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Abstract. The aim of the article is to increase the accuracy of AT A conjugate directions and
biconjugate directions by applying the twice is enough method to them [14]. The twice is enough
algorithm and analysis are due to W. Kahan, cf. Parlett’s book [14], pp. 115-117. It was shown
that while two consecutive orthogonalization steps improved the accuracy of the computation,
further orthogonalization steps failed to provide additional benefit, establishing the principle of
”twice is enough”. In our previous works, we have introduced the ”twice is enough” type al-
gorithms for conjugate directions of positive definite symmetric matrices, cf. [1, 4, 6] and [3].
These results were also generalized for arbitrary symmetric matrices [2]. In the paper [3], we
generalized this idea to the computation of conjugate directions. Now, we show that it can be
generalized to any matrices; furthermore, we give the conjugate directions of the problem AT A
and the biconjugate directions of any square matrix A. With the help of intensive testing [7], we
propose specialized algorithms for these problems. We compared our algorithms to four well-
known biconjugate methods that we implemented to obtain the biconjugated directions as well
[9]. Using the refined conjugate directions, they can be used to further refine the solution of
systems of linear equations iteratively, and to solve Ax = B where B contains all possible right-
hand vectors b. We underline that in the computations of the AT A conjugate directions and the
biconjugate directions we do not need to compute the AT A matrix directly. Another goal of the
article, in addition to the applicability of the twice is enough idea to conjugate and biconjugate
directions, is to determine the most accurate methods for producing conjugate and biconjugate
directions. For this we will need the vpa option of MATLAB.
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1. INTRODUCTION

In this paper, for the sake of simplicity and brevity, suppose that A is an n by n
square and nonsingular matrix, that is rank(A) = n. We will see that without these
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conditions all our statements remain true. That is consider the problem

Ax = b

where A ∈ Rn×n is an arbitrary matrix, b ∈ Rn and x ∈ Rn. In this article, conjugate
directions for AT A are defined as follows.

Definition 1. Let A be arbitrary nonsingular matrix. Then, we say that the vectors
p1, . . . , pn are AT A conjugates, if

pT
i AT Ap j =

{
0, if i ̸= j
non zero, otherwise.

Furthermore, we define the biconjugate directions as follows.

Definition 2. Let A be arbitrary nonsingular matrix. Then, we say that the vectors
p1, . . . , pn and t1, . . . , tn are A biconjugate if

tT
i Ap j =

{
0, if i ̸= j
non zero, otherwise.

Note that if we have the P = [p1, . . . , pn] conjugate directions to AT A then we can
compute the T = [t1, . . . , tn] matrix from it as

ti = Api, i = 1, . . . ,n

and therefore we also have the biconjugate directions of A.

Remark 1. We already noted in our earlier papers that to determine the most accur-
ate algorithms, we need to have the exact conjugate directions. In double-precision
arithmetic, we need the knowledge of exact conjugate directions in order to determine
the best methods for calculating conjugate directions. To do this, we use MATLAB’s
VPA option for 50 digits, because we believe that its first 16 digits are accurate. We
did not choose more than 50 digits because this calculation is very time-consuming
and our personal computer is not very efficient. Matrix P contains the computed
pi, i = 1, . . . ,n vectors in columns and similarly S contains the same directions com-
puted by vpa for 50 decimals. Then the differences B are

B = ST (AT A)S−vpa(PT )(AT A)vpa(P)

yB = max
i, j

(abs(double(B)))

In the two formulas, we are talking about determining the difference matrix with
the help of the matrix containing the precise S conjugate directions calculated with
vpa and the matrices calculated with the conjugate directions computed in double
precision. If the difference were zero in double precision, then we have the best
method. This difference, i.e. deviation, is calculated using the formula in the next
line. The log10 value of the max deviation gives the number of exact digits, see
below.
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Let us now move on to checking the accuracy of the biconjugate vectors ti. Simil-
arly, we have to calculate the accuracy of the biconjugate vectors ti, i.e

T T P = AP (1.1)

T T = vpa(AS)

BB = T T T AS−vpa(T T PT )Avpa(P)

yBB = max
i, j

(abs(double(BB)))

The minimum number of accurate digits of the conjugate vectors pi and ti, for
i = 1, . . . ,n, are computed by

ym =− log10(yB)

tm =− log10(yBB)

Remark 2. Finally, we note that in the testing we do not apply any precondition
method because we want to find the most accurate algorithms even for difficult prob-
lems and without manipulating them in any way before usage.

2. THE ABS CLASS AND THE ”TWICE IS ENOUGH” ALGORITHM

In the next subsection 2.1 we present the ABS class, then the ABS Conjugate
Direction Parlett- Kahan type (ABS CD PK) in subsection 2.2.ű

2.1. Description of the ABS class with the ABS CD PK

We present the general ABS class where the matrix A can even be rectangular. Let
us consider the following scaled system

V T Ax =V T b

where A ∈ Rn×n is an arbitrary matrix, V ∈ Rn×n is an arbitrary non-singular matrix,
b ∈ Rn and x ∈ Rn.

The class of the scaled ABS algorithm [5] is as follows.
ABS class with ABS CD PK

Step 1. Set x1 ∈ Rn, H1 = I ∈ Rn×n where I is the unit matrix, i = 1, κ = 1.25 and
i f lag = 0.

Step 2. Let vi ∈ Rn be arbitrary, except that v1, . . . ,vi be linearly independent. Com-
pute the residual error vector ri = Axi − b. If ri = 0, stop and xi solves the
system. Otherwise,compute the scalar τi = vT

i ri and the vector si = HiAT vi.
Step 3. If si ̸= 0, go to Step 4; if si = 0 and τi = 0, set xi+1 = xi, Hi+1 =Hi, i f lag=

i f lag+1, and if i < n, go to Step 6; otherwise stop; if si = 0 and τi ̸= 0, set
i f lag =−i and stop.
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Step 4. Compute the search direction pi by

pi = HT
i zi

where zi ∈ Rn is arbitrary saving for zT
i HiAT vi ̸= 0.

pi = ABS CD PK(Hi,A,κ, pi,zi).

Step 5. Update the approximation of the solution by

xi+1 = xi −αi pi

where the step size αi is given by

αi =
τi

vT
i Api

If i = n, stop and xn+1 is the solution of the equations.
Step 6. Update the matrix Hi by

Hi+1 = Hi −
HiAT viwT

i Hi

wT
i HiAT vi

(2.1)

where wi is arbitrary, but the denominator must be non-zero.
Step 7. Set i = i+1 and go to Step 2.

Some important theorems are following, cf. [5] page 95pp.

Theorem 1. The residual vector ri+1 = Axi+1 − b is orthogonal to the first i
columns of V i.e. V iT ri+1 = 0

Theorem 2. For 1 ≤ i ≤ n the vectors AT v1, ...,AT vi are non zero, linearly inde-
pendent and a basis of the null space of Hi+1. The vectors w1, ...wi are non-zero,
linearly independent, and a basis of the null space of Hi+1.

The ABS CD PK() function returns the new pi vector in case projection is re-
quired, see below in Section 2.2. The properties of this algorithm can be found in
[5]. Hereinafter, we use the index i only when needed. Before we turn to our ”twice
is enough” type reprojection algorithm for the general matrix, we remark that in an
earlier papers we developed it for positive definite symmetric matrices (see [1] and
[2]), for symmetric matrices in [8] as well as to the computation of conjugate dir-
ections in [3]. In the paper [8], we presented an intensive testing for symmetric but
singular, indefinite and singular plus indefinite test matrices. In that work the twice is
enough type algorithm ABS CD PK was defined, like in the original twice is enough
algorithm [14], to control also the linear dependency. Since the symmetry of AT A is
always guaranteed and it is not necessary to care about the symmetry of A, like in
the Gaussian problem. In this paper we test some non-symmetric test problems from
MATLAB R2021b Gallery.
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2.2. Twice is enough type reprojection in ABS class

The twice is enough algorithm and analysis are due to W. Kahan, see pages 115-
117 of Parlett’s book [14]. In our previous works, we have introduced the ”twice
is enough” type algorithms for conjugate directions of positive definite symmetric
matrices, cf. [1, 3, 4, 6]. These results were also generalized for arbitrary symmet-
ric matrices in [2]. In the paper [3], we generalized this idea to the computation of
conjugate directions. Now, we show that it can be generalized to any matrices; fur-
thermore, we give the conjugate directions of the problem AT A and the biconjugate
directions of any square matrix A.

We first present the Parlett-Kahan algorithm [14]:
“Suppose that a simple subprogram orthog is available which, given
y ̸= o and z, computes an approximation x′ to p ≡ z− y(y · z/||y||2).
Let the error e′(≡ x′ − p) satisfy ||e′|| ≤ ε||z|| for some tiny posit-
ive ε independent of y and z. Let κ any fixed value in the range
[1/(0.83− ε),0.83/ε].

Algorithm. First call orthog(y,z,x′) to get x′.
Case 1. If ||x′|| ≥ ||z||/κ accept x = x′ and e = e′.

Otherwise call orthog(y,x′,x′′) to get x′′ with error e′′ ≡ x′′ −
(x′− yy · x′/||y||2) satisfying ||e′′|| ≤ ε||x′|| and proceed to Case
2.

Case 2. If ||x′′|| ≥ ||x′||/κ accept x = x′′, e = x′′− p.
Case 3. If ||x′′||< ||x′||/κ accept x = o, e =−p.”

together with its Lemma:
Lemma. The vector x computed by the algorithm ensure that ||e|| ≤ (1+

1/κ)ε||z|| and ||y · x|| ≤ κε||y||||x||.”
Our ABS CD PK algorithm is as follows. Using the notation of the original

Parlett–Kahan algorithm in [14], let x = HT z and κ is fixed in the range
[1/(0.83eps),0.83/eps]. Furthermore, let e′ represents the error vector between the
computed x′ and its accurate value, see [1] and [4, pp. 41-51].

Algorithm 1. ABS Conjugate Direction of Parlett–Kahan-type for arbitrary
matrices (p = ABS CD PK(H,A,κ, p,z).

Compute Let x = p (because we use the Parlett-Kahan notations) and x
′
= Ax.

Case 1. If x′T AT Ax
′
> zT AT Az/κ, accept x = x′ and e = e′, otherwise compute x′′ =

HT x′ to get x′′ with error e′′ and go to Case 2.
Case 2. If x′′T AT Ax′′ ≥ x′T AT Ax′′/κ accept x = x′′ and e = e′′.
Case 3. Otherwise, accept x = 0.

Remark 3. Here, the indefiniteness is also possible. Just as in the proof of the
algorithm, the positivity of these values was supposed, therefore no any new proof is
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needed, because here the scalar products are ≥ 0. Furthermore, we note that in the
ABS algorithms and in this ABS CD PK, the singularity is well-treated.

Remark 4. We underline again that this procedure works for any matrices.

The theorem for the ”twice is enough” type reprojections is as follows

Theorem 3. The vector x computed by the ABS CD PK algorithm ensures that
for the error vector e

(eT AT Ae)≤ eps(zT AT Az)+O(eps2)

and
(pT

0 AT Ax)≤ κeps(pT
0 AT Ap0)(xT AT Ax)+O(eps2).

where p0 is any other AT A conjugate direction.

For the proof, see [1],[4, pp. 41-51]. In this work we run our experiments with
κ = 100 and κ = 1000 without any relevant improvement, then we accept κ = 1.25
as suggested in Parlett’s book [14]. We have to note that the optimal value of κ is
unknown and we believe that it is problem dependent.

3. THE CONSIDERED ABS SUBCLASS

In this paper, we consider the subclass S3 of ABS. This is because we can easily
derive the conjugate directions of the matrix AT A or the biconjugate directions of A
from this subclass.

3.1. The S3 subclass

In the S3 subclass, vector vi is defined as

vi = Api

Theorem 4. Let A be square nonsingular. Then the scaled ABS class with vi = Api
generates AT A-conjugate search vectors and xi+1 minimizes, over the linear variety
x1 + Span(p1, . . . , pi) the quadratic function F(x) = (x− x+)AT A(x− x+) where x+

is the solution of the linear system.

For the proof see Theorem 8.11 in [5]. Again, we note that all our algorithms treat
the singularity, therefore this condition of the theorem is just a formality. Also note
that if the projection vector pi is zero in a certain step (less than eps, where constant
eps in MATLAB is the distance from 1.0 to the next larger double precision number)
then all further pi vectors are zeros, because in the matrix update Hi the rank one term
becomes zero.

In [7] we tested 61 methods in S3, while in this article we present only three best
special cases according to our tests. This means that the number of exact digits is the
highest for the conjugate direction with the worst accuracy for the best algorithms.

1) zi = ei, wi = AT vi (S3e) The projection matrix Hi is symmetric.
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2) zi = ei, wi = ei (S3ee) The projection matrix Hi is not symmetric.
3) zi = ei, wi = pi (S3ep) The projection matrix Hi is not symmetric.

3.2. Classical algorithms

As we did not find algorithms in MATLAb R2021b that produce biconjugate dir-
ections for a matrix A, nor did we find them commercially, we implemented four
methods to calculate the solution of linear systems of equations with biconjugate dir-
ections: BiCG in Broyden et al. [9,10,13], p. 52; BiCGL in Broyden et al. [9,10,13],
p. 53; BiCR in Broyden et al. [9, 12], p. 60 and BiCRL in Broyden et al. [9, 12], p.
61. Algorithm descriptions can also be found in [7] where all the source codes writ-
ten in MATLAB can also be found in the Appendix. Note that the bicgstab algorithm
and its variants do not give biconjugate directions, see for example [15] and [17].

4. TEST PROBLEMS

Before we list the problems that are being tested, we have to note two things.
For all problems, we computed the quantity

q = cond∞(AT A)× eps (4.1)
where cond is the condition number, ∞ means infinite norm and eps is MATLAB

eps. If the value of q reaches 1 for a matrix A, then the algorithm that solves the
system of linear equations cannot be criticized if it does not provide an acceptable
solution. See Wilkinson [16] or Golub and Van Loan [11], Therefore, in the sequel
we compute q for different dimensions of A and the dimension where q reaches 1
defines the upper bound of the feasible interval in which we test our methods.

In the followings, the vector x1 = 0 is chosen for each test problem and for each
method. The right side of the system of equations b is determined by generating a
solution with the built-in rand() function, which is valid for all methods, including
the known ones. We did this for a fair comparison.

4.1. Chosen test problems from the MATLAB Gallery

In this subsection we report each problem followed by the interval [a,b], where a is
the smallest tested dimension and b is the largest one. In the case this value becomes
larger than 3000, then we give the test interval [100,110] because we observed that q
is practically the same for all of these dimensions and the memory and computation
capabilities of the computer we used is limited. Detailed description about the test
problems can be found in MATLAB Gallery.

We have chosen the following non-symmetric matrices, most of them from the
gallery of MATLAB R2021b: binomial [6,27], chebspec [4,10], chebvand [5,10],
chow [5,10], circul [100,110], clement [5,50], cycol [5,10], dramadah [5,28], forsythe
[100,110], frank [5,10], grcar [100,110], invhess [100,110], invol [2,5], jordbloc
[100,110], kahan [5,41], krylov [5,12], leslie [100,110], lesp [100,110], lotkin [3,6],
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parter [100,110], qmult [100,110], rand [100,110], randcolu [100,110], randhess
[100,110], randjorth [5,10], rando [100,110], randsvd [5,10], riemann [100,110],
toeppen [100,110], triw [5,22]. Two more test problems are not in the Gallery of
MATLAB: gfpp [100,110], and makejcf [100,107].

5. TEST RESULTS

In this section we report our test results of the above described problems for some
special case only, because of the limited scope of this article, detailed tables can
be found in [7], p. 13. In that paper, we present the accuracy of the projection
vectors for P and T matrices for all the three cases: without any reprojection, with
the ABS CD PK method and with reprojections in all steps. The linear dependency
is threshold by 2eps.

First, we present the results of the small-dimension problems, then those where
the dimension is between 100-110. We notice again that κ = 1.25, after a short
testing with others κ, can be accepted as well as proposed by Parlett and Kahan. The
experiments were performed on a personal computer with Intel(R) Core(TM) i7 2.67
GHz CPU with integrated graphics, 6 GB RAM 64-bit Operating System running
Microsoft Windows 10 Professional and MATLAB version R2021b.

5.1. Test results of the small dimensions problems

Here, we present test results of 4 classical methods defined above that is the so
called BiCG, BiCGL, BiCR and the BiCRL methods. The accuracy of the biconjug-
ate directions is computed by (1.1). The BiCGL method seems to be the best among
them, but also this method gives worse results (see Table 1 below) than many our
methods. Therefore we did not make any experiment with ”high” dimension.

In Tables 1 instead of zero correct digits we often find a negative number of accur-
ate digits. Let see an example to better understand the reason that the worst number
of accurate digits can be negative in the diagonal.

Suppose that the worst number of accurate digits is in the diagonal. Furthermore,
suppose that all the elements in the diagonal are accurate for all digits except one
element. Let the accurate diagonal element in this case 555555555555555 be of 15
digits and the computed one differs from it in the last digits, say with a value of
1.5. that is 555555555555556.5. That is the deviation is 1.5. In this case the minus
logarithm in base 10 is − log10(1.5) = −0.1761. On the other hand, the number of
accurate digits is 14, which is more than acceptable. Therefore, it is obvious that
if the positions of the negative worst-case values are in the diagonals, we need to
examine the number of exact digits. In our cases, with the negative worst accuracy in
the diagonal, the number of the accurate digits are not good.

In Table 1 below, only the diagonal negative numbers were left and the rest was
replaced by zero. We can see that all 4 classical methods usually give a negative
or small positive number for the number of exact digits while we show the same
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TABLE 1. Worst number of accurate digits of the projection vector
and the number of reprojections in maximum dimensions by ABS CD PK

Methods binomial chebspec chebvand chow clement cycol dramadah frank
dim = 6-27 dim = 4-10 dim = 5-10 dim = 5-10 dim = 5-50 dim = 5-10 dim = 5-28 dim = 5-10

BiCG 0.00 0.00 0.00 -1.06 9.36 11.04 0.00 1.77
BiCGL -inf 0.15 6.60 9.18 -115.33 crash d. -8.77 0.50
BiCR 0.00 12.59 4.50 5.96 1.41 crash d. 1.05 4.22
BiCRL -inf 0.00 9.07 4.45 -124.36 crash d. -10.52 0.00
S3e 3.01 (22) 14.07 (6) 14.07 (9) 16.00 (8) 12.46 (32) 16.00 (4) 14.64 (26) 14.59 (9)
S3ee 7.07 (25) 14.13 (9) 13.49 (9) 16.00 (8) 0.00 (28) 16.00 (7) 15.28 (25) 14.87 (9)
S3ep 7.11 (25) 14.03 (8) 13.45 (9) 16.00 (8) 0.00 (28) 16.00 (7) 15.24 (25) 14.81.(9)

Methods invol kahan krylov lotkin randjorth randsvd triw
dim = 2-5 dim = 5-41 dim = 5-12 dim = 3-6 dim = 2-10 dim = 2-10 dim = 5-22

BiCG 9.28 0.00 0.00 3.03 0.00 -0.74 5.64
BiCGL 7.76 3.56 -70.05 13.01 -41.99 16.00 6.26
BiCR 0.00 0.00 0.00 7.08 0.00 1.31 0.01
BiCRL 0.00 0.56 -127.39 13.05 -49.68 16.00 0.00
S3e 12.28 (4) 15.34 (34) 11.37 (9) 14.52 (5) 5.21 (8) 10.66 (9) 15.03 (19)
S3ee 12.03 (4) 15.18 (37) 12.13 (10) 14.07 (5) 5.30 (7) 11.66 (9) 16.00 (21)
S3ep 11.75 (4) 15.21 (37) 12.71 (1) 14.68 (5) 5.64 (8) 9.65 (9) 16.00 (21)

worst number of accurate digits to the projection vectors P using the ABS CD PK
algorithm. In parentheses, we give the number of reprojections for the maximum
dimensions.

In Table 1 we present the number of worst deviation in two decimal digit precision.
The values are the minimum value in the worst number of accurate digits considering
all dimensions of the projection vectors.

Note that in case of problem clement at least the solutions are not very bad for
S3ee and S3ep, 1.377e−008 and 1.174e−008 respectively in maximum dimensions.

Moreover, the methods BiCG, BiCR and BiCRL in case cycol crash down by
divison by zero in the MATLAB function mrdivide, which did not happen in MAT-
LAB R2007b with the same code, see our working paper [7].

Furthermore, in problem krylov not only the p vectors are very bad, cf. meth-
ods BiCGL, BICRL, but even the solutions of the linear systems are not good. In
the method BiCG of case randsvd the maximum norm of the worst residuals equals
0.06452. The randsvd is the only problem where the BiCGL and BiCRL are defin-
itely better than our chosen methods.

Note that in the method BiCGL of case randjorth also the maximum norm of the
residuals are bad, while in the method BiCRL it is 0.0007351.

We conclude from Table 1 that the three ABS methods are definitely much better
than the classical ones. Therefore, we skipped to test all the classical methods for
large-scale problems.



14 J. ABAFFY AND V. MORIGGIA

5.2. Test results of problems for dimensions 100-110

The ”big” dimensional nonsymmetric problems are: circul, forsythe, grcar, in-
vhess, jordbloc, leslie, lesp, parter, qmult, rand, rndcolu, randhess, rando, riemann,
gfpp, makejcf and toeppd.

The number of reprojections in maximal dimension in S3e, S3ee, S3ep are 109,
109, 109 respectively for case circul, which means reprojections in all steps, and 0,
0, 0 for case forsythe, which means no reprojection at all, in fact all the digits are
correct since the problem is too easy. For details see [7].

The number of reprojections in maximal dimension in S3e, S3ee, S3ep are 108,
106, 106 respectively for case gfpp and 107, 0, 0 for grcar.
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The number of reprojections in maximal dimension in S3e, S3ee, S3ep are 104,
109, 109 respectively for case invhess and 109, 109, 109 for case jordbloc.

The number of reprojections in maximal dimension in S3e, S3ee, S3ep are 109,
107, 107 respectively for case leslie and 109, 0, 0 for case lesp.
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The number of reprojections in maximal dimension in S3e, S3ee, S3ep are 5, 0, 0
respectively for case parter and 0, 0, 0 for case qmult.

The number of reprojections in maximal dimension in S3e, S3ee, S3ep are 109,
109, 109 respectively for case rand and 79, 57, 55 for case randcolu.

The number of reprojections in maximal dimension in S3e, S3ee, S3ep are 0, 0, 0
respectively for case randhess and 109, 108, 108 for case rando.
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The number of reprojections in maximal dimension in S3e, S3ee, S3ep are, re-
spectively, 66, 14, 14 for case riemann and 93, 78, 78 for case toeppd,

For case makejcf the number of reprojections in maximal dimension in S3e, S3ee,
S3ep are 105, 106, 106, respectively.

Figure named “circul S3ep with ABSCDPK” shows that the number of accurate
digits in worst t vector can be more than 3 digits less than the pi vectors, i = 1, . . . ,n.
When the accuracy of the t conjugate directions are important, we suggest to use our
algorithms for the matrix AT . In fact, using S3e, S3ee, S3ep the pi vectors are more
accurate and are also the ti vectors of the original problem, i = 1, . . . ,n. Note further
that these ti vectors are not used in the computations of the solutions of the linear
system of equations.

As it can be seen, some figures show strange drop in the curves. We explained it
describing a case in our working paper [7].
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5.3. Conclusion

In this paper we tested three ABS algorthms (S3e, S3ee and S3ep) using 32 test-
problems to decide which is the best using the twice is enough theorem for bicon-
jugate directions. These methods were compared by 4 well-known methods (BiCG,
BiCGL, BiCR and BiCRL). Based on these test problems, we found that the best
two methods are S3ee and S3ep to compute the pi, for i = 1, . . . ,n, conjugate and
biconjugate directions accurately.
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