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Introduction

Since the birth of humankind, the desire to understand the natural phenomena around us has played a

key role in our existence. In the beginning, the representation of nature was entrusted to artists through

their paintings or sculptures. Then, with the advent of the scientific method, the artist was replaced

by the scientist. For centuries, the latter drew natural phenomena with mathematical relations, called

models, validated by certain experimental tests. This method represents reality in an understandable

way: however, it is applicable only on simple systems and it requires a great effort. This approach

is called white-box modeling (or first principle approach). Nowadays, thanks to computer, it is still

widely used. Neverthless, scientific research has investigated an alternative way, due to the limited

real-world applications. Leveraging the huge amount of collectable data and exploiting the statistical

literature, the researchers have defined the innovative black-box modeling. This method develops

a model through some algorithms that build a representation of the real system, starting from the

examination of a dataset acquired on the real plant. Doing so, no prior knowledge is required, but the

resulting model has lost any physical interpretation. A third method, called grey-box modeling relies

on a model, made with the first principle approach, coupled with a black-box modeling that identifies

the parameters. This method funnel the main pros of the other two branches, but it is slower than the

black-box approach.

A system is defined as a process that transforms inputs into outputs. The systems can be static or

dynamic. The first represent those systems where the input and output have no temporal relationships.

Systems where the output is explained by the input and the state of the system, belong to the second

type. Dynamic systems are the most spread in the modeling of natural phenomena. The literature that

studies the modeling of dynamic systems takes the name of system identification [1, 2].

Black-box modeling is useful and widely used, but it conceals a problem that is usually overlooked.

This consists in the uncertainty quantification of the resulting model. Often, the acquired data are the

results of some experiments performed on the true system, where the input signal is a priori chosen

and the output is sensed by a sensor. This setting produces a noisy dataset, due to the nature of the

sensors and actuators. The uncertainty due to this source is called variance. This is not the only

source of the model uncertainty. Often, the model has a structural mismatch with respect to the real

system or even is endowed with unpredictable events. The latter cannot be assessed during the model

identification procedure, but the former, called bias, depends directly on the identification algorithms.
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The most widespread system identification framework is that of Prediction Error Methods [2, 3].

It assumes to identify a parameters vector (and its variance) of a selected model class and model

complexity. These choices are usually done by the user and therefore the wrong decisions causes bias.

Instead, the Set Membership identification [4, 5], in addition to the model structure and complexity

choices, assumes a unknown but bounded output noise. It is useful to quantify the variance, but the

bias term (if present) cannot be avoided. However, not all identification algorithms deals with the

bias criticality. For instance, the state-of-the-art method, called kernel-based identification [6, 7, 8],

identifies a non-parametric model that has, by definition, low-bias. Due to the Bayesian interpretation

of this methodology, the variance is assessed since the results are given as a model distribution.

The branch of identification literature that evaluates both bias and variance during system identification

is called Robust identification. Three main approaches are: Stochastic Embedding (SE)[9], Model

Error Modeling (MEM)[10] and a variation of Set Membership [11]. Nevertheless, this field is

also dependent with respect to the user’s choices. Furthermore, there are some methods that aim to

reduce the bias and/or variance, for instance Akaike Information Criterion [12], Bayesian Information

Criterion[13], Cross Validation [14][15] and regularization methods, but these do not avoid the

uncertainty problem.

The uncertainty quantification is crucial for real-world applications, since the difference between the

model and the real plant can often cause problems. For instance, the model may be used for control

purposes: in this situation, a mismatch between model and plant can cause unexpected actions or

even system instability. Therefore, by leveraging the (bounded) uncertainty information, we have the

assurance that the resulting controller performs ever as we expect. This problem is called robust

control synthesis [16, 17, 18, 19]. Another use of the uncertainty information consists in producing

a robust residual generator [20, 21, 22, 23], which estimates the state of a machinery under analysis.

This application is widely spread with the advent of industry 4.0. The model mismatch causes false

alarms, therefore the uncertainty assessment guarantees a reduction of these. This is helpful to reduce

the machine stops and so to minimize the loss of money.

Main contributions

All system identification techniques have their own depiction of uncertainty. These representations

differ from the uncertainty depiction employed in robust control design or robust fault detection.

Therefore, the first contribution of this study aims to bridge this representation gap in an automatic

way, i.e. design a controller or residual generator without engaging the user in difficult structural

choices that translate into poor results when the wrong choices are selected. In particular, the entire
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proposed procedure is data-driven. It is fundamental since, often in robust control and robust fault

diagnosis literature, the uncertainty is considered a priori known, derived from the user’s knowledge.

To quantify the uncertainty, manual selection is often carried out using a trial and error procedure.

This can cause: an underestimation that produces some unwanted events (such as: system instability

or false alarm detection) or even an overestimation which is less catastrophic than the other case. The

latter leads to a performance reduction, compared to the real capabilities of the plant. Instead, with

a data-driven method, the uncertainty quantification is estimated directly from the available dataset,

therefore it avoids underestimation and overestimation phenomena. Furthermore, it is easier to apply

since no iterative procedure is needed. The proposed method exploits the kernel based identification,

which allows estimating a low-bias model without choosing the model class or complexity. Doing

so, the uncertainty is (mostly) only due to variance. Thanks to this characteristic, our method solves

the problem of Robust identification in a simpler and automatic way. This is valid because, in Robust

identification literature, the uncertainty is represented by a parametric model. So, this procedure needs

the selection of the model family of the uncertainty model. We have developed an algorithm that

translates the uncertainty information into an understandable representation from the robust control

and fault detection point of view. The proposed method, for control design aims, employs the S/T

mixed-sensitivity loop-shaping problem to design a controller that guarantees some robustness and

performance requirements [16]. The proposed technique is developed for Single input Single output

for nominal performance, robust stability and robust performance aims [24, 25, 26]. Furthermore,

we have extended our method to multi-model systems, by considering it as a single uncertain system.

The proposed algorithm deals with respect to multiple sources of uncertainty, i.e. the parameters

uncertainty and the model identification uncertainty. Therefore, the resulting closed-loop system is

stable and meets the performance requirements for all systems that belongs to the general uncertain

system.

The second main theoretical contribution consists of using the same uncertainty information, adopted

in the proposed data-driven robust control design, to produce a model-based fault detection that is

robust with respect to the model uncertainty. In particular, we solve the Approximate Fault Detection

Problem to design the residual generator [27, 28]. When the uncertainty cannot be completely avoided

through the robust residual generator, the fault is diagnosed through a threshold. This operation is

not always straightforward, since an incorrect threshold selection can cause wrong fault detection,

therefore we propose also a simple threshold selection technique that minimize the false alarms.

Finally, three practical applications are presented. The first is an application of the proposed data-

driven robust control for multi-model system. The plant is a reconfigurable industrial oven. To
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characterize the various configurations of the highly complex industrial oven, the system is considered

as a multi-model system. We aim to design a robust controller capable of handling the uncertainty

resulting from the model identification and the uncertainties of the model parameters.

The other two practical contributions are fault detection applications for: a rotating machine and a

sliding gate system. The former proposes a signal-based fault detection [29], where signal processing

carries out the core work of the detection algorithm. Specifically, the system under analysis is a part of

an entire PolyEthylene Terephthalate bottles production line, sensed with accelerometers. The latter

describes a complete model-based fault detection work, from the Failures Mode, Effects and Criticality

Analysis to the final fault detection algorithm. Also, the fault injection procedure is presented. The

considered plant is an Electro-Mechanical Actuator, which is employed to actuate a sliding gate.

Book outline

Chapter 2 gives an overview of the uncertainty representation, usage and design in the system

identification procedure. In particular, the uncertainty representation in system modeling, the

uncertainty in robust control design, the uncertainty in robust fault detection and the uncertainty

in system identification are illustrated. The last focuses on uncertainty modeling with Prediction

Error Method, kernel-based system identification and Stochastic Embedding approaches. This

chapter is endowed with Appendices A and B, in which some fundamentals of the functional

analysis and some knowledge on the model complexity selection are described.

Chapter 3 shows the proposed methodology for designing a data-driven robust controller.

The concept of 𝑆/𝑇 mixed-sensitivity loop-shaping is introduced and the transformation from

the a priori knowledge approach into the automatic data-driven methodology are illustrated.

Furthermore, the proposed method is tested on a benchmark problem.

Chapter 4 describes an extension of the previous chapter’s methodology for multi-model

dynamic systems.

Chapter 5 shows the second main theoretical contribution, i.e. the data-driven robust fault

detection design. The effectiveness of the proposed procedure is then shown on a benchmark

problem.

Chapter 6 shows the application of the proposed data-driven 𝑆/𝑇 mixed-sensitivity loop-shaping

for multi-model systems. The plant is a reconfigurable industrial oven for heat shrinking.
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Chapter 7 describes a signal-based fault detection algorithm applied to a rotating machine,

which belongs to a PolyEthylene Terephthalate (PET) bottle production line.

Chapter 8 describes a model-based fault diagnosis algorithm applied to Electro-Mechanical

Actuator, highlighting the entire design procedure: Failures Mode, Effects and Criticality

Analysis, fault injection, fault detection design and fault isolation.
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Chapter 1. State of the art

This chapter reviews the state of the art: uncertainty modeling, uncertainty in robust control, uncer-

tainty in fault diagnosis and uncertainty in system identification. As can be easily guessed, the "fil

rouge" between all sections is uncertainty information. The first section describes how the uncertainty

in dynamical systems is modeled. Instead, the second and third sections review how the uncertainty

information, coupled with the model, can be used to design a robust controller or a robust fault di-

agnosis algorithm. The results of these robust methods consist of: a controller that operates under

different conditions, limited by the uncertainty specification, and a residual generator that diagnoses a

fault, that occurs to the system, by rejecting the uncertainties, modeled as fictitious noise. The fourth

argument focuses on the generation of uncertainty information during the system identification step. In

this section, we review also two black-box identification methods: the state-of-the-art method, called

kernel-based system identification, and the most popular and traditional Prediction Error Method

(PEM). This recap is helpful to understand better the uncertainty sources and computation in the iden-

tification literature. To complete this literature analysis, the Robust identification methods are shown.

This section is completed by the appendices A and B, which review the model complexity selection

and functional analysis. Notice that almost all state of the art is described for Single input Single

output (SISO) systems, but it is also scalable for Multiple input Multiple output (MIMO) systems.

1.1 Uncertainty in system modeling

The sources of uncertainty can be grouped into three categories:

• Unpredictable events: they are typically due to some perturbations generated by the external

environment;

• Unmodeled dynamics: the model that represents the system, usually, must be tractable (for

instance, with the aim of: designing a controller, designing a fault detection algorithm and so

on). This specification leads to oversimplified models that neglect some complex dynamics;

• Poor available data: the dataset usually is not informative enough for system identification.

In a real-world applications, often, is not possible to design an identification experiment that

identifies a model with the lowest possible estimation uncertainty. As we will describe in

Section 1.4.3, the experiment design is an important step to produce a model endowed with low

uncertainty.
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Not all of these categories are assessed during the system identification procedure. Nonetheless, it

is important to know all possible sources of uncertainty, since this leads to a better understanding of

the limits of the uncertainty representation in system identification. Mainly, the model uncertainty

representations are grouped in two categories [30]:

• Parametric uncertainties or Structured uncertainties: deal with a parametric class of models

(see Section 1.4.1). In this case the uncertainty information is given as bounds on model’s

parameters;

• Non-parametric uncertainties or Unstructured uncertainties: deal with systems in which some

complex dynamics are neglected or with systems affected by measurement noise. The informa-

tion is provided as a single constraint.

1.1.1 Structured Uncertainty

Assume that the uncertainty is represented by the uncertain parameters vector q(𝑡), defined as [31,

Chapter 2]:

q(𝑡) ≡ [𝑞1(𝑡), 𝑞2(𝑡), ..., 𝑞𝑙 (𝑡)]⊤ ∈ R𝑙×1 ∀𝑡 ≥ 0 , (1.1)

where 𝑡 is the time index. This leads to two major parametric uncertainty dynamic system represen-

tations:

• The state space representation:
x(𝑡) = A(q(𝑡))x(𝑡) +B(q(𝑡))𝑤(𝑡)

𝑧(𝑡) = C (q(𝑡))x(𝑡) + 𝐷 (q(𝑡))𝑤(𝑡)
; (1.2)

with A ∈ R𝑛𝑥×𝑛𝑥 , B ∈ R𝑛𝑥×1, C ∈ R1×𝑛𝑥 , 𝐷 ∈ R, x ∈ R𝑛𝑥×1 are the state space matrices,

𝑤(𝑡) ∈ R is a generic input, 𝑧(𝑡) ∈ R is a generic output and 𝑛𝑥 ∈ N+ the number of states. In

case of this system is an open loop system the notation becomes 𝑤(𝑡) = 𝑢(𝑡) and 𝑧(𝑡) = 𝑦(𝑡),

where 𝑦(𝑡) is the sensed output and 𝑢(𝑡) is the system input. From now, with a little abuse of

notation, we will refer to the uncertain parameters vector without clarifying the time index 𝑡;

• The space of Laplace transforms:

𝑍 (𝑠) = 𝐺 (𝑠, q)𝑊 (𝑠) , (1.3)

where 𝐺 (𝑠, q) is an uncertain rational transfer function. The latter can be written as:

𝐺 (𝑠, q) ≡C (q)
(
𝑠I𝑛𝑥−A(q)

)−1
B(q) + 𝐷 (q)=

𝑁𝑔 (𝑠, q)
𝐷𝑔 (𝑠, q)

=

∑𝑛𝑛−1
𝑖=0 𝑛𝑔𝑖 (q)𝑠𝑖∑𝑛𝑑−1
𝑗=0 𝑑𝑔 𝑗 (q)𝑠 𝑗

; (1.4)

8
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where:

– 𝑁𝑔 (𝑠, q) is the numerator of order 𝑛𝑛;

– 𝐷𝑔 (𝑠, q) is the denominator of order 𝑛𝑑;

– 𝑛𝑔𝑖 and 𝑑𝑔𝑖 are the coefficients of numerator and denominator.

Note that the uncertainty may afflict the numerator and denominator with different uncertain

parameters. In this more general case, the parametric uncertainty becomes: 𝐺 (𝑠, q, r) = 𝑁𝑔 (𝑠,q)
𝐷𝑔 (𝑠,r) ,

with r ∈ R𝑙𝑟×1 is the second vector of uncertain parameters.

The parametric uncertainty with linear systems can be rearranged in a more clear representation

using the so-called Δ − 𝑀 model. The structure of this model is represented in Figure 1, where:

M (𝑠) ∈ RH (𝑛𝑧Δ+𝑛𝑧)×(𝑛𝑤Δ+𝑛𝑤)∞ (for SISO systems 𝑛𝑧 = 𝑛𝑤 = 1, which respectively are the number of

𝑧 signals and 𝑤 signals) is a transfer function matrix that represents how the uncertainty affects the

system, instead 𝚫 defines the uncertainty and it belongs to a block-diagonal structure set C̄:

C̄ ≡
{
𝚫 ∈ RH 𝑛𝑤Δ×𝑛𝑧Δ

∞ : 𝚫 = bdiag
(
I𝑚1𝑞1, ..., I𝑚𝑙𝑞𝑙

)}
; (1.5)

with: 𝑛𝑤Δ
∈ N+ and 𝑛𝑧Δ ∈ N+ are the number of signals that connect M (𝑠) with 𝚫. Note that the

uncertain parameters 𝑞𝑢 can be repeated with multiplicity𝑚𝑢, 𝑢 = 1, ..., 𝑙. Usually, they are 𝑛𝑤Δ
= 𝑛𝑧Δ .

In this way, the structured uncertainty roughly corresponds to multiple constraints on the uncertain

system.

The space RH 𝑛𝑤Δ×𝑛𝑧Δ
∞ is defined in [32, Chapter 3] as:

Definition 1.1: RH 𝑟,𝑐
∞

RH 𝑟,𝑐
∞ , with generic 𝑟, 𝑐 ∈ Z+, is the space of stable proper real rational 𝑟 × 𝑐 matrix transfer

functions F (𝑠), where exists theH∞ norm of F (𝑠):

∥F (𝑠)∥∞ = sup
𝜔∈R
|F ( 𝑗𝜔) | ≡ ess sup

𝜔∈R
�̄�(F ( 𝑗𝜔)) , (1.6)

where �̄�(·) denotes the largest singular value of the frequency response of the F (𝑠) and ess

represents the supremum (or least upper bound).

The Δ − 𝑀 model establishes the relation wΔ(𝑡) = 𝚫zΔ(𝑡), which describes how the uncertainty acts

on the vector of scalar signals zΔ ∈ R𝑛𝑧Δ×1 to produce wΔ ∈ R𝑛𝑤Δ×1. By partitioning the transfer

9
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(s)

∆

∆(s) ∆(s)

W (s) Z(s)

M

W Z

Figure 1: Δ − 𝑀 model resulting from the linear fractional transformation.

function matrix M (𝑠), Figure 1 can be written as:


ZΔ(𝑠)

𝑍 (𝑠)


=


M11(𝑠)M12(𝑠)

M21(𝑠)𝑀22(𝑠)




WΔ(𝑠)

𝑊 (𝑠)


(1.7)

with M11(𝑠) ∈ RH 𝑛𝑧Δ×𝑛𝑤Δ ,M12(𝑠) ∈ RH 𝑛𝑧Δ×1, M21(𝑠) ∈ RH1×𝑛𝑤Δ , M22(𝑠) ∈ RH and

ZΔ(𝑠), 𝑍 (𝑠),WΔ(𝑠),𝑊 (𝑠) are the Laplace transformation of the respectively signals. With the rep-

resentation (1.7), it is possible to employ a mathematical framework called upper Linear Fractional

Transformation (LFT), which allows defining the transfer function that ties𝑊 (𝑠) with 𝑍 (𝑠):

F𝑢 (M (𝑠),𝚫) ≡ 𝑀22(𝑠) +M21(𝑠)𝚫(I𝑛𝑤Δ −M11(𝑠)𝚫)−1M12(𝑠) . (1.8)

This representation is well-posed if (I𝑛𝑤Δ −M11( 𝑗𝜔)𝚫) is non-singular ∀𝚫 and with 𝜔 = ∞. Further-

more, if (I −M11(𝑠)𝚫(𝑠))−1 ∈ RH 𝑛𝑤Δ×𝑛𝑤Δ
∞ , then M (𝑠) ∈ RH (𝑛𝑧Δ+1)×(𝑛𝑤Δ+1)∞ and 𝚫 ∈ RH 𝑛𝑤Δ×𝑛𝑧Δ

∞ ,

as defined in (1.5). Hence, the feedback interconnection of the upper LFT is internally stable [32,

Chapter 3]. The definition of the internally stability adjective is:

Definition 1.2: Internally stable

A feedback interconnection is internally stable if all signals in the system are bounded provided

that the injected signals at any location are bounded.

10



State of the art

The upper LFT (1.8) is in the space of Laplace transforms, but it is also applicable in the state space

as: 

x(𝑡) = Ax(𝑡) +B1wΔ(𝑡) +B2𝑤(𝑡)

zΔ(𝑡) = C1x(𝑡) +D11wΔ(𝑡) +D12𝑤(𝑡)

𝑧(𝑡) = C2x(𝑡) +D21wΔ(𝑡)

wΔ(𝑡) = 𝚫zΔ(𝑡)

; (1.9)

with B1 ∈ R𝑛𝑥×𝑛𝑤Δ ,B2 ∈ R𝑛𝑥×1,C1 ∈ R𝑛𝑧Δ×𝑛𝑥 ,D11 ∈ R𝑛𝑧Δ×𝑛𝑤Δ ,D12 ∈ R1×𝑛𝑧Δ ,C2 ∈ R1×𝑛𝑥 ,D21 ∈

R1×𝑛𝑤Δ [32].

The example 1.1 shows the efficiency of the LFT representation.

Example 1.1: Linear Fractional Transformation (LFT) for pulling out the parametric

uncertainty

Consider an open loop system described by the following transfer function

𝐺 (𝑠; q) = 𝑠 + 3 + 𝑞1

𝑠2 + (2 + 𝑞1)𝑠 + 5 + 𝑞2
, (1.10)

where the vector q = [𝑞1, 𝑞2]⊤ ∈ R2×1 represents the parametric uncertainty vector. The

graphical representation of (1.10) is depicted in Figure 2. The green area distinguishes the

uncertainty parameters from well-known parts. By employing the upper LFT, it is possible to

redraw the transfer function as depicted in Figure 3. Thus, we obtain:

M (𝑠) =



0 −1
𝑠2+2𝑠+5

−1
𝑠2+2𝑠+5

1
𝑠2+2𝑠+5

0 −𝑠
𝑠2+2𝑠+5

−𝑠
𝑠2+2𝑠+5

𝑠

𝑠2+2𝑠+5

0 −1
𝑠2+2𝑠+5

−1
𝑠2+2𝑠+5

1
𝑠2+2𝑠+5

1 −(𝑠+3)
𝑠2+2𝑠+5

−(𝑠+3)
𝑠2+2𝑠+5

𝑠+3
𝑠2+2𝑠+5



𝚫 =



𝑞1 0 0

0 𝑞1 0

0 0 𝑞2


. (1.11)

Doing so, we put all the uncertainties in 𝚫 matrix. The lines in M (𝑠) highlight the sub matrices

M11(𝑠), M12(𝑠), M21(𝑠), 𝑀22(𝑠).

The structure of the uncertainty can be generalized as:

11
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𝚫(𝑠) =



𝑞1I𝑚1 . . . 0

...
. . .

...

0 . . . 𝑞𝑙I𝑚𝑙

0

0

Δ1(𝑠) . . . 0

...
. . .

...

0 . . . Δ𝑐 (𝑠)



(1.12)

with Δ1(𝑠), ...,Δ𝑐 (𝑠) ∈ RH∞ represent the bounded (∥Δ𝑖 (𝑠)∥∞ < 1), stable and proper transfer

functions. This allows considering both linear uncertainty that afflicts the parameters and nonlinear

uncertainties, represented by Δ1(𝑠), ...,Δ𝑐 (𝑠) with 𝑐 ∈ N+.

+

W (s)

1
s

1
s

−2

−5

3

+

+

+

+

+

+

+

+

+ +
+ +

W (s) Z(s)

−q1

−q2

q1

Figure 2: Block scheme representation of the considered system.

Another more general and complex representation redesigns the state space domain by replacing the

fourth equation of (1.9),with:

wΔ(𝑡) = 𝚫

(
x(·), 𝑤(·), 𝑡

)
zΔ(𝑡) (1.13)
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(s)

W∆2
(s) Z∆2

(s)

W (s) Z(s)

W∆3
(s)

W∆1
(s) Z∆1

(s)

Z∆3
(s)

q2

q1

q1

∆

M

Figure 3: Upper LFT scheme of the example system.

by assuming D11 = 0. This uncertainty representation is admissible for (1.9) if, given a locally square

integrable input 𝑤(·) and any corresponding solutions to (1.9), with (1.13) defined on an existence

interval (0, 𝑡), there exist a sequence 𝑡∞
𝑖=1 and constants 𝑑1 ≥ ... ≥ 𝑑𝑛𝑤Δ ≥ 0, such that 𝑡𝑖 → 𝑡, 𝑡𝑖 ≥ 1

and ∫ 𝑡𝑖

0

��𝑤Δ𝑘 (𝑡)
��2 𝑑𝑡 ≤ ∫ 𝑡𝑖

0

��𝑧Δ𝑘 (𝑡)��2 𝑑𝑡 + 𝑑𝑘 , (1.14)

where 𝑤Δ𝑘 (𝑡) and 𝑧Δ𝑘 (𝑡) are the 𝑘-th element of respectively wΔ(𝑡) and zΔ(𝑡) , with 𝑘 = 1, ..., 𝑛𝑤Δ

(considering 𝑛𝑤Δ
= 𝑛𝑧Δ). This representation is called IQC uncertainty description [33, 34]. It is

useful to exploit structural information (such as uncertainty of some parameters) for characterizing

the property of wΔ and zΔ and for studying the non-linear uncertainties. In particular, there are two

ways to implement it: in time domain or frequency domain. The choice depends on the application

under analysis.

Remark 1.1

The structured uncertainty matrix 𝚫 can be an unknown (real or complex) matrix subject to a

matrix norm bound ∥𝚫∥ ≤ 1, as defined in (1.5), or even an unknown transfer function matrix

subject to a norm bound ∥𝚫(𝑠)∥∞ ≤ 1.

13
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1.1.2 Unstructured Uncertainty

The LFT provides also a representation for the unstructured uncertainties. This typology of uncertainty

is defined by a norm that bounds Δ1 with a single constraint. A type of uncertainty model that belongs

to this group is called Norm bounded uncertainty. This works with a non-dynamic time-varying

nonlinear uncertainty, specified by an induced norm bound, i.e. ∥Δ(x, 𝑡)∥2 ≤ 1∀𝑡, in state space

representation [35]. Instead, a more general unstructured uncertainty model is defined as a dynamic

nonlinear uncertainty, denoted by the transfer function Δ(𝑠), constrained as ∥Δ(𝑠)∥∞ ≤ 1. This type

is called Bounded real uncertainty.

Assume that M (𝑠) represents an open-loop system (i.e. 𝑤(𝑡) = 𝑢(𝑦) and 𝑧(𝑡) = 𝑦(𝑡) of Figure 1), the

most common types of Bounded real unstructured uncertainty are [26, Chapter 9] [24, Chapter 4]:

• Additive uncertainty: which is derived from the upper LFT equation (1.8) by letting 𝑀11(𝑠) = 0,

𝑀22(𝑠) = 𝐺0(𝑠), 𝑀12(𝑠) = 12 and by choosing a suitable weight transfer function to define

𝑀21(𝑠), denoted by𝑊𝑎 (𝑠). Hence, the output of the uncertain system is defined as

𝑌 (𝑠) =
[
𝐺0(𝑠) +𝑊𝑎 (𝑠)Δ(𝑠)

]
𝑈 (𝑠) (1.15)

where 𝐺0(𝑠) represents the nominal model. Figure 4 depicts the graphical representation of

G0(s)

Wa(s)

U(s) Y (s)

∆(s)

+
+

Figure 4: Graphical representation of additive uncertainty.

the additive uncertainty.

• Multiplicative input uncertainty: which is derived from (1.8) by setting 𝑀11(𝑠) = 0, 𝑀21(𝑠) =

𝐺0(𝑠), 𝑀22(𝑠) = 𝐺0(𝑠), and by choosing a suitable weight transfer function matrix to define

𝑀12(𝑠), denoted by𝑊𝑖 (𝑠). Thus

𝑌 (𝑠) = 𝐺0(𝑠)
[
1 + Δ(𝑠)𝑊𝑖 (𝑠)

]
𝑈 (𝑠) . (1.16)

Figure 5 depicts the graphical representation of the multiplicative input uncertainty.
1Note that Δ is written without the bold symbol, because for the unstructured uncertainty in SISO case it is not a matrix.
2With SISO systems M (𝑠) ∈ RH2×2

∞ , since 𝑛𝑤Δ
= 𝑛𝑧Δ = 𝑛𝑧 = 𝑛𝑤 = 1, the sub-matrices of M (𝑠) are all scalars transfer

functions.
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G0(s)

Wi(s)

U(s) Y (s)

∆(s)

+
+

Figure 5: Graphical representation of multiplicative input uncertainty.

• Multiplicative output uncertainty: which is derived from (1.8) by imposing 𝑀11(𝑠) = 0,

𝑀12(𝑠) = 𝐺0(𝑠), 𝑀22(𝑠) = 𝐺0(𝑠), and by choosing suitable weight transfer function matrix to

define 𝑀21(𝑠), denoted by𝑊𝑜 (𝑠), so

𝑌 (𝑠) =
[
1 + Δ(𝑠)𝑊𝑜 (𝑠)

]
𝐺0(𝑠)𝑈 (𝑠) . (1.17)

Wo(s)

U(s) Y (s)

∆(s)

+
+

G0(s)

Figure 6: Graphical representation of multiplicative output uncertainty.

In the SISO case the multiplicative output and input uncertainty coincide, instead with MIMO

systems they differ. Figure 6 shows the block scheme of the multiplicative output uncertainty.

• Inverse multiplicative output uncertainty: which is computed from (1.8) by setting 𝑀12(𝑠) =

𝐺0(𝑠), 𝑀22(𝑠) = 𝐺0(𝑠), and by choosing a suitable weight transfer function matrix to define

𝑀21(𝑠) = 𝑀11(𝑠) = 𝑊𝐼𝑜 (𝑠). Thus

𝑌 (𝑠) =

[
𝐺0(𝑠) +𝑊𝐼𝑜 (𝑠)Δ(𝑠)

(
1 −𝑊𝐼𝑜 (𝑠)Δ(𝑠)

)−1
𝐺0

]
𝑈 (𝑠)

=

[
1 +𝑊𝐼𝑜 (𝑠)Δ(𝑠)

(
1 −𝑊𝐼𝑜 (𝑠)Δ(𝑠)

)−1]
𝐺0(𝑠)𝑈 (𝑠)

=

[
1 +

(
1 −𝑊𝐼𝑜 (𝑠)Δ(𝑠)

)−1
− 1

]
𝐺0(𝑠)𝑈 (𝑠)

=

(
1 −𝑊𝐼𝑜 (𝑠)Δ(𝑠)

)−1
𝐺0(𝑠)𝑈 (𝑠)

. (1.18)

Figure 7 shows the graphic interpretation of the inverse multiplicative output uncertainty.
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WIo(s)

U(s) Y (s)

∆(s)

+
+

G0(s)

Figure 7: Graphical representation of inverse multiplicative output uncertainty.

• Left coprime factor uncertainty: by imposing 𝐺0(𝑠) = 𝐷 𝑙𝑐 𝑓 (𝑠)−1𝑁𝑙𝑐 𝑓 (𝑠) (see Definition 1.8)

and by having two different Δ𝑛 (𝑠),Δ𝑑 (𝑠) uncertainty transfer functions, one for 𝑁𝑙𝑐 𝑓 (𝑠) and one

for 𝐷 𝑙𝑐 𝑓 (𝑠), that comply with 
Δ𝑛 (𝑠),Δ𝑑 (𝑠)



∞

≤ 1 . (1.19)

The input-output relations of M (𝑠) (see Figure 1), considered as an open loop system, becomes

𝑌 (𝑠) =
[
𝐷 𝑙𝑐 𝑓 (𝑠) + Δ𝑑 (𝑠)

]−1 [
𝑁𝑙𝑐 𝑓 (𝑠) + Δ𝑛 (𝑠)

]
𝑈 (𝑠) (1.20)

by setting

M (𝑠) =



−𝐷−1
𝑙𝑐 𝑓

−𝐺0(𝑠)

0 1

𝐷 𝑙𝑐 𝑓 (𝑠)−1 𝐺0(𝑠)


. (1.21)

The uncertainty in left coprime factorization can be also weighted, such as the previous forms,

by setting𝑊𝑑 (𝑠),𝑊𝑛 (𝑠). Therefore, the formulation (1.20) becomes

𝑌 (𝑠) =
[
𝐷 𝑙𝑐 𝑓 (𝑠) +𝑊𝑑 (𝑠)Δ𝑑 (𝑠)

]−1 [
𝑁𝑙𝑐 𝑓 (𝑠) +𝑊𝑛 (𝑠)Δ𝑛 (𝑠)

]
𝑈 (𝑠) . (1.22)

These two representations of the left coprime factorization are useful for different aims. The

unweighted form is employed in H∞ loop-shaping design and robust stability analysis, instead

the weighted form is used for the mixed-sensitivity loop-shaping (see Section 1.2).

Figure 8 illustrates the graphical representation of the weighted left coprime factorization uncertainty.

There are also other representations of uncertainty, such as inverse multiplicative input uncertainty,

inverse additive uncertainty and right coprime factorization, but they are less used. The most employed
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Type of uncertainty
modeling of Section
1.1.2

Uncertainty physical source

Additive (1.15)

• Additive plant errors

• Neglected high frequency dynamics

• Uncertain right half plane zeros

Input multiplicative
(1.16)

• Actuators errors

• Neglected high frequency dynamics

• Uncertain right half plane zeros

Output multiplicative
(1.17)

• Sensors errors

• Neglected high frequency dynamics

• Uncertain right half plane zeros

Inverse output multi-
plicative (1.18)

• Low frequency parameter errors

• Uncertain right half plane poles

Left coprime factoriza-
tion (1.20)

• Low frequency parameter errors

• Neglected high frequency dynamics

• Uncertain right half plane poles and ze-
ros

Table 1: Physical sources of uncertainty accounted by the uncertainty models.
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+

∆d(s)

U(s) Y (s)

Wd(s)

−
+

D−1
lcf(s)Nlcf(s)

∆n(s)

Wn(s)

+

Figure 8: Graphical representation of weighted left coprime factorization uncertainty.

form is the multiplicative output uncertainty. Table 1 reports a recap that shows which types of physical

sources are characterized by the corresponding unstructured uncertainty scheme.

Another two types of unstructured uncertainties, in addition to the norm bounded uncertainty and the

bounded real uncertainty, are: Positive real uncertainty and Negative imaginary uncertainty. Positive

real uncertainty considers a stable transfer function matrix 𝚫(𝑠) that complies with the condition:

𝚫( 𝑗𝜔) + 𝚫( 𝑗𝜔)∗ ⪰ 0 ∀𝜔 , (1.23)

where A ⪰ 0 denotes that the matrix A is Hermitian and positive semidefinite. Negative imaginary

uncertainty is similar to Positive real uncertainty, but the uncertainty constraint is:

𝑗 (𝚫( 𝑗𝜔) + 𝚫( 𝑗𝜔)∗) ⪰ 0 ∀𝜔 > 0 . (1.24)

The equations (1.23) and (1.24) are used mainly with MIMO systems, specifically with mechanical

systems. For instance, Negative imaginary uncertainty is used when the input-output data are force

and position; instead, Positive real uncertainty is used when the available data are force and speed

[36].

1.2 Uncertainty for robust control

Models endowed with the uncertainty information, represented by the LFT, as described in Section

1.1, can be used to design a control that guarantees the robust stability of an uncertain system. The

link between the uncertain model and control design is represented by the Small gain theorem. Before

introducing this, it is necessary to state the definition of robust stability:
Definition 1.3: Robust stability [34]

Consider the system in Figure 1 with M (𝑠) ∈ RH (𝑛𝑧Δ+1)×(𝑛𝑤Δ+1)∞ and the unstructured uncer-

taintyΔ(𝑠) ∈ RH∞. This interconnection is said robust stable if it is stable for all uncertainties

18
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Δ(𝑠) in a given norm bounded set

BΔ(𝜈) ≡ {Δ(𝑠) ∈ RH∞ : ∥Δ(𝑠)∥∞ ≤ 𝜈} , (1.25)

where 𝜈 is a fixed radius.

Note that 𝜈 is a measure of the robustness of the uncertain system. Usually, the largest value of 𝜈 that

guarantees the robust stability of the system is called robustness margin.

Theorem 1.1: Small gain theorem [37]

Consider the system in Figure 1 withM (𝑠) ∈ RH (𝑛𝑧Δ+1)×(𝑛𝑤Δ+1)∞ and an unknown unstructured

uncertainty Δ(𝑠) with 𝜈 > 0. The interconnection is well-posed and internally stable for all

Δ(𝑠) ∈ RH∞ with:

• ∥Δ(𝑠)∥∞ ≤ 𝜈 if and only if ∥M (𝑠)∥∞ < 1
𝜈
;

• ∥Δ(𝑠)∥∞ < 𝜈 if and only if ∥M (𝑠)∥∞ ≤ 1
𝜈
.

It follows that the stability radius for uncertain Linear Time-Invariant (LTI) systems 𝜈𝐿𝑇 𝐼 (M (𝑠)) is

given by:

𝜈𝐿𝑇 𝐼 (M (𝑠)) ≡
1

∥M (𝑠)∥∞
, (1.26)

where the stability radius is defined as follows:

Definition 1.4: Stability radius [34]

The stability radius is the smallest value of 𝜈 such that exists Δ(𝑠) ∈ BΔ(𝜈).

The Small gain theorem, described in Theorem 1.1, establishes an equivalence between the dynamic

uncertainty Δ(𝑠) ∈ RH∞ and static complex uncertainty Δ( 𝑗𝜔) ∈ C:

Definition 1.5: Static and dynamic uncertainty [34]

Consider the system in Figure 1 with M (𝑠) ∈ RH (𝑛𝑧Δ+1)×(𝑛𝑤Δ+1)∞ with 𝜈 > 0. The intercon-

nection is well-posed and internally stable ∀Δ(𝑠) ∈ RH∞ with ∥Δ(𝑠)∥∞ ≤ 𝜈, if and only if the

interconnection is well-posed and internally stable ∀Δ( 𝑗𝜔) ∈ C with ∥Δ( 𝑗𝜔)∥ ≤ 𝜈.

So, the robust stability feature of system, depicted in Figure 1, with static complex uncertaintyΔ( 𝑗𝜔) is

necessary and sufficient for having also the robust stability of the same system under general dynamic

uncertainty Δ(𝑠) ∈ RH∞.
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As described previously in Section 1.1, the LFT with unstructured uncertainty can be declined in

various types of uncertainty models. Hence, also the Small gain theorem can be developed into

different robust stability tests:

• Additive uncertainty 𝐺 (𝑠) = 𝐺0(𝑠) + Δ(𝑠)𝑊𝑎 (𝑠): by having a stabilizing controller 𝐾 (𝑠) for

𝐺0(𝑠), the closed loop is well-posed and internally stable ∀Δ(𝑠) ∈ RH∞ with

– ∥Δ(𝑠)∥∞ < 1 if and only if ∥𝑊𝑎 (𝑠)𝐾 (𝑠)𝑆0(𝑠)∥∞ ≤ 1,

– ∥Δ(𝑠)∥∞ ≤ 1 if and only if ∥𝑊𝑎 (𝑠)𝐾 (𝑠)𝑆0(𝑠)∥∞ < 1,

where 𝑆0(𝑠) = 1
1+𝐺0 (𝑠)𝐾 (𝑠) is the nominal sensitivity function.

• Multiplicative uncertainty 𝐺 (𝑠) =
(
1 + Δ(𝑠)𝑊𝑜 (𝑠)

)
𝐺0(𝑠): by having a stabilizing controller

𝐾 (𝑠) for 𝐺0(𝑠), the closed loop is well-posed and internally stable ∀Δ(𝑠) ∈ RH∞ with

– ∥Δ(𝑠)∥∞ < 1 if and only if ∥𝑊𝑜𝑇0(𝑠)∥∞ ≤ 1,

– ∥Δ(𝑠)∥∞ ≤ 1 if ∥𝑊𝑜𝑇0(𝑠)∥∞ < 1,

– ∥Δ(𝑠)∥∞ ≤ 1 only if ∥𝑊𝑜𝑇0(𝑠)∥∞ ≤ 1,

where 𝑇0(𝑠) = 1 − 𝑆0(𝑠) is the nominal complementary sensitivity function. Output and input

multiplicative uncertainty modeling share the same robust stability test.

Remark 1.2: [26, Chapter 9]

The robust stability of the closed loop system for all ∀Δ(𝑠) ∈ RH∞ with ∥Δ(𝑠)∥∞ ≤ 1

does not necessary imply ∥𝑊𝑜𝑇0(𝑠)∥∞ < 1.

• Left coprime uncertainty𝐺 (𝑠) =
[
𝐷 𝑙𝑐 𝑓 (𝑠) +Δ𝑑 (𝑠)

]−1 [
𝑁𝑙𝑐 𝑓 (𝑠) +Δ𝑛 (𝑠)

]
: by having a stabilizing

controller 𝐾 (𝑠) for𝐺0(𝑠), the closed-loop system is well-posed and internally stable ∀𝚫𝑙 𝑓 𝑐 (𝑠) =

[Δ𝑑 (𝑠),Δ𝑛 (𝑠)] ∈ RH2×1
∞ with

𝚫𝑙 𝑓 𝑐 (𝑠)∞ < 1 if and only if


𝐾 (𝑠)

1


𝑆0(𝑠)𝐷−1

𝑙𝑐 𝑓 (𝑠)


∞

≤ 1 . (1.27)

Again, in this uncertain system model, the weight functions, depicted in Figure 8, are considered

external from the uncertain model for control design purposes. Therefore, the robust stability

test does not account those weights.
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All proofs are reported in [26, Chapter 9]. Table 2 resumes a series of robust stability tests of almost

all types of perturbed system, by letting𝑊𝑎 (𝑠),𝑊𝑜 (𝑠),𝑊𝑖 (𝑠) ,𝑊𝐼𝑜 (𝑠) ∈ RH∞ and Δ(𝑠) ∈ RH∞ with

∥Δ(𝑠)∥∞ < 1.

Type of uncertainty modeling Robust stability test

Additive ∥𝑊𝑎 (𝑠)𝐾 (𝑠)𝑆0(𝑠)∥∞ ≤ 1

Input multiplicative ∥𝑊𝑖 (𝑠)𝑇0(𝑠)∥∞ ≤ 1

Output multiplicative ∥𝑊𝑜 (𝑠)𝑇0(𝑠)∥∞ ≤ 1

Inverse output multiplicative ∥𝑊𝐼𝑜 (𝑠)𝑆0(𝑠)∥∞ ≤ 1

Right coprime factorization
𝐷−1

𝑟𝑐 𝑓
(𝑠)𝑆0(𝑠)

[
𝐾 (𝑠), 1

]
∞
≤ 1

Left coprime factorization



𝐾 (𝑠)

1

 𝑆0(𝑠)𝐷−1
𝑙𝑐 𝑓
(𝑠)


∞

≤ 1

Table 2: Robust stability test at varying the unstructured uncertainty model.

The resulting components of the right coprime factorization of M (𝑠) are denoted as 𝐷𝑟𝑐 𝑓 (𝑠) 𝑁𝑟𝑐 𝑓 (𝑠).

Notice that all rows in Table 2 can be resumed by the unstructured analysis theorem:

Theorem 1.2: Unstructured analysis theorem

Given a uncertain system 𝐺 (𝑠) and a controller 𝐾 (𝑠) that stabilizes the nominal plant 𝐺0(𝑠),

closed-loop robust stability is achieved if and only if the robust stability test of the employed

uncertainty modeling is valid.
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Considering the multiplicative uncertainty3 with ∥Δ(𝑠)∥∞ ≤ 1 , it is possible to generalize the Small

gain theorem as the Nyquist criterion for the stability of a feedback system:

∥𝑊𝑜 (𝑠)𝑇0(𝑠)∥∞ < 1⇔
���𝑊𝑜 ( 𝑗𝜔)𝐿0 ( 𝑗𝜔)

1+𝐿0 ( 𝑗𝜔)

��� < 1 ∀𝜔

⇔ |𝑊𝑜 ( 𝑗𝜔)𝐿0( 𝑗𝜔) | < |1 + 𝐿0( 𝑗𝜔) | ∀𝜔

, (1.28)

with 𝐿0(𝑠) = 𝐺0(𝑠)𝐾 (𝑠). Notice that the distance between−1 and 𝐿0(𝑠) is represented by |1 + 𝐿0( 𝑗𝜔) |

∀𝜔, therefore, thanks to the Nyquist stability theorem, the closed loop system is stable if the Nyquist

plot does not encircle the critical point −1. So, the system is robust stable if the distance between −1

and 𝐿0( 𝑗𝜔) is higher than the absolute value of𝑊𝑜 ( 𝑗𝜔)𝐿0( 𝑗𝜔). These propositions are true if 𝐿0(𝑠)

has not right half plane poles. The graphical representation is depicted in Figure 9. For simplicity,

𝐿0( 𝑗𝜔) and𝑊𝑜 ( 𝑗𝜔) dependencies with respect to the frequency are not reported.

Im

Re−1

L0

|1 + L0|

|WoL0|

Figure 9: Nyquist representation of robust stability with multiplicative unstructured uncertainty.

The literature shows also the possibility of adding some performance requirements to robust stability,

such as:

• Nominal performance: some performance objectives are satisfied for the nominal plant 𝐺0(𝑠);

• Robust performance4: some performance objectives are satisfied for every plant in the uncer-

tainty model 𝐺 (𝑠), with Δ(𝑠) ∈ BΔ(𝜈) and 𝜈 = 1.

Usually, the performance requirements are designed with suitable weight functions that shape open-

loop or closed-loop frequency responses [25, Chapter 8]. The robust performance test changes by
3Since for the SISO systems the input multiplicative uncertainty and output multiplicative uncertainty are equivalent, often
the input/output adjectives are omitted.
4The prerequisites of the robust performance are nominal performance and robust stability.
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Im

Re−1

L0 |WoL0|

|WS|

Figure 10: Nyquist representation of robust performance with multiplicative unstructured uncertainty.

varying the unstructured uncertainty scheme employed and by modifying the nominal performance

test. Figure 10 depicts the robust performance representation in the Nyquist plot. To obtain a controller

which have this property, the two circles must not have an intersection.

In literature, there is a variation of Small gain theorem called Small 𝜇 theorem, used for systems with

structured uncertainty. To describe this theorem, it is necessary to explain the different structured

uncertainty sets. With the more general uncertainty matrix described in (1.12), the corresponding

structured set is:

Ã ≡
{
𝚫(𝑠) = bdiag

(
I𝑚1𝑞1, ..., I𝑚𝑙𝑞𝑙 ,Δ1(𝑠), ...,Δ𝑐 (𝑠)

)}
, (1.29)

where 𝑞𝑢 are real (or complex) uncertain parameters, with multiplicity 𝑚𝑢 with 𝑢 = 1, ..., 𝑙, and Δ𝑖 (𝑠)

with 𝑖 = 1, ..., 𝑐 are real (or complex) transfer functions. If we replace the last 𝑐 transfer functions with

the corresponding static real (or complex) Δ𝑖 ( 𝑗𝜔) for a fixed frequency 𝜔, the structured set becomes:

A ≡
{
𝚫( 𝑗𝜔) = bdiag

(
I𝑚1𝑞1, ..., I𝑚𝑙𝑞𝑙 ,Δ1( 𝑗𝜔), ...,Δ𝑐 ( 𝑗𝜔)

)}
. (1.30)

Therefore, the corresponding norm bounded set is equal to:

BA ≡
{
𝚫( 𝑗𝜔) ∈ A : ∥q∥𝑝 ≤ 1, �̄�(Δ𝑖 ( 𝑗𝜔)) ≤ 1, 𝑖 = 1, ..., 𝑐

}
; (1.31)

with �̄�(·) the largest singular value and ∥·∥𝑝 the 𝑝-norm.

Furthermore, the Small 𝜇 theorem relies on the definition of the Structured singular value:
Definition 1.6: Structured singular value

Letting the complex matrix M ( 𝑗𝜔) ∈ C(𝑛𝑧Δ+1)×(𝑛𝑤Δ+1) , considered as the evaluation of M (𝑠)

for 𝑠 = 𝑗𝜔 with 𝜔 > 0, the structured singular value of M ( 𝑗𝜔) with respect to A is:

𝜇A (M ( 𝑗𝜔)) ≡
1

min {�̄�(𝚫( 𝑗𝜔)) : det(I −M ( 𝑗𝜔)𝚫( 𝑗𝜔)) = 0,𝚫( 𝑗𝜔) ∈ A} . (1.32)
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An alternative expression of (1.32) corresponds to:

𝜇A (M ( 𝑗𝜔)) ≡ max
𝚫( 𝑗𝜔)∈BA

𝜌 (M ( 𝑗𝜔)𝚫( 𝑗𝜔)) , (1.33)

with 𝜌(·) the maximum modulus of the eigenvalues, called Spectral radius.

Now, it is possible to enunciate the Small 𝜇 theorem:

Theorem 1.3: Small 𝜇 theorem

Consider the system of Figure 1 with M (𝑠) ∈ RH (𝑛𝑧Δ+1)×(𝑛𝑤Δ+1)∞ and an unknown structured

uncertainty 𝚫(𝑠) with 𝜈 > 0. The interconnection is said internally stable and well-posed

∀𝚫(𝑠) ∈ Ã with ∥𝚫(𝑠)∥∞ ≤ 𝜈 if and only if

sup
𝜔∈R

𝜇A (M ( 𝑗𝜔)) <
1
𝜈
. (1.34)

The Small 𝜇 theorem, in Theorem 1.3, counterpart explains the same equivalence between the static

and dynamic uncertainty with structured uncertainty, i.e. it establishes an equivalence between the

dynamic uncertainty 𝚫(𝑠) and static complex uncertainty 𝚫( 𝑗𝜔) (see Definition 1.5).

Also with structured uncertainty, it is possible to design a controller that complies with the robust

performance specifications. In [38], the authors modeled the performance requirements as a fictitious

uncertainty Δ 𝑓 (𝑠). In doing so, the robust performance is shifted as a robust stability problem by

letting:

𝚫𝑟 𝑝 (𝑠) =


𝚫(𝑠) 0

0 Δ 𝑓 (𝑠)


; (1.35)

with Δ 𝑓 (𝑠) ∈ RH∞5. This scheme is depicted in Figure 11.

1.2.1 Robust control synthesis

After explaining the connection between the uncertainty system and the robust stability, the question

is: How does the robust controller design work? The general representation of the upper LFT can be

redesigned for robust control synthesis purposes. Again, M (𝑠) can be an open-loop or closed-loop

system 6. If we consider a closed-loop, we denote the open-loop system as P (𝑠) and the controller

5𝚫 𝑓 (𝑠) ∈ RH𝑛𝑤×𝑛𝑧
∞ with 𝑛𝑤 = 𝑛𝑧 ≠ 1 for MIMO systems.

6If M (𝑠) is considered as a closed-loop system, M (𝑠) should be also not in RH∞.
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M

W (s) Z(s)

∆(s) ∆(s)
∆(s)

∆rp(s)

∆f (s)

(s)

W Z

Figure 11: Robust performance represented by fictitious uncertainty for structured uncertainty systems.

𝐾 (𝑠) 7, as illustrated in Figure 12. By grouping P (𝑠) with the uncertainty block Δ(𝑠), the LFT

representation (Figure 12) can be considered as the classical control synthesis scheme, depicted in

Figure 13. This grouped system is denoted as N (𝑠) ∈ RH2×2
∞ (for SISO systems and unstructured

uncertainty). The state space form (derived from (1.9)) of P (𝑠) becomes:

x(𝑡) = Ax(𝑡) +B1𝑤Δ(𝑡) +B2𝑢(𝑡) +B𝑤𝑤(𝑡)

𝑧Δ(𝑡) = C1x(𝑡) + 𝐷11𝑤Δ(𝑡) + 𝐷12𝑢(𝑡)

𝑦(𝑡) = C2x(𝑡) + 𝐷21𝑤Δ(𝑡)

𝑧(𝑡) = C𝑧x(𝑡) + 𝐷𝑧𝑢(𝑡)

, (1.36)

where:

• 𝑤(𝑡) is the exogenous input, such as disturbance, noise or reference signal;

• 𝑧(𝑡) is the exogenous output, which represents the system performance signal, for instance

tracking error or controlled signal;

• 𝑢(𝑡) is the control input signal;

• 𝑦(𝑡) is the sensed output;

• unstructured uncertainty Δ(𝑠);
7Therefore, M (𝑠) represents transfer function of the group composed by P (𝑠) and 𝐾 (𝑠).
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• A ∈ R𝑛𝑥×𝑛𝑥 ,x ∈ R𝑛𝑥×1,B1 ∈ R𝑛𝑥×1,B2 ∈ R𝑛𝑥×1,B𝑤 ∈ R𝑛𝑥×1,C1 ∈ R1×𝑛𝑥 ,C2 ∈ R1×𝑛𝑥 ,C𝑧 ∈

R1×𝑛𝑥𝐷𝑧 ∈ R, 𝐷11 ∈ R, 𝐷12 ∈ R, 𝐷21 ∈ R.

In case of structured uncertainty, the uncertainty is a matrix and the signals 𝑤Δ(𝑡) and 𝑧Δ(𝑡) become

vectors, as already seen in Section 1.1.1.
Remark 1.3

In this setting,P (𝑠) is coupled with a controller as represented in Figure 12, therefore 𝑧(𝑡) ≠ 𝑦(𝑡)

and 𝑤(𝑡) ≠ 𝑢(𝑡).

(s)

∆(s)

W∆(s) Z∆(s)
W (s) Z(s)

K(s)

U(s) Y (s)

(s)M

P

Figure 12: Linear Fractional Transformation
for robust control synthesis.

(s)
W (s) Z(s)

K(s)

U(s) Y (s)

N

Figure 13: Traditional control synthesis
scheme.

The robust control literature shows different methodologies to solve the control synthesis:

• H2 optimal control: this type of control design aims to regulate the transfer function between

𝑊 (𝑠) and 𝑍 (𝑠), defined as the lower Linear Fractional Transformation:

F𝑙 (N (𝑠), 𝐾 (𝑠)) ≡ 𝑁11(𝑠) + 𝑁12(𝑠)𝐾 (𝑠) (1 − 𝑁22𝐾 (𝑠))−1𝑁21(𝑠) . (1.37)

The robust controller is obtained by finding a stabilizing controller that minimizes the 2-norm

of the lower LFT: ∥F𝑙 (N (𝑠), 𝐾 (𝑠))∥2. This optimization problem corresponds to minimize the

total energy of the impulse response of F𝑙 (N (𝑠), 𝐾 (𝑠)). Given 𝑤(𝑡) as stationary noise, the

H2 optimal control is often called Linear Quadratic Gaussian (LQG) control [39, Chapter 6].

Furthermore,H2 can be solved by two Riccati equations without iterative procedure and, doing

so, the resulting controller is unique [25, Chapter 13].

• H∞ optimal control: using the representation described with theH2 design, the robust controller

is designed by finding a stabilizing controller that minimizes the infinity norm of the lower LFT:

26



State of the art

∥F𝑙 (N (𝑠), 𝐾 (𝑠))∥∞8. As described in [40], finding an optimal controller with H∞-norm is

usually complicated. Therefore, this control design is translated into searching the suboptimal

controllers that are closed, in norm sense, to the optimal one [25, 18, Chapter 14]. The

suboptimalH∞ control is defined as: given a 𝛾 > 0, find all stabilizing controllers 𝐾 (𝑠), if there

are any, such that ∥F𝑙 (N (𝑠), 𝐾 (𝑠))∥∞ < 𝛾.

• H∞ loop-shaping: this method adds a loop shaping design to the H∞ optimization problem.

Usually, to study this methodology the uncertainty is represented as the unweighted left coprime

factorization. Thus, the design procedure corresponds to:

1. Choose, by the user’s knowledge, two weight functions 𝑊1(𝑠) and 𝑊2(𝑠), called pre-

compensator and post-compensator. The aim of this consist of giving a desired open-loop

shape to the system. Doing so, the shaped plant becomes 𝐺𝑠 (𝑠) = 𝑊2(𝑠)𝐺 (𝑠)𝑊1(𝑠),

where 𝐺 (𝑠) = 𝑌 (𝑠)/𝑈 (𝑠) and it is defined as in (1.20);

2. Solve the robust stabilization with theH∞ optimization to obtain 𝜈𝑚𝑎𝑥 , using:

𝜈𝑚𝑎𝑥 =

©«
inf

𝐾stabilizing




𝐾 (𝑠)

1


(
1 + 𝐺𝑠 (𝑠)𝐾 (𝑠)

)−1
𝐷−1
𝑙𝑐 𝑓 (𝑠)


∞

ª®®®®®®®¬
. (1.38)

Note that 𝜈𝑚𝑎𝑥 represents the stability margin. Therefore, if 𝜈𝑚𝑎𝑥 is not big enough, the

final controller would be not compatible with the robust stability requirements. If this

happens, we should redesign the pre and post-compensator.

3. Select 𝜈 ≤ 𝜈𝑚𝑎𝑥 and synthesize a controller 𝐾∞(𝑠) by exploiting the robust stability test;

4. The final controller is made as 𝐾 (𝑠) = 𝑊1(𝑠)𝐾∞(𝑠)𝑊2(𝑠).

With this methodology, 𝜈 is used as a design indicator that measures both the closed-loop

stability and the loop shaping specs, drawn by the pre and post-compensator.

A more stringent method ofH∞ loop-shaping is S/KS mixed sensitivity loop-shaping [19]. This

employs the weighted left coprime uncertainty model (1.22). Specifically, the weight functions

𝑊𝑑 (𝑠) and 𝑊𝑛 (𝑠) shape the robustness of 𝐷 𝑙𝑐 𝑓 (𝑠) and 𝑁𝑙𝑐 𝑓 (𝑠). Often, 𝑊𝑑 (𝑠) is also denoted

as𝑊𝑆 (𝑠), while𝑊𝑛 (𝑠) as𝑊𝑄 (𝑠). By grouping the left coprime terms and the weight functions

together, as depicted in Figure 14, we obtain H (𝑠) ∈ RH2×1
∞ , i.e. the transfer function from

8TheH∞ norm corresponds to the worst case of the gain of F𝑙 (N (𝑠), 𝐾 (𝑠)).
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zΔ = [𝑧Δ1, 𝑧Δ2]⊤ ∈ R2×1 to 𝑤Δ, where 𝚫𝑙 𝑓 𝑐 (𝑠) = [Δ𝑛 (𝑠),−Δ𝑑 ( 𝑠)]. It corresponds to:

H (𝑠) = 𝑊Δ(𝑠)
ZΔ(𝑠)

=


𝑊𝑑 (𝑠)𝑆0(𝑠)

𝑊𝑛 (𝑠)𝑄0(𝑠)


; (1.39)

where 𝑄0(𝑠) = 𝐾 (𝑠)𝑆0(𝑠) is the control sensitivity function. Hence, the controller 𝐾 (𝑠) is

+

Z(s)

Wd(s)

∆lfc(s)

Wn(s)

+

Z∆1
(s) Z∆2

(s)

W∆(s)

−
K(s) N−1

lcf (s) D−1
lcf(s)

H (s)

Figure 14: Graphic representation of left coprime factorization uncertainty for mixed-sensitivity loop-
shaping [19].

designed with the H∞ optimization of H (𝑠)9. In literature, there are also some variations

of this mixed-sensitivity loop-shaping, such as: S/T mixed-sensitivity loop-shaping or S/T/KS

mixed-sensitivity loop-shaping [16, Chapter 3]. In these alternatives, the weight functions

represent some desired closed-loop shapes: sensitivity function, control sensitivity function

or complementary sensitivity function. Furthermore, in these case the weight functions are

denoted respectively as: 𝑊𝑆 (𝑠),𝑊𝑄 (𝑠) and𝑊𝑇 (𝑠) (see Section 2).

• 𝜇 synthesis: is a control synthesis that works with structured uncertainty (modeled as (1.12) or

(1.5)). It minimizes the structured singular value of F𝑙 (N (𝑠), 𝐾 (𝑠)) [41] by solving the H∞
optimization problem:

�̂� (𝑠) = min
𝐾

inf
𝐷 (𝑠),𝐷−1 (𝑠)∈H∞

𝐷 (𝑠)F𝑙 (N (𝑠), 𝐾 (𝑠))𝐷 (𝑠)−1
∞ , (1.40)

where inf is a standard convex optimization problem that can be solved pointwise in frequency

domain. The lower LFT is scaled with a stable and minimum phase transfer function 𝐷 (𝑠),

9If the designed controller 𝐾 (𝑠) does not guarantees ∥H (𝑠)∥∞ ≤ 1, then no controller exists that stabilizes the system for
all perturbations 𝚫.
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called scaling transfer function10. The entire optimization problem is solved iteratively by

the D-K iteration technique [25, Chapter 10]. Specifically, the procedure is composed of: (i)

minimize over 𝐾 (𝑠) with a fixed 𝐷 (𝑠), (ii) minimize pointwise over 𝐷 (𝑠) with a fixed 𝐾 (𝑠).

Figure 15 represents the block scheme employed in the 𝜇-synthesis controller design solved by

the 𝐷 − 𝐾 iteration procedure.

D(s) N
W (s) Z(s)

K(s)

U(s) Y (s)

D−1(s)(s)

Figure 15: Graphical representation of the 𝜇-synthesis employing the scaling transfer function.

• MixedH2/H∞ or MixedH∞/H∞ optimal control: these methods are used with MIMO systems.

They split the system N (𝑠) into two parts, such as N1(𝑠) and N2(𝑠). In this way, the

relationship between the exogenous input w1(𝑡) and the exogenous output z1(𝑡) (which belong

to the subsystem N1(𝑠)) are treated differently from the signals w2(𝑡) and z2(𝑡) (which belong

to the subsystem N2(𝑠)). The general optimization problem that solves these two types of

controller design is:

min
F𝑙w1→z1

(N1(𝑠),K (𝑠))

𝑎

s.t.:
F𝑙w2→z2

(N2(𝑠),K (𝑠))

∞
< 𝛾

K (𝑠) stabilize internally N (𝑠)

, (1.41)

where 𝑎 = 2,∞ [42].

For completeness, in literature, there are other control approaches for uncertain systems, such as:

game-theoretic or minimimax [43] , guaranteed-cost control [44], norm uncertainty [45], quantitative-

feedback theory [46], the new polynomial and probabilistic techniques [34].

Often, in robust control design, the resulting controller has high order, typical comparable with the

highly complex uncertain system under analysis. Therefore, for practical purposes, order reduction is

widely used since a low-order controller is easily understandable and implementable in a real process.

Another possible way to solve this problem consists of: identifying a low-order model and then
10With MIMO systems, the choice of the scaled transfer function must agree with D(𝑠)𝚫(𝑠) = 𝚫(𝑠)D(𝑠).
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synthesizing a low-order controller using the identified model. However, this methodology does not

guarantee that the controller designed with the low-order model stabilizes also the full-order plant.

Hence, the authors of [25, Chapter 19] report some techniques to reduce the controller order without

losing the robust stability property of the high order controller. Another novel way, proposed in [47],

corresponds to solving the H∞ loop-shaping by adding a constraint that selects the structure of the

controller. This is more conservative than the free control structure synthesis, but for real application

development, it is more practical.

1.3 Uncertainty for robust fault diagnosis

This section briefly reviews some fundamentals of the fault diagnosis literature and its taxonomy, with

focus on model-based fault diagnosis. Specifically we describe both robust and not robust residual

generation. A fault is a not permitted deviation of at least one characteristic of a system, from the

acceptable, usual, standard condition. A fault causes a malfunction or a failure. The malfunction is an

intermittent irregularity in the fulfillment of a system’s function. Instead, the failure is a permanent

interruption of a component or of the entire system. Note that the difference between the failure and

the malfunction is represented by the time of the interruption. Figure 16 recaps the distinction between

the fault and failure/malfunction definitions.

Fault

Failure

Malfunction

Function

t
0
1

Function

t
0
1

Figure 16: Fault evolution scheme [48, 49, chapter 2].

Figure 17 depicts three different approaches to fix faults. The upper and middle methods were applied

before the advent of industry 4.0. In particular, the Reactive maintenance perspective fixes malfunc-

tions/failures only when they occur. This method causes a large waste of time. Instead, with Preventive

maintenance, the factories plan a time-based maintenance schedule. It prevents malfunctions/failures

occurrence, but it is not optimal, because this program is usually more conservative than the machinery

necessities. Instead, Predictive maintenance exploits some algorithms that generate alarms before the

fault occurrence. In this way, the maintenance intervention is done only when the system needs it.

The definition of Fault diagnosis is defined as:
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Reactive maintenance (run to failure)

Start of 
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Failure 1° Maintenance

intervention

Working again

Time
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Time

Downtime

1° 2° 3°
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Figure 17: Representation of some types of maintenance strategies.

Definition 1.7: Fault diagnosis [29, Chapter 3]

Fault diagnosis refers to the usage of techniques to evaluate the status of a system with respect

to possible faults.

Fault diagnosis methods perform the following tasks:

• Fault detection: indicates if a fault arise or not. It also determines the time of the fault

occurrence;

• Fault isolation: determines the location of the fault;

• Fault analysis or identification: estimates the size and nature of the detected fault;

• Fault estimation: reconstructs the behavior of the fault.

The list is ordered by complexity, from the lowest to the highest. The first task is mandatory to

implement a fault diagnosis algorithm, while the others are optional. Often, the last two are used as

synonyms. Notice that the nomenclature is not consistent across the kinds of literature, such as for

industry [50, 51], for control system community [52] [27, Chapter 3] [53, Chapter 1].

Figure 18 [29, Chapter 3] reports the scheme of the fault diagnosis taxonomy, specifically:

• Hardware redundancy: which provides the physical replication of the critical components of

the system, for example: actuators, sensors or even software. These components are in parallel

with the standard system, they are fed by the same input, but they work only when a fault occurs.
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This is useful for those systems that work in a critical environment, as in electric aircraft [54] or

nuclear power plants [55].

• Analytical redundancy: which solves the fault diagnosis problem by feeding the input and

output signals of the critical system to an algorithm that predicts the status of the considered

system. It is less expensive than the hardware redundancy. Usually, the algorithm compares

the healthy state with respect to the state of the working system. The healthy state has different

representations which depend on the employed algorithm, e.g.: white box model, black box

model, a priori known signal pattern, signal behaviors, a priori known information, and so on.

As depicted in Figure 18, the analytical redundancy scheme has a broad range of methodologies.

They can be grouped in [28, Chapter 1]:

1. Plausibility tests: the fault diagnosis is done by checking some physical laws that govern

the system. If the machinery does not pass these tests, it is said that the system lose its

plausibility and therefore it is faulty;

2. Model-based: the healthy system is modeled by a mathematical model. The model-based

procedure is mainly composed of two steps: residual generation and residual evaluation

[56]. A residual is a signal generated by processing the input and output data with

the employment of the mathematical model (during the residual generation step). The

evaluation procedure decides if there is a fault or not by studying the behaviour of the

residual signal. Ideally, if the residual signal differs from zero, a fault occurs;

3. Signal-based: assumes that the signals carry information about the state of the system.

The fault diagnosis compares some features, called symptoms, extracted from the acquired

signals, with respect to a priori known values which represent the healthy state;

4. Knowledge-based: assumes that a large amount of historical data is available. The user

does not know any prior knowledge or behaviour of the system. The only thing that he

or she can do is to learn some knowledge from the historical data and consequentially

evaluate the data acquired online by exploiting the extrapolated information. These two

phases are called: training and online evaluation;

5. Hybrid: is a combination of two or more methods: signal-based, model-based, plausibility

test and knowledge-based. Doing so, the resulting approach takes the benefits of the

considered algorithms;

6. Active: assumes that the input can be chosen and injected, thereby the fault can be detected

more easily.
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Figure 18: Representation of the taxonomy of the fault diagnosis algorithm.

The most widespread approaches are: model-based and signal-based. Specifically, the former is used

with dynamic processes and the latter is employed with steady-state or complex processes. In light of

this, those are reviewed deeply, with more focus on model-based.

Figure 19 depicts the signal-based fault diagnosis scheme. From the output signal, the algorithm

generates some features called fault symptoms. The fault diagnosis is done by performing an analysis

of the symptoms. In particular, the measured fault symptoms are compared with a priori known fault

symptoms values which represent the healthy state. Signal-based algorithms are grouped according

to the domain to which their symptoms belong [57], such as:

• Time domain approach: computes the statistics of the signal in the time domain, such as: mean,

variance, peak to peak, Root Mean Square, kurtosis, crest factor and so on. For instance, these

types of symptoms are used with gear fault diagnosis [58], power converters of switched reluc-

tance motors [59] and permanent magnet synchronous generators in wind turbine applications

[60];

• Frequency domain approach: obtains a more clear representation of the symptoms in frequency

domain and thus designs an efficient symptoms analysis. Nevertheless, it is also possible to

compute some statistical features employed in the time-domain approach, such as: Root Mean

Square, mean and standard deviation. A famous tool that belongs to this methodology is

Motor-Current Signature Analysis (MCSA). It is used to diagnose the broken rotor bars of

an electrical motor by performing the spectral analysis of the stator current [61]. Another

well-known approach, described in [62], is vibration analysis for gearbox faults and bearing

faults. Note that, acoustic signals are also employed with this approach since they are also a

vibrational signals. The authors of [63] propose an example of frequency domain signal-based

fault diagnosis based on acoustic signals;
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• Time-Frequency domain approach: this approach is useful with transient dynamic conditions.

These variable situations cause a time-varying frequency spectrum. The time-frequency analysis

identifies the signal frequency components and reveals their time-varying characteristics. Some

methodologies that employs this approaches are: STFT [64], WT [65], HHT [66] and WVD

[67].

Plant
u(t) y(t)

Symptoms

generation

Symptoms

analysis
Symptoms

Diagnostic

decision

d(t) v(t)Faults

Knowledge of

symptoms

Figure 19: Representation of the general signal-based scheme [28, Chapter 1].

The definition of model-based fault diagnosis is the determination of faults through the comparison

of the available system measurements with respect to a priori information provided by a mathematical

model [20, Chapter 1]. The model acts as a digital twin of the health system. Figure 20 represents

the overall scheme of the model-based fault diagnosis. As already said, the two major steps of these

techniques are: residual generation and residual evaluation. The residual generator produces the

residual signal 𝑟 (𝑡) by processing the measured input 𝑢(𝑡) and output 𝑦(𝑡) signals. The signal 𝑟 (𝑡)

contains the information useful to diagnose the system state. The residual evaluation strategy helps

to enhance the fault information by performing some signal processing strategies. After that, during

the decision logic step, the processed residual 𝜃 (𝑡) is compared with respect to a selected threshold.

The popular approaches of this methodology are: deterministic fault diagnosis and stochastic fault

diagnosis. In literature, there are also discrete events and hybrid, networked and distributed methods,

but they are less widespread.

The deterministic branch replaces the process model with a deterministic model. Specifically, it can

be described by: stable coprime factorization, observers scheme and parity relations. The stochastic

approach models the process with a stochastic method, for instance: Kalman filter and Parameters

estimation. Ideally, the Kalman filter method is the stochastic counterpart of the observers. With

this setting, the changes in the distribution of the residuals represent the fault symptoms. Often,
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ŷ(t)
Residuals

r(t) θ(t)Residuals

processing

Residuals evaluation

Process

model

Model based fault diagnosis system

ι(t)

Figure 20: Representation of the general model-based scheme [28, Chapter 1].

the residual evaluation is made by some statistical tests, such as: 𝜒2 test, cumulative sum algorithm

or multiple hypothesis test. Furthermore, there exist also some extensions of the Kalman filter that

account the system non-linearities [68]. In [69], the authors have proposed a residual evaluation based

on the Generalized Likelihood Ratio coupled with a Kalman residual generator.

The parameter estimation, introduced by [70], performs the system identification, which estimates

online the model parameters. The rationale is that the variation of system parameters reflects the

faults. If the model parameters have an explicit mapping in the physical coefficients, this procedure

can be very efficient and simple, but usually the parameter mapping is difficult to obtain, as described

in [71]. Furthermore, the fault evaluation is done by verifying the variations in the parameters vector

against the estimated parameters under healthy conditions [72].

The next subsections describe briefly the deterministic approaches with SISO system and single-fault,

but as before the concepts are easily scalable for MIMO systems and multiple faults detections.

1.3.1 Stable coprime factorization

This technique relies on the coprime factorization [28, Chapter 3] of a transfer function, defined as:
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Definition 1.8: Coprime factorization

Two discretea transfer functions �̂� (𝑧) ∈ RH∞ �̂� (𝑧) ∈ RH∞ are called left coprime over

RH∞ if there exist another two transfer functions �̂� (𝑧) ∈ RH∞ and 𝑌 (𝑧) ∈ RH∞ such that:

�̂� (𝑧) �̂� (𝑧)



�̂� (𝑧)

𝑌 (𝑧)


= 1 . (1.42)

By letting 𝐴(𝑧) be a proper real-rational transfer function, the Left Coprime Factorization

(LFC) of 𝐴(𝑧) results into two stable and coprime transfer functions. Similarly, there exists a

counterpart of the LFC called Right Coprime Factorization (RFC). It is defined as:

𝑋 (𝑧) 𝑌 (𝑧)



𝑀 (𝑧)

𝑁 (𝑧)


= 1 . (1.43)

Where the transfer functions 𝑀 (𝑧), 𝑁 (𝑧), 𝑌 (𝑧), 𝑋 (𝑧) have the same properties as with the LFC.

The relation that ties the model of the system 𝐴(𝑧) with the left coprime pair
(
�̂� (𝑧), �̂� (𝑧)

)
is:

𝐴(𝑧) = �̂�−1(𝑧)�̂� (𝑧) . (1.44)

Instead, the relation with the right coprime pair
(
𝑀 (𝑧), 𝑁 (𝑧)

)
becomes:

𝐴(𝑧) = 𝑁−1(𝑧)𝑀 (𝑧) . (1.45)

The coprime factorization has also the state space representation. In the robust control theory,

the RFC has a feedback control interpretation, while the LFC has an observer interpretation

[28, Chapter 3].

aThis definition is valid also for continuous transfer functions.
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By considering the estimation error 𝑟 (𝑡) = 𝑦(𝑡) − �̂�(𝑡) as the residual signal, the residual generator is[
�̂� (𝑧) − �̂� (𝑧)

]
, computed from the system model 𝐺 (𝑧). Therefore, 𝑟 (𝑡) is computed by:

𝑟 (𝑡) =
�̂� (𝑧) − �̂� (𝑧)



𝑦(𝑡)

𝑢(𝑡)


. (1.46)

In literature, this residual generator is also called kernel representation of the system. Usually, if 𝑟 (𝑡)

is equal to zero then the system is healthy, instead, if 𝑟 (𝑡) differs from zero then the system has a fault.

This consideration is only ideal because, in real applications, disturbances and uncertainties arise,

therefore this fault diagnosis scheme can reveal false alarms. This problem is addressed by the robust

residual generator, which generates the residual signal by decoupling disturbances and uncertainties.

Before proceeding to the analysis of the robust residual generator counterpart, the modeling of faults,

disturbance and uncertainties, in the fault diagnosis literature, must be faced.

The disturbances 𝑑 (𝑡) and noise 𝑣(𝑡), which afflict the process under analysis, are usually designed as

unknown input vectors. Thus, the input-output model in the healthy state is:

𝑦(𝑡) = 𝐺0(𝑧)𝑢(𝑡) + 𝐺𝑑 (𝑧)𝑑 (𝑡) + 𝐺𝑣 (𝑧)𝑣(𝑡) ; (1.47)

where: 𝐺0(𝑧) is the model of the system, 𝐺𝑑 (𝑧) is a known transfer function from disturbance

to output, 𝐺𝑣 (𝑧) is a known transfer function from noise to output, 𝑑 (𝑡) ∈ R is the deterministic

unknown input signal, 𝑣(𝑡) ∼ N (0, 𝜎𝑣) is a noise signal or represents a fictitious noise which models

the uncertainties [27, Chapter 2]. Hence, the input-output model in faulty conditions is:

𝑦(𝑡) = 𝐺0(𝑧)𝑢(𝑡) + 𝐺𝑑 (𝑧)𝑑 (𝑡) + 𝐺𝑣 (𝑧)𝑣(𝑡) + 𝐺 𝑓 (𝑧) 𝑓 (𝑡) ; (1.48)

where: 𝑓 (𝑡) ∈ R is an unknown signal that represents the fault, while 𝐺 𝑓 (𝑧) is a known transfer

function from fault to output.

The taxonomy of the fault is:

• Actuator fault : which is a fault that acts on the actuator component;

• Sensor fault : which is a fault that acts on the sensor component;

• Process fault: which is a fault that acts directly on the process.

The sensor fault is considered as an additive term, so the transfer function from output to fault is

set as 𝐺 𝑓 (𝑧) = 1. Instead, with a process or actuator fault, the fault term is multiplicative and thus
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𝐺 𝑓 (𝑧) = 𝐺0(𝑧). Note that the additive term does not affect the system stability, while the multiplicative

term can cause system instability. As introduced in [28, Chapter 3], the multiplicative fault can be

readapted as an additive fault. For this reason, a fault is often represented by an additive term.

The residual generation, described with (1.46), does not decouple the model uncertainties, therefore

the latter input-output model needs of a further filter, called post-filter 𝑄(𝑧) ∈ RH∞, which makes

robust the residual generator with respect to the uncertainties. Figure 21 represents the robust residual

generation obtained by the stable coprime factorization scheme, where 𝐺𝑇 (𝑧) is the true system. It

corresponds to write:

𝑟 (𝑡) = 𝑄(𝑧)
(
�̂� (𝑧)𝑦(𝑡) − �̂� (𝑧)𝑢(𝑡)

)
. (1.49)

This equation is called implementation form and it has an equivalent and alternative form called

internal form. The former is used to generate the residual signal online, instead the latter is used to

design the post-filter. The internal form is equal to:

𝑟 (𝑡) = 𝑄(𝑧)�̂� (𝑧)𝐺𝑣 (𝑧)𝑣(𝑡) +𝑄(𝑧)�̂� (𝑧)𝐺 𝑓 (𝑧) 𝑓 (𝑡) +𝑄(𝑧)�̂� (𝑧)𝐺𝑑 (𝑧)𝑑 (𝑡) . (1.50)

The proof of the equivalence between the internal and the implementation forms are reported in the

following.

Proof 1.1: Internal form and implementation form are equivalent

By substituting the input-output model (1.48) into the implementation form (1.49) [28, Chapter

5], we get:

𝑟 (𝑡)=𝑄(𝑧)
(
�̂� (𝑧)

(
𝐺0(𝑧)𝑢(𝑡)+𝐺𝑑 (𝑧)𝑑 (𝑡)+𝐺𝑣 (𝑧)𝑣(𝑡)+𝐺 𝑓 (𝑧) 𝑓 (𝑡)

)
−�̂� (𝑧)𝑢(𝑡)

)
. (1.51)

Then, by applying the coprime factorization 𝐺0(𝑧) = �̂� (𝑧)−1�̂� (𝑧) → �̂� (𝑧) =𝐺0(𝑧)�̂� (𝑧), the

equation (1.51) becomes:

𝑟 (𝑡)=𝑄(𝑧)
(
((((((((
�̂� (𝑧)𝐺0(𝑧)𝑢(𝑡)+�̂� (𝑧)

(
𝐺𝑑 (𝑧)𝑑 (𝑡)+𝐺𝑣 (𝑧)𝑣(𝑡)+𝐺 𝑓 (𝑧) 𝑓 (𝑡)

)
−((((((((
𝐺0(𝑧)�̂� (𝑧)𝑢(𝑡)

)
. (1.52)

Thus, the internal form (1.49) is obtained.

Post filter design goals are to decouple the residual signal from 𝑢(𝑡) and 𝑑 (𝑡). These requirements

are called decoupling conditions. Note that, with the presented formulation, the decoupling of 𝑢(𝑡)

is automatically obtained, indeed in (1.49) the residual signal does not depend on 𝑢(𝑡). So the latter

condition is:

𝐺𝑑 (𝑧)�̂� (𝑧)𝑄(𝑧) = 0 . (1.53)
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Figure 21: Representation of the robust residual generator scheme with stable coprime factorization.

The author in [27] have described two different methods to design Q̃(𝑧) =
[
�̂�(𝑧)�̂� (𝑧),−�̂�(𝑧)�̂� (𝑧)

]
:

• Exact Fault Detection Problem (EFDP): which develops a suitable and stable 𝑄(𝑧) in absence

of 𝑣(𝑡), such that:

– The residual is sensitive to fault;

– The decoupling conditions are hold;

– The detection condition is 𝐺 𝑓 (𝑧)�̂� (𝑧)𝑄(𝑧) ≠ 0;

– 𝐺 𝑓 (𝑧)�̂� (𝑧)𝑄(𝑧) is stable.

• Approximate Fault Detection Problem (AFDP): which develops a suitable and stable 𝑄(𝑧) such

that:

– The residual is sensitive to a fault and noise input because 𝑣(𝑡) can not be fully decoupled

but negligible;

– The decoupling conditions are hold;

– The detection condition are 𝐺 𝑓 (𝑧)�̂� (𝑧)𝑄(𝑧) ≠ 0 and 𝐺𝑣 (𝑧)�̂� (𝑧)𝑄(𝑧) ≈ 0;

– 𝐺 𝑓 (𝑧)�̂� (𝑧)𝑄(𝑧) and 𝐺𝑣 (𝑧)�̂� (𝑧)𝑄(𝑧) are stable.

Since 𝑄(𝑧) ensures that the contribution of the disturbances and the control input are null, the

implementation form (1.49) in the case of AFDP becomes:

𝑟 (𝑡) = 𝑄(𝑧)�̂� (𝑧)𝐺𝑣 (𝑧)𝑣(𝑡) +𝑄(𝑧)�̂� (𝑧)𝐺 𝑓 (𝑧) 𝑓 (𝑡) . (1.54)
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The cost function for designing 𝑄(𝑧) is defined as [27, 20, Chapter 3]:

�̂�(𝑧) = max
𝑄(𝑧)

𝑄(𝑧)�̂� (𝑧)𝐺 𝑓 (𝑧)

𝑎𝑄(𝑧)�̂� (𝑧)𝐺𝑣 (𝑧)


𝑎

; (1.55)

where 𝑎 = 2,∞. Doing so, the post filter enhances the sensibility of the residual signal 𝑟 (𝑡)

with respect to the fault signal and reduces the influences of the fictitious noise in the residual

signal. A similar robust fault residual generator that solves AFDP is derived from the H∞
theory, defined as:

�̂�(𝑧) = min
𝑄(𝑧)

∥𝑟 (𝑡) − 𝑓 (𝑡)∥2
∥𝑣(𝑡)∥2

. (1.56)

These two optimization procedures take also the nameH∞ robust fault diagnosis [73].

There exists a variation of (1.56) where the 𝑓 (𝑡) signal is replaced by 𝑟𝑜 (𝑡) = 𝑅(𝑧) 𝑓 (𝑡), where 𝑟𝑜 (𝑡)

represents the desired behavior of the residual signal, modeled by 𝑅(𝑧) 11. This problem is solved as a

robust controller synthesis. Doing so, the resulting controller is considered as the residual generator,

as depicted in Figure 12. The input is composed of 𝑤(𝑡) =
[
𝑓 (𝑡), 𝑑 (𝑡), 𝑣(𝑡)

]⊤
, respectively: fault,

noise and input signals. Instead, the output of the general system is 𝑧(𝑡) = 𝑟𝑜 (𝑡) − 𝑟 (𝑡) and the output

of the filter 𝑄(𝑧) (that replaces 𝐾 (𝑧)) is the residual signal 𝑟 (𝑡) [74]. With this representation, the

cost function becomes 𝐽 = sup𝑤(𝑡)
∥𝑧(𝑡)∥2
∥𝑤(𝑡)∥2

= ∥𝐺𝑧𝑤 (𝑧)∥∞, thus the filter design can be done by 𝜇 orH∞
synthesis. This method does not work with all applications: therefore, two functions that weight the

signals 𝑤(𝑡) and 𝑧(𝑡) are designed to avoid this problem. In [75, 76], the authors have proposed an

extension of this approach by coupling the filter𝑄(𝑠) with a controller 𝐾 (𝑧), where the general output

is composed of 𝑟𝑜 (𝑡) − 𝑟 (𝑡) and a performance signal, denoted by 𝑦𝑒 (𝑡). This scheme is depicted in

Figure 22. The choice of the 𝑄(𝑧) structure and weight functions are critical and done by the user12.

1.3.2 Observer schemes

The second scheme exploits the so-called output observer. Notice that the output observer differs from

the state observer employed in the control literature, nevertheless, in the history usually are considered

as the same object, but as reported in [28, Chapter 2] this is a mistake. Furthermore, the state observer

is not always applicable since it assumes that all states x(𝑡) are measurable. Thus, the output observer

is useful to perform fault diagnosis by comparing the measured output with respect to the observed

output. In the last three decades, the observer schemes have achieved certain popularity for being

able to decouple residual signals from certain disturbances and modelling errors (uncertainties). This

robust method is called Unknown input observer [77].
11The structure of 𝑅(𝑧) must contain the filter 𝑄(𝑧).
12𝑅(𝑧) can be derived from 𝑄(𝑧)𝑛𝑜𝑚, which represents the filter computed with the nominal model [73, Chapter 6].
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Figure 22: Representation of the robust control scheme for robust residual generator synthesis with
stable coprime factorization.

The precursor of the observer-based residual generation is the Fault Detection Filter, proposed by

[78, 79]. The well-known full-order state observer is defined as:

x̂(𝑡) = Ax̂(𝑡) +B𝑢(𝑡) +L
(
𝑦(𝑡) −Cx(𝑡) − 𝐷𝑢(𝑡)

)
�̂�(𝑡) = Cx̂(𝑡) + 𝐷𝑢(𝑡)

, (1.57)

with A ∈ R𝑛𝑥×𝑛𝑥 ,B ∈ R𝑛𝑥×1,C ∈ R1×𝑛𝑥 , 𝐷 ∈ R and L ∈ R𝑛𝑥×1 is a suitable chosen matrix that

ensures a limited difference between the real output 𝑦(𝑡) ∈ R and the estimated �̂�(𝑡) ∈ R. The symbol

x̂(𝑡) ∈ R𝑛𝑥×1 denotes the estimated states. The observer acts as a feedback loop that ensures:

• 𝑟 (𝑡) = 𝑦(𝑡) − �̂�(𝑡) = 𝑦(𝑡) −Cx̂(𝑡) − 𝐷𝑢(𝑡) = 0 ∀𝑢(𝑡);

• Unbiased estimation lim𝑡→∞

(
𝑥(𝑡) − 𝑥

)
= 0, with A −LC stable.

The matrix L is the only degree of freedom of this procedure, indeed usually the output estimation

error is weighted with a designed weight 𝑉 , as:

r(𝑡) = 𝑉
(
𝑦(𝑡) − �̂�(𝑡)

)
. (1.58)

The choice of L and 𝑉 must be done to ensure the stability of the full-order observer.

The advantage of this method consists of the simplicity of implementation, but the drawback is due to

the difficulty to develop the full-order observer in an online application. This is the reason why a lot of

work has been done to propose an evolution of the Fault detection filter, called Diagnostic Observer.
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The construction of the diagnostic observer-based residual generator is well-known and explicated in

[28, Chapter 5]. Specifically, the procedure is quite similar, but by employing a Luenberger output

observer a reduced order observer is obtainable [80]. The Diagnostic Observer offers a greater degree

of design freedom than the older Fault Detection Filter.
Remark 1.4

The system composed by (1.57) and (1.58) can be seen as a state space representation of (1.46).

As for the previous scheme, we also present the robust counterpart of the Fault detection filter approach.

It models disturbances, time-varying term and parameter variation, noise, non-linear terms and model

reduction error with the additive terms E𝑣𝑣(𝑡) 13, as:

x(𝑡) = Ax(𝑡) +B𝑢(𝑡) +E𝑣𝑣(𝑡) +E 𝑓 𝑓 (𝑡)

𝑦(𝑡) = Cx(𝑡) + 𝐷𝑢(𝑡) + 𝐹 𝑓 𝑓 (𝑡)

; (1.59)

where the terms 𝐹 𝑓 𝑓 (𝑡) and E 𝑓 𝑓 (𝑡) (E 𝑓 ∈ R𝑛𝑥×1) represent the impact of the fault on the system.

By employing the Fault Detection filter ((1.57) and (1.58) equations), the Unknown input decoupling

is obtained by a suitable choice of 𝑉 and L, such as:

• The Fault Detection Filter is stable;

• 𝑉C
(
𝑠I𝑛𝑥 −A +LC

)−1
E𝑣 = 0 is guaranteed;

• 𝑉
(
C (𝑠I𝑛𝑥 −A +LC)−1(E 𝑓 −L𝐹 𝑓 ) + 𝐹 𝑓

)
≠ 0 is hold.

Two algorithms are studied to solve this design problem: eigenstructure assignment and geometric

approach. The former is explained in [22]. It develops a linear state space feedback system by

exploring its: eigenvalues, left and right eigenvectors. Instead, the geometric approach seeks L which

makes (A−LC,E𝑣,C) maximally uncontrollable14 by 𝑣(𝑡) [81]. There exist also the Unknown Input

Diagnostic Observer [77] that shares the same goal with the Unknown Input Fault Detection Filter

with a reducer order observer, such for the not robust counterpart.

1.3.3 Parity equation schemes

The parity space framework has the peculiarity of presenting the residual signals in the form of

algebraic equations, therefore the solutions can be achieved with linear algebra tools. By considering
13 This representation does not consider the influence of the noise applied to the input.
14Maximally uncontrollable means the uncontrollable subspace with the maximal dimension.
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the state space model (1.59), with: 𝑣(𝑡) = 𝑓 (𝑡) = 0 and 𝑏 ≥ 0, the output can be seen as:

𝑦(𝑡 − 𝑏) = Cx(𝑡 − 𝑏) + 𝐷𝑢(𝑡 − 𝑏)

𝑦(𝑡 − 𝑏 + 1) = CAx(𝑡 − 𝑏) +CB𝑢(𝑡 − 𝑏) + 𝐷𝑢(𝑡 − 𝑏 + 1)

𝑦(𝑡 − 𝑏 + 2) = CA2x(𝑡 − 𝑏) +CAB𝑢(𝑡 − 𝑏) +CB𝑢(𝑡 − 𝑏 + 1) + 𝐷𝑢(𝑡 − 𝑏 + 2)

. (1.60)

By generalizing, it becomes:

𝑦(𝑡) = CA𝑏x(𝑡 − 𝑏) +CA𝑏−1B𝑢(𝑡 − 𝑏) + ... +CB𝑢(𝑡 + 1) + 𝐷𝑢(𝑡) . (1.61)

It corresponds to write:

y𝑏 (𝑡) = H𝑜,𝑏x(𝑡 − 𝑏) +H𝑢,𝑏u𝑏 (𝑡) ; (1.62)

where:

y𝑏 (𝑡) =



𝑦(𝑡 − 𝑏)

𝑦(𝑡 − 𝑏 + 1)

...

𝑦(𝑡)



, u𝑏 (𝑡) =



𝑢(𝑡 − 𝑏)

𝑢(𝑡 − 𝑏 + 1)

...

𝑢(𝑡)



H𝑜,𝑏 =



C

CA

...

CAb



, H𝑢,𝑏 =



𝐷 0 . . . 0

CB 𝐷
. . .

...

...
. . .

. . . 0

CA𝑏−1B . . . CB 𝐷



; (1.63)

with: y𝑏 (𝑡) ∈ R(𝑏+1)×1,u𝑏 (𝑡) ∈ R(𝑏+1)×1,H𝑜,𝑏 ∈ R(𝑏+1)×𝑛𝑥 ,H𝑢,𝑏 ∈ R(𝑏+1)×(𝑏+1) . Notice that the

equation (1.62) is called parity relation, which describes the input-output relationship by exploiting
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the past state vector x(𝑡 − 𝑏). Furthermore, H𝑜,𝑏, H𝑢,𝑏, y𝑏 (𝑡) and u𝑏 (𝑡) are known, therefore the

only unknown vector is x(𝑡 − 𝑏). For 𝑛𝑥 ≤ 𝑏, where 𝑛𝑥 is the number of states, the following ranking

condition holds:

rank(H𝑜,𝑏) ≤ 𝑛𝑥 ≤ number of rows of H𝑜,𝑏 . (1.64)

Therefore, there exists a vector V ⊤
𝑏
∈ R1×(𝑏+1) , V𝑏 ≠ 0, called parity vector such that:

V ⊤𝑏 H𝑜,𝑏 = 0 . (1.65)

The parity vector can be found by solving (1.65). However, V𝑏 is not guaranteed unique. The residual

generator is designed as:

r(𝑡) = V ⊤𝑏

(
y𝑏 (𝑡) −H𝑢,𝑏u𝑏 (𝑡)

)
. (1.66)

The set 𝑃𝑏 =
{
V𝑏 |V𝑏H𝑜,𝑏 = 0

}
is called parity space.

To complete the parity space algorithm analysis, we need to consider the influences of 𝑓 (𝑡) and 𝑣(𝑡)

by modeling the output as: 𝑦(𝑡) = Cx(𝑡) + 𝐷𝑢(𝑡) + 𝐹𝑣𝑣(𝑡) + 𝐹 𝑓 𝑓 (𝑡). Therefore, (1.62) becomes:

y𝑏 (𝑡) = H𝑜,𝑏x(𝑡 − 𝑏) +H𝑢,𝑏u𝑏 (𝑡) +H 𝑓 ,𝑏f𝑏 (𝑡) +H𝑣,𝑏v𝑏 (𝑡) ; (1.67)

with:

f𝑏 (𝑡) =



𝑓 (𝑡 − 𝑏)

𝑓 (𝑡 − 𝑏 + 1)

...

𝑓 (𝑡)



, H 𝑓 ,𝑏 =



𝐹 𝑓 0 . . . 0

CE 𝑓 𝐹 𝑓
. . .

...

...
. . .

. . . 0

CA𝑏−1E 𝑓 . . . CE 𝑓 𝐹 𝑓



v𝑏 (𝑡) =



𝑣(𝑡 − 𝑏)

𝑣(𝑡 − 𝑏 + 1)

...

𝑣(𝑡)



, H𝑣,𝑏 =



𝐹𝑣 0 . . . 0

CE𝑣 𝐹𝑣
. . .

...

...
. . .

. . . 0

CA𝑏−1E𝑣 . . . CE𝑣 𝐹𝑣



; (1.68)
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with: f𝑏 (𝑡) ∈ R(𝑏+1)×1,H 𝑓 ,𝑏 ∈ R(𝑏+1)×(𝑏+1) , v𝑏 (𝑡) ∈ R(𝑏+1)×1,H𝑣,𝑏 ∈ R(𝑏+1)×(𝑏+1) . The residual

generator (1.66) becomes:

r𝑏 (𝑡) = V𝑏

(
H 𝑓 ,𝑏f𝑏 (𝑡) −H𝑣,𝑏v𝑏 (𝑡)

)
, V𝑏 ∈ 𝑃𝑏 . (1.69)

The diagnosis detects a fault when the residual signal differs from zero. This condition arises when

there is a fault or due to the noise, therefore this is not robust. Furthermore, this form is not ideal for

online implementation.

The robust counterpart is achieved if there exists a parity vector, such that:

V ⊤𝑏 H 𝑓 ,𝑏 ≠ 0 and V ⊤𝑏 H𝑣,𝑏 = 0 . (1.70)

This treatise is exposed in state space, but it is also applicable to transfer function models. The main

difference with respect to the observer methods lies in no output error correction. Furthermore, the

parity space leads to a discrete-time observer, such as dead-beat observer [23]. The parity space

design can be solved by AFDP, which exploits the parity equations to minimize a cost function similar

to the optimization problem (1.55) [28, Chapter 7].

1.3.4 Passive robustness in fault diagnosis

The above presented three robust methods belong to active robustness in fault diagnosis, in which the

robustness is guaranteed by the residual generation procedure. Nevertheless, the robustness can be

handled also by the residual evaluation step, called passive robustness in fault diagnosis. Again, the

residual evaluation is a composition of residual processing and decision logic. The residual processing

procedure consists of producing 𝜃 (𝑡) from 𝑟 (𝑡), which improves the fault detectability. Instead, the

decision logic is a comparison between the processed residual with respect to a selected threshold 𝜏.

For fault detection aim, this is structured as:
𝑓 (𝑡) = 0 for 𝜃 (𝑡) < 𝜏

𝑓 (𝑡) ≠ 0 for 𝜃 (𝑡) > 𝜏
. (1.71)

Instead, for fault isolation goal, as:
𝑓𝑖 (𝑡) = 0 for 𝜃𝑖 (𝑡) < 𝜏𝑖

𝑓𝑖 (𝑡) ≠ 0 for 𝜃𝑖 (𝑡) > 𝜏𝑖
and 𝑖 = 1, ..., 𝑎 ; (1.72)

where: 𝑓𝑖 (𝑡) represent 𝑎 faults, 𝜃𝑖 (𝑡) are preprocessed residual signals produced by the residuals

generator and 𝜏𝑖 is the i-th suitable threshold. The presented decision logic belongs to the norm-based

approach, but in literature there is also the statistical-based decision logic [28, Chapter 2].
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Passive robustness develops a robust threshold coupled with a non-robust residual generator. This

methodology has been introduced in [82], where the authors develops the RMS norm and derived a

sort of adaptive threshold via a mechanism called threshold selector. Another examples of passive

robustness are proposed in [83] and [84] which employ a fuzzy logic procedure to make a robust

decision logic.

Remark 1.5

These methodologies are also applicable when the unknown input cannot be exactly decoupled,

but only approximate decoupled. Therefore, to reduce further the false alarms probability, we

can couple the approximate decouple residual generator with a passive robust fault evaluation.

This is true especially with unstructured uncertainties [21].

1.4 Uncertainty in system identification

This section briefly reviews the system identification literature. Sections 1.4.1 reports the black-box

traditional approach Prediction Error Method (PEM), which identifies a parametric model with a

chosen model structure and a fixed model order. As described in Appendix A, the model structure

selection is done by the user’s knowledge, while the model order selection can be obtained by some

techniques that define a "hard threshold" or with regularization approaches. Sections 1.4.2 describes

the state-of-the-art technique, called kernel-based identification. In particular, we will show the time-

domain non-parametric approach, based on the Reproducing Kernel Hilbert Space (RKHS) framework.

Kernel-based identification identifies a model without any prior knowledge of the model structure.

This technique derives from the machine learning literature. Specifically, the problem casts from a

system identification problem to a function estimation perspective. As for the parametric method, in

Section 1.4.2, the regularization technique for non-parametric system identification will be described.

A briefly functional analysis framework review is described in Appendix B: for more details see [85].

All black-box models are endowed by the identification uncertainties, but these pieces of information

are not always taken into account. The last part of this section describes the sources of the identification

uncertainties and the different methods to represents these information. Primarily, the identification

uncertainties are composed of two terms, called bias and variance. The Section 1.4.3 describes various

methods that represent uncertainties without bias or with bias.
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1.4.1 Prediction Error Method (PEM)

Prediction Error Method (PEM) is a parametric system identification approach that relies on a model

class and selected orders. Both are represented by the model familyM that corresponds to a set of

models that describe the relationship between the input 𝑢(𝑡), fed to the plant, and the output 𝑦(𝑡),

produced by the plant. The set of parameters of the model family are denoted as β ∈ R𝑚×1, where𝑚 is

the number of parameters. The variable 𝑚 represents the model order, called also model complexity.

The general model is depicted in Figure 23. The represented model is an Linear Time-Invariant (LTI)

and Single input Single output (SISO) dynamic system. The taxonomy of the dynamic system models

are well-known in the system identification literature, for more information about that see [2, Chapter

6].

H(z,β)

G(z,β)

+
+

e(t)

u(t) y(t)

v(t)

Figure 23: General model of an Linear Time-Invariant (LTI) Single input Single output (SISO) dynamic
system.

The model familyM, parametrized by its parameters vectorβ, is denoted byM(β) ∈ M. The general

model, represented in Figure 23, can be expressed in the following form:

M(β) : 𝑦(𝑡) = 𝐺 (𝑧,β)𝑢(𝑡) + 𝐻 (𝑧,β)𝑒(𝑡) ; (1.73)

where:

• 𝑒(𝑡) represents the zero mean withe noise;

• 𝐺 (𝑧,β) is the transfer function from input to output;

• 𝐻 (𝑧,β) is the transfer function from 𝑒(𝑡) to the output additive noise 𝑣(𝑡).

Usually, the transfer functions are chosen to be rational, as:

𝐺 (𝑧,β) = 𝐵(𝑧,β)
𝐹 (𝑧,β) , 𝐻 (𝑧,β) = 𝐶 (𝑧,β)

𝐷 (𝑧,β) ; (1.74)

where 𝐵(𝑧), 𝐹 (𝑧), 𝐶 (𝑧), 𝐷 (𝑧) are polynomials functions. The measured output 𝑦(𝑡) corresponds to

the real output model plus the uncertainties and disturbances which the model𝐺 (𝑧,β) cannot explain.
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They are accounted by the signal 𝑣(𝑡). The impulse responses of both systems, by employing the

inverse of the shift operator15, are:

𝐺 (𝑧,β) =
∞∑︁
𝑘=1

𝑔𝑘 𝑧
−𝑘 , (1.75)

𝐻 (𝑧,β) = ℎ0 +
∞∑︁
𝑘=1

ℎ𝑘 𝑧
−𝑘 , with ℎ0 = 1 ; (1.76)

where ℎ𝑘 and 𝑔𝑘 belongs to β. By substituting the rational form of the transfer functions and by

explicating the output signal, the general model becomes:

𝑦(𝑡) = 𝐵(𝑧,β)
𝐹 (𝑧,β)𝑢(𝑡 − 𝑘) +

𝐶 (𝑧,β)
𝐷 (𝑧,β) 𝑒(𝑡) . (1.77)

The first term is called deterministic term, instead the second stochastic term, since 𝐻 (𝑧,β) is fed

by white noise 𝑒(𝑡); therefore, 𝑣(𝑡) is seen as a stationary stochastic process. This interpretation is

derived from the spectral factorization theorem [2, Chapter 6].
Definition 1.9: Stochastic process, Strictly stationary

A stochastic process 𝑣(𝑡, 𝑐) is a sequence of random variables produced by the same random

experiment 𝑐. Usually, 𝑐 is omitted. Furthermore, a stochastic process is strictly stationary if

its joint probability distribution does not change when shifted in time.

The model classes are reported in table 3. All of these are well-known in the system identification

literature. For instance: AR contains an AutoRegressive term described by the polynomial 𝐴(𝑧,β) =

1 + 𝑎1𝑧
−1 + ... + 𝑎𝑛𝑎 𝑧−𝑛𝑎 , ARX corresponds to the composition of an AR model with an eXogenous

part defined as 𝐵(𝑧,β)
𝐴(𝑧,β) or even ARMAX is the composition of MA with ARX.

The standard approach to identify the parameters vector β from a set of measured data D =

{𝑢(1), ..., 𝑢(𝑛), 𝑦(1), ..., 𝑦(𝑛)}, is known as Prediction Error Method (PEM). It minimizes the dif-

ference between the measured output and the estimated output. The estimation is performed by an

one-step-ahead predictor. This model representation aims of performing the prediction of the future

output and it corresponds to write [86, Chapter 7]:

�̂�(𝑡 |𝑡 − 1,β) = 𝐻 (𝑧,β) − 1
𝐻 (𝑧,β) 𝑦(𝑡) + 𝐺 (𝑧,β)

𝐻 (𝑧,β)𝑢(𝑡) ; (1.78)

This is valid under the assumption of the inverse stability of 𝐻 (𝑧,β). Furthermore, given a dataset

D, the parameters vector is obtained by optimizing:

β̂ = arg min
β

𝐽𝑛 (β) , (1.79)

15The transfer functions are represented in the discrete time domain using 𝑧 as the shift operator, i.e. 𝑦(𝑡 + 1) = 𝑧 · 𝑦(𝑡).
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Name Structure

Moving Average (MA) 𝑦(𝑡) = 𝐶 (𝑧,β)𝑒(𝑡)

AutoRegressive (AR) 𝑦(𝑡) = 1
𝐴(𝑧,β) 𝑒(𝑡)

AutoRegressive with an eXoge-
nous variable (ARX)

𝑦(𝑡) = 𝐵(𝑧,β)
𝐴(𝑧,β)𝑢(𝑡 − 𝑘) +

1
𝐴(𝑧,β) 𝑒(𝑡)

AutoRegressive Moving Average
with an eXogenous variable (AR-
MAX)

𝑦(𝑡) = 𝐵(𝑧,β)
𝐴(𝑧,β)𝑢(𝑡 − 𝑘) +

𝐶 (𝑧,β)
𝐴(𝑧,β) 𝑒(𝑡)

Output Error (OE) 𝑦(𝑡) = 𝐵(𝑧,β)
𝐹 (𝑧,β)𝑢(𝑡 − 𝑘) + 𝑒(𝑡)

Finite Impulse Response (FIR) 𝑦(𝑡) = 𝐵(𝑧,β)𝑢(𝑡 − 𝑘) + 𝑒(𝑡)

Box-Jenkins (BJ) 𝑦(𝑡) = 𝐵(𝑧,β)
𝐹 (𝑧,β)𝑢(𝑡 − 𝑘) +

𝐶 (𝑧,β)
𝐷 (𝑧,β) 𝑒(𝑡)

Table 3: Model classes.

where the cost function takes the form of:

𝐽𝑛 (β) =
𝑛∑︁
𝑡=1
(𝑦(𝑡) − �̂�(𝑡 |𝑡 − 1,β))2 . (1.80)

Note that the parameters vector is obtained by exploiting a finite length dataset D, however the goal

is to learn a model that performs well on unseen data. To estimate this performance, the so-called

out-of-sample error is evaluated. This corresponds to:

𝐸𝑜𝑢𝑡 = E


(

1
𝐻 (𝑧, β̂)

�̃�(𝑡) − 𝐺 (𝑧, β̂)
𝐻 (𝑧, β̂)

�̃�(𝑡)
)2 . (1.81)

𝐸𝑜𝑢𝑡 cannot be computed using D, therefore a new dataset, called test set, is needed. This is denoted

as D𝑡𝑒𝑠𝑡 = {�̃�(𝑖), �̃�(𝑖)}𝑛𝑇𝑖=1, with 𝑛𝑇 is the number of the data in the test set. The higher 𝑛𝑇 is, the more

accurate the estimate of 𝐸𝑜𝑢𝑡 will be. The counterpart of the out-of-sample error is in-sample-error,

computed with 𝐸𝑖𝑛 = 𝐽𝑛 (β̂), by exploiting D. This indicator, taken alone, is a bad estimation of the

out-of-sample performance.
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Figure 24 depicts the out-of-sample error and the in-sample error curves. As can be seen, these errors

vary as the complexity of the model increases. In particular, by fixing a model class, when the model

complexity is:

• High: the estimated model, usually, approximates the plant well. This means 𝐸𝑖𝑛 is low.

However, the complex model fits also the observed error dynamics16 which do not belong to the

true system. This results into a high 𝐸𝑜𝑢𝑡 since the error dynamics depend on the realizations

of the measured data. Thus, changing the dataset, 𝐸𝑜𝑢𝑡 >> 𝐸𝑖𝑛. This phenomenon is called

variance.

• Low: the estimated model, usually, misses the relevant dynamics of the plant and therefore it

results in an high 𝐸𝑖𝑛. This phenomenon is called bias.

The minimization of the out-of-sample error takes the name of bias-variance trade-off. Unfortunately,

the bias and variance cannot be computed, because they depend on the input and target probability

distribution [87, Chapter 2]. Appendix A reports a conceptual tool called bias-variance decomposition,

which explains the connection between bias, variance and the expected 𝐸𝑜𝑢𝑡 . Specifically, this trade-off

helps us to avoid the so-called overfitting phenomenon. This occurs when, as the complexity of the

model increases, 𝐸𝑜𝑢𝑡 increases and 𝐸𝑖𝑛 decrease. Figure 24 highlights in red the overfitting area. The

main cause of overfitting is model variance [87, Chapter 4].

HighLow

High bias
Low variance

Low bias
High variance

In sample error

Out of sample error

Overfitting

E
rr

o
r

Model complexity

Figure 24: Out-of-sample error vs in-sample error curves, the red area highlights the overfitting phe-
nomenon.

16Remember that the measured data are noisy (see (1.73)).
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The main idea behind the bias-variance trade-off is that the model complexity must be correlated with

the number of data in D and not with the target dynamic system complexity. In light of this, there is

a heuristics rule which ties the number of data that the PEM needs 𝑛 with respect to the number of

parameters 𝑚:

𝑛 ≥ 10 · 𝑚 . (1.82)

This is simple, but shows a lot of limits. In literature, there are more reliable methods which solve the

bias-variance trade-off, such as: Akaike Information Criterion (AIC), Bayesian Information Criterion

(BIC), Cross Validation (CV) and regularization. These are described in Appendix A. Specifically,

the first two methods obtain a threshold that selects the best model complexity, by comparing some

indicators between a pool of different model complexity, but with same model class. Instead, the

Regularization is a constrained version of (1.79), that reduce drastically the variance at the cost of an

introduction of a small bias.
Remark 1.6

Note that, if we assume that 𝑒(𝑡) is a Gaussian white noise, PEM coincides with the Maximum

Likelihood (ML) approach [3].

1.4.2 Kernel-based system identification

The main problem of the parametric model estimation is to choose the model family, which can cause

unintended phenomena. The Reproducing Kernel Hilbert Space (RKHS) framework is employed to

perform a time-domain non-parametric identification that ties input and output signals as 𝑦 = 𝑔(𝑥),

where 𝑔 is not constrained into a specific parametric structure 𝑔β ∈ R𝑚×1, but it is searched in a

infinite-dimensional function space 𝛤, which defines the hypothesis space.

By considering a function 𝑔 ∈ 𝛤, a static non-parametric learning problem is defined as:

�̂�0 ≡ arg min
𝑔∈𝛤

(
𝑛∑︁
𝑖=1
(𝑦𝑖 − 𝑔(x𝑖))2 + 𝜆𝐽 (𝑔)

)
, (1.83)

where the dataset of length 𝑛 ∈ N+ is composed of (x𝑖, 𝑦𝑖) ∈ 𝛤 ⊆ R, with x𝑖 = x(𝑡𝑖) ∈ R𝑛×1 and

𝑦𝑖 = 𝑦(𝑡𝑖) ∈ R. These are the 𝑖-th observed data which belong, respectively, to the regression matrix

𝚽 ∈ R𝑚×𝑛 and output vector y ∈ R𝑛×1. The regression matrix is the composition of the observed

regressors x stacked in 𝑚 rows. This formulation is similar to (A.10), indeed: the hyperparameter

𝜆 ∈ R+ modulates the regularization strength, 𝐽 (𝑔) is the regularization term and the first term

measures the function’s fit to data. If 𝛤 is a RKHS, the problem (1.83) becomes:

�̂�0 = arg min
𝑔∈ℋ

(
𝑛∑︁
𝑖=1
(𝑦𝑖 − 𝑔(x𝑖))2 + 𝜆 ∥𝑔∥2ℋ

)
. (1.84)

51



Nicholas Valceschini

To understand this equality, the RKHS definition must enunciated [88]:

Definition 1.10: Reproducing Kernel Hilbert Space (RKHS)

A Reproducing Kernel Hilbert Space (RKHS) is a Hilbert space ℋ (its definition is reported

in Appendix B) where its element 𝑔 : 𝛺 → R are functions, such that the pointwise evaluations

are continuous linear functional 𝐿𝑥 on ℋ, i.e.:

∀𝑥 ∈ Ω, ∃𝐿𝑥 < ∞ : |𝑔(𝑥) | ≤ 𝐿𝑥 ∥𝑔∥ℋ , ∀𝑔 ∈ℋ ; (1.85)

with 𝛺 is a non-empty set.

The term ∥𝑔∥2
ℋ

is computable since that the Hilbert space is endowed with an inner product ⟨·, ·⟩ℋ ,

which is complete with respect to the induced norm ∥𝑔∥2
ℋ

= ⟨𝑔, 𝑔⟩ℋ ( see Appendix B).

An important property that help us to solve the problem (1.84), is that a RKHS is linked with a

reproducing kernel, defined in Definition 1.11.

Definition 1.11: Positive semidefinite kernel, Reproducing kernel and Kernel section

Let 𝛺 denote a non-empty set. A symmetric functionK : 𝛺×𝛺 → R is a positive semidefinite

kernel, if, for any finite 𝑝 ∈ N, it holds:

𝑝∑︁
𝑖=1

𝑝∑︁
𝑗=1

𝑏𝑖𝑏 𝑗K(x𝑖,x 𝑗 ) ≥ 0, ∀(x𝑘 , 𝑏𝑘 ) ∈ (𝛺,R), 𝑘 = 1, 2, ..., 𝑝 . (1.86)

If a semidefinite positive kernel holds the reproducing property:

𝑔(𝑥) = ⟨𝑔,K𝑥⟩ℋ , ∀(𝑥, 𝑔) ∈ (𝛺,ℋ) . (1.87)

The kernel is called Reproducing kernel.

The notation K𝑥 ∈ ℋ represents the kernel section centered in 𝑥. It corresponds to K𝑥 (𝑎) =

K(x, 𝑎),∀𝑎 ∈ 𝛺a.

aThe kernel section will be written as K𝑥 (𝑎) or K𝑥 .

In particular, the following theorem describes the connection between RKHS and a reproducing kernel

[89]:

Theorem 1.4: Moore-Aronszajn theorem

A RKHS corresponds to a unique reproducing kernel. Conversely, given a reproducing kernel

defines a unique RKHS.
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The Moore-Aronszajn theorem, in Theorem 1.4, explains that, if we define a reproducing kernel, we

also know that exists a related RKHS, and by encoding the desired characteristic to the kernel function,

we also define the properties of the functions that belong to the RKHS.

If we define 𝑔 in a RKHS, the functions that belong to this space are infinite since the space is infinite-

dimensional. The so-called Representer theorem defines how the regularization problem (1.84), that

exploits the RKHS, admits a solution with a finite-dimensional representation [90]:

Theorem 1.5: Representer theorem

If ℋ is a RKHS, the minimizer of (1.84) is:

�̂�0 =

𝑛∑︁
𝑖=1

𝑐𝑖K𝑥𝑖 , (1.88)

where c = [𝑐1, 𝑐2, ..., 𝑐𝑛]⊤ ∈ R𝑛×1

Thus, the minimizer corresponds to a linear combination of K𝑥𝑖 , called also basis functions. Hence,

by applying the Representer theorem, the kernel choice defines also the resulting functions properties.

Note that c is a vector of length 𝑛, therefore the problem of the infinite-dimensional estimation boils

down to a 𝑛 coefficients estimation. The estimator (1.88) is also called as regularization network [91]

or least square support vector machine [92].

The Representer theorem (1.88) gives us a reformulation of ∥𝑔∥2
ℋ

:

∥𝑔∥2
ℋ

= ⟨𝑔, 𝑔⟩ℋ

= ⟨∑𝑛
𝑖=1 𝑐𝑖K𝑥𝑖 ,

∑𝑛
𝑗=1 𝑐 𝑗K𝑥 𝑗 ⟩ℋ

=
∑𝑛
𝑖=1

∑𝑛
𝑗=1 𝑐𝑖𝑐 𝑗 ⟨K𝑥𝑖 ,K𝑥 𝑗 ⟩ℋ

= c⊤Kc

(1.89)
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K ∈ R𝑛×𝑛 is a positive semidefinite matrix, such that 𝐾𝑖 𝑗 = K(x𝑖,x 𝑗 ). This is called Kernel matrix

(or Gram matrix). Thus:

g = [𝑔(𝑥1), 𝑔(𝑥2), ..., 𝑔(𝑥𝑛)]

=
[∑𝑛

𝑖=1 𝑐𝑖K𝑥𝑖 (𝑥1), ...,
∑𝑛
𝑖=1 𝑐𝑖K𝑥𝑖 (𝑥𝑛)

]
=

[∑𝑛
𝑖=1 𝑐𝑖K(x𝑖, 𝑥1), ...,

∑𝑛
𝑖=1 𝑐𝑖K(x𝑖, 𝑥𝑛)

]
= c⊤K

(1.90)

Thanks to (1.89) and (1.90), the problem (1.84) can be rewrite as:

ĉ = arg min
c∈R𝑛×1

y − c⊤K2
2 + 𝜆c

⊤Kc . (1.91)

This is a quadratic optimization problem that can be solved in closed form. Specifically, the problem

(1.91) can be rewritten by exploiting the partial derivatives with respect to c to zero, i.e.:

(K + 𝜆I𝑛)ĉ = y . (1.92)

Furthermore, if the kernel is non-degenerate, thenK is positive definite and therefore invertible. Thus,

we can write the final form of the estimator as:

ĉ = (K + 𝜆I𝑛)−1y . (1.93)

As already mentioned, the reproducing kernel choice is a very crucial step to perform a correct

estimation. Some examples of reproducing kernels are reported in Table 4.

If the employed kernel is a linear one, i.e. K(x, z) = x⊤ · z and if the kernel matrix is chosen as

K = 𝚽⊤P𝚽 with P ∈ R𝑚×𝑚 is symmetric semidefinite positive, then, by employing the theorem 1.4,

the space RKHS contains only linear functions 𝑔 : R𝑚×1 → R. Thus, the problem (1.91) becomes:

ĉ = arg min
c∈R𝑛×1

y − c⊤𝚽⊤P𝚽
2

2 + 𝜆c
⊤𝚽⊤P𝚽c . (1.94)

Furthermore, by defining β ≡ c⊤𝚽⊤P , we obtain:

β̂ = arg min
β∈R𝑚×1

∥y − β𝚽∥22 + 𝜆β𝚽c (1.95a)

= arg min
β∈R𝑚×1

∥y − β𝚽∥22 + 𝜆βP −1β (1.95b)
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Name Structure

Constant kernel K(x, z) = 1

Linear kernel K(x, z) = x⊤ · z

Gaussian kernel K(x, z) = 𝑒−
∥x−z ∥2

2𝜎2

Polynomial kernel K(x, z) = (x⊤ ·z +1)𝑑

Table 4: Some examples of reproducing kernel structure.

This problem is equal to Regularized Least Squares (ReLS) (A.15), therefore has the same closed

forms, i.e.:

β̂ = P𝚽
(
𝚽⊤P𝚽 + 𝜆I𝑛

)−1
y or (1.96a)

=
(
P𝚽𝚽⊤ + 𝜆I𝑚

)−1
P𝚽y (1.96b)

Remark 1.7

The solution of RKHS regularization via linear kernel (1.96) corresponds to the solution of

regularized FIR estimation (A.15) and the MAP (A.17b) of the Bayesian linear model problem

with Gaussian prior on the parameters. Specifically, the RKHS is a generalization of the FIR

regularized estimation.

The kernel and the regularization parameters usually are contained in a hyperparameters vector η.

This can be estimated using the Marginalized Likelihood (MargLik) (A.18), as for the regularized

parametric estimation. This operation is the counterpart of the model order selection in the classical

parametric approach [6].

1.4.3 Model estimation uncertainty

The identified models are affected by an error composed of variance and bias (see Appendix A).

The method which accounts for both variance and bias is Robust identification. This is described

in the next subsection. By choosing the correct model family, a full-order model and a sufficiently
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exciting input signal, the estimated model has zero bias. As already described, the model family is

defined by the order and the model class (for PEM). Since, the model class is chosen by the user,

PEM does not always guarantee the identified model has not some bias, instead the regularized kernel

methods return a low bias model. Thus, the uncertainties derived from the bias are not considered

in this subsection. In this way, we assume that the unmodeled dynamics do not arise and therefore

the remaining sources of uncertainty are: unpredictable events and poor quality of the available data,

see Section 1.1. Unpredictable events cannot be considered since they are not identifiable from the

available information. Instead, the last source of uncertainty is highly tied with the variance error.

In fact, in literature, the variance error is called also the noise-induced error. Usually, this error is

introduced by the sensors that measure the signals. If the data are noiseless or the number of data is

infinite, the variance error is equal to zero. Some system identification methodologies assume that the

dataset is noise-free, therefore the uncertainty estimation with these cannot be evaluated. As described

in [93], the uncertainty estimation methods assume different prior information, for instance: the so-

called H∞ identification needs of some frequency data at certain frequencies, with their confidence

intervals, acquired by the real system [94, 95]. Another example is PEM, it finds a "soft" uncertainty

bound, with given probability confidence and some assumption on the cost function. Instead, by

applying the Set membership methodology, the main assumption is that the noise is unknown but

bounded.

The uncertainty analysis in the system identification literature is well known for the PEM and therefore

we proceed to review the uncertainty with this standard approach. In light of this, the relationship

between the other identification methods and the model estimation uncertainty is reviewed. To obtain

a bias free model we should impose some assumptions, these are described in Assumption 1.1.
Assumption 1.1: Bias-free assumptions

As already sad, we assume that:

• S𝑇 ∈ M, with S𝑇 denotes the plant family:

S𝑇 : 𝑦(𝑡) = 𝐺𝑇 (𝑧)𝑢(𝑡) + 𝐻𝑇 (𝑧)𝑒(𝑡) , (1.97)

where 𝐺𝑇 (𝑧), 𝐻𝑇 (𝑧) are the true system’s transfer functions

• Number 𝑛 of the sensed data is finite;

• 𝑒(𝑡) ∼ (0, 𝜎2
𝑒 ) is a white noise;

• An unique global minimum of (1.79) exists.
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The experimental design plays an important role to guarantee the last assumption. The input signal

must be enough exciting to prevent the bias phenomenon. Even if S𝑇 ∈ M(β), but the experimental

design is poor, the identified model is endowed of bias. For instance, the main relationship between

the input signal and the PEM cost function is:
Proposition 1.1: Experimental design rule

If a signal is sufficiently exciting, then the applied identification criterion (such as: PEM) has

an unique solution β𝑖𝑑𝑒𝑎𝑙 = β𝑇 , when S𝑇 ∈ M(β). A signal 𝑢(𝑡) is said sufficiently exciting if

𝑛𝑠 ≥ 𝑚, where 𝑛𝑠 is the order of the input signala and 𝑚 is the number of parameters. Usually,

the order 𝑛𝑠 is computed by plotting the power spectrum of 𝑢(𝑡).

aFor instance: white noise has order 𝑛𝑠 = ∞ and a sinusoidal signal 𝑛𝑠 = 2.

Remember that, by having a stochastic noise 𝑒(𝑡), which corrupts the output data, β̂, explicated in

(1.79), is a random variable. Hence, changing the dataset D, β̂ changes too. Since the estimated

model has no bias, the average parameters estimation is asymptotically E
[
β̂
]
= β𝑇 , where β𝑇 ∈ R𝑚×1

represents the real parameters vector. Therefore, the distribution of β̂, obtained with the PEM

estimation, converges asymptotically to:

β̂ ∼ N
(
β𝑇 , P̄𝛽

)
. (1.98)

P̄𝛽 ∈ R𝑚×𝑚 is the covariance matrix of the parameters vector, defined as:

P̄𝛽 ≡ E
[(
β̂ − β𝑇

) (
β̂ − β𝑇

)⊤]
=
𝜎2
𝑒

𝑛
R̄−1
𝛽 . (1.99)

R̄𝛽 ∈ R𝑚×𝑚 represents the asymptotic autocorrelation of β𝑇 , computed by:

R̄𝛽 = E
[
𝚿(𝑡,β𝑇 )𝚿(𝑡,β𝑇 )⊤

]
. (1.100)

𝚿(𝑡,β𝑇 ) ∈ R𝑚×1 is the partial derivative of the one step identification error 𝜖1(𝑡,β) = 𝑦(𝑡) − �̂�(𝑡 |𝑡 −

1,β):

𝚿(𝑡,β𝑇 ) = −
𝑑

𝑑β
𝜖1(𝑡,β)

����
β=β𝑇

. (1.101)

If 𝑣(𝑡) = 𝐻𝑇 (𝑧)𝑒(𝑡) is a gaussian noise, PEM is asymptotically statistically efficient, therefore the

equation (1.99) corresponds to the Cramer-Rao lower bound [2, Chapter 7]. All elements that

compose the equation (1.99) depend on the real parameters vector β𝑇 , therefore in practice (1.99) is

not computable. Thus, an approximation is necessary, so R̂𝛽 becomes:

�̂�𝑒
2 =

1
𝑛

𝑛∑︁
𝑡=1

(
𝑦(𝑡) − �̂�(𝑡 |𝑡 − 1, β̂)

)2
; (1.102)
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R̂𝛽 =
1
𝑛

𝑛∑︁
𝑡=1

𝚿(𝑡, β̂)𝚿(𝑡, β̂)⊤ . (1.103)

Furthermore, in [2, Chapter 7], it is proven that:

P̄𝛽 ≈
�̂�𝑒

2

𝑛
R̂−1
𝛽 . (1.104)

Notice that:

• By increasing 𝑛 decrease P̄𝛽;

• By increasing �̂�2
𝑒 increase P̄𝛽.

To clarify these two observations, the Example 1.2 explains this phenomenon.
Example 1.2: Example of covariance in PEM identification at varying the properties of

dataset D

Given the true system:

S𝑇 : 𝑦(𝑡) = 0.6𝑧−1

1 + 0.4𝑧−1𝑢(𝑡) +
1

1 + 0.4𝑧−1 𝑒(𝑡) (1.105)

and ARX model of order ARX(1, 1, 1):

M : 𝐺 (𝑧,β) = 𝑏𝑧−1

1 + 𝑎𝑧−1 𝐻 (𝑧,β) = 1
1 + 𝑎𝑧−1 ; (1.106)

with: β = [𝑎, 𝑏]⊤, 𝑢(𝑡) and 𝑒(𝑡) are white noise signals. All assumptions to neglect the bias are

respected. We feed the system with different numbers of data 𝑛 and noise variance 𝜎2
𝑒 . Then,

we estimate the parameters vector 50 times for each conditions, by varying the 𝑢(𝑡) and 𝑒(𝑡)

realizations. To perform the system identification, we employ the PEM method and the dataset

is cut off from the transient data. Furthermore, the sampling time is 𝑇𝑠 = 1 and the variance of

the input is 𝜎2
𝑢 = 0.4. The next figures depict the true values of 𝑎 and 𝑏, denoted by the red

circle and the blue crosses represent the 50 estimations. In particular:

• Figure 25 represents β̂ with 𝑛 = 200 and 𝜎2
𝑒 = 0.4;

• Figure 26 represents β̂ with 𝑛 = 200 and 𝜎2
𝑒 = 1;

• Figure 27 represents β̂ with 𝑛 = 1300 and 𝜎2
𝑒 = 0.4;

• Figure 28 represents β̂ with 𝑛 = 1300 and 𝜎2
𝑒 = 1.

As we expect, the variance increases by increasing 𝜎2
𝑒 and decreases with high 𝑛.
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Figure 25: β̂ estimation with low number of
data and low variance of noise.

Figure 26: β̂ estimation with low number of
data and high variance of noise.

Figure 27: β̂ estimation with high number of
data and low variance of noise.

Figure 28: β̂ estimation with high number of
data and high variance of noise.

The Example 1.2 reports the solutions in the parameters space. The confidence interval in the

parameter space is defined as:

C𝛽 (𝛼) =
{
β ∈ R𝑚×1

��� (β − β̂)⊤
P̄ −1
𝛽

(
β − β̂

)
≤ 𝛼

}
; (1.107)

with:

• 𝛼 is the size of the confident region and it is such that 𝑃𝑟 (X2(𝑚) ≤ 𝛼) = 𝑝𝛽;

• 𝑝𝛽 is the probability that the confidence interval contains β𝑇 ;

• X2 ∼
(
β − β̂

)⊤
P̄ −1
𝛽

(
β − β̂

)
, where X2(𝑚) is the chi-square probability density function with

𝑚 degrees of freedom.
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C𝛽 in the parameters space is an ellipsoid centered at the identified parameters vector β̂ and shaped

by P̄𝛽. Usually 𝑝𝛽 = 0.95: it means that the real parameters vector is in C𝛽 with a probability of 95%.

An example of this variance representation is described in 1.3.
Example 1.3: Cont’d of Example 1.2

The confidence interval of the previous example with 𝑝𝛽 = 0.95, represented in the parameters

space, is depicted in:

• Figure 29 represents β̂ with 𝑛 = 200 and 𝜎2
𝑒 = 1;

• Figure 30 represents β̂ with 𝑛 = 1300 and 𝜎2
𝑒 = 0.4.

The cross represents the identified parameters and so the center of the ellipsoid.

Figure 29: Confidence interval in the param-
eters space with low number of data and high
variance of noise.

Figure 30: Confidence interval in the param-
eters space with high number of data and low
variance of noise.

The uncertainty of PEM can be also represented in the frequency domain by exploiting the transfer

function space. This is possible since the parameters vector β̂ is a random variable vector, therefore

also the transfer function 𝐺 (𝑒 𝑗𝜔, β̂) = �̂�0(𝑒 𝑗𝜔) is a random variable. So, the covariance matrix of the

transfer function in frequency domain is:

P̄𝛽 (𝜔) = Cov
(
𝐺

(
𝑒 𝑗𝜔, β̂

))
= E

[���𝐺 (𝑒 𝑗𝜔, β̂) − 𝐺 (𝑒 𝑗𝜔,β𝑇 )���2] . (1.108)

Also in this domain, the covariance matrix of transfer function can be estimated using P̄𝛽 and β̂:

Cov
(
𝐺

(
𝑒 𝑗𝜔, β̂

))
≈ 𝚲𝐺

(
𝑒 𝑗𝜔, β̂

)
P̄𝛽𝚲

∗
𝐺

(
𝑒 𝑗𝜔, β̂

)
; (1.109)

with 𝚲⊤𝐺

(
𝑒 𝑗𝜔, β̂

)
= 𝑑

𝑑β𝐺 (𝑒
𝑗𝜔, β̂) ∈ C𝑚×1. The same considerations of parameters domain are valid

in frequency domain.
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By assuming: S𝑇 ∈ M(β), 𝑢(𝑡) and 𝑒(𝑡) are uncorrelated, the authors in [86, Chapter 9] proposed an

approximation of (1.108) as:

Var(𝐺 (𝑒 𝑗𝜔)) ≈ 𝑛𝑥
𝑛

Γ𝑣 (𝜔)
Γ𝑢 (𝜔)

; (1.110)

with:

• Γ𝑣 (𝜔) is the power spectral density of noise 𝑣(𝑡);

• Γ𝑢 (𝜔) is the input density spectrum;

• 𝑛𝑥 is the number of states of the system 𝐺 (𝑧,β).

This is valid only if 𝑛𝑥 is large, the real system can be described as a piecewise constant function of

frequency 𝜔 and these constants are independent over the different frequency intervals. Due to these

considerations, often, the approximation (1.110) cannot be applicable. An improvement of (1.110) is

proposed by [96].

As for the covariance of the parameters, the transfer function covariance has a graphical representation.

By denoting the frequency response of the model 𝐺 (𝑧,β) as:

a
(
𝑒 𝑗𝜔,β

)
≡


Re

(
𝐺

(
𝑒 𝑗𝜔,β

) )
Im

(
𝐺

(
𝑒 𝑗𝜔,β

) )


(1.111)

and by using the same assumptions as before, the distribution of a
(
𝑒 𝑗𝜔,β

)
is Gaussian:

a
(
𝑒 𝑗𝜔, β̂

)
∼ N

(
a

(
𝑒 𝑗𝜔,β𝑇

)
, P̄𝛽 (𝜔)

)
. (1.112)

So, the confidence region can be easily built by drawing an ellipse C𝛽 (𝛼, 𝜔) for each frequency

of a(𝑒 𝑗𝜔,β𝑇 ) in the Nyquist plane. This guarantees that a(𝑒 𝑗𝜔,β𝑇 ) is inside C𝛽 (𝛼, 𝜔), ∀𝜔, with

probability 𝑝𝛽. The confidence region in frequency domain becomes:

C𝛽 (𝛼, 𝜔) =
{
a
��� (a − a(𝑒 𝑗𝜔, β̂))⊤ P̄ −1

𝛽

(
a − a(𝑒 𝑗𝜔, β̂)

)
≤ 𝛼

}
. (1.113)

The Example 1.3 shows the confidence interval representation of the problem described in Example

1.2.
Example 1.4: Cont’d of Example 1.2

The confidence interval of the previous example with 𝑝𝛽 = 0.95, represented in frequency

response space, is depicted in:
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• Figure 31 represents β̂ with 𝑛 = 200 and 𝜎2
𝑒 = 1;

• Figure 32 represents β̂ with 𝑛 = 1300 and 𝜎2
𝑒 = 0.4.

The true system is represented in red line, the identified model in blue line and the uncertainty

region in black lines.

Figure 31: Confidence interval in frequency
domain with low number of data and high vari-
ance of noise.

Figure 32: Confidence interval in frequency
domain with high number of data and low vari-
ance of noise.

The authors of [97] have shown that this methodology does not maintain the probability level of the

region C𝛽 (𝛼, 𝜔) with respect to the parameters domain. They have proposed a two steps projection

to obtain the uncertainty in the Nyquist space that maintains the correct membership probability of

the real transfer function. Instead, the authors of [98] have explained how the variance changes by

choosing a general model (such as Box Jenkins) or by varying the signal-to-noise ratio and not only

the noise variance. This leads to selecting a correct input variance, during the experimental design,

by the noise variance knowledge.

Kernel system identification, as for PEM, suffers from the variance of the identification since the

available dataset is noised. By assuming:

• β is a Gaussian random variableβ ∼ N(0,𝚺), with zero mean and covariance matrix𝚺 ∈ R𝑚×𝑚,

• 𝑒(𝑡) is Gaussian and independent from β,

• 𝑒(𝑡) and 𝚽 are known,

the y and β are jointly Gaussian variable [99, Chapter 2], as described in A, therefore the parameters

vector can be seen as a posterior distribution β |y ∼ N
(
β̂, �̂�

)
. Mean and variance are compute
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respectively by the closed forms (A.17b) (A.17c). In this way, kernel-based identification is endowed

with the uncertainty represented by the variance of the posterior distribution. This representation is

enough even if we consider all uncertainty sources (bias and variance) since the resulting model has

low bias.

As for PEM, the input design can induce a variation in the covariance of the posterior �̂� (A.17c). In

[100], the authors have explained how the input can be shaped when the kernel choice is known before

the experiment design step. This is reasonable since most kernel methods employ the Empirical Bayes

Method to tune the hyperparameters (Appendix A). The same is done in frequency domain, in [8].

Notice that PEM and kernel based produce a noise-induced bound called soft bounds (or probabilistic

bounds), this is defined as:

Var(𝐺 (𝑒 𝑗𝜔)) ∈ N (0,𝑊) , (1.114)

A further bound is the so-called hard bounds:Var(𝐺 (𝑒 𝑗𝜔))

𝑙
≤ 𝑂 , (1.115)

where 𝑙 = 1, 2,∞ and 𝑂 is a finite number or a transfer function evaluated in frequency domain.

A system identification methodology that produces a hard bound of the variance is called Set Mem-

bership estimation [4]. The main assumption is that 𝑒(𝑡) is unknown but bounded. the signal 𝑒(𝑡)

can be energy bounded or component-wise bounded. Specifically, the norm applied to 𝑒(𝑡) shapes the

uncertainty set B𝑒 in the error space. The two most used norm choices are:

• ∞-norm: which shapes B∞𝑒 as a cube, in the measurement spaces. The formalization of the

uncertainty space is:

B∞𝑒 =
{
e ∈ R𝑛×1 : ∥e∥∞ ≤ 𝜖

}
. (1.116)

where e = [𝑒(1), 𝑒(2), ..., 𝑒(𝑛)] and the cube side is equal to 2𝜖 .

• 2-norm: which shapes B2
𝑒 as a sphere, in the measurement spaces. It is defined as:

B2
𝑒 =

{
e ∈ R𝑛×1 : ∥e∥2 ≤ 𝜖

}
. (1.117)

The sphere radius is 𝜖 .

The uncertainty space B𝑒 is represented in measurement space by placing the center of B𝑒 in the

measured values y and by constructing a sphere or cube according to the type of norm. This

representation is called Measurement Uncertainty Set (MUS). Another graphical portrayal of B𝑒,

called Estimated Uncertainty Set (EUS), corresponds to a projection into the parameters spaces [5].
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This is done by employing a function A : R𝑛 → R𝑚 that makes the projection. The norm choice has

also an implication in the form of MUS and EUS, therefore, we highlight the distinction with:

• ∞-norm: the sets are denoted 𝑀𝑈𝑆∞ and 𝐸𝑈𝑆∞;

• 2-norm: the sets are denoted 𝑀𝑈𝑆2 and 𝐸𝑈𝑆2.

The first type is depicted in Figure 33, as illustrated at the left of the image, highlighted in red, is

reported 𝑀𝑈𝑆∞, its shape is a cube centered in y, instead 𝐸𝑈𝑆∞ is a polytope. The second type is

reported in Figure 34, 𝑀𝑈𝑆2 is in the left graph, highlighted in green. As we expected, the shape of

𝑀𝑈𝑆2 is a sphere, instead 𝐸𝑈𝑆2 is an ellipse. The EUS size gives us an indication of the "quality"

of the estimation. The blue arrow, in both MUS∞ and MUS2, represents the noise vector e = y𝑇 − y,

where y𝑇 represents the true output values.

The range of each parameter 𝛽 𝑗 is defined as 𝛽𝑙
𝑗
≤ 𝛽𝑇 𝑗 ≤ 𝛽𝑢

𝑗
, since the real parameters vector is

β𝑇 ∈ EUS, by assuming zero bias and by defining the Estimate Uncertainty Interval (EUI) as:

EUI𝑎𝑗 =
[

min
β∈EUS𝑎

𝛽 𝑗 , max
β∈EUS𝑎

𝛽 𝑗

]
=

[
𝛽𝑙𝑗 , 𝛽

𝑢
𝑗

]
⊂ R, 𝑗 = 1, ..., 𝑚 , (1.118)

with 𝑎 = 2,∞. The upper bound of the estimation error of the parameters is:

��𝛽 𝑗 − 𝛽𝑇 𝑗 �� ≤ 𝛽𝑢
𝑗
− 𝛽𝑙

𝑗

2
. (1.119)

Therefore, the symmetric center of EUS is β̂, i.e. the mean of the set. This highlights that if y𝑇 is in

MUS, the corresponding EUS contains β𝑇 .

The EUS is not the smallest set in the parameters domain that contains β𝑇 . To find this, we have to

construct a further set that is consistent with both prior knowledge and measured data, called Feasible

Parameter Set (FPS). If the parameter estimation is computed through the Least Square optimization,

therefore the output is y = 𝚽⊤β̂ + e and A becomes A =
(
𝚽⊤𝚽

)−1 𝚽⊤. Doing so, FPS is defined as:

FPS𝑎 =
{
β ∈ R𝑚×1 :

(
y −𝚽⊤β

)
∈ B𝑎𝑒

}
, (1.120)

where 𝑎 = 2,∞. Hence, a general parameters vector β, that is in FPS, is said to be feasible. The

relationship that ties the Estimated Uncertainty Set with the Feasible Parameter Set is FPS𝑎 ⊆ EUS𝑎

[101]. From FPS, it is possible to create its parameters interval by computing:

PUI𝑎𝑗 =
[

min
β∈FPS𝑎

𝛽 𝑗 , max
β∈FPS𝑎

𝛽 𝑗

]
=

[
𝛽𝑙𝑗 , 𝛽

𝑢
𝑗

]
∈ R, 𝑗 = 1, ..., 𝑚 , (1.121)

with 𝑎 = 2,∞.
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Since FPS𝑎 ⊆ EUS𝑎, therefore PUI𝑎𝑗 ⊆ EUI𝑎𝑗 . Thank to this, it is demonstrable that FPS contains β𝑇 ,

since:

𝛽𝑙𝑗 ≤ 𝛽𝑙𝑗 ≤ 𝛽𝑇 𝑗 ≤ 𝛽𝑢𝑗 ≤ 𝛽𝑢𝑗 . (1.122)

𝛽𝑙
𝑗

and 𝛽𝑢
𝑗

can be found by a linear programming problem.

The optimal estimation β̂𝑜𝑝𝑡 of the Set membership identification is given by the minimization of the

estimated error 𝜖 (β̂) with an estimated β̂, defined as:

𝜖 (β̂) = sup
β∈FPS

β − β̂ . (1.123)

In particular, β̂𝑜𝑝𝑡 is such that 𝜖 (β̂𝑜𝑝𝑡) ≤ β̂ ∀β̂ ∈ R𝑚×1. So, the optimal estimation is the central

estimation of FPS , i.e. the mean 𝛽𝑜𝑝𝑡
𝑗

= 𝛽𝐶
𝑗
=

𝛽𝑢
𝑗
−𝛽𝑙

𝑗

2 .

y1

y

2
y

3

y

yT
T

β2

1β

β

^

A
EUSMUS

A

∞ ∞

β

Figure 33: Graphical representations of B∞𝑒 in the measurements space and parameters space.

Often, the bound choice for linear systems is 2-norm, since the ellipse is easier to handle than the

polytope [102].

Figure 35 represents the shape of the distribution in the stochastic case and the Set membership.

The Set membership probability density of the noise 𝑒(𝑡) is unknown but bounded, instead using the

stochastic model is unbounded, but assumed known (in this case Gaussian). In [103], a combination

of the probability densities between the stochastic identification and the Set membership identification

is studied, to model a multi-sensor system.
Remark 1.8

The uncertainty sources are mainly the same between the robust control world and the system

identification literature, but there is a gap between the uncertainty representations of the two

kinds of literature.
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Figure 34: Graphical representations of B2
𝑒 in the measurements space and parameters space.

PEM / Kernel-based Set Membership

𝑝𝑑𝑓 𝑒

𝑒 𝑒

𝑝𝑑𝑓 𝑒

Figure 35: Analysis of the probability density function of all possible values of the noise.

Robust identification

The Robust identification identifies the nominal model and error model, i.e. a model that represents

both bias and variance. The most famous robust modeling approaches are: Stochastic Embedding

(SE), Model Error Modeling (MEM) and Set Membership [10]. Note that kernel-based system

identification is not applied in this literature because the main assumption is low bias, therefore the

error model is approximated by the variance error.

Stochastic Embedding [104] defines the true system frequency response𝐺𝑇 ( 𝑗𝜔) as a random variable:

𝐺𝑇 ( 𝑗𝜔) = �̂�0( 𝑗𝜔)+Δ𝐺 ( 𝑗𝜔), whereΔ𝐺 ( 𝑗𝜔) is the true model error model (i.e. the bias term) designed

as a random variable independent from the identified nominal model �̂�0( 𝑗𝜔). The uncertainty region

of the model error model is the variance term. If we consider that the data are noisy, the model of

the true system, evaluated in frequencies 𝜔𝑘 is ˆ̂
𝐺 ( 𝑗𝜔𝑘 ) = 𝐺𝑇 ( 𝑗𝜔𝑘 ) + 𝑒𝑘 , 𝑘 = 1, ..., 𝑚, with 𝑒𝑘 is
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the noise of the frequency response observations independent from 𝐺𝑇 ( 𝑗𝜔) and Δ𝐺 ( 𝑗𝜔). Hence, by

combining the noise term and the bias term, the model can be represented as:

ˆ̂
𝐺 ( 𝑗𝜔𝑘 ) = �̂�0( 𝑗𝜔𝑘 ) + Δ𝐺 ( 𝑗𝜔𝑘 ) + 𝑒𝑘 , 𝑘 = 1, ..., 𝑚 . (1.124)

The authors of [9] use the linear regression to parametrize the nominal model as �̂�0(β) =
∑𝑚
𝑖=1 𝑜𝑖𝛽𝑖,

where: O = [𝑜1, ..., 𝑜𝑚] are 𝑚-dimensional vector of orthonormal basis functions and β ∈ R𝑚 is the

parameters vector. Furthermore, the magnitude of model error model is greater as 𝜔 increases. This

is accounted by the basis functions. Hence, the bias error can be modeled as Oβ̄𝛬, where 𝛬 is a

random walk process over 𝜔 and β̄ ∈ R𝑚×1 a priori known parameters.

In light of this, the identification procedure is composed of:

• Perform a pointwise Least-Squares, which delivers ˆ̂
𝐺 ( 𝑗𝜔𝑘 ), where: 𝑘 = 1, ..., 𝑛 𝑓 17 and the input

signal is enough exciting for the system;

• Compute the statistical properties of the output noise 𝑒𝑘 , usually assumed Gaussian;

• Choose a set of basis functions O;

• Estimate β and 𝛬, with ˆ̂
𝐺 ( 𝑗𝜔𝑘 ,β) = Oβ + Oβ̄𝛬 + 𝑒𝑘 and chosen O. Specifically:

– β̂ is found based on the knowledge of ˆ̂
𝐺 ( 𝑗𝜔𝑘 ). So, the nominal model is a least-square

approximation of ˆ̂
𝐺 ( 𝑗𝜔𝑘 ) in the subspace spanned by the basis functions;

– When no a priori information on the bias term is available, the model error model param-

eters vector is chosen as β̄ = β̂;

– 𝛬 is chosen in such a way that the variance of Δ𝐺 ( 𝑗𝜔) increases linearly after a chosen

critical frequency. Doing so, the undermodeling can be represented as a multiplicative

error;

– Compute the statistical properties of Oβ̄𝛬.

The second approach, MEM, estimates the nominal model by adopting PEM method [1]. After, the

model error modeling is done by computing the residual signal as:

𝜖 (𝑠) = 𝑌 (𝑠) − �̂�0(𝑠)𝑈 (𝑠) . (1.125)

Then, the model error model𝐺𝑒 (𝑠) is identified using input and error observations. This represents the

model of the bias term. The confidence region of 𝐺𝑒 (𝑠) is given by exploiting the uncertainty region
17𝑛 𝑓 is the number of frequency samples.
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of �̂�0(𝑠), identified by PEM (see Section 1.1), centered in 𝐺𝑒 (𝑠) and truncated at 99% percentile.

This is valid only if the model is unfalsified, which means:

Definition 1.12: Unfalsified model

A falsifying test is a test where the measured real system output is compared with the signal

estimated by the identified model and fed by the same chosen inputa. If this difference is low,

then the model is called unfalsified. Thus, if the model error model is unfalsified, the model

explains correctly the relation between the residual and the input signal.

aThe dataset employed to perform this test differs from the system identification dataset.

The final model, i.e. the identified model that accounts also the bias and the variance, is computed by

frequency sampling the model error model and after that, these are added to the model �̂�0(𝑠) (sampled

with the same frequency vector). The construction of the final model uncertainty region can be done

in two ways [10]:

• The uncertain region of the final model corresponds to the uncertainty region of model error

model centered in the final model, depicted in Figure 36;

• Endowing the frequency response of the final model with a symmetric uncertain region. It

is more conservative than the first option. The values of the uncertainty region boundary

correspond the maximum value between the distances from the lower and upper uncertainty

boundary of the uncertainty region, found with the first way, to the final model. This is done for

each sampled frequency.

Note that the nominal model is unfalsified only if this is inside the final model uncertainty region. It

corresponds to saying that the uncertainty region centered in the model error model contains the 0

value.

Magnitude

Frequency

Ĝ0(s) +Ge(s)

Ĝ0(s)

Figure 36: Graphical final model (nominal model plus model error model) endowed of the uncertainty
region (dashed lines).
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Another observation is that, as already said, the residual can be seen as a sum of bias and variance

terms, as:

𝜖 (𝑠) = Δ𝐺 (𝑠)𝑈 (𝑠) + 𝐸 (𝑠) . (1.126)

where 𝐸 (𝑠) is the laplace transform of the signal 𝑒(𝑡). Therefore, the model error model 𝐺𝑒 (𝑠)

endowed with its uncertainty is an estimation of Δ𝐺 (𝑠). The model family must be enough flexible to

obtain an unbiased model, but the flexibility must be not unnecessary flexible to avoid the overfitting

phenomenon. Hence, the model family choice is not trivial.

The third methodology employs the Set membership estimation in a model error modeling framework

[11]. The procedure assumes the unknown but bounded of both residual and noise signals. The strategy

relies on: identifying the nominal model using the Set membership estimation, then computing the

residual as in (1.125). The third step is critical because it chooses the noise bound and the model

error model structure. After that, the nominal model error 𝐺𝑒 (𝑠) is identified. Specifically, if 𝐺𝑒 (𝑠)

is parametrized as: 𝐺𝑒

(
𝑠; ¯̄β

)
=

∑ ¯̄𝑚
𝑖=1 ¯̄𝑜𝑖 ¯̄𝛽𝑖, then the Feasible Parameter Set of the model error model

is given by:

FPS𝑎𝑒 =
{

¯̄β ∈ R ¯̄𝑚×1
𝜖 (𝑠) − 𝐺𝑒

(
𝑠; ¯̄β

)
𝑎
≤ 𝜈

}
; (1.127)

where:

• ∥e∥𝑎 ≤ 𝜈 for a given 𝜈 > 0;

• ¯̄
O = [ ¯̄𝑜1, ..., ¯̄𝑜 ¯̄𝑚] is the vector of basis function of the model error model;

• ¯̄β ∈ R ¯̄𝑚×1 is the parameters vector of the model error model;

• 𝑎 = 2,∞.

Thus, the model error model is identified using optimal or suboptimal estimator based on (1.127).

The last step consists of mapping the nominal model plus the model error model onto the frequency

domain [10].

A huge problem in practical applications is that the bound 𝜈 is set by the knowledge of the user, so it

may be too conservative or too small, leading to an empty FPS𝑎𝑒 .
Remark 1.9

The Robust identification allows modeling the bias error and the variance error terms in an

undermodeling setting. Some critical choices, such as the model family of the model error

model in SE or MEM or even the bound of the input noise in model error modeling, with the

Set membership method, make this methodology heavily dependent on the prior knowledge of

the real system.
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1.5 Conclusions

Different kinds of literature are reviewed focusing on the role of the uncertainty, from the modeling to

the usage passing through the representation. Figure 37 depicts a scheme of the concepts described in

the Chapter 1. The straight arrows and lines represent a direct connection between the terms/nodes,

instead the dashed arrows represent a conceptual connection. Specifically, the upper arrow between the

uncertainty and LFT corresponds to the uncertainty derived from the user’s knowledge, whereas the

lower dashed arrow represents the connection between the uncertainty derived from the identification

methodologies. This distinction means that the representation of the upper case is well defined in

the literature, instead the lower case has a gap between the two uncertainties representations. The

other dashed line represents the connection between the signal-based fault detection and robust fault

detection: these are not directly connected, but the signal-based one belongs to the more general fault

detection approach.
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Figure 37: Graphical resume of the state of the art.
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Part I

Theoretical contributions





Chapter 2. Data-driven mixed-sensitivity control of LTI systems

with automated weighting functions selection

In this chapter, we present our theoretical contribution. The idea is to design a robust controller through

H∞ loop-shaping, specifically using a declination called 𝑆/𝑇 mixed-sensitivity approach. The aim is to

bridge the gap between system identification and robust control synthesis, where uncertainty regions

provided by the estimation methods can be used to define an uncertainty set for robust stability.

Typically, a model error model is used to represent the modeling bias along with its variance (see

1.4.3). Instead, we propose to employ kernel-system identification to perform a low-bias Robust

identification. Doing so, the user is relieved from:

• The model family selection;

• The model error modeling choices;

• The weights functions design of the 𝑆/𝑇 mixed-sensitivity algorithm.

Furthermore, the weight functions are data-driven designed with the aim to obtain both robust stability-

nominal performance and robust performance. For both design problems, we compare our approach

with PEM in a simulation benchmark. Results show how kernel methods provide a more reliable

uncertainty representation for robust control, due to their low bias modeling capability. In Chapter 3,

we describe also an extension of the proposed method, where the goal becomes to deal with multiple

uncertainty sources.

2.1 Motivation

Mixed-sensitivity control design [19] refers to a class of optimization based control problems where

the sensitivity function is shaped along with other closed-loop transfer functions [16, Chapter 9].

Standard results in robust control theory [26] link the mixed-sensitivity problem to the design of

controllers that guarantee robust stability and performance under bounded uncertainties [24, Chapter

4].

However, the 𝑆/𝑇 mixed-sensitivity approach requires the selection of stable and proper transfer

functions that define stability and performance requirements of the feedback system, and finding

suitable instances of such weights is known to be the most critical task within this framework. To

this purpose, some general guidelines for the tuning of such weights are given in the reference texts
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[105, 106], while specific ones for second-order plants and for tracking sinusoidal signals are provided,

respectively, in [107] and [108]. A common suggestion is to first define the weighting transfer function

for robust stability 𝑊𝑇 (𝑧) based on such guidelines, and then manually aim for an adequate weight

𝑊𝑆 (𝑧) for control performance [109, 110].

Although this rationale might sometimes lead to acceptable results in practice, its drawback is that

𝑊𝑆 (𝑧) depends on the previously fixed𝑊𝑇 (𝑧), so that - if this weight is too conservative- the designed

controller will exhibit poor performance. The authors of [111] faced the problem of tuning 𝑊𝑇 (𝑧)

based on the discrepancy among the models identified at several operating regimes. The uncertainty

information provided by the identification approach is not leveraged, and the selection of the number

and type of operating points is a user choice. The weight 𝑊𝑆 (𝑧) is still manually tuned based on the

reconstructed 𝑊𝑇 (𝑧). The joint optimization of 𝑊𝑇 (𝑧) and 𝑊𝑆 (𝑧), along with the controller, is faced

in [112, 113, 114] under a robust performance constraint.

All the above approaches are based on the key assumption that a mathematical description of the

system is available for control design. When this is not the case, a model is usually identified from

data through black-box approaches using some collections of measurements. Since identification is

here motivated by robust-control design, the model order is usually selected to be relatively low [10]

in order to keep the complexity of the controller limited. However, in this way, undermodeling errors

become usually not negligible and input/output data prefiltering has to be employed to shape the

arising bias error, although the tuning of the prefilter band is nontrivial [115]. If not properly taken

into account, the modeling bias can compromise the uncertainty region that might not contain the true

system, thus jeopardizing the design of robust controllers. As an alternative solution, kernel-based

learning methods can be employed to identify an high-order low-bias model. Kernel-based methods

are regularized approaches endowed with the Bayesian interpretation of Gaussian Processes (GP),

so that a posterior Gaussian distribution on the plant impulse response can be obtained. The use of

the kernel/GP approach allows one to get rid of the bias error (which is still present but practically

negligible) and of its modeling, only assuming a Gaussian output noise distribution (see also the recent

works [116, 117]).

This work investigates the use of kernel-based learning methods for 𝑆/𝑇 mixed-sensitivityH∞ control

design as well as the opportunities offered by this approach for the selection of the weighting functions,

see Figure 38. More specifically, the derived uncertainty measure is used to determine the stability

weight𝑊𝑇 (𝑧), based on which𝑊𝑆 (𝑧) is tuned by a multi-objective optimization for maximum attain-

able control performance. In the proposed approach, the data-driven design of the mixed-sensitivity

weights has thus been automated and made non-iterative by reducing the user choices to the minimum.
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Specifically, only some configuration parameters must be selected by the user. The automated design

of𝑊𝑇 (𝑧) relies on a randomized algorithm rationale that depends on an accuracy and confidence levels

for the reconstruction of the uncertainty bound. The design is first performed non-parametrically in the

frequency domain, so that it is necessary to specify a discrete frequency grid for the transfer function

evaluation. Then, a parametric model for 𝑊𝑇 (𝑧) is fit by specifying a model order. The automated

design of𝑊𝑆 (𝑧) is performed solving an optimization problem requiring the specification of the max-

imum allowed settling time and minimum allowed overshoot, in terms of closed-loop step-response.

The optimization problem is considered feasible depending on a slack threshold.

Differently from the reviewed literature:

• We jointly consider a robust stability/nominal performance (or robust performance) control

objective, without limiting the use of the uncertainty set provided by identification to the robust

stability aim. Rather, it serves for the purpose of𝑊𝑆 (𝑧) optimization;

• As little as possible conservatism is encoded in𝑊𝑇 (𝑧), since it directly derives from the kernel-

based identification, where bias is negligible, so that only𝑊𝑆 (𝑧) is optimized for the maximum

attainable performance without affecting robust stability.

Remark 2.1

Note that, as said by Hjalmarsson in [119], for the separation principle when the identification

procedure is done to obtain a controller, the user should first try to model as well as possible.

After that any simplification can be performed without jeopardizing the statistical accuracy.

So, by the kernel-based system identification, the best accurate model is identified and then

the resulting non parametric function is projected into an high-order Finite Impulse Response

model to obtain a finite order model without loosing any statistical accuracy.

Usually, the H∞ approaches lead to a controller of the same order of the augmented model (nominal

model and weighting filters). Note that by exploiting the kernel-based system identification the result-

ing model is an high-order low-bias model, so it could jeopardizing the applicability of the proposed

method to a real world problem. To solve this, we have employed the hinfstruct optimization

method, doing so the user fixes the control structures as desired.

2.1.1 𝑆/𝑇 mixed-sensitivity loop-shaping

Consider the unknown stable LTI SISO plant𝐺𝑇 (𝑧), where 𝑧−1 denotes the backward shift operator, and

two stable proper scalar weighting functions 𝑊𝑆 (𝑧),𝑊𝑇 (𝑧). The control aim considered in this work
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Figure 38: (a) Identification for robust control approach common to many benchmark methodologies,
like stochastic embedding (SE) [118], model-error modeling (MEM) [86] and Set membership (SM).
The system input and output are denoted by 𝑢(𝑡) and 𝑦(𝑡) respectively, with 𝑢𝐹 (𝑡), 𝑦𝐹 (𝑡) being their
filtered versions. �̂�0(𝑧) denotes an estimated model of the plant, while Δ(𝑧) is the estimated model
uncertainty. (b) Our approach. E [ 𝑓 (𝑡) |𝑦(𝑡)] and Var [ 𝑓 (𝑡) |𝑦(𝑡)] denote respectively the posterior mean
and autocovariance of the impulse response. 𝑊𝑇 (𝑧) and 𝑊𝑆 (𝑧) are weights functions in the 𝑆/𝑇 mixed-
sensitivity rationale, and 𝐾 (𝑧) is the designed robust controller. Blue lines indicate the information
needed from the user.

is to design a LTI fixed-order controller 𝐾 (𝑧,ρ), parametrized by the parameters vector ρ ∈ R𝑛𝜌×1, so

as to minimize

𝐽 (ρ, 𝐺𝑇 ) B ∥H (𝑧,ρ)∥∞ =


𝑊𝑆 (𝑧)𝑆(𝑧,ρ)

𝑊𝑇 (𝑧)𝑇 (𝑧,ρ)


∞

, (2.1)

where 𝑆(𝑧,ρ) = [1 + 𝐾 (𝑧,ρ)𝐺𝑇 (𝑧)]−1 is the sensitivity function and 𝑇 (𝑧,ρ) = 1 − 𝑆(𝑧,ρ) is the

complementary sensitivity function of the closed-loop system. The choice of𝑊𝑆 (𝑧),𝑊𝑇 (𝑧) is critical

and directly influences 𝐾 (𝑧,ρ).

The 𝑆/𝑇 mixed-sensitivity problem (2.1) is often employed in robust control design for robust stability

against multiplicative uncertainty at plant output [16, Chapter 9]. Let Δ(𝑧) a stable transfer function

that satisfies the bounded real condition ∥Δ(𝑧)∥∞ ≤ 1, and consider a multiplicative output uncertainty

model set:

𝐺𝑢 (𝑧) B
(
1 + Δ(𝑧)𝑊𝑜 (𝑧)

)
𝐺𝑇 (𝑧) , (2.2)

where 𝐺 (𝑧) denotes a the perturbed SISO plant model and Δ(𝑧) describes a normalized bounded

frequency-domain uncertainty with 𝑊𝑜 (𝑧) its frequency magnitude [16, Chapter 7],[26, Chapter 9]
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(for further information see Section 1.1). As described in Section 1.2, this method is declined from

more generalH∞ loop-shaping.

The cost function (2.1) is similar to (1.39) by letting𝑊𝑑 (𝑧) = 𝑊𝑆 (𝑧) 1. This represents the performance

test. Instead, the robust stability test for the multiplicative uncertainty (described in Section 1.1) is

obtained as ∥𝑊𝑇 (𝑧)𝑇 (𝑧,ρ)∥∞, this results by choosing𝑊𝑜 (𝑧) = 𝑊𝑇 (𝑧) = 𝑊𝑛 (𝑧)𝐺𝑇 (𝑧) (where𝑊𝑛 (𝑧)

is defined in (1.39) and 𝑊𝑜 (𝑧) is defined in (1.17)). With this representation: 𝑊𝑇 (𝑧) shapes the

uncertainty and𝑊𝑆 (𝑧) shapes the performance requirements.

If, in (2.1), we consider also the
𝑊𝑄 (𝑧)𝑄(𝑧)


∞ term, the problem shifts to 𝑆/𝑇/𝐾𝑆 mixed-sensitivity

loop-shaping. Doing so, we can shape some desired control performance requirements by choosing

properly𝑊𝑄 (𝑧).

Under these settings, the problem (2.1) is solved imposing that [24, Chapter 4]

𝐽 (ρ, 𝐺𝑇 (𝑧)) < 1, for robust stability and nominal performance (2.3a)

𝐽 (ρ, 𝐺𝑇 (𝑧)) < 1/√2, for robust performance (2.3b)

The demonstration is the following proposition:
Proposition 2.1: Design a robust performance controller by employing the mixed-

sensitivity cost function (2.1)

Before explaining how the robust performance can be obtained with the employment of the

mixed-sensitivity loop-shaping, we recap the sufficient and necessary conditions of the stability

and performance aims with multiplicative output uncertainty:

• Robust stability test:

∥𝑊𝑇 (𝑧)𝑇 (𝑧,ρ)∥∞ < 1, ∥Δ(𝑧)∥∞ ≤ 1 , (2.4)

this corresponds to:
��𝑇 (𝑒 𝑗𝜔,ρ)�� < ��� 1

𝑊𝑇 (𝑒 𝑗𝜔)

��� ∀𝜔.

• Nominal performance test:

∥𝑊𝑆 (𝑧)𝑆(𝑧,ρ)∥∞ < 1 , (2.5)

• Robust stability and nominal performance test:

∥𝑊𝑇 (𝑧)𝑇 (𝑧,ρ)∥∞ < 1 & ∥𝑊𝑆 (𝑧)𝑆(𝑧,ρ)∥∞ < 1, ∥Δ(𝑧)∥∞ ≤ 1 , (2.6)

• Robust performance testa:H (𝑒 𝑗𝜔,ρ)1 =
��𝑊𝑇 (𝑒 𝑗𝜔)𝑇 (𝑒 𝑗𝜔,ρ)

�� + ��𝑊𝑆 (𝑒 𝑗𝜔)𝑆(𝑒 𝑗𝜔,ρ)
�� < 1 ∀𝜔 , (2.7)

1This description is written with discrete time systems, but is also valid for continuos time system.
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this is a sufficient and necessary condition resulting from:

∥𝑊𝑇 (𝑧)𝑇 (𝑧,ρ)∥∞< 1 &
 𝑊𝑆 (𝑧)𝑆(𝑧,ρ)

1 + Δ(𝑧)𝑊𝑇 (𝑧)𝑇 (𝑧,ρ)


∞
< 1, ∥Δ(𝑧)∥∞ ≤ 1 (2.8)

where the second inequality is found by considering the uncertain system in the sensitivity

functions:

1

1 +
(
1 + Δ(𝑧)𝑊𝑇 (𝑧)

)
𝐺𝑇 (𝑧)𝐾 (𝑧,ρ)

=
𝑆(𝑧)

1 + Δ(𝑧)𝑊𝑇 (𝑧)𝑇 (𝑧,ρ)
(2.9)

By minimizing the cost function (2.1), the resulting controller 𝐾 (𝑧, ρ̂) guarantees the robust

stability and nominal performance if 𝐾 (𝑧, ρ̂) comply with:

∥H (𝑧, ρ̂)∥∞ < 1 . (2.10)

This equation (2.10) corresponds to guarantee (2.6).

The robust performance test is quite similar to the cost function (2.1), since the only variation

consists of the type of the norm. So, the general relationships between the norms help us to

understand how to translate the inequality (2.10) for robust performance aim.

By considering the Cauchy-Schwartz inequality [120, Chapter 2], the norms inequalities can be

written as:

∥d∥∞ ≤ ∥d∥2 ≤ ∥d∥1 ≤
√
𝑙 ∥d∥2 , (2.11)

where d ∈ C𝑙×1. Figure 39 shows the rationale of the norm inequalities. In light of this, the

robust performance test
H (𝑒 𝑗𝜔,ρ)1 < 1 ∀𝜔 can be approximated by employing the 2-norm

as: H (𝑒 𝑗𝜔,ρ)2 <
1
√

2
� 0.707 ∀𝜔 . (2.12)

where H (𝑒 𝑗𝜔,ρ) ∈ C2×1. Furthermore, to tie the equation approximate robust stability test

(2.12) with the mixed sensitivity cost function (2.1), we need to consider the computation of

the infinity norm for a dynamic system, computed as:

∥H (𝑧,ρ)∥∞ = max
𝜔

�̄�
(
H (𝑒 𝑗𝜔,ρ)

)
, (2.13)

where (H (𝑒 𝑗𝜔,ρ) returns a vector of complex number evaluated in 𝜔. By considering SISO

systems, the infinity norm computation (2.13) becomes:

∥H (𝑧,ρ)∥∞ = max
𝜔

H (𝑒 𝑗𝜔,ρ)2 . (2.14)
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This resolution shows a direct relation between the infinity norm and the 2-norm of a SISO

dynamic system. Thus, by considering the equations (2.14) and (2.12), the robust performance

controller can be obtained with the 𝑆/𝑇 mixed-sensitivity loop-shapingb, if 𝐾 (𝑧, ρ̂) comply

with:

∥H (𝑧,ρ)∥∞ <
1
√

2
. (2.15)

Note that, this is a conservative approximation of the real robust performance test, because there

exist some solutions that meet the robust performance test (2.7), but not agree with (2.15), as

depicted in Figure 39.

aThe robust performance test shows that the prerequisites are nominal performance and robust stability.
bWith 𝑆/𝑇/𝐾𝑆 mixed-sensitivity the robust performance is obtained by bounding the cost function with 1√

3
.

Figure 39: Comparison between ∥d∥1 < 1 and ∥d∥2 < 1/√2, where d ∈ C2.

Since 𝐺𝑇 (𝑧) is assumed to be unknown, practical use of (2.1) for robust control under the uncertainty

description (2.2) requires the development of a plant model. Here we focus on the case where a

data-driven model �̂�0(𝑧) is identified from a set of 𝑛 input/output data D = {𝑢(𝑡), 𝑦(𝑡)}𝑛𝑡=1 collected

from an open-loop experiment on the plat, so that

𝑦(𝑡) = 𝐺𝑇 (𝑧)𝑢(𝑡) + 𝑒(𝑡), (2.16)

where 𝑛 is the number of measurements and 𝑒(𝑡) is a random measurement noise satisfying the

following assumption.
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Assumption 2.1: Bounded noise assumption

The noise 𝑒(𝑡) in (2.16), acting at plant output, is possibly stochastic and norm-bounded with

|𝑒(𝑡) | < 𝛿𝑒, ∀𝑡.

The randomness in 𝑒(𝑡) influences the estimate of �̂�0(𝑧), thereby acting as a source of model uncer-

tainty. We describe such uncertainty as in (2.2), where the boundedness of Δ(𝑧)𝑊 (𝑧) derives from

the bounded nature of 𝑒(𝑡). The aim of this work is to provide an automatic data-driven tuning of

the weight functions𝑊𝑆 (𝑧),𝑊𝑇 (𝑧) to design a controller 𝐾 (𝑧,ρ) by minimizing the mixed-sensitivity

cost 𝐽 (ρ, �̂�0) in (2.1), with �̂�0(𝑧) in place of 𝐺𝑇 (𝑧), so that the feedback system 𝑇 (𝑧) is robust to the

modeling uncertainty endowed in the identification process under Assumption 2.1, described by the

uncertain model (2.2).

+ y(t)

WT (z)

+

z1(t)

−
K(z,ρ) Ĝ0(z) WS(z)

H

u(t) z2(t)

w(t)

(z)

Figure 40: 𝑆/𝑇 mixed-sensitivity scheme with multiplicative uncertainty and identified model �̂�0(𝑧) for
the design of the controller 𝐾 (𝑧,ρ). The term 𝑊𝑇 (𝑧) represents the uncertainty weight function in the
identification of �̂�0(𝑧). Instead, the term𝑊𝑆 (𝑧) depicts the performance specification.

Figure 40 depicts the considered feedback system model with output multiplicative uncertain systems.

This model can be employed to design a controller which:

• Attenuates the disturbance 𝑑 (𝑡), with 𝑤(𝑡) = 𝑑 (𝑡) = Δ(𝑧)𝑧1(𝑡). In this configuration the

reference signal is 𝑟 (𝑡) = 0 ∀𝑡;

• Tracks a reference signal, with 𝑤(𝑡) = −𝑟 (𝑡).

In our work, we consider the tracking problem.

82



Data-driven mixed-sensitivity control with automated weighting functions selection

Proof 2.1: Lower LFT representation for 𝑆/𝑇 mixed-sensitivity loop-shaping

By considering the lower LFT equation (1.37) and by studying the resulting traditional control

synthesis scheme (depicted in Figure 13):

N (𝑧) =



𝑊𝑆 (𝑧) −𝑊𝑆 (𝑧)�̂�0(𝑧)

0 𝑊𝑇 (𝑧)�̂�0(𝑧)

1 −�̂�0(𝑧)


. (2.17)

By substituting the elements of the matrix N (𝑧) in the lower LFT form, we obtain:

𝐹𝑙 (N (𝑧), 𝐾 (𝑧)) =


𝑊𝑆 (𝑧)

0


+


−𝑊𝑆 (𝑧)�̂�0(𝑧)

𝑊𝑇 (𝑧)�̂�0(𝑧)


𝐾 (𝑧)

(
1+�̂�0(𝑧)𝐾 (𝑧)

)
−1

=


𝑊𝑆 (𝑧)

0


+


−𝑊𝑆 (𝑧)�̂�0(𝑧)𝐾 (𝑧)𝑆0(𝑧)

𝑊𝑇 (𝑧)�̂�0(𝑧)𝐾 (𝑧)𝑆0(𝑧)


=


𝑊𝑆 (𝑧)

(
1 − 𝑇0(𝑧)

)
𝑊𝑇 (𝑧)𝑇0(𝑧)


=


𝑊𝑆 (𝑧)𝑆0(𝑧)

𝑊𝑇 (𝑧)𝑇0(𝑧)



(2.18)

where 𝑆0(𝑧) = 1
1+𝐾 (𝑧)�̂�0 (𝑧)

and 𝑇0(𝑧) = 𝐾 (𝑧)�̂�0 (𝑧)
1+𝐾 (𝑧)�̂�0 (𝑧)

.

This is equal to the cost function of the 𝑆/𝑇 mixed-sensitivity loop-shaping.
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Assumption 2.1 would call for a Set membership identification approach, in this framework there is

no guarantee that �̂�0(𝑧) is close to 𝐺𝑇 (𝑧) in 𝐿2-norm [10], which is required for the minimization

of 𝐽 (ρ, �̂�0) to lead to the required robust control design, since modeling bias might still be present.

Thus, we investigate the research problem using stochastic approaches, were �̂�0(𝑧) ≈ 𝐺𝑇 (𝑧) if the

model is flexible enough. We focus our description on low-bias kernel-based methods, where the only

assumption is on the gaussianity of the output noise 𝑒(𝑡).
Assumption 2.2: Data-generating system and model assumptions

In Assumption 2.1 we assume a bounded-amplitude noise, this prior information is not leveraged

by standard kernel methods, which instead assume a Gaussian output noise. However, the price

paid for ignoring this information is way lower than the price paid by using a model with high

bias in robust control design routines, as shown in Section 2.3.

2.2 Data-driven design of mixed-sensitivity weights

This section shows the automatic design of mixed-sensitivity weights. Specifically, it employs the

uncertainty information given by regularized kernel identification from a Bayesian regression point

of view considering finite impulse response (FIR) models. The methodology is well described in

sections 1.4.2, 1.4.3 and A.3; but we resume the methodology setup.

Consider (2.16) with 𝑑 (𝑡) ∼ N
(
0, 𝜎2) , where 𝜎2 is the Gaussian noise variance, and the FIR model

of order 𝑚

�̂� (𝑧,β) =
𝑚∑︁
𝑖=1

𝑔𝑖𝑧
−𝑖, β = [𝑔1 𝑔2 . . . , 𝑔𝑚]⊤ . (2.19)

Assume that a prior distribution β ∼ N (0,K) is placed on β ∈ R𝑚×1, where K ∈ R𝑚×𝑚 is chosen

as a tuned-correlated kernel [6], where the (𝑖, 𝑜) element of K is defined as 𝐾𝑖𝑜 B 𝛿 · 𝛼max(𝑖,𝑜)

with 𝛿 > 0, 0 ≤ 𝛼 < 1 are the kernel hyperparameters (for further info see Table 8). The posterior

distribution β |y ∼ N
(
β̂, �̂�

)
where β̂ and �̂� are computed by the closed forms, respectively, (A.17b)

and (A.17c). Where:

𝚽 B [x(1), x(2), . . . x(𝑛)]⊤ ∈ R𝑚×𝑛, (2.20a)

x(𝑡) B [𝑢(𝑡 − 1), . . . 𝑢(𝑡 − 𝑚)]⊤ ∈ R𝑚×1 (2.20b)

y B [𝑦(1), 𝑦(2), . . . 𝑦(𝑛)]⊤ ∈ R𝑛×1. (2.20c)

The kernel’s hyperparameters 𝜼 = [𝛼, 𝛿]⊤ (along with the noise variance 𝜎2
𝑒 ) can be estimated by

employing an Empirical Bayes scheme, by maximizing the log-marginal likelihood of the data, see

(A.18).
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The parameters β̂ are identified by (A.17b). The nominal model is denoted as �̂�0(𝑧) B 𝐺 (𝑧, β̂).

Relying on (A.17c) to estimate the modeling uncertainty set, the next section presents the proposed

scheme for data-driven tuning of𝑊𝑇 (𝑧) and𝑊𝑆 (𝑧).
Remark 2.2

The result of the kernel-based identification is the posterior distribution β |y, defined by the

mean β̂ and variance �̂�. These will be used in Section 2.2. Specifically, β̂ defines the nominal

model �̂�0(𝑧), while �̂� allows to design �̂�𝑇 (𝑧) by estimating the uncertainty bound through a

random sampling of the posterior distribution β |y.

2.2.1 Design of the stability weight

Let 𝐺 𝑝 (𝑧) B 𝐺 (𝑧,β𝑝), with β𝑝 a random sample drawn from the posterior distribution β |y ∼

N
(
β̂, �̂�

)
. Define

Ω
(
𝑒 𝑗𝜔

)
B max

𝑝

����𝐺 𝑝

(
𝑒 𝑗𝜔

)
�̂�0 (𝑒 𝑗𝜔)

− 1
���� , (2.21)

where �̂�0(𝑧) := 𝐺 (𝑧, β̂) is the nominal identified model. Robust stability against the multiplicative

uncertainty model (2.2) requires that [26, Chapter 9]

Ω
(
𝑒 𝑗𝜔

)
≤

��𝑊𝑇

(
𝑒 𝑗𝜔

) �� , ∀𝜔 ∈ [0, 𝜋 𝑓𝑠] , (2.22)

where 𝜔 is specific pulse in rad/s and 𝑓𝑠 is the sampling frequency. The magnitude of the least

conservative 𝑊𝑇 (𝑧) can be estimated evaluating (2.21) in a discrete grid of 𝑛𝑚 ∈ N+ frequencies

W =
{
𝜔1, 𝜔2, . . . 𝜔𝑛𝑚

}
⊆ [0, 𝜋 𝑓𝑠] for a set of 𝑛𝑝 ∈ N+ samples. A nonparametric sampled estimate

of the magnitude of𝑊𝑇 (𝑧) is thus���̂�𝑇

(
𝑒 𝑗𝜔𝑚

) �� = Ω
(
𝑒 𝑗𝜔𝑚

)
, ∀𝜔𝑚 ∈ W . (2.23)

A stable and proper parametric model �̂�𝑇 (𝑧) can then be obtained by fitting a model of adequate order

to the magnitude frequency points (2.23), taking care that the magnitude of the fitted model lies above

(or is equal to) (2.23), see Section 2.4 for practical details.

The following proposition suggests how to select 𝑛𝑝 2.
Proposition 2.2: Uncertainty bound reconstruction

Define a fixed confidence level 𝜁 ∈ (0, 1) and accuracy level 𝜀 ∈ (0, 1). Let

𝑛𝑝 ≥
1

2𝜀2 log
(

2
𝜁

)
. (2.24)

2The choice of 𝑛𝑚 is not critical. It suffices for the frequency grid to be resolute enough.
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Then, with probability ≥ 1 − 𝜁 , it holds that���̂�𝑇

(
𝑒 𝑗𝜔𝑚

)
−𝑊𝑇

(
𝑒 𝑗𝜔

) �� < 𝜀, ∀𝜔, 𝜔𝑚 ∈ W .

Figure 41 represents a snippet of the lower bound curve of 𝑛𝑝 with 𝜁 = 𝜀 =

[0.001, 0.002, ..., 0.05]. The red highlighted point represents the chosen values in Section

2.3. The proof of this proposition is reported in Proof 2.2.

Figure 41: Lower bound curve of 𝑛𝑝 with a subset of 𝜀 and 𝜁 .

Proof 2.2: Chernoff bound

The proof of the Proposition 2.2 is a direct application of the Hoeffding inequality [32, Chapter

8]. Let 𝑛𝑝 independent random variables 𝑥1, ..., 𝑥𝑛𝑝 , defined as:

𝑥𝑖 = IB𝐺
(
Δ(𝑖) (𝑧)

)
(2.25)

where:

• IB𝐺
(
Δ(𝑖) (𝑧)

)
is an indicator function associated with the good value set:

IB𝐺
(
Δ(𝑖) (𝑧)

)
=


1 if Δ(𝑖) (𝑧) ∈ B𝐺

0 otherwise
; (2.26)
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• Good value set is B𝐺 = {Δ(𝑧) ∈ BA : ∥𝐹𝑢 (M (𝑧),Δ(𝑧))∥∞ < 𝜛}a, where: BA is de-

scribed in (1.31), 𝐹𝑢 (M (𝑧),Δ(𝑧)) is the upper LFT defined in (1.8) and 𝜛 is a perfor-

mance level;

• Δ(𝑖) (𝑧) are the uncertainty samples;

• 𝑖 = 1, ..., 𝑛𝑝.

Since 𝑥𝑖 ∈ [0, 1], letting 𝑠𝑛𝑝 =
∑𝑛𝑝

𝑖=1 𝑥𝑖, E [·] the average operator and applying the two-sided

Hoeffding inequality, we get the bound of the probability P
{��𝑠𝑛𝑝 − E

[
𝑠𝑛𝑝

]
)
�� ≥ 𝜀} as:

P
{��𝑠𝑛𝑝 − E

[
𝑠𝑛𝑝

]
)
�� ≥ 𝜀} ≤ 2𝑒

−2𝜀2
𝑛𝑝 . (2.27)

where 𝜀 and 𝑛𝑝 are defined in Proposition 2.2. Instead, putting �̂�𝑇

(
𝑒 𝑗𝜔𝑚

)
=

𝑠𝑛𝑝
𝑛𝑝

and𝑊𝑇

(
𝑒 𝑗𝜔

)
=

E
[
𝑠𝑛𝑝
𝑛𝑝

]
, the inequality (2.27) becomes:

P
{���̂�𝑇

(
𝑒 𝑗𝜔𝑚

)
−𝑊𝑇

(
𝑒 𝑗𝜔

) �� ≥ 𝜀} ≤ 2𝑒−2𝜀2𝑛𝑝 . (2.28)

Since 𝜁 = P
{���̂�𝑇

(
𝑒 𝑗𝜔𝑚

)
−𝑊𝑇

(
𝑒 𝑗𝜔

) �� ≥ 𝜀} (as defined in Proposition 2.2), the inequality is:

𝜁 ≤ 2𝑒−2𝜀2𝑛𝑝 . (2.29)

Doing so, the Chernoff bound follows straightforwardly.

aThis set is valid for non-linear structured uncertainties, but in SISO systems with a single non-linear uncertainty
it coincides to an unstructured uncertainty.

Algorithm 1 summarizes the steps for the design of the uncertainty weight �̂�𝑇 (𝑧).

Algorithm 1: Design of �̂�𝑇 (𝑧)
Input: β̂, �̂�,W, 𝑛𝑝

1 𝑝 = 0
2 while 𝑝 < 𝑛𝑝 do
3 Draw β𝑝 ∼ N

(
β̂, �̂�

)
using β |y

4 Set 𝐺 𝑝 = 𝐺 (𝑧,β𝑝) as in (2.19)
5 end while
6 Compute

���̂�𝑇

(
𝑒 𝑗𝜔𝑚

) �� from (2.21) and (2.23) usingW
7 Fit a stable proper parametric model �̂�𝑇 (𝑧) on frequency domain magnitude data in Step 7

Output: �̂�𝑇 (𝑧)
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2.2.2 Design of the performance weight for nominal performance

As described in Section 2.2, the proposed method is applicable to a general class of systems. However,

in practical applications, a second-order reference model is often sufficient to express the main

dynamics of a desired closed-loop behaviour, in terms of step-response settling time and overshoot.

For this reason, we consider a continuous-time second-order reference model𝑇𝑑 (𝑠) for the closed-loop

system 𝑇 (𝑠)

𝑇𝑑 (𝑠) B
𝜔2
𝑛

𝑠2 + 2𝜉𝜔𝑛𝑠 + 𝜔2
𝑛

. (2.30)

where 𝜔𝑛 is the natural frequency of the poles and 𝜉 is their damping factor, that can also be expressed

as

𝜉 =
|ln (𝑜) |√︃
𝜋2 + ln2 (𝑜)

, (2.31a)

𝜔𝑛 =
𝜔𝑐√︃√︁

4𝜉4 + 1 − 2𝜉2
=

4
𝜉ℓ
, (2.31b)

with 𝑜, ℓ denoting the step response overshoot and settling time of 𝑇 (𝑠), respectively, and 𝜔𝑐 denotes

its critical frequency.

A simple approach to define the performance weight𝑊𝑆 (𝑠) in continuous time is to employ the inverse

of the sensitivity function from the reference model (2.30), so that

𝑊𝑆 (𝑠) B (1 − 𝑇𝑑 (𝑠, 𝑜, ℓ))−1 . (2.32)

Then,𝑊𝑆 (𝑧) can be obtained by discretization of (2.32).
Remark 2.3

Doing so, we obtain a correspondence between the frequency domain and the time domain.

Thus, the nominal performances of the resulting robust controller can be easily evaluated in

both domains.

Since
��𝑆 (

𝑒 𝑗𝜔
)
+ 𝑇

(
𝑒 𝑗𝜔

) �� = 1 ∀𝜔, the robust performance condition under (2.2), see [26],

max
𝜔

��𝑊𝑆

(
𝑒 𝑗𝜔

)
𝑆

(
𝑒 𝑗𝜔

) �� + ��𝑊𝑇

(
𝑒 𝑗𝜔

)
𝑇

(
𝑒 𝑗𝜔

) �� < 1 (2.33)

implies that [24]

min
(��𝑊𝑆

(
𝑒 𝑗𝜔

) �� , ��𝑊𝑇

(
𝑒 𝑗𝜔

) ��) < 1 ∀𝜔 ∈ [0, 𝜋 𝑓𝑠] . (2.34)

Given 𝜔𝑐,�̂�𝑇 ∈ [0, 𝜋 𝑓𝑠] the critical frequency3 of �̂�𝑇 (𝑧) attained from Algorithm 1, relation (2.34)

poses a performance limit on the bandwidth of 𝑊𝑆 (𝑧), that cannot exceed of �̂�𝑇 (𝑧). The automatic
3With the term “critical frequency” we denote the frequency where the magnitude of a transfer function crosses the 0 dB
axis.
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design of 𝑊𝑆 (𝑧) aims to find the best values of (𝑜, ℓ) so that 𝑊𝑆 (𝑧) is stable and (2.3), (2.34) are

satisfied.

Let 𝑜min ≠ 0 be a user-defined minimum allowable overshoot level. The minimum allowable settling

time ℓmin can be computed from (2.31) using 𝑜min in (2.31a) and subsequently 𝜔𝑐,�̂�𝑇 in (2.31b). Then,

the following multi-objective optimization problem is solved to design �̂�𝑆 (𝑧):

(O,L) = arg min
𝑜,ℓ
(𝑜, ℓ) (2.35a)

s.t. min
ρ
𝐽

(
ρ, �̂�0, �̂�𝑇 ,𝑊𝑆 (𝑜, ℓ)

)
< 1 + 𝛾 , (2.35b)

𝑜min < 𝑜 < 1 , (2.35c)

ℓmin < ℓ < ℓmax , (2.35d)

where (O,L) are two sets of Pareto-optimal dominant solutions for the overshoot and settling time,

respectively. Problem (2.35) is subject to the following constraints:

• (2.35b) requires the satisfaction of the robust stability and nominal performance condition (2.3a),

based on the nominal model �̂�0(𝑧) and the tuned stability weight �̂�𝑇 (𝑧).

Remark 2.4

The sensitivity function has the property of: 𝑆(𝑒 𝑗𝜔) → 1 with 𝜔 → 𝜋 𝑓𝑠, therefore,

𝑊𝑆 (𝑒 𝑗𝜔) has the same behavior. Hence, the robust stability constraint is not feasible

for frequencies near to 𝜋 𝑓𝑠. The constraint (2.35b) solves this problem by introducing a

small positive slack quantity 𝛾 ∈ R+. This guarantees the feasibility of the optimization

problem, also in spite of numerical inaccuracies.

• (2.35c) and (2.35d) bound the overshoot and settling time in feasible ranges. The value ℓmax can

be defined by the user and it is not critical.

The estimates (𝑜, ℓ̂) ∈ (O,L) are chosen as the point closest (in Euclidean distance) to (𝑜min, ℓmin) in

the space defined by overshoot and settling time, see Figure 42. Thus, the tuned performance weight

�̂�𝑆 (𝑠) is set as

�̂�𝑆 (𝑠) =
(
1 − 𝑇𝑑 (𝑠, 𝑜, ℓ̂)

)−1
(2.36)

and �̂�𝑆 (𝑧) follows from discretization of (2.36). Algorithm 2 summarizes the steps for the tuning of

the performance weight �̂�𝑆 (𝑧). Finally, the designed controller �̂� (𝑧) B 𝐾 (𝑧, ρ̂) is found by solving

(2.1) using �̂�0(𝑧), �̂�𝑇 (𝑧) and �̂�𝑆 (𝑧).
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Figure 42: Multi-objective optimization with Pareto frontier and selection of the chosen solution in the
set of dominant ones.

Remark 2.5: Performance weight stability

Each iteration of (2.35b), as well as discretization of (2.36), requires a stable and proper

𝑊𝑆 (𝑧, 𝑜, ℓ). To guarantee this, the following steps are followed:

• A continuous-time reference model 𝑇𝑑 (𝑠) as in (2.30) is computed using the current

values of (𝑜, ℓ),

• The magnitude of (2.32) is evaluated into the frequencies grid inW,

• A stable and proper parametric model is fit on frequency magnitude data, as in Step 8. of

Algorithm 1.

See Section 2.4 for details.

2.2.3 Design of the performance weight for robust performance

The weight function �̂�𝑆 (𝑧), designed with (2.36), cannot be used with robust performance aims, since

the performance requirements will be too stringent. This is due to the feasibility problem explained

in Remark 2.4. Thus, the performance requirements must be embedded in 𝑊𝑆 (𝑠) in a different way.

Another simple technique directly defines: low-frequency gain 𝑙𝑔, critical frequency 𝜔𝑐 and high-

frequency gain ℎ𝑔 of a discrete filter with a monotonic gain profile. Specifically, we bound the domain

90



Data-driven mixed-sensitivity control with automated weighting functions selection

Algorithm 2: Estimation of �̂�𝑆 (𝑧) for nominal performance and robust stability
Input: �̂�𝑇 (𝑧), 𝛾,W, 𝑜min, ℓmax

1 Set 𝜔𝑐,�̂�𝑇 as the critical frequency of �̂�𝑇 (𝑧). If �̂�𝑇 (𝑧) does not cross 0 dB, we set 𝜔𝑐,�̂�𝑇 = 𝜋 𝑓𝑠

2 Set 𝜉 =
|ln (𝑜min) |√︃
𝜋2 + ln2 (𝑜min)

, 𝜔𝑛 =
𝜔𝑐,�̂�𝑇√︃√︁

4𝜉4 + 1 − 2𝜉2
, ℓmin =

4
𝜉𝜔𝑛

using (2.31)

3 Solve (2.35) to get (O,L), considering Remark 2.5
4 Select point estimates (𝑜, ℓ̂) ∈ (O,L) closest to (𝑜min, ℓmin)

5 Compute 𝜉 =
− ln (𝑜)√︃
𝜋2 + ln2 (𝑜)

, �̂�𝑛 =
4
𝜉ℓ̂

using (2.31)

6 Set the reference model 𝑇𝑑 (𝑠) =
�̂�2
𝑛

𝑠2 + 2𝜉�̂�𝑛𝑠 + �̂�2
𝑛

7 Set �̂�𝑆 (𝑠) = (1 − 𝑇𝑑 (𝑠))−1 as in (2.36)
8 Evaluate

���̂�𝑆 ( 𝑗𝜔𝑚)
�� usingW

9 Fit a stable proper parametric model �̂�𝑆 (𝑧) on frequency domain magnitude data in Step 8

Output: �̂�𝑆 (𝑧)

of the high frequency gain and critical frequency by: ℎ𝑔 ∈
[
ℎ𝑔_min, ℎ𝑔_max

]
and 𝜔𝑐 ∈

[
𝜔𝑐_min, 𝜔𝑐,�̂�𝑇

]
, where: 𝜔𝑐_min, 𝑙𝑔, ℎ𝑔_max, ℎ𝑔_min are user-defined4.

Furthermore, a robust performance controller designed with 𝑆/𝑇 mixed-sensitivity loop-shaping

usually guarantees 𝐽 (𝑧,ρ) < 1/√2, but this is an approximation and it overconstraints the problem,

as described in Proposition 2.1. Our proposed method instead employs directly the sufficient and

necessary condition ∥H (𝑧,ρ)∥1 < 1.

Doing so, the optimization problem (2.35) becomes:

(Z,Q) = arg min
𝜔𝑐 ,ℎ𝑔

(−𝜔𝑐,−ℎ𝑔) (2.37a)

s.t. ∥H (𝑧,ρ)∥1 < 1, (2.37b)

𝜔𝑐_min < 𝜔𝑐 < 𝜔𝑐,�̂�𝑇 , (2.37c)

ℎ𝑔_min < ℎ𝑔 < ℎ𝑔_max. (2.37d)

Remark 2.6

For each iteration of (2.37), the controller parametersρ are obtained by minimizing 𝐽 (ρ, �̂�0(𝑧)).

Where:

4𝑙𝑔 has a high value as desired. ℎ𝑔_max, ℎ𝑔_min < 0𝑑𝐵, where the max value is near to 0𝑑𝐵. Instead, ℎ𝑔_min and 𝜔𝑐_min are
low as desired. Their choices are not critical if the two domains are big enough.
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• (Z,Q) are respectively critical frequency and high-frequency gain sets of Pareto-optimal dom-

inant solutions;

• The constraint (2.37b) guarantees robust performance feature;

• The cost functions aim to find the highest feasible values of high-frequency gain and critical fre-

quency, therefore the objective functions become the minimization of −𝜔𝑐 and −ℎ𝑔. Remember

that the inverse of the uncertainty weight shapes the band and gain of the sensitivity function

since the constraint |1/�̂�𝑆 (𝑒 𝑗𝜔) | <
��𝑆0(𝑒 𝑗𝜔)

�� must be guaranteed for all frequencies. Therefore,

if 1/�̂�𝑆 (𝑧) has an high gain profile, then the allowable gain profile of 𝑆0(𝑧) is high, otherwise

with low values of |1/�̂�𝑆 (𝑒 𝑗𝜔) |, the
��𝑆0(𝑒 𝑗𝜔)

�� is low (under the gain profile of the inverse of the

uncertainty weight). Since the ideal choice of a controller aims to shape the sensitivity function

as 𝑆(𝑧) = 0 [121], the goal is to obtain the highest values of ℎ𝑔 and 𝜔𝑐.

Finally, the estimates (�̂�𝑐, ℎ̂𝑔) ∈ (Z,Q) are found trough the minimum Euclidean distance from

(𝜔𝑐,�̂�𝑇 , ℎ𝑔_max), then the performance weight is defined as a filter with a monotonic gain profile,

defined by: 𝑙𝑔, �̂�𝑐 and ℎ̂𝑔. The practical aspects to design𝑊𝑆 (𝑧), from �̂�𝑐 𝑙𝑔 and ℎ̂𝑔, will be shown in

2.4.

Algorithm 3: Estimation of �̂�𝑆 (𝑧) for robust performance
Input: �̂�𝑇 (𝑧), 𝛾,W, ℎ𝑔_max, ℎ𝑔_min, 𝜔𝑐_min, 𝑙𝑔

1 Compute 𝜔𝑐,�̂�𝑇 , the critical frequency of �̂�𝑇 (𝑧). If �̂�𝑇 (𝑧) does not cross 0 dB, we set
𝜔𝑐,�̂�𝑇 = 𝜋 𝑓𝑠

2 Solve (2.37) to get (Z,Q), considering Remark 2.5 and Remark 2.6
3 Select the couple (�̂�𝑐, ℎ̂𝑔) ∈ (Z,Q) closest to (𝜔𝑐,�̂�𝑇 , ℎ𝑔_max)
4 Set �̂�𝑆 (𝑧) as a filter with monotonic gain profile, defined by: 𝑙𝑔, �̂�𝑐 and ℎ̂𝑔

Output: �̂�𝑆 (𝑧)

Remark 2.7

Both multi-objective problems (2.35) and (2.37) can be cast to a single-objective problem

by multiplying the less important cost function by zero. This leads to high customization

according to user needs. For instance, if the user would like to obtain a controller that guarantees

robust stability and nominal performance and minimize the settling time without caring about

overshoot the cost functions of (2.35) becomes arg min
𝑜,ℓ
(𝑜, 0 · ℓ). Doing so, the Pareto-front

will be composed of a single point and so step 4 of Algorithm 2 or step 3 of Algorithm 3 are

negligible.
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2.3 Numerical example

2.3.1 Experimental setup

Consider the following benchmark system [122]

𝐺𝑇 (𝑧) =
0.28261𝑧 + 0.50666

𝐷 (𝑧) , (2.38a)

𝑦(𝑡) = 𝐺𝑇 (𝑧)𝑢(𝑡) + 𝑒(𝑡) = 𝑦𝑇 (𝑡) + 𝑒(𝑡), (2.38b)

𝐷 (𝑧) = 𝑧4 − 1.41833𝑧3 + 1.58939𝑧2 − 1.31608𝑧 + 0.88642, sampled at 𝑇𝑠 = 1/ 𝑓𝑠 = 0.01 s. We

simulated 𝑛 = 5000 data from (2.38) using a zero mean white noise input and a bounded zero mean

white noise disturbance 𝑒(𝑡) with SNR = var [𝑦𝑇 (𝑡)] /var [𝑒(𝑡)] = 25. The boundaries were set so

that no saturation in 𝑒(𝑡) was present. The first 1000 data are discarded to remove the transient effects

from the data. The FIR order for kernel identification is set as 𝑚 = 100.

We compared kernel identification with PEM using an Output Error (OE) model set G, considering

two cases:

• 𝐺𝑇 ∉ G (PEM undermodeling): the OE orders are chosen from 1 to 3 selected by Akaike

Information Criterion (AIC);

• 𝐺𝑇 ∈ G (PEM full): the OE orders are chosen from 1 to 10 selected by AIC;

In the PEM cases, we follow the same procedure devised in Section 2.2 for estimating the uncertainty

weight𝑊𝑇 (𝑧). In both PEM and kernel cases, we assume to know the true value of the noise variance5.

By selecting 𝜁 = 0.05 and 𝜀 = 0.05 the number of sampled system is set as 𝑛𝑝 = 738 following

(2.24), and the number of sampled frequencies is set to 𝑛𝑚 = 600, logarithmically spaced in the range[
10−3, 𝜋 𝑓𝑠

]
rad/s.

For all the three identification settings, we test the following weights design strategies:

• DS1). Manual design of𝑊𝑆 (𝑧) and𝑊𝑇 (𝑧);

• DS2). Manual design of 𝑊𝑆 (𝑧) and automatic design of 𝑊𝑇 (𝑧) using the approach of Section

2.2.1;

• DS3 - Proposed). Automatic design of𝑊𝑆 (𝑧) and𝑊𝑇 (𝑧).

For the design strategy DS1), we use the following settings: the𝑊𝑇 (𝑧) shape is set as a discrete filter

with a gain monotonic profile, made by low-frequency gain of 10 dB and a high-frequency gain of

5This assumption is not critical since the noise variance can be estimated with good accuracy from data.
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40 dB. The cut off frequency is fixed to a bit less than the first resonant peak of 𝐺𝑇 (𝑧), i.e. 40 rad/s.

The manual setting of𝑊𝑆 (𝑧) is established by imposing a settling time of ℓ = 1 s and an overshoot of

𝑜 = 0.01.

The chosen controller structure is :

𝐾 (𝑧,ρ) = 𝑘 𝑝 + 𝑘𝑖
𝑇𝑠

𝑧 − 1
+ 𝑘𝑑

1
𝑁𝑑 + 𝑇𝑠

𝑧−1

, (2.39)

where ρ =
[
𝑘 𝑝, 𝑘𝑖, 𝑘𝑑 , 𝑁𝑑

]⊤ ∈ R4×1 and 𝑇𝑠 is the sampling time. The performance of the controllers

�̂� (𝑧), designed by solving problem (2.35) with 𝛾 = 0.1, 𝑜min = 0.01, ℓmax = 5 s in all the aforemen-

tioned conditions, are evaluated by drawing 𝑛𝑣 = 200 random open-loop systems from the Gaussian

distributions N(β̂, �̂�) of PEM and kernel parameters estimates, centered at the respective estimate

�̂�0(𝑧)6.

2.3.2 Robust stability and nominal performance results and discussion

Figure 43 shows the estimate �̂�0(𝑧) of the open-loop transfer function 𝐺𝑇 (𝑧). The PEM-

undermodeling (denoted as PEM u.m.) case is able to fit only the first resonance peak, while the

full PEM and kernel identifications attain almost perfect results.

Figure 43: Identification of the transfer function 𝐺𝑇 (𝑧). The PEM undermodeling approach cannot
model the second resonance peak. The PEM full approach perfectly represents the true system due to its
exact structure selection. The kernel approach attains almost perfect results, apart of a slight bias at low
frequencies due to its regularized nature.

6For the PEM case, this assumes that 𝐺𝑇 ∈ G.
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The images of Figure 44 depict frequency responses of some 𝐺 𝑝 (𝑧) extracted from the estimated

distributions of all three identified systems.

(a) 𝐺 𝑝 (𝑧) extracted from PEM with undermod-
eling identification.

(b)𝐺 𝑝 (𝑧) extracted from PEM-full identification.

(c) 𝐺 𝑝 (𝑧) extracted from kernel identification.

Figure 44: Frequency response of 50 𝐺 𝑝 (𝑧).

The images of Figure 45 show the estimates of the uncertainty weight �̂�𝑇 (𝑧), using a second order

proper transfer function model. In all the cases, the estimate lies above (or it is equal to) the upper

boundΩ(𝑒 𝑗𝜔𝑚) in (2.23), which is computed considering 𝑛𝑝 extractions of systems from the respective

parameters distribution of each identification method. We notice how PEM-undermodeling attains a

similar uncertainty level as PEM-full; however, in the former case also a bias contribution is present

in the identified model. The bias is negligible in the PEM-full and kernel cases, the latter of whose

attains the highest modeling uncertainty7.

The images of Figure 46 show:

7We remark here that the PEM-full case is able to perfectly represent the true system 𝐺𝑇 (𝑧).
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(a) �̂�𝑇 (𝑧) obtained with PEM with undermodel-
ing identification.

(b) �̂�𝑇 (𝑧) obtained with PEM-full identification.

(c) �̂�𝑇 (𝑧) obtained with kernel identification.

Figure 45: Uncertainty weight 𝑊𝑇 (𝑧) estimation. (Continuous line) Magnitude of the parametric model
�̂�𝑇 (𝑧). (Dots) Nonparametric estimate Ω(𝑒 𝑗𝜔𝑚). (Dashed line) The gain of the frequency response of
𝐺𝑝 (𝑧)
�̂�0 (𝑧)

−1, where the systems𝐺 𝑝 (𝑧) are drawn from the sampling distribution of the parameters estimates.
The dashed lines are a subset of the 𝑛𝑝 systems for graphical purposes.

• Left: a comparison of the complementary sensitivity function 𝑇0(𝑧, �̂� (𝑧)) obtained with the

designed controller �̂� (𝑧) against its bound 1/�̂�𝑇 (𝑧) with margin 𝛾 defined in problem (2.35);

• Right: a comparison of the sensitivity function 𝑆0(𝑧, �̂� (𝑧)) against its bound 1/�̂�𝑆 (𝑧) with margin

𝛾.

First, we note how all the controllers provide robust stability and nominal performance. Second,

the controller designed in the PEM-undermodeling case lead to a closed-loop system with higher

bandwidth with respect to the PEM-full and kernel cases. This derives from constraint (2.35d), where

the lack of the second resonance peak in the PEM-undermodeling nominal model makes possible to

the controller to attain an higher control bandwidth.
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(a) Constraints analisys of PEM undermodeling.

(b) Constraints analisys of PEM-full.

(c) Constraints analisys of kernel identification.

Figure 46: (Left) (continuous line) Closed-loop complementary sensitivity function 𝑇0(𝑧) using the esti-
mated controller �̂� (𝑧). (Dashed line) Inverse of the uncertainty weight �̂�𝑇 (𝑧), that should lie above 𝑇0(𝑧)
for robust stability with margin 𝛾. (Right) (continuous line) Closed-loop sensitivity function 𝑆0(𝑧) using
the estimated controller �̂� (𝑧). (Dashed line) Inverse of the performance weight �̂�𝑆 (𝑧), that should lie
above 𝑆0(𝑧) for nominal performance with margin 𝛾.

Figure 47 evaluates 𝑛𝑣 closed-loop unit step responses �̂�step(𝑡) in terms of the Integral Absolute Error

(IAE) over a period of 4 s:

IAE =

4·𝑇𝑠∑︁
𝑡=1
|1 − �̂�step(𝑡) | . (2.40)
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Figure 47: Integral Absolute Error of the closed-loop unit step response, over 𝑛𝑣 = 200 randomly sampled
systems from the estimated parameters distribution. PEM u.m. stands for PEM undermodeling. (Left)
Design strategy DS1): manual design of𝑊𝑆 (𝑧) and𝑊𝑇 (𝑧). (Center) Design strategy DS2): manual design
of 𝑊𝑆 (𝑧) and automatic design of 𝑊𝑇 (𝑧). (Right). Design strategy DS3): automatic design of 𝑊𝑆 (𝑧) and
𝑊𝑇 (𝑧).

(a) Settling time index analisys. (b) Overshoot index analisys.

Figure 48: Performance indices analysis of the closed-loop unit step response, over 𝑛𝑣 = 200 randomly
sampled systems from the estimated parameters distribution. PEM u.m. stands for PEM undermodeling.
(Left) Design strategy DS1): manual design of𝑊𝑆 (𝑧) and𝑊𝑇 (𝑧). (Center) Design strategy DS2): manual
design of 𝑊𝑆 (𝑧) and automatic design of 𝑊𝑇 (𝑧). (Right). Design strategy DS3): automatic design of
𝑊𝑆 (𝑧) and𝑊𝑇 (𝑧).

No relevant difference in performance can be observed in the design conditions DS1) and DS2). In the

DS3) design, all the identification approaches lead to a significantly better closed-loop performance.

As already noticed, the PEM undermodeling case is the best one, due to its higher control bandwidth.

The PEM-full design performs slightly better than the kernel method, but it has access to the true

system parametrization.

98



Data-driven mixed-sensitivity control with automated weighting functions selection

Remark 2.8

The automatic �̂�𝑇 (𝑧) design leads to a high performance �̂�𝑆 (𝑧), since the manual choice of

𝑊𝑇 (𝑧) usually is more conservative than the real system needs.

Results in Figure 47 might suggest that it is better to have a model with modeling bias for robust

control design. However, these performance are evaluated to systems sampled from the parameters

distribution centered on the �̂�0(𝑧) found by each respective identification method. Instead good,

if a modeling bias is present, the true system 𝐺𝑇 (𝑧) might not be included in the uncertainty set

considered for robust control. Figure 49 compares the closed-loop unit step responses of the design

strategy DS3) using each identification scheme. The PEM-undermodeling scheme performs fine on

the nominal model �̂�0(𝑧), but it is unstable on 𝐺𝑇 (𝑧). The PEM full and kernel methods, instead,

performs equally good on the respective �̂�0(𝑧) and 𝐺𝑇 (𝑧). Again, the PEM-full approach has an

advantage in having access to the true system parameterization.
Remark 2.9: Bias and model error modeling

The presence of a large bias in the PEM-undermodeling and of a low bias in the kernel cases

should bring to the employment of a model error model approach to describe the modeling

uncertainty set (see Section 1.4.3). However, the main use of kernel methods is exactly to

avoid this bias modeling due to its negligible nature with respect to the modeling variance. In

the PEM-undermodeling case, an uncertainty region that considers also a model error model

would bring �̂�𝑇 (𝑧) to increase considerably, thus attaining a lower critical frequency 𝜔𝑐,�̂�𝑇 that

would have impacted negatively the design of the performance weight �̂�𝑆 (𝑧), leading to a not

adequate controller tuning.

2.3.3 Robust performance results and discussion

The robust performance simulation is done with the same setup of the robust stability and nominal

performance. Furthermore, the parameters of the robust performance multi-objective problem is set

as: 𝑙𝑔 = 120𝑑𝐵, ℎ𝑔_𝑚𝑖𝑛 = −50𝑑𝐵 and 𝜔𝑐_𝑚𝑖𝑛 = 1𝑟𝑎𝑑/𝑠. We simulated only our proposed method with

the three identification setup, since the disadvantages of manual design are already explained in the

robust stability and nominal performance simulation.

The images of Figure 50 show the ∥H (𝑧,ρ)∥1 (straight line) resulting from the robust performance

design with data-driven 𝑆/𝑇 mixed-sensitivity loop-shaping. All colored curves are below to the

constraint (dashed line), this means that the three controllers (one of each identification setup) guarantee

that all systems, that belong to the uncertainty model, agree with the performance requirements. For a
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(a) Closed-loop step responses of PEM with un-
dermodeling.

(b) Closed-loop step responses of PEM-full.

(c) Closed-loop step responses of kernel.

Figure 49: (Continuous line) Closed-loop unit step responses on nominal model �̂�0(𝑧). (Dotted line)
Closed-loop unit step responses on the true system 𝐺𝑇 (𝑧). (Dashed lines) Performance requirements
(𝑜, ℓ̂) estimated from problem (2.35). In the PEM-undermodeling case the designed controller makes the
true system unstable. In the PEM-full case, the response on the nominal model and true system overlap.

further analysis, the images of Figure 54 illustrate the robust performance tests (2.8) for all three cases

by using �̂�𝑇 (𝑧). As we expect, all solutions meet the two robust performance constraints. Another

graphical representation of the robust performance condition is depicted in the images of Figure 51:

these show the sensitivity function of all dynamic systems of the validation set. Since the controller

has the robust performance aim, all sampled curves are less than �̂�𝑆 (𝑧). Nevertheless, due to the bias

in the PEM undermodeling identification, this is misleading, since the performance of 𝐺𝑇 (𝑧) in the

time domain are different respect to the identified uncertain model.

Figure 52 reports the IAE (see equation (2.40)) distribution for the PEM undermodeling (left), PEM

full (center) and kernel (right) of the 𝑛𝑣 closed-loop unit step responses �̂�𝑠𝑡𝑒𝑝 (𝑡). The black and green

stars represent the IAE of the closed-loop unit step responses of the real system coupled with the

100



Data-driven mixed-sensitivity control with automated weighting functions selection

Figure 50: Analysis of the robust performance test
���̂�𝑆 (𝑧)𝑆0(𝑧, �̂� (𝑧))

�� + ���̂�𝑇 (𝑧)𝑇0(𝑧, �̂� (𝑧))
�� < 1 with all

identification methods. Specifically, the images represent the results obtained with the three identification
methods: (Left) PEM undermodeling (Center) PEM-full and (Right) kernel-based.

Figure 51: Performance analysis of the sensitivity functions computed by the sampled system from
the validation set, denoted as 𝑆𝑝 (𝑧, �̂� (𝑧)) = 1

1+𝐺𝑝 (𝑧)�̂� (𝑧)
. All sampled systems are compared to the

inverse of the performance weight. Specifically, the images represent the results obtained with the three
identification methods: (Left) PEM undermodeling (Center) PEM-full and (Right) kernel-based.

controllers resulted from the three mixed sensitivity loop-shaping, one for each identification setting.

Using the kernel and PEM full identification methods, the star belongs to the validation distribution

of the 𝑛𝑣 closed-loop system. Instead, with the PEM undermodeling the star does not belongs to the

distribution, since the bias cause the instability of the true closed-loop system and so the overshoot

and settling time of the true step response is out of scale. The images of Figure 53 depict the same

representation of Figure 52, but considering the settling time (Figure 53a) and overshoot (Figure 48b)

indices.
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Figure 52: Integral Absolute Error of the closed-loop unit step response, over 𝑛𝑣 = 200 sampled systems
from the estimated parameters distributions. PEM u.m. stands for PEM undermodeling. The black and
green stars correspond to the performance indices obtained with 𝐺𝑇 (𝑧). The PEM u.m. star is out of
scale.

(a) Settling time index analisys. (b) Overshoot index analisys.

Figure 53: Performance indices analysis of the closed-loop unit step response, over 𝑛𝑣 = 200 randomly
sampled systems from the estimated parameters distribution. PEM u.m. stands for PEM undermodeling.
The black and green stars correspond to the performance indices obtained with 𝐺𝑇 (𝑧). The PEM u.m.
stars are out of scale.

Remark 2.10

The proposed method for the robust performance problem gives an automatic design of the

performance requirements, found by the optimization problem (2.37). These are not so inter-

pretable as in the nominal performance and robust stability setting. Indeed, we cannot check if

whole distribution complies with some time domain constraints.
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(a) Constraints analisys of PEM undermodeling.

(b) Constraints analisys of PEM-full.

(c) Constraints analisys of kernel identification.

Figure 54: (Left) (continuous line) Closed-loop complementary sensitivity function 𝑇0(𝑧) using the es-
timated controller �̂� (𝑧). (Dashed line) Inverse of the uncertainty weight �̂�𝑇 (𝑧), that should lie above
𝑇0(𝑧). (Right) (continuous line) Uncertain closed-loop sensitivity function �̂�0 (𝑧)

1+�̂�𝑇 (𝑧)�̂�0 (𝑧,�̂� (𝑧) )
. (Dashed

line) Inverse of the performance weight �̂�𝑆 (𝑧), that should lie above the uncertain closed-loop sensitivity
function.

2.4 Computational aspects

This section describes practical aspects that might be of interest to the practitioner. The results were

obtained using Matlab software packages.
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2.4.1 Computation of �̂�0(𝑧)

In the PEM cases, we fixed an OE(𝑛𝑏, 𝑛 𝑓 ) model structure with 𝑛𝑏, 𝑛 𝑓 the numerator and denominator

orders, respectively, with 0 pure input/output delay. The search for the optimal model is performed by

fixing the same 𝑛oe = 𝑛𝑏 = 𝑛 𝑓 value for both the model orders.

In the kernel identification, first the kernel hyperparameters are estimated by optimizing the marginal

likelihood developed with the Cholesky decomposition (A.19), assuming a known noise variance. The

optimization is performed by fmincon where positiveness bound are placed on the hyperparameters.

Then, a FIR model of order 𝑚 = 100 is estimated.

2.4.2 Computation of �̂�𝑇 (𝑧)

The uncertainty weight estimation is based on fitting the frequency domain data Ω(𝑒 𝑗𝜔𝑚) in (2.21)

with the function fitmagfrd, that estimates a stable proper continuous time transfer function model,

solving a log-Chebyshev magnitude filter design [123, Chapter 6]. The function allows constraints

on the filter magnitude, so we imposed that |�̂�𝑇 (𝑠) | > Ω(𝑒 𝑗𝜔𝑚) + 𝜖 , with 𝜖 = 2.2 · 10−16. We also

weighted 100 times more the fit to the frequencies in the range
[
10−3, 100] rad/s. The order of �̂�𝑇 (𝑠)

is fixed to 2. Then, �̂�𝑇 (𝑠) is converted to discrete time using the ’matched’ option of the c2d

command.

2.4.3 Computation of �̂�𝑆 (𝑧)

The estimation of the performance weight is the most computational cumbersome part of the proposed

algorithm, The resolution of robust stability and nominal performance problem (2.35) is implemented

using the function gamultiobjwith a limit of 50 iterations. The nonlinear constraint (2.35b) requires

to solve an H∞ control design problem with �̂�𝑇 (𝑧) the actual value of �̂�𝑆 (𝑧). This is solved by the

hinfstruct function, considering 10 different initializations of the optimization procedure. This

command solves theH∞ norm with a fixed controller structure.

The design of �̂�𝑆 (𝑧) follows this rationale. First, a continuous time reference model 𝑇𝑑 (𝑠) (2.30)

is defined using the actual values of (𝑜, ℓ̂). The magnitude of 𝑊𝑆 (𝑠) = 1 − 𝑇𝑑 (𝑠) is sampled in the

frequency gridW. Then, a continuous-time transfer function of order 20 is fit with the fitmagfrd

command (with default options). This guarantees that the resulting transfer function is stable and

proper. Note that the samples are injected to the function as lower bound data. The function is then

converted to discrete time obtaining �̂�𝑆 (𝑧), using the ’matched’ option of the c2d command.
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The robust performance problem (2.37) is solved with the computational aspects as the nominal per-

formance and robust stability, while the design of �̂�𝑆 (𝑧) from 𝑙𝑔, ℎ𝑔, 𝜔𝑐 is done with the makeweight

command specifying the sampling time and default options.

For both problems the final designed controller is again fit with the hinfstruct command, with

�̂� (𝑧), �̂�𝑇 (𝑧) and �̂�𝑆 (𝑧).

2.5 Conclusion

We presented a data-driven mixed-sensitivity control design approach for SISO LTI systems embedded

with automated tuning of the weighting functions. The approach leverages concepts from Robust

identification and methods for assessing the bias and variance of the estimated model. We show how

kernel methods can cope well with the bias problem, allowing an estimation of the model uncertainty

region without the explicit need for building a model error model as in standard literature. We propose

two multi-objective optimization problems for tuning the performance weight: one that guarantees the

nominal performance and robust stability and another that designs a robust performance controller.

The former optimization problem allows to design the performance weight whose requirements are

interpretable for the designer and given in terms of closed-loop unit step response overshoot and settling

time. The performance weight resulting from the latter is less interpretable since the requirements are

given in terms frequency parameters of a monotonic gain profile filter.
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Chapter 3. Data-driven mixed-sensitivity loop-shaping for

multi-model systems

This chapter presents an extension of the proposed method explained in Chapter 2. In particular,

the data-driven 𝑆/𝑇 mixed-sensitivity loop-shaping deals only with the uncertainty introduced by the

measurement noise. In some practical applications, the proposed method is not enough flexible. This

extension aims to design a robust controller which guarantees robust stability to deal with multiple

sources of uncertainties.
Remark 3.1

This chapter describes the theoretical contributions of the proposed method. Instead, the

practical application will be described in Section 5.

3.1 Motivation

Often, some complex systems are afflicted by multiple sources of uncertainty, in addition to the plant

model uncertainty. These translate into a large variation of the model parameters or of the model

structure. Usually, in the control theory literature, this typology of models is designed as a multi-model

dynamic system. Specifically, this is defined as the combination of a finite number of simple local

models endowed by an uncertainty region [124, Chaper 9]. This region is called validity region and it

is defined by choosing an upper bound that constraints the euclidean norm of the model error. To assess

which validity region contains the local model, a validity function is defined. This can be modeled as

a probability function or as a fuzzy function. The latter is applicable if the validity regions are seen as

fuzzy sets [125]. Note that, the fuzzy logic theory is useful with a priori qualitative knowledge.

The multi-model can be casted to a single global model by using an interpolation technique. This

procedure is complex and it needs of local models with same model structure. However, it allows to

simplify the control design, since the global model is more easy to handle than the multi-model.

In literature, the multi-model design is also used to represent the nonlinear systems with multiple

linear local models that approximates the true systems in different operational points [124, Chaper 9].

Note that each local model, endowed by its validity region, can be seen as an uncertain system (Section

1.1), so the multi-model dynamic system can be represented also as anΔ−𝑀 model by using the Linear

Fractional Transformation. The elements of the diagonal of the matrix Δ contain the information of

the validity region. Instead, M (𝑠) is a matrix in which each element of the diagonal is the nominal
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transfer function of a local model. In doing so, the robust control techniques can be used. An example

of this methodology applied to a flight control system is described in [126]. The main disadvantage

of this method is to select the weighting filters for each local model. An alternative technique is to

design a matrix of controllers, i.e. one for each local model. This is called nonlinear structured

controller. The so called two-stage interpolation algorithm is employed to limit the usage of the active

controllers. It selects which controllers are active in accordance with which local models are currently

used [124, Chaper 9]. The latter control design technique is closely related to the gain-scheduling

controller design. Typically, these methods employ a fixed single or multi-loop control structures.

The gain values of the controllers are embedded in lookup tables and the functions that selects the

gain values are called scheduling variables. A withdraw of the gain scheduling control is that it does

not guarantee any stability or performance during a rapid change of the variables [127].

Our proposed method identifies a single system endowed with a global output multiplicative un-

structured uncertainty, which assesses the variability region of all local models, through multiple

kernel-based identifications. In particular, it avoids the design on multiple weighting filters and it

simplifies also the interpolation technique of local models. The resulting single robust controllers

avoids the usage of the scheduling variables.

3.2 Data-driven weights design for 𝑆/𝑇 mixed-sensitivity loop-shaping for

multi-model systems

Consider a multi-model system, the goal is to design a fixed-order controller 𝐾 (𝑧,ρ), parametrized

by the parameters vector ρ ∈ R𝑛𝜌×1, by minimizing the 𝑆/𝑇 mixed-sensitivity cost function (2.1), as

described in Section 2.1.1.

With multi-model systems, the problem shifts from unstructured uncertainty modeling to structured

uncertainty modeling with linear and nonlinear uncertainties. As suggested by [16, Chaper 7], this

general structured uncertainty can be also represented as a general output multiplicative1 unstructured

uncertainty, provided that the uncertainty poles (if exist), which belong to the uncertainty set, do not

change the half-planes (from right half plane to left half plane and vice-versa)2. This consideration

plays a key role to cast the multi-model dynamic system into a single general system endowed

1The multiplicative uncertainty is preferred to the additive uncertainty model because their numerical values are more
informative.
2If the system has this characteristic, the unstructured uncertainty should be designed as inverse multiplicative output
model.
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with unstructured uncertainty that models both parameter variations and model variance. Thus, the

innovation aims to identify this general model by exploiting the low-bias kernel-based identification.

Note that, the experimental design is fundamental. Thus, we assume that the user only knows the

boundary configurations, i.e. the configurations which are considered as the limit operational point.

This assumption is not essential but allows us to handle the problem in a simpler way.

Remark 3.2

From a practical point of view, the boundary configurations knowledge is more common to

recognize with respect to the traditional approach, where the parametric model is evaluated by

its parameters range.

Figure 55 shows the frequency response of the boundary configurations. The boundary configurations

are denoted with 𝐺𝐵𝑈 (𝑧) the highest condition, represented in the red line, and 𝐺𝐵𝐿 (𝑧) for the lowest

condition, depicted in the blue line. The highlighted yellow region contains the other configurations.
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Figure 55: Example of the boundary conditions frequency response.

The experimental design involves two experiments, one for each condition, linked by a transient sector.

The overall dataset is chosen as:

D𝑐=

{
𝑢(1), ..., 𝑢(𝑛), 0, ..., 0, 𝑢(1), ..., 𝑢(𝑛), 𝑦𝐵𝑈 (1), ..., 𝑦𝐵𝑈

(
𝑛+ 𝑏

2

)
, 𝑦𝐵𝐿 (1), ..., 𝑦𝐵𝐿

(
𝑛+ 𝑏

2

)}
, (3.1)

where 𝑏 is the number of samples that belong to the null sector. The transient sector is set up as a

null sector, which avoids possible discontinuities between the two configurations. The input given to

the two conditions is quite similar since the only variation is that: the upper boundary condition input

ends with half of the null sector, instead the lower boundary condition begins with the half of the null

sector.

Thus, using the kernel-based identification, the following dynamic systems are identified:
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• �̂�𝐵𝑈 (𝑧) by employing the sub-dataset D𝑢 = {𝑢(1), ..., 𝑢(𝑛), 𝑦𝐵𝑈 (1), ..., 𝑦𝐵𝑈 (𝑛)};

• �̂�𝐵𝐿 (𝑧) by employing the sub-dataset D𝑙 = {𝑢(1), ..., 𝑢(𝑛), 𝑦𝐵𝐿 (1), ..., 𝑦𝐵𝐿 (𝑛)};

• �̂�0𝑔 (𝑧) by employing the dataset D𝑐. This represents the average dynamic system between the

boundary conditions3,
4.

Remark 3.3

If the boundary conditions are not known, this procedure is easily scalable to design a single

huge experiment which contains all configurations. Then, the above multiple identification

procedures can be adapted.

A nonparametric sampled estimation of the magnitude of the overall uncertainty is computed by

exploiting the equations (2.21) (2.23), where:

• The parameters vector of the high-order FIR 𝐺 𝑝 (𝑧) is sampled from the two posterior distribu-

tions: β𝐵𝑈 |y𝐵𝑈 ∼ N
(
β̂𝐵𝑈 , �̂�𝐵𝑈

)
and β𝐵𝐿 |y𝐵𝐿 ∼ N

(
β̂𝐵𝐿 , �̂�𝐵𝐿

)
;

• The number of extraction 𝑛𝑝 (see the proposition 2.2) are equally sampled between the two

distributions;

• The nominal dynamic system used in (2.21) is replaced by the mean dynamic system �̂�0𝑔 (𝑧).

Therefore, the computation of the overall nonparametric sampled estimate of the magnitude of𝑊𝑇 (𝑧)

becomes: ���̂�𝑇 (𝑒 𝑗𝜔𝑚)
�� = max

𝑝

����� 𝐺 𝑝 (𝑒 𝑗𝜔𝑚)
�̂�0𝑔 (𝑒 𝑗𝜔𝑚)

− 1

����� , ∀𝜔𝑚 ∈ W . (3.2)

After, as for SISO systems, a stable and proper parametric model is obtained by fitting a model to the

resulting magnitude, as in Section 2.2.1.
Remark 3.4

The proposed procedure is convenient due to the low-bias nature of the kernel-based identifica-

tion, otherwise, in presence of bias, the construction of the general distribution is not reliable

and therefore, the resulting robust controller is useless.

Finally, the automatic design of the performance weight for nominal performance (described in Section

2.2.2) or robust performance (described in Section 2.2.3) is applied using the average dynamic system

�̂�0𝑔 (𝑧) and the overall uncertainty �̂�𝑇 (𝑧).
3The kernel-based identification applied to a dataset composed of two experiments performed on two different systems
returns a model that is the average of the two systems.
4Note that the average model shouldn’t represent real systems, but this is used only as a mathematical tool.
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Algorithm 4: Design of �̂�𝑇 (𝑧) and �̂�𝑆 (𝑧) for multi-model systems
Input: �̂�0𝑔 (𝑧), β̂𝐵𝑈 , �̂�𝐵𝑈 , β̂𝐵𝐿 , �̂�𝐵𝐿W, 𝑛𝑝

1 𝑝 = 0
2 while 𝑝 < 𝑛𝑝/2 do
3 Draw β𝑝 ∼ N

(
β̂𝐵𝑈 , �̂�𝐵𝑈

)
using β𝐵𝑈 |y𝐵𝑈

4 Set 𝐺 𝑝 = 𝐺 (𝑧,β𝑝) as in (2.19)
5 end while
6 while 𝑝 < 𝑛𝑝/2 do
7 Draw β𝑝 ∼ N

(
β̂𝐵𝐿 , �̂�𝐵𝐿

)
using β𝐵𝐿 |y𝐵𝐿

8 Set 𝐺 𝑝 = 𝐺 (𝑧,β𝑝) as in (2.19)
9 end while

10 Compute
�̂�𝑇

(
𝑒 𝑗𝜔𝑚

) from (3.2) usingW
11 Fit a stable proper parametric model �̂�𝑇 (𝑧) on frequency domain magnitude data obtained in

Step 12
12 Perform Algorithm 2 or Algorithm 3 to compute �̂�𝑆 (𝑧) for robust stability and nominal

performance or robust performance
Output: �̂�𝑇 (𝑧), �̂�𝑆 (𝑧)

Remark 3.5

This methodology is also applicable to designing a fault-tolerant controller. The two boundary

configurations represent the healthy and faulty states. It is possible since the fault condition is

a priori known. Therefore, the robust controller works in both states, without any unexpected

behaviour. The main advantage of a robust methodology employed to design a fault-tolerant

controller is that the resulting robust controller does not change according to plant conditions

[128, 48].

3.3 Conclusion and final remarks

We presented an extension of the methodology described in the previous chapter. The robust con-

troller deals with the control of multi-model systems. The rationale consists of designing a general

experiment, which contains information about the boundary conditions (given by the knowledge of

the system). The boundary conditions allow to simplify the problem, but their knowledge is not

mandatory. Then, the automatic uncertainty weight is given by multiple kernel-based system iden-

tification. Doing so, the multi-model system can be represented as an uncertain LTI SISO system,

where the uncertainty contains both variance uncertainty and parameters uncertainty. This general

uncertain system is employed to automatically design the weight functions employed in the 𝑆/𝑇
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mixed-sensitivity loop-shaping since the overall uncertainty is converted into an unstructured output

multiplicative uncertainty. In Chapter 5, our proposed method is tested in a real multi-model system.
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Chapter 4. Data-driven robust residual generator

This chapter presents another theoretical contribution. The idea is to design a robust residual generator

based on the model uncertainty information, designed by the automatic uncertainty weight design,

proposed in Chapter 2. The robust residual generator is modeled by the stable coprime factorization

methodology. Specifically, we employ the Approximate Fault Detection Problem (AFDP) [27].

Finally, we test the proposed method on a benchmark problem to evaluate the diagnosis performances.

4.1 Motivation

Model-based fault diagnosis employs a model that acts as a digital twin of the fault-free plant. The

model is developed by a model identification procedure. In this way, the model uncertainties are

implicitly accepted, as described in Section 1.1. Usually, in literature, the uncertainties can be seen

as an additive fictitious noise1. With this insight, the robust counterparts of the three fault diagnosis

methods, described in Section 1.3, can be employed to generate a robust residual generator which

decouples the noise with respect to the residual signal. Note that, the robustness of a residual generator

is important because allows for reducing false alarms.

In fault diagnosis literature, the uncertainty information is considered known and modeled in 𝐺𝑣 (𝑧)

(the transfer function from noise 𝑣(𝑡) to the output 𝑦(𝑡)). In this setting, the so-called Approximate

Fault Detection Problem (AFDP) is applicable, since 𝑣(𝑡) ≠ 0. This method guarantees that the

generated residual is insensitive to disturbance and low sensible to noise. As reviewed in Section

1.3.1, AFDP designs a filter by minimizing a cost function which is proportional to the sensitivity

of the residual to a fault and inversely proportional to the uncertainties, described as unknown input

noise. In [74], the authors solved AFDP by employing the robust synthesis method. Instead, in [76]

and [75], the robust residual generator is coupled with a robust controller both designed with robust

control synthesis.

By modeling the uncertainties as unknown but bounded noise, the Set membership identification can

be used to develop a robust fault diagnosis technique, as proposed in [129, 130]. Specifically, these

solve the problem of robustness by the passive technique (see Section 1.3.4). The paper [131] proposes

a method that reconstructs the input and output signals of Δ(𝑧) block in an LFT representation. In

1The authors of [28] models the uncertainty as fictitious disturbance, but the meaning does not change, since the only
difference is that the disturbance can be fully decoupled from the residuals, instead the input noise cannot be fully
decoupled, but only reduced.
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particular, by assuming that the uncertainty block is bounded by 1, the output signal must be less than

the input in a fault-free case, otherwise, the system has a fault.

We propose a method which exploits the kernel-based identification to obtain a nominal model endowed

by its uncertainty quantity. Therefore, using the LFT representation, i.e. modeling the uncertainty

as an unstructured output multiplicative uncertainty, the Approximate Fault Detection Problem is

solved by employing the identified uncertainty. The resulting robust residual generator is obtained

without exploiting any user’s knowledge. Furthermore, we propose an automatic threshold design to

compensate for the remaining noise components in the residual signal.

4.2 Data-driven robust residual design

Let a SISO LTI dynamic system by considering an additive output noise term and the fault:

𝑦(𝑡) = 𝐺𝑇 (𝑧)𝑢(𝑡) + 𝐺 𝑓 (𝑧) 𝑓 (𝑡) + 𝑒(𝑡) , (4.1)

with:

• 𝑓 (𝑡) represents the unknown fault signal;

• 𝐺 𝑓 (𝑧) is a stable transfer function which describes the relation between the fault and the

output 𝑦(𝑡) signals. Usually, with a sensor fault 𝐺 𝑓 (𝑧) = 1, instead with an actuator fault

𝐺 𝑓 (𝑧) = 𝐺𝑇 (𝑧). Since 𝐺𝑇 (𝑧) is not available 𝐺 𝑓 (𝑧) is chosen equal to the identified nominal

model �̂�0(𝑧);

• 𝑒(𝑡) is the bounded additive noise signal (see Remark 2.1).

If we consider an uncertain system modeled by an output multiplicative uncertainty, the equation (4.1)

becomes:

𝑦(𝑡) = �̂�0(𝑧)
(
1 + Δ(𝑧)𝑊𝑇 (𝑧)

)
𝑢(𝑡) + 𝐺 𝑓 (𝑧) 𝑓 (𝑡) + 𝑒(𝑡) , (4.2)

where: ∥Δ∥ (𝑧) ≤ 1 represents the uncertainty (unknown and bounded),𝑊𝑇 (𝑧) is a proper and stable

transfer function which describes the uncertainty weight function and �̂�0(𝑧) is the nominal transfer

function.

As described in [27, Chapter 2], the uncertainties are modeled as a fictitious noise 𝑣(𝑡), so the output

signal can be written as:

𝑦(𝑡) = �̂�0(𝑧)𝑢(𝑡) + 𝐺𝑣 (𝑧)𝑣(𝑡) + 𝐺 𝑓 (𝑧) 𝑓 (𝑡) , (4.3)

where 𝐺𝑣 (𝑧) is a transfer function between the unknown noise 𝑣(𝑡) and 𝑦(𝑡).
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By matching the two output representations (4.2) and (4.3), we implicitly impose the following

equality:

𝐺𝑣 (𝑧)𝑣(𝑡) = �̂�0(𝑧)Δ(𝑧)𝑊𝑇 (𝑧)𝑢(𝑡) + 𝑒(𝑡) , (4.4)

where the noise term contains both output noise and fictitious noise. Our proposed method employs

the kernel-based identification to estimate �̂�0(𝑧) and �̂�𝑇 (𝑧), through the algorithm 1 from the dataset

D = {𝑢(1), ..., 𝑢(𝑛), 𝑦(1), ..., 𝑦(𝑛)} modeled by (4.1), where: 𝑛 number of measured sampled, 𝑦(𝑡)

noisy measurements in healthy state and 𝑢(𝑡) is the input signal.

We estimate the uncertainty weight �̂�𝑇 (𝑧) as in 2.2.1, thus the equality (4.4) becomes:

𝐺𝑣 (𝑧)𝑣(𝑡) = �̂�0(𝑧)�̂�𝑇 (𝑧)𝑢(𝑡) + 𝑒(𝑡) . (4.5)

Thanks to this equality, we set 𝐺𝑣 (𝑧) =
[
�̂�0(𝑧)�̂�𝑇 (𝑧) 1

]
and 𝑣(𝑡) =

[
𝑢(𝑡) 𝑒(𝑡)

]⊤
. In light of this,

the robust residual generator can be designed by rewriting the cost function of AFDP (1.55), as:

�̂�(𝑧) = max
𝑄(𝑧)

𝑄(𝑧)�̂� (𝑧)𝐺 𝑓 (𝑧)

∞𝑄(𝑧)�̂� (𝑧) [�̂�0(𝑧)�̂�𝑇 (𝑧) 1

]
∞
, (4.6)

where �̂� (𝑧) is derived from the left coprime factorization of �̂�0(𝑧) and𝑄(𝑧) ∈ RH∞ is the post filter.

The optimization problem (4.6) can be solved as proposed in [27, Chapter 5.3]. The authors assume

that the denominator is infinity norm bounded, this meets our Assumption 2.1 on the additive noise

applied to 𝑦(𝑡). Specifically, the filter synthesis goal is to find the optimal post filter that maximizes

the fault sensitivity, given: 𝑄(𝑧)�̂� (𝑧) [�̂�0(𝑧)�̂�𝑇 (𝑧) 1
]
∞ ≤ 𝛾 , (4.7)

with a priori known 𝛾 ≥ 0. Thus, the optimal filter produces 𝛽 > 0, such that:

𝛽 = max
𝑄(𝑧)

{𝑄(𝑧)�̂� (𝑧)𝐺 𝑓 (𝑧)

∞

����� 𝑄(𝑧)�̂� (𝑧) [�̂�0(𝑧)�̂�𝑇 (𝑧) 1
]
∞ ≤ 𝛾

}
. (4.8)

The value 𝛽/𝛾 is a decoupling performance index, with 𝛾 = 0 the AFDP corresponds to EFDP. This

means that if 𝛽/𝛾 is high, the decoupling performance will be better. The solution of the optimization

problem (4.6),solve by (4.8), returns the least order robust residual generator filter �̂�(𝑧). Specifically,

the resulting residual generator filter is composed as Q̃(𝑧)= [�̂�(𝑧)�̂� (𝑧),−�̂�(𝑧)�̂� (𝑧)].
Remark 4.1

Due to the low bias of the kernel-based system identification the model uncertainty corresponds

to the noise-induced uncertainty, therefore the generated robust residual generator works also

with the true plant.
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Algorithm 5: Synthesis of Q̃(𝑧) with automatic design of �̂�𝑇 (𝑧)
Input: β̂, �̂�,W, 𝑛𝑝, 𝛾

1 Compute �̂�𝑇 (𝑧) by using the Algorithm 1
2 Synthesis of the least-order robust residual generator filter Q̃(𝑧) by optimizing

�̂�(𝑧) = max
𝑄(𝑧)

∥𝑄(𝑧)�̂� (𝑧)𝐺 𝑓 (𝑧)∥∞
∥𝑄(𝑧)�̂� (𝑧)[�̂�0 (𝑧)�̂�𝑇 (𝑧) 1] ∥∞

. This is done through the algorithm proposed in [27,

Chapter 5.3], by setting 𝛾. This algorithm returns also the performance indicator 𝛽/𝛾.
Output: Q̃(𝑧),𝛽/𝛾

Since the sources of the fictitious noise in our case is known, we propose also an automatic threshold

selection method, in line with the advice of [27, Chapter 5]:

𝜏 = 𝛾 ·max {∥𝑢(𝑡)∥∞ , ∥𝑒(𝑡)∥∞} . (4.9)

This is useful since the optimization of (4.6) reduces the impact of the fictitious noise, but does

not avoid it entirely. So, the residual signal can be different from zero when the system is healthy.

As described in Section 1.3, there is a necessity to implement a threshold that further reduces false

alarms. Our choice is devoted to detecting the worst case of the residual signal in healthy conditions.

Therefore, by complying with the Assumption 2.1 and by assuming that the bound value is known,

we can define de threshold by multiplying 𝛾 with respect to maximum between of the infinity norm

of input of of the noise. To do so we need to assume that the noise bound is known. Finally, if the

residual signal overtakes the selected threshold 𝜏, the system is considered faulty.

Remark 4.2

Note that the knowledge of the fictitious noise is not employed during the post filter estimation,

but in the threshold selection, therefore we exploit all the information gathered during the system

identification procedure.

Algorithm 6: Fault detection algorithm
Input: Q̃(𝑧), �̂�0(𝑧), 𝛾, 𝑢(𝑡), 𝑦(𝑡)

1 Compute the threshold 𝜏 using (4.9)
2 Compute the residual signal 𝑟 (𝑡) = �̂�(𝑧)�̂� (𝑧)𝑦(𝑡) − �̂�(𝑧)�̂� (𝑧)𝑢(𝑡)
3 Compare 𝜏 with respect to |𝑟 (𝑡) |:

• If |𝑟 (𝑡) | > 𝜏 then 𝑓 (𝑡) = 1;

• If |𝑟 (𝑡) | < 𝜏 then 𝑓 (𝑡) = 0.

Output: 𝑓 (𝑡)
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4.3 Experimental results

The proposed method is tested on a benchmark plant, proposed in [28, Chapter 3]:

𝐺𝑇 (𝑠) =
47619

𝑠3 + 234.0136𝑠2 + 6857.1𝑠 + 5442.2
. (4.10)

The identification is done with a white noise input signal with mean 0, variance 1, sample time𝑇𝑠 = 0.1𝑠

and 𝑛 = 5000 samples. The output signal is corrupted with additive bounded noise 𝑒(𝑡). The signal to

noise ratio of the output signal is 𝑆𝑁𝑅 = var [𝑦𝑇 (𝑡)] /var [𝑒(𝑡)] = 9. The first 1000 samples are not

considered to avoid the transitory effect. The FIR order for the kernel-based identification is 𝑚 = 100.

The automatic design of �̂�𝑇 (𝑧) is done by choosing 𝜁 = 0.05 and 𝜀 = 0.01, the number of sampled

system is set as 𝑛𝑝 = 18445 by following (2.24). Instead, the number of sampled frequencies is set to

𝑛𝑚 = 600, logarithmically spaced in the range
[
10−3, 𝜋 𝑓𝑠

]
rad/s.

Figure 56 shows on the left image the identification results and on the right image the uncertainty

weight resulting from the automatic design.

Figure 56: (Left) Identification results, where: the dashed line is the true system instead the straight
line represents the identified discrete model by using the kernel based identification (Right) Uncertainty
weight 𝑊𝑇 (𝑧) estimation, where: the continuous line is the magnitude of the parametric model �̂�𝑇 (𝑧),
the dots line is the nonparametric estimate Ω(𝑒 𝑗𝜔𝑚) and the dashed lines represent The gain of the
frequency response of 𝐺𝑝 (𝑧)

�̂�0 (𝑧)
− 1, where the systems 𝐺 𝑝 (𝑧) are drawn from the sampling distribution of

the parameters estimates. The dashed lines are a subset of the 𝑛𝑝 systems for graphical purposes.

Figure 57 depicts the resulting filter �̂�(𝑧) generated from the Algorithm 5 with 𝛾 = 0.1. The filter,

as we expect, has the inverse frequency response of the uncertainty weight �̂�𝑇 (𝑧). This means that

�̂�(𝑧) filters out the components of the residual signal that belong to the most relevant frequencies in

the frequency response of the uncertainty weight.

The threshold is chosen as the proposed automatic method (4.9). Since all required information to

produce the threshold should be a priori known, the computation is very trivial.

117



Nicholas Valceschini

Figure 57: Comparison between �̂�𝑇 (𝑧) and the resulting �̂�(𝑧).

The resulting residual generator is compared with the non-robust stable coprime factorization residual

generator, modeled as: 𝑟 (𝑡) = �̂� (𝑧)𝑢(𝑡) − �̂� (𝑧)𝑦(𝑡). To proof of the robustness of the proposed

methodology, we have applied a sensor fault modeled as an additive step fault signal that arises at time

250 𝑠 with two different amplitudes: 30 and 3. The images of Figure 58 depict:

• On the top plot the output healthy signal (black dashed line) compared with the faulty output

signal (red line);

• On the middle plot the absolute value of the residual generated by the non-robust residual

generator;

• On the bottom the absolute value generated by the robust residual generator, resulting by our

proposed method, compared to the threshold, selected as in (4.9).

The results show the robustness of our proposed methodology with respect to the non-robust method.

Specifically, both robust and not robust residual signals can detect 𝑓 (𝑡) = 30 · step(𝑡 + 2500𝑇𝑠).

However, the robust residual generator decouples better the noise w.r.t |𝑟 (𝑡) | since the sector of signal

|𝑟 (𝑡ℎ) | (with 𝑡ℎ < 250𝑠) differs little with respect to the sector
��𝑟 (𝑡 𝑓 )�� (with 𝑡 𝑓 > 250𝑠) computed with

the not robust residual generator. Instead, the second simulation shows that the not robust residual

generator cannot detect the fault, while the robust proposed technique detects correctly the fault.

4.4 Conclusions

The proposed method aims to design a data-driven robust residual generator using the system identi-

fication results. The algorithm exploits a kernel-based system identification to model the uncertainty

information as an unstructured multiplicative uncertainty. Furthermore, the uncertainty information

is used to design the least order filter that decouples the uncertainty from the residual signal. The filter
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Not robust residual generator

Proposed robust residual generator

(a) Analisys of residual signal with fault step amplitude as 30

Not robust residual generator

Proposed robust residual generator

(b) Analisys of residual signal with fault step amplitude as 3

Figure 58: Comparison between robust and not robust stable coprime factorization varying the amplitude
of the fault signal. The top image depicts healthy (black line) and faulty (red line) sensed output signals.
The bottom image shows the module of the residual signal computed with the not robust residual generator.
The bottom image illustrates the module of the residual signal computed with the proposed robust residual
generator (black line) and the proposed threshold (red dashed line).
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design is done by solving the Approximate Fault Detection Problem (AFDP), since the uncertainty

model is translated as an additive fictitious noise. Furthermore, we propose also an automatic thresh-

old design. The effectiveness of the proposed method is shown on a benchmark dynamic system.

The results prove that the data-driven robust residual generation detects a sensor fault with the both

proposed fault signals, modeled as an additive step signal. Instead, with low amplitude fault, the not

robust technique fails. Furthermore, the proposed threshold detects correctly the faults.
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Chapter 5. Robust control design for a reconfigurable industrial

oven

This chapter describes a real application that exploits the methodology proposed in Chapter 3. The

rationale is to design a robust controller through the data-driven 𝑆/𝑇 mixed-sensitivity loop-shaping

for multi-model systems. The plant under analysis is an oven for heat shrinking. This system is

complex and configurable. The aim is to design a controller that guarantees robust stability for all

configurations and nominal performance of some requirements automatically designed. The results

are evaluated by comparing the step response of the closed-loop system obtained with the proposed

method and with a manual choice of the uncertainty weight.

5.1 Motivation

The industrial world is a competitive field. This industrial "race" leads to building the cutting-edge

machinery, which often translates into the development of customizable machines. This phenomenon

is not trivial for the control community since these configurations require a complex controller to

guarantee that the plant works with all configurations.

Often, these configurable systems are translated into multi-model systems by the controls engineers.

These multi-model systems can be controlled in different ways, such as gain scheduling control, Model

Predictive Control (MPC) of even by robust control. As already said in Chapter 3, the former does

not guarantee any stability or performance during a rapid change of the variables [127]. Instead,

MPC controls the plant by solving an online optimization problem in real-time [132]. Always,

in the industrial context, the hardware is not sufficient to solve real-time problems. The robust

control literature helps us to avoid these problems by guaranteeing stability and some performance

requirements. We develop a controller which stabilizes the plant under all configurations by solving

an offline optimization problem.

In this work, we apply the methodology presented in Chapter 3 to an industrial oven for shrinking

plastique films.

5.2 Application context

The industrial oven context is considered part of the thermal engineering literature. The thermal

systems taxonomy is mainly: Heat, ventilation and air conditioning system (HVAC), industrial furnace
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and industrial oven. HVAC controls the temperature, humidity, and purity of the air in an enclosed

space. The authors of [133] and [134] have developed a mixed-sensitivity loop-shaping for an HVAC.

In both works, the weight functions are designed manually. Specifically, the first work models the

HVAC with a MIMO dynamic system. These systems are complex to control with mixed-sensitivity

loop-shaping because it leads to a high number of manually tuned weight functions. The second work

exploits a robust control design for an HVAC system applied to an automotive air conditioning system.

The same robust control loop-shaping approach is developed for a thermoforming oven field [135].

Notwithstanding the cons of the gain scheduling and MPC, in [136] and [137], the authors have

developed an MPC controller to regulate the temperature for a different types of furnace. In [138], a

Gain scheduling control is applied to control an HVAC.

Before evaluating the proposed method’s performance, in the next subsection, we describe the prop-

erties of the oven under analysis.

5.3 Oven for heat shrinking

The plant under analysis is an industrial oven. This item is developed for heat shrinking of plastique

film. The plastique film cover different typologies of products, for instance: plastique bottles, glass

bottles or tin cans, etc.

1 2

3

4

5

Figure 59: The industrial oven for heat shrinking with the highlighted hot and cold air flows.

The oven is composed of:

• Main hole: which is the biggest part of the system. It covers all the length of the oven. The

products, wrapped with the film, pass through it and thanks to the high temperature the plastique

film shrinks;

• Three internal fans: which are positioned on the top and equidistantly spaced. Two of these are

powered by a fixed signal, instead the third is controllable;
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• Conveyor belt: which feeds the oven with the products wrapped by the plastique film. Mainly,

it is inside the main hole1. The height position is about at 1/4 (from the floor of the main hole)

of the total main hole height;

• Four external fans: two out of four cool the conveyor belt2, instead, the other two are positioned

over the oven entrance and exit, which cool the products;

• The oven temperature is measured by a single thermocouple positioned at the top center of the

main hole;

• The main hole is flanked by two cavities. They are two parallelepipeds which have the same

height and length as the main hole. These cavities are connected to the main hole with some

lateral slots positioned at 3/4 (from the floor of the main hole) of the total main hole height.

They share the area between the floor of the main hole and the conveyor belt. The slots of the

cavities can be totally closed or totally open;

• Some air deflectors: which are positioned inside the area shared between the cavities and the

main hole shared (under the conveyor belt and over the floor oven). These direct the airflow

without changing the amount of flow;

• Six thermoresistances: which heat the oven. They are powered by the same Pulse-Width

Modulation (PWM) signal. Their positions are into the concavities, three for each. Their

lengths are long as the main hole size;

• Input and output PVC strip curtains: which allow isolating the hot air inside the oven with

respect to the colder ambient air. If the industrial oven is in manufacturing, then the PVC strip

curtains remain open almost all the time (since the wrapped products enter and exit), otherwise,

in the "out of the production" condition, the curtains are closed. They are positioned on the

oven exit and oven entrance.

Figure 59 illustrates the industrial oven. The hot air flows are represented in red arrows and the cold

air flows in blue arrows. The following list explains the meaning of each arrow. Specifically, each list

item number corresponds to the number depicted in Figure 59. The main air flows are:

1A small part of the belt is outside the oven, specifically at the oven entrance and exit.
2They are positioned under the external part of the conveyor belt.
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1. The air inside the oven heats up in the concavities and it flows into the main hole through the

lower shared area. If the lateral slots are open the air recycling is higher since the internal fans

feed the concavities with the main hole air through the slots;

2. The hot air goes out of the oven through the input and output PVC strip curtains. Obviously, if

the oven is in production, then the quantity of this flow is higher than the "out of the production"

condition because the position of the curtains changes;

3. The three internal fans move down the hot air;

4. The movement of the conveyor belt brings the outside air into the oven;

5. The external fans move up the clod air next to the PVC strip curtains.

A robust controller is needed to control all the oven configurations. A non-robust controller can be

ineffective, because the huge configuration variability can lead to undesired oven behaviors.

The main assumptions of the proposed methodology are valid since the boundary configurations are

known and the input and output dataset can be acquired in both conditions. Table 5 reports the best

and worst configurations.

Worst Best

Conveyor belt ON ON

Conveyor belt fans ON OFF

Power frequency internal fans 50𝐻𝑧 50𝐻𝑧

Lateral slots Open Closed

Input and output PVC strip curtains Open Closed

Table 5: Boundary conditions features.
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Remark 5.1

The air deflector configurations are not considered in the analysis of the boundary conditions,

because their impact is much less than the effect of the other features since they direct the flows

without changing the quantity.

5.4 Experimental setup

The input and output signals are acquired through a simulator that simulates both conditions, where the

input is the duty cycle of the PWM of the six thermoresistances and the output is the sensed temperature.

The input signal can vary between 0% to 100%. The simulator is developed to represents all possible

configurations and it faithfully represents the real plant.

According to the experimental design, described in Section 3.2, Figure 60 shows the measured output

data, sampled with sampling time 𝑇𝑠 = 60 𝑠. Specifically:

• We simulated 𝑛 = 4800 samples for each configuration;

• The first and the last 400 samples for both configurations are acquired with null input;

• The first and last 1000 data of the general dataset are discarded to remove initial and final

transitory effects.

Note that the first sector corresponds the output of the industrial oven in the worst condition, instead,

the second represents the output of the best condition. Since the most used duty cycle values are

between the 30% and 90%, the chosen input is an amplitude bounded noise with mean 60 and standard

deviation 30 for both segments.
Remark 5.2

It is important to highlight that the output signal does not contain some discontinuities. This is

fundamental to identifying the mean dynamic system with the kernel-based identification.

The FIR order is set as 𝑚 = 100.

The chosen controller structure is :

𝐾 (𝑧,ρ) = 𝑘 𝑝 + 𝑘𝑖
𝑇𝑠

𝑧 − 1
+ 𝑘𝑑

1
𝑁𝑑 + 𝑇𝑠

𝑧−1

, (5.1)

where ρ =
[
𝑘 𝑝, 𝑘𝑖, 𝑘𝑑 , 𝑁𝑑

]⊤ ∈ R4×1. The multi-objective problem (2.35) is solved by setting 𝛾 =

0.15, 𝑜min = 0.01, ℓmax = 10000 s.
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Figure 60: The measured output signal of the general experiment.

5.5 Experimental results

The design of �̂�𝑆 (𝑧) is designed for robust stability and nominal performance, however the entire

procedure is also applicable for the robust performance aim.

Figure 61a depicts the results of the identification procedure: the best condition is highlighted in

orange, the worst condition in light blue and the average system in grey.

Figure 61b depicts the overall uncertainty �̂�𝑇 (𝑧) estimated by the Algorithm 4.

The controller parameters are estimated by exploiting the Algorithm 2. The images of Figure 62 show

the graphical representation of robust stability and nominal performance constraints. The resulting

controller guarantees the nominal performance and robust stability since the inverse of the weight

functions plus 𝛾 stay-over, respectively, the complementary sensitivity function and the sensitivity

function computed using the average model �̂�0𝑔 (𝑧).

The performance evaluation are done by random sampling the open-loop systems from the Gaussian

distributions N(β̂𝐵𝑈 , �̂�𝐵𝑈) and N(β̂𝐵𝐿 , �̂�𝐵𝐿), specifically 𝑛𝑣 = 200 for both. The step responses

of the resulting 2 · 𝑛𝑣 closed loop systems are depicted in Figure 63. Observe that the performance

constraints (black dashed lines) are valid only for the closed-loop of the system �̂�0𝑔 (𝑧) denoted as

𝑇0𝑔 (𝑧) (grey dashed line) and, as we expect, both constraints are respected.

The performances of the resulting controller obtained with the data-driven mixed-sensitivity loop-

shaping are compared to the performances of a controller synthesized with a manual choice of𝑊𝑇 (𝑧).

Usually, the manual weight function is defined by three parameters: critical frequency 𝜔𝑐, high-

frequency gain ℎ𝑔 and low-frequency gain 𝑙𝑔. In this application example, we consider that:
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(a) Frequency response of the boundary condi-
tions �̂�𝐵𝑈 (𝑧) (in orange), �̂�𝐵𝐿 (𝑧) (in light blue)
and the average system �̂�0𝑔 (𝑧) (in grey).

(b) Overall uncertainty weight𝑊𝑇 (𝑧) estimation.
(Continuous line) Magnitude of the parametric
model �̂�𝑇 (𝑧). (Dots) Nonparametric estimate
Ω(𝑒 𝑗𝜔𝑚). (Dashed line) The gain of the fre-
quency response of 𝐺𝑝 (𝑧)

�̂�0𝑔 (𝑧)
−1, where the systems

𝐺 𝑝 (𝑧) are drawn from the sampling distribution
of the parameters estimates, in particular, the or-
ange lines depict the frequency responses with
𝐺 𝑝 (𝑧) drawn from the best condition distribu-
tion, instead, the light blue lines illustrate the
frequency responses with 𝐺 𝑝 (𝑧) drawn from the
worst condition distribution. The dashed lines are
a subset of the 𝑛𝑝 systems for graphical purposes.

Figure 61: Kernel-based identification and estimation of �̂�𝑇 (𝑧) results.

• 𝑊𝑆 (𝑧) is equal to the �̂�𝑆 (𝑧), i.e. the performance weight resulting from the automatic weight

function design;

• The critical frequency of the manual uncertainty weight is assumed equal to the critical frequency

of �̂�𝑇 (𝑧).

In this way, we greatly simplify the real problem, since we reduce the tuning parameters from 6 (three

for each weight) to 2. Furthermore, we reproduce the trial and error design for the last two tunable

parameters by testing the 𝑆/𝑇 mixed-sensitivity loop-shaping on all pairs of a test grid, structured as

ℎ𝑔 chosen from the vector [10, 20, 30, ..., 100] and 𝑙𝑔 chosen from the vector [−50,−45,−40, ...,−5].

Figures 64 represents the cost function 𝐽 (ρ̂, �̂�0𝑔 (𝑧)) resulting from the manual design for all combi-

nations of ℎ𝑔 and 𝑙𝑔. The red curve represents 1+𝛾: the constraint of the data-driven mixed-sensitivity

loop-shaping. As depicted, only a small subset of the considered manual choices of 𝑊𝑇 (𝑧) agrees

with the constraint.

The images of Figure 65 represent respectively the curves of the indices: IAE, settling time and

overshoot. In all images, the green curve illustrates the performance of the proposed design, instead
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Figure 62: (Left) (Continuous line) Closed-loop complementary sensitivity function 𝑇0𝑔 (𝑧) using the
estimated controller �̂� (𝑧) and the average system. (Dashed line) 1+𝛾/�̂�𝑇 (𝑧), that should lie above 𝑇0𝑔 (𝑧).
(Right) (Continuous line) Uncertain closed-loop sensitivity function 𝑆0𝑔 (𝑧), computed with the estimated
controller �̂� (𝑧) and the average system. (Dashed line) 1+𝛾/�̂�𝑆 (𝑧), that should lie above the uncertain
closed-loop sensitivity function.

Figure 63: Step responses of the 2 · 𝑛𝑣 (𝑛𝑣 for each boundary condition) sampled systems coupled with
the resulting controller �̂� (𝑧), compared to the step response of the average dynamic system denoted as
𝑇0𝑔 (𝑧). The black dashed lines represent the performance constraints for �̂�0𝑔 (𝑧).

the colored curve depicts the performance obtained with the controller designed with the manual

choice of 𝑊𝑇 (𝑧). Both curves illustrate the average performance indices obtained with the sampled

2 · 𝑛𝑣 closed-loop systems. Specifically, the colored curves in:

• The left images represent the curve obtained with the manual design for all couples of ℎ𝑔 and

𝑙𝑔,
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• The right images depict a sections of the colored curves represented in the left images. The

couples ℎ𝑔 and 𝑙𝑔 compose the right curves, if the corresponding cost functions 𝐽 (ρ̂, �̂�0𝑔 (𝑧))

computed with the manual𝑊𝑇 (𝑧) (designed with ℎ𝑔 and 𝑙𝑔) are less than 1+𝛾. Since the couples

that agree with the cost function constraint are six and all of these share the same ℎ𝑔 value, the

right curves are a represented as lines.

For all performance indices, the proposed method behave better than the manual design considering

that 𝑊𝑆 (𝑧) and the critical frequency of 𝑊𝑇 (𝑧) are chosen by employing the results of our automatic

weights design.

Figure 64: Graphical representation of 𝐽 (ρ̂, �̂�0𝑔 (𝑧)) by varying ℎ𝑔 and 𝑙𝑔. The red curve depicts the
relaxed constraint value 1 + 𝛾.

5.6 Conclusions

The automatic weight functions design via kernel-based system identification applied to the mixed-

sensitivity loop-shaping, proposed in Chapter 2, is adapted to handle multi-model systems. To do so, a

general distribution, which embeds all parameters uncertainties and model identification uncertainties,

is developed. A key role is played by the experimental design, as described in Chapter 3.

The proposed methodology is applied to an industrial oven which shrinks plastique films. This

application is complex since the oven has many configurations to operate with different types of films

and wrapped products. The result demonstrates that the data-driven weight functions design:
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(a) Graphical representation of the average of IAE index.

(b) Graphical representation of the average of settling time index.

(c) Graphical representation of the average of overshoot curve index.

Figure 65: All images depict the average values of the performance indices computed on the closed-loop
system obtained by �̂� (𝑧) and the sampled 2 ·𝑛𝑣 dynamic systems. The colored curves represent the results
obtained with the manual design, instead the green curve the results obtained with the proposed design.
Specifically: (Left) Illustrates the performance indices obtained with all couples of ℎ𝑔 and 𝑙𝑔, (Right)
Report a portion of the curves depicted in left images. This section is composed of the couples that meet
with the constraint 𝐽 (ρ̂, �̂�0𝑔 (𝑧)) < 1 + 𝛾 (see Figure 64).

• Avoids the trial and error procedure;
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• Outperforms all combinations of manual design of 𝑊𝑇 (𝑧), despite, in this case, the degrees of

freedom of the problem of weight functions selection are reduced to simplify the comparison.

As already mentioned, the overall uncertain system can be employed to control aims, thanks to the low

bias property of kernel-based identification. On the other hand, if we use a parametric identification

with a wrong selected model family, the resulting overall distribution is biased and thus the uncertain

multi-model system does not represent the real plant. This phenomenon leads to a useless controller

that works with the model, but not with the real plant.
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Chapter 6. Experimental fault detection of input gripping pliers

in bottling plants

This chapter presents a signal-based fault detection scheme for input gripping pliers of the blow

molding machine in plastic bottling plants, using accelerometers data. The focus of the diagnosis

is on the bearings that support the pliers movements on their mechanical cam. The rationale of the

algorithm lies in interpreting the pliers’ bearings as the balls in a traditional rolling bearing. Then,

strategies inspired by bearing diagnosis are employed and adapted to the specific case of this work.

The developed algorithm is validated with experimental tests, following a fault injection step, directly

on the real blow molding machine

6.1 Introduction

A bottling plant is a complex system that manages the entire production cycle for the sale of beverages.

These plants can be large, distributed, and have a complex layout, see [139]. This work focuses on the

production process of PolyEthylene Terephthalate (PET) plastic bottles. In this case, the input material

is usually a rigid plastic preform. The process is composed by a series of sequential operations, covering

e.g.: (i) preform feeding; (ii) heating; (iv) blowing; (iv) bottles filling and capping; (v) labeling; (vi)

transportation along the production line; (vii) packaging and (viii) palletizing, see Figure 66. Each

one of these processing steps is performed by a specialized machine, with their respective mechanical

and electrical components. These machines are most of the times independently controlled, and their

synchronization is performed during the first setup of the plant by an expert operator.

The entire process stops if a machine or a component fails in one the main production steps, often

causing large wastes of wrecked bottles, liquid and caps. Furthermore, if e.g., bottles get stuck in the

blow molding machine, the operator has to manually extract them from the molds or from the pliers,

wasting a lot of useful production time. As an example, the filling and capping machine stops if there

is a lack of bottles from the input pliers, or if there is a tailback of filled bottles at output pliers. The

works of [140, 141] showed how the unscheduled downtime in bottling plants can vary between 10%

and 60% of the total production time. Thus, a fault diagnosis system is highly envisaged to reduce

(and prevent) the time wastes in this kind of production lines.

The concept of fault diagnosis refers to the general usage of specific techniques to assess the status of

a system with respect to its possible faults (for further information see Section 1.3).
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Figure 66: Example of a bottling plant with main machines. The blow molding machine is highlighted as
the main machine considered in this work.

Fault diagnosis approaches in bottling plants have been relatively little addressed in the literature.

Models of chained production lines can be found in the queuing theory of [142]. In [143], the

authors focused on the diagnosis of the filling machine, by employing a type of model-based fault

diagnosis known as consistency-based approach. Here, the whole plant has been modeled with a set

of components, and anomalies in the bottle transport flows are detected. An alternative modeling of

the plant is proposed in [144], where Petri-nets are employed for the detection of bottle overflows,

improver filling valve operation and Infra-Red (IR) sensors monitoring. A decision-tree expert system

is employed in [145], where transition time data are used for detecting faults in a brewery plant.

This work presents a signal-based FD scheme for gripping pliers in bottling plants. The pliers are

present in the blow molding machine. The aim of the input and output pliers is to carry the preforms

and the bottles, respectively, from the input conveyor belt into the blow molding machine and from

the blow molding machine to further processing. The presented literature investigated the modeling

the entire production process, mainly with an higher-level outlook and a focus on the flow of the

bottles material. Instead, we focus our attention on a specific component and on its working behavior.

The aim of this work is to detect the degradation of the posterior bearings used for the movement of

pliers that carry the heated preforms from the oven into the molds of the blow molding machine. The

devised FD algorithm interprets the pliers’ bearing like the ball element in a traditional rolling bearing.

Thanks to this interpretation, signal processing techniques can be employed on accelerometers data to

extract diagnostic information. The application of the proposed diagnostic algorithm on experimental

data shows the goodness of the method.
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6.2 Experimental setup

This section shows: the machinery description, the fault injection design, the testing procedure and

the characteristics of the employed sensors.

6.2.1 System description

The bottling plant under consideration is composed by the following components, see also Figure 67:

1. Input conveyor, that feeds the raw plastic preforms into the plant;

2. Oven, used to heat the plastic preforms;

3. A set of input gripping pliers, that take the overheat preforms and bring them into the blow

molding stage;

4. Blow molding machine, that blows the preforms, now fixed in a mold, into the final bottle format;

5. A set of output gripping pliers, that take the blown bottles from the blow molding machine and

bring them into the filling stage;

6. Filling and capping machine, that fills the blown bottles with a liquid and put the caps;

7. Conveyor belt, that transports the filled and capped bottles;

8. Packing and palletizing machines, that create bottles packs and arrange them for loading and

transportation.

In this work, we consider only the blow molding machine, see Figure 67. This machine is composed

by three important components:

• Carousel, a rotating component that supports one or more stations;

• Stations, i.e. the main component for blowing the preforms. Each station is made up of:

– Mold, that defines the form of the blown bottle;

– Rod, which is used to stretch the heated preform prior to its blowing;

– the blowing system;

• The output and input gripping pliers (the main focus of this study).
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Figure 67: Schematic of the oven and blow molding machines for a plastic bottling plant. The steps of the
production process, from (1) to (8), are highlighted with respect to the components responsible for each
step.

The blow molding machine under consideration has 8 stations and 4 input/output pliers. An example

of a gripping plier is depicted in Figure 68-(left). The pliers lie on a mechanical cam via two sets

of bearings: two posterior and a frontal one. The arms of the plier, responsible for the gripping, are

connected to the frontal bearing. The two sets of bearings (posterior and frontal) are connected by two

springs. The cam is made in such a way that, when the springs stretch (i.e. when the distance between

the two set of bearings is large), the plier arms open due to the retracting of the springs. When this

happens, the preform can enter between the arms. Then, the cam mechanics release the tension on the

springs and the arms close, this time holding the preform. This behaviour is schematized in Figure

69.

When the springs are stretched and the pliers arms open, the posterior and frontal bearings are tightly

attached to the cam structure. In all other cases, the bearings may not be always in contact with the

cam. Thus, we expect to detect a damage on the posterior bearings in the first case, i.e. when the plier

arms are fully open. From Figure 69 we observe that the pliers arms are open when the plier has to

take a preform from the oven, or when it has to release a preform inside the mold of a station.
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Front bearing

Front bearing
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Figure 68: (Left) Upper-view of an input gripping plier with front bearing detail. (Right) Upside down
side-view with posterior bearings, springs and cam detail.
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Figure 69: Opening and closing mechanism of the pliers arms as function of the plier position on the cam.

6.2.2 Fault injection and testing procedure

A damage was injected on posterior bearings in the plier mechanism, by partially removing material

from the bearing surface, see Figure 70.

The blow molding machine operates at a set of production rates. We performed experiments at

1800 rph (revolutions per hour), where each test lasts about 3 min. The tests were performed both with

all healthy pliers and a faulty one. The first preform arrives at the input pliers after 40 s, since they

need to travel inside the oven. Thus, the first 40 s of the input pliers operation are without the load

given by the heated preform.
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Injected fault

Figure 70: Fault injection of posterior pliers bearings.

As can be seen in Figure 70, the fault on the plier bearings can be interpreted as a fault on rolling

balls inside a mechanical bearing. Thus, accelerometers are the best candidate sensor to monitor this

specific kind of fault, see [62].

6.2.3 Sensors and data acquisition

We employed a single axis Hansford HS-170S piezoelectric accelerometer to measure the vibrations

produced by the pliers during their operation. The accelerometer sense over the Z axis, which is the

one orthogonal to the rotation axis of the pliers bearings. Since the pliers rotate, it was necessary to

insert the accelerometer on the fixed structure that supports the pliers mechanics, see Figure 71. The

accelerometers data are then acquired at 12.8 kHz using a NI CompactDAQ hardware.

Z axis

Y

Z X

Figure 71: Considered accelerometer over the Z axis and its positioning on the pliers structure.
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The blow molding machine is able to store variables related to the motors that actuate the input/output

pliers and the carousel. Specifically, it is possible to measure the following motor-related variables: (i)

quadrature current, proportional to their torque; (ii) reference and measured positions; (iii) temperature.

Furthermore, a binary indicator signal 𝑖(𝑡) is present, that changes logical status (from 0 to 1) when a

plier passes in front of a Infrared Sensor sensor, where 𝑡 is the time index. Thus, there are 4 impulses

of this indicator signal for each complete round of the input/output pliers. These machine-related

signals are sampled sampled at 1 kHz.

Due to the fact that the accelerometers and the machine-related signals are sampled with different

sampling frequencies, a synchronization signal has been devised to synchronize the accelerometer and

motors measurements.

6.3 Fault detection of gripping pliers

The accelerometer signals 𝑎(𝑡) can be divided into segments relying on the indicator signal 𝑖(𝑡). Each

segment contains the data between two consecutive impulses in 𝑖(𝑡). Each complete round of the pliers

is thus divided into four segments, that correspond to the four “working quadrants” of the gripping

plier mechanism, see Figure 72.

IR sensor

P4

Q4
Q3

Q2Q1

P3

P2P1
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Figure 72: Schematic of the pliers mechanism. The plier P3 is supposed to have damaged posterior
bearings.

Suppose that the damaged plier is the third one (P3). The bearings of the damaged plier are in close

contact with the inner race of the cam where the springs of the damaged plier are stretched and its
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arms are open. This happens in the in the Q3 and Q4 quadrants. So, we expect the accelerometer

measurements to be sensitive to the fault in these operating conditions.

The main idea behind the fault detection algorithm is to consider the entire gripping pliers machinery

as like as a rolling bearing structure. The analogies between these two mechanical systems are:

• Posterior bearings that support the pliers are thought as a ball inside a rolling bearing;

• Inner race of mechanical cam of the pliers is thought as the inner race of the bearing;

• Outer race of mechanical cam of the pliers is thought as the outer race of the bearing.

Using this abstraction, the accelerometer signals are processed with techniques inspired from bearing

fault diagnosis.

Remark 6.1

As in standard bearing diagnosis, the accelerometer data are relative to a constant rotation

speed.

6.3.1 Fault detection algorithm

Inspired from bearing diagnosis, see [146], the proposed algorithm for posterior bearings fault detec-

tion in input gripping pliers involves the following steps: (i) filtering the raw accelerometer data; (ii)

envelope analysis; (iii) computation of fault indicators.

Data filtering

As a first processing step, it is often useful to bandpass-filter the raw vibration signal, in order to

enhance the fault symptoms with respect to background noise and normal operational vibrations.

The Spectral Kurtosis (SK) provides a mean to determine which frequency bands contain a signal of

“highest impulsiveness”. These impulsive behaviours are supposed to be originated from a fault. The

SK algorithm divides the spectrogram of the signal in frequency bands. For each of these frequency

bands, the kurtosis with respect to time is computed. The result is a kurtosis as function of the

frequency. The kurtogram plot allows to evaluate the kurtosis for different frequencies and frequency

resolutions (length of the frequency window considered for the computation). The kurtogram is used

to select the frequency band [ 𝑓𝑐 − 𝑏 𝑓 , 𝑓𝑐 + 𝑏 𝑓 ] for filtering the raw vibration signal 𝑎(𝑡) into its filtered

version 𝑟 (𝑡).
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Envelope computation

A consolidated technique is that of envelope analysis, where the signal is amplitude demodulated

to form the envelope 𝑟𝑒 (𝑡), that can be more suitable for diagnostic purposes. In standard bearing

analysis, the spectrum of the envelope is computed to look for specific fault frequencies. In our case,

time-domain indicators are more useful since, due to the low rotation speed, it is hard to distinguish

frequency components sensitive to the fault.

Fault indicators extraction

We propose two indicators to monitor the posterior bearings of the pliers:

1. The kurtosis values 𝐾 of the envelope signal 𝑟𝑒 (𝑡);

2. The Root Mean Square (RMS) value 𝑅 of 𝑟𝑒 (𝑡).

The steps for computing the indicators are summarized in Algorithm 7. Then, fault detection is

achieved by comparing one or more of the indicators with specified thresholds defined on healthy data.

Algorithm 7: Fault indicators for gripping pliers
Input: 𝑎(𝑡), 𝑓𝑐, 𝑏 𝑓

1 𝑟 (𝑡) ← Filter the signal 𝑎(𝑡) in [ 𝑓𝑐 − 𝑏 𝑓 , 𝑓𝑐 + 𝑏 𝑓 ] Hz
2 𝑟𝑒 (𝑡) ← Compute the envelope signal of 𝑟 (𝑡)
3 𝐾 ← Extract the Kurtosis of 𝑟𝑒 (𝑡)
4 𝑅 ← Extract the RMS of 𝑟𝑒 (𝑡)
5 𝑅𝑞 ← Extract the RMS of each quadrant 𝑞 of 𝑟𝑒 (𝑡)

Output: 𝐾, 𝑅

6.4 Experimental results

The experimental campaign, as described in Section 6.2.2, is conducted only on the input gripping

pliers. Figure 73 represents the first 40 s of healthy and faulty vibration signals. Although a difference

is already visible on raw data, the proposed processing steps allow to enhance the diagnostic capabilities

of the extracted indicators.

To this end, the raw signal 𝑎(𝑡) is bandpass filtered after bandwith selection with the kurtogram method.

Figure 74 depicts the kurtogram of a faulty signal, where the optimal bandwith with 𝑓𝑐 = 1533 Hz

and 𝑏 𝑓 = 133 Hz is highlighted.

Figure 75 depicts the computed envelope 𝑟𝑒 (𝑡) of the filtered vibration signal 𝑟 (𝑡). Based on this,

the kurtosis and RMS indicators are computed on two healthy experiments (test H1 and test H2) and

143



Nicholas Valceschini

a faulty one (test F). The results, summarized in Table 6, indicate that the kurtosis is particularly

sensitive to the fault, with a percentage variation of about 1617% between healthy and faulty tests.

This variation is computed (both for 𝐾 and 𝑅) between the average value of the indicators from the

two healthy tests, and the indicator from the faulty test.

Figure 73: Example of healthy and faulty vibration signals.

K
max

 = 64.2457 at level , Optimal Window Length = 96, 

 Center Frequency = 1.5333 kHz, Bandwidth = 0.13333 kHz

Figure 74: Kurtogram on faulty data, with indication of the best filtering bandwith.

To better assess the validity of the proposed rationale, we selected the segments of data over one full

round of the pliers, for one healthy and one faulty test. These segments were aligned over a common

time axis for visualization purposes in Figure 76.
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Figure 75: Envelope of healthy and faulty vibration signals.

H1 H2 F % variation

Kurtosis 6.1 5.7 101.3 +1617%

RMS 0.0075 0.0075 0.0165 +120%

Table 6: Kurtosis and RMS of 𝑟𝑒 (𝑡) for each tests.

First, it can be noticed that the envelope signal presents a very high repeatability. Second, the faulty

envelope clearly presents fault symptoms when the damaged plier P3 passes in the quadrants Q3 and

Q4. We detect higher spikes when P3 steps over Q3 since the accelerometer is placed closer to Q3.

When P3 steps over Q4, we detect a lower spike.

Thus, a further possibility would be to compute the kurtosis or the RMS indicators only in the quadrants

Q3 or Q4, i.e. where the springs stretches and fault is more detectable. Figure 77 shows the boxplots

of RMS value of the signal portions depicted in Figure 76, in each one of the four quadrants. The

plot suggests the same conclusions of Figure 76, i.e. the fault is mainly detectable in Q3, due to the

proximity of the accelerometer to the regions of the plier mechanics that are most sensible to the fault.

Remark 6.2

Fault isolation, that is, to understand which plier is faulty, can be accomplished by an additional

sensor able to differentiate the passage of one plier with respect to the others, e.g. by generating

an impulsive signal with a different pulse length for one of the pliers.
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Faulty

test

Healthy

test

P3 over Q1 P3 over Q2 P3 over Q3 P3 over Q4

Figure 76: Overlapped portions of data for each full round of the pliers. The indicator signal 𝑖(𝑡) groups
the data into the four operating quadrant of the pliers. The passages of the faulty plier P3 over the
quadrants are showed.

Q3P1 Q3P2 Q3P3 Q3P4 Q3P1 Q3P2 Q3P3 Q3P4 Q3P1 Q3P2 Q3P3 Q3P4

Figure 77: Boxplots of the RMS of the envelope signal over each quadrant.

6.5 Conclusions

We presented a signal-based approach for detecting the fault of the posterior bearings in an input plier

mechanism for a blow molding machine in a bottling system. The approach employs accelerometers
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data, processed with a workflow inspired by the diagnostic of mechanical bearings. Experimental data

validated the effectiveness of the fault detection method.
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Chapter 7. Model-based fault diagnosis of sliding gates

electro-mechanical actuators transmission components with

motor-side measurements

This chapter presents a model-based fault detection and isolation scheme for the transmission com-

ponents of Electro-Mechanical Actuator (EMA), applied to the actuation of sliding gates. The most

important failures are investigated by a Failures Mode, Effects and Criticality Analysis (FMECA)

procedure. Following FMECA, the components selected for the development of the diagnostic algo-

rithm are the nylon gear and pinion of the EMA, and the rack of the gate. The proposed diagnostic

algorithm is able to isolate two out of the three types of faults. The overall procedure is validated by

experimental results.

7.1 Introduction

The present work is devoted to the development of a model-based fault detection and isolation

algorithm for the transmission components of Electro-Mechanical Actuator (EMA). Specifically, we

mainly focus on the diagnosis of gear wheels-like transmission components. The proposed diagnostic

scheme is applied to an experimental setup of EMAs that actuate sliding gates, where components, and

their failures, have been selected using a Failures Mode, Effects and Criticality Analysis (FMECA).

This applicative context is characterized by the employment of low-cost components. Thus, a major

challenge is to detect faults without additional measurements.

The diagnosis of gears has been the focus of many studies in the literature, see [62, Chapter 5.4].

Starting from [147], who proposed a number of indicators for gearbox diagnostics based on Time

Synchronous Averaging (TSA) and frequency analysis of a vibration signal, many other works followed

with same diagnostic rationale, see [148, 149]. In [150], the author introduces the use of Hilbert

transformation to demodulate the vibration signal for a diagnostic purpose. The computation of a

signal envelope by amplitude demodulation is one of the main techniques for detecting faults also in

rolling bearings [151, 29, 62]. The aforementioned works consider the measurement of a vibration

signal. Other methods for gear diagnosis make use of the so-called transmission error signal [62,

Chapter 5.4], and then analyze its envelope in frequency domain, as in [152]. The transmission error

represents the difference between the angular motion of a driven gear and that which it would have if

the transmission were perfectly conjugate, that is constant speed out for constant speed in.

149



Nicholas Valceschini

However, as in our application, it is not possible to compute this signal, since e.g. only a single encoder

is present (usually motor-side), and it is not possible to add accelerometers due to the low-cost of the

EMA equipments and envelope constraints, see [153]. The use of only motor-related measurements

to perform diagnosis of EMA has been previously investigated in the literature, especially for critical

applications such as the aerospace industry [154, 155]. Contrary to signal-based or knowledge-based

methods for fault diagnosis, as in [156, 157], here we propose a model-based fault detection and

isolation scheme for EMA, that relies only on common motor-side measurements such as input voltage

and motor speed.

The main contribution of this work relies in the residual evaluation: after the residual signal has been

generated, it is processed by an envelope analysis to highlight the main fault frequencies that can raise

when a component of the transmission chain is damaged. Then, a classifier is trained on features

extracted on the frequency representation of the residual signal envelope. The designed classifier

isolates two out of three faults, along with the healthy condition.

7.2 Failure Mode, Effects, and Criticality Analysis

In this work, we applied a Failures Mode, Effects and Criticality Analysis (FMECA) to investigate

the failures of the EMA and gate system. The FMECA is a reliability procedure that determines

all potential failure modes of the various system’s components, their effects, causes and degree of

criticality. The criticality analysis in the FMECA aids to define the so-called criticality matrix, used to

classify the failures into a severity and frequency of occurrence levels, see [158]. This classification

will be used to guide the selection of which failures should be considered by the proposed diagnostic

algorithm.

The most occurring failures, appearing in years of maintenance reports, are: (1) Rack with broken

tooth; (2) Pinion with broken tooth; (3) Broken shaft; (4) Broken nylon gear; (5) Short circuit of

Direct Current Motor; (6) Corrupted wheel. The resulting criticality matrix is depicted in Figure

78. By using this representation, each failure is allocated to a matrix cell, with assigned probability

level (frequency of occurrence) and a severity level (criticality). The probability level is qualitatively

defined as (A) probable, (B) remote, (C) extremely remote, (D) extremely improbable. The severity

level is qualitatively described as indicating (I) catastrophic, (II) hazardous, (III) major and (IV) minor

consequences, respectively. These qualitative levels should be understood as dependent on the specific

system considered, see [29, 158, 159].

The (3) Broken shaft failure is classified in the cell (C-I) in the probability/severity table, since it

occurs with extremely remote frequency and, moreover, it is a catastrophic phenomenon, because
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Figure 78: Criticality matrix resulting from FMECA on the considered actuation system.

the shaft is disrupted into two pieces. Thus, in this condition, the EMA does not work. Another

catastrophic event, that compromises the electronic of Direct Current Motor (DCM), is the failure (5)

Short circuit of the DCM. Since this failure happens remotely, it was classified as (B-I).

Two failures that are not catastrophic, but still have major consequences on the system, are: (4) broken

gear, classified as (C-III) and (6) corrupted wheel, classified as (B-III). These failures do not stop the

EMA operation, but they make difficult the sliding of the gate. The operators common knowledge

is that a broken nylon gear is the result of a natural notch on the gear that breaks through the entire

gear radius. Due to this, the gear structure becomes weaker. After some movements, the less solid

gear causes a misalignment that induces other cracks in the gear structure, leading to its disruption.

Instead, the (6) corrupted wheel fault is due to the environmental corrosion that exhausts the wheel

bearing. The failures that have minor consequences on the system are: (1) Rack broken tooth and (2)

Pinion broken tooth, both classified as (D-IV). These are failures of the same type, i.e. a tooth breaks

totally, on two different but connected components, see Figure 81. The EMA works properly with

these failures.

The criticality matrix is used to assign a qualitative risk level for each failure, denoted by the cell color

in Figure 78. Green and yellow cells contain the failures that do not require redesign of the actuation

system. Instead, the red cells indicate the failures that can be prevented only by a system redesign,

since those failures are too critical and/or too probable. The focus of the diagnostic algorithms will

therefore be on the failures that are not at the maximum risk level, i.e. those in the green and yellow
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cells of the criticality matrix: (1) Rack with broken tooth, (2) Pinion with broken tooth and (4) Broken

nylon gear.

7.3 Experimental setup

The system setup consists of a sliding gate actuated by a Direct Current Motor (DCM) with nominal

voltage of𝑉0 = 24 V. The control of the DCM is made possible by a Pulse-Width Modulation (PWM)

at 100 Hz of the input voltage signal. The gate moves by means of steel wheels on a steel rail. The

motor is connected to the gate through a transmission that converts the DCM rotation to a linear

movement. The transmission is composed of: (i) a worm gear, (ii) a nylon gear, (iii) a shaft, (iv) a

pinion and (v) a rack. We denote with the term Electro-Mechanical Actuator (EMA) the connection

of the DCM with the transmission elements (i)-(iv), while the rack is a component that belongs to the

gate.

R ack

Pinion

DC motor

Worm

Gear

Shaft

Gear

Figure 79: Schematic representation of the overall system.

Figure 79 depicts how these elements are connected. In particular, the worm gear is welded to the

rotor of the DCM and it is coupled to the nylon gear with a primitive radius of 𝑟 = 28 · 10−3 m, that

consists of 44 teeth, see Figure 80-(left). Since the rack is external to the EMA cover, a shaft connects

the gear to the pinion, which in turn it is paired with the gate’s rack. The rotation at the output of the

EMA is transformed into linear motion by the pinon and the rack. The pinion is made of stainless

steel and it has 14 teeth, see Figure 80-(right). An encoder measures the motor speed 𝜔𝑀 (𝑡). The

conversion from 𝜔𝑀 (𝑡) to axial speed 𝑣𝑀 (𝑡) can be made by the transmission ratio 𝜏 = 1/47 · 𝑟.
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The motor resistance is 𝑅 = 0.7473Ω, and 𝑘𝑡 = 𝑘𝑒 = 𝐾 = 0.0696 are the mechanical and electrical

constants of the motor, respectively.

Figure 80: Healthy nylon gear (left) and pinion (right).

7.4 Fault injection and test protocol

7.4.1 Fault Injection

A fault injection procedure has been devised in order to collect measurements from a faulty system,

considering the rack, pinion and nylon gear components. The rack and pinion faults were injected by

removing a tooth using a vise, see Figure 81-(left) and 81-(right) respectively.

Figure 81: Faulty rack (left) and pinion (right).

To reproduce the break of the nylon gear, we performed about one hundred gate movements (opening

and closing) to break-in the component. After that, the fault is injected by carving perpendicularly the

80% of the total gear radius using a saw. The width of this notch is about 1 mm, see Figure 82-(left)

where the area that contains the injected notch is highlighted in blue. In Figure 82-(left), it is possible
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to notice four mechanical housings, which aim is to hold the shaft joint. These are the most critical

parts of the gear because they are subject to the force applied by the shaft through its joint. Thus, the

fault is injected in this area. In this notched condition, the inner ring of the gear, i.e. the part that

delimits the shaft slot, is still not broken. Thus, to induce its breakage, the carved gear is mounted on

the EMA and about fifty openings and fifty closings are performed.

Figure 82-(right) represents the condition of the gear after the 100 movements. As depicted, the width

of the natural notch is less than the width of the artificial one (highlighted in blue). It is important to

remark that if the inner ring is completely broken by an artificial carve, e.g. with depth 100% of the

gear radius, the structure would be too weak to perform any useful experiment.

          

     

     

    

       

     

          

     

Figure 82: Faulty nylon gear without breaking the inner ring (left); natural notch that breaks the inner
ring (right).

7.4.2 Test protocol

The experimental protocol is composed of five different test plans: (i) healthy tests; (ii) gear fault

tests; (iii) pinion fault tests; (iv) rack fault tests. All experiments share the same gate, binary and

environment, but the fault injected is different. Only one fault at a time has been considered. In order

to validate the diagnostic algorithm, the test protocol is performed twice with two different EMA.

Each test plan consist in opening and closing gate movements, interspersed with a break of 7 seconds,

in order to not overheat the motor. The motor is commanded in open-loop with trapezoidal voltage

profiles, that define acceleration, constant speed, and deceleration phases. The rise and fall times of

the acceleration and deceleration phases have been set to 1 s (the minimum settable acceleration/de-

celeration time). This choice is motivated by two ideas: the first one is that we wanted to perform

movements that were stressful for the system (to enhance the fault detectability); the second reason
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regards the practical use of the gates, where the fastest opening and closing movements (but within

laws regulations) are usually desirable.

The EMA hardware allows the acquisition of the following measurements with a sampling frequency

of 𝑓𝑠 = 5000 Hz:

1. Motor speed 𝜔𝑀 (𝑡), measured by the motor encoder;

2. Motor working phase 𝑝(𝑡), showing which working phase the motor is currently performing

(acceleration phase, constant velocity phase, deceleration phase);

3. Motor current 𝑖(𝑡), flowing in the DCM coils;

4. Motor voltage 𝑉 (𝑡), powering the motor.

7.5 Model-based fault detection and isolation algorithm

This section describes the procedures employed to design the fault detection algorithm. Since,

the chosen fault detection methodology is model-based, the first part describes the modeling and

identification procedures. Instead the second part focus on the residual generation, evaluation and

decision logic.

7.5.1 Modeling and identification

A mathematical model of the DCM is presented in Figure 83, where: 𝐹𝐿 (𝑡) is the load force opposing

to the motor; 𝐿 is the motor inductance; 𝑅 is the motor resistance; 𝐷 is the motor equivalent friction

coefficient; 𝐽 is the motor equivalent inertia; 𝜏 is the transmission ratio; 𝐾 = 𝑘𝑡 = 𝑘𝑒 represents the

motor mechanical and electrical constants; 𝑉 (𝑡), 𝑖(𝑡), 𝑇𝑀 (𝑡), �̂�𝑀 (𝑡), �̂�𝑀 (𝑡) are the applied voltage

input and simulated current, torque, motor rotational speed and load axial speed, respectively.

It is interesting to notice that most of the parameters of this model are known from the motor

datasheet or can be computed. The motor equivalent inertia can be expressed, in this rigid model, as

𝐽 = 𝐽𝑀 + 𝜏2 · 𝑚, where 𝐽𝑀 is the motor inertia and 𝑚 is the weight of the gate. Both are known and

correspond to 𝐽𝑀 = 3.5 · 10−5 kg · m and 𝑚 = 608 kg, respectively. To obtain the simplest possible

model, we set 𝐿 = 𝐷 = 0.
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Figure 83: Blocks scheme of the DC motor model.
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Figure 84: Proposed model-based fault diagnosis scheme.

From these hypotheses, it is possible to compute the complete transfer function from the input 𝑉 (𝑡) to

the output �̂�𝑀 (𝑡) as:

�̂� (𝑠) =
(
�̂� (𝑠) − �̂�(𝑠)

)
· 𝜏 (7.1a)

=

(
𝐾

𝐽𝑅 · 𝑠 + 𝐾2 −
𝑅𝜏

𝐽𝑅 · 𝑠 + 𝐾2

)
· 𝜏, (7.1b)

where:

• �̂� (𝑠) = Ω𝑀 (𝑠)
𝑉 (𝑠) is the estimated transfer function from voltage 𝑉 (𝑡) to motor speed 𝜔𝑀 (𝑡);

• �̂�(𝑠) = Ω𝑀 (𝑠)
𝐹𝐿 (𝑠) is the estimated transfer function from the load force 𝐹𝐿 (𝑡) to motor speed 𝜔𝑀 (𝑡).

The force 𝐹𝐿 (𝑡) = 𝑚 · 𝑔 · 𝑐steel represents the sliding friction force of steel wheels on steel rail, with

friction coefficient 𝑐steel = 3 · 10−4 (see [160]), and 𝑔 is the gravitational force. We assume 𝐹 (𝑡) to be

a constant force equal to 𝐹𝐿 (𝑡) = �̄�𝐿 = 0.19 N.
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The model (7.1) is thus completely known, but experimental data reveal the presence of an input-output

delay. Thus, we identified a model of the form:

�̂�𝑑 (𝑠) =
𝜇

𝑇 · 𝑠 + 1
· 𝑒−𝑠·𝑑 , (7.2)

where 𝜇 is the gain of �̂� (𝑠), 𝑇 is the time constant of �̂� (𝑠) and 𝑑 is the delay of the system1. A

gray-box simulation error minimization is performed by minimizing the cost

𝐽 (𝑑) = 1
𝑁

𝑁∑︁
𝑖=1

(
𝑣𝑐 (𝑡) − �̂�𝑑 (𝑡)

)2
, (7.3)

where the computed load axial speed 𝑣𝑐 (𝑡) is obtained as 𝑣𝑐 (𝑡) = 𝜔𝑀 (𝑡) · 𝜏 (by considering the

transmission as rigid), and �̂�𝑑 (𝑡) is the simulated output of the model

�̂�𝑑 (𝑠) = �̂�𝑑 (𝑠) − �̂�(𝑠) . (7.4)

The behaviour of the model in (7.4), for a opening gate movement not used for the identification, is

depicted in Figure 85, where good simulation results can be observed.

Figure 85: Computed axial speed 𝑣𝑐 (𝑡) from measurements and simulated axial speed �̂�𝑑 (𝑡) by the model
�̂�𝑑 (𝑠).

7.5.2 Model-based fault detection and isolation scheme

Residual generation

Figure 84 shows the proposed model-based fault detection strategy. The residual 𝑟 (𝑡) is computed by

an output-error based scheme, see [48, Chapter 10], that compares the computed axial speed 𝑣𝑐 (𝑡)
1In the literature there exists a fault diagnosis method that detect faults through recursive parameter estimations, see [161].
This approach needs an input that excites the system sufficiently. Therefore, it is not applicable to this problem, because
the available step input is not enough exciting to be used in black-box identification procedures.
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(computed from the measure of 𝜔𝑀 (𝑡)), with the simulated output �̂�𝑑 (𝑡) of model (7.4), given the

same input 𝑉 (𝑡):

𝑟 (𝑡) = 𝑣𝑐 (𝑡) − �̂�𝑑 (𝑡) . (7.5)

The employment of the model in (7.4) allows to generate a residual signal that is able to compensate

for variations in speed, even in the constant speed phase where speed oscillations are visible, see

Figure 85. The disturbance 𝐹𝐿 (𝑡) can not be decoupled from the residual since we only use one output

measurement to perform fault detection. Instead, there exists diagnostic schemes that try to reduce the

effect of disturbances on the residuals, see [28, Chapter 7], in our application the effect of 𝐹𝐿 (𝑡) on the

true axial speed 𝑣𝑀 (𝑡) is negligible since the gain of �̂�(𝑠) can be found to be 𝜇𝐴 = 𝑅·𝜏2/𝐾2 ≈ 5 · 10−4,

so that the signal 𝐹𝐿 (𝑡), filtered through �̂�(𝑠), as an amplitude in the order of 10−5 m/s, which is

negligible with respect to the amplitude of 𝑣𝑀 (𝑡) (around 10−1 m/s).

Residual evaluation

The proposed residual evaluation scheme, that is the main methodological contribution of this work,

allows to detect all three fault types and to isolate them in two categories. The starting point is the

observation that the mechanical transmission components of interest (e.g. rack, pinion and nylon

gear) behave as a single component, since they are all connected together and also linked to the motor

through the nylon gear. We thus expect that faults on the selected transmission components can be

detected by using the same set of input/output measurements. Furthermore, the nylon gear and the

pinion are basically gear wheels, where a tooth is removed by the fault injection procedure. As stated

in the introduction, the envelope analysis of the transmission error can be employed to diagnose faults

in gears.

The main idea of this work is to apply the envelope analysis on the residual signal 𝑟 (𝑡) in (7.5). In

this view, the signal �̂�𝑑 (𝑡) can be effectively interpreted as the axial speed that one would have if the

transmission were perfectly health and rigid, thus acting as a ”virtual load encoder” signal. The true

axial speed 𝑣𝑀 (𝑡) will be affected by faults, but since the components are all linked together, we expect

that also the computed axial speed 𝑣𝑐 (𝑡) (or equivalently, the measured motor speed 𝜔𝑀 (𝑡)) will be

affected.

The aim of the envelope analysis is to look for specific fault frequencies, as commonly done for rolling

bearings [151, 62]. Here, we look for the fault frequency 𝑓fault that may appear on the shaft that

connects the nylon gear to the steel pinion (which is then linked to the rack of the gate). Since, in

our experiments, the rotational motor speed is known and it is about 𝜔𝑀 (𝑡) = 4100 rpm, the shaft

rotational speed is 4100 rpm/44 ≈ 93 rpm, where 44 is the ratio reduction from motor to shaft (i.e. the
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number of teeth of the nylon gear). Hence, the fault frequency of the components that are coupled to

the shaft is about 𝑓fault = 1.55 Hz.

The envelope analysis of the residual signal 𝑟 (𝑡) proceeds as follows. First, a bandpass filtering with

bandwidth [0.5, 10] Hz is employed to remove the continuous frequency and high-frequency noise.

Then, the envelope of the filtered 𝑟 (𝑡) signal (amplitude demodulation) is computed and constant phase

speed data are retained for frequency analysis. The use of constant speed data allows to focus on a

single fault frequency without employing advanced techniques like orders tracking2, see [62, Chapter

3.6]. The constant speed phase is always available in our application. A Fast Fourier Transform

(FFT) of the envelope signal is then computed, and its modulus 𝜃 ( 𝑓 ) analyzed for fault detection and

isolation.

Finally, it is important to remark that the nylon gear fault and pinion fault (missing tooth) can be

observed many times during the gate motion, but the faulty portion of the rack is visible only one time

per gate movement (so that a frequency analysis is of limited utility in this case).

Decision logic

A linear Support Vector Machines (SVM) classification algorithm is used to perform fault isolation.

To this end, two features are computed from 𝜃 ( 𝑓 ):

𝐹1 =

3∑︁
𝑘=1

𝜃 (𝑘 · 𝑓fault) ; 𝐹2 =

3∑︁
𝑘=1

𝑘 · 𝑓fault·1.05∑︁
𝑗=𝑘 · 𝑓fault·0.95

𝜃 ( 𝑗) . (7.6)

The indicators in (7.6) extract the frequency amplitude at the first three harmonics of the fault frequency

𝑓fault and the area in their neighborhoods, respectively. This idea is inspired from [162], where those

features are computed on the motor current signal.

The SVM algorithm classifies the features in (7.6) into three classes: health, pinion fault + nylon gear

fault, rack fault. The nylon gear and pinion faults are difficult to isolate since these components are

connected to the same shaft, so their rotation frequency is the same. Thus, a single “fault condition”

has been considered for their isolation.

7.6 Experimental results

As stated in Section 7.4, we have at disposal two datasets, from two exemplars of the same EMA

model. The first dataset is used to tune the parameters of the proposed procedure, such as the filtering

2The importance of employing a model of the system relies in the fact that the residual signal in the constant speed phase,
contrary to the axial speed 𝑣𝑀 (𝑡), is much less subject to little variations due to external factors, so that the effects due to
the faults can be better assessed.
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band for the bandpass filter in the residual evaluation state. The training of the FFT classifier makes

use of both the first and second datasets.

An example of FFT of the residual envelope 𝜃 ( 𝑓 ) is depicted in Figure 86, where the fault frequency

𝑓fault appear visible for the nylon gear and pinion fault. As expected, this frequency is not visible in the

case of the rack fault, but a general increase of the frequency content is visible. Figure 87 depicts the

Figure 86: Frequency analysis of the residual envelope of all EMA conditions.

2D-plane composed of 𝐹1 and 𝐹2 features, computed using both datasets. The classifier performance

have been evaluated by 10-fold cross-validation, resulting in an average cross-validation accuracy of

86.18% and variance of 0.33%. The classification boundaries, of the classifier trained on all the data,

show a good capability of isolating the various kind of faulty conditions (considering the gear and

pinion faults as a unique category), with an accuracy of 96.15%3. Table 7 presents the confusion

matrix of this classifier, using all the data.

7.7 Conclusions

We presented a model-based fault detection and isolation algorithm for the transmission components

of electro-mechanical actuators. The considered failures were chosen by a FMECA procedure, and

specific faults were artificially injected or induced. The procedure employs only the input voltage and

the motor speed, and it is based on the output speed residuals generated by a model of the DCM. By

adequately considering the type of faults to be diagnosed, we proposed a residual evaluation strategy

based on the envelope analysis of the residual signal. Based on its frequency content, specific features
3The model trained on all the data, its accuracy and confusion matrix should be considered as only a mean to highlight its
decision boundaries and to represent the feature space. A more correct evaluation of the classifier’s performance is given
by the cross-validation routine.
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Figure 87: Features plane and classification boundaries.

Real EMA state

Healthy Pinion and
gear faults

Rack fault

Estimated EMA state

Healthy 130 1 2

Pinion and
gear faults

0 89 4

Rack fault 1 2 31

Table 7: Confusion matrix of the classifier trained on all the data.

have been extracted. An experimentally validated classifier trained on those features was shown to

perform fault isolation of two out of three fault with good accuracy.
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Conclusions and future developments

This book proposed three theoretical and three applicative contributions. Chapter 2 introduced a

data-driven robust control. We studied how to link robust control and system identification worlds.

In literature, there are some techniques, such as Robust identification, which tie these two kinds of

literature, but their developments are highly related to the user’s choices. Instead, we suggest an

automatic data-driven methodology that produces a robust controller without requiring any user’s

knowledge. The kernel-based system identification played a key role in this procedure, since it builds

a low-bias model without choosing the model family. Furthermore, it gives a posterior distribution

that represents the model variance. Therefore, we exploited these two characteristics to make a robust

control through the 𝑆/𝑇 mixed-sensitivity loop-shaping approach. The proposed methodology can be

applied to robust stability-nominal performance and robust performance aims. We tested the method

to a well-known benchmark dynamic system. The results proved the efficiency with respect to the

traditional method, where the uncertainty information is modeled manually. In addition, a comparison

with respect to the PEM is done. Specifically, this identification method was developed with a wrong

and a correct model family, to show how the user’s knowledge, applied to the identification procedure,

affects the performance of the resulting robust controller. The simulations showed that a wrong model

family choice can cause a catastrophic impact to the closed loop system obtained with the true plant

coupled with the robust controller.

An extension of the presented method was described in Chapter 3. This dealt with multiple uncertainty

sources, in particular with respect to: the model identification uncertainty and some parametric

uncertainties considered as a multi-model dynamic system. The experimental design was fundamental

in the extended method, since, as with the identification procedure of multi-model dynamic systems, it

allows to gather the necessary information to model correctly the plant. We proposed an experimental

design with the aim to obtain a nominal model endowed with a multiplicative unstructured uncertainty

that represents all multiple uncertainties. In this way, we designed a robust control that works with

all the systems that belong to the modeled uncertain system. In Chapter 5, we described a practical

application of the data-driven robust control procedure for multi-model dynamic systems. This

contribution showed the performance of the second theoretical contribution applied to a real system.

Moreover, a comparison between the trial and error modeling (the traditional weight functions design)

with respect to the proposed method showed that the obtainable performances, with the manual setting,

were always worse than our method.
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The last theoretical contribution was described in Chapter 4. We present a procedure that exploits the

uncertainty information derived from the model identification to the robust fault detection problem.

In particular, the uncertainty information was considered as a fictitious noise. So the uncertainty

transfer function, derived from the kernel-based identification, was employed to define the impact

of the fictitious noise to the residual signal. In addition, we designed the robust residual generator

through the Approximate Fault Detection Problem (AFDP). Also, we proposed a simple threshold

tuning to further reduce the false alarms. Our method was tested on a benchmark problem and the

results were compared to a not robust method. The goal was achieved since the robust detector avoided

false alarms and also detected those faults that were invisible to the not robust detector.

The other two applicative contributions was written in Chapters 6 and 7. Those showed two proposed

fault detection methodologies. The former was based on the signal-based branch. In particular, we

adapted an algorithm, developed for detecting the bearing faults, to diagnose a fault of some gripping

pliers belonging to a rotating machine. Instead, the latter, described in Chapter 7, was based on the

model-based fault diagnosis. We illustrated the entire process of fault diagnosis: from the Failures

Mode, Effects and Criticality Analysis to the fault diagnosis algorithm, through the fault injection

procedure. Furthermore, we presented a residual evaluation strategy based on the envelope analysis

of the residual signal. The experimental results validated our method.

The future developments, identified by the authors, are devoted to investigate the employment of

kernel-based identification to model the uncertainty given by the residual signal computed as the

difference between the estimated output and the measured data, as in the Model Error Modeling

(MEM) problem. Doing so, we would like to avoid the user’s choices to model the dynamic system

that ties the input of the system to the residual signal. This proposal should be an alternative way

to our developed method. Another future development is to design our proposed data-driven robust

control, presented in Section 2, for MIMO systems. Moreover, we would like to replace the Chernoff

bound with a more efficient theorem, explained in [163]. It allows to obtain an uncertainty bound

reconstruction with minor number of samples. Instead, for the robust fault diagnosis theme, future

works are dedicated to comparing the presented method with respect to another robust fault diagnosis

procedure. In addition, we would like to expand the proposed robust fault detection methodology to

fault identification and fault estimation.
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Appendix A

Model complexity selection in parametric dynamic system identification

The bias-variance decomposition defines the relationship between bias, variance and the expected

𝐸𝑜𝑢𝑡 , see [99, Chapter 3] [87, Chapter 2]. The latter is defined by:

ED

[
𝐸𝑜𝑢𝑡

(
𝐺 (D)

) ]
= ED

[
E𝑥

[(
𝐺 (D) (x) − 𝐺𝑇 (x)

)2
] ]

= E𝑥

[
ED

[(
𝐺 (D) (x) − 𝐺𝑇 (x)

)2
] ]

=E𝑥

[
ED

[
𝐺 (D) (x)2

]
−2ED

[
𝐺 (D) (x)

]
𝐺𝑇 (x) + 𝐺𝑇 (x)2

]
, (A.1)

where:

• E𝑥 denotes the expected value with respect to all possible points x ∈ R𝑛×1, where x is the input

vector employed in the train phase;

• D is the training dataset;

• ED denotes the expected value with respect to all possible datasets D;

• 𝐺 ∈ M is a model that belongs to a chosen model familyM;

• 𝐺 (D) are the identified model on different realizations of D;

• 𝐺𝑇 represents the true plant.

If we consider the conceptual tool: ED
[
𝐺 (D) (x)

]
as �̄�𝑞 (i.e. the mean model obtained by averaging

𝑞 models trained on 𝑞 different dataset.), the equation (A.1) can be rewrite as:

ED

[
𝐸𝑜𝑢𝑡

(
𝐺 (D)

)]
=E𝑥

[
ED

[
𝐺 (D) (x)2

]
− 2�̄�𝑞 (x)𝐺𝑇 (x) + 𝐺𝑇 (x)2

]
=E𝑥

[
ED

[
𝐺 (D)(x)2

]
−�̄�𝑞 (x)2+�̄�𝑞 (x)2−2�̄�𝑞 (x)𝐺𝑇 (x)+𝐺𝑇 (x)2

]
=E𝑥

[
variance(x) + bias(x)2

]
=variance + bias2

, (A.2)
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with:

bias(x)2 = �̄�𝑞 (x)2 − 2�̄�𝑞 (x)𝐺𝑇 (x) + 𝐺𝑇 (x)2 = (�̄�𝑞 (x) − 𝐺𝑇 (x))2 . (A.3)

This term measures the distance between the true model and the average model �̄�𝑞. Specifically, it

contains both model bias and estimation bias [14, Chapter 7]. The model bias is due to the poor

complexity of the model family, instead the estimation bias represents the estimation error of the

model parameters. Specifically, the conceptual tool �̄�𝑞 may not belong toM. Since �̄�𝑞 is made by

averaging the 𝑞 models that belong toM, the only limit of �̄�𝑞 are the bounds imposed byM therefore,

if 𝑞 →∞. Thus, the bias represents how much the model family can approximate the real model.

The variance is:

variance(x) = ED
[
𝐺 (D) (x)2

]
− �̄�𝑞 (x)2 = ED

[(
𝐺 (D) (x) − �̄�𝑞 (x)

)2
]
. (A.4)

This term corresponds to a measure of the deviation between �̄�𝑞 and the trained model estimated with

a defined D.

A graphical representation of bias and variance is reported in Figure 88. The left image shows the

graphical concept of bias, i.e. the model familyM is too small and soM does not include the real

model 𝐺𝑇 . Instead, the right image depicts the variance, i.e. the area highlighted in red. Note that

the real model stands in the model family space, but since the model family is too high, the obtainable

model changes by varying D. The set of obtainable models represents the variance.

ℳ

Bias

Variance

GT GT

ℳ

Figure 88: The graphical representation of the bias and variance concepts.

Bias-variance decomposition is a conceptual tool and it is not applicable to a real problem, since it

requires the true plant 𝐺𝑇 , which is usually unknown. Hence, this technique cannot be used for the

model complexity selection. In literature, there are different methodologies that are usable with a real

plant. Some of these are:

• Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC),

• Cross Validation (CV),

• Regularization.
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A.1 Akaike Information Criterion (AIC) and Bayesian Information Criterion

(BIC)

The model order selection can be performed by exploiting a metric which is proportional to the

complexity of the model, if the model family is fixed and the available dataset is limited. The Akaike

Information Criterion (AIC) is a metric term employed to penalize the model complexity [164], i.e.:

AIC = ln (𝐽𝑛 (β)) + 2
𝑚

𝑛
, (A.5)

with:

• β ∈ R𝑚×1 is the parameters vector,

• 𝑛 is the number of available data,

• 𝐽𝑛 (β) is the cost function of the employed method (for instance: the cost function of PEM

(1.80)).

The employment of this criteria is basically a comparison between the AIC values computed on a pool

of models which share the same model class, but have different model complexity. Thus, the smallest

AIC value corresponds to the model with the best selectable model complexity.

Another metric is called Bayesian Information Criterion (BIC) [13] and it is defined as:

BIC = ln
(
𝐽𝑛 (β̂)

)
+ ln(𝑛)𝑚

𝑛
. (A.6)

The model complexity selection with BIC is identical to the procedure employed with AIC. This

criteria is also known as Rissanen’s Minimum Description Length (MDL) [165].

Both information criteria are evaluated by exploiting the train set, therefore the model selection

procedure and the model parameters estimation share the same dataset. This aspect is the main

advantage of these methods, since they works also with a small number of data. Instead, the main

con is that these methods are not accurate if the out-of-sample data are too different from the training

dataset. To overcome this phenomenon an estimation of 𝐸𝑜𝑢𝑡 can be obtained by applying the so-called

Cross Validation (CV) approach. It is applicable only if the dataset has a huge number of samples.

A.2 Cross-Validation (CV)

The Cross Validation (CV) is one of the most widespread method for estimating 𝐸𝑜𝑢𝑡 of a learning

model [14, 15, Chapter 7]. This technique splits the dataset into 𝐾 parts, called folds. Iteratively, the

model is trained on 𝐾 − 1 folds and the out-of-sample error is estimated on the held-out fold, i.e. the
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fold not employed during the model training. The final estimation of 𝐸𝑜𝑢𝑡 consists of averaging the

𝐾 estimations. The model complexity selection is done by selecting the lowest value in a set of 𝐸𝑜𝑢𝑡
obtained by performing 𝑃 times the Cross Validation method, i.e. one for each model complexity

[166].

CV is also applied in the machine learning literature to execute model performance evaluation and

model selection. In [153], we have proposed a new CV method under dataset shift, i.e. a condition

where the train set is acquired on different items, which have different statistical properties [167]. To

solve this issue, we developed a variation of the CV, that we named Object-wise Cross Validation

(OCV). The main innovation is that the OCV composes the folds with data that comes from a specific

item, see Figure 89, instead the traditional method makes the folds randomly from the train set,

thus, under the dataset shift condition, the model performance evaluation and model selection are

problematic. Formally, let 𝛿 : {1, . . . , 𝑛} → {1, . . . , 𝐾} be an indexing function that indicates the

item that generated the 𝑗-th observation, with 𝐾 number of folds. Then, the error is computed as:

OCV( 𝑓 ,β) = 1
𝑛

𝑛∑︁
𝑗=1
ℓ

(
𝑦 𝑗 , 𝑓

−𝛿( 𝑗) (x 𝑗 ,β
) )
, (A.7)

where:

• x ∈ R𝑛×1 corresponds to the feature vector;

• 𝑦 is the result of the machine learning algorithm;

• ℓ(·) is the loss function;

• 𝑓 is the trained machine learning model endowed with β ∈ R𝑚×1 parameters.

An alternative of CV are the Bootstrap methods. An example of these is the "632+" estimator [168].

A.3 Regularization methods

Regularization is a methodology that differs from the information criterion and CV methods, because

this does not perform a comparison between some metrics computed on a pool of model complexities.

Instead, this method reduces the variance by introducing a small bias.
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m1 m2 m3 m4 m5 m6

m1 m2 m3 m4 m5 m6
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Training data Validation data

1st iteration

2nd iteration

3rd iteration

4th iteration

5th iteration

6th iteration

Figure 89: Example of fold extraction using the Object-wise Cross Validation with six items, denote with
𝑚𝑖 , 𝑖 = 1, ..., 6.

Consider a generic Finite Impulse Response (FIR) model:

𝑦(𝑡) = 𝐺 (𝑧,β) + 𝑒(𝑡)

=
∑𝑚−1
𝑘=0 𝛽𝑘𝑢(𝑡 − 𝑘) + 𝑒(𝑡)

y = 𝚽⊤β + e

, (A.8)

where:

• 𝛽𝑘 are the impulse response coefficients. The parameters vector is denoted as β ∈ R𝑚×1;

• 𝑚 is the order of the FIR model;

• 𝑛 is the number of acquired data;

• 𝑒(𝑡) is the additive noise (assumed independent from 𝚽). The corresponding vector is denoted

by e ∈ R𝑛×1;

• 𝑦(𝑡) is the output data. The corresponding vector is denoted as y ∈ R𝑛×1;

• 𝑢(𝑡) is the input data;

• 𝚽 ∈ R𝑚×𝑛 is the regression matrix1;
1The regression matrix is the composition of 𝑛 observed 𝑢(𝑡) stacked in 𝑚 rows.
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This can be cast as a linear regression problem. In particular, we assume to exploit the PEM method,

with a FIR model:

β̂ = arg min
β
E

[
y −𝚽⊤β

]2

= arg min
β

y −𝚽⊤β2
2 .

(A.9)

Regularization aims to consider the impact of β directly in the optimization problem by adding a term

to the cost function. Thus, the result will be a solution which considers not only the mismatch between

the measured and the estimated values, but also the penalization of β. Therefore, the optimization

problem becomes [169]:

β̂ = arg min
β

(y −𝚽⊤β2
2 + 𝜆𝑙 (β)

)
, (A.10)

with: 𝜆 ∈ R+ is a hyperparameter that modulates the regularization impact and 𝑙 (β) represents the

regularization term.

The most common regularization terms are: Ridge regression and Lasso regression [170]. The former

considers the regularization term as a 2-norm squared, i.e.:

𝑙 (β) = ∥β∥22 =

𝑚−1∑︁
𝑗=0

𝛽2
𝑗 . (A.11)

Instead,the latter corresponds to:

𝑙 (β) = ∥β∥1 =

𝑚−1∑︁
𝑗=0

��𝛽 𝑗 �� . (A.12)

Figure 90 depicts the graphical representation of both methods from a geometrical point of view with

𝑚 = 2. The resulting regularized parameters are highlighted with the yellow star. These are the

intersection between the cost function2, represented by the red level curves , and the bounded region

defined by the applied regularization term, highlighted in light blue. Ridge regression, depicted in the

left image, allows to tighten β to low values, instead Lasso regression, illustrated in the right image,

aims to set some parameters to zero. The center of the level curves, depicted as a red dot, is the

estimation without regularization.

Another difference between the two regularization terms lies in the resolution because the Ridge

regression has a closed form [14, Chapter 3], instead the Lasso regression is solved by quadratic

programming [171].

2The cost function is supposed to be convex.
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Figure 90: Geometric representation of Lasso and Ridge regression.

Note that the regularized optimization problem (A.10) can be cast into a constrained optimization

problem, as:

β̂ = arg min
β

y −𝚽⊤β2
2

𝑠.𝑡. : 𝑙 (β) ≤ 𝐶

, (A.13)

where 𝐶 is inverse proportional of 𝜆.

Another typology of regularization is called Tikhonov regularization [172]. This is defined as:

𝑙 (β) = β⊤K−1β . (A.14)

Tikhonov regularization corresponds to a more general formulation of the Ridge regression. It is

straightforwardly demonstrable by setting K ∈ R𝑚×𝑚, called Kernel matrix, equal to I𝑚. The

optimization problem (A.10) regularized with (A.14) is often referred as Regularized Least Squares

(ReLS) [6]. ReLS is solvable by the following closed forms:

β̂ = arg min
β

(y −𝚽⊤β2
2 + 𝜆β

⊤K−1β
)

= K𝚽
(
𝚽⊤K𝚽 + 𝜆I𝑛

)−1
y or

=
(
K𝚽𝚽⊤ + 𝜆I𝑚

)−1
K𝚽y

(A.15)

The choice of K defines some priors of the problem. The priors are mainly the properties that β must

have. Table 8 reports some types of Kernel matrices.

Since we considers a FIR model, the priors reflect the property of the impulse response coefficients

𝛽𝑘 . For instance, it is possible to assume that:
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Name Structure Characteristics

DC 𝐾𝑖 𝑗 (η) = 𝛿𝛼
𝑖+ 𝑗
2 𝜚 |𝑖− 𝑗 | 𝛿 ≥ 0, 0 ≤ 𝛼 < 1, |𝜚 | ≤ 1,η = [𝛿, 𝛼, 𝜚]

TC 𝐾𝑖 𝑗 (η) = 𝛿𝛼max(𝑖, 𝑗) 𝛿 ≥ 0, 0 ≤ 𝛼 < 1,η = [𝛿, 𝛼]

SS 𝐾𝑖 𝑗 (η) = 𝛿
(
𝛼𝑖+ 𝑗+max(𝑖, 𝑗 )

2 − 𝛼3 max(𝑖, 𝑗 )

6

)
𝛿 ≥ 0, 0 ≤ 𝛼 < 1,η = [𝛿, 𝛼]

Table 8: Some types of Kernel matrix.

• The system is exponentially stable, therefore 𝛽𝑘 should decay exponentially;

• The impulse response is smooth, hence the neighbouring values of 𝛽𝑘 should have a positive

correlation.

The Diagonal-Correlated Kernel (DC) [173] fits perfectly with these prior since 𝛼 defines the ex-

ponential decay of the impulse response coefficients, instead 𝜚 describes the correlation between

neighbouring impulse response coefficients [6].

Note that, the Tuned/Correlated Kernel (TC) (or First-order Stable Spline) is equal to DC Kernel by

setting 𝜚 =
√
𝛼, therefore TC Kernel is a special case of DC Kernel [174, 175]. Therefore, also the

TC Kernel can be used to model the prior of a FIR system.

The procedure to estimate the kernel matrix hyperparameters η ∈ R𝑛𝜂×1 (with 𝑛𝜂 ∈ N+ is the

number of hyperparameters) can be defined by exploiting the Bayesian interpretation of the Tikhonov

regularization. This framework is applicable by assuming:

• β is a Gaussian random variableβ ∼ N(0,𝚺), with zero mean and covariance matrix𝚺 ∈ R𝑚×𝑚;

• 𝑒(𝑡) is Gaussian and independent from β with e ∼ N(0, 𝜎2
𝑒 I𝑛);

• e and 𝚽 are known.

Thus, y and β will be jointly Gaussian variable [99, Chapter 2], therefore:


β

y


∼ N

©«


0

0


,


𝚺 𝚺𝚽

𝚽⊤𝚺 𝚽⊤𝚺𝚽 + 𝜎2
𝑒 I𝑛



ª®®®®®®®¬
. (A.16)
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Exploiting this property, the posterior distribution β |y ∼
(
β̂, �̂�

)
can be computed by:

β̂ = 𝚺𝚽
(
𝚽⊤𝚺𝚽 + 𝜎2

𝑒 I𝑛

)−1
y (A.17a)

=

(
𝚺𝚽𝚽⊤ + 𝜎2

𝑒 I𝑚

)−1
𝚺𝚽y (A.17b)

�̂� = 𝚺 − 𝚺𝚽
(
𝚽⊤𝚺𝚽 + 𝜎2

𝑒 I𝑛

)−1
𝚽⊤𝚺 (A.17c)

If we choose the regularization matrix as K = 𝚺 and the regularization term as 𝜆 = 𝜎2
𝑒 the mean

of the posterior distribution (Maximum A Posteriori (MAP) estimate) matches with the ReLS closed

form (A.15).

Finally, since y is a Gaussian random vector, as denoted in (A.16), the hyperparameters η can be

estimated by maximizing the Marginalized Likelihood (MargLik) (called also Empirical Bayes):

η̂ = arg min
η

(
y⊤Z (η)−1y + log |Z (η) |

)
, (A.18)

where Z (η) = 𝚽⊤𝚺(η)𝚽 + 𝜎2
𝑒 I𝑛 is the covariance matrix of y.

By solving optimization problem (A.18), some numerical errors can occur. This is due to the

computation of the log |Zη | term. Since Zη is positive definite, we can employ the Cholesky

decomposition, see [120, Chapter 4]. This method decomposes Zη ∈ R𝑛×𝑛 into TT ⊤ = Zη such

that: T ∈ R𝑛×𝑛 is lower triangular matrix with positive diagonal elements, called Cholesky factor.

Doing so, it is possible to replace the log |Zη | term with 2
∑𝑛
𝑖=1 log(𝑇𝑖𝑖). Thus, the Empirical Bayes

problem (A.18) becomes:

η̂ = arg min
η

(
y⊤ĉ + 2

𝑛∑︁
𝑖=1

log(𝑇𝑖𝑖)
)
, (A.19)

By performing the Cholesky decomposition we obtain the Cholesky factor, then we can compute ĉ by

solving two triangular systems:

Ta = y

T ⊤ĉ = a

(A.20)

The efficient computing of the MargLik estimation is explained in [176, 177].

In this description, the noise variance is assumed to be known, but usually it is unknown. Nevertheless,

it can be estimated in multiple ways. As suggested by [173], if a FIR model is estimated using Least

Squares the sample variance is equal to the estimation of 𝜎2
𝑒 . The authors of [7] have explained that

it is also possible to do so with a low bias ARX. Another way is to consider 𝜎2
𝑒 as an additional

hyperparameter and estimating it by maximizing the MargLik (A.18), e.g. see [178, 179].
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Functional analysis fundamentals

This appendix reports some definitions of functional analysis. This literature can be found in [180, 85].
Definition B.1: Vector Space

A vector space over the real field R is a set 𝑉 endowed with two operations:

1. Sum: 𝑉 ×𝑉 → 𝑉 ;

2. Inner product: R ×𝑉 → 𝑉 ;

and that satisfies the following axioms:

• 𝑢 + (𝑣 + 𝑤) = (𝑢 + 𝑣) + 𝑤, ∀𝑢, 𝑣, 𝑤 ∈ 𝑉 ;

• 𝑢 + 𝑣 = 𝑣 + 𝑢;

• ∃0 ∈ 𝑉 : 𝑣 + 0 = 𝑣, ∀𝑣 ∈ 𝑉 ;

• ∃(−𝑣) ∈ 𝑉 : 𝑣 + (−𝑣) = 0, ∀𝑣 ∈ 𝑉 ;

• 𝜆1(𝜆2𝑣) = (𝜆1𝜆2)𝑣, ∀𝜆1, 𝜆2 ∈ R, 𝑣 ∈ 𝑉 ;

• ∃1 ∈ 𝑉 : 1 · 𝑣 = 𝑣, ∀𝑣 ∈ 𝑉 ;

• 𝜆1(𝑢 + 𝑣) = 𝜆1𝑢 + 𝜆1𝑣, ∀𝜆1 ∈ R, 𝑢, 𝑣 ∈ 𝑉 ;

• (𝜆1 + 𝜆2)𝑣 = 𝜆1𝑣 + 𝜆2𝑣, ∀𝜆1, 𝜆2 ∈ R, 𝑣 ∈ 𝑉 .

By supposing 𝑉 and𝑊 are two vector spaces, it is possible to define the following definition:
Definition B.2: Linear operator, Linear functional

𝐹 : 𝑉 → 𝑊 is a linear operator if, ∀𝜆1, 𝜆2 ∈ R one has that 𝐹 (𝜆1𝑢1 + 𝜆2𝑢2) = 𝜆1𝐹 (𝑢1) +

𝜆2𝐹 (𝑢2), ∀𝑢1, 𝑢2 ∈ 𝑉 . If𝑊 is R the linear operator is called linear functional.

Definition B.3: Bilinear form, Symmetric

A bilinear form is a function 𝑎 : 𝑉 × 𝑉 → R that is a linear in both arguments, that is:

𝑎(𝑢, ·) : 𝑉 → R and 𝑎(·, 𝑣) : 𝑉 → R are linear functionals where the former has fixed 𝑢 and

∀𝑢 ∈ 𝑉 and the latter has fixed 𝑣 and∀𝑣 ∈ 𝑉 . If the bilinear form 𝑎 is 𝑎(𝑢, 𝑣) = 𝑎(𝑣, 𝑢),∀𝑢, 𝑣 ∈ 𝑉 ,

then it is said symmetric.
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Definition B.4: Norm, Normed space

By letting a vector space 𝑉 , the norm over 𝑉 is a function ∥·∥ : 𝑉 → R that holds:

• ∥𝑢∥ ≥ 0; ∥𝑢∥ = 0⇐⇒ 𝑢 = 0 ∀𝑢 ∈ 𝑉 ;

• ∥𝜆1𝑢∥ = |𝜆1 | · ∥𝑢∥ , ∀𝑢 ∈ 𝑉,∀𝜆1 ∈ R;

• ∥𝑢 + 𝑣∥ ≤ ∥𝑢∥ + ∥𝑣∥ , ∀𝑢, 𝑣 ∈ 𝑉 .

In this case (𝑉, ∥·∥) is called normed space.

Definition B.5: Convergent, Cauchy sequence

A sequence 𝑢𝑛 is:

• Convergent: if ∃𝑢 ∈ 𝑉 s.t. 𝑢𝑛 → 𝑢, that is lim𝑛→∞ ∥𝑢𝑛 − 𝑢∥ = 0;

• Cauchy sequence: if ∥𝑢𝑛 − 𝑢𝑚 ∥ < 𝜖 with 𝜖 ∈ R+ and when 𝑛, 𝑚 →∞;

with the normed space (𝑉, ∥·∥). Observe that: every convergent sequence is a Cauchy sequence

in a normed space.

Definition B.6: Complete, Banach space

A normed space is said to be complete if every Cauchy sequence converges (in the same space).

A Banach space is a complete normed space.

Definition B.7: Pre-Hilbert space, Induced norm, Hilbert space

A Pre-Hilbert space is a vector space 𝑉 endowed with a inner product of a bilinear symmetric

form ⟨·, ·⟩ : 𝑉 ×𝑉 → R, subject to: ⟨𝑢, 𝑢⟩ > 0 ∀𝑢 ≠ 0.

The induced norm is defined as ∥𝑢∥ =
√︁
⟨𝑢, 𝑢⟩. Furthermore, the following propositions hold:

• Schwarz inequality: |⟨𝑢, 𝑣⟩| ≤ ∥𝑢∥ · ∥𝑣∥ ∀𝑢, 𝑣 ∈ 𝑉 ;

• The induced norm is effectively a norm.

An Hilbert space is a complete pre-Hilbert space.
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Important sets

• N is the set of all natural numbers;

• Z is the set of all integer numbers;

• Z+ is the set of all strictly-positive integer numbers;

• Q is the set of all rational numbers;

• Q+ is the set of all strictly-positive rational numbers;

• R is the set of all real numbers;

• R+ is the set of all strictly-positive real numbers;

• C is the set of all complex numbers;

• C+ is the set of all complex numbers in the right half plane;

• Other sets X are denoted by calligraphic letters;

• H∞ = H∞(C+) is the Hardy space of scalar of matrix valued functions which are bounded in

C+;

• RH∞ is the subspace ofH∞ consisting of real-rational scalar or matrix valued functions.

Vectors and Matrices

Let 𝑛;𝑚 ∈ N\{0}

• Generic scalars are indicated with a lower-case letter, e.g. 𝑎;

• Generic vectors are indicated with a lower-case bold letter, e.g. x;

• 𝑥𝑖 denotes the 𝑖-th element of the vector x;

• Generic matrices are indicated with a upper-case bold letter, e.g. A;

• 𝑎𝑖 𝑗 denotes the element of the matrix A, with 𝑖-th row and 𝑗-th column;

• The set of all real matrices with 𝑛 rows and 𝑚 columns: R𝑛×𝑚;
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• Identity matrix with 𝑛 rows: I𝑛 ∈ R𝑛×𝑛;

• Matrix with suitable rows and columns, in which all elements are equal to 0, is denoted as 0;

• The transpose of a matrix A: A⊤;

• The conjugate transpose (or Hermitian transpose) of a matrix A: A∗;

• The inverse of an invertible square matrix A: A−1;

• The determinant of a square matrix A: det(A);

• The trace of a square matrix A: Tr(A);

• The rank of a matrix A: rank(A).

Dynamical system theory

• The transfer functions are denoted with an upper-case letter, e.g. 𝐺 (·);

• The Laplace variable is indicated with 𝑠 ∈ C;

• The 𝑍-transform variable is indicated with 𝑧 ∈ C;

• The magnitude of a transfer function is indicated as | · |;

• The phase of a transfer function is indicated as ∠(·);

• A continuos-time dynamic system transfer function is represented by 𝐺 (𝑠);

• A discrete-time dynamic system transfer function is represented by 𝐺 (𝑧)

• The Laplace transform of 𝑥(𝑡) is indicated with 𝑋 (𝑠) = L[𝑥(𝑡)];

• The Laplace anti-transform of 𝑋 (𝑠) is indicated with 𝑥(𝑡) = L−1 [𝑋 (𝑠)];

• The Z-transform of 𝑥(𝑡) is indicated with 𝑋 (𝑧) = Z[𝑥(𝑡)];

• The inverse of Z-transform of 𝑋 (𝑧) is indicated with 𝑥(𝑡) = Z−1 [𝑋 (𝑧)];

• The convolution of two functions is indicated with [𝑎 ∗ 𝑏] (𝑡);

• The frequency response of a continuos-time dynamic system is indicated with 𝐺 ( 𝑗𝜔) at fre-

quency 𝜔 ∈ R;
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• The frequency response of a discrete-time dynamic system is indicated with𝐺 (𝑒 𝑗𝜔) at frequency

𝜔 ∈ [0, 𝜋 𝑓𝑠].

Throughout the book, with a little abuse of notation, the equations that ties the input with output of a

discrete dynamic system are denoted, for instance, as: 𝑦(𝑡) = 𝐺 (𝑧)𝑢(𝑡).

Norms

The norms properties are the following:

1. ∥𝑢∥ ≥ 0;

2. ∥𝑢∥ = 0⇔ 𝑢(𝑡) = 0 ∀t;

3. ∥𝑎𝑢∥ = |𝑎 | ∥𝑢∥ ∀𝑎 ∈ R;

4. ∥𝑢 + 𝑣∥ ≤ ∥𝑢∥ + ∥𝑣∥.

Norms for signals

Consider a signals 𝑢(𝑡), where 𝑡 is the temporal instant. They are assumed to be piecewise continuos.

The norms for these signals are:

• 1-Norm: ∥𝑢∥1 =
∫ ∞
−∞ |𝑢(𝑡) | 𝑑𝑡;

• 2-Norm: ∥𝑢∥2 =

(∫ ∞
−∞ |𝑢(𝑡) |

2 𝑑𝑡
) 1

2 ;

• ∞-Norm: ∥𝑢∥∞ = sup𝑡 |𝑢(𝑡) |.

Norms for vector

Given a vector x of length 𝑛 the most important norms are:

• 1-Norm: ∥x∥1 = |𝑥1 | + ... + |𝑥𝑛 |;

• 2-Norm: ∥x∥2 =

(
|𝑥1 |2 + ... + |𝑥𝑛 |2

) 1
2 . It can be seen as the Frobenius norm (in the vector case);

• ∞-Norm: ∥x∥∞ = max1≤𝑖≤𝑛 |𝑥𝑖 |.

Figure 91 depicts the norms shape of a two dimensional vector x ∈ R2×1.
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Norms for Systems

Consider a system 𝐺 (𝑠) that is Linear Time-Invariant (LTI) and Single input Single output (SISO).

Two norms of 𝐺 (𝑠) are:

• 2-Norm: ∥𝐺 (𝑠)∥2 =

(
1

2𝜋

∫ ∞
−∞ |𝐺 ( 𝑗𝜔) |

2 𝑑𝜔
) 1

2 ;

• ∞-Norm: ∥𝐺 (𝑠)∥∞ = max
𝜔
|𝐺 ( 𝑗𝜔) |.

Now, let a Linear Time-Invariant (LTI) Multiple input Multiple output (MIMO) system G(𝑠). Two

norms of G(𝑠) are:

• 2-Norm: ∥G(𝑠)∥2 =

√︃
1√
2

∫ ∞
0 ∥𝑔(𝑡)∥

2
𝐹 𝑑𝑡, where 𝑔(𝑡) is the impulse response of the system and

is the Frobenius norm, defined as ∥A∥𝐹 =
√︁

Tr(A ·A) with a generic matrix A;

• ∞-Norm: ∥G(𝑠)∥∞ = max
𝜔

�̄� (G( 𝑗𝜔)), where �̄�(·), denotes the maximum singular value.

𝑥2

𝑥1

𝒙 ∞ 𝒙 2

𝒙 1

Figure 91: Contours of ∥x∥ 𝑝, where 𝑝 = 1, 2,∞ and x = [𝑥1, 𝑥2].
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Glossary of the most repeated symbols

Generic symbols

Symbol Description

𝑡 time index

𝜔 frequency index

𝜔𝑘 sampled frequencies

A,B,C, 𝐷 state space matrices of a dynamical system

x(𝑡) states

x̂(𝑡) estimated states

𝐾 (𝑠) controller

𝐿0(𝑠) nominal loop function

𝑆0(𝑠) nominal sensitivity function

𝑇0(𝑠) nominal complementary sensitivity function

𝑄0(𝑠) nominal control sensitivity function

𝑢(𝑡) control input signal

𝑦(𝑡) sensed output signal

𝑣(𝑡) additive noise signal

�̂�(𝑡) estimated output signal

𝑒(𝑡) white noise signal

𝑧(𝑡) generic output

𝑤(𝑡) generic input

𝐺 (𝑧) uncertain system

𝐺𝑇 (𝑧) true system

𝐺0(𝑠) nominal model

�̂�0(𝑠) nominal model identified with black-box identification

𝜎2
𝑒 variance of 𝑒(𝑡)

𝑓𝑠 frequency sampling

𝑇𝑠 time sampling
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Uncertainty in system modeling

Symbol Description

q(𝑡) uncertain parameters vector

𝑙 number of uncertain parameters

𝑛𝑧, 𝑛𝑤, 𝑛𝑥 respectively number of 𝑧(𝑡), 𝑤(𝑡), x(𝑡) signals

M (𝑠) transfer function matrix that represents how the uncertainty

affects the system

𝚫 parametric uncertainty

wΔ(𝑡), zΔ(𝑡) signals that connects M (𝑠) with 𝚫

𝑛𝑤Δ
, 𝑛𝑧Δ number of signals of respectively wΔ(𝑡), 𝑧Δ(𝑡)

F𝑢 (M (𝑠),𝚫) upper Linear Fractional Transformation

𝚫(𝑠) parametric uncertainty with mixed linear and nonlinear un-

certainties

Δ(𝑠) nonparametric uncertainty

𝑊𝑎 (𝑠) weight transfer function for additive uncertainty

𝑊𝑖 (𝑠) weight transfer function for multiplicative input uncertainty

𝑊𝑜 (𝑠) weight transfer function for multiplicative output uncertainty

𝐷 𝑙 𝑓 𝑐 (𝑠), 𝑁𝑙 𝑓 𝑐 (𝑠) left coprime factorization terms of 𝐺0(𝑠)

Δ𝑑 (𝑠),Δ𝑛 (𝑠) uncertainty in left coprime factorization

𝑊𝑑 (𝑠),𝑊𝑛 (𝑠) weights transfer function for left coprime factorization un-

certainty

Uncertainty for robust control

Symbol Description

A structured set with fixed frequency 𝜔

BA norm bounded set

𝜇A (M ( 𝑗𝜔)) structured singular value of M ( 𝑗𝜔) with respect to A

P (𝑠) open loop system that represents the known part of the sys-

tem

N (𝑠) transfer function that represents the group composed ofP (𝑠)

with Δ(𝑠)
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F𝑙 (N (𝑠), 𝐾 (𝑠)) lower Linear Fractional Transformation

𝑊𝑆 (𝑠) weight function for 𝑆0(𝑠)

𝑊𝑇 (𝑠) weight function for 𝑇0(𝑠)

𝑊𝑄 (𝑠) weight function for 𝑄0(𝑠)

H (𝑠) transfer function from zΔ to 𝑤Δ with left coprime factoriza-

tion uncertainty

𝐷 (𝑠) scaling transfer function for 𝜇 synthesis

Uncertainty for robust fault diagnosis

Symbol Description

𝑟 (𝑡) residual signal

𝜃 (𝑡) processed residual signal

𝑑 (𝑡) disturbance signal

𝑓 (𝑡) fault signal

𝜄(𝑡) diagnostic decision signal

�̂� (𝑧), �̂� (𝑧) left coprime factorization terms

𝑁 (𝑧), 𝑀 (𝑧) right coprime factorization terms

𝐺𝑑 (𝑧) transfer function from disturbance to output

𝐺𝑣 (𝑧) transfer function from noise to output

𝐺 𝑓 (𝑧) transfer function from fault to output

𝑄(𝑧) post-filter

�̂�(𝑧) estimated post-filter

Q̃(𝑧) post-filter designed with the algorithm proposed in [27]

𝛾 peak gain of �̂�(𝑧)�̂� (𝑧)G𝑣 (𝑧)

L gain matrix of a full-order observer

𝑉 weight matrix of a full-order observer

𝑏 + 1 length of parity vector

v𝑏, y𝑏,u𝑏, f𝑏 signals vector of length 𝑏

V𝑏 parity vector

H𝑜,𝑏,H𝑢,𝑏,H 𝑓 ,𝑏,H𝑑,𝑏 matrices composed by the state space matrices

𝑃𝑏 parity space

𝜏 threshold
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System identification

Symbol Description

M model family

β parameters vector

β𝑇 true parameters vector

β̂ estimated parameters vector

𝑚 number of parameters

𝐻 (𝑧,β) transfer function from 𝑒(𝑡) to 𝑣(𝑡)

𝐺 (𝑧,β) transfer function from 𝑢(𝑡) to 𝑦(𝑡)

D dataset

𝐽𝑛 (β) cost function with finite length dataset D

𝑛 number of data

𝐸𝑜𝑢𝑡 out of sample error

𝐸𝑖𝑛 in sample error

𝛤 infinite-dimensional function space

𝑔 non-parametric function

�̂�0 identified non-parametric function

𝚽 regression matrix

𝐽 (𝑔) regularization term for non-parametric function

𝑙 (β) regularization term for parameters

𝜆 regularization strength term

𝑥 regressors

K𝑥 reproducing kernel

K kernel matrix

K(·) kernel section

c weight vector of the Representer theorem

ĉ identified weight vector

η hyperparameters vector

P̄𝛽 covariance matrix of the parameters vector estimated with

Prediction Error Method

R̄𝛽 asymptotic autocorrelation of the parameters vector
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R̂𝛽 estimated asymptotic autocorrelation of the parameters vec-

tor

S𝑇 true model family

𝛼 size of the confident region

𝑝𝛽 probability of the confidence interval

𝚲⊤𝐺
(
𝑒 𝑗𝜔

)
partial derivative of 𝐺 (𝑒 𝑗𝜔,β)

𝚺 covariance matrix of kernel based identification

B2
𝑒 ,B∞𝑒 uncertainty set in the measurement space of respectively

2-norm bound,∞-norm bound

Δ𝐺 (𝑠) true model error model
ˆ̂
𝐺 ( 𝑗𝜔𝑘 ) nominal model plus model error model plus noise term

O basis function vector

Λ random walk process over 𝜔

β̄ a priori known parameters

𝜖 (𝑠) residual signals of model error

𝐺𝑒 (𝑠) identified model error model

β |y posterior distribution

Mixed-sensitivity loop-shaping

Symbol Description

𝐽 (ρ, 𝐺𝑇 ) cost function of mixed-sensitivity loop-shaping

H (𝑧,ρ) transfer function from zΔ to 𝑤Δ

ρ controller parameters

𝑆(𝑧,ρ) true sensitivity function

𝑇 (𝑧,ρ) true complementary sensitivity function

𝐺 𝑝 (𝑧) random sample form the posterior distribution

Ω(𝑒 𝑗𝜔) nonparametric sample of𝑊𝑇 (𝑧)

𝑟 (𝑡) reference signal

𝜁 confidence level

𝜀 accuracy level

𝑛𝑝 number of sampled systems 𝐺 𝑝 (𝑧)

𝜖 damping factor
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𝑜 overshoot

𝑙 settling time

𝜔𝑐 critical frequency

𝜔𝑐,�̂�𝑇 critical frequency of �̂�𝑇

(O,L) two sets of Pareto-optimal dominant solutions for the over-

shoot and settling time

𝑙𝑚𝑎𝑥 , 𝑙𝑚𝑖𝑛 maximum and minimum of the allowable settling time

𝑜𝑚𝑖𝑛 minimum of the allowable overshoot

𝜔𝑐_min minimum of the allowable critical frequency

ℎ𝑔_max, ℎ𝑔_min maximum and minimum of the high frequency gain

𝑙𝑔, ℎ𝑔 respectively low and high frequency gain

W discrete frequency grid

𝑛𝑚 number of samples inW

𝛾 feasibility margin

(Z,Q) respectively critical frequency and high-frequency gain sets

of Pareto-optimal dominant solutions

G Output Error model set

�̂�𝑠𝑡𝑒𝑝 (𝑡) closed loop unit step responses

𝐺𝐵𝑈 (𝑧), 𝐺𝐵𝐿 (𝑧) upper and lower boundary conditions

�̂�𝐵𝑈 (𝑧), �̂�𝐵𝐿 (𝑧) estimation of upper and lower boundary conditions

D𝑐 dataset composed of both boundary conditions

D𝑢,D𝑙 respectively dataset of upper and lower conditions

𝑏 number samples of transient sector

𝑦𝐵𝑈 (𝑡), 𝑦𝐵𝐿 (𝑡) output signals of upper and lower conditions

�̂�0𝑔 (𝑧) average dynamic system

𝑇0𝑔 (𝑧) closed loop of the average dynamic system

β𝐵𝑈 |y𝐵𝑈 ,β𝐵𝐿 |y𝐵𝐿 posterior distribution of upper and lower boundary condition

188



List of Acronyms

AFDP Approximate Fault Detection Problem. 3, 39, 40, 45, 113–115, 120, 164

AIC Akaike Information Criterion. 2, 51, 93, 168, 169

AR AutoRegressive. 48, 49

ARMAX AutoRegressive Moving Average with an eXogenous variable. 48, 49

ARX AutoRegressive with an eXogenous variable. 48, 49, 58, 175

BIC Bayesian Information Criterion. 2, 51, 168, 169

BJ Box-Jenkins. 49

CV Cross Validation. 2, 51, 168–170

DC Diagonal-Correlated Kernel. 174

DCM Direct Current Motor. 150–152, 155, 160

EFDP Exact Fault Detection Problem. 39, 115

EMA Electro-Mechanical Actuator. 4, 5, 149–152, 154, 159, 160, 199

EUS Estimated Uncertainty Set. 63, 64

FD Fault Detection. 136

FFT Fast Fourier Transform. 159, 160

FIR Finite Impulse Response. 49, 55, 77, 93, 110, 117, 127, 171–175

FMECA Failures Mode, Effects and Criticality Analysis. 4, 5, 149, 150, 160, 164

FPS Feasible Parameter Set. 64, 65, 69

GP Gaussian Processes. 76

HHT Hilbert-Huang Transform. 34

HVAC Heat, ventilation and air conditioning system. 123, 124

189



Nicholas Valceschini

IAE Integral Absolute Error. 97, 98, 100, 102, 129, 132, 195, 196

IQC Integral Quadratic Constraint. 13

LFC Left Coprime Factorization. 36

LFT Linear Fractional Transformation. 10, 11, 13, 14, 18, 20, 24–26, 28, 70, 83, 87, 107, 113, 114,

184, 185, 193

LTI Linear Time-Invariant. 19, 47, 77, 78, 105, 111, 114, 182, 193

MA Moving Average. 48, 49

MAP Maximum A Posteriori. 55, 175

MargLik Marginalized Likelihood. 55, 175

MCSA Motor-Current Signature Analysis. 33

MDL Rissanen’s Minimum Description Length. 169

MEM Model Error Modeling. 2, 66, 67, 69, 164

MIMO Multiple input Multiple output. 7, 15, 18, 24, 29, 35, 124, 164, 182

ML Maximum Likelihood. 51

MPC Model Predictive Control. 123, 124

MUS Measurement Uncertainty Set. 63, 64

OCV Object-wise Cross Validation. 170, 171, 199

OE Output Error. 49, 93, 188

PEM Prediction Error Method. 2, 4, 7, 46–48, 51, 56–58, 60, 62, 63, 67, 68, 75, 93–104, 163, 169,

172, 186, 195, 196

PET PolyEthylene Terephthalate. 4, 5, 135

PWM Pulse-Width Modulation. 125, 127, 152

ReLS Regularized Least Squares. 55, 173, 175

190



Appendices

RFC Right Coprime Factorization. 36

RKHS Reproducing Kernel Hilbert Space. 46, 51–55

RMS Root Mean Square. 33, 46, 143, 145, 146, 199, 201

SE Stochastic Embedding. 2, 4, 66, 69

SISO Single input Single output. 3, 7, 9, 14, 15, 22, 25, 35, 47, 77, 78, 80, 81, 87, 105, 110, 111,

114, 182, 193

SK Spectral Kurtosis. 142

SS Stable-spline Kernel. 174

STFT Short-Time Fourier Transform. 34

SVM Support Vector Machines. 159

TC Tuned/Correlated Kernel. 174

TSA Time Synchronous Averaging. 149

WT Wavelet Transform. 34

WVD Wigner-Ville Distribution. 34

191





List of Figures

Figure 1: Δ − 𝑀 model resulting from the linear fractional transformation. . . . . . . . . . 10

Figure 2: Block scheme representation of the considered system. . . . . . . . . . . . . . . 12

Figure 3: Upper LFT scheme of the example system. . . . . . . . . . . . . . . . . . . . . . 13

Figure 4: Graphical representation of additive uncertainty. . . . . . . . . . . . . . . . . . . 14

Figure 5: Graphical representation of multiplicative input uncertainty. . . . . . . . . . . . 15

Figure 6: Graphical representation of multiplicative output uncertainty. . . . . . . . . . . . 15

Figure 7: Graphical representation of inverse multiplicative output uncertainty. . . . . . . . 16

Figure 8: Graphical representation of weighted left coprime factorization uncertainty. . . . 18

Figure 9: Nyquist representation of robust stability with multiplicative unstructured uncer-

tainty. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

Figure 10: Nyquist representation of robust performance with multiplicative unstructured

uncertainty. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

Figure 11: Robust performance represented by fictitious uncertainty for structured uncertainty

systems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

Figure 12: Linear Fractional Transformation for robust control synthesis. . . . . . . . . . . 26

Figure 13: Traditional control synthesis scheme. . . . . . . . . . . . . . . . . . . . . . . . . 26

Figure 14: Graphic representation of left coprime factorization uncertainty for mixed-

sensitivity loop-shaping [19]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

Figure 15: Graphical representation of the 𝜇-synthesis employing the scaling transfer function. 29

Figure 16: Fault evolution scheme [48, 49, chapter 2]. . . . . . . . . . . . . . . . . . . . . . 30

Figure 17: Representation of some types of maintenance strategies. . . . . . . . . . . . . . 31

Figure 18: Representation of the taxonomy of the fault diagnosis algorithm. . . . . . . . . . 33

Figure 19: Representation of the general signal-based scheme [28, Chapter 1]. . . . . . . . . 34

Figure 20: Representation of the general model-based scheme [28, Chapter 1]. . . . . . . . . 35

Figure 21: Representation of the robust residual generator scheme with stable coprime fac-

torization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

Figure 22: Representation of the robust control scheme for robust residual generator synthesis

with stable coprime factorization. . . . . . . . . . . . . . . . . . . . . . . . . . 41

Figure 23: General model of an Linear Time-Invariant (LTI) Single input Single output (SISO)

dynamic system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

193



Nicholas Valceschini

Figure 24: Out-of-sample error vs in-sample error curves, the red area highlights the overfit-

ting phenomenon. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

Figure 25: β̂ estimation with low number of data and low variance of noise. . . . . . . . . . 59

Figure 26: β̂ estimation with low number of data and high variance of noise. . . . . . . . . 59

Figure 27: β̂ estimation with high number of data and low variance of noise. . . . . . . . . 59

Figure 28: β̂ estimation with high number of data and high variance of noise. . . . . . . . . 59

Figure 29: Confidence interval in the parameters space with low number of data and high

variance of noise. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

Figure 30: Confidence interval in the parameters space with high number of data and low

variance of noise. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

Figure 31: Confidence interval in frequency domain with low number of data and high vari-

ance of noise. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

Figure 32: Confidence interval in frequency domain with high number of data and low vari-

ance of noise. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

Figure 33: Graphical representations of B∞𝑒 in the measurements space and parameters space. 65

Figure 34: Graphical representations of B2
𝑒 in the measurements space and parameters space. 66

Figure 35: Analysis of the probability density function of all possible values of the noise. . . 66

Figure 36: Graphical final model (nominal model plus model error model) endowed of the

uncertainty region (dashed lines). . . . . . . . . . . . . . . . . . . . . . . . . . 68

Figure 37: Graphical resume of the state of the art. . . . . . . . . . . . . . . . . . . . . . . 71

Figure 38: (a) Identification for robust control approach common to many benchmark method-

ologies, like stochastic embedding (SE) [118], model-error modeling (MEM) [86]

and Set membership (SM). The system input and output are denoted by 𝑢(𝑡) and

𝑦(𝑡) respectively, with 𝑢𝐹 (𝑡), 𝑦𝐹 (𝑡) being their filtered versions. �̂�0(𝑧) denotes an

estimated model of the plant, while Δ(𝑧) is the estimated model uncertainty. (b)

Our approach. E [ 𝑓 (𝑡) |𝑦(𝑡)] and Var [ 𝑓 (𝑡) |𝑦(𝑡)] denote respectively the posterior

mean and autocovariance of the impulse response. 𝑊𝑇 (𝑧) and𝑊𝑆 (𝑧) are weights

functions in the 𝑆/𝑇 mixed-sensitivity rationale, and 𝐾 (𝑧) is the designed robust

controller. Blue lines indicate the information needed from the user. . . . . . . . 78

Figure 39: Comparison between ∥d∥1 < 1 and ∥d∥2 < 1/√2, where d ∈ C2. . . . . . . . . . 81

194



Appendices

Figure 40: 𝑆/𝑇 mixed-sensitivity scheme with multiplicative uncertainty and identified model

�̂�0(𝑧) for the design of the controller 𝐾 (𝑧,ρ). The term 𝑊𝑇 (𝑧) represents the

uncertainty weight function in the identification of �̂�0(𝑧). Instead, the term𝑊𝑆 (𝑧)

depicts the performance specification. . . . . . . . . . . . . . . . . . . . . . . . 82

Figure 41: Lower bound curve of 𝑛𝑝 with a subset of 𝜀 and 𝜁 . . . . . . . . . . . . . . . . . 86

Figure 42: Multi-objective optimization with Pareto frontier and selection of the chosen

solution in the set of dominant ones. . . . . . . . . . . . . . . . . . . . . . . . . 90

Figure 43: Identification of the transfer function 𝐺𝑇 (𝑧). The PEM undermodeling approach

cannot model the second resonance peak. The PEM full approach perfectly

represents the true system due to its exact structure selection. The kernel approach

attains almost perfect results, apart of a slight bias at low frequencies due to its

regularized nature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

Figure 44: Frequency response of 50 𝐺 𝑝 (𝑧). . . . . . . . . . . . . . . . . . . . . . . . . . . 95

Figure 45: Uncertainty weight 𝑊𝑇 (𝑧) estimation. (Continuous line) Magnitude of the para-

metric model �̂�𝑇 (𝑧). (Dots) Nonparametric estimate Ω(𝑒 𝑗𝜔𝑚). (Dashed line) The

gain of the frequency response of 𝐺 𝑝 (𝑧)
�̂�0 (𝑧)

− 1, where the systems 𝐺 𝑝 (𝑧) are drawn

from the sampling distribution of the parameters estimates. The dashed lines are

a subset of the 𝑛𝑝 systems for graphical purposes. . . . . . . . . . . . . . . . . . 96

Figure 46: (Left) (continuous line) Closed-loop complementary sensitivity function𝑇0(𝑧) us-

ing the estimated controller �̂� (𝑧). (Dashed line) Inverse of the uncertainty weight

�̂�𝑇 (𝑧), that should lie above 𝑇0(𝑧) for robust stability with margin 𝛾. (Right)

(continuous line) Closed-loop sensitivity function 𝑆0(𝑧) using the estimated con-

troller �̂� (𝑧). (Dashed line) Inverse of the performance weight �̂�𝑆 (𝑧), that should

lie above 𝑆0(𝑧) for nominal performance with margin 𝛾. . . . . . . . . . . . . . . 97

Figure 47: Integral Absolute Error of the closed-loop unit step response, over 𝑛𝑣 = 200

randomly sampled systems from the estimated parameters distribution. PEM u.m.

stands for PEM undermodeling. (Left) Design strategy DS1): manual design of

𝑊𝑆 (𝑧) and 𝑊𝑇 (𝑧). (Center) Design strategy DS2): manual design of 𝑊𝑆 (𝑧) and

automatic design of 𝑊𝑇 (𝑧). (Right). Design strategy DS3): automatic design of

𝑊𝑆 (𝑧) and𝑊𝑇 (𝑧). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

195



Nicholas Valceschini

Figure 48: Performance indices analysis of the closed-loop unit step response, over 𝑛𝑣 = 200

randomly sampled systems from the estimated parameters distribution. PEM u.m.

stands for PEM undermodeling. (Left) Design strategy DS1): manual design of

𝑊𝑆 (𝑧) and 𝑊𝑇 (𝑧). (Center) Design strategy DS2): manual design of 𝑊𝑆 (𝑧) and

automatic design of 𝑊𝑇 (𝑧). (Right). Design strategy DS3): automatic design of

𝑊𝑆 (𝑧) and𝑊𝑇 (𝑧). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

Figure 49: (Continuous line) Closed-loop unit step responses on nominal model �̂�0(𝑧). (Dot-

ted line) Closed-loop unit step responses on the true system𝐺𝑇 (𝑧). (Dashed lines)

Performance requirements (𝑜, ℓ̂) estimated from problem (2.35). In the PEM-

undermodeling case the designed controller makes the true system unstable. In

the PEM-full case, the response on the nominal model and true system overlap. . 100

Figure 50: Analysis of the robust performance test
���̂�𝑆 (𝑧)𝑆0(𝑧, �̂� (𝑧))

��+ ���̂�𝑇 (𝑧)𝑇0(𝑧, �̂� (𝑧))
�� <

1 with all identification methods. Specifically, the images represent the results ob-

tained with the three identification methods: (Left) PEM undermodeling (Center)

PEM-full and (Right) kernel-based. . . . . . . . . . . . . . . . . . . . . . . . . 101

Figure 51: Performance analysis of the sensitivity functions computed by the sampled system

from the validation set, denoted as 𝑆𝑝 (𝑧, �̂� (𝑧)) = 1
1+𝐺 𝑝 (𝑧)�̂� (𝑧)

. All sampled systems

are compared to the inverse of the performance weight. Specifically, the images

represent the results obtained with the three identification methods: (Left) PEM

undermodeling (Center) PEM-full and (Right) kernel-based. . . . . . . . . . . . 101

Figure 52: Integral Absolute Error of the closed-loop unit step response, over 𝑛𝑣 = 200

sampled systems from the estimated parameters distributions. PEM u.m. stands

for PEM undermodeling. The black and green stars correspond to the performance

indices obtained with 𝐺𝑇 (𝑧). The PEM u.m. star is out of scale. . . . . . . . . . 102

Figure 53: Performance indices analysis of the closed-loop unit step response, over 𝑛𝑣 = 200

randomly sampled systems from the estimated parameters distribution. PEM u.m.

stands for PEM undermodeling. The black and green stars correspond to the

performance indices obtained with 𝐺𝑇 (𝑧). The PEM u.m. stars are out of scale. . 102

196



Appendices

Figure 54: (Left) (continuous line) Closed-loop complementary sensitivity function 𝑇0(𝑧)

using the estimated controller �̂� (𝑧). (Dashed line) Inverse of the uncertainty

weight �̂�𝑇 (𝑧), that should lie above 𝑇0(𝑧). (Right) (continuous line) Uncertain

closed-loop sensitivity function 𝑆0 (𝑧)
1+�̂�𝑇 (𝑧)𝑇0 (𝑧,�̂� (𝑧))

. (Dashed line) Inverse of the per-

formance weight �̂�𝑆 (𝑧), that should lie above the uncertain closed-loop sensitivity

function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

Figure 55: Example of the boundary conditions frequency response. . . . . . . . . . . . . . 109

Figure 56: (Left) Identification results, where: the dashed line is the true system instead the

straight line represents the identified discrete model by using the kernel based

identification (Right) Uncertainty weight 𝑊𝑇 (𝑧) estimation, where: the contin-

uous line is the magnitude of the parametric model �̂�𝑇 (𝑧), the dots line is the

nonparametric estimate Ω(𝑒 𝑗𝜔𝑚) and the dashed lines represent The gain of the

frequency response of 𝐺 𝑝 (𝑧)
�̂�0 (𝑧)

− 1, where the systems 𝐺 𝑝 (𝑧) are drawn from the

sampling distribution of the parameters estimates. The dashed lines are a subset

of the 𝑛𝑝 systems for graphical purposes. . . . . . . . . . . . . . . . . . . . . . . 117

Figure 57: Comparison between �̂�𝑇 (𝑧) and the resulting �̂�(𝑧). . . . . . . . . . . . . . . . . 118

Figure 58: Comparison between robust and not robust stable coprime factorization varying

the amplitude of the fault signal. The top image depicts healthy (black line) and

faulty (red line) sensed output signals. The bottom image shows the module of

the residual signal computed with the not robust residual generator. The bottom

image illustrates the module of the residual signal computed with the proposed

robust residual generator (black line) and the proposed threshold (red dashed line). 119

Figure 59: The industrial oven for heat shrinking with the highlighted hot and cold air flows. 124

Figure 60: The measured output signal of the general experiment. . . . . . . . . . . . . . . 128

Figure 61: Kernel-based identification and estimation of �̂�𝑇 (𝑧) results. . . . . . . . . . . . 129

Figure 62: (Left) (Continuous line) Closed-loop complementary sensitivity function 𝑇0𝑔 (𝑧)

using the estimated controller �̂� (𝑧) and the average system. (Dashed line)
1+𝛾/�̂�𝑇 (𝑧), that should lie above𝑇0𝑔 (𝑧). (Right) (Continuous line) Uncertain closed-

loop sensitivity function 𝑆0𝑔 (𝑧), computed with the estimated controller �̂� (𝑧) and

the average system. (Dashed line) 1+𝛾/�̂�𝑆 (𝑧), that should lie above the uncertain

closed-loop sensitivity function. . . . . . . . . . . . . . . . . . . . . . . . . . . 130

197



Nicholas Valceschini

Figure 63: Step responses of the 2 · 𝑛𝑣 (𝑛𝑣 for each boundary condition) sampled systems

coupled with the resulting controller �̂� (𝑧), compared to the step response of the

average dynamic system denoted as 𝑇0𝑔 (𝑧). The black dashed lines represent the

performance constraints for �̂�0𝑔 (𝑧). . . . . . . . . . . . . . . . . . . . . . . . . 130

Figure 64: Graphical representation of 𝐽 (ρ̂, �̂�0𝑔 (𝑧)) by varying ℎ𝑔 and 𝑙𝑔. The red curve

depicts the relaxed constraint value 1 + 𝛾. . . . . . . . . . . . . . . . . . . . . . 131

Figure 65: All images depict the average values of the performance indices computed on the

closed-loop system obtained by �̂� (𝑧) and the sampled 2 · 𝑛𝑣 dynamic systems.

The colored curves represent the results obtained with the manual design, instead

the green curve the results obtained with the proposed design. Specifically: (Left)

Illustrates the performance indices obtained with all couples of ℎ𝑔 and 𝑙𝑔, (Right)

Report a portion of the curves depicted in left images. This section is composed

of the couples that meet with the constraint 𝐽 (ρ̂, �̂�0𝑔 (𝑧)) < 1 + 𝛾 (see Figure 64). 132

Figure 66: Example of a bottling plant with main machines. The blow molding machine is

highlighted as the main machine considered in this work. . . . . . . . . . . . . . 136

Figure 67: Schematic of the oven and blow molding machines for a plastic bottling plant. The

steps of the production process, from (1) to (8), are highlighted with respect to the

components responsible for each step. . . . . . . . . . . . . . . . . . . . . . . . 138

Figure 68: (Left) Upper-view of an input gripping plier with front bearing detail. (Right)

Upside down side-view with posterior bearings, springs and cam detail. . . . . . 139

Figure 69: Opening and closing mechanism of the pliers arms as function of the plier position

on the cam. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

Figure 70: Fault injection of posterior pliers bearings. . . . . . . . . . . . . . . . . . . . . . 140

Figure 71: Considered accelerometer over the Z axis and its positioning on the pliers structure.140

Figure 72: Schematic of the pliers mechanism. The plier P3 is supposed to have damaged

posterior bearings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

Figure 73: Example of healthy and faulty vibration signals. . . . . . . . . . . . . . . . . . . 144

Figure 74: Kurtogram on faulty data, with indication of the best filtering bandwith. . . . . . 144

Figure 75: Envelope of healthy and faulty vibration signals. . . . . . . . . . . . . . . . . . . 145

Figure 76: Overlapped portions of data for each full round of the pliers. The indicator signal

𝑖(𝑡) groups the data into the four operating quadrant of the pliers. The passages of

the faulty plier P3 over the quadrants are showed. . . . . . . . . . . . . . . . . . 146

198



Appendices

Figure 77: Boxplots of the RMS of the envelope signal over each quadrant. . . . . . . . . . 146

Figure 78: Criticality matrix resulting from FMECA on the considered actuation system. . . 151

Figure 79: Schematic representation of the overall system. . . . . . . . . . . . . . . . . . . 152

Figure 80: Healthy nylon gear (left) and pinion (right). . . . . . . . . . . . . . . . . . . . . 153

Figure 81: Faulty rack (left) and pinion (right). . . . . . . . . . . . . . . . . . . . . . . . . 153

Figure 82: Faulty nylon gear without breaking the inner ring (left); natural notch that breaks

the inner ring (right). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

Figure 83: Blocks scheme of the DC motor model. . . . . . . . . . . . . . . . . . . . . . . 156

Figure 84: Proposed model-based fault diagnosis scheme. . . . . . . . . . . . . . . . . . . 156

Figure 85: Computed axial speed 𝑣𝑐 (𝑡) from measurements and simulated axial speed �̂�𝑑 (𝑡)

by the model �̂�𝑑 (𝑠). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

Figure 86: Frequency analysis of the residual envelope of all EMA conditions. . . . . . . . . 160

Figure 87: Features plane and classification boundaries. . . . . . . . . . . . . . . . . . . . . 161

Figure 88: The graphical representation of the bias and variance concepts. . . . . . . . . . . 168

Figure 89: Example of fold extraction using the Object-wise Cross Validation with six items,

denote with 𝑚𝑖, 𝑖 = 1, ..., 6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

Figure 90: Geometric representation of Lasso and Ridge regression. . . . . . . . . . . . . . 173

Figure 91: Contours of ∥x∥𝑝, where 𝑝 = 1, 2,∞ and x = [𝑥1, 𝑥2]. . . . . . . . . . . . . . . 182

199





List of Tables

Table 1: Physical sources of uncertainty accounted by the uncertainty models. . . . . . . . 17

Table 2: Robust stability test at varying the unstructured uncertainty model. . . . . . . . . 21

Table 3: Model classes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

Table 4: Some examples of reproducing kernel structure. . . . . . . . . . . . . . . . . . . 55

Table 5: Boundary conditions features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

Table 6: Kurtosis and RMS of 𝑟𝑒 (𝑡) for each tests. . . . . . . . . . . . . . . . . . . . . . . 145

Table 7: Confusion matrix of the classifier trained on all the data. . . . . . . . . . . . . . . 161

Table 8: Some types of Kernel matrix. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

201





List of Algorithms

1 Design of �̂�𝑇 (𝑧) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

2 Estimation of �̂�𝑆 (𝑧) for nominal performance and robust stability . . . . . . . . . . . 91

3 Estimation of �̂�𝑆 (𝑧) for robust performance . . . . . . . . . . . . . . . . . . . . . . . 92

4 Design of �̂�𝑇 (𝑧) and �̂�𝑆 (𝑧) for multi-model systems . . . . . . . . . . . . . . . . . . 111

5 Synthesis of Q̃(𝑧) with automatic design of �̂�𝑇 (𝑧) . . . . . . . . . . . . . . . . . . . 116

6 Fault detection algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

7 Fault indicators for gripping pliers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

203





References

[1] L. Ljung, Model validation and model error modeling. Linköping University Electronic Press,

1999.

[2] P. Stoica and T. Söderström, System Identification. Prentice Hall international series in systems

and control engineering, 1989.

[3] L. Ljung, “Prediction error estimation methods,” Circuits, Systems and Signal Processing,

2002.

[4] F. C. Schweppe, Uncertain dynamics systems. Practice Hall, 1973.

[5] M. Milanese and A. Vicino, “Optimal estimation theory for dynamic systems with set member-

ship uncertainty: An overview,” Automatica, vol. 27, no. 6, pp. 997–1009, 1991.

[6] G. Pillonetto, F. Dinuzzo, T. Chen, G. De Nicolao, and L. Ljung, “Kernel methods in system

identification, machine learning and function estimation: A survey,” Automatica, 2014.

[7] G. Pillonetto and G. De Nicolao, “A new kernel-based approach for linear system identification,”

Automatica, vol. 46, no. 1, pp. 81–93, 2010.

[8] Y. Fujimoto, I. Maruta, and T. Sugie, “Input design for kernel-based system identification from

the viewpoint of frequency response,” IEEE Transactions on Automatic Control, vol. 63, no. 9,

pp. 3075–3082, 2018.

[9] G. C. Goodwin, M. Gevers, and B. Ninness, “Identification and robust control: Bridging the

gap,” in Proceeding of the 7th IEEE Mediterranian Conference on Control and Automation,

1999.

[10] W. Reinelt, A. Garulli, and L. Ljung, “Comparing different approaches to model error modeling

in robust identification,” Automatica, vol. 38, no. 5, pp. 787–803, 2002.

[11] B. Wahlberg and L. Ljung, “Hard frequency-domain model error bounds from least-squares like

identification techniques,” IEEE Transactions on Automatic Control, vol. 37, no. 7, pp. 900–912,

1992.

[12] H. Akaike, “Information theory and an extension of the maximum likelihood principle,” in

Selected papers of hirotugu akaike, pp. 199–213, Springer, 1998.

205



Nicholas Valceschini

[13] G. Schwarz, “Estimating the dimension of a model,” The annals of statistics, pp. 461–464,

1978.

[14] T. Hastie, R. Tibshirani, J. H. Friedman, and J. H. Friedman, The elements of statistical learning:

data mining, inference, and prediction, vol. 2. Springer, 2009.

[15] M. Stone, “Cross-validatory choice and assessment of statistical predictions,” Journal of the

royal statistical society: Series B (Methodological), vol. 36, no. 2, pp. 111–133, 1974.

[16] S. Skogestad and I. Postlethwaite, Multivariable feedback control: analysis and design, vol. 2.

Citeseer, 2007.

[17] D. Youla and J. Bongiorno, “A feedback theory of two-degree-of-freedom optimal wiener-hopf

design,” IEEE Transactions on Automatic Control, vol. 30, no. 7, pp. 652–665, 1985.

[18] D. McFarlane and K. Glover, “A loop-shaping design procedure using Hinf synthesis,” IEEE

transactions on automatic control, vol. 37, no. 6, pp. 759–769, 1992.

[19] H. Kwakernaak, “Robust control and H∞-optimization—tutorial paper,” automatica, vol. 29,

no. 2, pp. 255–273, 1993.

[20] J. Chen and R. J. Patton, Robust model-based fault diagnosis for dynamic systems, vol. 3.

Springer Science & Business Media, 2012.

[21] R. J. Patton and J. Chen, “A review of parity space approaches to fault diagnosis,” IFAC

Proceedings Volumes, vol. 24, no. 6, pp. 65–81, 1991.

[22] R. J. Patton and J. Chen, “Robust fault detection using eigenstructure assignment: A tutorial

consideration and some new results,” in Proceedings of the 30th IEEE Conference on Decision

and Control, vol. 3, pp. 2242–2247, 1991.

[23] R. J. Patton, “Robust model-based fault diagnosis: the state of the art,” IFAC Proceedings

Volumes, vol. 27, no. 5, pp. 1–24, 1994.

[24] J. Doyle, B. Frances, A. Tannenbaum, and K. Moore, Feedback control theory, vol. 39. IEEE,

1994.

[25] K. Zhou and J. C. Doyle, Essentials of robust control, vol. 104. Prentice hall Upper Saddle

River, NJ, 1998.

[26] K. Zhou, J. Doyle, and K. Glover, Robust and optimal control. NJ: Prentice Hall, 1996.

206



References

[27] A. Varga, “Solving fault diagnosis problems,” Studies in Systems, Decision and Control, 1st

ed., 2017.

[28] S. X. Ding, Model-based fault diagnosis techniques: design schemes, algorithms, and tools,

2nd ed. Springer Science & Business Media, 2013.

[29] M. Mazzoleni, G. Di Rito, and F. Previdi, Electro-Mechanical Actuators for the More Electric

Aircraft. Springer International, 2021.

[30] F. Blanchini and P. Colaneri, “Uncertain systems: Time-varying versus time-invariant uncer-

tainties,” in Uncertainty in Complex Networked Systems, pp. 3–91, Springer, 2018.

[31] B. R. Barmish and E. Jury, “New tools for robustness of linear systems,” IEEE Transactions on

Automatic Control, pp. 2525–2525, 1994.

[32] R. Tempo, G. Calafiore, and F. Dabbene, Randomized algorithms for analysis and control of

uncertain systems: with applications. Springer, 2013.

[33] A. Megretski and A. Rantzer, “System analysis via integral quadratic constraints,” IEEE Trans-

actions on Automatic Control, vol. 42, no. 6, pp. 819–830, 1997.

[34] I. R. Petersen and R. Tempo, “Robust control of uncertain systems: Classical results and recent

developments,” Automatica, vol. 50, no. 5, pp. 1315–1335, 2014.

[35] I. R. Petersen, “A stabilization algorithm for a class of uncertain linear systems,” Systems &

control letters, vol. 8, no. 4, pp. 351–357, 1987.

[36] K.-Z. Liu, M. Ono, X. Li, and M. Wu, “Robust performance synthesis for systems with

positive-real uncertainty and an extension to the negative-imaginary case,” Automatica, vol. 82,

pp. 194–201, 2017.

[37] G. Zames, “On the input-output stability of time-varying nonlinear feedback systems part one:

Conditions derived using concepts of loop gain, conicity, and positivity,” IEEE transactions on

automatic control, vol. 11, no. 2, pp. 228–238, 1966.

[38] J. C. Doyle, J. E. Wall, and G. Stein, “Performance and robustness analysis for structured

uncertainty,” in Proceeding of the 21st IEEE conference on decision and control, pp. 629–636,

1982.

207



Nicholas Valceschini

[39] G. E. Dullerud and F. Paganini, A course in robust control theory: a convex approach, vol. 36.

Springer Science & Business Media, 2013.

[40] K. Glover and J. C. Doyle, “A state space approach to H∞ optimal control,” Three decades of

mathematical system theory, pp. 179–218, 1989.

[41] J. C. Doyle, “A review of 𝜇 for case studies in robust control,” IFAC Proceedings Volumes,

vol. 20, no. 5, pp. 365–372, 1987.

[42] P. Apkarian and D. Noll, “The H∞ control problem is solved,” Aerospace Lab, vol. -, no. 13,

pp. pages–1, 2017.

[43] P. Dorato and A. Kestenbaum, “Application of game theory to the sensitivity design of optimal

systems,” IEEE Transactions on Automatic Control, vol. 12, no. 1, pp. 85–87, 1967.

[44] S. Chang and T. Peng, “Adaptive guaranteed cost control of systems with uncertain parameters,”

IEEE Transactions on Automatic Control, vol. 17, no. 4, pp. 474–483, 1972.

[45] D. Carlucci and F. Donati, “Control of norm uncertain systems,” IEEE Transactions on Auto-

matic Control, vol. 20, no. 6, pp. 792–795, 1975.

[46] I. Horowitz, “Quantitative feedback theory,” in Proceeding of the IEEE (Control Theory and

Applications), vol. 129, pp. 215–226, 1982.

[47] P. Apkarian and D. Noll, “NonsmoothH∞ synthesis,” IEEE Transactions on Automatic Control,

vol. 51, no. 1, pp. 71–86, 2006.

[48] R. Isermann, Fault-Diagnosis Systems - An Introduction from Fault Detection to Fault Tolerance.

Springer-Verlag Berlin Heidelberg, 2006.

[49] D. Miljković, “Fault detection methods: A literature survey,” in Proceedings of the 34th

international convention MIPRO, pp. 750–755, IEEE, 2011.

[50] S. J. Qin, “Survey on data-driven industrial process monitoring and diagnosis,” Annual reviews

in control, vol. 36, no. 2, pp. 220–234, 2012.

[51] N. M. Nor, C. R. C. Hassan, and M. A. Hussain, “A review of data-driven fault detection

and diagnosis methods: Applications in chemical process systems,” Reviews in Chemical

Engineering, vol. 36, no. 4, pp. 513–553, 2020.

208



References

[52] R. Isermann and P. Balle, “Trends in the application of model-based fault detection and diagnosis

of technical processes,” Control engineering practice, vol. 5, no. 5, pp. 709–719, 1997.

[53] M. Blanke, M. Kinnaert, J. Lunze, M. Staroswiecki, and J. Schröder, Diagnosis and fault-

tolerant control, vol. 2. Springer, 2006.

[54] Y. C. Yeh, “Triple-triple redundant 777 primary flight computer,” in Proceeding of the IEEE

Aerospace Applications Conference, vol. 1, pp. 293–307, IEEE, 1996.

[55] H. Hashemian, “Maintenance of process instrumentation in nuclear power plant,” Berlin Hei-

delberg, 2006.

[56] E. Chow and A. Willsky, “Analytical redundancy and the design of robust failure detection

systems,” IEEE Transactions on automatic control, vol. 29, no. 7, pp. 603–614, 1984.

[57] Z. Gao, C. Cecati, and S. X. Ding, “A survey of fault diagnosis and fault-tolerant tech-

niques—part i: Fault diagnosis with model-based and signal-based approaches,” IEEE trans-

actions on industrial electronics, vol. 62, no. 6, pp. 3757–3767, 2015.

[58] L. Hong and J. S. Dhupia, “A time domain approach to diagnose gearbox fault based on

measured vibration signals,” Journal of Sound and Vibration, vol. 333, no. 7, pp. 2164–2180,

2014.

[59] H. Chen and S. Lu, “Fault diagnosis digital method for power transistors in power converters

of switched reluctance motors,” IEEE Transactions on Industrial Electronics, vol. 60, no. 2,

pp. 749–763, 2012.

[60] N. M. Freire, J. O. Estima, and A. J. M. Cardoso, “Open-circuit fault diagnosis in pmsg drives

for wind turbine applications,” IEEE Transactions on Industrial electronics, vol. 60, no. 9,

pp. 3957–3967, 2012.

[61] S. Nandi, H. A. Toliyat, and X. Li, “Condition monitoring and fault diagnosis of electrical

motors—a review,” IEEE transactions on energy conversion, vol. 20, no. 4, pp. 719–729, 2005.

[62] R. B. Randall, Vibration-based condition monitoring: industrial, automotive and aerospace

applications. John Wiley & Sons, 2021.

[63] N. Pan, X. Wu, Y. Chi, X. Liu, and C. Liu, “Combined failure acoustical diagnosis based on

improved frequency domain blind deconvolution,” in Proceeding of the Journal of Physics:

Conference Series, vol. 364, p. 012078, 2012.

209



Nicholas Valceschini

[64] H. Liu, L. Li, and J. Ma, “Rolling bearing fault diagnosis based on stft-deep learning and sound

signals,” Shock and Vibration, vol. 2016, 2016.

[65] Y. Gritli, L. Zarri, C. Rossi, F. Filippetti, G.-A. Capolino, and D. Casadei, “Advanced diag-

nosis of electrical faults in wound-rotor induction machines,” IEEE Transactions on Industrial

Electronics, vol. 60, no. 9, pp. 4012–4024, 2012.

[66] R. Yan and R. X. Gao, “Hilbert–huang transform-based vibration signal analysis for machine

health monitoring,” IEEE Transactions on Instrumentation and measurement, vol. 55, no. 6,

pp. 2320–2329, 2006.

[67] V. Climente-Alarcon, J. A. Antonino-Daviu, M. Riera-Guasp, and M. Vlcek, “Induction motor

diagnosis by advanced notch fir filters and the wigner–ville distribution,” IEEE Transactions on

Industrial Electronics, vol. 61, no. 8, pp. 4217–4227, 2013.

[68] G. H. B. Foo, X. Zhang, and D. M. Vilathgamuwa, “A sensor fault detection and isolation

method in interior permanent-magnet synchronous motor drives based on an extended kalman

filter,” IEEE Transactions on Industrial Electronics, vol. 60, no. 8, pp. 3485–3495, 2013.

[69] A. S. Willsky and H. L. Jones, “A generalized likelihood ratio approach to state estimation in

linear systems subjects to abrupt changes,” in Proceeding of the IEEE Conference on Decision

and Control including the 13th Symposium on Adaptive Processes, pp. 846–853, IEEE, 1974.

[70] C. Bakiotis, J. Raymond, and A. Rault, “Parameter and discriminant analysis for jet engine

mechanical state diagnosis,” in Proceeding of the IEEE Conference on Decision and Control,

pp. 1–11, 1979.

[71] R. Isermann, “Process fault detection based on modeling and estimation methods—a survey,”

automatica, vol. 20, no. 4, pp. 387–404, 1984.

[72] S. Simani and C. Fantuzzi, “Dynamic system identification and model-based fault diagnosis of

an industrial gas turbine prototype,” Mechatronics, vol. 16, no. 6, pp. 341–363, 2006.

[73] E. Frisk, Residual generation for fault diagnosis. PhD thesis, Linköpings universitet, 2001.

[74] A. Marcos, S. Ganguli, and G. J. Balas, “An application ofH∞ fault detection and isolation to

a transport aircraft,” Control Engineering Practice, vol. 13, no. 1, pp. 105–119, 2005.

[75] G. Murad, I. Postlethwaite, and D. Gu, “A robust design approach to integrated controls and

diagnostics,” IFAC Proceedings Volumes, vol. 29, no. 1, pp. 6518–6523, 1996.

210



References

[76] E. Frisk and L. Nielsen, “Robust residual generation for diagnosis including a reference model

for residual behavior,” Automatica, vol. 42, no. 3, pp. 437–445, 2006.

[77] J. CHEN and H. ZHANG, “Robust detection of faulty actuators via unknown input observers,”

International Journal of Systems Science, vol. 22, no. 10, pp. 1829–1839, 1991.

[78] R. V. Beard, Failure accomodation in linear systems through self-reorganization. PhD thesis,

Massachusetts Institute of Technology, 1971.

[79] H. L. Jones, Failure detection in linear systems. PhD thesis, Massachusetts Institute of Tech-

nology, 1973.

[80] R. N. Clark, D. C. Fosth, and V. M. Walton, “Detecting instrument malfunctions in control

systems,” IEEE Transactions on Aerospace and Electronic Systems, vol. -, no. 4, pp. 465–473,

1975.

[81] M.-A. Massoumnia, “A geometric approach to the synthesis of failure detection filters,” IEEE

Transactions on automatic control, vol. 31, no. 9, pp. 839–846, 1986.

[82] A. Emami-Naeini, M. M. Akhter, and S. M. Rock, “Effect of model uncertainty on failure

detection: the threshold selector,” IEEE Transactions on Automatic Control, vol. 33, no. 12,

pp. 1106–1115, 1988.

[83] P. Frank and N. Kiupel, “Fuzzy supervision and application to lean production,” International

journal of systems science, vol. 24, no. 10, pp. 1935–1944, 1993.

[84] P. M. Frank and B. Köppen-Seliger, “Fuzzy logic and neural network applications to fault

diagnosis,” International journal of approximate reasoning, vol. 16, no. 1, pp. 67–88, 1997.

[85] W. Rudin, Real and Complex Analysis. McGraw-Hill Singapore, 1986.

[86] L. Ljung, System Identification (2nd Ed.): Theory for the User. USA: Prentice Hall PTR, 1999.

[87] Y. S. Abu-Mostafa, M. Magdon-Ismail, and H.-T. Lin, Learning from data, vol. 4. AMLBook

New York, 2012.

[88] N. Aronszajn, “Theory of reproducing kernels,” Transactions of the American mathematical

society, vol. 68, no. 3, pp. 337–404, 1950.

[89] F. Cucker and S. Smale, “On the mathematical foundations of learning,” Bulletin of the American

mathematical society, vol. 39, no. 1, pp. 1–49, 2002.

211



Nicholas Valceschini

[90] G. Kimeldorf and G. Wahba, “Some results on tchebycheffian spline functions,” Journal of

mathematical analysis and applications, vol. 33, no. 1, pp. 82–95, 1971.

[91] T. Poggio and F. Girosi, “Networks for approximation and learning,” in Proceedings of the

IEEE, pp. 1481–1497, IEEE, 1990.

[92] J. A. Suykens and J. Vandewalle, “Least squares support vector machine classifiers,” Neural

processing letters, vol. 9, no. 3, pp. 293–300, 1999.

[93] L. Ljung, B. Wahlberg, and H. Hjalmarsson, “Model quality: the roles of prior knowledge

and data information,” in Proceedings of the 30th IEEE Conference on Decision and Control,

pp. 273–278, 1991.

[94] A. J. Helmicki, C. Jacobson, and C. Nett, “Identification inH∞: a robustly convergent, nonlinear

algorithm,” in Proceeding of the American Control Conference, pp. 386–391, IEEE, 1990.

[95] A. Helmicki, C. Jacobson, and C. Nett, “H∞ identification of stable lsi systems: A scheme with

direct application to controller design,” in Proceeding of the American Control Conference,

pp. 1428–1434, IEEE, 1989.

[96] G. Goodwin, M. Gevers, and D. Mayne, “Bias and variance distribution in transfer function

estimation,” IFAC Proceedings Volumes, vol. 24, no. 3, pp. 811–816, 1991.

[97] X. Bombois, B. Anderson, and M. Gevers, “Frequency domain uncertainty sets with guaranteed

probability level in prediction error identification,” in Proceeding of the 16th International

Symposium on Mathematical Theory of Networks and Systems, 2004.

[98] X. Bombois, A. Den Dekker, M. Barenthin, and P. M. Van den Hof, “Effect of model structure

and signal-to-noise ratio on finite-time uncertainty bounding in prediction error identification,”

in Proceedings of the 48h IEEE Conference on Decision and Control (CDC) held jointly with

2009 28th Chinese Control Conference, pp. 494–499, IEEE, 2009.

[99] M. B. Christopher, Pattern Recognition and Machine Learning. Springer, 2006.

[100] Y. Fujimoto and T. Sugie, “Informative input design for kernel-based system identification,”

Automatica, vol. 89, pp. 37–43, 2018.

[101] E. Walter and H. Piet-Lahanier, “Estimation of parameter bounds from bounded-error data: a

survey,” Mathematics and Computers in simulation, vol. 32, no. 5-6, pp. 449–468, 1990.

212



References

[102] S. Borchers, S. Raković, and R. Findeisen, “Set membership parameter estimation and design

of experiments using homothety,” IFAC Proceedings Volumes, vol. 44, no. 1, pp. 9035–9040,

2011.

[103] B. Noack, F. Pfaff, and U. D. Hanebeck, “Combined stochastic and set-membership informa-

tion filtering in multisensor systems,” in Proceeding of the 15th International Conference on

Information Fusion, pp. 1218–1224, IEEE, 2012.

[104] G. C. Goodwin, J. H. Braslavsky, and M. M. Seron, “Non-stationary stochastic embedding for

transfer function estimation,” Automatica, vol. 38, no. 1, pp. 47–62, 2002.

[105] J. M. Maciejowski, “Multivariable feedback design,” Electronic systems engineering series,

1989.

[106] M. J. Grimble, Robust industrial control systems: optimal design approach for polynomial

systems. John Wiley & Sons, 2006.

[107] R. Beaven, M. Wright, and D. Seaward, “Weighting function selection in the H∞ design

process,” Control Engineering Practice, vol. 4, no. 5, pp. 625–633, 1996.

[108] H. Oloomi and B. Shafai, “Weight selection in mixed-sensitivity robust control for improving

the sinusoidal tracking performance,” in Proceeding of the 42nd IEEE International Conference

on Decision and Control, vol. 1, pp. 300–305, 2003.

[109] I. Jovik and B. Lennartson, “On the choice of criteria and weighting functions of an

H2/H∞design problem,” IFAC Proceedings Volumes, vol. 29, no. 1, pp. 1351–1356, 1996.

[110] P. Lundström, S. Skogestad, and Z.-Q. Wang, “Performance weight selection for H∞ and 𝜇-

control methods,” Transactions of the Institute of Measurement and Control, vol. 13, no. 5,

pp. 241–252, 1991.

[111] M. Ortega and F. Rubio, “Systematic design of weighting matrices for theH∞ mixed-sensitivity

problem,” Journal of Process Control, vol. 14, no. 1, pp. 89–98, 2004.

[112] A. Lanzon and M. Cantoni, “On the formulation and solution of robust performance problems,”

Automatica, vol. 39, no. 10, pp. 1707–1720, 2003.

[113] A. Lanzon, “Weight optimisation in H∞ loop-shaping,” Automatica, vol. 41, no. 7, pp. 1201–

1208, 2005.

213



Nicholas Valceschini

[114] M. Osinuga, S. Patra, and A. Lanzon, “State-space solution to weight optimization problem in

H∞ loop-shaping control,” Automatica, vol. 48, no. 3, pp. 505–513, 2012.

[115] B. Wahlberg and L. Ljung, “Design variables for bias distribution in transfer function estima-

tion,” IEEE Transactions on Automatic Control, vol. 31, no. 2, pp. 134–144, 1986.

[116] L. Ljung, G. C. Goodwin, and J. C. Agúero, “Stochastic embedding revisited: A modern

interpretation,” in Proceeding of the 53rd IEEE Conference on Decision and Control, pp. 3340–

3345, 2014.

[117] L. Ljung, “Revisiting total model errors and model validation,” Journal of Systems Science and

Complexity, vol. 34, no. 5, pp. 1598–1603, 2021.

[118] G. Goodwin, M. Gevers, and B. Ninness, “Quantifying the error in estimated transfer functions

with application to model order selection,” IEEE Transactions on Automatic Control, vol. 37,

no. 7, pp. 913–928, 1992.

[119] H. Hjalmarsson, “From experiment design to closed-loop control,” Automatica, 2005.

[120] H. Golub and C. F. Van Loan, “Matrix computations, johns hopkins uni,” Press, London, p. 115,

1996.

[121] K. Ogata et al., Modern control engineering, vol. 5. Prentice hall Upper Saddle River, NJ,

2010.

[122] I. Landau, D. Rey, A. Karimi, A. Voda, and A. Franco, “A flexible transmission system as a

benchmark for robust digital control*,” European Journal of Control, vol. 1, no. 2, pp. 77–96,

1995.

[123] S. Boyd, S. P. Boyd, and L. Vandenberghe, Convex optimization. Cambridge university press,

2004.

[124] R. Toscano, Structured Controllers for Uncertain Systems. Springer, 2013.

[125] A. Boukhris, G. Mourot, and J. Ragot, “Non-linear dynamic system identification: A multi-

model approach,” International Journal of Control, 1999.

[126] H. Lhachemi, D. Saussie, and G. Zhu, “A robust and self-scheduled longitudinal flight control

system: a multi-model and structured h-infinity approach,” in AIAA Guidance, Navigation, and

Control Conference, 2014.

214



References

[127] J. Shamma and M. Athans, “Gain scheduling: potential hazards and possible remedies,” IEEE

Control Systems Magazine, vol. 12, no. 3, pp. 101–107, 1992.

[128] H. Noura, D. Theilliol, J.-C. Ponsart, and A. Chamseddine, Fault-tolerant control systems:

Design and practical applications. Springer Science & Business Media, 2009.

[129] V. Puig, J. Quevedo, T. Escobet, F. Nejjari, and S. de las Heras, “Passive robust fault detection of

dynamic processes using interval models,” IEEE Transactions on Control Systems Technology,

vol. 16, no. 5, pp. 1083–1089, 2008.

[130] C. Combastel and S.-A. Raka, “A set-membership fault detection test with guaranteed robustness

to parametric uncertainties in continuous time linear dynamical systems,” IFAC Proceedings

Volumes, vol. 42, no. 8, pp. 1192–1197, 2009.

[131] P. Khargonekar and T. L. Ting, “Fault detection in the presence of modeling uncertainty,” in

Proceedings of the 32nd IEEE Conference on Decision and Control, pp. 1716–1721, IEEE,

1993.

[132] E. F. Camacho and C. B. Alba, Model predictive control. Springer science & business media,

2013.

[133] M. Anderson, M. Buehner, P. Young, D. Hittle, C. Anderson, J. Tu, and D. Hodgson, “Mimo

robust control for hvac systems,” IEEE Transactions on Control Systems Technology, vol. 16,

no. 3, pp. 475–483, 2008.

[134] Q. Zhang, L. Fiorentini, and M. Canova, “H∞ robust control of an automotive air conditioning

system,” in Proceeding of the American Control Conference, pp. 5675–5680, 2014.

[135] G. Gauthier and B. Boulet, “Robust design of terminal ilc withH∞ mixed-sensitivity approach

for a thermoforming oven,” Journal of Control Science and Engineering, vol. 2008, 2008.

[136] R. Zhang, A. Xue, and F. Gao, “Temperature control of industrial coke furnace using novel state

space model predictive control,” IEEE Transactions on Industrial Informatics, vol. 10, no. 4,

pp. 2084–2092, 2014.

[137] M. Niederer, S. Strommer, A. Steinboeck, and A. Kugi, “Nonlinear model predictive control of

the strip temperature in an annealing furnace,” Journal of Process Control, vol. 48, pp. 1–13,

2016.

215



Nicholas Valceschini

[138] M. Krzaczek and Z. Kowalczuk, “Gain scheduling control applied to thermal barrier in systems

of indirect passive heating and cooling of buildings,” Control Engineering Practice, vol. 20,

p. 1325–1336, 12 2012.

[139] S. Peter and E. Benjamin, “Post-mortem diagnosis of bottling plants based on recorded data,”

7th IFAC Symposium on Fault Detection, Supervision and Safety of Technical Processes (SAFE-

PROCESS), vol. 42, no. 8, pp. 1330 – 1335, 2009.

[140] P. Tsarouhas, “Evaluation of overall equipment effectiveness in the beverage industry: A case

study,” International Journal of Production Research, vol. 51, pp. 1–9, 2012.

[141] F. Castro and F. Araujo, “Proposal for oee (overall equipment effectiveness) indicator deploy-

ment in a beverage plant,” Brazilian Journal of Operations & Production Management, vol. 9,

pp. 71–84, 2012.

[142] H. Papadopoulos and C. Heavey, “Queueing theory in manufacturing systems analysis and

design: A classification of models for production and transfer lines,” European Journal of

Operational Research, vol. 92, no. 1, pp. 1 – 27, 1996.

[143] V. Tobias, F. Stefan, and S. Peter, “Model-based fault localization in bottling plants,” Advanced

Engineering Informatics, vol. 29, no. 1, pp. 101 – 114, 2015.

[144] K. Renganathan and V. Bhaskar, “Modeling, analysis and performance evaluation for fault

diagnosis and fault tolerant control in bottle-filling plant modeled using hybrid petri nets,”

Applied Mathematical Modelling, vol. 37, no. 7, pp. 4842 – 4859, 2013.

[145] D. Troupis, S. Manesis, N. T. Koussoulas, and T. Chronopoulos, “Computer integrated moni-

toring, fault identification and control for a bottling line,” in Proceedings of the IEEE Industry

Applications Conference Thirtieth IAS Annual Meeting, vol. 2, pp. 1549–1556, 1995.

[146] R. B. Randall and J. Antoni, “Rolling element bearing diagnostics - a tutorial,” Mechanical

Systems and Signal Processing, vol. 25, no. 2, pp. 485 – 520, 2011.

[147] R. M. Stewart, “Some useful data analysis techniques for gearbox diagnostic,” in Proceedings

of the Meeting on the Applications of Time Series Analysis, 1977.

[148] W. Wang and A. K. Wong, “Autoregressive model-based gear fault diagnosis,” Journal Vibration

and Acoustic, vol. 124, no. 2, pp. 172–179, 2002.

216



References

[149] P. McFadden, “A technique for calculating the time domain averages of the vibration of the

individual planet gears and the sun gear in an epicyclic gearbox,” Journal of Sound and vibration,

vol. 144, no. 1, pp. 163–172, 1991.

[150] M. J. Dowling, “Application of non-stationary analysis to machinery monitoring,” in Proceeding

of the IEEE International Conference on Acoustics, Speech, and Signal Processing, vol. 1,

pp. 59–62, 1993.

[151] K. Sarda, A. Acernese, L. Russo, and M. Mazzoleni, “A comparison of envelope and statistical

analyses for bearing diagnosis in hot steel rolling mill lines,” in Proceedings of the 47th Annual

Conference of the IEEE Industrial Electronics Society (IECON), 2021.

[152] S. Du and R. Randall, “Encoder error analysis in gear transmission error measurement,” Pro-

ceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering

Science, vol. 212, no. 4, pp. 277–285, 1998.

[153] N. Valceschini, M. Mazzoleni, and F. Previdi, “Inertial load classification of low-cost electro-

mechanical systems under dataset shift with fast end of line testing,” Engineering Applications

of Artificial Intelligence, vol. 105, p. 104446, 2021.

[154] M. Mazzoleni, F. Previdi, M. Scandella, and G. Pispola, “Experimental development of a health

monitoring method for electro-mechanical actuators of flight control primary surfaces in more

electric aircrafts,” IEEE Access, vol. 7, 2019.

[155] M. Mazzoleni, Y. Maccarana, F. Previdi, G. Pispola, M. Nardi, F. Perni, and S. Toro, “Develop-

ment of a reliable electro-mechanical actuator for primary control surfaces in small aircrafts,” in

Proceeding of the IEEE International Conference on Advanced Intelligent Mechatronics (AIM),

pp. 1142–1147, 2017.

[156] M. Mazzoleni, M. Scandella, L. Maurelli, and F. Previdi, “Mechatronics applications of con-

dition monitoring using a statistical change detection method,” in Proceeding of the 21th IFAC

World Congress, 2020.

[157] M. Mazzoleni, M. Scandella, Y. Maccarana, F. Previdi, G. Pispola, and N. Porzi, “Condi-

tion monitoring of electro-mechanical actuators for aerospace using batch change detection

algorithms,” in Proceedings of the IEEE Conference on Control Technology and Applications

(CCTA), pp. 1747–1752, 2018.

217



Nicholas Valceschini

[158] A. Rausand, Marvin adn Høyland, System Reliability Theory: Models, Statistical Methods, and

Applications, Second Edition. Springer-Verlag London, 1994.

[159] MIL-STD-1629A, “Procedures for performing a failure mode, effects and criticality analysis,”

tech. rep., USA Department of defense, Washington DC, 1994.

[160] P. Astakhov, Resistance to motion of railway rolling stock. -, 1966.

[161] R. Isermann, “Fault diagnosis of machines via parameter estimation and knowledge process-

ing—tutorial paper,” Automatica, vol. 29, no. 4, pp. 815–835, 1993.

[162] P. Moster, “Gear fault detection and classification using learning machines,” Sound & vibration,

vol. 38, pp. 22–27, 03 2004.

[163] R. Tempo, E. Bai, and F. Dabbene, “Probabilistic robustness analysis: explicit bounds for

the minimum number of samples,” in Proceedings of 35th IEEE Conference on Decision and

Control, 1996.

[164] H. Akaike, “A new look at the statistical model identification,” IEEE transactions on automatic

control, vol. 19, no. 6, pp. 716–723, 1974.

[165] J. Rissanen, “Modeling by shortest data description,” Automatica, vol. 14, no. 5, pp. 465–471,

1978.

[166] S. Arlot, A. Celisse, et al., “A survey of cross-validation procedures for model selection,”

Statistics surveys, vol. 4, pp. 40–79, 2010.

[167] J. G. Moreno-Torres, T. Raeder, R. Alaiz-Rodríguez, N. V. Chawla, and F. Herrera, “A unifying

view on dataset shift in classification,” Pattern Recognition, vol. 45, no. 1, pp. 521 – 530, 2012.

[168] B. Efron and R. Tibshirani, “Improvements on cross-validation: the 632+ bootstrap method,”

Journal of the American Statistical Association, vol. 92, no. 438, pp. 548–560, 1997.

[169] J. Sjöberg, T. McKelvey, and L. Ljung, “On the use of regularization in system identification,”

IFAC Proceedings Volumes, vol. 26, no. 2, Part 5, pp. 75–80, 1993.

[170] R. Tibshirani, “Regression shrinkage and selection via the lasso,” Journal of the Royal Statistical

Society: Series B (Methodological), 1996.

[171] B. Efron, T. Hastie, I. Johnstone, and R. Tibshirani, “Least angle regression,” The Annals of

statistics, vol. 32, no. 2, pp. 407–499, 2004.

218



References

[172] A. N. Tikhonov, V. J. Arsenin, V. I. Arsenin, V. Y. Arsenin, et al., Solutions of ill-posed

problems. Vh Winston, 1977.

[173] T. Chen, H. Ohlsson, and L. Ljung, “On the estimation of transfer functions, regularizations

and gaussian processes—revisited,” Automatica, vol. 48, no. 8, pp. 1525–1535, 2012.

[174] T. Chen, H. Ohlsson, G. C. Goodwin, and L. Ljung, “Kernel selection in linear system identifi-

cation part ii: A classical perspective,” in Proceeding of the 50th IEEE Conference on Decision

and Control and European Control Conference, pp. 4326–4331, IEEE, 2011.

[175] F. P. Carli, “On the maximum entropy property of the first-order stable spline kernel and its

implications,” in Proceeding of the IEEE Conference on Control Applications (CCA), pp. 409–

414, IEEE, 2014.

[176] F. P. Carli, A. Chiuso, and G. Pillonetto, “Efficient algorithms for large scale linear system

identification using stable spline estimators,” IFAC Proceedings Volumes, vol. 45, no. 16,

pp. 119–124, 2012.

[177] T. Chen and L. Ljung, “Implementation of algorithms for tuning parameters in regularized least

squares problems in system identification,” Automatica, vol. 49, no. 7, pp. 2213–2220, 2013.

[178] T. Chen, M. S. Andersen, L. Ljung, A. Chiuso, and G. Pillonetto, “System identification via

sparse multiple kernel-based regularization using sequential convex optimization techniques,”

IEEE Transactions on Automatic Control, vol. 59, no. 11, pp. 2933–2945, 2014.

[179] D. J. MacKay, “Bayesian interpolation,” Neural computation, vol. 4, no. 3, pp. 415–447, 1992.

[180] S. Salsa, Partial differential equations in action: from modelling to theory, vol. 99. Springer,

2016.

219


