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Abstract— This work analyzes the stability properties
of a nonlinear Model Predictive Control (MPC) scheme
for avoidance. This control approach introduces an extra
penalty for avoidance within the nonlinear tracking MPC
framework. We demonstrate that, under a mild assumption
on the avoidance penalty, the closed-loop system is Input-
to-State Stable (ISS) with respect to this penalty. Further-
more, we discuss the conditions under which asymptotic
stability can be achieved and present a simplified scheme
with relaxed terminal constraints. To illustrate the effective-
ness of the proposed strategy, we apply it to the control of a
van der Pol oscillator subjected to non-convex constraints.

Index Terms— Constrained control, Optimal control, Pre-
dictive control for nonlinear systems, Stability of nonlinear
systems.

I. INTRODUCTION

MPC has made significant progress in stability guar-
antees, multi-objective handling, and optimization ef-

ficiency [1]. These advancements, coupled with increasing
computational power in embedded systems, have broadened its
applicability to real-world scenarios. MPC’s ability to integrate
constraints and objectives makes it particularly well-suited for
tasks like avoidance, where systems evolve without entering
undesirable regions of the state or output space.

Although often associated with obstacle avoidance in navi-
gation, avoidance is a broader concept encompassing scenarios
where controlled systems avoid undesirable regions, whether
physical obstacles or other constraints. This generalization
highlights that avoidance capabilities extend beyond naviga-
tion problems.

Traditionally, avoidance in MPC has been addressed using
multi-level approaches that separate reference generation from
control [2], [3]. However, these methods often face challenges
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with feasibility and stability during set-point transitions. In
this context, integrated MPC-based strategies embed avoid-
ance directly into the optimization problem, addressing these
issues and enabling the seamless incorporation of secondary
tasks into primary control objectives, a concept increasingly
explored by the robotics community [4].

Avoidance remains challenging due to its inherent non-
convexity. Existing methods either directly impose avoidance
constraints [5], [6] or relax them to enhance feasibility [7],
[8], but recursive feasibility and stability guarantees are often
overlooked, particularly in dynamic environments where non-
feasible regions are previously unknown, meaning that their
number and form can vary over time.

Building on these challenges, [9] proposed a linear MPC
scheme with avoidance penalties, proving that the closed-loop
system is Input-to-State Stable (ISS) and recursively feasible.
Subsequently, [10] considered these ideas in the context of
nonlinear systems, applying them to obstacle avoidance in
robotics using a set-point tracking framework [11]. However,
while effective, the controller in [10] lacked formal guarantees,
as its mathematical properties, such as stability and recursive
feasibility, were not rigorously analyzed. Instead, the focus
was on practical implementation.

This work addresses the limitations of [10] by providing a
rigorous mathematical analysis of the proposed nonlinear MPC
scheme, extending it to a broader class of avoidance problems.
Specifically, we prove the scheme’s feasibility and stability
for generic nonlinear systems, showing that the closed-loop
system is ISS with respect to the avoidance penalty and
recursively feasible for any initial feasible condition. While the
analysis shares some similarities with the linear case in [9], the
necessity of using Lipschitz continuity arguments, instead of
optimality arguments, was essential to handle nonlinearities.
In this context, this work can be seen as an extension of [9]
to the nonlinear case.

Beyond the theoretical contributions, a numerical exam-
ple using a van der Pol oscillator with non-convex con-
straints demonstrates the methodology’s ability to address non-
convexity, a central challenge in avoidance problems. This
example shows that MPC-based avoidance strategies apply
to a wide range of scenarios beyond obstacle avoidance in
robotics, bridging the gap between theoretical insights and
practical applications.

Notation and definitions
The set I0:N denotes the set of integers {0, 1, · · · , N}, and

a matrix 0n,m ∈ Rn×m denotes a zero matrix. The Euclidean
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norm of x is denoted as ∥x∥ =
√
x′x, with ′ being the

transpose operator. The absolute value of x is denoted as
|x|. Given a set X ⊂ Rn and a variable λ ∈ R, the set
λX ⊂ Rn is defined as λX = {λx : x ∈ X}. A bold
lowercase variable u denotes a sequence of values of a signal
(u(0), u(1), · · · , u(N − 1)), with u(i) being the i-th element
and N being the length of the sequence deduced by the
context. A parameter-dependent signal is denoted by u(a),
and its i-th element is u(i; a).

II. CONTROL FORMULATION

Consider a system described by a nonlinear discrete-time
model of the form

x(k + 1) = f(x(k), u(k)),
y(k) = h(x(k), u(k)),

(1)

where x(k) ∈ Rn, u(k) ∈ Rm, y(k) ∈ Rp are, respectively,
the system state, the current control input, and the controlled
output at the sampling time k. The system solution for a given
sequence of control inputs u and the initial state x is denoted
as x(j) = ϕ(j;x,u), j ∈ I≥0, where x = ϕ(0;x,u).

The evolution of the system is subjected to the constraints

(x(k), u(k)) ∈ Z, ∀k ∈ I≥0, (2)

with Z ⊂ Rn+m being a compact convex polyhedron contain-
ing the origin.

Any suitable target for the system (1) must be associated
with an equilibrium point (xs, us, ys), which is described by

xs = f(xs, us), ys = h(xs, us), (3)

with xs, us, and ys being, respectively, the steady state, steady
input, and steady output.

The set of joint steady states and inputs, Zs, and the set of
reachable set-points, Yr, can be defined as

Zs = {(xs, us) : xs = f(xs, us), (xs, us) ∈ λZ}, (4)
Yr = {yt : yt = h(xs, us), (xs, us) ∈ Zs}, (5)

with λ ∈ (0, 1) being a constant defined to avoid loss of
controllability related to having equilibrium points at active
constraints [12]. It is worthwhile mentioning that since λ can
be chosen arbitrarily close to 1, Z is arbitrarily close to λZ
in the Hausdorff sense.

Assumption 1: The state vector is available at each sam-
pling time, and the state-transition, f(·), and the state-output,
h(·), maps are continuously differentiable at any equilib-
rium point. Moreover, based on continuity arguments, f(·) is
bounded for bounded states with f(0n,1, 0m,1) = 0n,1.

Assumption 2: The steady output ys uniquely defines the
equilibrium (xs, us), and there exists a locally Lipschitz
continuous function gx : Rp 7→ Rn and a continuous function
gu : Rp 7→ Rm such that xs = gx(ys) and us = gu(ys).

Therefore, we want to solve the set-point tracking control
problem for the system (1) constrained by (2) considering that
certain regions of the admissible space are non-feasible and,
therefore, should be avoided. If the set-point is reachable, i.e.
yt ∈ Yr, and can be achieved without getting inside the non-
feasible regions, the closed-loop system should converge to

yt. Otherwise, the closed-loop system should converge to a
steady output ys that minimizes a given index.

For that, considering a previously unknown number No of
non-feasible output regions Oi strictly contained in Y , the
admissible output set can be defined as

Ỹ = Y −
No⋃
i=1

Oi, (6)

with Y being the set of admissible outputs obtained from (2)
considering the output-state map h(·). In this work, any output
non-feasible set Oi is assumed known only at time instant k
and time-invariant for prediction purposes, with no convexity
assumptions made. In other words, the number and shapes of
the non-feasible output regions may vary over time.

It is cumbersome to enforce the evolution of the system
to lie inside the non-convex set Ỹ using hard constraints
in an optimal control problem. For that reason, in [9], it
was proposed a linear MPC scheme with avoidance features
that adds to the tracking formulation of [13] an additional
penalty for avoidance, Va(·) ∈ R. This penalty together
with the tracking MPC ingredients, namely, artificial variables
(xa, ua, ya) and an offset cost functional Vo(·) ∈ R, allows the
controlled system to track a given set-point yt while avoiding
the non-feasible regions. In what follows, this idea will be
further analyzed for nonlinear systems.

Let ya ∈ Yr be an admissible artificial output such that
xa = gx(ya) and ua = gu(ya). Furthermore, consider the
offset cost functional Vo(·) to be a penalty on the deviation
between the artificial steady output ya and the target output yt.
Further, let the avoidance cost functional Va(·) be a penalty
designed to constrain the system output to the admissible space
Ỹ . Then, we can consider the following MPC cost functional

VN (x, yt, Oi;u, ya) = Vo(ya − yt) + Va(y(j), ya, Oi)+
N−1∑
j=0

ℓ(x(j)− xa, u(j)− ua) + Vf (x(N)− xa) (7)

for all possible non-feasible regions Oi. Moreover, the cost
functionals ℓ(·) and Vf (·) denote, respectively, the stage cost
and the terminal cost, which are assumed continuous. For more
information on MPC fundamentals, refer to [14].

The MPC controller with avoidance features is derived from
the solution of the optimization problem PN (x, yt, Oi) having
as parameters (x, yt, Oi) and as decision variables (u, ya),
which is given by

min
u,ya

VN (x, yt, Oi;u, ya)

s.t. x(0) = x, (8a)
x(j + 1) = f(x(j), u(j)), j ∈ I0:N−1, (8b)
y(j) = h(x(j), u(j)), j ∈ I0:N−1, (8c)
(x(j), u(j)) ∈ Z, j ∈ I0:N−1, (8d)
xa = f(xa, ua), (8e)
ya = h(xa, ua), (8f)
(x(N), ya) ∈ Ωa

t , (8g)

with the predicted trajectory subjected to the system dynamics
and constraints (8a)-(8d), and with constraints (8e) and (8f)
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defining the artificial steady output related to an artificial
equilibrium. Moreover, constraint (8g) enforces the terminal
state to reach an invariant set for tracking Ωa

t [11]. It is worth-
while mentioning that the set of constraints of PN (x, yt, Oi)
depends neither on yt nor on Oi. Then, there exists a region
XN ⊆ Rn such that, for all x ∈ XN , yt ∈ Rn, and
Oi ⊂ Rp, the optimization problem PN (x, yt, Oi) is feasible
[15, Proposition 2.4]. The set XN is by definition the domain
of attraction of the closed-loop system.

The optimal solution to the optimization problem
PN (x, yt, Oi) is denoted as (uO, yOa ). Furthermore, consid-
ering the receding horizon policy of MPC controllers, the
optimal control law is implicitly given by the first element
of the optimal control sequence, yielding

κN (x, yt, Oi) = uO(0;x, yt, Oi). (9)

Assumption 3: The following conditions from the tracking
MPC literature are sufficient to ensure asymptotic stability for
a system in closed-loop with (9) without non-feasible regions
Oi [11]:
3.1. Let αℓ be a K∞-function such that ℓ(x− xa, u− ua) ≥

αℓ(∥x− xa∥) for all (x, u) ∈ Rn+m and (xa, ua) ∈ Zs;
3.2. Let κ(x, ya) be a continuous control law defined over the

set Ωa
t , such that (xa, ua) is an asymptotically stable equi-

librium point for the closed-loop system (1) controlled by
κ(x, ya);

3.3. Let Ωa
t ⊆ Rn+p be an invariant set for tracking for the

closed-loop system (1) controlled by κ(x, ya) such that,
for all (x, ya) ∈ Ωa

t , we have that (x, κ(x, ya)) ∈ Z,
ya ∈ Yr, and (f(x, κ(x, ya)), ya) ∈ Ωa

t ;
3.4. Let Vf (x − xa) be a control Lyapunov function for the

closed-loop system (1) controlled by κ(x, ya) such that,
for all (x, ya) ∈ Ωa

t , there exist constants b > 0 and
σ > 1 which verify

Vf (x− xa) ≤ b∥x− xa∥σ (10)

and

Vf (f(x, κ(x, ya))− xa)− Vf (x− xa) ≤ (11)
− ℓ(x− xa, κf (x, ya)− ua);

3.5. Let Vo (ya − yt) : Rp 7→ R≥0 be a continuous, convex,
and positive definite function with Vo(0p,1) = 0, such
that the minimizer

yOa = arg min
ya∈Yr

Vo(ya − yt) (12)

is unique for any yt. Furthermore, there exists a K∞-
function αo such that

Vo(ya − yt)− Vo(y
O
a − yt) ≥ αo(∥ya − yOa ∥). (13)

To later derive the ISS property with respect to the avoid-
ance cost, which is the main argument in the stability analysis,
we consider the additional assumption.

Assumption 4: Let Va (y, ya, Oi) : R3p 7→ R≥0 be a
continuous function such that S = sup(Va(y, ya, Oi)) exists.

Depending on the penalties used, only local convergence
may be achieved due to local minima, and the non-convex
constraint may not be exactly satisfied. As this work focuses on
stability, where Assumption 4 is sufficient, we do not discuss
possible avoidance penalties. For more on penalty methods,
refer to the nonlinear programming literature [16].

III. STABILITY ANALYSIS

When we consider the problem without any non-feasible
output regions, the tracking MPC literature establishes that, for
a given target yt and for any feasible initial state x, the closed-
loop system is stable and fulfills the constraints throughout the
time (see Theorem 1 of [11]). Two conditions can be defined
regarding the convergence of the system:

(i) If yt ∈ Yr, then the closed-loop system asymptotically
converges to yt;

(ii) If yt /∈ Yr, then the closed-loop system asymptotically
converges to a reachable steady output that minimizes

arg min
ya∈Yr

Vo (ya − yt) .

The stability analysis of the nonlinear MPC scheme for
avoidance follows similar steps to those in [9] for the linear
case. First, we prove recursive feasibility of the controlled
system. Next, a shifted value function is defined to account
for the avoidance cost, and upper, lower, and decrease bounds
for the function are established. Finally, we show that the
closed-loop system is ISS with respect to the bound S and,
consequently, the avoidance cost functional.

Lemma 1: (Recursive feasibility) Consider that Assump-
tions 1 to 3 hold, then the system in closed-loop with
κN (x, yt, Oi) is recursively feasible for any feasible state
x ∈ XN .

Proof: Recursive feasibility can be proven using standard
arguments of the MPC literature. First, we consider an optimal
control sequence uO associated with the optimal predicted
state sequence xO. Then, we choose a feasible input sequence
ũ that is equal to the optimal sequence in all but the last
element. Finally, leveraging the invariance of Ωa

t , it can be
shown that if x ∈ XN , then x(k + 1) ∈ XN . For additional
details, see Lemma 3 of [9].

Before analyzing the existence of an ISS-Lyapunov function
for system (1) constrained by (2) and in closed-loop with (9),
we need to show that the optimal artificial triplet (xO

a , u
O
a , y

O
a )

converges to the steady triplet (xs, us, ys). This result was pre-
sented in [9] for linear systems; however, it cannot be applied
directly to the nonlinear case. The next lemma addresses this
issue and its proof is in the Appendix.

Lemma 2: (Steady condition convergence) Consider that
Assumptions 1 to 4 hold for the system (1) constrained by
(2). For any feasible initial state x ∈ XN , target yt, and
bound S, let the optimal solution to PN (x, yt, Oi) be such that
x = xO

a , u = uO
a , and y = yOa . Furthermore, let (xs, us, ys)

be the optimal triplet that satisfies (3), so that the function
Vo(ya − yt) + Va(y, ya, Oi) is minimized. Then, x = xs,
u = us, and y = ys.

Consider the shifted value function defined by

Vs(x, yt, Oi) = VN (x, yt, Oi)− S, (14)

This article has been accepted for publication in IEEE Control Systems Letters. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/LCSYS.2024.3523844

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



as a Lyapunov candidate for the problem PN (x, yt, Oi).
Lemma 3: (ISS-Lyapunov function) Consider that Assump-

tions 1 to 4 hold, then it holds that

1) There exist K∞-functions αc(·) and αb(·) such that

αb(∥x−xs∥)−S ≤ Vs(x, yt, Oi) ≤ αc(∥x−xs∥); (15)

2) There exists a K∞-function α(·) such that

V O
s (x(k + 1), yt, Oi)−V O

s (x(k), yt, Oi)

≤ −α(∥x− xs∥) + S; (16)

3) There exist a KL-function β̂(·) and a K-function γ̂(·)
such that

V O
s (x(k), yt, Oi)

≤ max{β̂(V O
s (x(0), yt, Oi), k), γ̂(S)}. (17)

Proof: This proof follows directly from the proofs of
Lemmas 4 to 7 of [9], which is based on optimality, bounded-
ness, and continuity arguments. Once Lemma 2 is considered,
as proposed in this work, their extension to nonlinear systems
is straightforward and will be omitted.

Theorem 1: (ISS-based avoidance) Consider that Assump-
tions 1 to 4 are satisfied. Then, the system (1) in closed-loop
with the optimal control law κN (x, yt, Oi) is ISS with respect
to the avoidance cost Va(y, ya, Oi), i.e., there exist a KL-
function β(·) and a K-function γ(·) such that, for any feasible
initial state x ∈ XN , steady output ys ∈ Yr, and bound S, the
solution ϕ(k;x,u) exists and satisfies

∥ϕ(k;x,u)− gx(ys)∥ ≤ β(∥x− gx(ys)∥, k) + γ(S), (18)

for all k ∈ I>0.
Proof: Based on Lemma 3, Vs(x, yt, Oi) is an ISS-

Lyapunov function for system (1) with bounds β̂(·) and γ̂(·).
Then, from Lemma 3.5 of [17], we can state that the system
is ISS since it assumes an ISS-Lyapunov function. Therefore,
there exist a KL-function β(·) and a K-function γ(·) such
that ∥ϕ(k;x,u) − gx(ys)∥ ≤ β(∥x − gx(ys)∥, k) + γ(S) for
all k ∈ I>0, concluding the proof.

Remark 1: The results of Theorem 1 should be interpreted
as follows. In the presence of non-feasible output regions,
the avoidance cost acts as a disturbance and only ISS can
be ensured. Consequently, the closed-loop system converges
to a bounded set around a steady state, which can be either
desired or feasible. Therefore, when considering the avoidance
problem, asymptotic stability, as defined in the literature, can
only be recovered when the avoidance cost approaches zero.
In other words, if required, the controlled system sacrifices
asymptotic convergence for the sake of fulfilling the non-
convex constraints imposed on the system.

Remark 2: The avoidance problem was defined with non-
feasible regions in the output space, i.e., Oi ⊂ Rp. However,
it is easy to see that with simple manipulations, the results
achieved will also hold if the problem is posed considering
non-feasible regions at the state-level, i.e., Oi ⊂ Rn.

IV. SIMPLIFIED CONTROL SCHEME

A simple approach for the implementation of the considered
nonlinear MPC with avoidance features leverages the feasibil-
ity enhancements present in the tracking MPC framework to
avoid the computation of terminal invariant sets. Namely, the
possibility of considering relaxed terminal equality constraints
to enforce the terminal state to reach xa = gx(ya). Therefore,
the invariant set for tracking comes down to Ωa,e

t = {(x, ya) :
x = gx(ya), ya ∈ Yr}.

In this formulation, the cost functional becomes

V e
N (x, yt, Oi;u, ya) =Vo(ya − yt) + Va(y(j), ya, Oi)+

N−1∑
j=0

ℓ(x(j)− xa, u(j)− ua), (19)

which does not require any terminal cost functional due to the
constraint x(N) = gx(ya).

Therefore, the simplified nonlinear MPC with avoidance
features can be obtained by solving the optimization problem
P e
N (x, yt, Oi) having as parameters (x, yt, Oi) and as decision

variables (u, ya), which is given by

min
u,ya

VN (x, yt, Oi;u, ya)

s.t. x(0) = x, (20a)
x(j + 1) = f(x(j), u(j)), j ∈ I0:N−1, (20b)
y(j) = h(x(j), u(j)), j ∈ I0:N−1, (20c)
(x(j), u(j)) ∈ Z, j ∈ I0:N−1, (20d)
xa = f(xa, ua), (20e)
ya = h(xa, ua), (20f)
ya ∈ Yr, (20g)
x(N) = xa. (20h)

As usual in MPC with terminal equality constraint, a con-
trollability assumption is required to the optimization problem
P e
N (x, yt, Oi) be feasible for a given prediction horizon N .
Assumption 5: The model function f(x, u) is differentiable

at any equilibrium point (xa, ua) ∈ Zs associated to a steady
output ya ∈ Yr, and the linearized model given by the
Jacobians A(xa, ua) and B(xa, ua) is controllable.

When we consider the simplified terminal equality track-
ing formulation without any non-feasible output regions, the
asymptotic stability is maintained if, in addition to the previous
assumptions, the controllability assumption holds and the
prediction horizon satisfies N ≥ n [11]. Similarly, the closed-
loop system remains ISS with respect to the avoidance cost.

Demonstrating this property is straightforward since Lemma
3 must hold for an invariant set for tracking Ωa

t degenerated
to a single steady condition (xa, ya). In fact, it always holds
that Ωa,e

t ⊆ Ωa
t .

V. NUMERICAL EXAMPLE

To illustrate the proposed control strategy, consider the van
der Pol oscillator, originally introduced by Balthazar Van der
Pol to model triode oscillations in electrical circuits [18]. The
system dynamics, with a forcing term, are given by

ẋ1 = x2, ẋ2 = 0.2(1− x2
1)x2 − x1 + u, y = x1,
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with x = [x1 x2]
′, u, and y being, respectively, the state vector,

the input control, and the output. Furthermore, the system’s
states are constrained as |x1| ≤ 6 and |x2| ≤ 2, and the control
input constraint is |u| ≤ 6. An additional constraint limiting
the rate of energy transfer in the system is considered, given
by |x1x2| ≤ 2. It is noteworthy that the additional non-convex
constraint makes the admissible state space a non-convex set.
Therefore, the avoidance approach discussed in this work is a
good candidate to solve this control problem.

The nonlinear MPC strategy is formulated considering a
discrete-time nonlinear model for prediction, obtained using
the first-order Euler approximation with a sampling time of
Ts = 0.5s. To avoid the computation of invariant sets, we
choose the simplified scheme with terminal equality con-
straints, considering a prediction horizon N = 5, a stage
cost ℓ(·) = ∥x − xa∥2 + ∥u − ua∥2, and an offset cost
Vo(·) = κ(ya − yt)

2 with κ = 104.
Consider an avoidance cost function defined as

Va(x, xa, Oi) = µF (xa, Oi) +

N∑
j=0

µF (x(j), Oi) ,

where F (x,Oi) is a penalty given by

F (x,Oi) =

2∑
j=1

(max {0, gj(x)})2 ,

with g1(x) = x1x2 − 2 and g2 = −x1x2 − 2 defining the
non-feasible region O = {x ∈ R2 : g1(x) ≤ 0, g2(x) ≤ 0},
and µ = 108. For this example, note that it is more adequate
to perform avoidance at the state-level. As highlighted in
Remark 2, this can be done without loss of generality. In
addition, while large penalty values can cause ill-conditioning
in optimization problems, this issue is often mitigated using
techniques like augmented Lagrangian methods [16]. In this
example, however, no such problems arose, and the optimiza-
tion was successfully performed with the CasADI Toolbox and
IPOPT solver for MATLAB.

Fig. 1 shows the phase diagram of the van der Pol oscillator.
The system tracks the set-point yt = 5 from the initial
condition x(0) = [−5 0]′, marked by a black square on the
left side. The steady state associated to yt is marked by an x
on the right side. The non-feasible state region is highlighted
in light red.

Notably, in the case without avoidance (µ = 0), the closed-
loop system maximizes the time the state x2 remains active at
its constraint, but this leads to violations of the energy transfer
rate limit. This behavior is seen in Figs. 1 and 2, particularly
in the solid blue line plots. In Fig. 2, the second plot clearly
shows the system keeping x2 = 2 for the maximum duration.

With avoidance features, the closed-loop system follows
the boundary of the non-feasible region without entering it,
ensuring the maximum allowed energy transfer rate is used.
As expected, the system without avoidance converges faster.
However, the system with avoidance achieves the best possible
convergence time while respecting the constraints, as shown
in Fig. 2.

VI. CONCLUSION

This work analyzed the stability of a nonlinear MPC scheme
for avoidance. It was shown that with the avoidance cost
bounded, the closed-loop system is ISS with respect to this
cost and achieves asymptotic stability as the cost approaches
zero. A simplified scheme with relaxed terminal constraints
was also discussed and demonstrated with a van der Pol
oscillator example, which used a non-convex constraint to
limit energy transfer. This example illustrated that the control
strategy can handle non-convex admissible spaces by solving
an equivalent convex optimization problem. Future research
will focus on efficient numerical methods for computing
invariant sets for nonlinear systems.
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Fig. 1. The figure shows the phase diagram of the dynamical system.
The black square marks the initial condition, while the black x marks
the target’s steady state. The solid black and blue lines represent the
system’s evolution with and without avoidance, respectively. The light
red area indicates the region to be avoided.
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Fig. 2. The figure presents the time evolution of the states and the input.
The solid black and solid blue lines represent the system controlled with
avoidance and without avoidance, respectively.
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APPENDIX I
PROOF OF LEMMA 2

Consider that (xO
a , u

O
a , y

O
a ) is the optimal solution to

PN (x, yt, Oi). Then

VN (x, yt, Oi) = Vo(y
O
a − yt) + Va(y, y

O
a , Oi). (21)

This lemma can be proved by contradiction using convexity
and Lipschitz continuity arguments. For that, assume now that
the stationary point is not optimal, i.e., (xO

a , u
O
a ) ̸= (xs, us).

Let us define

(x̃a, ũa) = γ(xO
a , u

O
a ) + (1− γ)(xs, us), (22)

with γ ∈ [0, 1]. Since both (xs, us) and (xO
a , u

O
a ) are in Zs,

and this set is convex, then a convex combination of these
points, (x̃a, ũa), is also in Zs.

Considering Assumptions 3.5. and 4, it is possible to obtain
a convex cost functional that superiorly bounds the non-convex
cost Vo(ya − yt) + Va(y, ya, Oi). Then, we can define

VB(ya − yt) = Vo(ya − yt) + S, (23)

for any bound S, such that

VB(ỹa − yt) ≤ VB(y
O
a − yt) (24)

for every γ with ỹa = h(x̃a, ũa). In other words, since the sys-
tem is not at the optimal point (xs, us), it is more convenient
to move toward (x̃a, ũa) than to remain in (xO

a , u
O
a ).

Let ũ be a feasible control sequence that drives the system
from (xO

a , u
O
a ) to (x̃a, ũa). This sequence is such that the

j-th element is given by ũ(j) = κ(x̃(j), ỹa) and x̃(j +
1) = f(x̃(j), ũ(j)), with x̃(0) = xO

a . Additionally, from the
Lipschitz continuity of the function gx(·) (see Assumption 2),
we have that ∥xO

a − x̃a∥ ≤ Lg∥yOa − ỹa∥, with Lg > 0 being
the Lipschitz constant. Then, the cost to drive the system to
(x̃a, ũa) in N steps is

VN (xO
a , yt, Oi) =

N−1∑
j=0

ℓ(x̃(j)− x̃a, κ(x̃(j), ỹa)− ũa) + Va(ỹ(j), ỹa, Oi)+

Vf (x̃(N)− x̃a) + Vo(ỹa − yt)

≤
N−1∑
j=0

ℓ(x̃(j)− x̃a, κ(x̃(j), ỹa)− ũa) + S+

Vf (x̃(N)− x̃a) + Vo(ỹa − yt)

≤ Vf (x
O
a − x̃a) + Vo(ỹa − yt) + S

≤ b∥xO
a − x̃a∥σ + Vo(ỹa − yt) + S

≤ b(Lg∥yOa − ỹa∥)σ + Vo(ỹa − yt) + S

=Lσ
g b(1− γ)σ∥xO

a − xs∥σ + Vo(ỹa − yt) + S. (25)

Define W (γ) = Lσ
g b(1−γ)σ∥xO

a −xs∥σ+VB(ỹa−yt) and
notice that for γ = 1, W (1) = VB(y

O
a −yt). Taking the partial

derivative of this function with respect to γ and evaluating it
for γ = 1, we obtain

∂W

∂γ

∣∣∣∣
γ=1

= gO
′
(yOa − yt), (26)

with gO
′
(yOa − yt) ∈ ∂VB(y

O
a − yt), where ∂VB(y

O
a − yt) is

defined as the subdifferential of VB(y
O
a − yt).

From convexity and (24),

∂W

∂γ

∣∣∣∣
γ=1

= gO
′
(yOa −yt) ≥ VB(y

O
a −yt)−VB(ỹa−yt) > 0.

(27)
This means that there exists a value of γ ∈ [0, 1) such that
VB(ỹa − yt) is smaller than the value of the cost VB(ỹa −
yt) for γ = 1, which is VB(y

O
a − yt). This contradicts the

optimality of the solution of PN (x, yt, Oi). Then, it has to
be (xO

a , u
O
a ) = (xs, us), with (xs, us) being the minimizer of

Vo(ya − yt) + Va(y, ya, Oi), which concludes the proof.
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