
Figure 15 displays the mean of such sample distri-
butions. Here, we have used a black contour line to
mark those areas were the difference is statistically sig-
nificant (i.e., the whole 95% credible interval is above
or below the zero value). For lack of space, we have

illustrated the difference maps only for Tmax and
1 month per season.

Our results show that the 1991–2020 climatologies are
generally warmer than the historical ones in all seasons
and regions of Italy. With respect to 1961–1990 and

January February March
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July August September

October November December

°C
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FIGURE 14 Standard deviation maps for the monthly climatologies in Italy for the period 1991–2020 (Tmax) [Colour figure can be

viewed at wileyonlinelibrary.com]
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1971–2000, the warming signal seems to be particularly
marked in April and July. Notably, in a few areas the
1991–2020 climatologies are somewhat cooler than those
calculated for the previous 30-year standard periods (see,

e.g., the negative values which characterize the 1991–2020
vs. 1971–2000 map in February). However, the attached
95% credible interval shows that such negative differences
are not statistically significant.

FIGURE 15 Mean of the differences between the monthly 1991–2020 climatology and the historical climatologies: 1961–1990, 1971–
2000, 1981–2010 (Tmax). For lack of space, only 1 month per season is represented in the figure. A black contour line marks the areas where

the difference is statistically significant from zero [Colour figure can be viewed at wileyonlinelibrary.com]

FIORAVANTI ET AL. 17

 10970088, 0, D
ow

nloaded from
 https://rm

ets.onlinelibrary.w
iley.com

/doi/10.1002/joc.8240 by C
ochraneItalia, W

iley O
nline L

ibrary on [06/09/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

http://wileyonlinelibrary.com


5 | CONCLUSIONS

In this study, we have introduced the INLA-SPDE
approach for the interpolation of relevant climate
variables. To better illustrate how it works on a real
case study, we have implemented a Bayesian regression
model for the spatiotemporal interpolation of Tmax
and Tmin monthly means during the period
1961–2020. We have used quality controlled and
homogenized daily temperature time series from a free
and open database. Then, we have generated monthly
climate normals of maximum and minimum temperature
in Italy for the latest standard 30-year period (1991–2020)
and three previous standard ones: 1961–1990, 1971–2000
and 1981–2010.

Since we are mainly interested in the long term
trends we have run the regression analysis separately for
each month (January–December). This allows to tackle
the large space–time domain of our study and avoid the
need for a cyclic component that accounts for the yearly
seasonality. From a computational point of view, this
approach is less demanding than a model where the
12 × 60 months are jointly modelled. Having 12 indepen-
dent models also allows to easily account for the chang-
ing temperature-versus-predictors relationship.

Our model has a simple formulation. There are three
relevant spatial predictors and a linear time effect
accounting for the temporal trend in the observed
monthly temperatures. Furthermore, a Matérn field
allows to capture the residual spatiotemporal correlation.
Despite its simplicity, this approach provides a useful and
flexible model to produce accurate continuous gridded
surfaces equipped with model-based uncertainties. Illus-
trative examples of the successful use of this model (with
only minor modifications) are given in Fioravanti et al.
(2021), for the interpolation of PM10 daily concentrations
in Italy during 2015, and in Fioravanti et al. (2022), for
the assessment of the spatiotemporal variability of NO2

in Italy during the COVID-19 lockdown.
Classical kriging-based approaches are very common

in climate science. However, they fail to incorporate the
uncertainty from the spatial covariance matrix into
the variance of predicted values. In this regard, Le and
Zidek (1992) observed that uncertainty underestimation
can result in unwarranted confidence in the interpolated
values and, potentially, to unjustified decisions or regula-
tory actions. Here, we overcome this issue with the use of
Bayesian statistics. Our Bayesian model provides a formal
approach to handle and propagate uncertainty in the data
and in the fitted model parameters. In this regard, we
have shown how, through simulation, we are able to gen-
erate multiple plausible gridded surfaces of Tmax and
Tmin monthly means, which can be further summarized

through measures of central tendency (e.g., posterior
mean) or variability (e.g., standard deviation). Following
this logic, we have provided examples both of standard
deviation maps (to investigate how uncertainty affects
our estimates of the 1991–2020 monthly climatologies
and where) and 95% credible intervals (to assess the
regions where the 1991–2020 period is significantly
warmer than the previous 30-year standard periods).

In this work, we use cross-validation as a technique
to validate our model. Although this is a very common
choice, it is known that cross-validation can be problem-
atic in presence of correlated data (Roberts et al., 2017;
Wadoux et al., 2021). Recently, in the INLA framework, a
new cross-validation strategy, that takes into account the
model structure and the data dependencies, has been pro-
posed by Liu and Rue (2023). This method was not avail-
able at the time we prepared this article, but we believe it
is an interesting and promising approach that can over-
come some of the problems in the common case of cross-
validation in presence of correlated data.

Although the mathematics underlying the INLA-
SPDE approach may be somewhat intimidating for cli-
mate practitioners who are still more familiar with classi-
cal geostatistical tools like gstat, the INLA-SDPE
approach comes with two user friendly R implementa-
tions: the R-INLA and the inlabru package. These pack-
ages make the INLA-SPDE methodology a fast, reliable
and easy to use tool to scientists with R coding skills,
especially if one considers that INLA-SPDE can be also
used with non-Gaussian response variables.

The proposed model can be extended in various direc-
tions. A first development is to consider a nonlinear time
effect in order to accommodate the change-point and the
rapid warming in global and European temperature time
series from the mid-1970s onward (Toreti & Desiato, 2007).
In the current work we have tackled this issue through a
random effect z tð Þ which accounts for the extra temporal
variability that is not captured by the linear time trend.
An alternative solution offered by R-INLA package is to
introduce a smooth component with the use of a random
walk model. A more interesting possible development
would consist in the use of INLA-SPDE for the integra-
tion of in-situ observations and spatially consistent
gridded estimates (spatial fusion). A promising solution
in this respect has been proposed by Moraga et al. (2017)
and, more recently, Wang and Furrer (2021).

6 | CODE AND DATA
AVAILABILITY

Our analysis was run using the software package R. The
linear model of Equation (1) was fitted with the use of
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the lm function. The spatiotemporal empirical vario-
grams were calculated using the variogram function of
the gstat package. This function requires spatiotemporal
objects that can be created using the spacetime package.
For the manipulation of the raster maps we used the
terra package and the Climate Data Operator (CDO) soft-
ware (https://code.mpimet.mpg.de/projects/cdo). Our
plots use scientifically derived colour maps available
through the scico package (Crameri et al., 2020). The
inferential analysis was run using the inlabru package
(version 2.3.0), an interface for the R-INLA package. To
reduce computing time, we enabled the support to the
PARDISO library (Alappat et al., 2020; Bollhöfer
et al., 2019, 2020). The analysis was run on an
workstation with Ubuntu ver. 18.04.6. The running time
for each model was of around 20 minutes. Scripts and
data used for this study are available on https://github.
com/guidofioravanti/climatological_values_inla.
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