EURO Journal on Transportation and Logistics 13 (2024) 100140

Contents lists available at ScienceDirect

= Transportation/
and Logistics 1

EURO Journal on Transportation and Logistics

journal homepage: www.elsevier.com/locate/ejtl

A two-stage stochastic programming model for bike-sharing systems with
rebalancing

Rossana Cavagnini ®*, Francesca Maggioni °, Luca Bertazzi ¢, Mike Hewitt ¢

a Deutsche Post Chair — Optimization of Distribution Networks, RWTH Aachen University, Germany

b Department of Management, Information and Production Engineering, University of Bergamo, Italy

¢ Department of Economics and Management, University of Brescia, Italy

d Department of Information Systems and Operations Management, Quinlan School of Business, Loyola University Chicago, USA

ARTICLE INFO ABSTRACT

Keywords: We study the problem of determining the target inventory level of stations in a bike-sharing system, when bikes
Bike sharing can be rebalanced later during the day. We propose a two-stage stochastic programming formulation, where
Ta;g?t inventory levels the target inventory decisions are made at the first stage, while the recourse decisions, related to rebalancing,
Rebalancing

are made at the second stage. In the literature, the problem of determining the target inventory levels is
solved without taking into account the rebalancing problem, or these two problems are solved sequentially. We
prove that more efficient bike-sharing systems can be obtained by integrating these two problems. Moreover,
we show that our methodology provides better results than the deterministic formulation, and consider an
effective matheuristic, based on the solution of the deterministic problem, to solve the stochastic program.
Finally, we compare the solutions obtained by our approach with the actual allocation of bikes in the real
bike-sharing system of the city of San Francisco. The results show the effectiveness of our approach also in a
realistic setting.

Stochastic programming
Analysis of the stochastic solution

1. Introduction whereas tactical decisions concern fleet sizing and allocation decisions.

Daily operational decisions include determining how to periodically

Bike-sharing systems are becoming more popular throughout the re-distribute bikes to stations.

world, doubling their number from 550 in 2012, to more than 3000 in This paper studies a bike-sharing system composed of one depot
2021 (PBSC, 2021). The popularity of these systems can be attributed (with an initial availability of bikes) and multiple capacitated stations.
to an increasing interest in reducing pollution and traffic, as well as The capacity of the stations can be enlarged by individuals who can
promoting healthy lifestyles, worldwide. Bike-sharing systems provide accept returning bikes even when the station is at capacity. This option
a fleet of bikes used by different individuals throughout the day, is called “valet service” and is implemented by multiple bike-sharing
usually via a rental agreement. These systems typically consist of a systems throughout the world, such as the one of San Francisco (S.F.

depot (or a set of depots), wherein bikes are stored at the beginning Gov, 2024) and Chicago (Divvy Bikes, 2024). These bike-sharing sys-
of the day, and multiple stations located throughout the city. An

individual can withdraw a bike from one of these stations, to make
a (usually short) journey, and then return that bike to a possibly
different station. These stations have a fixed number of slots, even if
this number can sometimes be temporarily increased. A technology, to
communicate information regarding their status (e.g., how many bikes
are currently there) to a central manager/planner, is typically available
at these stations. Bike-sharing systems are financed by public and/or
private entities and managed by service providers, who are involved in
strategic, tactical, and operational decision-making. Strategic decisions
involve determining the number, location, and capacity of stations,

tems allocate staff members to some stations, who can remove bikes
from docks and park them on the sidewalk or between docks. This
guarantees the availability of additional free slots, where users can
return their bikes even when the number of bikes exceeds the capacity.
As highlighted by de Chardon et al. (2016), the valet service improves
the system reliability by guaranteeing the possibility of returning bikes.
In fact, one of the reasons for users not to renew their subscriptions is
the anxiety of not finding a free slot for returning bikes.

The service provider has to decide the target inventory level of
each station, considering that bikes can be rebalanced among stations
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later during the day. Rebalancing is performed through a capacitated
vehicle that travels a given route. The service provider tries to limit
the cases in which, after performing rebalancing, an individual arrives
at a station for renting a bike, but none is available. In inventory
management, these situations represent stock-out events and we refer
them to as “starvation” events. On the other hand, the service provider
tries to limit the cases in which, after performing rebalancing, an
individual seeks to return a bike to a station but the station is already
full. In inventory management, these situations are similar to what
happens in order-up-to-level and maximum-level systems. Once the
maximum inventory level (i.e., the capacity of the station) is reached,
no additional units can be received until at least one unit is delivered.
We refer these situations to as “congestion” events. Both starvation
and congestion events negatively impact the user’s experience, as they
both (potentially) require the user to travel to another station. At
the same time, avoiding starvation events and avoiding congestion
events are somewhat competing objectives, as the more bikes allocated
to a station, the lower the likelihood of a starvation event, but the
greater the likelihood of a congestion event. Apart from congestion and
starvation, the service provider may also seek to limit the size of the
bike fleet in use (to prevent it from damage and deterioration), as well
as the number of bikes that are redistributed throughout the day (to
limit rebalancing costs).

In the literature, there are papers proposing approaches to deter-
mine the target inventory level of stations without considering rebal-
ancing operations. These approaches may result in overestimations or
underestimations of the target inventory levels and, consequently, in a
higher number of congestion and starvation events. To fill this gap, we
propose an approach in which rebalancing is considered when these
levels are computed. On the other hand, there are papers that consider
some measures of bike redistribution, but either they study the problem
from the deterministic point of view or lack inclusion of realistic bike-
sharing system features. To fill these gaps, we propose an optimization
model that not only accounts for the uncertainty in the bike demand,
but also incorporates some of these realistic features of bike-sharing
systems, such as the presence of the valet service and the route-based
rebalancing operations.

In particular, we formulate a new two-stage Stochastic Program (SP)
that models the problem described above. The purpose of this model
is to determine an effective target level for all stations (first stage
solution), approximating the cost of rebalancing bikes with a static
second-stage recourse. We assume that rebalancing is performed by
visiting stations according to a sequence determined by a pre-computed
route. As such, the estimation of the rebalancing cost depends only on
the decision of the number of bikes to move from one station to one
of the next (second stage decision). Notice that, as highlighted in Erera
et al. (2009), a fixed route is also more desirable operationally. Our SP
includes multiple performance dimensions (i.e., congestion, starvation,
fleet size, and rebalancing) and it can be solved multiple times in
a day. To accurately describe the uncertain parameters involved in
this problem, we propose a method to generate realistic scenarios and
establish the minimal dimension of the corresponding scenario tree.
Moreover, we propose a new approach to compute the demand which
allows to capture its evolution over time. Several indicators of antici-
pating rebalancing, of the value of the SP solution and of the quality
of the deterministic solutions are considered. In particular, through
an analysis of the deterministic solution, we consider a matheuristic,
based on the deterministic solution, to solve our SP. Moreover, we
design a simulation framework that is run to compare the quality of
different bike allocation plans along multiple performance dimensions.
Finally, with a sensitivity analysis, we assess the behavior of the first
and second-stage cost for increasing values of congestion and starvation
penalties.

Our computational experiments are based on a set of instances
of the real bike-sharing system of San Francisco. We first establish
computationally that our modeling approach leads to better solutions
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than the one in which the demand is considered to be static. The results
also suggest that better allocation plans can be obtained by considering
rebalancing when the target inventory levels at stations are computed.
Moreover, we show that explicitly modeling uncertainty in demand
leads to improvements along multiple performance dimensions over
using a deterministic model. Nevertheless, the results also indicate that
using information from the deterministic solution within a matheuristic
framework allows us to find good-quality solutions for the SP in short
runtimes. Finally, the results reveal that the allocation plan provided
by our SP outperforms the one of the real San Francisco bike-sharing
system, on all dimensions.

The paper is organized as follows. In Section 2, we discuss the
relevant literature, and contrast both the problems studied and method-
ologies with the research proposed in this paper. In Section 3, we
describe the problem, while the SP is formulated in Section 4. In
Section 5, we describe all methods. In Section 6, we show the compu-
tational results. Finally, Section 7 provides conclusions and suggestions
for future works.

2. Literature review

In this section, we present a review of the papers studying station-
based bike-sharing systems. While reviewing the literature, we ob-
served that works that only focus on determining the optimal allocation
of bikes to stations (without rebalancing considerations) use the term
“initial inventory”, while a large part of the works that considers only
rebalancing or the optimal allocation and rebalancing use the term
“target inventory”. In both cases, these terms represent the number
of bikes that should ideally be at stations. For consistency, in the
following, we refer to these quantities as “target inventory”.

The reviewed papers are summarized in Table 1 and can be classi-
fied into: (i) papers focusing exclusively on the problem of determining
the target inventory level at stations (Section 2.1), (ii) papers studying
exclusively the problem of rebalancing (Section 2.2), and (iii) papers
considering both problems jointly (Section 2.3).

For a review of additional bike-sharing problems (including, for
example, problems at the strategic decision level, problems dealing
with free-floating bike-sharing systems, and problems considering bike-
sharing incentives and parking reservation schemes), the reader can
refer to the work of Shui and Szeto (2020). In Section 2.4, we con-
clude with a summary of our contributions with respect to the extant
literature.

2.1. Target inventory level problems

Raviv and Kolka (2013) focus on the problem of determining the
optimal target inventory level at a single bike-sharing station. They
minimize a user dissatisfaction measure, expressed as a function of
the bike and locker shortage events. The proposed model omits inter-
dependencies among stations, both with reference to the withdrawn
and returned bike processes, and the penalties charged which are the
same across all stations. To overcome these limitations, Datner et al.
(2017) study the problem of setting the optimal target inventory levels
in a bike-sharing system with interactions between stations. These
interactions are captured by a user-behavior model which describes
the decisions a user may make in response to a shortage of bikes or
lockers, that are: waiting at a station, roaming to a nearby station, or
abandoning the system. The objective is to minimize the excess time
spent by a user in the system because of a shortage of bikes or lockers.
While this work is the first to consider interactions between stations in
setting the initial inventory levels and, to the best of our knowledge, it
is the only one that considers a stochastic demand process, it presents
three differences with respect to our work: (i) it does not consider the
capacity of the stations and the presence of a possibly limited bike
fleet size (i.e., some inventory levels could not be implementable), (ii)
it does not consider the possibility that rebalancing may take place,
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Table 1
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Bike-sharing literature classification based on the problem features and the solution methodology.

Article Problem features Solution method
Target inventory Rebalancing Stochastic (S), Deterministic (D)

Raviv and Kolka (2013) v S exact

Datner et al. (2017) v S heuristic

Benchimol et al. (2011) static D exact

Chemla et al. (2013) static D heuristic

Raviv et al. (2013) static D exact

Erdogan et al. (2014) static D exact

Ho and Szeto (2014) static D heuristic

Dell’Amico et al. (2014) static D exact

Forma et al. (2015) static D heuristic

Erdogan et al. (2015) static D exact

Alvarez-Valdes et al. (2016) static D heuristic

Dell’Amico et al. (2016) static D heuristic

Cruz et al. (2017) static D heuristic

Nair and Miller-Hooks (2011) static S exact and heuristic

Dell’Amico et al. (2018) static S exact and heuristic

Bulhoes et al. (2018) static D exact and heuristic

Bruck et al. (2019) static D exact

Lv et al. (2020) static D heuristic

Contardo et al. (2012) dynamic D heuristic

Brinkmann et al. (2015) dynamic S heuristic

Brinkmann et al. (2016) dynamic D heuristic

Ghosh et al. (2017) dynamic D heuristic

Brinkmann et al. (2019) dynamic S heuristic

Legros (2019) dynamic D heuristic

Li et al. (2024) dynamic S heuristic

Vogel et al. (2014) v dynamic D heuristic

Regue and Recker (2014) v dynamic D heuristic

Neumann-Saavedra et al. (2015) v dynamic D exact

Lu (2016) v static S exact

Vogel (2016) v dynamic D heuristic

Schuijbroek et al. (2017) v static S heuristic

Maggioni et al. (2019) v static S exact

Ren et al. (2020) v static D heuristic

Fu et al. (2022) v dynamic S heuristic

Our paper v static S exact and heuristic

and (iii) it does not consider that the service providers might also be
interested in minimizing the operational costs related to the allocation
of bikes at stations. Differently from these two papers, in our work,
the interdependence among stations is captured by making penalties
for congestion and starvation events dependent on the distance to the
next-closest station or on the average distance to all other stations.

2.2. Rebalancing problems

Concerning rebalancing, we can divide the papers into two different
groups depending on how often the repositioning of bikes is performed,
i.e., static rebalancing and dynamic rebalancing.

2.2.1. Static rebalancing

With static rebalancing, we refer to rebalancing operations per-
formed at night, when the system is closed or idle, to prepare the system
for the next day. According to Berbeglia et al. (2007), such a problem
is similar to the one-to-one pick-up and delivery problem (PDP) with
transshipment, since each rebalancing flow has exactly one pick-up
station and one delivery station, and these stations are determined by
the order in which they are visited.

However, this variant of the PDP does not consider the impact on
the customer service level (e.g., dissatisfaction due to congestion and
starvation events). The same limitation can be found in the following
papers which also use predetermined target levels (or ranges) for the
number of bikes that should be at each station after rebalancing.
Benchimol et al. (2011) formulate a modified version of the capaci-
tated traveling salesman problem to study the problem of finding a
minimal route that balances all stations, and they use an approximation
algorithm to address the problem. Chemla et al. (2013) propose some
relaxations to derive good lower bounds and a tabu search heuristic
to get upper bounds for the static rebalancing problem. Erdogan et al.

(2014, 2015) propose exact methods to solve the problems. Similarly
to our work, the first assumes that rebalancing is done via a single
vehicle following a fixed route. Cruz et al. (2017) study a rebalancing
problem where only a single vehicle is available, but multiple visits
to the same station are allowed and they propose an iterated local
search heuristic. Dell’Amico et al. (2014) formulate models relying on
different pick-up and delivery problems and solve these formulations
via a branch-and-cut algorithm, while (Dell’Amico et al., 2016) extend
their work by proposing a destroy and repair algorithm. Recently, Bruck
et al. (2019) propose multiple model versions and exact algorithms to
perform rebalancing while minimizing the rebalancing costs measured
in terms of distance. They also impose that stations cannot be used as
temporary depots to provisionally collect and store bikes. In all three of
the latter papers, the objective is to minimize rebalancing costs using
a fleet of capacitated vehicles, instead of a single one. Besides the
presence of multiple vehicles, Alvarez-Valdes et al. (2016) and Bulhoes
et al. (2018) also allow multiple visits to stations. Lv et al. (2020)
introduces the presence of multiple depots for rebalancing.

A number of papers also considers the customer satisfaction di-
mension. Raviv et al. (2013) propose a deterministic multi-objective
mathematical program in which they minimize an objective that con-
sists of penalties for stockouts, penalties for stations being at capacity
when users wish to return bikes, and the operational costs incurred
when rebalancing. They present an arc-indexed and a time-indexed
formulation, with the first limiting each vehicle to visit each station at
most once. Their first formulation is also studied in Forma et al. (2015),
but solved using a matheuristic based on the clustering-first routing-
second paradigm, while Ho and Szeto (2014) propose a modification
of the problem studied in Forma et al. (2015), by not considering the
rebalancing costs.

Among stochastic static rebalancing problems, we mention the work
of Nair and Miller-Hooks (2011) and that of Dell’Amico et al. (2018),
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who propose multiple stochastic programming formulations to deal
with uncertain demand by deciding vehicle routes and rebalanced
quantities. Apart from minimizing the rebalancing costs, they also
consider penalties for each unit of deviation with respect to the stations
target inventory levels.

2.2.2. Dynamic rebalancing

Even if much of the literature focuses on static rebalancing, some
works have focused on its dynamic version. With dynamic rebalancing,
we refer to rebalancing operations executed during the day when the
system is in use and, hence, unexpected bike withdrawals or returns
may occur while rebalancing is performed.

Examples of works studying dynamic rebalancing and focusing on
deterministic demand are those by Contardo et al. (2012), Ghosh et al.
(2017), and Brinkmann et al. (2016). Among the works dealing with
stochastic dynamic rebalancing, Brinkmann et al. (2015) minimizes
the expected number of violations of due dates, i.e., the latest time a
station has to be served by a vehicle to satisfy a request. Brinkmann
et al. (2019) propose a stochastic-dynamic inventory routing problem
for rebalancing bikes with one vehicle, and Brinkmann et al. (2020)
extends this work to the multi-vehicle case. Legros (2019) adopts a
Markov decision process approach based on a decomposition at a sta-
tion level to decide which station should be prioritized and the amount
of bikes to move between stations with the objective of minimizing
user dissatisfaction. Recently, Li et al. (2024) formulate a multi-period
two-stage stochastic model for the dynamic rebalancing problem with
stochastic demand. The authors propose a rolling horizon framework
within which a hybrid metaheuristic (based on genetic algorithms and
variable neighborhood search) is executed.

2.3. Target inventory level problems with rebalancing

Finally, the following papers consider the problem of determining
the number of bikes at stations and of rebalancing jointly.

Vogel et al. (2014), Neumann-Saavedra et al. (2015), and Vogel
(2016) rely on a service network design formulation considering both
the problem of determining the station optimal target inventory levels,
and of dynamically rebalancing. Regue and Recker (2014) present a
sequential framework for making target inventory level and rebalanc-
ing decisions. The first step in this framework is to forecast demand
at each station, from which an initial inventory level for that station
is determined. The second step is to determine a dynamic rebalancing
plan based upon those target inventory levels, which dictate how many
bikes should be transported from one station to another. Then, the
third step is to determine vehicle routes to execute that rebalancing
plan. Lu (2016) studies a problem that focuses on both the target
inventory level and rebalancing of bikes, wherein there is uncertainty
in how bike usage will deviate from what is expected. Their objec-
tive function measures bike supply cost, inventory and redistribution
costs, and penalties associated with stock-outs. Differently from our
approach, they propose a robust model of this problem that seeks to
minimize their objective under a maximum demand scenario generated
from two different uncertainty sets. A robust optimization approach
is also adopted by Fu et al. (2022), who maximizes the revenue mi-
nus the total rebalancing costs. Schuijbroek et al. (2017) propose a
sequential approach for solving the problem of determining the service
level requirements (i.e., target inventory intervals) at each station and
the rebalancing vehicle routes. They model the stochastic demand by
considering the inventory at each station independently as a non-
stationary queuing system with finite capacity. Uncertain demands are
also considered in Maggioni et al. (2019), who formulate a two-stage
and a multi-stage stochastic program to determine the target initial
inventory level at stations to minimize the sum of bike procurement
costs, expected bike and locker stockout costs, and transshipment costs
for performing static rebalancing of bikes. In their work, rebalanc-
ing is performed under the assumption that bikes can be transferred
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directly between two locations, i.e., without following a route. This
assumption is reasonable for bike-sharing systems where the duration
of rebalancing is not critical, as direct bike transfers usually result in
longer times and higher costs compared to those that follow a route.
Finally, Ren et al. (2020) study the static rebalancing problem with
multiple vehicles and stations which can only be visited once. Apart
from minimizing the variable and fixed rebalancing costs, the authors
also focus on the fleet size, i.e., on the number of bikes leaving the
depot which are initially loaded by each vehicle.

2.4. Contribution of this work

In light of the literature reviewed, we believe our work makes the
following contributions. Compared to the literature that focuses only on
determining target inventory levels, or considers the target inventory
level problem and rebalancing sequentially, our approach provides
better target inventory levels because of the simultaneous consideration
of both inventory levels and rebalancing decisions. This approach
leads to fewer underestimations and overestimations of target inventory
levels, resulting in a more efficient system with fewer congestion and
starvation events.

Moreover, unlike papers that exclusively focus on rebalancing oper-
ations, our goal is to determine the ideal number of bikes that should
be at stations and that should be used as a target for rebalancing oper-
ations. Therefore, these targets are decision variables in our problem,
rather than given parameters.

With respect to the papers that study how to determine target
inventory levels by considering rebalancing operations in a determin-
istic setting, we propose an approach that explicitly considers the
uncertainty in the demand. With our approach, we obtain better target
inventory levels that improve the supply and demand match for the
system.

Finally, compared to the papers that recognize uncertainty in the de-
mand, our approach includes realistic features of bike-sharing systems,
such as the presence of the valet service, or route-based rebalancing
operations. Motivated by the increased complexity arising from consid-
ering a stochastic model, we further consider a matheuristic approach
to obtain high-quality solutions for the stochastic program with reduced
runtimes.

3. Problem description

We study a bike-sharing system managed by a service provider
wherein the decision-making is centralized. The service provider has to
determine the target inventory level of bikes to allocate at each station
under uncertain demand, considering that bikes are rebalanced at a
later point in time to restore that target inventory level.

We consider a single depot, multiple stations with given capacities,
and a number of bikes that can already be at stations. We assume
that there is a limited number of bikes corresponding to the depot
capacity. We presume rebalancing is executed by a capacitated vehicle
that travels along a known and fixed route (determined a priori by
solving a Traveling Salesman Problem) that begins at the depot, visits
each station, and ends at the depot.

Because our goal is to make better allocation decisions by consid-
ering an approximation of the rebalancing costs, it is reasonable to
consider such a fixed route. In fact, we do not aim to obtain the exact
rebalancing plan that will be executed, but just an estimate of the
rebalancing costs. Because of this, we also do not model the possibility
to move bikes from the depot to a station during the rebalancing
operation. This choice allows us to measure the ideal fleet size as
the sum over all stations of their target inventory levels. However,
our rebalancing cost approximation considers that bikes can still be
redistributed from the first station to the next stations visited in the
tour.
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The capacity of each station can be temporarily expanded using the
so-called “valet service”, which consists of individuals who can keep
station docks free when the station would be at capacity. We assume
that, if the rebalancing vehicle fails to bring the number of bikes at a
station below its capacity, it dispatches a staff member to that station.
Hence, the valet service is available everywhere whenever it is needed.
The managing effort of this staff member is dependent on the number
of bikes in excess at that station.

Because the service provider wants to maximize the customer ser-
vice level, the occurrence of both congestion (a user wishes to return a
bike to a station but it is full) and starvation (a user wishes to rent a bike
from a station but it is empty) must be avoided. At the same time, the
provider wants to minimize operational costs. For this, the number of
bikes allocated and rebalanced (to prevent bike damage) is minimized.
Moreover, the number of bikes exceeding the station capacity must be
small to decrease the likelihood of resorting to the valet service. The
objective of our problem includes all these aspects.

4. A two-stage stochastic programming (SP) formulation

In this section, we propose a two-stage SP of the problem presented
in Section 3. We refer to Birge and Louveaux (2011) and King and
Wallace (2012) for comprehensive books on Stochastic programming.
Table 7 in Appendix A summarizes the used notation.

We denote the set of bike-stations by 7 = {1,..., I}, where I is the
depot, and the set of possible realizations of uncertainty, i.e. scenarios,
by S={L,...,S}.

The depot capacity and the total availability of bikes correspond
to 1, while T, represent the initial availability of bikes at station
i € I\ {I}. The capacity of each station is denoted by Q;, and the
capacity of the vehicle used for rebalancing is represented by C.

The demand at each station is measured as the difference between
the uncertain number of withdrawn and returned bikes at that station,
during the period between when bikes are ideally allocated and redis-
tributed. To mitigate the limitation of the static demand assumption,
we encourage the model to allocate no fewer bikes than the maximum
number of consecutive withdrawn bikes from a station before a return
event, and to maintain no fewer free docks than the maximum number
of consecutive bikes returned to a station before a withdrawal event.
This approach allows us to prevent congestion and starvation especially
if there are peaks of consecutive withdrawn and returned bikes. As an
example, suppose that there is a maximum of two bikes consecutively
withdrawn from a station before a return occurs, in a given time
interval. By only considering the net demand, the model will suggest
a target inventory level of one bike (2 — 1). This results in a starvation
event when a user wants to withdraw the second bike. However, with
our approach, the model is encouraged to set a target inventory level
of two (maximum number of withdrawn bikes before a return occurs).
This allows us to prevent a starvation event.

We define d; as the stochastic demand of bikes at station i € T\ {1}
in scenario s € S. Moreover, g and h! represent the stochastic maxi-
mum number of consecutive bikes withdrawn from station i € T \ {I}
before a return occurs in scenario s € S, and the stochastic maximum
number of consecutive bikes returned to station i € T \ {I} before a
withdrawal occurs in scenario s € S, respectively. The probability of
scenario s € S is denoted by prs.

Before the stochastic parameters (i.e., d;, g/, and h;) become known,
the service provider needs to determine the value of the non-negative
integer variables x;, i.e., the target inventory level of station i € T\ {I}.
These are the first-stage variables of our SP. A unit penalty cost f; is
charged, to take into account the cost of the potential damage of each
used bike.

After allocating the bikes, at a later point during the day, the
stochastic demands d;, and the stochastic maximum number of con-
secutive withdrawn and returned bikes g’ and h{ are observed at each
station i. Then, the service provider determines a rebalancing plan
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based on the number of bikes available at each station. We indicate
the number of bikes to rebalance from station i to station i + 1 in
scenario s by the integer variables Vi These are the second-stage
variables. Each rebalanced bike is penalized by ¢, ;. After rebalancing,
the surplus or shortage at each station can be immediately computed.
We denote the balance of bikes at station i € T\ {/} in scenario s € S by
I} € Z, while the units of surplus and stock-out at station i € Z\ {/} in
scenario s € S are represented by I L;+ and I;°7, respectively. Moreover,
By indicates the extra inventory balance, and E; the excess inventory
balance at station i € 7 \ {I} in scenario s € S.

We recall that in our problem, the service provider seeks to avoid
the occurrence of both congestion (a user wishes to return a bike to a
station but it is full) and starvation (a user wishes to rent a bike from
a station but it is empty).

Congestion is measured by the “extra inventory” term B;*, which
represents the number of bikes at station i € 7 \ {I} in scenario s
that is above and beyond the initial inventory plus the allocated bike
number. Recalling the possible need for the valet service, with the
“excess inventory” term E,i‘+, i € T\ {I}, we measure the number of
bikes in excess of station capacity in scenario s. We refer to the weight
associated with “excess inventory” as the “excess penalty” ¢;, Vi €
T\ {I} and the weight associated with “extra inventory” as the “extra
penalty” é—’ Vi € I\ {I}. Because the extra inventory represents an
increased risk of incurring congestion, it is penalized in relative terms
with respect to the capacity of each station. In fact, given the same
extra inventory level at two stations characterized by two different
capacities, the risk of congestion is higher for the station with lower
capacity and our penalty ¢;/Q; represents the magnitude of this risk.

Starvation is measured by 77, i € I\ {1}, representing the realized
shortage of bikes at station i in scenario s. We refer to the weight
associated with starvation as the “stock-out penalty” p;,, i € I \ {I}.
Note that we do not penalize the risk of incurring starvation, i.e., we
do not penalize the number of bikes that is below the sum of the
initial inventory and the allocated bikes (unless we encounter stock-
out). In fact, because congestion events are more frustrating than
starvation events for users, operators prioritize congestion avoidance
over starvation (de Chardon et al., 2016).

We finally recall that the stochastic parameters g/ and h] are
introduced to encourage the model to determine a target inventory
level higher than g/ and to maintain no fewer free docks than Aj.
To guarantee that a feasible solution can be found if the sum of the
maximum number of consecutive withdrawn and returned bikes is
greater than the station capacity (i.e., g/ + A} > Q;), we introduce the
variables 4! to represent the slack between the number of allocated
bikes x; and g’ at station i € T \ {/} in scenario s € S. Similarly,
the variables b; denote the units of slack between the number of free
racks Q; — x; and h! at station i € T\ {I} in scenario s € S.

We illustrate the sequence of decisions and events with an exam-
ple in Fig. 1. The leftmost part of Fig. 1 represents the first-stage
decision, in which bikes are allocated to stations according to the
target inventory level (see blue arrows) determined before knowing the
realized demand, and the realized maximum number of consecutive
withdrawn and returned bikes before a return or withdrawal event
occurs. In the central part of the figure, each orange arrow represents
one scenario describing the bike demand, and the maximum number
of consecutive withdrawn and returned bikes at stations. Finally, in the
rightmost part of Fig. 1, each small figure shows a recourse decision to
make for each scenario that may have realized. Each of these figures
represents the number of bikes rebalanced by a vehicle following a
fixed route described by green arrows. Hence, the rightmost part of
Fig. 1 represents the rebalancing cost approximation, that depends on
the first-stage decision, and on the stochastic demand and maximum
number of withdrawn and returned bikes.

As such, this model can be solved repeatedly throughout the day.
For example, at 6:00 a.m., the service provider wants to determine the
target inventory levels of stations. For this, they solve the SP which
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Fig. 1. Illustration of the two-stage decision-making process.

returns the number of bikes which should ideally be at each station by
considering an approximation of the costs occurring for rebalancing at
12:00 p.m. Note that our approximation is based on a rebalancing plan
that will not necessarily be the one that will actually be implemented
at 12:00 p.m. At 6:00 a.m., the service provider makes sure that each
station has the number of bikes prescribed by the solution of our SP.
Then, at 12:00 p.m., the service provider solves again the SP to get the
new target inventory level of stations at noon. This time, this decision
is based on an approximation of the costs that will be charged for
rebalancing at 6:00 p.m.

The problem can be formulated as the following integer non-linear
SP, which we linearize in Appendix B: Problem B
min Zf,-x,- + Zprs[ Z (t‘-'[+1yf,l.+l + a

s+ s+
0. B]™ + ¢, E;
1

iel s€s ieI\{1} (@)
+p;(=I7) + p;a; + ¢;b])]
s.t:
x; 28 —a ieI\{I}, s€Ss, 2
Q;—x; 2 hi —b] ieI\{I},seS, 3)
To+x<Q i€I\(I}, @

X; ST](), (5)
ieI\ (1}
Vi <C ieI\{l},seS, (6)
I5=Tp- Z Xi+yy_,, SES, )
ieI\{I}

I5<T, s€S, ®
If=7i0+x1—df—y§‘2 sES, (C)]
F=To+x,—d +y_ -y, i€I\{LI},s€S, (10)
17" = max{0, I}} ieI\{I},seS, (€8]
I =min{0,I}} i€I\({I},s€S, (12)

E=I*-0Q;, ieI\{l},s€eS, 13)
E}* = max{0, E}} ieI\{I},s€S, (14)
B =1t —x,—Ty— ES* ieI\{I}.s€S, (15)
B* =max{0,B}} i€I\{I}, s€S, (16)
x; >0 integer ieT\{I}, a7)
yii+l,If*,If_,Bi”,E;'*,af,bf >0 integer ieT\{I},sesS, (18)
I},B},E’ freeand integer ieI\{I}, seS. (19)

The objective function (1) represents the minimization of the ex-
pected total cost obtained through the sum of penalties for the allocated
bikes, the expected rebalancing cost between stations, the expected
extra and excess penalties and expected stock-out penalty for shortage,
plus the penalization of the slack variables. Constraints (2) encourage
the target inventory quantity to be greater or equal than the maximum
number of consecutive withdrawals, while constraints (3) encourage
the number of free racks to be greater or equal than the maximum
number of consecutive returns. To guarantee that a feasible solution can
be found if the sum of the maximum number of consecutive withdrawn
a