . . , ξ (K )} = ext(�) with weights {ρk(ξ )}k=1,...,K , subject to

ξ =
K∑

k=1

ρk(ξ )ξ (k),

K∑
k=1

ρk(ξ ) = 1, ρk(ξ ) ≥ 0. (18)

This is also called a barycentric coordinate representation of ξ . The approximating function is then
expressed as

φ̃(ξ ) =
K∑

k=1

ρk(ξ )φ(ξ (k) ), (19)

which means

φ(ξ ) = φ

(
K∑

k=1

ρk(ξ )ξ (k)

)
≤

K∑
k=1

ρk(ξ )φ(ξ (k) ) = φ̃(ξ ), (20)

by the definition that φ is convex. Evaluating the expectation on both sides gives the upper bound

E
P[φ(ξ )] ≤

K∑
k=1

ρ̄kφ(ξ (k)), (21)

where ρ̄k = E
P[ρk(ξ )] is the overall weight assigned to each extreme point given by its weight func-

tion ρk(ξ ). The possible caveat of barycentric approximation is obtaining ρ̄k since this involves
a high-dimensional integral over general functions ρk(ξ ). Preferably these are stated in a simple
fashion. In particular, if � is simplicial, we have that ρk(ξ ) must be linear and ρ̄k are uniquely
determined, which recovers the hyper-plane result in the previous section. If the support is rectan-
gular, we can recover the dependent EM bound where ρk(ξ ) are multi-linear and ρ̄k are again given
by closed-form expressions.

3.3.3. Higher order bounds
Edirisinghe and Ziemba (1994b) and Edirisinghe (1996) extend the previous developments by a
method using minorising affine functions to obtain lower bounds on convex functions. Originally,
these were developed for convex-concave saddle functions (Section 3.3.4) where linearisation in the
convex components complements a barycentric approximation in the concave components but also
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led to new results on second-order lower bounds on convex functions. This lower bound is the first
to improve on the Jensen bound by incorporating additional moment information.

Assume we have a given barycentric approximation ρk(ξ ) on polyhedral support �, potentially
based on a special kind of support (simplicial or rectangular).3 Since φ is convex, we may create a
minorising linearisation

φ(ξ ) ≥ φ(ξ̂ ) + ∇ξφ(ξ̂ )�(ξ − ξ̂ ) (22)

where ∇ξφ(ξ̂ ) is a sub-gradient of φ with respect to ξ at a point ξ̂ (where the inequality is also tight).
Consider that we may create such a linearisation in certain points ξ̂ (k) associated with each function
ρk(ξ ). By the definition of barycentric coordinates, we have that 1 = ∑K

k=1 ρk(ξ ), which gives

φ(ξ ) =
K∑

k=1

ρk(ξ )φ(ξ ) ≥
K∑

k=1

ρk(ξ )
[
φ(ξ̂ (k)) + ∇ξφ(ξ̂ (k) )�(ξ − ξ̂ (k))

]
= φ̃(ξ ), (23)

where the linearisation is specific to each k. Higher order and cross-moment terms may be contained
in the term ρk(ξ )ξ . By evaluating the expectation over (23), we find that

E
P[φ(ξ )] ≥

K∑
k=1

ρ̄k

[
φ(ξ̂ (k) ) + ∇ξφ(ξ̂ (k) )�

(
E

P[ρk(ξ )ξ ]
ρ̄k

− ξ̂ (k)
)]

=
K∑

k=1

ρ̄kφ(ξ̂ (k) ), (24)

where the last equality follows by letting ξ̂ (k) = E
P[ρk(ξ )ξ ]/ρ̄k, the point at which the k-specific

linearisation of φ is tight. Separability of φ̃ is important as this allows finding each ξ̂ (k) separately.
The approximating distribution then has support {ξ̂ (k)}k=1,...,K with probabilities ρ̂k. An illustration
for the one-dimensional case is given in Fig. 4.

The points ξ̂ (k) here have the interpretation of being the conditional expectation of ξ under the
probability assignment ρk(ξ )/ρ̄k, which tends towards ξ (k). It also holds that ξ̂ (k) ∈ � as long as
ρ̄k > 0 while, otherwise, ξ̂ (k) is irrelevant since ρ̄k is its associated probability mass. If ρk(ξ )ξ only
contain cross moments, the bound coincides with the solution of (D-LB), while this is not the
case for second-order bounds since the approximating distribution only preserves first-order and
cross moments exactly. Figure 4 illustrates that the bounding function φ̃(ξ ) does not meet φ(ξ ),
which would be a requirement for this to hold. Dokov and Morton (2005) also provide a tighter
second-order lower bound than (23), which requires more evaluation points, rectangular support
and independence, whereas Edirisinghe (1996) bound is a special case. Neither this bound solves
(D-LB) exactly.

Lastly, Dokov and Morton (2002) extend upper bounds on convex functions to arbitrary order
using Bernstein polynomials, which gives a regular grid of evaluation points. As a special case, this
also recovers the EM kind of bounds, with and without dependence.

3If ρk(ξ ) are degenerate (i.e., there exist multiple valid representations by the given moment information), the issue of
finding the lower bound can instead be formulated as a non-linear convex optimisation problem (Edirisinghe and Ziemba,
1994b, 1996).
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18 B. S. Narum et al. / Intl. Trans. in Op. Res. 0 (2023) 1–37

Fig. 4. Second-order lower bound by combined linearisation and barycentric approximation on an interval [ξ (a), ξ (b)].
The evaluation points of the approximating distribution are ξ̂ (a) and ξ̂ (a), while φ̃ is the separable approximating

function.

Fig. 5. Bi-linear upper and lower bounding functions on a convex-concave function φ(ξ, ζ ).

3.3.4. Convex-concave saddle functions
Convex-concave saddle functions, defined to be convex in some dimensions and concave in others,
can be dealt with by treating these in an opposing manner. The primary concern for these is how to
deal with dependence between the convex and concave components. This section follows the exact
developments of Sections 3.3.2 and 3.3.3, while simplifying special cases are due to Frauendorfer
(1992). From the perspective of function approximation, these bounds give bi-linear or multi-linear
approximating functions on the convex-concave saddle function, as illustrated in Fig. 5.

Let φ(ξ, ζ ) be a convex-concave saddle function that is convex in ξ and concave in ζ , and
let the polytopal distribution support be � × Z where ξ ∈ � and ζ ∈ Z. This corresponds to
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B. S. Narum et al. / Intl. Trans. in Op. Res. 0 (2023) 1–37 19

appending ζ to the multivariate random variable in the previous setup. Let ξ (k) denote the extreme
points of � and ζ (l ) the extreme points of Z. Again, we use barycentric approximations ρk(ξ ) and
ρl (ζ ) determined by these extreme points. By the saddle property of φ(ξ, ζ ) and the barycentric
approximation, we then have that

L∑
l=1

ρl (ζ )φ(ξ, ζ (l ) ) ≤ φ(ξ, ζ ) ≤
K∑

k=1

ρk(ξ )φ(ξ (k), ζ ), (25)

due to convexity in ξ and concavity in ζ . Evaluating the expectation of (25) gives bounds on
E

P[φ(ξ, ζ )]; however, this cannot necessarily be easily evaluated and dependence between ξ and
ζ must be cared for when doing this. Under independence between ξ and ζ , we may apply the
Jensen inequality directly to (25) to obtain the bounds

L∑
l=1

ρ̄lφl (ξ̄ , ζ (l ) ) ≤ E
P[φ(ξ, ζ )] ≤

L∑
k=1

ρ̄kφ(ξ (k), ζ̄ ), (26)

where ξ̄ = E
P[ξ ] and ζ̄ = E

P[ζ ]. Under dependence, however, we may proceed by applying the lin-
earisation procedure from Section 3.3.3 to expression (25) and obtain∑

kl

ρ̄lφl (ξ̂ (k), ζ (l ) ) ≤ E
P[φ(ξ, ζ )] ≤

∑
kl

ρ̄kφ(ξ (k), ζ̂ (l ) ), (27)

instead, where ξ̂ (k) and ζ̂ (l ) are determined by the procedures laid out in Section 3.3.3. Note that
the linearisation with respect to ξ uses the barycentric approximation ρl (ζ ) (as well as the con-
verse), meaning the approximating functions have terms ρk(ξ )ζ and ρl (ζ )ξ expressed by first-order
or cross moments only. As before, the bound using only first-order and cross moments are tight
on the corresponding generalised moment problems (D-LB) and (D-UB). Under assumptions of
simplicial or rectangular support, the barycentric approximations are unique, and the solutions are
easily found in closed form as well as for the linearisation points (Frauendorfer, 1992). Second-
order moments can be added by using a single barycentric approximation defined in terms of the
extreme points of � × Z instead (Edirisinghe, 1996).

3.3.5. Subset refinement and unbounded support
The described bounds can be sharpened to arbitrary precision by refining the support � into
smaller subsets {�k}k=1,...,K and computing the bounds on each of them. In the perspective of dis-
tribution alteration, we now use conditional expectations instead of total expectations while from
the perspective of function approximation, we use piece-wise approximations within each subset
instead of on the whole support.

The observation that these bounds could be refined to subsets started with Ben-Tal and
Hochman (1972) who refined the Edmund–Madansky bound for positive linear functions, i.e.
(ξ )+ = max{0, ξ}, and the implications of their result were generalised by Huang et al. (1977) to
show that the bounds can be repeatedly applied to subsets of the support to refine them to arbitrary
precision. Ben-Tal and Hochman (1972) showed that the bounds hold on intervals unbounded on
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20 B. S. Narum et al. / Intl. Trans. in Op. Res. 0 (2023) 1–37

Fig. 6. (a) Partitioning a two-dimensional plane into polytopes and polyhedral cones. (b) Polyhedral cone with
corresponding distribution approximations for an upper bound at extreme points extended by rays and a lower bound in

the interior.

one side if the convex function has a finite growth rate, which was extended to conic polyhedral
sets by Gassmann and Ziemba (1986) and Birge and Wets (1986). Edirisinghe and Ziemba (1994a)
extend the lower bounds by linearisation (Section 3.3.3) to conic polyhedral support.

The subsets �k of � must generally be polytopal or polyhedral cones, described by a finite num-
ber of extreme points and rays (see Fig. 6a) and partition the support �. A polyhedral cone is a
polyhedron where for every unbounded direction it contains, it is bounded in the opposite direc-
tion. This avoids unbounded formulations of (D-LB) and (D-UB). Once a bound B(�k) is made on
a subset �k, the overall bound B(�) is found as B(�) = ∑K

k=1 P(�k)B(�k), where P(�k) denotes
the probability of each subset.

Unbounded support requires the use of rays in its description. The fundamental requirement for
unbounded support is that φ has limited growth along any ray r staring at a point ξ ∈ �. Namely,

lim
t→∞

|φ(ξ + tr)|
‖ξ + tr‖ ≤ μr < ∞, ξ + tr ∈ �, (28)

where ‖ · ‖ is the Euclidean norm and t ∈ R+. In particular, (28) follows for linear recourse pro-
grams with complete recourse, and this can always be ensured by using penalty formulations (Sec-
tion 2.1.1). For unbounded support, the optimal distribution approximation is situated on the ex-
treme points of �, possibly extended by the extreme rays (see Fig. 6b). By the condition to preserve
the first-order moment condition, we cannot extend along rays infinitely as long as the support is a
polyhedral cone. The finite growth coefficients μr determine the upper bound on the objective value
with respect to the ray extensions.

As an example, the unbounded space R
d can be described by conic polyhedral subsets in the form

of every orthant (giving 2d subsets), which are polyhedral cones. While there are large differences
in the number of evaluation points based on the kind of support for the bounds discussed, there is
also a complexity to consider with respect to how a high-dimensional space � is partitioned. This
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B. S. Narum et al. / Intl. Trans. in Op. Res. 0 (2023) 1–37 21

means there is a trade-off between the number of evaluation points for a subset and the number of
partitioning subsets of the space.

3.3.6. Multistage case
The main challenge with the multistage extension of distribution approximation is that a dis-
crete approximating distribution Q also defines a simplified information structure F̂ (a discrete
tree) which interferes with the conditional evaluation of expectations. The fundamental question
is whether we can apply the previously discussed bounds stage-wise: given a discretisation for the
current stage, generate a discretisation for the next stage conditional on each discrete outcome. If
possible, stage-wise discretisation significantly simplifies the discretisation, but this does not always
suffice. The violation may occur when evaluating the conditional expectation of a stochastic quan-
tity more than one stage ahead since this relies on the discretisation in intermediate stages that did
not explicitly account for this. Under linear additive time-dependence with stage-wise independent
noise, stage-wise discretisation is sufficient, while, in general, the entire process must be accounted
for.

Distributional approximation on multistage stochastic programs has been explored by Ediris-
inghe and Ziemba (1992), Frauendorfer (1994, 1996), Frauendorfer et al. (2011) and Kuhn (2005).
All of them use first-order and cross moment information and assume stage-wise independence or
linear additive time dependence. More recently, Maggioni and Pflug (2019) have explored this for
more general stochastic processes and show by counter-example that the entire process across all
stages must then be accounted for during discretisation.

3.4. Function approximations

Function approximations are largely based on specific assumptions about the function at hand.
The most general assumption is convexity which also holds for stochastic linear programs under
right-hand side uncertainty, but some also deal with specific properties of these.

For function approximation to be useful, the expectation of the approximating function must also
be easily evaluated. This is achieved by using simple function expressions (linear, piecewise linear
or quadratic) and by ensuring separability. Separability means the approximating function over
the high-dimensional random vector ξ can be expressed as a sum of functions of fewer (or single)
elements of ξ . This reduces one high-dimensional integral to evaluating many low-dimensional
integrals, which is a considerable simplification. Independence in the distribution would also ensure
multiplicative separability.

For upper bounds, two kinds of function expressions have been considered to approximate φ(ξ )
whose expectation is easy to evaluate. The aim is to fit these as tightly as possible within φ(ξ ), whose
procedures vary. First, there are separable piecewise linear functions

φ̃(ξ ) = u0 +
d∑

i=1

ui(ξi − ξ̂i)+ +
d∑

i=1

ud+i(ξi − ξ̂i)−, (29)
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22 B. S. Narum et al. / Intl. Trans. in Op. Res. 0 (2023) 1–37

Fig. 7. A linear, separable and pointed cone, akin to a simple recourse function, that majorises a convex function.

where ξ̂ is a predetermined value of ξ (the expectation, for instance) that defines the tip of the cone
and u ∈ R

2d+1 vector of coefficients. (See Fig. 7.) This approximating function primarily addresses
growth conditions in the limits of ξ , and (29) may be refined by inserting a piecewise linear function
within bounded intervals [ξ l

i , ξ
u
i ] and letting the unbounded limit be determined by (29) outside of

this interval (Birge and Wets, 1989). Second, there are second-order expressions

φ̃(ξ ) = u0 +
d∑

i=1

uiξi +
d∑

i=1

ud+iξ
2
i , (30)

whose primary aim is to alleviate the requirement of finding conditional expectations required by
separable piecewise linear approximations. Consider, for example, that these are estimated from
empirical data and that the confidence on second-order statistical estimates can be higher than for
estimates of conditional expectations on many small subsets of the support. In fact, a requirement
to find (30) is a (not necessarily separable) piecewise linear function which may be found using the
procedures to find (29).

Lastly, there are penalty formulations of a two-stage stochastic linear program (SLP) suggested
by Morton and Wood (1999), which give an analogous shape to (29), expressed as

φ̃(ξ ) = c1(ω)x̂1 + μ�(B1(ω)x0 + W1(ω)x̂1 − b1(ω))+, (31)

where x̂1 is a fixed decision inserted into the objective of a penalty formulation (Section 2.1),
where x̂1 itself can be chosen such that it minimises the bound. This may not be separable to one-
dimensional integrals (only lower dimensional) but can be applied more generally to (SLP) with
random recourse. Observe that if only b1(ω) is stochastic, (31) takes the same form as (29). Morton
and Wood (1999) also showed that if we have dual formulations of the optimisation problem that
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B. S. Narum et al. / Intl. Trans. in Op. Res. 0 (2023) 1–37 23

defines φ(ξ ), we may apply similar bounds on the dual objective function to obtain lower bounds
by weak duality. Such dual bounds are discussed in more detail in Section 4.3.

3.4.1. Piecewise linear approximating functions
The bound developed by Birge and Wallace (1988) (that generalises Wallace, 1987; Birge and Wets,
1989) assumes right-hand side uncertainty and bounded primal variables for two-stage (SLP) and
finds a linear conic upper bounding approximation of the form (29) defined over unbounded sup-
port. (See Fig. 7.) The coefficients that determine the growth of this approximation are found by
parametric evaluation of an altered formulation of the problem that requires a number of evalu-
ations proportional to the dimensionality d of the support. It may not always be possible to find
such finite slopes by the given procedure, in which case the upper bound evaluates to +∞. Under
penalty formulations of (SLP), the slopes are upper bounded by the penalty μ of constraint viola-
tion and guaranteed to give a finite upper bound. This also means this bound is tighter than (31)
under the assumption of right-hand side uncertainty.

Powell and Frantzeskakis (1994) use a similar simplification as Wallace (1987) to get simplified
upper bounding recourse functions of network problems (and discuss different strategies for doing
so) but instead use these to optimise decisions. This allows for solving larger problems while still
capturing the essence of the recourse problem at hand.

3.4.2. Second-order approximating functions
Dulá (1992) and Dulá and Murthy (1992) derived a second-order upper bound (30) that majorises
a known piece-wise linear convex function φ. This known function is motivated by the piece-wise
linear form of two-stage SLPs having either right-hand side or objective uncertainty. However,
obtaining these explicitly requires extreme point enumeration of the (deterministic) dual or primal
feasible sets. Other majorising approximations of this nature may also be used instead. Using total
second-order information only (such that coefficients of second-order terms in (30) are equal), Dulá
(1992) finds a closed form expression to determine the coefficients. This has no assumptions on
dependence or boundedness of the support. Kall (1991) proposed an alternative perspective on
this problem that leads to a non-smooth optimisation problem. Dulá and Murthy (1992) extend
this to marginal second-order moments, which tightens the bound under the same assumptions.
No closed-form solution is found, but the bound can be found by minimising a non-linear convex
function in d + 1 variables with linear constraints.

Birge and Dulá (1991) use second-order information to bound a separable convex function φ,
whose approximation φ̃ is found by a line search. This directly extends the approach of Birge
and Wallace (1988) but can also be applied to more general separable functions using its first-
order derivatives.

3.5. Monte Carlo integration

The statistical counterpart to guaranteed integral bounds is to use Monte Carlo integration. That
is, to sample an alternative distribution P̃ from the underlying distribution P to get a finite sta-
tistical estimator E

P̃[ f (x̃, ξ )] of the true expectation E
P[ f (x̃, ξ )] for a fixed candidate decision x̃.
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Confidence intervals on this estimator can then derive statistical upper and lower bounds. This
makes no assumption on the shape of ξ �→ f (x̃, ξ ), but it must be evaluated in a potentially very
large number of sampled outcomes. The statistical properties rely on having a fixed decision, while
optimisation with respect to E

P̃[ f (x, ξ )] leads to bias in the estimator (see Section 4.2).
The average recourse value E

P̃[ f (x̃, ξ )] is an estimator of the expected recourse value E
P[ f (x̃, ξ )]

which, by the central limit theorem, is asymptotically normally distributed, i.e.

E
P̃[ f (x̃, ξ )] ∼ N

(
E

P[ f (x̃, ξ )], VarP[ f (x̃, ξ )]/
√

|P̃|
)

, (32)

where |P̃| is the number of samples in P̃. Importantly, (32) holds for multistage problems where the
samples are outcome paths (not necessarily trees) assuming the policy x̃(ω) provides decisions for
every possible outcome path (Shapiro et al., 2014, Section 5.8.1). We may also extend by sampling
the points of P̃ by more elaborate schemes to reduce variance in the estimator and get an improved
convergence rate, referred to as quasi-Monte Carlo methods (Shapiro et al., 2014, Chapter 5.4).

4. Bounds on optimal expected values

We now turn to bounds on the optimal objective value v(P). These are solely based on argu-
ments from optimisation theory: primal-dual formulations, sub-optimality, relaxation and feasi-
bility. Such bounds are particularly interesting in the context of determining if a given candidate
decision is sufficiently close to the best obtainable decision. Given stochastic programs are fun-
damentally intractable to solve in their basic form, these are especially useful when pursuing ap-
proximation methods aimed at finding (close to) optimal decisions, and the bounds are used for
validation.

This section discusses three approaches to bounding optimal objective values. In Section 4.1,
we address candidate evaluation bounds based on sub-optimality, where the important concept is
how to insert approximations into the original intractable formulation. In Section 4.2, we address
how a relaxation of information structure can give simplified problems that provide bounds. Lastly,
Section 4.3 reviews decision rules and aggregation bounds derived from these based on relaxation,
tightening and sub-optimality. Using decision rules is also an alternative approximation approach
to those based on discretising distributions to obtain scenario trees.

4.1. Bounds based on candidate policies

These bounds evaluate the objective function using candidate policies to get a bound on the optimal
objective value v(P). Namely, if x̃(ω) is a candidate primal policy and λ̃(ω) a candidate dual policy,
we have that

E
P[ f (x̃(ω), ξ (ω))] ≥ v(P) ≥ v∗(P) ≥ E

P[
f ∗(λ̃(ω), ξ (ω))

]
. (33)
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Should x̃(ω) or λ̃(ω) be infeasible, we use the convention that this gives a primal or dual objective
value of ±∞, which means these still give bounds but not very interesting ones. Infeasibility can
be mitigated effectively by penalty formulations of stochastic programs (see Section 2.1.1) or by
defining candidate policies according to rules that redeem feasibility. For the lower bound in (33) to
be practical, the duality gap should be relatively tight and may require strong duality. For example,
this is not the case for mixed-integer programs, but the upper bound still applies to these.

Obtaining candidate policies usually relies on some strategy of approximation. This is either
done by discretisation into a scenario tree represented by a simplified information structure F̂ and
alternative distribution Q, or by decision rules (Section 4.3). When using scenario trees, we must
define an extension rule that determines the candidate policy for outcome paths ω not contained in
the tree. These may consist of simpler or more elaborate rules but must adhere to the underlying
information structure F . Essentially, the extension rule in a given stage can only use information
known at that stage. The concept of distances between trees is valuable in this context (Pflug and
Pichler, 2012, 2014).

The simplest extension rule would be a nearest neighbour rule according to the distance from
the tree to any given path ξ̃[t] up to its realisation at stage t where the policy must be determined.
Regression procedures have been proposed by Keutchayan et al. (2017), while Stochastic Dual
Dynamic Programming (SDDP) can be applied to obtain piece-wise linear policies for problems
of a special kind (Pereira and Pinto, 1991). Alternatively, we may incrementally optimise the deci-
sion in each stage, conditional on decisions determined in past stages. This is mainly useful in the
context of two-stage problems where the first-stage decision is fixed, and the second-stage problem
is easily evaluated without the need for approximation of further stages. This is also the tightest
possible candidate evaluation bound for two-stage problems where only the first-stage decision is
sub-optimal. For multistage problems, however, the consecutive optimisation problems represent
almost as difficult problems as the full problem, and we often resolve to simpler and less optimal
extension rules, which means the quality of the extension procedure also interferes with the evalua-
tion. Xu and Sen (2023) also introduce the concept of compromise policies that are determined by
optimising a policy over an ensemble of value function approximations derived from many scenario
trees (with extension rules) to exploit the principle of multiple replications instead of using larger
scenario trees to obtain candidate policies.

The simplest scenario tree to construct a candidate policy from would be to use expected path,
whose candidate evaluation bound is known as the Expectation of the Expected Value (EEV) so-
lution (Madansky, 1960). Maggioni and Wallace (2012) and Crainic et al. (2018) also analyse how
candidate decisions in two-stage problems can be obtained using partial information from the ex-
pected value solution while the remaining variables are optimised in the full problem (assuming a
finite number of outcomes).

4.1.1. Out-of-sample evaluation bounds
Out-of-sample evaluation refers to the procedure of evaluating the performance of candidate poli-
cies found by some approximation procedure, like scenario generation, and then validating its per-
formance in terms of the original objective by Monte Carlo integration (Section 3.5) to ease its
evaluation of the original objective value. This means we replace P with a sample distribution P̃
assumed to be sufficiently large so that it represents P well. In the context of two-stage stochastic
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Fig. 8. Example of refinement of information structure.

programs, Kaut and Wallace (2007) proposed this as an approach to determine if scenario gener-
ation is effective by comparing the quality of candidate decisions obtained by different scenario
generation methods. Out-of-sample evaluation essentially gauges different scenario generation pro-
cedures against each other by comparing which method can, by whichever means, produce the
candidate decision that has the best evaluation bound. This has been a tool for the further develop-
ment of scenario-generation methods. The concept of extension rules for out-of-sample evaluation
in multistage problems proposed by Keutchayan et al. (2017) serves as a multistage counterpart.
In principle, other evaluation bounds from Section 3 could also have been used to compare candi-
date decisions.

Evaluation of both the primal and dual objectives by candidate policies determined from sce-
nario trees can gauge their representation of the underlying information structure in terms of the
original objective function. While scenario set generation is mainly concerned with finding dis-
crete outcomes, scenario trees additionally rely on effective representation of information structure.
To our knowledge, this has not yet been explored in the context of scenario tree generation, but
Kuhn (2008) used such primal-dual evaluation to gauge the effectiveness of decision rules (see Sec-
tion 4.3). The advantage of primal-dual evaluation is that we get gap estimates of sub-optimality,
providing a stopping criterion for sufficient approximation quality. In contrast, comparing upper
bounds solely determines if one approximation approach is better than the other. Effective dis-
crete representation of information structure tuned to the problem at hand is an interesting avenue
of future research that currently has received little attention in the research literature on scenario
tree generation.

4.2. Bounds on refinement of information structure

Refinement of information structure implies splitting a tree into smaller sub-trees and optimising
decisions on these instead. This provides a collection of simpler optimisation problems whose so-
lutions combine to provide a lower bound on the original problem. A conceptual illustration is
given in Fig. 8. This section presents a general setup that applies to various bounds in the literature
derived from partitioning, group sub-problems and sampling. However, note that some of these
approaches involve combinatorial aspects not explained in detail. We also do not rely on the value
of ξ to work out these bounds and, hence, refer to ω instead.

Throughout this section, we assume a finite discrete distribution P̃ with support �̃ such that
the optimal objective value and solution set of E

P̃[ f (x(ω), ξ (ω))] is sufficiently close to those
of E

P[ f (x(ω), ξ (ω))] (Shapiro et al., 2014, Section 7.2.5). We may, for example, interpret P̃ as a
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sufficiently large sample from P. Sampling (in a stage-wise manner) or using some other discretisa-
tion procedure to obtain P̃ is also the approach used in practice for computing these bounds.

The refinement is constructed by finding a (countable) collection of alternative distributions
{Qk}k∈K on subsets {�k}k∈K of �̃ and a convex combination of positive weights {γk}k∈K (where∑

k∈K γk = 1) such that

P̃(ω) =
∑
k∈K

γkQk(ω), (34)

where the alternative distributions compose the original distribution. Supports �k that are strictly
smaller than �̃ is most interesting since this implies problems E

Qk [ f (x, ξ )] are easier to solve than
the original formulation using P̃. Probability assignment in terms of {Qk}k∈K and subset selection in
terms of {�k}k∈K are two alternative interpretations of how the distribution P̃ is simplified; however,
note that the relative assignment of probabilities within �k is solely determined by Qk. By linearity
of expectations in their probability assignment, we have that

E
P̃[ f (x(ω), ξ (ω))] =

∑
k∈K

γkE
Qk [ f (x(ω), ξ (ω))], (35)

where the latter expression represents a convex combination of sub-problem evaluations. By min-
imising (35) with respect to decision x, we obtain the lower bound

min
x(ω)∈X (ω)

{
E

P̃[ f (x(ω), ξ (ω))]
}

≥
∑
k∈K

γk min
x(ω)∈X (ω)

{
E

Qk [ f (x(ω), ξ (ω))]
}

(36)

by interchanging the order of optimisation and summation over K. This also has the interpretation
that the optimal value map P̃ �→ v(P̃) is concave in P̃ (Maggioni and Pflug, 2016, Lemma 2.1).
This is a simplification of the original formulation since we may solve smaller batches k ∈ K of
sub-problems instead of the full problem.

A consequence of solving the stochastic program in batches of sub-problems E
Qk [ f (x(ω), ξ (ω))]

is that this relaxes the underlying information structure, and leads to batch-specific optimal decisions
that cannot be implemented in the original formulation. The fact that this leads to a lower bound
can be illustrated conceptually (Fig. 9) by considering how the evaluation of a convex combination
of batch-specific objective functions E

Qk [ f (x(ω), ξ (ω))] compares to an evaluation of each of them.

Bounds based on partitioning. The first (and classic) example of refinement bounds is the ex-
pectation over all wait-and-see solutions (decisions are determined after uncertainty is revealed) by
Madansky (1960). This follows from interchanging the order of minimisation and integration

min
x(ω)∈X (ω)

{
E

P̃[ f (x(ω), ξ (ω))]
}

≥ E
P̃
[

min
x(ω)∈X (ω)

{ f (x(ω), ξ (ω))}
]
, (37)

where the sub-groups are considered to be the atoms of �̃. Partitioning into larger subsets of
�̃ than the atoms strictly strengthens this bound (Maggioni and Pflug, 2016, Section 2). We
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Fig. 9. Illustration of different objective functions E
Qk [ f (x(ω), ξ (ω))] in terms of first-stage decision x0 under

refinement of information structure. Re-enforcing non-anticipativity in the first-stage decision corresponds to a convex
combination of the refined objective functions. Observe that each objective function’s minimiser (dots) changes

according to the information structure.

may also make a refinement chain of consecutive coarser partitions, where larger alternative dis-
tributions Qk are convex combinations of smaller ones, to get a hierarchy of bounds that get
progressively stronger.

Bounds based on group sub-problems. We may instead define sub-groups of � that can also
intersect each other. The associated alternative distributions Qk must still adhere to (34). Birge
(1982) derived the first such result referred to as the sum of pairs sub-problems where a particular
reference outcome ωr is paired with every other outcome such that �k = {ωk, ωr} for all k �= r. The
distributions Qk(ωr) are adjusted such that the overall probability is consistently given as P̃(ωr) =∑

k Qk(ωr). The reference outcome ωr here represents a particularly important outcome that the
decision-maker always wants to account for. This grouping gives a lower bound on v(P) but is also
an upper bound on the wait-and-see solution (37). The generalisation instead chooses {�n

k}k∈K to
be all subsets of �̃ of a given size n, referred to as the group sub-problems. These give a lower bound
for each size n that is monotonously non-decreasing in n, with edge cases that coincide with the
wait-and-see problems and the original problem. The formulation such that the original problem is
an edge case was derived by Sandıkçı et al. (2013) and Maggioni et al. (2014, 2016) for two-stage
and multistage problems.

Sampling-based bounds. Monte Carlo sampling is commonly used as a viable option for solving
intractable stochastic programs when the distribution is too large. Mak et al. (1999) showed that
a sampled distribution Qn

k of a given size n (which may represent historical data itself) provides a
lower-bounding optimal objective value v(Qn

k) in expectation over many samples of Qn
k. This implies

that solving a stochastic program on historical data gives, on average, a lower bounding objective
value with respect to the underlying distribution. Furthermore, Mak et al. (1999, Theorem 2) show
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the lower bound is monotonously increasing with the sample size n. In this setting, each alternative
distribution Qn

k represents a sampled empirical distribution of a given size, while the weighting γk
represents the overall probability of obtaining this empirical distribution in particular. Over many
sampled distributions Qn

k, their expected relative occurrence is γk. Sample average approximation is
analogous to group sub-problems where the relative weights {γk}k∈K have an additional sampling
error, and potentially also that outcomes are defined to be equiprobable in each Qn

k according to
empirical distributions. There is much more to be said about solving stochastic programs with
respect to sampled distributions, for which we refer to Bayraksan and Morton (2009) and Shapiro
et al. (2014).

4.3. Bounds based on decision rules and aggregation

In their basic form, stochastic programs are infinite mathematical programs. Aggregation of vari-
ables and constraints was first introduced in finite (deterministic) linear programming as a simplifi-
cation to make them smaller and easier to solve. In stochastic programming, however, aggregation
turns an infinite linear program into a finite one by integrating (aggregating) the stochastic argu-
ment out of the problem, which is a considerable improvement (to say the least). In this context,
we first choose a decision rule defined as a linear combination of basic rules that are predefined
functions of the stochastic data process ξ (or ω). Inserting the decision rule in place of a general
policy in the stochastic program allows evaluating expectations first and instead optimising over
the finite number of coefficients in the linear combination. In contrast, a general policy must be
optimised for all (infinite number of) outcomes.

Theory on aggregation bounds (that stem from deterministic linear programming) allows deriv-
ing bounds on the original infinite formulation of the stochastic program in terms of the solvable
finite formulation. These bounds use arguments of how decision rules lead to relaxation, tighten-
ing or sub-optimality with respect to the original formulation. Primal-dual pairs give rise to upper
and lower bounds according to weak duality. Constraint aggregation in the primal corresponds
to variable aggregation in the dual, and conversely. Aggregation may also be done over stages in
multistage formulations.

Aggregation bounds applied to stochastic programming started with Zipkin (1980a, 1980b) who
analysed aggregation of variables and constraints for finite (deterministic) linear programs. Birge
(1985) extended these results in the setting of stochastic programming by instead aggregating over
uncertainty or stages assuming right-hand side uncertainty. Wright (1994) generalised this in a
measure-theoretic framework using Lagrangian duality to general stochastic linear programs in
the context of coarsened (simplified) information structures. More generally, this can be formu-
lated by decision rules for which similar results apply. Decision rules have been successfully ap-
plied in the context of robust optimisation and were, for this reason, re-introduced to stochastic
programming by Shapiro and Nemirovski (2005) as a means of tractable complexity reduction.
Kuhn et al. (2011) have shown how to find solutions to stochastic linear programs where either
the primal or the dual policy is replaced by decision rules (leading to semi-infinite programs),
and aggregation bounds provide the optimality gap of these decision rules with respect to the
original formulation.
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4.3.1. Statement of decision rules
We state the formulation of decision rules and, for simplicity of exposition, we do this in the context
of stochastic linear programs (SLP). Decision rules can be applied to replace the primal policy
x(ω), the dual policy λ(ω), or both. Using decision rules in the dual policy also has the alternative
interpretation of constraint aggregation in the primal problem, and conversely.

Consider that we define decision rules x̂(ω) for primal decisions and λ̂(ω) for dual decisions.
These are composed of linear combinations of simpler fixed policies

x̂(ω) =
K∑

k=1

wx
khx

k(ω), λ̂(ω) =
L∑

l=1

wλ
l hλ

l (ω), (38)

where hx(ω) := {hx
k(ω)}k=1,...,K and hλ(ω) := {hλ

l (ω)}l=1,...,L are predefined functions of ω, while wx

and wλ are vectors of K and L elements, respectively, that define the linear combinations. The
functions hx(ω) and hλ(ω) must adhere to the same information structure F and have the same di-
mensionality as the policies x and λ in the original formulation. Simplification from general policy
to a decision rule effectively limits its flexibility since it is reduced to a linear combination of pre-
defined functions. Furthermore, as noted by Kuhn (2008), inserting a decision rule for constraint
multipliers corresponds to more flexibility in decisions.

To see how decision rules cause ω to be aggregated out of the problem, consider the Lagrangian
of (SLP)

L(x(ω), λ(ω)) = E
P[

c(ω)�x(ω) − λ(ω)�(A(ω)x(ω) − b(ω))
]
, (39)

where inserting the decision rules x̂(ω), λ̂(ω) in place of the general policies x(ω), λ(ω) gives

L(x̂(ω), λ̂(ω)) = ĉ�wx − (wλ)�(Âwx − b̂), (40)

where

ĉk = E
P[

c(ω)�hx
k(ω)

]
, Âlk = E

P[
hλ

l (ω)�A(ω)hx
k(ω)

]
, b̂l = E

P[
hλ

l (ω)�b(ω)
]
,

are the aggregated parameters. In the usual sense of linear programming, there are then finite pri-
mal and dual LPs associated with (40). Since the reliance on ω is limited to predefined functions,
evaluation of expectations can be performed immediately and aggregates ω out of the problem. We
may then proceed to optimise the decision rule with respect to the aggregated parameters and linear
coefficients instead. Using decision rules either for variables or for constraint multipliers leads to
aggregation bounds on the optimal value v(P) of the original formulation (see Section 4.3.3), which
we illustrate in Section 4.3.2.

There is also a strong link between decision rules and function approximation (Section 3.4),
where the only conceptual difference is a (sometimes trivial) evaluation of the objective function in
terms of the decision rule. Consequently, decision rules and aggregation bounds have close analo-
gies to those in Section 3.4.
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4.3.2. Example: Variable and constraint aggregation
Variable aggregation can be interpreted as replacing many variables with a single one. Consider the
primal constraint set of (SLP),

A(ω)x(ω) ≥ b(ω), ∀ω ∈ �,

where, for a single outcome, there is only a single constraint that the general policy x must fulfil in
that outcome. If we instead use a decision rule x̂(ω) = wxhx(ω) ≥ 0 and insert it into the constraint,
we have that

wxA(ω)hx(ω) ≥ b(ω), ∀ω ∈ �,

and the single coefficient wx is subject to constraints for all ω ∈ �. Hence, the decision rule led
to tightened constraints compared to the general policy because the flexibility to adjust to each
outcome ω has been limited. The decision rule also relies on the function hx(ω) that was chosen to
decide how these constraints can be fulfilled.

Constraint aggregation can be interpreted as making a (weighted) sum of constraints. If we have
two valid inequality constraints and add them together (possibly by positive weights), we obtain
a new inequality constraint that must also be valid. If we only know that the summed constraint
is valid, however, we cannot say anything about the validity of each constraint that composes it.
This means the summation of constraints results in relaxation. To see why constraints are summed,
consider that we use a decision rule λ̂(ω) = wλhλ(ω) ≥ 0 for the constraint multipliers in SLP. The
restatement of SLP under Lagrangian relaxation of its constraints is

min
x(ω)≥0

E
P[

c(ω)�x(ω) − λ(ω)�(A(ω)x(ω)) − b(ω)
]
,

and inserting the decision rule λ̂(ω) instead gives

min
x(ω)≥0

E
P[

c(ω)�x(ω)
] − wλ

E
P[

hλ(ω)�(A(ω)x(ω) − b(ω))
]
,

whose corresponding non-relaxed constraints are

E
P[

hλ(ω)�A(ω)x(ω)
] ≥ E

P[
hλ(ω)�b(ω)

]
,

with dual multiplier wλ, and where the function hλ(ω) acts as weighting in the summation (inte-
gration) of constraints. This also means we replace many constraint multipliers with a single one,
in analogy to variable aggregation. The relaxation follows from the fact that only the aggregated
constraint must be fulfilled by x(ω), which gives it more flexibility.

4.3.3. Aggregation bounds
We now consider using decision rules to replace either primal or dual policies to obtain bounds
on the optimal objective value. Let P(x, λ) denote the primal problem (SLP) with respect to the
variables in the first argument and constraint multipliers in the second argument. General policies
are denoted by x(ω) and λ(ω) while decision rules (38) inserted in their place are denoted by x̂(ω)
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and λ̂(ω). For ease of readability, we omit their argument ω in this section. Variable aggregation
in the primal corresponds to constraint aggregation in the dual (as well as the converse), and so
D(λ, x) denotes the dual problem of P(x, λ) with respect to the same arguments. Furthermore,

inf
x∈X

P(x, λ) ≥ sup
λ∈�

D(λ, x), (41)

by weak duality. Let X = feas(P(x, λ)) and � = feas(D(λ, x)) denote the feasible region of deci-
sions in P(x, λ) and D(λ, x), respectively. Variable aggregation tightens the feasible region, while
constraint aggregation relaxes it. We then have the relations,

feas(P(x̂, λ)) ⊆ feas(P(x, λ))

feas(P(x̂, λ̂))
⊆ feas(P(x, λ̂)), (42)

and

feas(D(λ, x̂)) ⊇ feas(D(λ, x))

feas(D(λ̂, x̂))
⊇ feas(D(λ̂, x)). (43)

Observe that inserting one kind of decision rule at a time gives simple relations between feasible
regions, but there is no simple relation between the original and the fully simplified problems. We
have the following relations between objective values

P(x̂, λ) ≥ inf P(x̂, λ) ≥ inf P(x, λ) ≥ sup D(λ, x)

inf P(x̂, λ̂) ≥ sup D(λ̂, x̂)
≥ sup D(λ̂, x) ≥ D(λ̂, x), (44)

where P(x̂, λ) and D(λ̂, x) denote objective evaluation by a feasible decision policy.
The underlying formulations P(x, λ) and D(λ, x) are considered to be unsolvable, but bounds

on these can be derived using decision rules according to the inequalities (44). Consider also that
a low gap between these bounds means the predefined form of decision rules (38) is effective for
the original formulation. Indeed, there exist more or less appropriate functions hx(ω) and hλ(ω) to
obtain good results with low optimality gaps.

Tractable reformulations of inf P(x̂, λ) and sup D(λ̂, x) into linear and semi-definite programs of
moderate sizes that can be solved directly have been laid out by Kuhn et al. (2011). Alternatively,
we may solve the finite formulations P(x̂, λ̂) and D(λ̂, x̂) to obtain candidate primal x̃(ω) and dual
policies λ̃(ω) and evaluate these within the objectives of P(x̂, λ) and D(λ̂, x) to get bounds on v(P).
This procedure is also described in Section 4.1 regarding scenario trees and extension rules.

5. Discussion and conclusions

Stochastic programming is applied to make effective decisions for real-world problems under un-
certainty. While there is something fundamentally intractable in their formulations, bounds can
give valuable insights into how well a given solution performs within the original formulation, or
bounding distributions can be used as approximations in themselves.
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The insight that function approximation and distribution approximation are tightly connected
is a profound observation. This stems from the duality between functions and probability distri-
butions, a connection seen throughout the paper. These perspectives were used for different ap-
proaches to evaluation bounds in Section 3, but also have close analogies to different ways of find-
ing approximate solutions to stochastic programs either by scenario trees (distributions) or decision
rules (functions) in Section 4.

The fundamental insight of evaluation bounds in Section 3 is that finite approximate distribu-
tions can be used to obtain bounds, even if the underlying distribution is continuous. This is a con-
sequence of the GMP, solved by discrete distributions whose moments coincide with the underlying
distribution. Furthermore, by the assumption of convexity in terms of the stochastic argument ξ , we
may find analytical expressions for discrete distributions that provide guaranteed bounds. Bounds
on optimal objective values in Section 4 also complement the evaluation bounds in Section 3. This
is valuable both for applying and developing methods to solve such problems.

Discussion: bounds and modelling

Counter-intuitive mistakes may occur when one aims to make an approximation of uncertainty
while actually getting bounds. These insights are especially relevant when applying models to deci-
sion problems under uncertainty, even if one does not solve a stochastic program.

An intuitive way to make a deterministic approximation to uncertainty is to insert the expected
value of uncertain parameters. While the expectation of the stochastic phenomenon (i.e., ξ ) can be
used as a best estimate for the phenomenon itself, stochastic programming deals with a non-linear
transformation of the stochastic variables through the objective function, and what we really aim
to find is the expected objective value. Hence, caution is due. For objective functions that are convex
in the stochastic parameters, using the expected outcome of the phenomenon instead gives a lower
bound (Section 3.3). Not only will this give a bound, but it will also be optimistic, the opposite of
what we might want. More worryingly, an objective function that is convex-concave in uncertain
parameters may lead to conservatism with respect to some parameters and optimism with respect
to others, implicitly making a priority.

Consider a two-stage production planning problem as an illustration. The objective of the
second-stage program may then be convex in its uncertain capacity and concave in the uncertain
cost of materials, while additional operational considerations also limit flexibility in production.
Using only the expected value means we overestimate the utility of additional capacity, given that
operational considerations may cause other bottlenecks. We also underestimate how flexibility in
production can counteract increased material costs by scaling down the production of products
that turn out unprofitable. This means we are optimistic with respect to capacity and pessimistic
with respect to the cost of materials.

Another intuitive way of approximating uncertainty is to plan for a restricted small set of out-
comes instead of (approximately) every outcome, like sampling from the distribution. As explored
in Section 4.2, considering only a restricted subset of outcomes at a time (but overall considering
all of them) will, in combination, lead to a lower bound on the optimal objective value. Again,
this is optimistic. One interpretation of this is that the optimal decision overestimates its avail-
ability of information and is less prepared for outcomes that were not explicitly accounted for. The
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recommended counter-measure in such situations is always to do candidate evaluation (Section 4.1)
after a solution has been found to get a conservative estimate of how well a given decision or policy
really performs in terms of the original formulation.

Scenario analysis (analysing decisions for one outcome at a time) is another case of apparent
approximation of uncertainty that does not really build consideration of uncertainty into decisions.
The issue is that considering a single outcome, we get the impression of knowing the future perfectly
when it is actually unknowable (by definition of it being stochastic). Considering a single outcome
at a time will not lead to decisions that buy options and enable flexibility to deal with multiple
potential outcomes of the future and are thus qualitatively different (Wallace, 2010). The gap to the
wait-and-see lower bound in Section 4.2 quantifies the error that results from scenario analysis.

Future research

A significant challenge for stochastic programming is how to solve multistage problems in a
tractable manner. Using bounds to validate solutions can be valuable for further development in
this domain. Approximations in the form of scenario trees or decision rules can potentially provide
reasonable solutions by parsimonious representations but do not necessarily give indications of op-
timality or correct estimates of its optimal objective value. This is why bounds can help support
their development.

Evaluation bounds (Section 3) have received much attention in the past while, more recently, the
literature has shifted towards approximations in the form of scenario generation. Both are con-
cerned with discretising distributions, but scenario generation has an added layer of complication
since it primarily concerns the quality of solutions obtained from solving a stochastic program with
a given discrete distribution. The property of convex stochastic dominance (Section 3.2) conserves
bounds for all decisions, which is an interesting link between these. Still, we believe there are syn-
ergies to be explored between bounds and scenario generation that can provide valuable insights.
The concept of effective and ineffective scenarios developed in the setting of distributionally robust
optimisation (Rahimian et al., 2019, 2022) may also provide further such connections.

There has been much recent research on risk aversion and aversion to ambiguity in the represen-
tation of uncertainty itself (not knowing the distribution). These are valuable tools to build conser-
vatism into decisions and are tightly linked to bounds in the sense that they are often formulated to
minimise an upper bound on the objective evaluation, subject to ambiguity (more general than mo-
ment conditions). These problems are challenging to solve (even more so for multistage problems),
and quantifying interval estimates to their optimal solution is valuable to improve these approaches
further and to give valuable insights for real applications. The literature is sparse in this domain but
growing. Future work could also include using bounds from Section 4 within solution algorithms.
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