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A B S T R A C T   

Accurate prediction of thermal load in buildings is essential for efficient energy planning. In this 
study, we investigate the application of Artificial Neural Networks (ANNs) to predict thermal load 
and indoor temperature evolution in residential buildings. We propose a flexible and adaptive 
model that is retrained on a daily basis to deliver updated hour-by-hour predictions for the 
following 24 h. To strike a balance between prediction accuracy and computational efficiency, we 
employ various design choices, including feature selection using Pearson’s correlation coefficient 
(PCC), dynamic architecture, down-sampling, and specific state resetting and weight initializa-
tion. The results demonstrate the efficacy of our proposed model, as indicated by low root mean 
square error (RMSE) and mean bias error (MBE) values. For zone temperature, the average RMSE 
and MBE are 0.3 ◦C and 0.18 ◦C (summer) and 0.5 ◦C and 0.2 ◦C (winter), respectively. 
Furthermore, the average RMSE and MBE for thermal load predictions are 12 W/m2 and -2.4 W/ 
m2 (winter) and 10 W/m2 and -0.6 W/m2 (summer), respectively. These performance metrics 
establish our model as a valuable tool for optimizing heating and cooling systems, resulting in 
energy savings and cost reductions. Our findings emphasize the potential of ANNs for precise 
thermal load and indoor temperature predictions, offering practical implications for building 
operators, engineers, and researchers involved in energy management.  

Nomenclature 

T Temperature [◦C] 
t Time step [5-min] 
D Day 
S Switch [0, 1] 
qx Number of past samples of the state variables 
qu Number of past samples of the input variables 
W Weight 
u Input vector 
y Output vector 
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x State vector 
N Number of samples 
n Vector size of the state 
p Vector size of the output 
m Vector size of the input 

Acronyms 
ANN Artificial Neural Network 
ARX Autoregressive with exogenous input 
CKPI Computed key performance indicator 
GU Glorot uniform 
KPI Key performance indicator 
LSTM Long short-term memory 
MBE Mean bias error 
ML Machine learning 
MSE Mean squared error 
MLP Multilayer perceptron 
MP Mean period 
NMBE Normalized mean bias error 
PCC Pearson’s correlation coefficient 
RMSE Root mean squared error 
RNN Recurrent neural network 
SVM Support vector machine 
XGBoost Extreme gradient boosting 

Greek symbols 
φ Global horizontal irradiation [kJ/h/m2] 
ξ Extended state vector 
θ Internal gain [W] 
E Expected value 
μ Mean value 
σ Standard deviation 
δ Float number [0, 1] 

Subscripts 
a Ambient temperature 
z Zone 
w Week 
s Solar 
t Time  

1. Introduction 

In 2021, the majority of energy consumed by households in the European Union was allocated to heating their homes, representing 
64.4% of the total. Additionally, water heating accounted for 14.5% of energy usage, while space cooling constituted a mere 0.5% [1]. 
Thermal load refers to the amount of heat energy that needs to be either added or removed from a space or system to achieve the 
desired temperature conditions. It can represent both the heating load and cooling load. Given that buildings use significant amounts of 
energy and produce considerable carbon dioxide, accurate thermal load forecasting is crucial for the optimal planning and operation of 
the energy systems. It helps to reduce energy waste, enhance occupant comfort, and extend the lifespan of building equipment. This 
type of forecasting is widely utilized in the controls of heating, ventilating, and air conditioning (HVAC) systems [2–7], heat pumps 
(HPs) [8–10], and thermal energy storage systems [11–13]. Load forecasting is typically implemented through various modeling 
techniques [14]. The choice of modeling approach depends on the complexity, dynamics, and nonlinearity of building energy systems, 
whether in a single building or multiple buildings. The existing approaches in the field of building energy systems can be broadly 
classified into three main categories [15–17]: 

Firstly, there are White-box models, which are solely based on physics. These models can be challenging and time-consuming to 
develop, as they necessitate a thorough understanding of the building’s physical parameters and the equations to be specified. These 
models can be slow to execute in simulations due to their high level of complexity. However, they offer the advantage of simulating an 
as-yet unbuilt building, given that all its physical properties are known [18]. Examples of well-established software based on the 
white-box approach are EnergyPlus, ESP-r, TRNSYS, Ecotect, and Grasshopper, which have been extensively used to assess energy use 
and establish building control and operation plans [19,20]. 
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Secondly, there are Black-box models, also known as (fully) data-driven models. Instead of physics, these models use historical data 
to establish a relationship between the input and output features. The essential data are already accessible, making the calibration 
straightforward and quick. In this case, the model generally uses statistical approaches to create a link between building energy usage 
and operating data [19,21]. For training these models, on-site observations over an extended period are necessary to anticipate 
building functioning under various scenarios. Artificial Neural Networks (ANN), Support Vector Machines (SVM) [22], and Statistical 
Regression are the commonly applied approaches in black-box models [20,23]. 

Lastly, we have Gray-box models, which blend qualitative knowledge with quantitative data. The optimum process model is selected 
using all the currently available information. The gray-box technique offers the advantage of leveraging prior knowledge and the data 
already accessible, as opposed to the black-box and white-box models [24–26]. 

Having a one-size-fits-all model for all types of buildings is unrealistic as every building is unique and requires its specific set of 
parameters. This is where the black-box model comes in handy, as it can be applied to a wide range of buildings, regardless of their 
specific characteristics, making it a generic solution [27]. Also, the widespread implementation of automated control systems and the 
Internet of Things in buildings has resulted in an abundance of data from measuring sensors, providing ample opportunities for 
developing black box models using Machine Learning (ML) algorithms, including linear regression, autoregressive exogenous (ARX), 
SVM, extreme gradient boosting (XGBoost), and ANN models [28,29]. 

Within the black-box category, choosing the appropriate algorithm is a challenging endeavor, with “Is there a stronger method than 
others?” as a frequently asked question. Linear regression [30–32], ARX model [33–36], and more complicated methods like SVM 
[37–39] and XGBoost [40–43] are only a few statistical models and techniques used to predict future building loads. 

The other cutting-edge data-driven solution is the use of ANN. These networks are popular due to their striking features, such as 
adaptive learning, self-organization, real-time operations, generalization, stability and flexibility, and parallel processing. ANN has 
been widely recognized in the building energy domain as a promising approach due to its superior learning abilities and computational 
advantages. The Multilayer Perceptron (MLP) is a popular type of ANN that is made up of multiple layers of interconnected neurons. 
Unlike linear regression, which can only model linear relationships, MLP can handle both linear and nonlinear relationships by adding 
more hidden layers to the network. This allows MLPs to better capture the complex relationships in the data, leading to improved 
forecasting performance. 

In addition to MLPs, the ANN domain includes various advanced ANN architectures such as Recurrent Neural Network (RNN) and 
Long Short-Term Memory (LSTM) networks. While RNN is widely used and effective for time series forecasting, it is susceptible to the 
risk of exploding and vanishing gradients and may have a limited capacity for storing features for long sequences [44]. LSTM over-
comes these issues and has a more sophisticated structure than traditional RNNs, which allows it to store and access information over 
an extended period of time, making it more suitable for time series forecasting tasks. Some studies have highlighted the superior 
performance of LSTM over simple ANN for predicting a building’s energy consumption, but this advantage comes at the cost of the 
increased computational burden [45]. Also, LSTMs require a large amount of training data to produce accurate results. If the training 
data is limited or noisy, LSTMs may struggle to learn meaningful patterns. Therefore, the choice of ANN depends on the specific needs 
of the application [46,47]. 

Creating an appropriate ANN model is a complex process that requires careful consideration of several critical steps. The early step 
involves selecting the most suitable features for the model, and there are various extraction algorithms available to achieve this, 
including the filter approach, wrapping method, embedding method [48–50], and so on. Choosing the right inputs is also a crucial 
aspect of feature selection, as having too many inputs can make the model overly complex and result in increased training time [51]. 
On the other hand, having too few inputs may lead to a model with inadequate performance. Therefore, it is essential to find a balance 
between the number of inputs and the model’s performance. Having access to the inputs is also another aspect of feature selection that 
should be considered. Temporal features that are easily accessible, such as time of day, day of the week, and holidays, can be utilized in 
data-driven model training to improve the model’s accuracy [30]. For example, in a predictive model for building energy consumption, 
the time of day, day of the week, and holidays can be useful in predicting peak demand periods. While these temporal features can be 
easy to obtain and process, there may be cases where additional sensors or algorithms are necessary to extract essential features for the 
model. These sensors and algorithms may come at an additional cost and require more time and effort to implement. For example, 
utilizing occupancy as a feature for model training can be beneficial. Alternative algorithms, room occupancy detectors, passive 
infrared sensors [52], or CO2 sensors [53–55] can also provide valuable information about occupancy. Nonetheless, these methods can 
be expensive for the end user. Ideally, information should come from sensors that would be installed anyway, such as indoor tem-
perature measurement and fluid temperatures in heating and cooling system points. 

This study aims to introduce a straightforward MLP model with a single hidden layer as an approach for predicting the thermal load 
of buildings. The objective was to develop a model that is fast, cost-effective, and adaptable, capable of accurate predictions even with 
limited data. To achieve this, complex data-driven models were deliberately avoided in favor of simpler alternatives. Instead, the study 
focused on selecting easy and straightforward inputs that could be universally applied to all building types without requiring detailed 
information about their physical characteristics. The chosen inputs consisted of commonly embedded sensors in buildings, eliminating 
the need for additional sensors. The MLP model was specifically designed for a controller based on model predictive control, 
emphasizing the necessity of precise predictions for the building’s thermal load. Overall, the proposed approach prioritized simplicity 
and practicality while still achieving accurate predictions. 

The key contributions of this paper can be summarized as follows:  

• Versatility: The proposed model architecture is designed to be versatile and adaptable, making it suitable for various types and 
sizes of buildings. Unlike conventional approaches that rely on specific assumptions about a building’s characteristics or location, 
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the presented model utilizes a data-driven approach that collects information from the building’s performance over time. This 
makes the model highly versatile, allowing it to be applied to any construction and serving as a valuable tool for energy planning in 
the building sector.  

• Adaptivity: The proposed model is adaptive, meaning it can be continuously trained and updated with newly available data. This 
enables ongoing improvement of forecasts and the delivery of more accurate results. Moreover, the model can provide continuous 
simulations and forecasts on a 24-h horizon, allowing it to dynamically respond to changes.  

• Advanced Techniques: The model incorporates cutting-edge techniques to enhance its performance and efficiency, including 
dedicated internal states reset function and specialized weight initialization functions. These techniques enable the model to 
generate more precise predictions while minimizing computational resource requirements. 

2. Methodology 

In this section, the detailed procedure of constructing a self-adaptive ANN model for accurately predicting thermal loads in 
buildings will be explored. Subsequently, the model’s effectiveness will be showcased using a simulated building, emphasizing the 
potential of this innovative approach. 

Before diving into the basic details, we recall how the ANN training process works; ANNs are fed with several input and output data 
pairs corresponding to the input features and output targets. The ANN architecture has a set of trainable parameters which are 
continuously adjusted in the training phase to minimize/maximize a particular performance indicator, also known as the loss function. 
In our case, features and targets are snapshots of measured physical quantities observed over a certain period of time. This training 
process enables the ANN to learn and improve its predictions continuously. The end result is a highly adaptable and versatile model 
that can be used for energy planning and management in the building. 

2.1. Case study 

The dataset used in our study was generated by simulating the real building in TRNSYS and saving the numerical data in a Comma- 
Separated Values (CSV) file. The building stratigraphy was already known from the EnergyMatching project (European Union’s 
Horizon 2020 research and innovation program, grant agreement Nº 768766). The TRNSYS model was utilized to generate a metic-
ulously prepared dataset that accurately represents the behavior of an existing building subjected to climate conditions typical of 

Fig. 1. The layout of the building in the case study.  
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Bolzano, Italy [56]. 
The dataset encompasses all aspects of the building, with a particular emphasis on the HVAC control system. It consists of 65 

columns that represent the most crucial information related to the building’s thermal behavior and energy consumption. In terms of 
size, the dataset contains a significant amount of information due to the one-year simulation duration and the 5-min sampling interval. 

The building, as depicted in Fig. 1, is a small apartment with high insulation levels and a floor area of 62.6 m2. The building’s 
annual energy consumption stands at around 50 kWh/m2. For space heating, all rooms except the bathroom and kitchen are equipped 
with a radiant floor heating and cooling system, each with its own dedicated thermostat for individual zones. 

2.2. Feature selection 

Selecting appropriate input features is fundamental to building an ANN. The process of choosing the right features is a challenging 
task and requires a basic knowledge of the parameters capable of influencing system. A general principle is to pick the number of 
features that can adequately model the system dynamics without putting excessive computational burden. To this end, some statistical- 
based feature selection methods evaluate the relation between input (features) and output (target) variables. These techniques attempt 
to concentrate on reducing redundant or unhelpful variables and selecting the most meaningful features. The relationship between the 
input and target variables depends on the variable types (numerical/categorical), leading to different statistical assessment (regres-
sion/classification) methods. In this case, the types of variables we encounter are numerical; therefore, we resort to calculating 
Pearson’s correlation coefficient (PCC) to assess the input and target variable relationship. PCC measures the linear correlation (ρ(X,
Y)) between two variables X and Y using the following expression: 

ρ(X,Y) = E[(X − μX)(Y − μY)]
̅̅̅̅̅̅̅̅̅̅σXσY

√ (1)  

Where E is the expected value, μX and μY are the mean value of variables X and Y respectively, and σX and σY are the standard deviation 
of variables X and Y, respectively. Based on the outputs of PCC, selected features are shown in Fig. 2. 

2.3. Structure of neural network 

In this study, we considered various ANN structures for our problem, with the goal of selecting the most appropriate one based on 
the specific needs of the task at hand. While we initially explored multiple structures, we ultimately found that MLP was the most 
effective option for our needs. While other structures may have had the potential to achieve higher accuracy or faster speeds with 
further optimization, the simplicity and speed of MLP were essential for meeting our specific requirements. 

The Multilayer Perceptron (MLP) is one of the most used and versatile ANN architectures. MLPs are widely regarded as a powerful 
tool for solving complex nonlinear problems, including classification and prediction tasks, due to their ability to learn and represent 
complex nonlinear relationships between input and output data. One of the key advantages of MLPs is their flexibility and adaptability. 
They can be trained on a wide range of input and output data types, including continuous, discrete, and binary data, and can be used 
for both supervised and unsupervised learning [57]. Another advantage of MLPs is their ability to incorporate prior knowledge and 
expert input into the learning process. This makes it possible to tailor the network architecture and learning algorithm to specific 
problem domains and to optimize the network’s performance based on domain-specific knowledge [58]. 

The MLP model that was chosen for the study has six input features, a hidden layer with 16 neurons, and only one output feature. In 
order to address the temporal dependence of the problem at hand, it was deemed necessary to include not only the parameters with the 
highest correlation but also the day of the week (Dw) and time of the day (t) as input features. The inclusion of Dw and t as input features 
in our MLP model are significant in capturing the cyclic and diurnal patterns in thermal load behavior. Dw captures differences in 
thermal load across weekdays and weekends, while t accounts for variations throughout the day due to factors like outdoor tem-

Fig. 2. Correlation Heatmap showing the Relationship between Inputs and Thermal Load.  
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perature and human activities. Including both features allows our model to account for weekly and daily variations in thermal load 
without requiring additional sensors. Dw and t can be easily derived from available data sources such as timestamps or system clocks. 

In the process of developing the ANN model, experiments were conducted to determine the optimal number of neurons in the 
hidden layer. Several trials were performed with varying numbers of neurons, ranging from a small number to a larger one. Through 
these experiments, it was found that using 16 neurons in the hidden layer proved to be the most effective choice, as it yielded the best 
results. Besides, the choice of activation function for the hidden layer was considered. After evaluating different options, the Rectified 
Linear Unit (ReLU) activation function was selected as the optimal choice. This decision was made based on its ability to improve the 
model’s performance and accuracy, as well as its computation efficiency compared to other activation functions. As the activation 
function for the output layer, a linear activation was considered in order to produce continuous output values that represent the 
predicted thermal load of the building. This choice was made to ensure that the output is directly proportional to the input, making it 
easier to interpret and integrate with the model predictive control (MPC) algorithm used in the controller. Fig. 3 illustrates the ar-
chitecture of the proposed ANN model. 

2.4. Technical challenges 

In order for the ANN to effectively predict the thermal load, it must have access to the future values of its input features. Therefore, 
the future input feature values can be obtained through forecasting or made available through other means. In this work, the mete-
orological data (Ta and φs) and integral gains (θ) are sourced from TRNSYS, therefore, assuming to have a perfect prediction of outdoor 
conditions and internal gains. It should be noted that the term “internal gain” refers explicitly to the measured internal gains associated 
with lighting and electrical appliances that can be easily quantified using electricity meters. Measuring internal gain in the real world is 
challenging, often requiring models or calculations. To strike a balance between accuracy and practicality, we simplified the model and 
focused on electrical measurable sources. 

As we can see in Fig. 3, the zone temperature is one of the input features for the thermal load model, implying that it must also be 
predicted. It turns out that the future values of the zone temperature can be forecasted with satisfying accuracy by making use of a 
second ANN model where the thermal load is an input feature as they are interdependent. The task of the second ANN model is to 
predict the zone temperature (Tz). This model requires similar features to those of the thermal load model with additional features 
representative of the thermal load and zone temperature at the previous time step. The zone temperature model can be formulated as 
equation (2). 

Tz(t) = f (Ta(t),φs(t), t,Dw, θ(t),P(t),Tz(t − 1)) (2) 

The tie induced by the fact that each model output is also an input of the other is solved by connecting the two models in a feedback 
loop. Fig. 4 shows the final model structure. 

2.5. Model refinement 

This section will discuss the mathematical details of the proposed model’s implementation. The model is designed to make hourly 
predictions over a 24-h horizon continuously. The model is based on a state-space model that can approximate the input-output 

Fig. 3. Structure of proposed ANN model for load prediction.  
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relation seen in the data, and this family of functions includes all networks arising from the combination of possible neuronal units, 
connections, activation functions, and weights. The extended state vector is introduced to include the recent past evolution of state and 
input variables, and a selector is used to reduce the network’s complexity by selecting a subset of extended states to become features 
fed to the ANN core. We investigated the optimal size of training datasets for a 5-min time step model and designed a method for weight 
initialization. The model is trained every day at midnight using the most recent data and then used to make predictions for the next 24 
h. To evaluate the accuracy of the proposed model, various performance metrics were utilized. 

2.5.1. Continuous training model 
Determining the behavior of a building in response to variations in its boundary and internal conditions can be seen as a (dynamic) 

system identification task. More specifically, since a real building can show both nonlinear and time-varying (NLTV) behaviors, we are 
dealing with identifying NLTV systems. Such systems can theoretically be formulated like equation (3) as NLTV state-space models. 

{
x(t + 1) = f(x(t), u(t), t)

y(t) = g(x(t), u(t), t)
(3) 

In this formula, f and g are vector values functions, while u(t) ∈ Rm, x(t) ∈ Rn and y(t) ∈ Rp represent the input, state, and output 
vectors at time t, respectively. In other words, f represents n scalar functions of n + m + 1 (scalar) variables while g represents p scalar 
functions of n + m + 1 variables. f is called the state update function, while g is called the output function. The system identification 
task consists in determining the state update and output function that best approximates the input-output relation seen in the data in a 

Fig. 4. Identified model for load (and zone temperature) prediction.  

Fig. 5. Graphical representation of the construction of the extended state ξ(t) carried out by the VDL block.  
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certain family of functions. In this work, we performed the system identification task using ANNs, therefore the family of functions we 
are referring to is the family of all the networks arising from the combination of possible neuronal units, their connections, activation 
functions, and weights. 

In this context, due to the use of ANN, we found it helpful to explicitly include the recent past evolution of state and input variables 
in the mathematical formulation, leading to a modified version of equation (3) to read as equation (4). 

{
x(t + 1) = f(x(t − qX),…, x(t − 1), x(t), u(t − qU),…,u(t − 1), u(t), t)

y(t) = g(x(t − qX),…, x(t − 1), x(t),u(t − qU),…, u(t − 1), u(t), t)
(4)  

Here, qX ∈ Rn is the number of past samples of the state variables, and qU ∈ Rn is the number of past samples of the input variables. 
Note that although in equation (4) we used the same symbols as in equation (3), the symbols denote different state update and output 
functions. The total number of scalar arguments of the two functions is n(qX + 1)+ m(qU + 1)+ 1, including the time dependence. It is 
easy to show by introducing the extended state vector ξ(t), 

ξ(t) = [x(t − qX); …; x(t − 1); x(t);u(t − qU); …; u(t − 1)] (5)  

that the modification does not change the structure of the formulation, as (4) can be cast in the same form as equation (5), 
{

ξ(t + 1) = φ(ξ(t), u(t), t)

y(t) = γ(ξ(t),u(t), t)
(6)  

where φ : Rn(qX+1)+mqU × Rm × R→Rn(qX+1)+mqU is the new (extended-)state update function and γ : Rn(qX+1)+mqU × Rm × R→Rp is the 
new output function. 

A diagram representing the relationship between extended state ξ(t), state at the next moment x(t+1) and input u(t) is given in 
Fig. 5, using two vector delay lines (VDL), one related to the state variables and the other to the input variables. The two VDLs consist of 
several vectorial one-step delay blocks (denoted by z− 1). As represented in Fig. 6, a vector delay block is composed of various scalar 
one-step delay elements (also denoted by z− 1). 

Decimation, or down-sampling, is the process of reducing a signal sample rate. Decimation decreases the sampling rate of the inputs 
by an integer factor by periodically selecting one sample out of N samples. To ease the system identification with neural networks, we 
consider a different structural feature regarding the reduction of the extended states. The reasons why we introduced this feature in our 
model are reported in the following. In certain conditions, it may be helpful or even necessary to use relatively high values of the 
parameters qX and qU in order to capture “ancient” samples (like those of 24 h before). However, the fact that very old samples are 
needed does not mean that feeding the ANN element with the entire record of past samples (including the present) is the most 
appropriate choice. To provide the ANN element with a reduced number of samples, we introduce the selector Π : Rn(qX+1)+mqU → Rnf , 
allowing, in general, to select a subset of extended states to become features to be fed to the ANN core. 

In this way, ̃f and ̃g, the final state update and output functions are obtained. We remark that reducing the number of inputs to an 
ANN can reduce the network’s complexity and consequently increase both the learning speed and the evaluation speed, especially in 
the case of shallow networks. In theoretical developments, Π can be assumed to be a full-rank matrix with nf : N rows and n(qX +1)+
mqU columns, consisting of only numbers one and zero and having precisely one number 1 per row. The reduced (extended-)state Πξ(t)
and the current input u(t) concur to form the set of features fed to the neural network, which aims to produce certain output targets. 
Briefly, the structure of the model is written like equation (7). 

{
x(t + 1) = f̃(Πξ(t), u(t), t)

y(t) = g̃(Πξ(t), u(t), t)
(7) 

This description using mathematical symbols can be illustrated in Fig. 7. Fig. 7 highlights the fundamental structural elements of 
the functional block called ANNModel: the double VDL, the selector of the extended-state Π, the ANN block and the feedback loop 

Fig. 6. Illustration of the vector representation in the case of the delay block.  
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(x(t + 1)). Both the load model and the zone temperature model are instances of this ANN-model functional block. The load model has 
no state variables (x(t) is empty, n = 0) while the zone temperature model has no outputs apart from its state variable (y(t) is empty, 
p = 0). Both models however have an extended state because both make use of past inputs. Although the model allows for a flexible 
method to reduce the extended state to create the features, in this works we used only the decimation approach. 

2.5.2. Length of the dataset for training and validating 
The datasets used to train, validate, and test the proposed ANN model were generated by running yearly simulations of the TRNSYS 

model and will be referred to as TRNSYS datasets in the following. In the deployable implementation, as it is not possible to embed 
meaningful data for training and validating before the installation of the system, the model requires some time to gather experimental 
data before it can begin training and making predictions. The size of the dataset is of paramount importance, as having the right 
amount of data can reduce computational time, while not having enough data can result in the model not achieving acceptable 
performance. Empirical processes and experiments are a way of answering the question of how much data is needed for a well- 
performing model, as the answer depends on the type of problem. Therefore, based on our TRNSYS dataset, we investigated the 
size of the data that the model needs to be well-trained and proficient. It was discovered that the learning of the model is significantly 
impacted by days with frequent zero thermal loads. Consequently, it would be better not to use zero days for training. The size of the 
training dataset was also explored. As previously stated, a model that can be trained effectively with less data has a competitive 
advantage. The results of several experiments showed that on a 5-min time step model, 14 days of recorded data are sufficient to 
achieve acceptable performance. Utmost care has been taken to ensure that new data is consistently included in the training dataset 
while the oldest samples are left for validation. This approach allows for a more accurate and up-to-date model. Additionally, it is 
important to note that the size of the dataset may vary depending on the complexity of the problem and the type of model used. Thus, it 
is important to experiment and evaluate the performance of the model with different dataset sizes to find the optimal size for the 
specific problem. 

2.5.3. Weights as a learnable term 
Proper weight initialization is a crucial step in developing a neural network model. The optimization approach used in neural 

network modeling, stochastic gradient descent, gradually alters network weights to minimize a loss function, ultimately resulting in a 
set of weights that can generate accurate predictions. However, this optimization process needs a starting point, which is where weight 
initialization comes into play. Weight initialization is the process of assigning initial values to the weights of a neural network, often 
small random values. This serves as the starting point for the optimization process [59]. Choosing the appropriate weight initialization 
strategy is essential for the network to converge and reach a global minimum of the loss function. For example, it has been shown that 
using appropriate weight initialization techniques such as Xavier initialization [60] or He initialization [61] can lead to faster 
convergence and better performance of the model. The correct weight initialization can help to overcome local optima and help the 
model to converge faster. Therefore, weight initialization is a crucial step in developing a neural network model, and it should be 
carefully considered in the model design process. 

In this study, the proposed model is designed in a way to be retrained every 24 h and make predictions hourly over a horizon of 24 
h. This process will be repeated daily (e.g., at midnight). Each training starts with an initial set of weights. The weights can be set at 
random or with the previous best gains. Starting from the steps of the previous weight rather than starting at random can improve 
convergence speed. It might be interesting in the future to combine the two options, allowing for “blur” only a portion of your previous 
gains. In addition to that, the applied weights for the next 24 h after the retraining are a convex combination of the most recent optimal 
gains and the previous optimal gains. Equation (8) shows precisely how the weights are manipulated. The factor δ is a floating number 
in the [0,1] range. One entirely discards the previous weights, whereas zero dismisses the new ones (rendering the model totally non- 
adaptive). Fig. 8 represents the structure of weight initialization and weight selection in the proposed ANN model. Also, the role of a 
switch is formulated in equation (9). 

Wi = (1 − δ)Wi− 1 + δWi, δ ∈ [0, 1] (8)  

Fig. 7. Graphical representation of a functional block (FB) implemented by the neural network.  
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{
δ = 1, s = 0

δ ∈ [0, 1], s = 1
(9)  

2.5.4. Resetting state 
In this study, the proposed ANN model was designed to predict thermal load and indoor temperature for the following 24 h. 

Typically, models can predict the first few hours with high accuracy, but their accuracy decreases over time, leading to diverging 
predictions. However, since in real-world scenarios, continuous access to sensor data is available, the proposed model is able to update 
its predictions more frequently, every hour. This is achieved by updating the internal state of the model with the most recent infor-
mation and then running a 24-h simulation. It is important to note that the process of training the model and making predictions are 
distinct. The model is trained every day at midnight, using the most recent data available. After the training process is complete, the 
trained model is used to make predictions every hour for the next 24 h. 

2.6. Key performance indicators (KPIs) 

To evaluate the accuracy of the proposed model, several key performance indicators (KPIs) were used. One of the most widely used 
error metrics in the regression problem is the mean square error (MSE). MSE measures the average squared discrepancies between a 
dataset’s predicted and actual target values. Root Mean Square Error (RMSE) is an extension of the mean squared error [62], and it is a 
commonly used measure of the difference between values predicted by a model or an estimator and the true values. An important 
feature of RMSE is that the units of the RMSE are the same as the original units of the target value that is being predicted. Another 
commonly used metric is mean bias error (MBE). MBE is a measure of the long-term performance of a model, as it indicates the average 

Fig. 8. The structure of the proposed idea regarding weights in ANN.  
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difference between the predicted and actual values. A positive number indicates that the estimated values are typically overestimated 
and vice versa [63]. To make the MBE findings comparable, the normalized mean bias error (NMBE) index is used, which normalizes 
the MBE index by dividing it by the mean of the measured values [64]. This allows for a more accurate comparison of the performance 
of the model across different datasets and scenarios. 

MSE =

∑N

i=1
(ŷi − yi)

2

N
(10)  

RMSE =
̅̅̅̅̅̅̅̅̅̅
MSE

√
(11)  

MBE =

∑N

i=1
(ŷi − yi)

N
(12)  

NMBE =

∑N

i=1

(

ŷi − yi

)

(N − 1)y
× 100 (13) 

In equations (10)–(13), N is the number of samples, ŷi is the predicted value, yi is the actual value and y is the average of actual 
values. 

3. Result and discussion 

This section presents the simulation results that evaluate the effectiveness of the suggested model for thermal load prediction. The 
proposed ANN model was implemented in Python on a laptop with an i7 2.3 GHz CPU and 32 GB memory. It is a versatile model 
capable of predicting the thermal load of a building zone, such as an apartment, throughout the year. Regardless of the building’s size 
and location, the model requires two weeks of performance data to be collected. Since it is a black-box model, it does not have pre- 
existing data in its repository, highlighting the importance of data collection as a crucial step. Once the data is gathered, the model 
can generate predictions for control purposes. It produces hourly predictions and self-trains every 24 h, replacing old data with newly 
recorded data. The training and validation period for the model spans two weeks. In the prediction model, for each time step, the model 
examines the data from the past 6 h and generates a prediction. 

Fig. 9 provides a detailed illustration of the model performance during the winter season. In the beginning, the model is trained on 
data spanning from the 17th to the 30th of November. It was deployed for prediction for the next seven days. During the winter, the 
thermostat hysteresis is set between 20.75 and 21.25 ◦C. The figure is divided into three sections. The initial section gives a summary of 
the ambient temperature (Ta) and the relative global horizontal irradiance (φs). In the following section, the temperature of the zone is 
presented, showcasing both the actual values and the model’s predicted values. The actual temperature is represented by a black line, 
while the model’s hourly predictions are distinguished using various colors. Lastly, the third section displays the thermal load of the 
living room, depicting both the ground truth and the predicted values in a similar format. 

Fig. 10(a) and (b) show the RMSE and MBE, which are used to assess the accuracy of the zone-temperature ANN model. Typically, 

Fig. 9. Living room’s temperature and thermal load prediction for the first week of December.  
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KPIs are calculated in the literature based on the prediction horizon, which means that if the prediction horizon is 24 h, all points of 
ground truth and forecast are considered, and the relative KPI is generated. As previously stated, models can generally accurately 
anticipate the first several hours. Nonetheless, their precision will deteriorate over time, and it is critical to know the accuracy at 
various intervals. To that purpose, computed KPI (CKPI) was established to calculate error hourly and over 3, 6, 12, and 24 h. Fig. 10(a) 
depicts the RMSE for temperature in different CKPIs where the mean of all errors is around 0.3 ◦C. As can be seen, when the CKPI is 
computed at a 24-h interval, the error range is narrow, but when the CKPI is computed at a 1-h interval, the error range widens. Fig. 10 
(b) shows the range of the temperature bias error. Like RMSE, the error distribution varies depending on the data aggregation; for a 24- 
h period, the error range is lower than for a shorter period. The mean of MBE for all CKPIs is 0.18 ◦C. To enhance the clarity of the data 
visualization, the authors of this paper removed outliers from all the box plots. This was done to provide a clearer view of the box and 
improve the overall visual representation of the data. 

Fig. 11(a) and (b) show the RMSE and MBE of the thermal load model. The average of RMSE and MBE is about 12 and -2.4 W/ m2, 
respectively. 

The NMBE of the thermal load is shown in Fig. 12. According to equation (11), we are dealing with y in the denominator and as it 
observed from Fig. 12 in some intervals y is zero. While the amount of CKPI is less than 6, y sometimes will be zero and, in that, the 
amount of error will be infinite. To address this problem, the mean period (MP) is introduced, which considers the average of the next 
6, 12, and 24 h. The range of the NMBE will be reduced concurrent with increasing CKPI. 

Fig. 13 represents the results of the model during summer. The model has been trained by data from the 17th of June to the 30th of 
June and started predicting the 1st to the 7th of July. During the summer, the thermostat hysteresis is set between 24. 5 and 25. 5 ◦C. 
The cooling load is considered here as a negative value. 

Fig. 14(a) shows the RMSE of the temperature model in summer. In all CKPIs, the average and median of RMSE is less than 1 ◦C. 
Also, as presented in Fig. 14(b), the average MBE in summer is around 0.2 ◦C. 

Fig. 10. RMSE (a) and MBE (b) for temperature in the winter.  
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In Fig. 15(a) and (b), the average of RMSE and MBE for thermal load is about 10 and -0.6 W/ m2, respectively. Based on Fig. 12, 
same as winter, the average of ground truth in some intervals is zero, which can result in a high amount of NMBE. Especially once MP is 
6, since the value of y is close to zero, as it observed from Fig. 16 in some period of time (between 5th to 7th of July), the range of error 
increased substantially. 

In the proposed model, training load-ANN and zone temperature models are trained sequentially, with the training load model 
being trained first and then the zone temperature model being trained on the output of the load model. In this regard, the total training 
time for both models is presented in Table 1. The total training time for both models is between 1.3 and 2.9 min, which is reasonable for 
a model that provides hourly predictions for an entire year. The training time is shorter during the summer season, which can be 
attributed to the lower thermal load and the relatively stable weather conditions during this period. 

Also, As the results are presented for a one-week period, and one prediction is made every hour, it is not feasible to present all the 
simulation times. However, the model’s minimum and maximum simulation times were 4.1 and 8.6 s, respectively. 

To optimize training time, one can enhance the computational power of the training system or employ parallel processing methods. 
The duration required to train a machine learning model depends significantly on the specifications of the computer system utilized. In 
general, a more robust system yields faster training times. For instance, a high-end graphics processing unit (GPU) can significantly 
expedite the training process by leveraging parallel processing techniques. Similarly, a system equipped with ample random access 
memory (RAM) can reduce data loading time during training. Consequently, the reported training times were influenced by the 
specific system specifications employed, and using a different system with distinct specifications may lead to varying training times. 

Fig. 11. RMSE (a) and MSE (b) of thermal load in the winter.  
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3.1. Comparison of typical and proposed weight initialization 

The Keras library offers various pre-existing methods for weight initialization. However, based on our observations, these 
commonly used methods in the Keras library did not consistently yield optimal results for our specific use case. Consequently, we 
developed a novel initialization method that demonstrated improved outcomes and faster convergence compared to the traditional 
approaches. Notably, our method enables the partial retention of previous gains, which is advantageous when the physical system 
undergoes structural changes. Furthermore, our proposed method includes a switch that empowers users to either discard previous 
weights entirely or render the model non-adaptive, enhancing flexibility in model development. For the purpose of comparison, the 
results presented in Fig. 17 were obtained using Glorot uniform (GU) initialization for winter. It is evident from the results that GU 
initialization has led to chaotic predictions and produced unsatisfactory results. This chaos is particularly noticeable in the temper-
ature section, which is concerning as temperature prediction is used as an input for load modeling and can significantly affect thermal 
load prediction. 

To compare the performance of the proposed weight initialization method with the GU initialization, we considered only RMSE as a 
quantitative measure. Fig. 18(a) shows the RMSE of thermal load prediction in winter with GU initialization, which is the same as the 
graph in Fig. 10(a) for the proposed initialization method. Interestingly, both the mean and range of RMSE values in Fig. 18(a) are 

Fig. 12. NMBE for thermal load.  

Fig. 13. Living room’s temperature and thermal load prediction for the first week of July.  
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higher than those in Fig. 10(a). Moreover, Fig. 18(b) shows the RMSE of living room temperature prediction with GU initialization, 
while Fig. 10(a) presents the RMSE for the proposed initialization method. Again, we observe that the mean RMSE is higher, and the 
error range has increased when using GU initialization. 

Our findings indicate that utilizing the GU initialization method leads to both an increased average error and a broader range of 
errors when compared to our proposed initialization method. The good performance of our proposed initialization method and the 
satisfactory outcomes it produced for the control purpose of the model suggest that it can be used effectively in practical applications. 

Table .2 provides a comparison of the training times for the two initialization methods over a period of seven days. The minimum 
and maximum times for the proposed method are 1.3 and 2.9 min, respectively, while for the GU initialization method, they are 1 and 
7 min, respectively. The proposed method generally shows more consistent and faster training times than the GU initialization method. 

While other initialization methods may potentially yield better results with more investigation and experimentation, our current 
focus was on developing an effective initialization method for this specific project and not exhaustively comparing all possible 
methods. Thus, our proposed method is well-suited for the purpose of this paper and our project, and we believe it can be a valuable 
contribution to the field. 

3.2. Discussion 

The major findings of this work highlight several advantages of our proposed ANN model in the context of previous studies and 
existing methods. These advantages can be summarized as follows:  

1. Versatility and Adaptability: Unlike traditional approaches that rely on specific assumptions about building characteristics or 
location, our model adopts a black-box data-driven approach, making it highly versatile and adaptable to different building types 

Fig. 14. RMSE (a) and MBE (b) for temperature in the summer.  
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Fig. 15. RMSE (a) and MBE (b) for thermal load in the summer.  

Fig. 16. NMBE for thermal load.  
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and sizes. It learns underlying patterns and relationships by collecting data from the building’s performance over time, without 
explicitly requiring detailed information about the specific characteristics of each building.  

2. Practicality and Cost-effectiveness: Our model utilizes simple and commonly available inputs, such as outdoor temperature, global 
horizontal irradiation, zone temperature, internal gain, day of the week, and time. By focusing on easily accessible inputs, it can be 
applied to a wide range of buildings without requiring complex or specialized data collection. This practical and cost-effective 
solution sets it apart from other methods that may require extensive building-specific information. 

In comparing our approach to previous studies, our proposed model offers notable advantages. It is designed to be adaptive and 
continually trained with newly available data, enabling it to improve its forecasts over time and accommodate changes in building 
characteristics and behavior. Furthermore, our model achieves accurate predictions with minimal data by employing a simple MLP 
architecture with advanced techniques like specific internal state reset and specialized weight initialization functions. This simplicity 
not only allows for efficient implementation across various building types but also showcases the effectiveness and potential of our 
method in achieving superior outcomes. 

While acknowledging that each building may possess unique characteristics, our approach provides a practical and cost-effective 
solution for accurate thermal load predictions. The model’s adaptability, simplicity, and the use of common inputs make it suitable for 
general applications across a wide range of building types and characteristics. 

However, it is important to address potential limitations and conflicting results. Further investigation is warranted to assess the 
model’s performance in specific scenarios with unusual building characteristics or extreme climatic conditions. Additionally, future 
studies could explore potential refinements to enhance the model’s robustness and accuracy. 

In summary, our work advances the field by offering a versatile, practical, and cost-effective ANN model that surpasses previous 
approaches. It demonstrates the advantages of adaptability, simplicity, and accuracy while acknowledging the need for continued 
research to address potential limitations and explore further refinements. 

4. Conclusion 

In conclusion, the importance of accurate thermal load prediction in buildings for effective energy planning in HVAC control is 
emphasized. Thermal load prediction can be achieved through various methods, including data-driven black-box models, physics- 
based white-box models, and reduced-order gray-box models. In this study, a data-driven approach using an ANN was employed to 
forecast the thermal load of a residential building. The ANN model consists of two components: one for predicting thermal load and the 
other for predicting zone temperature. The novel model architecture is characterized by versatility, adaptability, and scalability, 
enabling its application to different building types and sizes. Additionally, the model continuously updates with new data and in-
corporates advanced techniques, such as dedicated internal states reset and specialized weight initialization, to enhance its 

Table 1 
Time of training for winter and summer [minutes].  

Days 1st day 2nd day 3rd day 4th day 5th day 6th day 7th day 

Winter 2.9 2.7 1.5 1.3 2.4 2.6 1.6 
Summer 2.7 1.4 2.1 1.4 1.3 1.8 1.8  

Fig. 17. Living room temperature and thermal load prediction for the first week of December. Weight initialization: Glorot uniform.  
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performance. The results of our case study, conducted with the TRNSYS simulation platform, demonstrate that the proposed ANN 
model achieves a high level of accuracy in forecasting both thermal load and indoor temperature. For zone temperature predictions, 
the RMSE is 0.3 ◦C with an MBE of 0.18 ◦C in the winter and an average RMSE of 0.5 ◦C with an MBE of 0.2 ◦C in the summer. 
Moreover, the average RMSE and MBE for thermal load predictions are 12 W/m2 and -2.4 W/m2 in the winter, and 10 W/m2 and -0.6 
W/m2 in the summer, respectively. The training time for the model ranges from 1.3 to 2.9 min, which is reasonable considering it 
produces hourly predictions for an entire year. The training time is shorter during the summer due to lower thermal loads and more 
stable weather conditions. Additionally, the simulation times for the model range from 4.1 to 8.6 s, as the results cover a one-week 
period with hourly predictions. Overall, the proposed data-driven ANN model can be readily applied in real-world scenarios for 
efficient energy planning and HVAC control in residential buildings. 
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