

RIGA TECHNICAL UNIVERSITY

XVII International Scientific Conference of Environmental and Climate Technologies

BOOK OF ABSTRACTS

15–17 May 2024 | Riga, Latvia

CONECT 2024 XVII International Scientific Conference of Environmental and Climate Technologies

BOOK OF ABSTRACTS

Riga Technical University Institute of Energy Systems and Environment Adress: 12-k1 Āzenes iela, Riga, LV-1048, Latvia Phone: +371 670 899 23 E-mail address: conect@rtu.lv, ect@rtu.lv Web page: www.conect.rtu.lv

Images: Anna Marta Babre Design: Paula Lore Main managing editor: Dace Lauka Editor: Darja Slotina Organizer: Inguna Bremane More information: www.conect.rtu.lv

© Riga Technical University, 2024 ISBN 978-9934-37-065-6 (pdf)

Scientific Committee

Dagnija Blumberga Riga Technical University, Latvia

Ivars Veidenbergs Riga Technical University, Latvia

Gatis Bazbauers Riga Technical University, Latvia

Andra Blumberga Riga Technical University, Latvia

Karlis Valters Riga Technical University, Latvia

Silvija Nora Kalnins Riga Technical University, Latvia

Timo Laukkanen Aalto University, Finland

Adam Cenian Polish Academy of Sciences Institute of Fluid-Flow Machinery, Poland

Stelios Rozakis Technical University of Crete, Greece

Raimondas Grubliauskas Vilnius Gediminas Technical University, Lithuania

Vytautas Martinaitis Vilnius Gediminas Technical University, Lithuania

Uli Jakob Hochschule für Technik Stuttgart, Germany Maris Klavins University of Latvia, Latvia

Sylvestre Njakou Djomo University of Hasselt, Belgium

Marika Rosa Riga Technical University, Latvia

Valeria Mezzanotte University of Milano-Bicocca, Italy

Francesco Romagnoli Riga Technical University, Latvia

Fosca Conti University of Padova, Italy

Zaneta Stasiskiene Kaunas University of Technology, Lithuania

Ingo Weidlich HafenCity Universität Hamburg, Germany

Anna Volkova Tallinn University of Technology, Estonia

Edmunds Teirumnieks Rezekne Academy of Technologies, Latvia

Julija Gusca Riga Technical University, Latvia

Pal Davidsen Riga Technical University, Latvia

TABLE OF CONTENTS

01

ENERGY EFFICIENCY, ENERGY SYSTEMS (DISTRICT HEATING)	15
ELECTRIC VEHICLE CHARGING INFRASTRUCTURE STUDY FOR APARTMENT BUILDINGS	16
ROBUST DESIGN OF 5 [™] GENERATION DISTRICT HEATING AND COOLING (5GDHC) SYSTEMS WITH SEASONAL THERMAL ENERGY STORAGE VIA GIS ASSESSMENT	17
MAIN PRINCIPLES AND SOLUTIONS FOR ACCELERATION OF ENERGY EFFICIENT RENOVATION IN LATVIA	18
NUMERICAL ANALYSIS OF HARMFUL ENVIRONMENTAL IMPACT OF ACCIDENTAL EXPLOSION AT A HYDROGEN FILLING STATION	19
COMPARING NUMERICAL AND ANALYTICAL METHODS FOR HEAT LOSS DETERMINATION OF DISTRICT HEATING SYSTEMS	20
FUTURE OF DISTRICT HEATING SYSTEMS – INVESTIGATION OF VARIOUS TECHNOLOGIES IN THE DANISH CONTEXT	21
DESIGN AND PERFORMANCE ASSESSMENT OF DISTRICT HEATING SYSTEMS IN THE LATVIAN REGION	22
USE OF AN ABSORPTION HEAT PUMP TO LIFT THE DISTRICT COOLING WASTE HEAT TEMPERATURE FOR THE DISTRICT HEATING SUPPLY IN TALLINN: A TECHNICAL AND ECONOMIC ANALYSIS	23
A SHOWCASE FOR RESILIENT AND SUSTAINABLE DISTRICT HEATING IN DENMARK	24
ATTRACTING CUSTOMERS TO DISTRICT HEAT SUPPLY: THE CASE OF RIGA	25
ASSESSMENT OF THE POTENTIAL FOR INCREASING THE ENERGY EFFICIENCY IN THE COOLING SECTOR	26
ARE BSR MUNICIPALITIES ON TRACK FOR ENERGY TRANSITION?	27
ENERGY EFFICIENCY IMPROVEMENT FOR MANUFACTURING COMPANIES IN LATVIA	28
INTEGRATING SUSTAINABLE ENERGY TECHNOLOGIES INTO DISTRICT COOLING SYSTEMS: A REVIEW OF MODELLING AND OPTIMISATION APPROACHES	29
MEASURING THE DECARBONISATION PROGRESS OF BUILDINGS BASED ON EUROPEAN OPEN BIG DATA	30
EXPLORING THE EFFICACY OF RANDOM LINEAR PARAMETER MODELS FOR FORECASTING HEATING DEMAND IN DISTRICT HEATING NETWORKS	31
TECHNO-ECONOMIC MODEL OF DISTRICT HEATING ENERGY HUB: THE CASE OF LATVIA	32
INTEGRATING LOW TEMPERATURE WASTE HEAT IN DISTRICT HEATING SYSTEMS. LEGAL FRAMEWORK AND PRICING	33
ENHANCING THE EVALUATION OF DISTRICT HEATING SYSTEM RESILIENCE: A LITERATURE REVIEW	34
ADAPTIVE BUILDING ENVELOPE STRUCTURES	35
AIR FLOW ANALYSIS FOR TRIPLY PERIODIC MINIMAL SURFACE HEAT EXCHANGERS	36
SAFE INSULATION FROM THE INSIDE AS A SOLUTION TO THE ENERGY AND CLIMATE CRISIS	37

GEOSPATIAL ANALYSIS OF ENERGY POVERTY AND ACCESSIBILITY TO DISTRICT HEATING SYSTEMS	38
THE CREATION OF A NEW MODEL OF A GAS-TURBINE ELECTRIC POWER-GENERATING DEVICE	39
VALIDATING ANSYS HEAT TRANSFER MODELS USING EXPERIMENTAL DATA ANALYSIS OF TWO PHASE CHANGE MATERIALS WITH DIFFERING MELTING TEMPERATURES	40
02	
ENERGY AND ENVIRONMENTAL MODELLING	41
LIFE CYCLE ASSESSMENT FRAMEWORK FOR DIAGNOSTIC IMAGING	42
SURGICAL PROCEDURES FOR A GREENER FUTURE: AN APPROACH TO ASSESS THE ENVIRONMENTAL IMPACT	43
CHALLENGES IN STANDARDIZING GLOBAL EMISSION FACTORS FOR PEATLANDS	44
VERTICAL HALOPONICS: SUSTAINABLE AND RESILIENT PRODUCTIONS USING BRACKISH WATER	46
PROPORTIONING OF OIL SHALE ASH FOR SUSTAINABLE 3D PRINTABLE MORTARS	47
ASSESSING ENVIRONMENTAL IMPACT: ORGANOSOLV EXTRACTION OF CELLULOSE PULP FROM WOOD WASTE	48
CLIMATE CONSCIOUS COMMUNITIES: NAVIGATING TRANSFORMATION THROUGH SIMULATION GAMES AND CREATIVE ENGAGEMENT	50
INCORPORATING LIFE CYCLE ASSESSMENT IN THE GREEN METRIC RANKING: A CONCEPTUAL APPROACH	51
WILL CHANGING HABITS ENSURE SUSTAINABLE MOBILITY: SYSTEM DYNAMICS MODELLING EXAMPLES FROM MUNICIPALITIES IN FOUR COUNTRIES	52
SUSTAINABLE FISH FEED: A COMPREHENSIVE LIFE CYCLE ANALYSIS	53
REPLACING TRADITIONAL MATERIALS WITH MORE SUSTAINABLE ONES: THE USE OF PHRAGMITES AUSTRALIS (CAV.) TRIN. EX STEUD. AS BIO-BUILDING MATERIAL	E 4
AND PELLET LIFE CYCLE ANALYSIS OF A BATTERY ENERGY STORAGE SYSTEM	54 56
CARBON FOOTPRINT OF A NEARLY ZERO ENERGY BUILDING IN ACCRA (GHANA): AN LCA-BASED MODEL	57
03	
BIOTECHNOLOGIES, BIORESOURCES	58
CREATION OF SINGLE CELL PROTEIN-PRODUCING MUTANTS OF PHAFFIA RHODOZYMA	59
04	
RENEWABLE ENERGY TECHNOLOGIES	60

A HYBRID EXPERIMENTAL MODELLING APPROACH TO SOLAR PHOTOVOLTAIC CELL TEMPERATURE PREDICTION

61

	~ ~
WATER-ENERGY-FOOD NEXUS FOR CLIMATE CHANGE MITIGATION IN JORDAN	62
WASTE-HEAT RENEWABLE GASIFIER DESIGN THROUGH TAGUCHI'S METHOD AND MANFIS	63
THE IMPACT OF RED III DIRECTIVE ON THE USE OF RENEWABLE FUELS IN TRANSPORT ON THE EXAMPLE OF ESTONIA	64
ANALYTIC HIERARCHY PROCESS ASSESSMENT FRAMEWORK FOR BLOCKCHAIN IN RENEWABLE ENERGY	65
UNVEILING FUTURE OFFSHORE WIND POTENTIAL: A MULTICRITERIA FRAMEWORK FOR SUSTAINABLE DEVELOPMENT	66
REMOTE SOLAR PARKS FOR BUILDING DECARBONISATION: A LITHUANIAN CASE STUDY ON VIRTUAL PROSUMERS	67
ENZYMATIC ACTIVITY OF FUNGI FOR HYDROLYSIS OF WHEAT BRAN AND CULTIVATION OF OLEAGINOUS YEASTS	68
ASSESSING THE FEASIBILITY OF CLIMATE POLICIES OF JAPAN, LATVIA AND LITHUANIA TO REACH THE TARGETS OF THE PARIS AGREEMENT	70
USE OF SOLAR ENERGY TO INCREASE THE SUSTAINABILITY OF SHARED MICROMOBILITY	71
A PRELIMINARY EVALUATION OF ALTERNATIVE RAW MATERIALS FOR PELLET PRODUCTION	72
NATURE-INSPIRED WIND FARM LAYOUT OPTIMIZATION: HARNESSING SMART PATTERNS FOR SUSTAINABLE ENERGY	74
EXPLORING THE POTENTIAL OF RENEWABLE ENERGY TO ENABLE GREEN HYDROGEN PRODUCTION FOR A SUSTAINABLE FUTURE	75
CURRENT TRENDS AND SOLUTIONS FOR PORT DECARBONISATION: A SYSTEMATIC LITERATURE REVIEW	76
CHALLENGES OF UNDULAR JUMP MODELLING	77
ELUCIDATING STAKEHOLDER PRIORITIZATION FOR SUSTAINABLE OFF-GRID RENEWABLE ELECTRIFICATION USING THE FUZZY AHP-GPESTLE FRAMEWORK: A COMPREHENSIVE ANALYSIS	78
PH-OPTIMIZED BIOMETHANE PRODUCTION: EVALUATING CARRIER MATERIALS FOR EX-SITU BIOMETHANATION	80
SUITABLE SOFTWARE FOR THE STUDY OF COMBUSTION PROCESSES IN BOILERS	81
ASSESSING THE APPLICABILITY OF SOLAR THERMAL TECHNOLOGIES FOR INDUSTRIAL TEA DRYING	82
05	
LOW CARBON DEVELOPMENT AND BIOECONOMY	83
A NOVEL GE-MACKINSEY MARKET APPROACH: INVESTMENT OPPORTUNITY FOR THE BIOPOLYMER PACKAGING MATERIALS	84
CURRENT CHALLENGES AND FUTURE OUTLOOK: TRENDS AND FORECASTS	

IN THE MARICULTURE SECTOR85GREEN WHEELS, GREENER WALLETS: ECONOMIC VIABILITY OF LAST-MILE DELIVERY85FLEET ELECTRIFICATION IN CASE OF LATVIA86

ENVIRONMENTALLY FRIENDLY PROCESSING OF FORESTRY BIOMASS SIDE STREAMS – CONIFEROUS NEEDLES AND GREENERY	88
CARBON FARMING: A SYSTEMATIC LITERATURE REVIEW ON SUSTAINABLE	
PRACTICES	89
IMPACT OF EU FUNDING ON LATVIAN AQUACULTURE: PRODUCTIVITY, COMPETITIVENESS AND PERSPECTIVES	90
ORGANIC OR NON-ORGANIC AGRICULTURE: COMPARISON OF ORGANIC AND CONVENTIONAL FARMING SUSTAINABILITY	91
06	
ENVIRONMENTAL AND ENERGY POLICIES AND FRAMEWORKS	92
USE OF THE NATIONAL CLIMATE AND ENERGY POLICY SIMULATION TOOL IN THE POLICY MAKING PROCESS	93
WHAT TO DO WITH CROSS-BORDER ENVIRONMENTAL POLLUTION: LEGISLATIVE ASPECTS	94
07	
ENVIRONMENT, HEALTH, POLLUTION PREVENTION	95
DESIGN OF A FERTILIZING ROBOT APPLICATION WITH REGARD TO ENERGY CONSUMPTION	96
OPTIMIZING THE BATTERY MANAGEMENT ALGORITHM OF THE AGRICULTURAL ROBOT BASED ON THE WORKLOAD	97
ENVIRONMENTAL PERFORMANCE OF A POLYAMIDE-BASED THERMOPLASTIC COMPOUND WITH BROMINATED FLAME RETARDANTS	98
METHODS FOR MEASURING THE IMPACT OF SUSTAINABLE TOURISM DEVELOPMENT ON CLIMATE AND ENVIRONMENT	99
VULNERABILITY OF THE INFRASTRUCTURE: RISK MANAGEMENT AND IMPLEMENTATION OF THE INFORMATION SYSTEMS	100
JUSTIFICATION OF THE USE OF CONTAINER TECHNOLOGY IN DUMPING	101
STEPLESS TRANSMISSION OPTIMIZATION FOR GREEN MICROMOBILITY	102
ANALYZING VNO AIRPORT TRAFFIC DATA OF 2023: SPECIFIC AIRCRAFT NOISE MEASUREMENT AND MITIGATION RECOMMENDATIONS	104
08	
WASTE. WASTE TO PRODUCT, VALUE ADDED PRODUCTS	105
INTEGRATION OF ACOUSTIC METAMATERIALS MADE OF PLASTIC TO IMPROVE BUILDING ACOUSTICS	106
INVESTIGATION ON PFAS SOURCES AND REMOVAL IN A MUNICIPAL WASTEWATER TREATMENT PLANT	107

CHITOSAN/GRAPHENE OXIDE/SIO₂ NANOADSORBENTS FOR THE REMOVAL OF CR(VI) FROM WASTEWATERS 108

ANALYSIS AND ASSESSMENT OF $\rm H_2S$ SORPTION CAPACITY OF THE SELECTED BIOFILTRATION MATERIALS	110
SUSTAINABLE END-OF-LIFE TYRE MANAGEMENT: A COMPREHENSIVE ANALYSIS OF ENVIRONMENTAL IMPACTS AND CRUMB RUBBER INTEGRATION IN COMPOSITE CONCRETES	111
DEVELOPMENT OF GREEN ALKALI-ACTIVATED MORTAR BASED ON BIOMASS WOOD AS	112
ANALYSIS OF INTRODUCING PLASTIC WASTE ENZYMATIC RECYCLING FOR SUSTAINABLE WASTE MANAGEMENT IN LATVIA	114
HOW DOES A DECISION-MAKING TOOL ENHANCE SPENT MUSHROOM SUBSTRATE VALORIZATION INTO POLYSACCHARIDES?	115
DEVELOPMENT OF SUSTAINABLE 3D PRINTABLE TERNARY COMPOSITE	116
SUSTAINABILITY OF BLENDED TEXTILE. LIFE CYCLE ANALYSIS	118
END-OF-LIFE MANAGEMENT OF PHOTOVOLTAIC PANELS: A MODEL FOR FORECASTING AND ECONOMIC EVALUATION	; 119
SOUND ABSORPTION EVALUATION AND ANALYSIS OF DIFFERENT HEMP FIBER TYPES	120
WET EXTRACTION OF BY-PRODUCT SAMPLES AND FRACTIONATION OF VALUABLE COMPOUNDS USING SUPERCRITICAL CO $_2$ EXTRACTION: AN INNOVATIVE APPROACH FOR SUSTAINABLE RESOURCE UTILIZATION	121
OPTIMISATION OF THE PRODUCTION OF BIO-BASED BASIC CHEMICALS FROM BIOGENIC SECONDARY WASTE THROUGH DISPERSION	122
BIODEGRADABLE WASTE MANAGEMENT IN GEORGIA: PROBLEMS OF THE COMPOSTING SYSTEM INTRODUCTION	124
STEARATE FROM STEEL WIRE DRAWING PROCESSES AS A RESOURCE	126
FACTORS AFFECTING WASTE RECYCLING HABITS IN LATVIA – RESULTS FROM AN ONLINE SURVEY	127
UNDERSTANDING MUNICIPAL GREEN INITIATIVES AND CITIZEN HABITS IN FOUR BALTIC SEA REGION COUNTRIES: SURVEY RESULTS	128
HOW TO NOT WASTE GLASS WASTE	129
RECYCLING POSSIBILITIES OF WOOD-CEMENT PARTICLE BOARD MANUFACTURING WASTE	130
ADVANCING SUSTAINABLE ACOUSTIC SOLUTION: EXPLORING THE SOUND ABSORPTIC CHARACTERISTICS OF BIODEGRADABLE AGRICULTURAL WASTES, COCONUT FIBER, GROUNDNUT SHELL, AND SUGARCANE FIBER	ОN 131
BRINE VALORISATION USING MECHANICAL VAPOR COMPRESSION DESALINATION: APPROACHES TO CONSIDER	132
QUANTIFICATION OF LOST RESOURCE POTENTIAL OF UNSORTED TEXTILE WASTE	134
WHAT HAVE WE LEARNT SO FAR ABOUT THE EXTENDED PRODUCER RESPONSIBILITY – RESULTS OF BIBLIOGRAPHIC REVIEW	135
MOVING WASTE SECTOR TOWARDS CLIMATE NEUTRALITY. SCENARIO ANALYSIS	136
EFFICIENT LOW-TEMPERATURE NUTRIENT REMOVAL FROM AGRICULTURAL DIGESTATE USING MICROALGAE	138

02

ENERGY AND ENVIRONMENTAL MODELLING

INCORPORATING LIFE CYCLE ASSESSMENT IN THE GREEN METRIC RANKING: A CONCEPTUAL APPROACH

Elisabetta PALUMBO^{1*}, Francesco ROMAGNOLI², Bernardette SOUST-VERDAGUER³, Giovanni BRUMANA⁴

- ^{1,4} Department of Engineering and Applied Science, University of Bergamo, Viale Marconi 5, 24044 Dalmine, Italy
- ² Institute of Energy Systems and Environment, Faculty of Electrical and Environmental Engineering, Riga Technical University, Azenes iela 12/1, Riga, LV-1048, Latvia
- ³ Instituto Universitario de Arquitectura y Ciencias de la Construcción, Escuela Técnica Superior de Arquitectura, Universidad de Sevilla. Reina Mercedes Avenue 2, 41012 Seville, Spain

* Corresponding author. Email address: elisabetta.palumbo@gmail.com

Abstract – Integrating sustainability principles into their daily operations is an overarching goal of universities and higher education institutions (HEIs), as knowledge multipliers, have to perform (Filimonau *et al.*, 2021). Various studies have demonstrated that the operational activities of universities cause GWP emissions and, in general, negative environmental impacts, due mainly to student and staff mobility, oncampus energy and water consumption, and waste production (Jürgens et al., 2023). Findler et al. (2019) outlined numerous analytical methods, ranging from input-output analysis to full Life Cycle Assessment (LCA), for evaluating the carbon footprints of universities and colleges. Concurrently, a variety of tools have been devised to measure sustainability based on environmental metrics, such as the Green Metric (GM) ranking developed by Universitas Indonesia (UI). The GM, which is first in which tops university sustainability rankings (Marrone *et al.*, 2018), rates HEIs by utilizing 51 criteria across 6 rating areas. Researchers analyzed the UI Green Metric World Ranking system to examine the requirements for a fair sustainability ranking of worldwide HEIs, although the latter were only examined in general without inspecting each item separately (Boiocchi *et al.*, 2023). In order to lessen the environmental impacts of HEIs, recognized and robust methods must be used to identify appropriate and effective measures. LCA is a standardized (ISO 14040 and 14044) tool for quantifying and reducing environmental impacts throughout the entire life cycle of a product, service, or organization. This study is focused on understanding how LCA can be integrated into GM, and more specifically, how it can assist in achieving a consistent and structured review of specific indexes such as EC4, EC7, EC8, WR2, and TR1. The analysis was conducted by comparing the items one by one. Such a method was implemented as a result of the authors' specialized background, the scientific literature of interest, and the adoption of a critical thinking approach. The study results emphasize the necessity of incorporating LCA into the environmental sustainability strategies of HEIs. This integration is crucial for developing a robust approach adaptable to various local contexts, enhancing the precision in assessing and improving HEIs' sustainability practices. Such a strategy will align HEIs' operational activities more effectively with sustainable development goals. The application of the conceptual approach to a case study is recommended.

Keywords - GreenMetric; Life Cycle Assessment; sustainability; university campus

