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Abstract
In financial markets, asset prices are not trend-free. Today’s movements can, at least slightly, affect

tomorrow’s direction of the asset returns. Unlike the classical Geometric Brownian Motion, the Fractional
Brownian Motion captures trend percistency in asset returns’ dynamics. Specifically, the parameter that
defines the trend percistency is the so-called Hurst exponent. We aim to introduce a novel approach
for scenario generation in multistage stochastic optimization problems based on Fractional Brownian
Motion. In particular, we propose three algorithms to populate a non-recombining multistage scenario
tree in which the uncertain parameters follow Fractional Brownian Motions. We show several numerical
and graphical results to highlight the performance of the three algorithms with multiple values of the
Hurst exponent. This approach can help to offer a more realistic framework for portfolio management in
uncertain conditions.

Keywords: Scenario Generation; Stochastic Optimization; Fractional Brownian Motion.

1 Introduction
The allocation of resources in a portfolio of assets has been a subject of extensive research and debate in
the field of economics and finance. Financial institutions, banks, pension funds, and insurance companies
regularly face the problem to manage their economic resources. Often, these decisions aim to reduce or
at least mitigate financial risks. This fundamental consideration finds its roots in the pioneering work of
Harry M. Markowitz, the ”father” of portfolio theory, who developed the Modern Portfolio Theory in the
1950s, with his doctoral thesis at the University of Chicago, see Markowitz [1952]. Within this frame-
work, modelling of asset returns is a crucial element in providing a reliable decision support tool. Since
Markowitz [1952], several portfolio optimization models have been proposed to allow financial institutions
to build up an optimal portfolio taking into account a key element in finance: uncertainty, which can be
seen as information evolving over different time stages. Uncertainty is a key concept that we constantly
face in real-world decision-making problems. A mathematical methodology that provides a valid tool for
decisions under conditions of uncertainty is the so-called Stochastic Optimization (or Stochastic Program-
ming), a branch of Applied Mathematics and Operations Research born in 1950s thanks to the contribution
of Dantzig [1955], Beale [1955] and Charnes and Cooper [1959]. Among the several optimization models
proposed to answer the issue of how to allocate financial resources by minimizing risk, the work of Rock-
afellar and Uryasev [2000] represents a seminal work in optimization methods for finance, as they proposed
a novel approach to optimizing or hedging a portfolio of financial instruments by including in the objective
function the Conditional Value-at-Risk (CVaR).

The question that arises in these types of problems is how to generate scenarios to accurately represent
the underlying stochastic model, considering the correlation over time among the random parameters and
the generation of a ”good” number of scenarios to reflect as accurately as possible the random processes
modeled. In recent decades, many authors have tried to deepen the understanding of market dynamics
to improve investment decision-making. Some key milestones in the analysis of market behavior include
the works of Fama [1970] and Black and Scholes [1973]. These studies, with many others, established
the idea that financial markets are driven by the well-known random walk hypothesis. Consequently, the
fundamental process often assumed to represent the movements of asset prices is the Brownian motion
(BM). However, financial markets have repeatedly proved that this assumption is unrealistic, and models
based on it have failed to capture the complexity of real-world market behavior.
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A generalization of the BM was already studied in Kolmogorov [1940] that considered Gaussian pro-
cesses with the property of self-similarity. This idea has been later applied to financial processes by Man-
delbrot and Van Ness [1968] who formally introduced the Fractional Brownian Motion (FBM) as a gen-
eralization of the BM. In this way, the idea of self-similarity has been converted in trend persistency to
transform a process without memory, as the BM, in a random process in which some pattern could be iden-
tified. Unlike the classical BM, the FBM aims at capturing the proper trend of financial instrument price
movements. Such a feature is crucial to understanding financial markets and it is interesting to study if
it influences or not the optimal allocation of a portfolio selection problem or if the optimal allocation is
somehow indifferent to the trend persistency of the available assets. Despite the concept of persistency was
initially developed in hydraulics thanks to the contribution on Hurst [1951], FBM has started to gain signif-
icant success also in the financial sector over the past few decades, where numerous studies have focused
on the simulation of markets and financial instruments. Notable works include those by Peters [1994], who
proposes the Fractal Market Hypothesis by simulating the market’s behaviors with FBM, Øksendal [2003]
and Hu and Øksendal [2003], who discuss stochastic calculus of FBM and, replicating a portfolio of an
European option, demonstrate that the Itô fractional Black & Scholes market with respect to FBM has no
arbitrage and is complete, and Corazza and Malliaris [2005], who presented an extended study on the fractal
behaviour in foreign currency markets.

In this work, we propose a new technique for generating a scenario tree that evolves over a multistage
setting and adopts an FBM instead of the classic BM. In this way, we can construct paths that capture
and represent the trend persistency of the asset returns. Indeed, the main characteristic of the FBM is
the capability to represent trend persistency, while with BM only mean and covariance can be replicated.
We propose an innovative algorithm and show that the statistics of the scenario returns well reproduce the
behavior of the historical time series.

The paper is structured as follows. In Section 2 we recall the formulation of the FBM. Section 3
represents the core of our work, in which we propose three innovative scenario generation algorithms to
populate a multistage scenario tree with asset returns that follow FBM process. In Section 4 we show some
illustrative examples and the numerical results. Section 5 concludes the paper.

2 Fractional Brownian Motion
A fractional Brownian motion (FBM), also known as fractal Brownian motion, is a generalization of the
ordinary Brownian motion. It is a non-linear stochastic process and is often referred as biased random walk.
Like the ordinary Brownian motion, it is a Gaussian stochastic process. However, it deviates from ordinary
Brownian motion in a fundamental way: it does not exhibit the property of independent future increments.
This deviation makes FBM well-suited for describing various processes, particularly in the natural sciences.
As a matter of fact, unlike ordinary Brownian motion, where only the current value is relevant for predicting
the future, FBM takes into account the information contained in its history and how the present has evolved
from the past, implying that the Markov property does not hold.

In particular, by considering the position X(t) of a Brownian particle as a random function of time t, and
a normalized independent Gaussian random process {ε}, the increments in the position of the Brownian
particle are given by

X(t)−X(t0)∼ ε | t− t0 |H (1)

for any two times t0 and t with t0 < t and H = 0.5. By generalising H so that it can range from 0 to 1,
we define the increments positions of a fractional Brownian particle as stated by Feder [1988]: ”One finds
the position X(t) given the position X(t0) by choosing a random number ε from a Gaussian distribution,
multiplying it by the time increment | t − t0 |H and adding the result to the given position X(t0)”. These
increments are commonly referred to as the fractional Gaussian noise (FGN), and we will provide a detailed
analysis of them in next sections.

Let’s now formally introduce the process. FBM was originally introduced by Kolmogorov [1940], even
though he did not use the name ”fractional Brownian motion” but ”Wiener spiral”. Subsequently, it was
studied by Mandelbrot and Van Ness [1968] who provided the following definition through a stochastic
integral.

Definition 1. Let 0 < H < 1, and let b0 be an arbitrary real number. We call the following random function
BH(t) the reduced fractional Brownian motion with parameter H and starting value b0 at time t = 0. For
t > 0, BH(t) is defined by

BH(0) = b0
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and

BH(t)−BH(0) =
1

Γ(H +1/2)

{∫ 0

−∞

[(t− s)H−1/2− (−s)H−1/2]dB(s)

+
∫ t

0
(t− s)H−1/2dB(s)

} (2)

where Γ represents the Gamma function Γ(α) :=
∫

∞

0 xα−1exp(−x)dx, the real number H is the Hurst
exponent and the integrator B(t) denotes the ordinary Brownian motion. Definition 1 states that the random
function BH at time t depends on all previous increments dB(t−1) of an ordinary Gaussian random process
B(t) with mean and variance equal to 0 and 1, respectively.

Equation 2, representing the distance between increments, describes the so-called stochastic integral
with respect to usual Brownian motion, whose interpretation is not an easy task. Since this is not the aim
of the thesis, for details the reader is referred to Karatzas and Shreve [1996]. For simulation purposes,
Equation 2 can be rewritten in a simpler manner to understand:

BH(t)−BH(t−1) =
n−H

Γ(H +1/2)

[
nt

∑
i=1

iH−1/2r(1+n(M+1)−i)

+
n(M−1)

∑
i=1

(
(n+1)H−1/2− iH−1/2r(1+n(M−1+t)−i)

) (3)

where r is equal to a series of M Gaussian random variables.
Equation 3 is the discrete form of Equation 2. Indeed, it replaces the integral with summations, without

change the meaning. Moreover, this equation represents the moving average over a finite range of random
Gaussian M values, weighted by a power law function of Hurst exponent. Following Feder [1988] and
Peters [1994], let’s derive the expected value and variance of fractional Brownian increments. Let BH(t) be
the particle position (instead of X(t) of Equation 1), a FBM has

E[BH(ti+1)−BH(ti)] = 0 (4)

and

Var[BH(ti+1)−BH(ti)] = |ti+1− ti|2H (5)

As a consequence of Equation 4 and Equation 5, it becomes even more evident that Brownian motion is
merely a special case of the more general FBM, occurring only when H = 0.5. It is worth noting that FBM
has infinitely long-run correlations. Past increments are correlated with future increments. In particular,
given the increment BH(t1)−BH(t0) from time t0 to time t1, the probability to have an increment BH(t2)−
BH(t1) averaged over the distribution of the past increments is equal to

[BH(t1)−BH(t0)][BH(t2)−BH(t1)]. (6)

By setting BH(t1) = 0 and by normalizing with the variance of BH , the correlation function of future incre-
ments BH(t2) with past increments BH(t0) is given by

C(t) =
BH(t0)BH(t2)

BH(t2)2 = 2(22H−1−1). (7)

The FBMs corresponding to 0 < H < 1/2, 1/2 < H < 1, and H = 1/2, respectively, differ in many signifi-
cant ways. Let’s see in details the three cases:

• if 1/2 < H < 1, then C(t) is positive and the process is defined to be persistent. It means that we have
infinite long-run correlations and a long-memory effect occurs over multiple time scales;

• if 0 < H < 1/2, then C(t) is negative and the process is defined to be anti-persistent. It means that a
reversal effect occurs over multiple time scales. An increasing trend in the past is more likely to be
followed by a decreasing trend in the future and viceversa;

• if H = 1/2, then C(t) is equal to zero and there is not a long-memory effect. The process becomes
the ordinary Brownian motion with independent increments.

3



(a) Anti-persistent FBM, H = 0.1

(b) Classic BM, H = 0.5

(c) Persistent FBM, H = 0.9

Figure 1: FBMs with different values of the Hurst exponent H and different trend percistencies.
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Figure 1 provides graphical representations of the distinctions between FBMs while allowing for variations
in the parameter H = 0.1,0.5,0.9. Despite all three simulated motions share µ = 0 and σ = 1, barring
approximations, noticeable differences emerge. The central graph depicts the standard financial model
characterized by a completely random pattern. The lower graph represents a persistent process that closely
follows the mean value with minimal deviation. Conversely, the upper graph exhibits a fragmented pattern,
which is indicative of an anti-persistent effect. The above characteristics of FBM express the presence of
long-range dependence during the motion. In fact, the expected value of FBM at a given moment depends
on all the values assumed by the motion in the earlier instants. Figure 1 further illustrates the distinctions
between FBM while allowing for variations in the parameter H = 0.1,0.5,0.9. Although all three simulated
motions have µ = 0 and σ = 1, barring approximations, the differences are clear. In particular, the middle
chart represents the standard financial model characterized by a completely random pattern. The bottom
chart, instead, represents a persistent process that closely follows the mean value without deviating too
much from it. Then, the top chart represents the opposite case. Here, the fragmented pattern is evident,
leading to an anti-persistent effect. Learning from Mandelbrot and Hudson [2008], the three processes just
shown in Figure 1, are the sums of their increments, which we have already defined as FGN. Figure 2
provides an illustrative representation of them. As before, the middle chart represents the increments of a
classical Brownian motion. Thinking about stock returns, we can consider them as independent from each
other. In the bottom chart, when H is large, the resulting price trends are broad. Finally, in the top chart,
using Mandelbrot’s words, the action is furious but still constrained.

(a) Anti-persistent FGN, H = 0.1

(b) Gaussian noises, H = 0.5

(c) Persistent FGN, H = 0.9

Figure 2: Fractional Gaussian noises with different values of the Hurst exponent H and different trend
percistencies.
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3 Scenario generation

3.1 Single-stage FBM scenario generation

Financial prices must be modeled with a proper process, capable of capturing the specific properties. It
would be tempting to suppose that stock prices follow the FBM. In factm, it would not take into account the
independence of the expected return required by investors from stock concerning the stock price, see Hull
[2022]. To address this issue, financial mathematics commonly employs the Geometric Fractional Brownian
Motion (GFBM), which, similar to FBM compared to BM, is a generalization of the more common GBM.

Let S(t) be the stock price at time t, the expected drift rate in S(t) should be assumed to be µS(t) for
some constant parameter µ . This means that, by considering a short interval of time ∆t = ti+1− ti for any
i = 1, ...,T , the expected increase in S(t) is µS(t)∆t, where the parameter µ is the expected rate of return on
the stock. Then, let’s assume that the uncertainty in returns in a short period ∆t, represented by the standard
deviation, should be proportional to the stock price. Therefore, according to Hull [2022], the model can be
written as

dS(t) = µS(t)dt +σS(t)dBH(t) (8)

or

dS(t)
S(t)

= µdt +σdBH(t).

Equation 8 represents the GFBM, whose special case H = 0.5 is referred to GBM. According to Hu and
Øksendal [2003], the solution to Equation 8 for any arbitrary initial value S0 is given as follows:

S(t) = S0eµt− 1
2 σ2t2H+σBH (t), t ≥ 0. (9)

The scenario generation technique based on this approach is well-known when the scenarios have the
so-called fan structure. However, at the best of our knowledge, a scenario generation technique that uses
GFBM to build a non-recombining scenario tree with a given branching structure has not been proposed
yet. In the next section, we suggest an algorithm to populate a non-recombining multistage scenario tree
with a GFBM.

3.2 Multistage FBM scenario generation algorithms

To solve a multistage stochastic problem it is fundamental to have a reliable multistage stochastic tree that
represents the future evolution of the uncertain parameters. Firstly, we simply simulated the evolution of
assets by generating a series of FGN for each of them. Since we are dealing with more than one asset, it’s
more convenient to work within a matrix framework. Let’s denote by t = 1, . . . ,T the number of points to
generate and by i = 1, . . . ,n the specific asset. The generic price Pi(t) of asset i at time t is given by:

Pi(t) = Pi,0 exp
(

µi−
1
2

σ
2
i +σiBHi(t)

)
, t ≥ 0. (10)

Then, given that the price at time t depends on the price at time t−1 (which will be known at time t), for
computational purposes, the implemented formula results in the following equation

Pi(t) = Pi,t−1 exp
(

µi−
1
2

σ
2
i +σiXHi(t)

)
(11)

where XHi(t) represents the FGN of asset i at time t. This formula ensures that the price at time t is generated
by taking into account the information evolution from the price at time t−1 to time t. Finally, since we are
interested in simulating logarithmic returns, Equation 11 becomes:

ri(t) = µi−
1
2

σ
2
i +σiXHi(t) (12)

Several simulation methods exist to generate FGNs and, consequently, FBMs (see, for example, Dieker
[2004]). We adopt the fbmwoodchan function, cf. Wood and Chan [1994], which is part of the FracLab
Tool of Matlab, to generate a sequence of increments that follow the GFBM. In Section 4, we show a sample
of the scenarios that we are able to produce with the code implemented in Python.

However, considering that we are generating scenarios for a portfolio of assets, Equation 10 does not
account for the diversification principle. To address this issue, we multiply the matrix of FGN by the
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correlation matrix of historical logarithmic returns after applying the Cholesky factorization to the latter.
Specifically, the Cholesky method is an algorithm that decomposes a symmetric, positive definite matrix
An×n into the product of a lower-triangular matrix L and its conjugate transpose, denoted as L*:

A = LL*

This process enables us to obtain a matrix of FGN whose correlation matrix matches that of historical
logarithmic returns. Thus, we implement Algorithm 1, whose idea is relatively simple: we generate a series
of FGN for each asset based on GFBM.

Algorithm 1 FBM-based multistage scenario tree generation, full tree approach
Input:

numAsset ▷ Number of assets involved in the problem
H ▷ Hurst exponent, with H ∈ [0,1]
numOFnodes ▷ Number of nodes of the scenario tree
ρ ▷ Desired correlation structure

Output:
increments ▷ FGNs associated with a multistage scenario tree

Using:
StdNorm(x) ▷ Normalizes the columns of matrix x
ApplyCorr(x,ρ) ▷ Applies the correlation structure ρ to the columns of matrix x
WoodChan(x,H) ▷ Generates a FBM with size x and Hurst exponent H

for k = 1 to numAsset do ▷ Initialization of nodes in the first stage
increments[:][k]←WoodChan(numOFnodes,H) ▷ Generates a sample of FGNs

end for
increments← StdNorm(increments) ▷ Normalizes each column of increment matrix
increments← ApplyCorr(increments,ρ) ▷ Makes the columns of increment matrix correlated according to ρ

Algorithm 2 FBM-based multistage scenario tree generation, node-by-node approach
Input:

numAsset ▷ Number of assets involved in the problem
H ▷ Hurst exponent, with H ∈ [0,1]
numOFnodes ▷ Number of nodes of the scenario tree
ρ ▷ Desired correlation structure
ar 1,ar 2 ▷ Initial values for the real part of a complex random vector
ai 1,ai 2 ▷ Initial values for the imaginary part of a complex random vector

Output:
increments ▷ FGNs associated with a multistage scenario tree

Using:
StdNorm(x) ▷ Normalizes the columns of matrix x
ApplyCorr(x,ρ) ▷ Applies the correlation structure ρ to the columns of matrix x
WoodChan(x,H,ar 1,ai 1,ar 2,ai 2) ▷ Generates a FBM with size x and Hurst exponent H
Random(x) ▷ Create a shape-x array with random standard normal samples
Anc(x) ▷ Returns the ancestor node of node x

for k = 1 to numAsset do ▷ Initialization of nodes in the first stage
ar rand← Random(numOFnodes) ▷ Generate a random vector for the real part
ai rand← Random(numOFnodes) ▷ Generate a random vector for the imaginary part

▷ Generates an initial sample of FGNs by specifying initial values
initsample[1][k]←WoodChan(1000,H,0,0,ar rand[1], ai rand[1])
for n = 1 to numOFnodes do

▷ Generates a sample of FGNs by starting from specified initial values
inctrements[k][n]←WoodChan(1000,H,ar rand[Anc[n]],ai rand[Anc[n]],ar rand[n], ai rand[n])

end for
end for
increments← StdNorm(increments) ▷ Normalizes each column of increment matrix
increments← ApplyCorr(increments,ρ) ▷ Makes the columns of increment matrix correlated according to ρ

When the uncertainty is modeled through a GBM, the way to populate the scenario tree nodes, i.e. to
generate the sequence of nodes that corresponds to the discretization of the stochastic process is basically
the same as in the single-stage approach because the stochastic increments are assumed to be independent
from one stage to the next. However, the GFBM relies on the hypothesis that the increments are not
independent and the stochastic path shows some kind of persistency in its increments. For this purpose,
we develop Algorithm 2, which generates FGN paths node-by-node. The idea here is to generate scenarios
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by starting from values recorded in previous nodes, by not breaking the trend. Specifically, we modified
the fbmwoodchan function to take specified initial values as inputs. This allows us to generate scenarios
at each node that begin from the value positioned in the corresponding parent node. However, this method
lacks some key features of FBM. While it does not break the trend, it only considers a single increment to
generate the next one, disregarding any information from the previous series. As a result, it can produce
values that may appear almost random, which contrasts significantly with the underlying concept of FBM.

With this in mind, we finally propose Algorithm 3, which overcomes the drawback of the previous two
algorithms to populate the nodes of a scenario tree. The main idea of the new algorithm is:

1. to assign to nodes in the first stage a value vn randomly extract from a large fractional
Gaussian noise sample, let’s call it F0

2. to generate, for each children node n+ of a given parent node n, a new fractional Gaussian
noise sample Fn+;

3. to find, within Fn+, the position i of the closest value to the value vn assigned to the parent
node;

4. to assign to the children node n+ the value vn+ that is in the subsequent position, i.e.
vn+ = Fn+[i+1]

In this way, we are able to generate multiple subsequent increments (the values vn+ in the children nodes
n+) for a given increment (the values vn in the parent node n), conserving the similarity as much as possible,
even if the GFBM generates only one subsequent increment. Increasing the dimension of Fn+ helps to find
a closest value in step 3 that is really close enough. In Section 4, we show a sample of the scenarios that we
are able to produce with the code implemented in Python.

Algorithm 3 FBM-based multistage scenario tree generation, closest parent approach
Input:

numAsset ▷ Number of assets involved in the problem
H ▷ Hurst exponent, with H ∈ [0,1]
nodeSTG1 ▷ Number of nodes in the first stage
numOFnodes ▷ Number of nodes of the scenario tree
ρ ▷ Desired correlation structure

Output:
increments ▷ FGNs associated with a multistage scenario tree

Using:
Pick(x,y) ▷ Randomly extracts y elements from vector x
StdNorm(x) ▷ Normalizes the columns of matrix x
ApplyCorr(x,ρ) ▷ Applies the correlation structure ρ to the columns of matrix x
WoodChan(x,H) ▷ Generates a FBM with size x and Hurst exponent H
ArgMin(x) ▷ Returns the index of the minimum value of a vector x
Abs(x) ▷ Returns the absolute value of number x
Anc(x) ▷ Returns the ancestor node of node x

for k = 1 to numAsset do ▷ Initialization of nodes in the first stage
initsample←WoodChan(1000,H) ▷ Generates an initial sample of FGNs
for n = 1 to nodeSTG1 do

increments[k][n]← Pick(initsample, 1) ▷ Randomly assigns a FGN to nodes in first stage
end for
for n = nodeSTG1 + 1 to numOFnodes do

sample←WoodChan(100,H) ▷ Generates a new sample of FGNs
▷ Finds the position of the closest FGN to ancestor node value of n

idx← ArgMin(Abs(sample - increments[k][Anc(n)]))
increments[k][n]← sample[idx+1] ▷ Assigns value of child node indexed by idx to the matrix of increments

end for
end for
increments← StdNorm(increments) ▷ Normalizes each column of increment matrix
increments← ApplyCorr(increments,ρ) ▷ Makes the columns of increment matrix correlated according to ρ

4 Empirical results
In this section, we provide extended results to highlight the quality of the scenarios generated with all
algorithms presented in previous section, for a set of 10 assets that correspond to 10 ETFs as reported in
Table 1. These assets represent a typical asset universe for a portfolio selection problem since they span
from liquidity to bond and equity. For each asset, we consider the historical time series of the daily prices
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Table 1: Asset list

Asset Class ETF Name

Liquidity LYXOR Euro Overnight Return UCITS ETF
WorldGovBond FTSE World Gov. Bond Index - Total Return
EuroCorpBond Bloomberg EuroAgg Corp. Total Return Index Value Unhedged
EuroGovBond Bloomberg EuroAgg Gov. Total Return Index Value Unhedged
EmMarkGovBond J.P. Morgan Gov. Bond Index Emerging Markets Global Core
EmMarkEquity MSCI EM U$ - Price Index
WorldEquity MSCI World Universal $ - Price Index
WorldEquityESG MSCI World ESG Universal $ - Price Index
EuroEquity Euro STOXX 50 - Price Index
EuroEquityESG Euro STOXX 50 ESG E - Price Index

from March 2012 to November 2023. From these series, we compute the annual returns with a daily rolling
procedure. The statistics of the historical time series reported hereafter are referred to the annual returns of
the assets.

All the results discussed in this section are generated using a standard laptop equipped with an Intel(R)
Core(TM) i5-1035G1 CPU running at 1.19 GHz and 8 GB of RAM, operating on the Windows 11 platform.
The chosen main development tool is Python 3.10. Algorithm 1 is quite fast for generating many scenarios
over 10 stages, while, given the higher complexity, Algorithm 2 and Algorithm 3 are a little bit slower.
In particular, Algorithm 3 takes approximately 0.7 seconds to generate a tree with 20 scenarios evolving
over 10 stages (branching 5-2-2-1-1-1-1-1-1-1 and 175 nodes), approximately 10 seconds to generate a tree
with 1,000 scenarios (branching 5-5-5-2-2-2-1-1-1-1 and 5,905 nodes), and approximately 100 seconds to
generate a tree with 10,000 scenarios (branching 10-10-5-5-2-2-1-1-1-1 and 58,110 nodes). As expected,
the computing time increases linearly with the number of nodes.

4.1 Data analysis

To evaluate the quality of generated scenarios, we compare the statistics of the historical series with their
statistics computed over the nodes of the scenario trees. We perform this analysis for three different levels
of H (0.1, 0.5, 0.9) and all assets. To make the statistics more robust, we increase the number of scenarios
to 1000 with branching 5-5-5-2-2-2-1-1-1-1. Once the scenario tree has been generated, for each asset
we compute the average return, the volatility of the returns, their V@R, and their CV@R. The V@R and
the CV@R are computed on the empirical return distributions with α = 0.05. Since all algorithms yield
very similar results, in Table 2 we show only the statistics of the returns obtained with Algorithm 3. As
expected, the annual returns generated with the FBM are aligned with the ones generated with the classical
GBM. Indeed, all the statistics are almost equal for the three values of H. Only the CV@R deviations of
all the statistics are slightly increasing with the value of H, but the magnitude of these differences is almost
negligible. We can conclude that for all the algorithms no significant differences are observed based on H,
and therefore it is not possible to distinguish between the different algorithms by evaluating the statistics of
annual returns over the scenario tree.

However, the value of H is not expected to influence the value of the annual return in each single node:
taking into account the trend should have a significant impact when we consider the whole path from the
root node to the leaves of the tree. Therefore, we compute the cumulative returns over the 10 stages and,
again, we compute the four statistics of these cumulative returns. Now, the difference among the three
scenario generation algorithms becomes clear. Specifically, Table 3 reports the statistics of the cumulative
returns generated by Algorithm 1 which appear somewhat confusing. There is no identifiable effect of
different H values on both reward and risk sides, as we cannot determine whether low or high levels of H
lead to higher or lower levels of average returns and risk. For example, by looking at EmMarkEquity, an
higher level of H leads to a decrease of the average return and an increase of risk. However, for the asset
EuroEquityESG we find the opposite results: by increasing H, we get higher levels of the average return
and lower levels of risk. Table 4 reports the statistics of the cumulative returns generated by Algorithm 2
and we notice the same characteristics highlighted for Algorithm 1 in Table 3. Therefore, the improvements
made in Algorithm 2 do not have the capability to efficiently represent the assets’ trends. In Table 5, we
show the statistics of the cumulative returns generated with Algorithm 3. Finally, the impact of an anti-
persistent trend versus a persistent trend appears evident. With an anti-persistent trend (H = 0.1) the returns
somehow counterbalance each other along the scenarios and the cumulative return is less volatile and also
much less risky than the classic GBM (H = 0.5). Indeed, for all assets the average return is smaller, the
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Table 2: Statistics of the historical annual returns and of the annual returns generated to populate the
scenario trees for all considered assets and for three values of H, generating with Algorithm 3 and identical
to the results obtained with Algorithm 1 and Algorithm 2.

Statistics

Asset class Series Average Return Volatility V@R CV@R

Liquidity

History -0.23% 0.62% -0.73% -0.74%
Scenarios H = 0.1 -0.22% 0.62% -1.25% -1.51%
Scenarios H = 0.5 -0.22% 0.62% -1.25% -1.51%
Scenarios H = 0.9 -0.22% 0.62% -1.25% -1.51%

WorldGovBond

History 1.25% 5.27% -10.38% -12.43%
Scenarios H = 0.1 1.25% 5.27% -7.42% -9.58%
Scenarios H = 0.5 1.25% 5.27% -7.42% -9.62%
Scenarios H = 0.9 1.25% 5.27% -7.41% -9.64%

EuroCorpBond

History 1.57% 5.25% -10.99% -13.23%
Scenarios H = 0.1 1.57% 5.25% -7.05% -9.23%
Scenarios H = 0.5 1.57% 5.25% -7.06% -9.25%
Scenarios H = 0.9 1.57% 5.25% -7.06% -9.27%

EuroGovBond

History 1.38% 6.77% -14.45% -16.33%
Scenarios H = 0.1 1.38% 6.77% -9.76% -12.57%
Scenarios H = 0.5 1.38% 6.78% -9.77% -12.58%
Scenarios H = 0.9 1.38% 6.78% -9.77% -12.61%

EmMarkGovBond

History -0.50% 9.85% -17.58% -19.83%
Scenarios H = 0.1 -0.50% 9.85% -16.70% -20.80%
Scenarios H = 0.5 -0.50% 9.86% -16.71% -20.81%
Scenarios H = 0.9 -0.50% 9.85% -16.70% -20.83%

EmMarkEquity

History 1.35% 17.76% -24.74% -27.76%
Scenarios H = 0.1 1.35% 17.75% -27.83% -35.23%
Scenarios H = 0.5 1.35% 17.75% -27.83% -35.21%
Scenarios H = 0.9 1.35% 17.75% -27.83% -35.33%

WorldEquity

History 8.71% 13.78% -14.04% -17.29%
Scenarios H = 0.1 8.71% 13.78% -13.93% -19.70%
Scenarios H = 0.5 8.71% 13.79% -13.97% -19.74%
Scenarios H = 0.9 8.71% 13.91% -13.99% -19.74%

WorldEquityESG

History 8.84% 13.81% -13.99% -17.78%
Scenarios H = 0.1 8.84% 13.81% -13.87% -19.63%
Scenarios H = 0.5 8.84% 13.82% -13.88% -19.68%
Scenarios H = 0.9 8.84% 13.83% -13.91% -19.69%

EuroEquity

History 6.49% 14.55% -16.65% -19.18%
Scenarios H = 0.1 6.48% 14.55% -17.44% -23.51%
Scenarios H = 0.5 6.48% 14.58% -17.47% -23.58%
Scenarios H = 0.9 6.48% 14.56% -17.49% -23.56%

EuroEquityESG

History 6.97% 14.39% -15.67% -18.35%
Scenarios H = 0.1 6.97% 14.39% -16.68% -22.69%
Scenarios H = 0.5 6.97% 14.41% -16.68% -22.74%
Scenarios H = 0.9 6.97% 14.40% -16.73% -22.75%

standard deviation is also smaller, and the V@R and CV@R represent a cumulative behavior that induces
lower losses: in some cases (see WorldEquity and WorldEquityESG), the worst scenarios still give a very
positive return. On the other hand, with a persistent trend (H = 0.9) the cumulative returns are much more
dispersed and risky than the GBM, but also the average return is higher. In particular, average return and
standard deviation are higher than GBM for all cases, and V@R and CV@R highlight a cumulative effect
that can induce huge losses. Now, for all assets, these two risk measures are deeply negative meaning that
even assets with a high average return could produce huge losses in the long run.
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Table 3: Statistics of the cumulative returns of the scenario trees for all considered assets and for three
values of H, based on Algorithm 1.

Statistics

Asset class Hurst Coeff Average Return Volatility V@R CV@R

Liquidity
H = 0.1 -2.28% 1.75% -5.27% -6.07%
H = 0.5 -2.00% 1.55% -4.18% -4.91%
H = 0.9 -1.44% 1.13% -3.06% -3.23%

EmMarkEquity
H = 0.1 10.98% 51.43% -52.21% -62.12%
H = 0.5 4.50% 40.74% -62.81% -65.88%
H = 0.9 -4.29% 37.13% -62.50% -65.34%

WorldEquity
H = 0.1 130.24% 82.71% 24.58% 23.40%
H = 0.5 118.03% 62.20% 22.72% 19.69%
H = 0.9 107.10% 40.02% 38.58% 29.43%

WorldEquityESG
H = 0.1 133.59% 85.21% 29.90% 24.66%
H = 0.5 120.50% 63.00% 27.52% 21.75%
H = 0.9 108.43% 39.07% 41.45% 32.61%

EuroEquity
H = 0.1 87.31% 78.49% -4.30% -4.72%
H = 0.5 90.12% 79.74% 4.45% -7.39%
H = 0.9 100.14% 79.16% 13.54% -7.60%

EuroEquityESG
H = 0.1 96.58% 80.90% -1.61% -2.07%
H = 0.5 98.69% 80.24% 9.11% 0.19%
H = 0.9 107.66% 78.27% 19.70% 0.06%

WorldGovBond
H = 0.1 14.51% 17.84% -10.83% -13.34%
H = 0.5 15.44% 19.84% -9.57% -18.01%
H = 0.9 15.63% 15.77% -7.53% -12.91%

EuroCorpBond
H = 0.1 18.18% 20.14% -5.19% -11.52%
H = 0.5 19.05% 20.57% -3.10% -11.56%
H = 0.9 20.58% 16.00% -1.43% -7.87%

EuroGovBond
H = 0.1 16.90% 25.76% -22.83% -23.50%
H = 0.5 18.74% 28.49% -15.36% -28.42%
H = 0.9 20.18% 23.03% -8.50% -20.73%

EmMarkGovBond
H = 0.1 -5.21% 28.32% -43.82% -51.09%
H = 0.5 -5.84% 31.04% -51.69% -56.52%
H = 0.9 -6.24% 29.23% -50.22% -51.74%

Table 4: Statistics of the cumulative returns of the scenario trees for all considered assets and for three
values of H, based on Algorithm 2.

Statistics

Asset class Hurst Coeff Average Return Volatility V@R CV@R

Liquidity
H = 0.1 -1.35% 2.76% -5.37% -6.01%
H = 0.5 -1.26% 2.80% -5.29% -5.96%
H = 0.9 -1.21% 2.58% -4.83% -5.47%

EmMarkEquity
H = 0.1 11.34% 91.04% -66.09% -66.80%
H = 0.5 4.39% 86.65% -68.40% -69.57%
H = 0.9 -11.82% 63.62% -68.33% -68.73%

WorldEquity
H = 0.1 130.37% 161.30% -12.11% -14.52%
H = 0.5 120.78% 158.54% -17.95% -18.79%
H = 0.9 97.65% 122.16% -15.47% -17.50%

WorldEquityESG
H = 0.1 134.53% 165.02% -11.38% -14.61%
H = 0.5 125.13% 162.31% -17.15% -18.83%
H = 0.9 101.96% 125.33% -15.36% -16.45%

EuroEquity
H = 0.1 84.99% 142.74% -39.77% -51.27%
H = 0.5 77.98% 139.22% -41.02% -54.25%
H = 0.9 59.84% 107.54% -33.85% -50.69%

EuroEquityESG
H = 0.1 93.80% 147.98% -35.63% -49.75%
H = 0.5 86.96% 144.66% -36.55% -52.78%
H = 0.9 68.89% 112.24% -28.36% -48.87%

WorldGovBond
H = 0.1 13.45% 21.95% -20.47% -27.56%
H = 0.5 13.70% 22.51% -20.59% -29.25%
H = 0.9 13.68% 20.64% -16.89% -27.97%

EuroCorpBond
H = 0.1 15.66% 27.17% -20.79% -21.92%
H = 0.5 14.82% 27.39% -22.64% -22.94%
H = 0.9 13.07% 23.94% -20.34% -21.65%

EuroGovBond
H = 0.1 12.43% 28.37% -26.89% -35.08%
H = 0.5 11.99% 28.77% -27.45% -37.29%
H = 0.9 10.79% 25.81% -24.07% -36.20%

EmMarkGovBond
H = 0.1 -4.62% 40.95% -67.07% -68.96%
H = 0.5 -6.29% 41.03% -67.80% -70.20%
H = 0.9 -10.41% 34.98% -64.00% -67.37%
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Table 5: Statistics of the cumulative returns of all considered assets and for three values of H, based on
Algorithm 3.

Statistics

Asset class Hurst Coeff Average Return Volatility V@R CV@R

Liquidity
H = 0.1 -2.21% 1.25% -4.26% -4.77%
H = 0.5 -2.21% 1.82% -5.17% -5.90%
H = 0.9 -2.19% 2.96% -6.99% -8.16%

WorldGovBond
H = 0.1 12.13% 12.06% -6.62% -10.74%
H = 0.5 13.02% 17.73% -13.92% -19.40%
H = 0.9 15.05% 29.33% -27.08% -34.44%

EuroCorpBond
H = 0.1 15.82% 12.36% -3.36% -7.49%
H = 0.5 16.88% 18.18% -10.73% -16.44%
H = 0.9 19.09% 30.21% -24.28% -31.95%

EuroGovBond
H = 0.1 13.04% 15.68% -10.87% -15.92%
H = 0.5 14.57% 23.15% -19.62% -26.17%
H = 0.9 18.23% 38.95% -35.06% -43.48%

EmMarkGovBond
H = 0.1 -7.49% 19.03% -35.44% -40.82%
H = 0.5 -4.76% 28.90% -45.00% -51.68%
H = 0.9 2.53% 50.86% -59.72% -67.33%

EmMarkEquity
H = 0.1 4.82% 40.37% -48.44% -56.30%
H = 0.5 14.83% 64.31% -60.73% -69.03%
H = 0.9 43.97% 133.97% -78.44% -85.54%

WorldEquity
H = 0.1 119.81% 59.32% 36.11% 21.64%
H = 0.5 131.37% 90.68% 11.53% -5.77%
H = 0.9 160.30% 169.69% -26.72% -44.42%

WorldEquityESG
H = 0.1 122.44% 60.10% 37.65% 22.96%
H = 0.5 134.11% 91.89% 12.75% -4.76%
H = 0.9 163.43% 172.09% -26.08% -43.92%

EuroEquity
H = 0.1 78.41% 52.16% 5.62% -6.54%
H = 0.5 87.81% 79.44% -14.72% -28.81%
H = 0.9 116.01% 152.73% -45.83% -59.90%

EuroEquityESG
H = 0.1 86.90% 53.69% 11.85% -0.90%
H = 0.5 96.41% 81.61% -9.59% -24.23%
H = 0.9 124.90% 156.51% -42.16% -56.92%
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4.2 Graphical analysis

We now present the graphical results of the proposed algorithms. As we highlighted in Tables 3 and 4, the
scenarios generated with Algorithm 1 and Algorithm 2 do not show a trend percistency as indicated by the
value of H. Indeed, as a representative example, in Figure 3 we present the scenarios for the asset World-
GovBond generated with Algorithm 2 assuming three different levels of H (0.1, 0.5, 0.9). For illustrative
purpose, we limit the number of scenarios to 20. We observe that they look almost indistinguishable with

(a) H=0.1

(b) H=0.5

(c) H=0.9

Figure 3: Historical path and scenario tree with 20 scenarios generated with Algorithm 2 for asset World-
GovBond

respect to the value of H. The scenarios of the other assets show the same inconsistency. Therefore, we
focus on Algorithm 3 that in Table 5 already showed its capability to produce cumulative returns with the
desired trend percistency. Observing Figure 4, we can appreciate the impact of H on the scenario trees
generated with Algorithm 3. Indeed, it is possible to distinguish well the different path behaviors, and to
notice that:

• when H = 0.1 the trends are anti-persistent meaning that if a return in a given node is positive, there
is a higher probability that in the next node, the return is negative, and vice-versa;

• when H = 0.5 the trend is not considered and we observe the classic GBM random walk;

• when H = 0.9 the trends are highly persistent meaning that if a return in a given node is positive,
there is a higher probability that in the next node the return is still positive, and vice-versa.

Examples of other assets that confirm the same graphical evidences are in Figures 5, 6, and 7.
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(a) H=0.1

(b) H=0.5

(c) H=0.9

Figure 4: Historical path and scenario tree with 20 scenarios generated with Algorithm 3 for asset World-
GovBond

(a) H=0.1

(b) H=0.5

(c) H=0.9

Figure 5: Historical path and scenario tree with 20 scenarios generated with Algorithm 3 for asset Liquidity
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(a) H=0.1

(b) H=0.5

(c) H=0.9

Figure 6: Historical path and scenario tree with 20 scenarios generated with Algorithm 3 for asset WorldE-
quityESG

(a) H=0.1

(b) H=0.5

(c) H=0.9

Figure 7: Historical path and scenario tree with 20 scenarios generated with Algorithm 3 for asset Em-
MarkEquity
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5 Conclusion
In this paper, we focused on the generation of scenarios based on the FBM to populate a multistage scenario
tree. The FBM represents a generalization of the ordinary BM. This extension allows us to account for
the long-memory effect or, conversely, the reversal effect, in time series. This behavior has been studied
especially for financial time series. For this reason, we proposed three different algorithms that adopt
FBM to generate scenario trees representing the evolution of the financial returns of a set of assets. In
particular, we consider an asset universe of 10 ETF, each representing peculiar performance characteristics.
Comparing the statistics of the cumulative returns of the scenario trees that evolve with an horizon of 10
years, we highlighted the differences among the three algorithms and we showed that the third is capable
to represent effectively the trend percistency and, thus, to capture the real market behavior when the Hurst
coefficient is greater than 0.5. Indeed, when we assumed a persistent trend, the cumulative returns allowed
the asset to reach a relevant average return, but remarking a potential huge losses on the worse scenarios.

To conclude, we believe that the adoption of FBM in stochastic optimization problem could help to give
a better representation of the uncertain parameters. This is particularly true when these quantities regard
financial returns, but it could be applied in many other fields where the movement of the random variables
show some trend with a clear persistency. Of course, after the generation of a scenario tree with the FBM, a
natural extension of this work would be to test how much the use of uncertain parameters with a persistent
or an anti-persistent trend affects the optimal solution of a stochastic optimization model.
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