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A B S T R A C T

We study the problem of determining the target inventory level of stations in a bike-sharing system, when bikes
can be rebalanced later during the day. We propose a two-stage stochastic programming formulation, where
the target inventory decisions are made at the first stage, while the recourse decisions, related to rebalancing,
are made at the second stage. In the literature, the problem of determining the target inventory levels is
solved without taking into account the rebalancing problem, or these two problems are solved sequentially. We
prove that more efficient bike-sharing systems can be obtained by integrating these two problems. Moreover,
we show that our methodology provides better results than the deterministic formulation, and consider an
effective matheuristic, based on the solution of the deterministic problem, to solve the stochastic program.
Finally, we compare the solutions obtained by our approach with the actual allocation of bikes in the real
bike-sharing system of the city of San Francisco. The results show the effectiveness of our approach also in a
realistic setting.
1. Introduction

Bike-sharing systems are becoming more popular throughout the
world, doubling their number from 550 in 2012, to more than 3000 in
2021 (PBSC, 2021). The popularity of these systems can be attributed
to an increasing interest in reducing pollution and traffic, as well as
promoting healthy lifestyles, worldwide. Bike-sharing systems provide
a fleet of bikes used by different individuals throughout the day,
usually via a rental agreement. These systems typically consist of a
depot (or a set of depots), wherein bikes are stored at the beginning
of the day, and multiple stations located throughout the city. An
individual can withdraw a bike from one of these stations, to make
a (usually short) journey, and then return that bike to a possibly
different station. These stations have a fixed number of slots, even if
this number can sometimes be temporarily increased. A technology, to
communicate information regarding their status (e.g., how many bikes
are currently there) to a central manager/planner, is typically available
at these stations. Bike-sharing systems are financed by public and/or
private entities and managed by service providers, who are involved in
strategic, tactical, and operational decision-making. Strategic decisions
involve determining the number, location, and capacity of stations,
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whereas tactical decisions concern fleet sizing and allocation decisions.
Daily operational decisions include determining how to periodically
re-distribute bikes to stations.

This paper studies a bike-sharing system composed of one depot
(with an initial availability of bikes) and multiple capacitated stations.
The capacity of the stations can be enlarged by individuals who can
accept returning bikes even when the station is at capacity. This option
is called ‘‘valet service’’ and is implemented by multiple bike-sharing
systems throughout the world, such as the one of San Francisco (S.F.
Gov, 2024) and Chicago (Divvy Bikes, 2024). These bike-sharing sys-
tems allocate staff members to some stations, who can remove bikes
from docks and park them on the sidewalk or between docks. This
guarantees the availability of additional free slots, where users can
return their bikes even when the number of bikes exceeds the capacity.
As highlighted by de Chardon et al. (2016), the valet service improves
the system reliability by guaranteeing the possibility of returning bikes.
In fact, one of the reasons for users not to renew their subscriptions is
the anxiety of not finding a free slot for returning bikes.

The service provider has to decide the target inventory level of
each station, considering that bikes can be rebalanced among stations
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later during the day. Rebalancing is performed through a capacitated
vehicle that travels a given route. The service provider tries to limit
the cases in which, after performing rebalancing, an individual arrives
at a station for renting a bike, but none is available. In inventory
management, these situations represent stock-out events and we refer
them to as ‘‘starvation’’ events. On the other hand, the service provider
ries to limit the cases in which, after performing rebalancing, an
ndividual seeks to return a bike to a station but the station is already
ull. In inventory management, these situations are similar to what
appens in order-up-to-level and maximum-level systems. Once the
aximum inventory level (i.e., the capacity of the station) is reached,
o additional units can be received until at least one unit is delivered.
e refer these situations to as ‘‘congestion’’ events. Both starvation

and congestion events negatively impact the user’s experience, as they
both (potentially) require the user to travel to another station. At
the same time, avoiding starvation events and avoiding congestion
events are somewhat competing objectives, as the more bikes allocated
to a station, the lower the likelihood of a starvation event, but the
greater the likelihood of a congestion event. Apart from congestion and
starvation, the service provider may also seek to limit the size of the
bike fleet in use (to prevent it from damage and deterioration), as well
as the number of bikes that are redistributed throughout the day (to
limit rebalancing costs).

In the literature, there are papers proposing approaches to deter-
mine the target inventory level of stations without considering rebal-
ancing operations. These approaches may result in overestimations or
underestimations of the target inventory levels and, consequently, in a
higher number of congestion and starvation events. To fill this gap, we
propose an approach in which rebalancing is considered when these
levels are computed. On the other hand, there are papers that consider
some measures of bike redistribution, but either they study the problem
from the deterministic point of view or lack inclusion of realistic bike-
sharing system features. To fill these gaps, we propose an optimization
model that not only accounts for the uncertainty in the bike demand,
but also incorporates some of these realistic features of bike-sharing
systems, such as the presence of the valet service and the route-based
rebalancing operations.

In particular, we formulate a new two-stage Stochastic Program (SP)
that models the problem described above. The purpose of this model
is to determine an effective target level for all stations (first stage
solution), approximating the cost of rebalancing bikes with a static
second-stage recourse. We assume that rebalancing is performed by
visiting stations according to a sequence determined by a pre-computed
route. As such, the estimation of the rebalancing cost depends only on
the decision of the number of bikes to move from one station to one
of the next (second stage decision). Notice that, as highlighted in Erera
et al. (2009), a fixed route is also more desirable operationally. Our SP
includes multiple performance dimensions (i.e., congestion, starvation,
fleet size, and rebalancing) and it can be solved multiple times in
a day. To accurately describe the uncertain parameters involved in
this problem, we propose a method to generate realistic scenarios and
establish the minimal dimension of the corresponding scenario tree.
Moreover, we propose a new approach to compute the demand which
allows to capture its evolution over time. Several indicators of antici-
pating rebalancing, of the value of the SP solution and of the quality
of the deterministic solutions are considered. In particular, through
an analysis of the deterministic solution, we consider a matheuristic,
based on the deterministic solution, to solve our SP. Moreover, we
design a simulation framework that is run to compare the quality of
different bike allocation plans along multiple performance dimensions.
Finally, with a sensitivity analysis, we assess the behavior of the first
and second-stage cost for increasing values of congestion and starvation
penalties.

Our computational experiments are based on a set of instances
of the real bike-sharing system of San Francisco. We first establish
2

computationally that our modeling approach leads to better solutions
than the one in which the demand is considered to be static. The results
also suggest that better allocation plans can be obtained by considering
rebalancing when the target inventory levels at stations are computed.
Moreover, we show that explicitly modeling uncertainty in demand
leads to improvements along multiple performance dimensions over
using a deterministic model. Nevertheless, the results also indicate that
using information from the deterministic solution within a matheuristic
framework allows us to find good-quality solutions for the SP in short
runtimes. Finally, the results reveal that the allocation plan provided
by our SP outperforms the one of the real San Francisco bike-sharing
system, on all dimensions.

The paper is organized as follows. In Section 2, we discuss the
relevant literature, and contrast both the problems studied and method-
ologies with the research proposed in this paper. In Section 3, we
describe the problem, while the SP is formulated in Section 4. In
Section 5, we describe all methods. In Section 6, we show the compu-
tational results. Finally, Section 7 provides conclusions and suggestions
for future works.

2. Literature review

In this section, we present a review of the papers studying station-
based bike-sharing systems. While reviewing the literature, we ob-
served that works that only focus on determining the optimal allocation
of bikes to stations (without rebalancing considerations) use the term
‘‘initial inventory’’, while a large part of the works that considers only
rebalancing or the optimal allocation and rebalancing use the term
‘‘target inventory’’. In both cases, these terms represent the number
of bikes that should ideally be at stations. For consistency, in the
following, we refer to these quantities as ‘‘target inventory’’.

The reviewed papers are summarized in Table 1 and can be classi-
fied into: (i) papers focusing exclusively on the problem of determining
the target inventory level at stations (Section 2.1), (ii) papers studying
exclusively the problem of rebalancing (Section 2.2), and (iii) papers
considering both problems jointly (Section 2.3).

For a review of additional bike-sharing problems (including, for
example, problems at the strategic decision level, problems dealing
with free-floating bike-sharing systems, and problems considering bike-
sharing incentives and parking reservation schemes), the reader can
refer to the work of Shui and Szeto (2020). In Section 2.4, we con-
clude with a summary of our contributions with respect to the extant
literature.

2.1. Target inventory level problems

Raviv and Kolka (2013) focus on the problem of determining the
optimal target inventory level at a single bike-sharing station. They
minimize a user dissatisfaction measure, expressed as a function of
the bike and locker shortage events. The proposed model omits inter-
dependencies among stations, both with reference to the withdrawn
and returned bike processes, and the penalties charged which are the
same across all stations. To overcome these limitations, Datner et al.
(2017) study the problem of setting the optimal target inventory levels
in a bike-sharing system with interactions between stations. These
interactions are captured by a user-behavior model which describes
the decisions a user may make in response to a shortage of bikes or
lockers, that are: waiting at a station, roaming to a nearby station, or
abandoning the system. The objective is to minimize the excess time
spent by a user in the system because of a shortage of bikes or lockers.
While this work is the first to consider interactions between stations in
setting the initial inventory levels and, to the best of our knowledge, it
is the only one that considers a stochastic demand process, it presents
three differences with respect to our work: (i) it does not consider the
capacity of the stations and the presence of a possibly limited bike
fleet size (i.e., some inventory levels could not be implementable), (ii)

it does not consider the possibility that rebalancing may take place,
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Table 1
Bike-sharing literature classification based on the problem features and the solution methodology.
Article Problem features Solution method

Target inventory Rebalancing Stochastic (S), Deterministic (D)

Raviv and Kolka (2013) ✓ S exact
Datner et al. (2017) ✓ S heuristic
Benchimol et al. (2011) static D exact
Chemla et al. (2013) static D heuristic
Raviv et al. (2013) static D exact
Erdoğan et al. (2014) static D exact
Ho and Szeto (2014) static D heuristic
Dell’Amico et al. (2014) static D exact
Forma et al. (2015) static D heuristic
Erdoğan et al. (2015) static D exact
Alvarez-Valdes et al. (2016) static D heuristic
Dell’Amico et al. (2016) static D heuristic
Cruz et al. (2017) static D heuristic
Nair and Miller-Hooks (2011) static S exact and heuristic
Dell’Amico et al. (2018) static S exact and heuristic
Bulhões et al. (2018) static D exact and heuristic
Bruck et al. (2019) static D exact
Lv et al. (2020) static D heuristic
Contardo et al. (2012) dynamic D heuristic
Brinkmann et al. (2015) dynamic S heuristic
Brinkmann et al. (2016) dynamic D heuristic
Ghosh et al. (2017) dynamic D heuristic
Brinkmann et al. (2019) dynamic S heuristic
Legros (2019) dynamic D heuristic
Li et al. (2024) dynamic S heuristic
Vogel et al. (2014) ✓ dynamic D heuristic
Regue and Recker (2014) ✓ dynamic D heuristic
Neumann-Saavedra et al. (2015) ✓ dynamic D exact
Lu (2016) ✓ static S exact
Vogel (2016) ✓ dynamic D heuristic
Schuijbroek et al. (2017) ✓ static S heuristic
Maggioni et al. (2019) ✓ static S exact
Ren et al. (2020) ✓ static D heuristic
Fu et al. (2022) ✓ dynamic S heuristic
Our paper ✓ static S exact and heuristic
and (iii) it does not consider that the service providers might also be
interested in minimizing the operational costs related to the allocation
of bikes at stations. Differently from these two papers, in our work,
the interdependence among stations is captured by making penalties
for congestion and starvation events dependent on the distance to the
next-closest station or on the average distance to all other stations.

2.2. Rebalancing problems

Concerning rebalancing, we can divide the papers into two different
groups depending on how often the repositioning of bikes is performed,
i.e., static rebalancing and dynamic rebalancing.

2.2.1. Static rebalancing
With static rebalancing, we refer to rebalancing operations per-

formed at night, when the system is closed or idle, to prepare the system
for the next day. According to Berbeglia et al. (2007), such a problem
is similar to the one-to-one pick-up and delivery problem (PDP) with
transshipment, since each rebalancing flow has exactly one pick-up
station and one delivery station, and these stations are determined by
the order in which they are visited.

However, this variant of the PDP does not consider the impact on
the customer service level (e.g., dissatisfaction due to congestion and
starvation events). The same limitation can be found in the following
papers which also use predetermined target levels (or ranges) for the
number of bikes that should be at each station after rebalancing.
Benchimol et al. (2011) formulate a modified version of the capaci-
tated traveling salesman problem to study the problem of finding a
minimal route that balances all stations, and they use an approximation
algorithm to address the problem. Chemla et al. (2013) propose some
relaxations to derive good lower bounds and a tabu search heuristic
3

to get upper bounds for the static rebalancing problem. Erdoğan et al.
(2014, 2015) propose exact methods to solve the problems. Similarly
to our work, the first assumes that rebalancing is done via a single
vehicle following a fixed route. Cruz et al. (2017) study a rebalancing
problem where only a single vehicle is available, but multiple visits
to the same station are allowed and they propose an iterated local
search heuristic. Dell’Amico et al. (2014) formulate models relying on
different pick-up and delivery problems and solve these formulations
via a branch-and-cut algorithm, while (Dell’Amico et al., 2016) extend
their work by proposing a destroy and repair algorithm. Recently, Bruck
et al. (2019) propose multiple model versions and exact algorithms to
perform rebalancing while minimizing the rebalancing costs measured
in terms of distance. They also impose that stations cannot be used as
temporary depots to provisionally collect and store bikes. In all three of
the latter papers, the objective is to minimize rebalancing costs using
a fleet of capacitated vehicles, instead of a single one. Besides the
presence of multiple vehicles, Alvarez-Valdes et al. (2016) and Bulhões
et al. (2018) also allow multiple visits to stations. Lv et al. (2020)
introduces the presence of multiple depots for rebalancing.

A number of papers also considers the customer satisfaction di-
mension. Raviv et al. (2013) propose a deterministic multi-objective
mathematical program in which they minimize an objective that con-
sists of penalties for stockouts, penalties for stations being at capacity
when users wish to return bikes, and the operational costs incurred
when rebalancing. They present an arc-indexed and a time-indexed
formulation, with the first limiting each vehicle to visit each station at
most once. Their first formulation is also studied in Forma et al. (2015),
but solved using a matheuristic based on the clustering-first routing-
second paradigm, while Ho and Szeto (2014) propose a modification
of the problem studied in Forma et al. (2015), by not considering the
rebalancing costs.

Among stochastic static rebalancing problems, we mention the work

of Nair and Miller-Hooks (2011) and that of Dell’Amico et al. (2018),
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who propose multiple stochastic programming formulations to deal
with uncertain demand by deciding vehicle routes and rebalanced
quantities. Apart from minimizing the rebalancing costs, they also
consider penalties for each unit of deviation with respect to the stations
target inventory levels.

2.2.2. Dynamic rebalancing
Even if much of the literature focuses on static rebalancing, some

works have focused on its dynamic version. With dynamic rebalancing,
we refer to rebalancing operations executed during the day when the
system is in use and, hence, unexpected bike withdrawals or returns
may occur while rebalancing is performed.

Examples of works studying dynamic rebalancing and focusing on
deterministic demand are those by Contardo et al. (2012), Ghosh et al.
(2017), and Brinkmann et al. (2016). Among the works dealing with
stochastic dynamic rebalancing, Brinkmann et al. (2015) minimizes
the expected number of violations of due dates, i.e., the latest time a
station has to be served by a vehicle to satisfy a request. Brinkmann
et al. (2019) propose a stochastic-dynamic inventory routing problem
for rebalancing bikes with one vehicle, and Brinkmann et al. (2020)
extends this work to the multi-vehicle case. Legros (2019) adopts a
Markov decision process approach based on a decomposition at a sta-
tion level to decide which station should be prioritized and the amount
of bikes to move between stations with the objective of minimizing
user dissatisfaction. Recently, Li et al. (2024) formulate a multi-period
two-stage stochastic model for the dynamic rebalancing problem with
stochastic demand. The authors propose a rolling horizon framework
within which a hybrid metaheuristic (based on genetic algorithms and
variable neighborhood search) is executed.

2.3. Target inventory level problems with rebalancing

Finally, the following papers consider the problem of determining
the number of bikes at stations and of rebalancing jointly.

Vogel et al. (2014), Neumann-Saavedra et al. (2015), and Vogel
(2016) rely on a service network design formulation considering both
the problem of determining the station optimal target inventory levels,
and of dynamically rebalancing. Regue and Recker (2014) present a
sequential framework for making target inventory level and rebalanc-
ing decisions. The first step in this framework is to forecast demand
at each station, from which an initial inventory level for that station
is determined. The second step is to determine a dynamic rebalancing
plan based upon those target inventory levels, which dictate how many
bikes should be transported from one station to another. Then, the
third step is to determine vehicle routes to execute that rebalancing
plan. Lu (2016) studies a problem that focuses on both the target
inventory level and rebalancing of bikes, wherein there is uncertainty
in how bike usage will deviate from what is expected. Their objec-
tive function measures bike supply cost, inventory and redistribution
costs, and penalties associated with stock-outs. Differently from our
approach, they propose a robust model of this problem that seeks to
minimize their objective under a maximum demand scenario generated
from two different uncertainty sets. A robust optimization approach
is also adopted by Fu et al. (2022), who maximizes the revenue mi-
nus the total rebalancing costs. Schuijbroek et al. (2017) propose a
sequential approach for solving the problem of determining the service
level requirements (i.e., target inventory intervals) at each station and
the rebalancing vehicle routes. They model the stochastic demand by
considering the inventory at each station independently as a non-
stationary queuing system with finite capacity. Uncertain demands are
also considered in Maggioni et al. (2019), who formulate a two-stage
and a multi-stage stochastic program to determine the target initial
inventory level at stations to minimize the sum of bike procurement
costs, expected bike and locker stockout costs, and transshipment costs
for performing static rebalancing of bikes. In their work, rebalanc-
ing is performed under the assumption that bikes can be transferred
4

directly between two locations, i.e., without following a route. This
assumption is reasonable for bike-sharing systems where the duration
of rebalancing is not critical, as direct bike transfers usually result in
longer times and higher costs compared to those that follow a route.
Finally, Ren et al. (2020) study the static rebalancing problem with
multiple vehicles and stations which can only be visited once. Apart
from minimizing the variable and fixed rebalancing costs, the authors
also focus on the fleet size, i.e., on the number of bikes leaving the
depot which are initially loaded by each vehicle.

2.4. Contribution of this work

In light of the literature reviewed, we believe our work makes the
following contributions. Compared to the literature that focuses only on
determining target inventory levels, or considers the target inventory
level problem and rebalancing sequentially, our approach provides
better target inventory levels because of the simultaneous consideration
of both inventory levels and rebalancing decisions. This approach
leads to fewer underestimations and overestimations of target inventory
levels, resulting in a more efficient system with fewer congestion and
starvation events.

Moreover, unlike papers that exclusively focus on rebalancing oper-
ations, our goal is to determine the ideal number of bikes that should
be at stations and that should be used as a target for rebalancing oper-
ations. Therefore, these targets are decision variables in our problem,
rather than given parameters.

With respect to the papers that study how to determine target
inventory levels by considering rebalancing operations in a determin-
istic setting, we propose an approach that explicitly considers the
uncertainty in the demand. With our approach, we obtain better target
inventory levels that improve the supply and demand match for the
system.

Finally, compared to the papers that recognize uncertainty in the de-
mand, our approach includes realistic features of bike-sharing systems,
such as the presence of the valet service, or route-based rebalancing
operations. Motivated by the increased complexity arising from consid-
ering a stochastic model, we further consider a matheuristic approach
to obtain high-quality solutions for the stochastic program with reduced
runtimes.

3. Problem description

We study a bike-sharing system managed by a service provider
wherein the decision-making is centralized. The service provider has to
determine the target inventory level of bikes to allocate at each station
under uncertain demand, considering that bikes are rebalanced at a
later point in time to restore that target inventory level.

We consider a single depot, multiple stations with given capacities,
and a number of bikes that can already be at stations. We assume
that there is a limited number of bikes corresponding to the depot
capacity. We presume rebalancing is executed by a capacitated vehicle
that travels along a known and fixed route (determined a priori by
solving a Traveling Salesman Problem) that begins at the depot, visits
each station, and ends at the depot.

Because our goal is to make better allocation decisions by consid-
ering an approximation of the rebalancing costs, it is reasonable to
consider such a fixed route. In fact, we do not aim to obtain the exact
rebalancing plan that will be executed, but just an estimate of the
rebalancing costs. Because of this, we also do not model the possibility
to move bikes from the depot to a station during the rebalancing
operation. This choice allows us to measure the ideal fleet size as
the sum over all stations of their target inventory levels. However,
our rebalancing cost approximation considers that bikes can still be
redistributed from the first station to the next stations visited in the

tour.
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The capacity of each station can be temporarily expanded using the
so-called ‘‘valet service’’, which consists of individuals who can keep
station docks free when the station would be at capacity. We assume
that, if the rebalancing vehicle fails to bring the number of bikes at a
station below its capacity, it dispatches a staff member to that station.
Hence, the valet service is available everywhere whenever it is needed.
The managing effort of this staff member is dependent on the number
of bikes in excess at that station.

Because the service provider wants to maximize the customer ser-
vice level, the occurrence of both congestion (a user wishes to return a
bike to a station but it is full) and starvation (a user wishes to rent a bike
from a station but it is empty) must be avoided. At the same time, the
provider wants to minimize operational costs. For this, the number of
bikes allocated and rebalanced (to prevent bike damage) is minimized.
Moreover, the number of bikes exceeding the station capacity must be
small to decrease the likelihood of resorting to the valet service. The
objective of our problem includes all these aspects.

4. A two-stage stochastic programming (SP) formulation

In this section, we propose a two-stage SP of the problem presented
in Section 3. We refer to Birge and Louveaux (2011) and King and
Wallace (2012) for comprehensive books on Stochastic programming.
Table 7 in Appendix A summarizes the used notation.

We denote the set of bike-stations by  = {1,… , 𝐼}, where 𝐼 is the
depot, and the set of possible realizations of uncertainty, i.e. scenarios,
by  = {1,… , 𝑆}.

The depot capacity and the total availability of bikes correspond
to 𝐼𝐼0, while 𝐼 𝑖0 represent the initial availability of bikes at station
𝑖 ∈  ⧵ {𝐼}. The capacity of each station is denoted by 𝑄𝑖, and the
capacity of the vehicle used for rebalancing is represented by 𝐶.

The demand at each station is measured as the difference between
he uncertain number of withdrawn and returned bikes at that station,
uring the period between when bikes are ideally allocated and redis-
ributed. To mitigate the limitation of the static demand assumption,
e encourage the model to allocate no fewer bikes than the maximum
umber of consecutive withdrawn bikes from a station before a return
vent, and to maintain no fewer free docks than the maximum number
f consecutive bikes returned to a station before a withdrawal event.
his approach allows us to prevent congestion and starvation especially

f there are peaks of consecutive withdrawn and returned bikes. As an
xample, suppose that there is a maximum of two bikes consecutively
ithdrawn from a station before a return occurs, in a given time

nterval. By only considering the net demand, the model will suggest
target inventory level of one bike (2 − 1). This results in a starvation

event when a user wants to withdraw the second bike. However, with
our approach, the model is encouraged to set a target inventory level
of two (maximum number of withdrawn bikes before a return occurs).
This allows us to prevent a starvation event.

We define 𝑑𝑠𝑖 as the stochastic demand of bikes at station 𝑖 ∈  ⧵{𝐼}
in scenario 𝑠 ∈ . Moreover, 𝑔𝑠𝑖 and ℎ𝑠𝑖 represent the stochastic maxi-
mum number of consecutive bikes withdrawn from station 𝑖 ∈  ⧵ {𝐼}
before a return occurs in scenario 𝑠 ∈ , and the stochastic maximum
umber of consecutive bikes returned to station 𝑖 ∈  ⧵ {𝐼} before a
ithdrawal occurs in scenario 𝑠 ∈ , respectively. The probability of

scenario 𝑠 ∈  is denoted by 𝑝𝑟𝑠.
Before the stochastic parameters (i.e., 𝑑𝑠𝑖 , 𝑔

𝑠
𝑖 , and ℎ𝑠𝑖 ) become known,

the service provider needs to determine the value of the non–negative
integer variables 𝑥𝑖, i.e., the target inventory level of station 𝑖 ∈ ⧵{𝐼}.
These are the first-stage variables of our SP. A unit penalty cost 𝑓𝑖 is
charged, to take into account the cost of the potential damage of each
used bike.

After allocating the bikes, at a later point during the day, the
stochastic demands 𝑑𝑠𝑖 , and the stochastic maximum number of con-
secutive withdrawn and returned bikes 𝑔𝑠𝑖 and ℎ𝑠𝑖 are observed at each
station 𝑖. Then, the service provider determines a rebalancing plan
5

based on the number of bikes available at each station. We indicate
the number of bikes to rebalance from station 𝑖 to station 𝑖 + 1 in
scenario 𝑠 by the integer variables 𝑦𝑠𝑖,𝑖+1. These are the second-stage
variables. Each rebalanced bike is penalized by 𝑡𝑖,𝑖+1. After rebalancing,
the surplus or shortage at each station can be immediately computed.
We denote the balance of bikes at station 𝑖 ∈ ⧵{𝐼} in scenario 𝑠 ∈  by
𝐼𝑠𝑖 ∈ Z, while the units of surplus and stock-out at station 𝑖 ∈  ⧵ {𝐼} in
scenario 𝑠 ∈  are represented by 𝐼𝑠+𝑖 and 𝐼𝑠−𝑖 , respectively. Moreover,
𝐵𝑠
𝑖 indicates the extra inventory balance, and 𝐸𝑠

𝑖 the excess inventory
balance at station 𝑖 ∈  ⧵ {𝐼} in scenario 𝑠 ∈ .

We recall that in our problem, the service provider seeks to avoid
the occurrence of both congestion (a user wishes to return a bike to a
station but it is full) and starvation (a user wishes to rent a bike from
a station but it is empty).

Congestion is measured by the ‘‘extra inventory’’ term 𝐵𝑠+
𝑖 , which

represents the number of bikes at station 𝑖 ∈  ⧵ {𝐼} in scenario 𝑠
that is above and beyond the initial inventory plus the allocated bike
number. Recalling the possible need for the valet service, with the
‘‘excess inventory’’ term 𝐸𝑠+

𝑖 , 𝑖 ∈  ⧵ {𝐼}, we measure the number of
bikes in excess of station capacity in scenario 𝑠. We refer to the weight
associated with ‘‘excess inventory’’ as the ‘‘excess penalty’’ 𝑐𝑖, ∀𝑖 ∈
 ⧵ {𝐼} and the weight associated with ‘‘extra inventory’’ as the ‘‘extra
penalty’’ 𝑐𝑖

𝑄𝑖
, ∀𝑖 ∈  ⧵ {𝐼}. Because the extra inventory represents an

increased risk of incurring congestion, it is penalized in relative terms
with respect to the capacity of each station. In fact, given the same
extra inventory level at two stations characterized by two different
capacities, the risk of congestion is higher for the station with lower
capacity and our penalty 𝑐𝑖∕𝑄𝑖 represents the magnitude of this risk.

Starvation is measured by 𝐼𝑠−𝑖 , 𝑖 ∈  ⧵ {𝐼}, representing the realized
shortage of bikes at station 𝑖 in scenario 𝑠. We refer to the weight
associated with starvation as the ‘‘stock-out penalty’’ 𝑝𝑖, 𝑖 ∈  ⧵ {𝐼}.
Note that we do not penalize the risk of incurring starvation, i.e., we
do not penalize the number of bikes that is below the sum of the
initial inventory and the allocated bikes (unless we encounter stock-
out). In fact, because congestion events are more frustrating than
starvation events for users, operators prioritize congestion avoidance
over starvation (de Chardon et al., 2016).

We finally recall that the stochastic parameters 𝑔𝑠𝑖 and ℎ𝑠𝑖 are
introduced to encourage the model to determine a target inventory
level higher than 𝑔𝑠𝑖 and to maintain no fewer free docks than ℎ𝑠𝑖 .
To guarantee that a feasible solution can be found if the sum of the
maximum number of consecutive withdrawn and returned bikes is
greater than the station capacity (i.e., 𝑔𝑠𝑖 + ℎ𝑠𝑖 > 𝑄𝑖), we introduce the
variables 𝑎𝑠𝑖 to represent the slack between the number of allocated
bikes 𝑥𝑖 and 𝑔𝑠𝑖 at station 𝑖 ∈  ⧵ {𝐼} in scenario 𝑠 ∈ . Similarly,
the variables 𝑏𝑠𝑖 denote the units of slack between the number of free
racks 𝑄𝑖 − 𝑥𝑖 and ℎ𝑠𝑖 at station 𝑖 ∈  ⧵ {𝐼} in scenario 𝑠 ∈ .

We illustrate the sequence of decisions and events with an exam-
ple in Fig. 1. The leftmost part of Fig. 1 represents the first-stage
decision, in which bikes are allocated to stations according to the
target inventory level (see blue arrows) determined before knowing the
realized demand, and the realized maximum number of consecutive
withdrawn and returned bikes before a return or withdrawal event
occurs. In the central part of the figure, each orange arrow represents
one scenario describing the bike demand, and the maximum number
of consecutive withdrawn and returned bikes at stations. Finally, in the
rightmost part of Fig. 1, each small figure shows a recourse decision to
make for each scenario that may have realized. Each of these figures
represents the number of bikes rebalanced by a vehicle following a
fixed route described by green arrows. Hence, the rightmost part of
Fig. 1 represents the rebalancing cost approximation, that depends on
the first-stage decision, and on the stochastic demand and maximum
number of withdrawn and returned bikes.

As such, this model can be solved repeatedly throughout the day.
For example, at 6:00 a.m., the service provider wants to determine the
target inventory levels of stations. For this, they solve the SP which
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Fig. 1. Illustration of the two-stage decision-making process.
returns the number of bikes which should ideally be at each station by
considering an approximation of the costs occurring for rebalancing at
12:00 p.m. Note that our approximation is based on a rebalancing plan
that will not necessarily be the one that will actually be implemented
at 12:00 p.m. At 6:00 a.m., the service provider makes sure that each
station has the number of bikes prescribed by the solution of our SP.
Then, at 12:00 p.m., the service provider solves again the SP to get the
new target inventory level of stations at noon. This time, this decision
is based on an approximation of the costs that will be charged for
rebalancing at 6:00 p.m.

The problem can be formulated as the following integer non-linear
SP, which we linearize in Appendix B: Problem 

min
∑

𝑖∈
𝑓𝑖𝑥𝑖 +

∑

𝑠∈
𝑝𝑟𝑠[

∑

𝑖∈⧵{𝐼}
(𝑡𝑖,𝑖+1𝑦𝑠𝑖,𝑖+1 +

𝑐𝑖
𝑄𝑖

𝐵𝑠+
𝑖 + 𝑐𝑖𝐸

𝑠+
𝑖

+ 𝑝𝑖(−𝐼𝑠−𝑖 ) + 𝑝𝑖𝑎
𝑠
𝑖 + 𝑐𝑖𝑏

𝑠
𝑖 )]

(1)

s.t:

𝑥𝑖 ≥ 𝑔𝑠𝑖 − 𝑎𝑠𝑖 𝑖 ∈  ⧵ {𝐼}, 𝑠 ∈  , (2)

𝑄𝑖 − 𝑥𝑖 ≥ ℎ𝑠𝑖 − 𝑏𝑠𝑖 𝑖 ∈  ⧵ {𝐼}, 𝑠 ∈  , (3)

𝐼 𝑖0 + 𝑥𝑖 ≤ 𝑄𝑖 𝑖 ∈  ⧵ {𝐼}, (4)

∑

𝑖∈⧵{𝐼}
𝑥𝑖 ≤ 𝐼𝐼0, (5)

𝑦𝑠𝑖,𝑖+1 ≤ 𝐶 𝑖 ∈  ⧵ {𝐼}, 𝑠 ∈  , (6)

𝐼𝑠𝐼 = 𝐼𝐼0 −
∑

𝑖∈⧵{𝐼}
𝑥𝑖 + 𝑦𝑠𝐼−1,𝐼 𝑠 ∈  , (7)

𝐼𝑠𝐼 ≤ 𝐼𝐼0 𝑠 ∈  , (8)

𝐼𝑠1 = 𝐼 𝑖0 + 𝑥1 − 𝑑𝑠1 − 𝑦𝑠1,2 𝑠 ∈  , (9)

𝐼𝑠𝑖 = 𝐼 𝑖0 + 𝑥𝑖 − 𝑑𝑠𝑖 + 𝑦𝑠𝑖−1,𝑖 − 𝑦𝑠𝑖,𝑖+1 𝑖 ∈  ⧵ {1, 𝐼}, 𝑠 ∈  , (10)

𝐼𝑠+𝑖 = max{0, 𝐼𝑠𝑖 } 𝑖 ∈  ⧵ {𝐼}, 𝑠 ∈  , (11)

𝐼𝑠− = min{0, 𝐼𝑠} 𝑖 ∈  ⧵ {𝐼}, 𝑠 ∈  , (12)
6

𝑖 𝑖
𝐸𝑠
𝑖 = 𝐼𝑠+𝑖 −𝑄𝑖 𝑖 ∈  ⧵ {𝐼}, 𝑠 ∈  , (13)

𝐸𝑠+
𝑖 = max{0, 𝐸𝑠

𝑖 } 𝑖 ∈  ⧵ {𝐼}, 𝑠 ∈  , (14)

𝐵𝑠
𝑖 = 𝐼𝑠+𝑖 − 𝑥𝑖 − 𝐼 𝑖0 − 𝐸𝑠+

𝑖 𝑖 ∈  ⧵ {𝐼}, 𝑠 ∈  , (15)

𝐵𝑠+
𝑖 = max{0, 𝐵𝑠

𝑖 } 𝑖 ∈  ⧵ {𝐼}, 𝑠 ∈  , (16)

𝑥𝑖 ≥ 0 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 𝑖 ∈  ⧵ {𝐼}, (17)

𝑦𝑠𝑖,𝑖+1, 𝐼
𝑠+
𝑖 , 𝐼𝑠−𝑖 , 𝐵𝑠+

𝑖 , 𝐸𝑠+
𝑖 , 𝑎𝑠𝑖 , 𝑏

𝑠
𝑖 ≥ 0 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 𝑖 ∈  ⧵ {𝐼}, 𝑠 ∈  , (18)

𝐼𝑠𝑖 , 𝐵
𝑠
𝑖 , 𝐸

𝑠
𝑖 𝑓𝑟𝑒𝑒 𝑎𝑛𝑑 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 𝑖 ∈  ⧵ {𝐼}, 𝑠 ∈  . (19)

The objective function (1) represents the minimization of the ex-
pected total cost obtained through the sum of penalties for the allocated
bikes, the expected rebalancing cost between stations, the expected
extra and excess penalties and expected stock-out penalty for shortage,
plus the penalization of the slack variables. Constraints (2) encourage
the target inventory quantity to be greater or equal than the maximum
number of consecutive withdrawals, while constraints (3) encourage
the number of free racks to be greater or equal than the maximum
number of consecutive returns. To guarantee that a feasible solution can
be found if the sum of the maximum number of consecutive withdrawn
and returned bikes is greater than the station capacity (i.e., 𝑔𝑠𝑖 +ℎ

𝑠
𝑖 > 𝑄𝑖)

the slack variables 𝑎𝑠𝑖 and 𝑏𝑠𝑖 allow for deviations from these quantities.
The amount of such a deviation is determined by the model thanks
to the penalization of these slack variables in the objective function.
Constraints (4) guarantee that the sum between the quantity allocated
and initially available at each station does not exceed the station
capacity. Constraint (5) implies that the total number of delivered bikes
to stations is less than the available quantity at the depot.

Constraints (6) ensure that the number of bikes carried by the
vehicle during rebalancing never exceeds its capacity in each scenario
𝑠 ∈ . We recall that rebalancing occurs on a fixed route that begins
and ends at the depot, but that rebalancing does not involve bringing
bikes from the depot to the first station on this route. Consequently,
when determining the target inventory level of the first station, the
model considers the impossibility of moving bikes from the depot to
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that station at a later stage through rebalancing, and a larger number
of bikes will be allocated at the first station if needed.

Constraints (7) ensure that, for the depot, in each scenario 𝑠 ∈
, the quantity at the end of the period is equal to the initial bike
availability and the quantity received from the last visited station
minus the quantities delivered to stations. Constraints (8) ensure that,
in each scenario 𝑠 ∈ , at the end of the rebalancing period, the
number of bikes at the depot does not exceed its capacity. Moreover,
the ‘‘flow balance’’ constraints for bikes at the first station on this
route is different from the remaining stations. Specifically, constraints
(9) ensure that, for the first visited station, the quantity at the end of
rebalancing is equal to the sum between the initial available quantity
and the quantity received from the depot minus the quantities used to
satisfy the demand and those bikes that are redistributed to subsequent
stations on the route in each scenario 𝑠 ∈ . Similarly, constraints (10)
determine the inventory position (which can be negative or positive)
at a station other than the first, as a function of the initial inventory
level, the number allocated, the number withdrawn/returned, and the
number redistributed to another station in each scenario 𝑠 ∈ .

Constraints (11) and (12) determine the surplus and stock-out quan-
ities, respectively, for each station and for each scenario 𝑠 ∈ .
onstraints (13) and (14) calculate the number of bikes at each station
hat are in excess of station capacity, in each scenario 𝑠 ∈  and
re collected thanks to valet service. Similarly, constraints (15) and
16) determine, for each scenario 𝑠 ∈ , when there are more bikes
ositioned at a station after rebalancing than were initially allocated,
nd less or equal to station capacity.

Finally, constraints (17) to (19) define the domain of the variables.

. Methodology

In this section, we describe the methods that we use for our analysis.
n Section 5.1, we explain how scenarios have been generated and
etermine the size of the related scenario tree. The indicators used
o analyze the value of rebalancing and of including rebalancing in-
ormation are described in Section 5.2. In Section 5.3, we present the
ndicators that we use to analyze the stochastic solution. In Section 5.4,
e describe the matheuristic we propose. Finally, in Section 5.5, we
escribe the simulation model used to compare the performance of
arget inventory levels suggested by different approaches.

.1. Scenario generation method

Scenario generation is an important part of the modeling process,
ince a bad scenario tree can lead to a solution of the optimization
roblem that is not meaningful. Consequently, in this section, we aim
t understanding how to generate realistic scenarios.

We recall that a typical assumption of stochastic programming is
hat the distribution of the random variable is known. However, in most
ractical applications, the distributions of the stochastic parameters
ave to be approximated by discrete distributions with a limited num-
er of outcomes. The discretization is called a scenario tree. We assume
hat the random variables, which are the demand and the maximum
umber of consecutive withdrawals and returns at each station, have
finite number of possible outcomes, assumed to be exogenous to the
roblem. Consequently, the probability distribution is not influenced by
ecisions. Making these assumptions, we can represent the stochastic
emand 𝑑𝑠𝑖 , 𝑖 ∈ , 𝑠 ∈ , the maximum number of consecutive
ithdrawals 𝑔𝑠𝑖 , 𝑖 ∈ , 𝑠 ∈ , and the maximum number of consecutive

returns ℎ𝑠𝑖 , 𝑖 ∈ , 𝑠 ∈ , using a scenario tree which contains a root and
a finite set of leaves.

Our method for generating scenarios presumes ridership data con-
sisting of all withdrawal and return events occurred at each station
𝑖 on 𝑁 days. For each of such events, the time at which a bike has
been withdrawn and returned is also available. We extract, for each
station 𝑖 ∈  ⧵ {𝐼} and day 𝑛 ≤ 𝑁 , the sequence of all withdrawal and
7

r

Fig. 2. Example of the evolution of the number of bikes for a given time interval at
a given station.

return events within the considered time interval, and we denote this
sequence for station 𝑖 on day 𝑛 by 𝜙𝑛

𝑖 . Note that we do not consider
ensored demand (i.e., invisible demand for withdrawals and returns
hat cannot be observed because the station has no bikes or free docks)
ue to its unavailability from the ridership data. For censored demand
stimation, the interested reader can refer to approaches based on data
reprocessing techniques (Albiński et al., 2018), simulation (Negahban,
019), or predictive models (Gammelli et al., 2020). From the sequence
𝑛
𝑖 , we compute:

• The net demand as 𝑑𝑛𝑖 = 𝑤𝑛
𝑖 − 𝑠𝑛𝑖 , where 𝑤𝑛

𝑖 and 𝑠𝑛𝑖 represent
the total number of withdrawn and returned bikes, respectively,
at station 𝑖 on day 𝑛 in the considered time interval. Since we
add penalties in the objective function for excess inventory and
for stockout, we do not bound the demand values to stations
capacities.

• The maximum number 𝑔𝑛𝑖 of consecutive withdrawn bikes before
a return occurs.

• The maximum number ℎ𝑛𝑖 of consecutive returned bikes before a
withdrawal occurs.

his way, we obtain, for each station and day, a quadruplet (𝜙𝑛
𝑖 , 𝑑

𝑛
𝑖 , 𝑔

𝑛
𝑖 , ℎ

𝑛
𝑖

ig. 2 shows an example of the evolution of the number of bikes at
station for ten time periods. In this example, the sequence of with-

rawal and return events is represented by 𝜙𝑛
𝑖 = {−4, 1,−1, 1, 1, 1,−1, 1}.

ecause there are 6 withdrawn and 5 returned bikes, the net demand
s obtained as 𝑑𝑛𝑖 = 6 − 5 = 1. The maximum number of consecutive
ithdrawals before a return occurs corresponds to 𝑔𝑛𝑖 = 4 (see time
eriod 2), and the maximum number of consecutive returns before a
ithdrawal occurs is ℎ𝑛𝑖 = 3 (see time periods from 5 to 7).

Finally, for each station 𝑖 ∈  ⧵ {𝐼}, we derive the empirical distri-
ution of its quadruplets (𝜙𝑛

𝑖 , 𝑑
𝑛
𝑖 , 𝑔

𝑛
𝑖 , ℎ

𝑛
𝑖 ) as inverse of the Kaplan–Meier

stimate of the cumulative distribution function (also known as the
mpirical cdf). Using this empirical cdf, scenario trees of any size can be
enerated according to a Monte Carlo sampling procedure. Because the
mpirical distribution is quadruplet-based, the four stochastic parame-
ers have a joint distribution. In the sampling process, Pseudo-code (1)
n Appendix C presents the details for scenario generation.

.1.1. Determining the size of the scenario tree
In this section, we describe the procedure to determine the size of

he scenario tree to accurately describe the stochastic parameters. To
etermine the minimum number of scenarios to consider, we perform
oth an in-sample and out-of-sample stability analysis of our stochas-
ic program, following the procedure described in Kaut and Wallace
2007).

Regarding the in-sample analysis, we solve an SP for scenario trees
f increasing size. Specifically, we generate one scenario tree for each
ize. For each scenario tree size, we store the obtained SP first-stage
ariable solutions.

Because these in-sample objective values are not directly compa-

able (they are computed by using scenario trees of different sizes),
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an out-of-sample stability analysis is necessary to compute the out-of-
sample costs to estimate the effect of using a larger scenario tree. For
this purpose, we declare a large scenario tree to be the true represen-
tation of the real world, and we use it as a benchmark to evaluate the
cost of the optimal solutions obtained from the in-sample analysis, i.e.,
using scenario trees with a smaller size. The smaller scenario tree size
at which the objective function value becomes stable (i.e., stops varying
by a large amount) determines the number of scenarios to consider.

5.2. Indicators for analyzing the value of rebalancing and of anticipating
rebalancing

In this section, we present the indicators used to assess the value of
rebalancing and the value of anticipating rebalancing.

With the Value of Rebalancing (VR), we measure the benefits of
rebalancing in comparison to a bike-sharing system that does not do
it. To compute this indicator, we denote the objective function value
of the SP by RP. Moreover, we consider the optimal objective function
value RPwo_reb obtained by solving the SPwo_reb, that is the SP in which
ebalancing is forbidden (i.e., all rebalancing variables and parameters
re removed from the model). Then, we compute the (percentage) VR
s:

R(%) = [(RPwo_reb − RP)∕RP] × 100.

he Value of Anticipating Rebalancing (VAR) measures the advantage
f considering rebalancing when the target inventory levels are de-
ermined compared to ignoring it. For this, we evaluate how the
Pwo_reb solution performs in a bike-sharing system with rebalancing by
omputing the RPreb. This objective function value RPreb is obtained
y fixing the SPwo_reb first-stage decisions in the SP. We compute the
percentage) VAR as:

AR(%) = [(RPreb − RP)∕RP] × 100.

.3. Indicators for the analysis of stochastic solution

In this section, we present the indicators adopted to analyze the
alue of stochastic solution (Section 5.3.1), and the quality of the
xpected value solution (Section 5.3.2).

.3.1. Indicators for analyzing the value of the stochastic solution
To determine the importance of including uncertainty in our model,

e compute the Value of Stochastic Solution (VSS) (Birge and Louveaux,
2011; Kall and Wallace, 1994).

First, we solve the SP on the scenario tree generated by applying
the methods described in Section 5.1 to get the optimal SP objective
function value, that we call RP. We then solve the Expected Value
problem (EVP) and get its optimal objective function value EV. The
EVP is the deterministic version of our SP obtained by replacing the
random parameters for demand, and maximum consecutive number
of withdrawn and return bikes with their expected values rounded to
the nearest integer (these quantities cannot be represented by frac-
tional values). We then evaluate how the EVP solution performs in the
stochastic setting by computing the Expectation of Expected Value (EEV),
btained by fixing the first-stage expected value decisions in the SP.
inally, we compute the (percentage) VSS as:

SS(%) = [(EEV − RP)∕RP] × 100.

.3.2. Indicator of the structure of the expected value solution
To assess the quality of the EVP solution when solving the SP, we

ompute the Loss of Using the Skeleton Solution (LUSS) (Maggioni and
allace, 2012).
For our problem, we interpret the skeleton solution as the stations

o which no bike is allocated. To compute the LUSS, we examine the
olution of the EVP to determine the subset of stations ̄ to which it
8

llocates zero bikes. We then solve the SP, fixing 𝑥𝑖 = 0 for stations
∈ ̄. We refer to the objective function value of the optimal solution to
his problem as the Expected Skeleton Solution Value (ESSV) and compute
he (percentage) LUSS as:

USS(%) = [(ESSV − RP)∕RP] × 100.

.4. A matheuristic algorithm based on the upgradability of the expected
alue solution

To assess the upgradability of the EVP solution when solving the SP,
e compute the Loss of Upgrading the Deterministic Solution (LUDS) (Mag-
ioni and Wallace, 2012). With the LUDS, we seek to determine
hether the solution to the EVP is upgradeable, i.e., it can be used
s a starting point for generating a high-quality solution to the SP. To
o so, we solve the SP, albeit with additional constraints ensuring that
he values of the first-stage variables are at least as large as their values
n the optimal solution to the EVP. We refer to the objective function
alue of the optimal solution to this restricted SP as the Expected Input
alue (EIV) and compute the (percentage) LUDS as:

UDS(%) = [(EIV − RP)∕RP] × 100.

The procedure to compute the LUDS can be viewed as a matheuristic
n which a mathematical model, based on information from the deter-
inistic solution, is solved. Our aim is to show that this matheuristic
erforms better than the deterministic solution on which it is based,
nd that its running time is smaller than the one needed to optimally
olve the problem.

.5. Simulation model

To simulate the performance of an initial allocation of bikes to
tations, we consider the historical ridership data of a week.

For each day during this week, we input the number of allocated
ikes to every station and simulate the movement of bikes based on
ides taken on that day. We record statistics related to: (i) the number
f times a user wants to return a bike to a station but it is full
‘‘cong.(%)’’), and (ii) the number of times a user wants to withdraw
bike from a station but it is empty (‘‘starv.(%)’’). Then, we compute

he inventory level at each station before rebalancing is performed as
before rebalancing
𝑖 = 𝐼 𝑖0 + 𝑥𝑖 − 𝑤𝑖 + 𝑠𝑖, where 𝑤𝑖 and 𝑠𝑖 stand for the
umber of withdrawn and returned bikes, respectively, at station 𝑖,

defined in the interval of integer numbers [0, 𝑄𝑖]. From this, we solve
he second stage of our SP to determine the number of rebalanced
ikes (‘‘#rebal.’’), and the final inventory level at each station after
ebalancing is performed, i.e., 𝐼after rebalancing

𝑖 = 𝐼before rebalancing
𝑖 +𝑦𝑖−1,𝑖−

𝑖,𝑖+1.
To measure the number of bikes that are not redistributed through

ebalancing (it is not convenient according to our SP), by using
after rebalancing
𝑖 , we compute the sum of the extra inventory balance
ver all stations (‘‘𝐵+’’) that represents the total number of bikes in
xcess with respect to the sum of the target inventory levels of stations.
inally, to observe how the system performs after rebalancing has
een carried out, we adopt an alternative perspective on the final
nventory levels, and we calculate a fill rate-type statistic that estimates
he percentage of future bike withdrawals that can be satisfied. For
his, we use the same demand scenario set determined according to
ection 5.1.1, and compute the fill rate of station 𝑖 in scenario 𝑠 as
ollows:

𝑅𝑠
𝑖 =

⎧

⎪

⎨

⎪

⎩

1 if 𝐼after rebalancing
𝑖 − 𝑑𝑠𝑖 ≥ 0,

𝐼after rebalancing
𝑖

𝑑𝑠𝑖
otherwise.

(20)

To get the average expected fill rate, we average this statistic over all
stations (𝐹𝑅(%)) and scenarios (E) and, in the following, we refer to it
with ‘‘E[𝐹𝑅(%)]’’.
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6. Numerical results

In this section, we present and analyze the results of our compu-
tational study. We describe the generated instances and scenarios in
Section 6.1. Section 6.2 presents an assessment of the influence of the
inclusion of the stochastic parameters 𝑔𝑠𝑖 and ℎ𝑠𝑖 in SP (introduced to
correct the static demand assumption). In Section 6.3, we assess the
value of rebalancing and rebalancing information. Section 6.4 presents
the results of the stochastic solution analysis, including the evaluation
of the performance of the matheuristic we consider. We compare the
target inventory levels determined by solving the SP to the real allo-
cation plan implemented in the bike-sharing system of San Francisco
in Section 6.5. Finally, in Section 6.6, we conclude with a sensitivity
analysis to evaluate the behavior of the SP first-stage and second-stage
cost for increasing values of the penalties in the SP second stage.

All computational experiments were run on a computer with 8 GB
of RAM and a 2.70 GHz CPU. All software was implemented in Python
3.6.1, with optimization problems solved to optimality with Gurobi
9.5.2. All Gurobi parameters were set to their default values.

6.1. Instances and scenario tree

In order to study the impact of different numbers of stations, differ-
ent lengths of the time interval, and different congestion and starvation
penalties on the solutions of our SP, we generate 30 instances based
on the bike-sharing system of the city of San Francisco. The San
Francisco bike-sharing system consists of 340 stations. Their location
and the ridership data are available at the website https://www.lyft.
com/bikes/bay-wheels/system-data (last accessed in February 2024).

In all instances, the depot capacity and initial bike availability 𝐼𝐼0
is 7000 bikes, the initial bike availability at each station, 𝐼 𝑖0, 𝑖 ∈  ⧵{𝐼}
s 0 bikes, the station capacities 𝑄𝑖 are set equal to the ones available
n the website, and the capacity of the vehicle used for rebalancing 𝐶
s 25 bikes (see Forma et al. (2015)). Because the road network in San
rancisco consists of blocks, all distances 𝛿𝑖𝑗 between station 𝑖 and 𝑗
re calculated by using the Manhattan distance formula. Moreover, all
nstances share, for each station 𝑖 ∈  ⧵{𝐼}, the same allocation penalty
𝑖 = 1, and the same rebalancing penalty 𝑡𝑖,𝑖+1 = 2.

To generate multiple instances, we consider all combinations of
arameters summarized in Table 2. Specifically, we generate five bike-
haring systems, each having a different number of stations. For each
ike-sharing system size, we randomly draw the specified number of
tations from the total set of 340 stations. The bike-sharing system with
40 stations corresponds to the real one. Moreover, we consider three
ifferent time intervals. The lower bound of each interval is the time
t which the target inventory level must be in place, while the upper
ound indicates the time at which we assume rebalancing is performed
or our cost estimation. Note that, even though we considered these
ime intervals, our approach can also be applied with longer time
ntervals (e.g., one day). Starvation is penalized by the term 𝑝𝑖 modeling
hat when a user cannot withdraw a bike from the station she desire,
he will walk to another station. Specifically, we consider two cases.
he first case assumes that the user walks to the closest station and finds
bike resulting in 𝑝𝑖 = 𝜅(min𝑗∈⧵𝐼∶𝑗≠𝑖 𝛿𝑖𝑗 ). The second case assumes

that an undefined number of neighboring stations are all short of bikes
simultaneously and the user walks to the first-encountered stations
containing an available bike resulting in 𝑝𝑖 = 𝜅(

∑

𝑗∈⧵𝐼∶𝑗≠𝑖 𝛿𝑖𝑗∕(||−2)),
where ∑

𝑗∈⧵𝐼∶𝑗≠𝑖 𝛿𝑖𝑗∕(||−2) represents the average distance of station
𝑖 to any other station. In both cases, to make the penalties of the same
magnitude of the allocation and rebalancing penalties, we set 𝜅 = 1000.
To penalize congestion and starvation in the same way, we set 𝑐𝑖 = 𝑝𝑖.
In fact, during peak hours, it can happen that the valet at a station
has to handle too many bikes resulting in users who have to wait for
getting a free dock and, therefore, decide to travel to other stations. By
considering all combinations of parameters, we obtain 30 instances.
9

Table 2
Instance parameter combinations.

Parameter Values

Number of stations || − 1 {50, 100, 200, 300, 340}
Time interval {[6:00–8:00], [6:00–10:00], [6:00–12:00]}
Excess and stockout penalties 𝑐𝑖 , 𝑝𝑖 {𝜅(𝑚𝑖𝑛𝑗∈⧵𝐼∶𝑗≠𝑖𝛿𝑖𝑗 ), 𝜅(

∑

𝑗∈⧵𝐼∶𝑗≠𝑖 𝛿𝑖𝑗∕(|| − 2))}

6.1.1. Scenario generation and size of the scenario tree
To generate scenarios, we follow the approach described in Sec-

tion 5.1. Specifically, we use the real historical ridership data (https://
www.lyft.com/bikes/bay-wheels/system-data) of the months from May
to August of the years 2022 and 2023, and the following time intervals
depending on the instance under consideration: from 6:00 a.m. until
8:00 a.m., from 6:00 a.m. until 10 a.m., and from 6:00 a.m. until 12
p.m.

To determine how many scenarios to consider to accurately describe
the stochastic demand, we then perform an in-sample and an out-of-
sample stability analysis. Table 3 summarizes the results obtained for
the in-sample stability analysis. For each scenario tree size, we report
the objective function value and the runtime (in seconds), both aver-
aged over all 30 instances. The results (also represented in Fig. 3(a))
show that the average objective function value stabilizes with 500
scenarios.

For the out-of-sample stability analysis, we declare a scenario tree
with 700 scenarios to be the true representation of the real world,
and we use it as a benchmark. Fig. 3(b) shows, for each scenario
tree size, the gap of the objective function value obtained with that
scenario tree size to the objective function value obtained using the
benchmark scenario tree averaged over all instances (𝛥(%)). The results
show that the convergence of the out-of-sample analysis is monotonic
and decreasing, and that by considering a scenario tree size of 500, the
average gap is below 1%.

Because considering a high number of scenarios increases the run-
times, it is recommendable to select the smallest scenario tree size
at which the objective function value shows convergence to the one
obtained by using the benchmark scenario tree. Hence, in the following,
we base our computational study on a set of 500 scenarios which we
assume to be equiprobable, i.e., we set 𝑝𝑟𝑠 = 1∕||, 𝑠 ∈ .

.2. Assessing the influence of the inclusion of the stochastic parameters 𝑔𝑠𝑖
nd ℎ𝑠𝑖 in SP

In this section, we compare the solution of the SP to the solution
btained by ignoring the penalization of the parameters 𝑔𝑠𝑖 and ℎ𝑠𝑖 in

the objective function and constraints (2) and (3). We refer to this new
formulation with SPmod. For this comparison, we assess how well the
target inventory levels suggested by the SPmod and the SP solutions
perform in the simulation model introduced in Section 5.5.

Table 8 in Appendix D.1 reports the detailed results, while Ta-
ble 4 shows the average simulation model statistics related to the
performance of each target inventory level plan. In the SP, the target in-
ventory levels are 130.98% on average higher than the ones suggested
by the SPmod solution. Hence, in the SP, the frequency of starvation
is much smaller and the expected fill rates are higher. Due to the
smaller number of bikes delivered in the SPmod solution, its frequency
of congestion and the number of rebalanced bikes are smaller than the
ones in the SP solution. However, the values of these two statistics are
very small for the SP solution compared to the much higher frequency
of starvation of the SPmod solution. Moreover, even though the target
inventory levels are higher in the SP solution, the extra inventory levels
are lower than in the SPmod solution. This can be explained by a better
allocation of bikes to stations that leads to more effective rebalancing
activities.

Hence, the consideration of the parameters 𝑔𝑠𝑖 and ℎ𝑠𝑖 in SP leads
to an improved solution compared to the solution returned by ignoring

them.

https://www.lyft.com/bikes/bay-wheels/system-data
https://www.lyft.com/bikes/bay-wheels/system-data
https://www.lyft.com/bikes/bay-wheels/system-data
https://www.lyft.com/bikes/bay-wheels/system-data
https://www.lyft.com/bikes/bay-wheels/system-data
https://www.lyft.com/bikes/bay-wheels/system-data
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Table 3
Average results of the in-sample stability analysis computed over 30 instances.

Scenario tree size ||

25 50 100 200 300 400 500 600 700

Average objective function value 838.80 890.26 909.53 919.75 927.79 929.04 931.47 930.94 931.34
Average runtime (seconds) 5.30 11.78 34.27 83.75 146.32 216.97 295.64 494.95 546.43
Fig. 3. Average results of the in sample and out-of-sample stability analysis computed over 30 instances.
Table 4
Average results for the simulation-based comparison of solutions of the SP and SPmod problems computed over 30 instances.

SP SPmod

∑

𝑖∈⧵{𝐼}
𝑥𝑖 𝑐𝑜𝑛𝑔.(%) 𝑠𝑡𝑎𝑟𝑣.(%) #rebal. 𝐵+ E[𝐹𝑅(%)]

∑

𝑖∈⧵{𝐼}
𝑥𝑖 𝑐𝑜𝑛𝑔.(%) 𝑠𝑡𝑎𝑟𝑣.(%) #rebal. 𝐵+ E[𝐹𝑅(%)]

Avg. 594.83 0.12 6.11 5.78 177.26 94.71 257.53 0.07 25.42 4.40 200.46 88.47
6.3. The value of rebalancing and of anticipating rebalancing

In this section, we assess the value of rebalancing (VR) and of
anticipating rebalancing (VAR) introduced in Section 5.2.

For the VR, the detailed results by instance can be found in Table 9,
while Fig. 4 shows the VR(%) results aggregated by number of stations,
time interval, and penalty. The average VR(%) is equal to 5.96%
showing that bike-sharing systems that implement rebalancing achieve
a better performance compared to systems that do not execute it. This
is especially true for instances in which the penalty for congestion
and starvation at a station is set equal to the average distance to any
other station (see Fig. 4(c)) and for instances in which the length of
the time interval between the moment in which the target inventory
level is applied and rebalancing is performed is longer (see Fig. 4(b)).
In the first case, rebalancing is more beneficial because penalties are
higher compared to the minimum distance case. In the second case,
with longer intervals, the system is more unbalanced, and hence, the
value that rebalancing can bring to the system is higher.

The detailed results by instance of the VAR can be found in Ta-
ble 10. The average VAR(%) is equal to 1.29% with a standard devia-
tion of 1.13%, suggesting that, when determining the target inventory
level, the consideration that rebalancing will be performed at a certain
point in time is beneficial. The value of anticipating rebalancing is
higher for those instances in which the length of the time horizon
between the moment in which the target inventory level is applied and
rebalancing is performed is longer (see Fig. 5(b)), and in which the
penalty for congestion and starvation at a station is set equal to the
average distance to any other station (see Fig. 5(c)).

6.4. Stochastic solution analysis and evaluation of the matheuristic

In this section, we analyze the value of the SP solution (Sec-
tion 6.4.1), and the quality of the EVP solution, including the evalu-
10

ation of the performance of the matheuristic (Section 6.4.2).
6.4.1. Analyzing the value of the stochastic solution
In this section, we assess the value of the stochastic solution (VSS).
The detailed results by instance can be found in Table 11 in Ap-

pendix D, while Fig. 6 shows the VSS(%) results aggregated by number
of stations, time interval, and penalty. The average VSS(%) is equal to
185.50% suggesting that significant gains can be obtained by solving
the SP instead of using the expected value approach. Figs. 6(a) and
6(b) show that as the number of stations and the length of the time
interval increase, the gains of solving the SP instead of using the
deterministic solution decrease but stay relevant. Moreover, Fig. 6(c)
shows that by considering the average distance of a station to all
other stations as penalty for starvation and congestion, the VSS(%) is
considerably higher than considering the distance to its closest station.
The results suggest that including uncertainty in the demand, and in
the number of maximum consecutive, and returned bikes is always
relevant, especially in bike-sharing systems that consider shorter time
intervals between the moment in which the target inventory levels are
implemented and the moment in which rebalancing takes place, and
that are characterized by clusters of neighboring stations performing
starvation and/or congestion at the same time.

We also assess how well the initial allocation plans from the EV so-
lution and the SP solution perform in the simulation model presented in
Section 5.5. Table 12 in Appendix D reports the detailed results, while
Table 5 shows the average simulation model statistics related to the
performance of each plan. The SP allocates on average 132.38% more
bikes, leading to a much smaller frequency of starvation, and higher
fill rates. Due to the smaller number of bikes delivered in the EVP
solution, its frequency of congestion and number of rebalanced bikes
are smaller than the SP solution. However, the values of both these
statistics are very limited for the SP solution compared to the higher
frequency of starvation of the EVP solution. Interestingly, despite of the
higher number of bikes delivered in the SP solution, the extra inventory
levels are lower than in the EVP solution. This may suggest a better
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Fig. 4. VR (%) results aggregated by number of stations, time interval, and penalty.
Fig. 5. VAR (%) results aggregated by number of stations, time interval, and penalty.
Fig. 6. VSS (%) results aggregated by number of stations, time interval, and penalty.
Table 5
Average results for the simulation-based comparison of solutions of the stochastic and expected value problems computed over 30 instances.

SP EV
∑

𝑖∈⧵{𝐼}
𝑥𝑖 𝑐𝑜𝑛𝑔.(%) 𝑠𝑡𝑎𝑟𝑣.(%) #rebal. 𝐵+ E[𝐹𝑅(%)]

∑

𝑖∈⧵{𝐼}
𝑥𝑖 𝑐𝑜𝑛𝑔.(%) 𝑠𝑡𝑎𝑟𝑣.(%) #rebal. 𝐵+ E[𝐹𝑅(%)]

Avg. 594.83 0.12 6.11 5.78 177.26 94.71 255.97 0.08 26.25 4.37 184.52 86.29
allocation of bikes to stations that leads to more effective rebalancing
operations.

6.4.2. Analyzing the quality of the expected value solution and of the
matheuristic algorithm

In this section, we assess the quality of the EVP solution when
solving the stochastic model, and of the matheuristic algorithm.
11
The detailed results of the LUSS(%) can be found in Table 13 in
Appendix D. The average LUSS(%) is equal to 60.35%. This positive
value means that the EVP solution selects to allocate no bikes to wrong
stations and, consequently, its structure (skeleton) cannot be inherited
in a stochastic environment. From Table 13, we observe that the EVP
solution always does not allocate any bike to too many stations than
the ones without bikes in the SP solution. We also notice that the
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Fig. 7. LUSS (%) results aggregated by number of stations, time interval, and penalty.
Fig. 8. LUDS (%) results aggregated by number of stations, time interval, and penalty.
stations that do not receive any bikes in the SP solution are also not
receiving any bikes in the EVP solution (but the opposite is not true).
The LUSS (%) results aggregated by number of stations, time interval,
and penalty and displayed in Fig. 7 show the same behavior observed
for the VSS (%).

The detailed results of the LUDS (%) are reported in Table 14 in
Appendix D. Recall that the value of this indicator, together with the
computational times, allows us to evaluate the performance of the
matheuristic. The average LUDS (%) is equal to 0.06%. In particular,
it is equal to 0.00% for 20 out of 30 instances. These results suggest
that the EVP solution is perfectly upgradeable in most of the instances,
indicating that solving the EVP can be a good start for solving the SP.
Even though, in the remaining ten instances, the EVP solution is only
partially upgradeable, the maximum value of the LUDS (%) is 0.29%.
This shows that a very good solution quality to the SP can be obtained
by simply upgrading the EVP solution. Besides, by first solving the EVP,
and then the EIV problem, the total solution time is reduced by almost
11%, on average, of what it is needed to solve the SP from scratch.
This result shows that such a matheuristic procedure based on the use
of information from the deterministic solution is valuable.

The aggregated results reported in Fig. 8 do not suggest any par-
ticular behavior of the LUDS(%) regarding the length of the time
interval. Instead, the EVP solution seems to become less upgradeable
as the number of stations increases. Moreover, solutions of the same
quality as the optimal ones can be obtained in the instances in which
the penalty is based on the average distance of a station to all other
stations as suggested by the LUDS(%) which is equal to zero for these
instances (see Fig. 8(c)). The reason can be due to the fact that, in
these instances, the penalties for congestion and starvation are higher.
Recalling that the penalization for congestion is prioritized over the
one for starvation, in these instances, the EVP solution always suggests
lower target inventory levels for all stations compared to the ones in
12

the SP solution.
6.5. A comparison with the implemented system

In this section, we evaluate the performance of the actual alloca-
tion plan implemented in the bike-sharing system of San Francisco
compared to the one obtained by solving our SP. For this, we use the
simulation model described in Section 5.5, and consider the complete
bike-sharing system consisting of 340 stations. Because accessing the
past actual allocation of bikes to stations is not possible, we extract the
data of the station status (i.e., the number of bikes at each station) at 6
a.m. of an exemplary working day (March 19, 2024). To normalize the
comparison, we solve our SP under the constraint that the total number
of allocated bikes has to correspond to the total allocated on that day
in the real system. This allows us to assess the benefit of a different
allocation of bikes to stations.

We present statistics regarding each plan in Table 6. With respect to
the statistics presented in Section 5.5, we additionally report the sum
over stations of the target inventory levels (‘‘∑𝑖∈⧵{𝐼} 𝑥𝑖’’). Given the
same total number of allocated bikes, we observe that the allocation
plans prescribed by our SP outperform the actual allocation plans.
In fact, the plans suggested by our SP lead to fewer congestion and
starvation events, fewer rebalanced bikes, and higher expected fill
rates. Only the extra inventory level is, on average, higher in the SP
plan compared to the actual one, but only by a small amount. These
results represent a strong indicator of the impact that the proposed
stochastic approach could have in practice.

6.6. Sensitivity analysis for the penalty terms in the SP second stage

In all previous experiments, we used the values of the penalties
described in Section 6.1. While delivery and rebalancing penalties can
be easily quantified by observing tangible factors such as material and
workforce costs, congestion and starvation penalties are more difficult
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Table 6
Weekly-averaged results of the simulation model run for the SP solution and the real allocation system of the San Francisco bike-sharing system with 340 stations.

Instance SP Actual allocation plan

# stations Time interval Penalty ∑

𝑖∈⧵{𝐼}
𝑥𝑖 𝑐𝑜𝑛𝑔.(%) 𝑠𝑡𝑎𝑟𝑣.(%) #rebal. 𝐵+ E[𝐹𝑅(%)]

∑

𝑖∈⧵{𝐼}
𝑥𝑖 𝑐𝑜𝑛𝑔.(%) 𝑠𝑡𝑎𝑟𝑣.(%) #rebal. 𝐵+ E[𝐹𝑅(%)]

340 [6:00–8:00] min 3317.00 0.06 0.00 0.00 154.00 99.69 3317.00 1.54 3.11 3.00 155.71 98.61
340 [6:00–8:00] avg 3317.00 0.00 0.00 11.43 143.00 99.70 3317.00 1.54 3.11 18.57 146.43 98.70
340 [6:00–10:00] min 3317.00 0.19 0.11 0.00 393.43 99.08 3317.00 2.15 4.47 3.00 386.29 95.21
340 [6:00–10:00] avg 3317.00 0.36 0.04 35.29 358.43 99.17 3317.00 2.15 4.47 35.14 362.43 95.37
340 [6:00–12:00] min 3317.00 1.38 0.25 0.00 552.71 98.00 3317.00 3.77 5.72 3.00 535.86 93.24
340 [6:00–12:00] avg 3317.00 1.59 0.27 38.29 513.14 98.09 3317.00 3.77 5.72 35.00 512.14 93.47

Avg. 3317.00 0.60 0.11 14.17 352.45 98.96 3317.00 2.48 4.43 16.29 349.81 95.77
a
d
I
i
M

to measure because tied to intangible elements such as customer satis-
faction. In this section, we present how the first and the second-stage
objective function values vary when only the congestion and starvation
penalties increase, and when all penalty terms in the SP second stage
increase.

Table 15 in Appendix D.4 reports the detailed results of the first and
second-stage objective function values obtained for increasing values
of stockout, excess, and extra inventory penalties. To obtain these
results, we multiply stockout, excess, and extra inventory penalties by a
constant value 𝑢, and solve our SP. In our experiments, we consider 𝑢 =
{1, 10, 100, 1000, 10000}, where 𝑢 = 1 corresponds to the parameter val-
ues defined in Section 6.1. The results show that, for increasing values
of the SP second-stage penalty terms, both the first and the second-stage
objective function values tend to increase. Interestingly, we observe
that for the instances considering a congestion and starvation penalty
computed as the average distance to any other station, the first-stage
cost stops changing starting from 𝑢 = 100, while for the instances
considering a congestion and starvation penalty computed based on
the distance to the closest station, the first-stage cost stops changing
from 𝑢 = 1000. We notice that, for increasing values of 𝑢, some of the
instances report not only the same first-stage cost but also the same
second-stage cost. This occurs when, in the second-stage solution, there
are no congestion or starvation quantities but only rebalancing ones.
Because in this experiment, rebalancing penalties are not multiplied by
𝑢, the costs are the same.

Similar to Table 15, Table 16 in Appendix D.4 reports the detailed
results of the first and second-stage objective function values albeit
obtained for increasing values of all SP second-stage penalty terms
(i.e., rebalancing, stockout, excess, and extra inventory penalties). For
this, we multiply rebalancing, stock-out, excess, and extra inventory
penalties by a constant value 𝑢, and solve our SP. Consistently to our
revious experiments, we consider 𝑢 = {1, 10, 100, 1000, 10000}, where

𝑢 = 1 corresponds to the parameter values defined in Section 6.1.
Also in this case, the results show that, for increasing values of the
SP second-stage penalty terms, both the first and the second-stage
objective function values tend to increase. After a certain 𝑢 value,
the first-stage cost becomes stable. However, in this case, it is not
possible to derive any instance-based insight on the behavior of the
first-stage cost. Instances whose solutions have the same first-stage cost
for increasing values of 𝑢 show different second-stage costs. However,
we observe that, for these instances, the second-stage cost obtained for
a higher value of 𝑢 (e.g., 𝑢 = 10000) exactly corresponds to the second-
stage cost obtained for the lower value of 𝑢 (e.g., 𝑢 = 1000) multiplied
by 10. In those cases, the value of the second-stage variables is the same
only penalized by a bigger 𝑢 value.

7. Conclusion and future work

In this paper, we studied the problem of determining the target
inventory level of stations by considering the opportunity to perform
13

rebalancing at a later point in time, in the context of a bike-sharing e
system. One of the challenges in determining these target inventory lev-
els is that there are multiple dimensions along which the performance
of such inventory levels can be measured. Some of them measure the
costs incurred while operating the system. Others measure the quality
of the service experienced by users of the system. As a result, we
present a two-stage SP wherein the first-stage variables determine these
target inventory levels, and the second-stage variables determine an
approximation of the rebalancing cost by deciding how many bikes to
rebalance at a point later in the day.

We performed a computational study based on a set of instances
derived from historical ridership data of the bike-sharing system of the
city of San Francisco. With this study, we first ascertained that con-
sidering rebalancing when the target inventory levels are determined
is beneficial. Then, we established that, by not recognizing variability
in bike station demand, the deterministic problem allocated too few
bikes to too few stations. However, we also established that the time
required to produce a high-quality solution to the stochastic program
can be reduced by first solving its deterministic counterpart, providing
in this way an effective matheuristic, based on the solution of the
deterministic problem, to solve the stochastic problem. This finding
can be valuable for practitioners, especially if this problem must be
solved multiple times in a day. We also compared the performance of
the target inventory levels prescribed by the SP with what we estimated
was the actual allocation plan considering a given week of historical
data. We saw that the SP produced a much better allocation of bikes
than what is done in practice.

Regarding future work, we believe the next logical step is to con-
sider a multi-stage SP that recognizes that rebalancing can occur mul-
tiple times throughout the day. This variant can be compared with
the two-stage formulation provided in this paper, by means of rolling
horizon approaches (see Bertazzi and Maggioni (2018)). Moreover,
future works can be dedicated to adapt the SP formulation to solve,
in limited runtime, the studied problem for instances having a larger
amount of stations. Finally, interesting extensions could result by con-
sidering, e.g., the time at which rebalancing should be performed as a
decision variable of the model, multiple vehicles available to perform
rebalancing, and that their routes can change depending on stations’
rebalancing needs.
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Appendix A. Notation

See Table 7.

Appendix B. Model linearization

In this section, we describe the linearization of the model presented
in Section 4. First, we replace the negative variable 𝐼𝑠−𝑖 representing
stock-out with the positive variable 𝐼𝑠,stock-out

𝑖 , and we and modify the
objective function (1) as follows:

min
∑

𝑖∈
𝑓𝑖𝑥𝑖 +

∑

𝑠∈
𝑝𝑟𝑠[

∑

𝑖∈⧵{𝐼}
(𝑡𝑖,𝑖+1𝑦𝑠𝑖,𝑖+1 +

𝑐𝑖
𝑄𝑖

𝐵𝑠+
𝑖 + 𝑐𝑖𝐸

𝑠+
𝑖 + 𝑝𝑖𝐼

𝑠,stock-out
𝑖

+ 𝑝𝑖𝑎
𝑠
𝑖 + 𝑐𝑖𝑏

𝑠
𝑖 )].

(21)

Then, we need to linearize the expressions for determining 𝐼𝑠+𝑖 and
𝐼𝑠,stock-out
𝑖 . We introduce the binary variable 𝑧𝑠𝑖 such that:

𝑧𝑠𝑖 =
{

1 if 𝐼𝑠𝑖 ≥ 0,

0 otherwise.
Table 7
Notation of the SP model.

Set Description

 = {1,… , 𝐼} bike-stations (where 𝐼 is the depot)
 = {1,… , 𝑆} scenarios or finite set of possible realization of the uncertainty

Deterministic parameter Description

𝐼𝐼0 initial availability of bikes at the depot and depot capacity
𝑄𝑖 capacity of station 𝑖 ∈  ⧵ {𝐼}
𝐼 𝑖0 initial availability of bikes at station 𝑖 ∈  ⧵ {𝐼}
𝐶 capacity of the vehicle used for rebalancing
𝑝𝑖 stock-out penalty at station 𝑖 ∈  ⧵ {𝐼}
𝑐𝑖 excess penalty at station 𝑖 ∈  ⧵ {𝐼}
𝑐𝑖
𝑄𝑖

extra penalty at station 𝑖 ∈  ⧵ {𝐼}
𝑓𝑖 penalty for each bike allocated at station 𝑖 ∈  ⧵ {𝐼}
𝑡𝑖,𝑖+1 rebalancing penalty at station 𝑖 ∈  ⧵ {𝐼}

Stochastic parameter Description

𝑑𝑠
𝑖 demand of bikes at station 𝑖 ∈  ⧵ {𝐼} in scenario 𝑠 ∈ 

𝑔𝑠𝑖 maximum number of consecutive bikes withdrawn from station 𝑖 ∈  ⧵ {𝐼} before a returnoccurs in scenario 𝑠 ∈ 
ℎ𝑠
𝑖 max. number of consecutive bikes returned to station 𝑖 ∈  ⧵ {𝐼} before a withdrawaloccurs in scenario 𝑠 ∈ 

𝑝𝑟𝑠 probability of scenario 𝑠 ∈ 

Variable Description

𝑥𝑖 ∈ Z+ first-stage variable: number of bikes to ideally allocate at station 𝑖 ∈  ⧵ {𝐼}
𝑦𝑠𝑖,𝑖+1 ∈ Z+ second-stage variable: number of bikes relocated from station 𝑖 ∈  ⧵ {𝐼} to station 𝑖 + 1in scenario 𝑠 ∈ 
𝐼𝑠
𝑖 ∈ Z second-stage variable: balance of bikes at station 𝑖 ∈  ⧵ {𝐼} in scenario 𝑠 ∈ 
𝐼𝑠+
𝑖 ∈ Z+ second-stage variable: units of surplus at station 𝑖 ∈  ⧵ {𝐼} in scenario 𝑠 ∈ 
𝐼𝑠−
𝑖 ∈ Z− second-stage variable: units of stock-out at station 𝑖 ∈  ⧵ {𝐼} in scenario 𝑠 ∈ 
𝐵𝑠
𝑖 ∈ Z second-stage variable: extra inventory balance at station 𝑖 ∈  ⧵ {𝐼} in scenario 𝑠 ∈ 

𝐵𝑠+
𝑖 ∈ Z+ second-stage variable: units of extra inventory at station 𝑖 ∈  ⧵ {𝐼} in scenario 𝑠 ∈ 

𝐸𝑠
𝑖 ∈ Z second-stage variable: excess inventory balance at station 𝑖 ∈  ⧵ {𝐼} in scenario 𝑠 ∈ 

𝐸𝑠+
𝑖 ∈ Z+ second-stage variable: units of excess inventory at station 𝑖 ∈  ⧵ {𝐼} in scenario 𝑠 ∈ 

𝑎𝑠𝑖 ∈ Z+ second-stage variable: units of slack between the number of allocated bikes 𝑥𝑖 and 𝑔𝑠𝑖 at station 𝑖 ∈  ⧵ {𝐼} in scenario 𝑠 ∈ 
𝑏𝑠𝑖 ∈ Z+ second-stage variable: units of slack between the number of free racks 𝑄𝑖 − 𝑥𝑖 and ℎ𝑠

𝑖 at station 𝑖 ∈  ⧵ {𝐼} in scenario 𝑠 ∈ 

https://ultraoptymal.unibg.it


EURO Journal on Transportation and Logistics 13 (2024) 100140R. Cavagnini et al.

𝐼

𝐼

𝐼

𝐼

𝐼

𝐼

𝐼

T
t

𝑒

𝑟

a

𝐵

𝐵

𝐵

𝐵

𝐵

𝐵

𝐵

𝐵

𝐸

𝐸

𝐸

𝐸

𝐸

𝐸

𝐸

𝐸

F

𝑧

𝑟

𝑒

A

p

and we substitute constraints (11) and (12) with:

𝐼𝑠+𝑖 ≥ 𝐼𝑠𝑖 𝑖 ∈  ⧵ {𝐼}, 𝑠 ∈  , (22)

𝑠+
𝑖 ≤ 𝐼𝑠𝑖 +𝑀(1 − 𝑧𝑠𝑖 ) 𝑖 ∈  ⧵ {𝐼}, 𝑠 ∈  , (23)

𝑠+
𝑖 ≥ 0 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 𝑖 ∈  ⧵ {𝐼}, 𝑠 ∈  , (24)

𝑠+
𝑖 ≤ 𝑀𝑧𝑠𝑖 𝑖 ∈  ⧵ {𝐼}, 𝑠 ∈  , (25)

𝑠,stock-out
𝑖 ≥ −𝐼𝑠𝑖 𝑖 ∈  ⧵ {𝐼}, 𝑠 ∈  , (26)

𝑠,stock-out
𝑖 ≤ −𝐼𝑠𝑖 +𝑀𝑧𝑠𝑖 𝑖 ∈  ⧵ {𝐼}, 𝑠 ∈  , (27)

𝑠,stock-out
𝑖 ≥ 0 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 𝑖 ∈  ⧵ {𝐼}, 𝑠 ∈  , (28)

𝑠,stock-out
𝑖 ≤ 𝑀(1 − 𝑧𝑠𝑖 ) 𝑖 ∈  ⧵ {𝐼}, 𝑠 ∈  . (29)

he same linearization technique is applied for 𝐸𝑠+
𝑖 , and 𝐵𝑠+

𝑖 . In par-
icular, we introduce the binary variables 𝑒𝑠𝑖 and 𝑟𝑠𝑖 , such that:

𝑠
𝑖 =

{

1 if 𝐸𝑠
𝑖 ≥ 0,

0 otherwise.

𝑠
𝑖 =

{

1 if 𝐵𝑠
𝑖 ≥ 0,

0 otherwise.

nd we substitute constraints (14) and (16) with the following:
𝑠+
𝑖 ≥ 𝐵𝑠

𝑖 𝑖 ∈  ⧵ {𝐼}, 𝑠 ∈  , (30)

𝑠+
𝑖 ≤ 𝐵𝑠

𝑖 +𝑀(1 − 𝑟𝑠𝑖 ) 𝑖 ∈  ⧵ {𝐼}, 𝑠 ∈  , (31)

𝑠+
𝑖 ≤ 𝑀𝑟𝑠𝑖 𝑖 ∈  ⧵ {𝐼}, 𝑠 ∈  , (32)

𝑠+
𝑖 ≥ 0 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 𝑖 ∈  ⧵ {𝐼}, 𝑠 ∈  , (33)

𝑠−
𝑖 ≥ −𝐵𝑠

𝑖 𝑖 ∈  ⧵ {𝐼}, 𝑠 ∈  , (34)

𝑠−
𝑖 ≤ −𝐵𝑠

𝑖 +𝑀𝑟𝑠𝑖 𝑖 ∈  ⧵ {𝐼}, 𝑠 ∈  , (35)

𝑠−
𝑖 ≤ 𝑀(1 − 𝑟𝑠𝑖 ) 𝑖 ∈  ⧵ {𝐼}, 𝑠 ∈  , (36)

𝑠−
𝑖 ≥ 0 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 𝑖 ∈  ⧵ {𝐼}, 𝑠 ∈  , (37)

𝑠+
𝑖 ≥ 𝐸𝑠

𝑖 𝑖 ∈  ⧵ {𝐼}, 𝑠 ∈  , (38)

𝑠+
𝑖 ≤ 𝐸𝑠

𝑖 +𝑀(1 − 𝑒𝑠𝑖 ) 𝑖 ∈  ⧵ {𝐼}, 𝑠 ∈  , (39)

𝑠+
𝑖 ≤ 𝑀𝑒𝑠𝑖 𝑖 ∈  ⧵ {𝐼}, 𝑠 ∈  , (40)

𝑠+
𝑖 ≥ 0 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 𝑖 ∈  ⧵ {𝐼}, 𝑠 ∈  , (41)

𝑠−
𝑖 ≥ −𝐸𝑠

𝑖 𝑖 ∈  ⧵ {𝐼}, 𝑠 ∈  , (42)

𝑠−
𝑖 ≤ −𝐸𝑠

𝑖 +𝑀𝑒𝑠𝑖 𝑖 ∈  ⧵ {𝐼}, 𝑠 ∈  , (43)

𝑠−
𝑖 ≤ 𝑀(1 − 𝑒𝑠𝑖 ) 𝑖 ∈  ⧵ {𝐼}, 𝑠 ∈  , (44)

𝑠−
15

𝑖 ≥ 0 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 𝑖 ∈  ⧵ {𝐼}, 𝑠 ∈  . (45)
inally, we introduce the variable definition constraints:
𝑠
𝑖 ∈ {0, 1} 𝑖 ∈  ⧵ {𝐼}, 𝑠 ∈  , (46)

𝑠
𝑖 ∈ {0, 1} 𝑖 ∈  ⧵ {𝐼}, 𝑠 ∈  , (47)

𝑠
𝑖 ∈ {0, 1} 𝑖 ∈  ⧵ {𝐼}, 𝑠 ∈  . (48)

ppendix C. Pseudo-code for the scenario generation process

In this section, Pseudo-code 1 presents the scenario generation
rocess.

Pseudo-code 1: Scenario generation process.
1 Input: (𝜙𝑛𝑖 , 𝑑

𝑛
𝑖 , 𝑔

𝑛
𝑖 , ℎ

𝑛
𝑖 ), 𝑖 ∈  ⧵ {𝐼}, 𝑛 = 1,… , 𝑁

2 for 𝑖 ∈  ⧵ {𝐼} do
3  ∶= {𝑛′ , 𝑛′′ = 1,… , 𝑁 ∶ (𝜙𝑛

′
𝑖 , 𝑑𝑛

′
𝑖 , 𝑔𝑛

′
𝑖 , ℎ𝑛

′
𝑖 ) ≠ (𝜙𝑛

′′
𝑖 , 𝑑𝑛

′′
𝑖 , 𝑔𝑛

′′
𝑖 , ℎ𝑛

′′
𝑖 )}

4 for 𝑘 ∈  do

5 𝑝𝑑𝑓𝑖[𝑘] ∶=

∑

𝑛′ ,𝑛′′=1,…,𝑁 1
((𝜙𝑛′𝑖 ,𝑑𝑛′𝑖 ,𝑔𝑛′𝑖 ,ℎ𝑛′𝑖 )=(𝜙𝑛′′𝑖 ,𝑑𝑛′′𝑖 ,𝑔𝑛′′𝑖 ,ℎ𝑛′′𝑖 ))

𝑁
6 𝑐𝑑𝑓𝑖[𝑘] ∶= 𝑝𝑑𝑓𝑖[𝑘 − 1] + 𝑝𝑑𝑓 [𝑘]
7 𝑖𝑛𝑣.𝑐𝑑𝑓𝑖[𝑘] ∶= (𝜙𝑘𝑖 , 𝑑

𝑘
𝑖 , 𝑔

𝑘
𝑖 , ℎ

𝑘
𝑖 )

8 end
9 for 𝑠 ∈  do
10 sample a random number (‘‘𝑟𝑎𝑛𝑑𝑜𝑚’’) in [0,1]
11 for 𝑘 ∈  do
12 if 𝑐𝑑𝑓𝑖[𝑘 − 1] < 𝑟𝑎𝑛𝑑𝑜𝑚 <= 𝑐𝑑𝑓𝑖[𝑘] then
13 (𝜙𝑠𝑖 , 𝑑

𝑠
𝑖 , 𝑔

𝑠
𝑖 , ℎ

𝑠
𝑖 ) = 𝑖𝑛𝑣.𝑐𝑑𝑓𝑖[𝑘]

14 end
15 end
16 return 𝑑𝑠𝑖 , 𝑔

𝑠
𝑖 , ℎ

𝑠
𝑖

17 end
18 end

Appendix D. Detailed results

In this section, we report the detailed results for our experiments.
Appendix D.1 shows the results detailed by instance of the experiments
comparing formulation SP with formulation SPmod. Appendix D.2 con-
tains the results detailed by instance of the experiments assessing the
value of rebalancing and of anticipating rebalancing. Appendix D.3
presents the detailed results by instance of the stochastic solution
analysis. Finally, Appendix D.4 shows the results of the sensitivity
analysis.

D.1. A comparison with the SP without the parameters 𝑔𝑠𝑖 and ℎ𝑠𝑖

See Table 8.

D.2. The value of rebalancing and of anticipating rebalancing

See Tables 9 and 10.

D.3. Stochastic solution analysis

See Tables 11–14.

D.4. Sensitivity analysis

See Tables 15 and 16.
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Table 8
Detailed results for the simulation model run for the SP and the SPmod solution.

Instance SP SPmod

#stations Time interval penalty ∑

𝑖∈⧵{𝐼}
𝑥𝑖 𝑐𝑜𝑛𝑔𝑒𝑠𝑡𝑖𝑜𝑛(%) 𝑠𝑡𝑎𝑟𝑣𝑎𝑡𝑖𝑜𝑛(%) rebal.bikes 𝐵+ E[𝐹𝑅(%)]

∑

𝑖∈⧵{𝐼}
𝑥𝑖 𝑐𝑜𝑛𝑔𝑒𝑠𝑡𝑖𝑜𝑛(%) 𝑠𝑡𝑎𝑟𝑣𝑎𝑡𝑖𝑜𝑛(%) rebal.bikes 𝐵+ E[𝐹𝑅(%)]

50 [6:00–8:00] min 27.00 0.00 13.62 0.00 6.00 96.75 10.00 0.00 50.58 0.00 6.43 94.09
50 [6:00–8:00] avg 65.00 0.00 0.00 0.43 5.14 99.47 21.00 0.00 19.19 0.57 5.71 96.00
50 [6:00–10:00] min 60.00 0.00 6.06 0.00 13.43 95.64 26.00 0.00 26.55 0.00 15.57 91.15
50 [6:00–10:00] avg 115.00 0.00 0.32 0.71 12.71 98.88 38.00 0.00 18.49 0.71 14.14 92.92
50 [6:00–12:00] min 71.00 0.00 9.43 0.00 20.43 94.97 31.00 0.00 31.15 0.00 24.43 90.35
50 [6:00–12:00] avg 133.00 0.00 1.30 1.29 18.14 98.49 45.00 0.00 24.42 1.14 22.00 92.72
100 [6:00–8:00] min 65.00 0.00 18.49 0.00 18.29 95.54 30.00 0.00 42.46 0.00 19.43 92.23
100 [6:00–8:00] avg 164.00 0.00 2.57 0.57 16.71 99.11 55.00 0.00 20.70 0.57 18.00 94.84
100 [6:00–10:00] min 155.00 0.00 9.63 0.00 46.00 94.08 74.00 0.00 26.96 0.00 50.43 88.92
100 [6:00–10:00] avg 301.00 0.00 1.22 3.57 42.00 98.79 107.00 0.00 20.80 2.86 46.14 91.96
100 [6:00–12:00] min 206.00 0.00 9.51 0.00 72.29 93.10 94.00 0.00 27.14 0.00 81.86 87.38
100 [6:00–12:00] avg 368.00 0.00 1.92 6.00 64.57 97.74 135.00 0.00 19.51 4.14 73.57 90.62
200 [6:00–8:00] min 165.00 0.00 17.27 0.00 62.00 93.41 66.00 0.00 46.54 0.00 68.57 88.81
200 [6:00–8:00] avg 399.00 0.00 2.02 2.71 56.14 98.81 137.00 0.00 24.63 1.86 63.43 92.61
200 [6:00–10:00] min 370.00 0.00 8.28 0.00 147.29 91.26 177.00 0.00 27.98 0.00 165.14 85.35
200 [6:00–10:00] avg 734.00 0.00 1.26 9.71 136.57 98.03 277.00 0.00 18.54 7.43 152.86 89.71
200 [6:00–12:00] min 477.00 0.00 10.07 0.00 219.29 89.54 222.00 0.00 27.02 0.00 253.14 83.68
200 [6:00–12:00] avg 906.00 0.00 2.15 14.14 202.29 96.83 345.00 0.00 17.88 9.57 228.29 88.01
300 [6:00–8:00] min 365.00 0.00 13.82 0.00 149.29 91.14 152.00 0.00 40.39 0.00 167.57 85.09
300 [6:00–8:00] avg 834.00 0.00 1.01 8.57 135.43 98.25 297.00 0.00 22.41 6.00 152.14 90.23
300 [6:00–10:00] min 787.00 0.00 8.25 0.00 363.57 88.30 407.00 0.00 24.24 0.00 407.57 81.75
300 [6:00–10:00] avg 1483.00 0.06 0.93 18.43 338.29 96.20 624.00 0.00 14.99 14.29 378.29 86.96
300 [6:00–12:00] min 974.00 0.48 9.14 0.00 525.14 85.94 504.00 0.44 22.22 0.00 598.71 79.87
300 [6:00–12:00] avg 1785.00 0.88 2.15 25.57 484.57 94.44 762.00 0.44 14.45 18.43 549.57 84.90
340 [6:00–8:00] min 409.00 0.00 12.71 0.00 159.57 91.82 164.00 0.00 40.01 0.00 179.86 85.65
340 [6:00–8:00] avg 928.00 0.00 0.91 11.29 143.43 98.50 338.00 0.00 20.55 8.57 160.71 91.08
340 [6:00–10:00] min 869.00 0.03 7.77 0.00 402.29 88.67 459.00 0.00 23.26 0.00 451.14 82.38
340 [6:00–10:00] avg 1615.00 0.18 0.94 33.43 362.29 96.55 703.00 0.00 14.47 27.71 408.71 88.05
340 [6:00–12:00] min 1073.00 0.65 8.62 0.00 573.71 86.32 569.00 0.55 21.30 0.00 652.86 80.87
340 [6:00–12:00] avg 1942.00 1.24 1.93 37.00 520.86 94.62 857.00 0.55 13.72 28.29 597.57 85.96

Avg. 594.83 0.12 6.11 5.78 177.26 94.71 257.53 0.07 25.42 4.40 200.46 88.47
Table 9
Detailed results for the VR(%) indicator.

Instance RP RPwo_reb VR(%)

#stations Time interval Penalty

50 [6:00–8:00] min 46.41 49.00 5.60
50 [6:00–8:00] avg 95.19 101.14 6.25
50 [6:00–10:00] min 88.77 93.34 5.15
50 [6:00–10:00] avg 168.66 176.92 4.89
50 [6:00–12:00] min 107.11 113.69 6.14
50 [6:00–12:00] avg 195.00 205.77 5.52
100 [6:00–8:00] min 111.06 117.42 5.72
100 [6:00–8:00] avg 236.84 251.15 6.04
100 [6:00–10:00] min 228.04 238.72 4.69
100 [6:00–10:00] avg 448.09 472.55 5.46
100 [6:00–12:00] min 287.46 299.68 4.25
100 [6:00–12:00] avg 551.81 582.28 5.52
200 [6:00–8:00] min 265.03 274.47 3.56
200 [6:00–8:00] avg 603.66 640.90 6.17
200 [6:00–10:00] min 540.03 558.63 3.44
200 [6:00–10:00] avg 1148.49 1219.57 6.19
200 [6:00–12:00] min 681.39 704.11 3.33
200 [6:00–12:00] avg 1446.11 1553.58 7.43
300 [6:00–8:00] min 573.19 590.27 2.98
300 [6:00–8:00] avg 1281.61 1372.04 7.06
300 [6:00–10:00] min 1122.16 1157.14 3.12
300 [6:00–10:00] avg 2426.44 2659.18 9.59
300 [6:00–12:00] min 1370.50 1414.17 3.19
300 [6:00–12:00] avg 2993.12 3413.19 14.03
340 [6:00–8:00] min 628.75 645.54 2.67
340 [6:00–8:00] avg 1438.81 1539.79 7.02
340 [6:00–10:00] min 1237.02 1270.99 2.75
340 [6:00–10:00] avg 2734.75 3035.73 11.01
340 [6:00–12:00] min 1505.53 1549.17 2.90
340 [6:00–12:00] avg 3383.04 3962.03 17.11

Avg. 5.96
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Table 10
Detailed results for the VAR(%) indicator.

Instance RP RPreb VAR(%)

#stations Time interval Penalty

50 [6:00–8:00] min 46.41 46.65 0.52
50 [6:00–8:00] avg 95.19 96.69 1.58
50 [6:00–10:00] min 88.77 89.22 0.52
50 [6:00–10:00] avg 168.66 172.25 2.13
50 [6:00–12:00] min 107.11 107.90 0.74
50 [6:00–12:00] avg 195.00 197.61 1.34
100 [6:00–8:00] min 111.06 111.42 0.32
100 [6:00–8:00] avg 236.84 242.49 2.39
100 [6:00–10:00] min 228.04 228.93 0.39
100 [6:00–10:00] avg 448.09 455.41 1.63
100 [6:00–12:00] min 287.46 288.10 0.22
100 [6:00–12:00] avg 551.81 558.77 1.26
200 [6:00–8:00] min 265.03 265.62 0.22
200 [6:00–8:00] avg 603.66 616.50 2.13
200 [6:00–10:00] min 540.03 541.31 0.24
200 [6:00–10:00] avg 1148.49 1174.17 2.24
200 [6:00–12:00] min 681.39 683.63 0.33
200 [6:00–12:00] avg 1446.11 1474.05 1.93
300 [6:00–8:00] min 573.19 574.32 0.20
300 [6:00–8:00] avg 1281.61 1310.18 2.23
300 [6:00–10:00] min 1122.16 1125.15 0.27
300 [6:00–10:00] avg 2426.44 2493.60 2.77
300 [6:00–12:00] min 1370.50 1374.20 0.27
300 [6:00–12:00] avg 2993.12 3097.43 3.48
340 [6:00–8:00] min 628.75 629.44 0.11
340 [6:00–8:00] avg 1438.81 1466.52 1.93
340 [6:00–10:00] min 1237.02 1239.97 0.24
340 [6:00–10:00] avg 2734.75 2815.27 2.94
340 [6:00–12:00] min 1505.53 1508.17 0.18
340 [6:00–12:00] avg 3383.04 3517.24 3.97

Avg. 1.29
Table 11
Detailed results for the VSS(%) indicator.

Instance RP EEV VSS(%)

#stations Time interval Penalty

50 [6:00–8:00] min 46.41 85.22 83.64
50 [6:00–8:00] avg 95.19 558.96 487.22
50 [6:00–10:00] min 88.77 132.61 49.39
50 [6:00–10:00] avg 168.66 761.15 351.28
50 [6:00–12:00] min 107.11 160.39 49.74
50 [6:00–12:00] avg 195.00 879.17 350.85
100 [6:00–8:00] min 111.06 159.84 43.92
100 [6:00–8:00] avg 236.84 1156.66 388.38
100 [6:00–10:00] min 228.04 320.19 40.41
100 [6:00–10:00] avg 448.09 2018.89 350.55
100 [6:00–12:00] min 287.46 390.95 36.00
100 [6:00–12:00] avg 551.81 2279.22 313.04
200 [6:00–8:00] min 265.03 333.32 25.77
200 [6:00–8:00] avg 603.66 2826.94 368.30
200 [6:00–10:00] min 540.03 684.21 26.70
200 [6:00–10:00] avg 1148.49 5217.23 354.27
200 [6:00–12:00] min 681.39 834.45 22.46
200 [6:00–12:00] avg 1446.11 5758.46 298.20
300 [6:00–8:00] min 573.19 690.03 20.38
300 [6:00–8:00] avg 1281.61 5735.50 347.52
300 [6:00–10:00] min 1122.16 1350.28 20.33
300 [6:00–10:00] avg 2426.44 9509.12 291.90
300 [6:00–12:00] min 1370.50 1620.64 18.25
300 [6:00–12:00] avg 2993.12 10 763.32 259.60
340 [6:00–8:00] min 628.75 751.92 19.59

(continued on next page)
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Table 11 (continued).

Instance RP EEV VSS(%)

#stations Time interval Penalty

340 [6:00–8:00] avg 1438.81 6496.04 351.49
340 [6:00–10:00] min 1237.02 1479.38 19.59
340 [6:00–10:00] avg 2734.75 10 853.40 296.87
340 [6:00–12:00] min 1505.53 1764.46 17.20
340 [6:00–12:00] avg 3383.04 12 249.36 262.08

Avg. 185.50
Table 12
Detailed results for the simulation model run for the SP and the EV solution.

Instance SP EV

#stations Time interval Penalty ∑

𝑖∈⧵{𝐼}
𝑥𝑖 𝑐𝑜𝑛𝑔.(%) 𝑠𝑡𝑎𝑟𝑣.(%) #rebal. 𝐵+ E[𝐹𝑅(%)]

∑

𝑖∈⧵{𝐼}
𝑥𝑖 𝑐𝑜𝑛𝑔.(%) 𝑠𝑡𝑎𝑟𝑣.(%) #rebal. 𝐵+ E[𝐹𝑅(%)]

50 [6:00–8:00] min 27.00 0.00 13.62 0.00 6.00 96.75 4.00 0.00 49.86 0.00 6.43 91.96
50 [6:00–8:00] avg 65.00 0.00 0.00 0.43 5.14 99.47 4.00 0.00 49.86 0.29 6.14 92.06
50 [6:00–10:00] min 60.00 0.00 6.06 0.00 13.43 95.64 25.00 0.00 20.55 0.00 14.29 89.49
50 [6:00–10:00] avg 115.00 0.00 0.32 0.71 12.71 98.88 25.00 0.00 20.55 0.57 13.71 89.67
50 [6:00–12:00] min 71.00 0.00 9.43 0.00 20.43 94.97 35.00 0.00 26.46 0.00 22.57 90.14
50 [6:00–12:00] avg 133.00 0.00 1.30 1.29 18.14 98.49 35.00 0.00 26.46 0.86 21.71 90.43
100 [6:00–8:00] min 65.00 0.00 18.49 0.00 18.29 95.54 21.00 0.00 52.92 0.00 19.57 90.76
100 [6:00–8:00] avg 164.00 0.00 2.57 0.57 16.71 99.11 21.00 0.00 52.92 0.14 19.43 90.77
100 [6:00–10:00] min 155.00 0.00 9.63 0.00 46.00 94.08 74.00 0.00 23.35 0.00 47.86 87.31
100 [6:00–10:00] avg 301.00 0.00 1.22 3.57 42.00 98.79 74.00 0.00 23.35 2.71 45.14 87.73
100 [6:00–12:00] min 206.00 0.00 9.51 0.00 72.29 93.10 114.00 0.00 20.93 0.00 74.57 86.59
100 [6:00–12:00] avg 368.00 0.00 1.92 6.00 64.57 97.74 114.00 0.00 20.93 4.14 70.43 87.12
200 [6:00–8:00] min 165.00 0.00 17.27 0.00 62.00 93.41 75.00 0.00 39.73 0.00 65.14 88.84
200 [6:00–8:00] avg 399.00 0.00 2.02 2.71 56.14 98.81 75.00 0.00 39.73 1.57 63.71 88.98
200 [6:00–10:00] min 370.00 0.00 8.28 0.00 147.29 91.26 212.00 0.00 20.56 0.00 151.57 84.93
200 [6:00–10:00] avg 734.00 0.00 1.26 9.71 136.57 98.03 212.00 0.00 20.56 7.86 145.29 85.44
200 [6:00–12:00] min 477.00 0.00 10.07 0.00 219.29 89.54 308.00 0.00 19.49 0.00 225.43 84.20
200 [6:00–12:00] avg 906.00 0.00 2.15 14.14 202.29 96.83 308.00 0.00 19.49 10.00 217.00 84.85
300 [6:00–8:00] min 365.00 0.00 13.82 0.00 149.29 91.14 208.00 0.00 28.12 0.00 152.86 85.67
300 [6:00–8:00] avg 834.00 0.00 1.01 8.57 135.43 98.25 208.00 0.00 28.12 6.57 146.29 86.08
300 [6:00–10:00] min 787.00 0.00 8.25 0.00 363.57 88.30 518.00 0.00 16.27 0.00 366.29 81.55
300 [6:00–10:00] avg 1483.00 0.06 0.93 18.43 338.29 96.20 520.00 0.00 16.31 13.43 353.29 82.10
300 [6:00–12:00] min 974.00 0.48 9.14 0.00 525.14 85.94 678.00 0.48 16.78 0.00 532.29 79.92
300 [6:00–12:00] avg 1785.00 0.88 2.15 25.57 484.57 94.44 680.00 0.48 16.82 20.29 512.00 80.58
340 [6:00–8:00] min 409.00 0.00 12.71 0.00 159.57 91.82 235.00 0.00 26.23 0.00 163.71 86.43
340 [6:00–8:00] avg 928.00 0.00 0.91 11.29 143.43 98.50 236.00 0.00 26.23 7.71 156.29 86.87
340 [6:00–10:00] min 869.00 0.03 7.77 0.00 402.29 88.67 576.00 0.04 16.02 0.00 404.86 82.25
340 [6:00–10:00] avg 1615.00 0.18 0.94 33.43 362.29 96.55 578.00 0.04 16.07 26.14 381.14 83.25
340 [6:00–12:00] min 1073.00 0.65 8.62 0.00 573.71 86.32 752.00 0.67 16.41 0.00 581.43 80.90
340 [6:00–12:00] avg 1942.00 1.24 1.93 37.00 520.86 94.62 754.00 0.67 16.46 28.71 555.14 81.84

Avg. 594.83 0.12 6.11 5.78 177.26 94.71 255.97 0.08 26.25 4.37 184.52 86.29
Table 13
Detailed results for the LUSS (%) indicator.

Instance SP ESSV LUSS

#stations Time interval Penalty RP #stations no bikes ESSV #stations no bikes LUSS (%) Common stations no bikes (%)

50 [6:00–8:00] min 46.41 27.00 80.82 47.00 74.15 100.00
50 [6:00–8:00] avg 95.19 11.00 493.04 47.00 417.96 100.00
50 [6:00–10:00] min 88.77 18.00 99.55 27.00 12.15 100.00
50 [6:00–10:00] avg 168.66 6.00 356.46 27.00 111.34 100.00
50 [6:00–12:00] min 107.11 12.00 119.56 24.00 11.62 100.00
50 [6:00–12:00] avg 195.00 5.00 418.61 24.00 114.67 100.00
100 [6:00–8:00] min 111.06 49.00 146.58 80.00 31.98 100.00
100 [6:00–8:00] avg 236.84 16.00 812.90 80.00 243.23 100.00
100 [6:00–10:00] min 228.04 26.00 246.80 46.00 8.23 100.00
100 [6:00–10:00] avg 448.09 9.00 872.94 46.00 94.81 100.00
100 [6:00–12:00] min 287.46 17.00 304.10 34.00 5.79 100.00
100 [6:00–12:00] avg 551.81 7.00 927.80 33.00 68.14 100.00
200 [6:00–8:00] min 265.03 87.00 296.29 130.00 11.79 100.00
200 [6:00–8:00] avg 603.66 26.00 1628.85 129.00 169.83 100.00
200 [6:00–10:00] min 540.03 52.00 558.06 77.00 3.34 100.00
200 [6:00–10:00] avg 1148.49 14.00 1923.80 76.00 67.51 100.00
200 [6:00–12:00] min 681.39 37.00 697.14 56.00 2.31 100.00
200 [6:00–12:00] avg 1446.11 12.00 2024.76 54.00 40.01 100.00
300 [6:00–8:00] min 573.19 97.00 602.91 142.00 5.19 100.00
300 [6:00–8:00] avg 1281.61 26.00 2561.37 135.00 99.85 100.00
300 [6:00–10:00] min 1122.16 51.00 1142.51 77.00 1.81 100.00
300 [6:00–10:00] avg 2426.44 15.00 3156.80 71.00 30.10 100.00
300 [6:00–12:00] min 1370.50 36.00 1396.97 64.00 1.93 100.00
300 [6:00–12:00] avg 2993.12 13.00 3799.57 59.00 26.94 100.00
340 [6:00–8:00] min 628.75 121.00 660.52 169.00 5.05 100.00
340 [6:00–8:00] avg 1438.81 48.00 2795.98 160.00 94.33 100.00

(continued on next page)
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Table 13 (continued).
Instance SP ESSV LUSS

#stations Time interval Penalty RP #stations no bikes ESSV #stations no bikes LUSS (%) Common stations no bikes (%)

340 [6:00–10:00] min 1237.02 76.00 1254.65 102.00 1.43 100.00
340 [6:00–10:00] avg 2734.75 37.00 3515.55 96.00 28.55 100.00
340 [6:00–12:00] min 1505.53 62.00 1531.13 88.00 1.70 100.00
340 [6:00–12:00] avg 3383.04 35.00 4217.26 82.00 24.66 100.00

Avg. 60.35
Table 14
Detailed results for the LUDS (%) indicator.

Instance SP EIV Performance

#stations Time interval Penalty RP t(s) EIV t(s) LUDS (%) 𝛥𝑡 (%)

50 [6:00–8:00] min 46.41 53.01 46.41 49.78 0.00 −6.09
50 [6:00–8:00] avg 95.19 49.38 95.19 43.19 0.00 −12.52
50 [6:00–10:00] min 88.77 45.43 88.77 43.95 0.00 −3.26
50 [6:00–10:00] avg 168.66 49.48 168.66 42.57 0.00 −13.96
50 [6:00–12:00] min 107.11 47.70 107.11 51.39 0.00 7.73
50 [6:00–12:00] avg 195.00 51.19 195.00 47.71 0.00 −6.80
100 [6:00–8:00] min 111.06 113.22 111.06 101.65 0.00 −10.22
100 [6:00–8:00] avg 236.84 178.82 236.84 110.27 0.00 −38.34
100 [6:00–10:00] min 228.04 115.71 228.04 103.59 0.00 −10.48
100 [6:00–10:00] avg 448.09 109.92 448.09 106.36 0.00 −3.25
100 [6:00–12:00] min 287.46 115.28 287.82 103.08 0.13 −10.59
100 [6:00–12:00] avg 551.81 134.99 551.81 107.58 0.00 −20.31
200 [6:00–8:00] min 265.03 327.60 265.15 223.59 0.05 −31.75
200 [6:00–8:00] avg 603.66 310.41 603.66 246.88 0.00 −20.47
200 [6:00–10:00] min 540.03 307.20 540.40 229.71 0.07 −25.22
200 [6:00–10:00] avg 1148.49 254.63 1148.49 246.08 0.00 −3.36
200 [6:00–12:00] min 681.39 262.69 681.95 225.40 0.08 −14.20
200 [6:00–12:00] avg 1446.11 247.55 1446.11 244.45 0.00 −1.25
300 [6:00–8:00] min 573.19 493.83 574.83 418.24 0.29 −15.31
300 [6:00–8:00] avg 1281.61 479.42 1281.61 482.28 0.00 0.60
300 [6:00–10:00] min 1122.16 466.42 1124.81 386.02 0.24 −17.24
300 [6:00–10:00] avg 2426.44 462.64 2426.44 457.88 0.00 −1.03
300 [6:00–12:00] min 1370.50 457.35 1373.01 415.96 0.18 −9.05
300 [6:00–12:00] avg 2993.12 438.91 2993.12 403.98 0.00 −7.96
340 [6:00–8:00] min 628.75 474.84 630.38 497.96 0.26 4.87
340 [6:00–8:00] avg 1438.81 501.07 1438.81 538.65 0.00 7.50
340 [6:00–10:00] min 1237.02 578.62 1239.87 493.54 0.23 −14.70
340 [6:00–10:00] avg 2734.75 589.23 2734.75 477.50 0.00 −18.96
340 [6:00–12:00] min 1505.53 568.34 1508.79 493.15 0.22 −13.23
340 [6:00–12:00] avg 3383.04 584.16 3383.04 467.59 0.00 −19.96

Avg. 0.06 −10.96
Table 15
Detailed results of the sensitivity analysis for the first and second-stage costs obtained by multiplying stockout, excess, and extra inventory
penalties by the multiplier 𝑢.

Instance SP

#stations Time interval Penalty 𝑢 First-stage cost Second-stage cost

50 [6:00–8:00] min 1 27.00 19.41
50 [6:00–8:00] min 10 68.00 28.53
50 [6:00–8:00] min 100 101.00 68.56
50 [6:00–8:00] min 1000 101.00 216.73
50 [6:00–8:00] min 10 000 101.00 216.73

50 [6:00–8:00] avg 1 65.00 30.19
50 [6:00–8:00] avg 10 100.00 87.09
50 [6:00–8:00] avg 100 101.00 216.73
50 [6:00–8:00] avg 1000 101.00 216.73
50 [6:00–8:00] avg 10 000 101.00 216.73

50 [6:00–10:00] min 1 60.00 28.77
50 [6:00–10:00] min 10 117.00 50.78
50 [6:00–10:00] min 100 161.00 157.34

(continued on next page)
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Table 15 (continued).

Instance SP

#stations Time interval Penalty 𝑢 First-stage cost Second-stage cost

50 [6:00–10:00] min 1000 169.00 532.05
50 [6:00–10:00] min 10 000 169.00 540.68

50 [6:00–10:00] avg 1 115.00 53.66
50 [6:00–10:00] avg 10 164.00 203.49
50 [6:00–10:00] avg 100 169.00 532.67
50 [6:00–10:00] avg 1000 169.00 547.33
50 [6:00–10:00] avg 10 000 169.00 693.93

50 [6:00–12:00] min 1 71.00 36.11
50 [6:00–12:00] min 10 135.00 60.71
50 [6:00–12:00] min 100 177.00 200.01
50 [6:00–12:00] min 1000 183.00 664.26
50 [6:00–12:00] min 10 000 183.00 762.00

50 [6:00–12:00] avg 1 133.00 62.00
50 [6:00–12:00] avg 10 177.00 258.20
50 [6:00–12:00] avg 100 183.00 671.54
50 [6:00–12:00] avg 1000 183.00 839.23
50 [6:00–12:00] avg 10 000 183.00 2516.14

100 [6:00–8:00] min 1 65.00 46.06
100 [6:00–8:00] min 10 160.00 63.70
100 [6:00–8:00] min 100 237.00 180.46
100 [6:00–8:00] min 1000 245.00 538.47
100 [6:00–8:00] min 10 000 245.00 551.50

100 [6:00–8:00] avg 1 164.00 72.84
100 [6:00–8:00] avg 10 240.00 240.55
100 [6:00–8:00] avg 100 245.00 541.49
100 [6:00–8:00] avg 1000 245.00 563.73
100 [6:00–8:00] avg 10 000 245.00 764.68

100 [6:00–10:00] min 1 155.00 73.04
100 [6:00–10:00] min 10 292.00 123.61
100 [6:00–10:00] min 100 408.00 416.20
100 [6:00–10:00] min 1000 412.00 1459.09
100 [6:00–10:00] min 10 000 412.00 4551.82

100 [6:00–10:00] avg 1 301.00 147.09
100 [6:00–10:00] avg 10 409.00 594.11
100 [6:00–10:00] avg 100 412.00 1828.72
100 [6:00–10:00] avg 1000 412.00 8720.24
100 [6:00–10:00] avg 10 000 412.00 77 274.48

100 [6:00–12:00] min 1 206.00 81.46
100 [6:00–12:00] min 10 355.00 161.40
100 [6:00–12:00] min 100 478.00 565.97
100 [6:00–12:00] min 1000 491.00 2030.77
100 [6:00–12:00] min 10 000 491.00 8703.01

100 [6:00–12:00] avg 1 368.00 183.81
100 [6:00–12:00] avg 10 487.00 781.20
100 [6:00–12:00] avg 100 491.00 2781.40
100 [6:00–12:00] avg 1000 491.00 16 989.22
100 [6:00–12:00] avg 10 000 491.00 158 570.06

200 [6:00–8:00] min 1 165.00 100.03
200 [6:00–8:00] min 10 351.00 159.04
200 [6:00–8:00] min 100 551.00 485.25
200 [6:00–8:00] min 1000 586.00 1899.36
200 [6:00–8:00] min 10 000 586.00 5451.72

200 [6:00–8:00] avg 1 399.00 204.66
200 [6:00–8:00] avg 10 577.00 756.61
200 [6:00–8:00] avg 100 586.00 3493.86
200 [6:00–8:00] avg 1000 586.00 11 244.10
200 [6:00–8:00] avg 10 000 586.00 88 028.94

(continued on next page)
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Table 15 (continued).

Instance SP

#stations Time interval Penalty 𝑢 First-stage cost Second-stage cost

200 [6:00–10:00] min 1 370.00 170.03
200 [6:00–10:00] min 10 668.00 293.38
200 [6:00–10:00] min 100 940.00 1138.23
200 [6:00–10:00] min 1000 997.00 5175.90
200 [6:00–10:00] min 10 000 997.00 32 940.12

200 [6:00–10:00] avg 1 734.00 414.49
200 [6:00–10:00] avg 10 980.00 1901.21
200 [6:00–10:00] avg 100 999.00 10 818.53
200 [6:00–10:00] avg 1000 999.00 86 309.35
200 [6:00–10:00] avg 10 000 999.00 840 691.67

200 [6:00–12:00] min 1 477.00 204.39
200 [6:00–12:00] min 10 829.00 377.31
200 [6:00–12:00] min 100 1176.00 1483.66
200 [6:00–12:00] min 1000 1245.00 6614.52
200 [6:00–12:00] min 10 000 1245.00 44 857.33

200 [6:00–12:00] avg 1 906.00 540.11
200 [6:00–12:00] avg 10 1227.00 2422.51
200 [6:00–12:00] avg 100 1245.00 13 519.62
200 [6:00–12:00] avg 1000 1245.00 112 470.89
200 [6:00–12:00] avg 10 000 1245.00 1101457.09

300 [6:00–8:00] min 1 365.00 208.19
300 [6:00–8:00] min 10 744.00 308.72
300 [6:00–8:00] min 100 1109.00 1033.81
300 [6:00–8:00] min 1000 1179.00 5028.29
300 [6:00–8:00] min 10 000 1179.00 27 022.08

300 [6:00–8:00] avg 1 834.00 447.61
300 [6:00–8:00] avg 10 1158.00 1819.65
300 [6:00–8:00] avg 100 1179.00 10 923.80
300 [6:00–8:00] avg 1000 1179.00 68 723.49
300 [6:00–8:00] avg 10 000 1179.00 627 786.41

300 [6:00–10:00] min 1 787.00 335.16
300 [6:00–10:00] min 10 1350.00 593.23
300 [6:00–10:00] min 100 1857.00 2602.24
300 [6:00–10:00] min 1000 1972.00 14 631.73
300 [6:00–10:00] min 10 000 1972.00 112 549.99

300 [6:00–10:00] avg 1 1483.00 943.44
300 [6:00–10:00] avg 10 1920.00 4893.95
300 [6:00–10:00] avg 100 1972.00 34 557.50
300 [6:00–10:00] avg 1000 1972.00 300 466.54
300 [6:00–10:00] avg 10 000 1972.00 2955130.32

300 [6:00–12:00] min 1 974.00 396.50
300 [6:00–12:00] min 10 1612.00 778.04
300 [6:00–12:00] min 100 2240.00 3416.46
300 [6:00–12:00] min 1000 2345.00 19 662.00
300 [6:00–12:00] min 10 000 2346.00 161 695.33

300 [6:00–12:00] avg 1 1785.00 1208.12
300 [6:00–12:00] avg 10 2305.00 6360.33
300 [6:00–12:00] avg 100 2348.00 44 937.40
300 [6:00–12:00] avg 1000 2349.00 405 716.23
300 [6:00–12:00] avg 10 000 2349.00 4010660.67

340 [6:00–8:00] min 1 409.00 219.75
340 [6:00–8:00] min 10 812.00 340.41
340 [6:00–8:00] min 100 1221.00 1185.77
340 [6:00–8:00] min 1000 1305.00 4946.47
340 [6:00–8:00] min 10 000 1305.00 23 629.30

340 [6:00–8:00] avg 1 928.00 510.81
340 [6:00–8:00] avg 10 1287.00 2212.99
340 [6:00–8:00] avg 100 1305.00 10 679.84
340 [6:00–8:00] avg 1000 1305.00 66 327.93
340 [6:00–8:00] avg 10 000 1305.00 605 616.25
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Table 15 (continued).

Instance SP

#stations Time interval Penalty 𝑢 First-stage cost Second-stage cost

340 [6:00–10:00] min 1 869.00 368.02
340 [6:00–10:00] min 10 1471.00 655.71
340 [6:00–10:00] min 100 2002.00 2979.09
340 [6:00–10:00] min 1000 2136.00 15 851.01
340 [6:00–10:00] min 10 000 2137.00 126 251.53

340 [6:00–10:00] avg 1 1615.00 1119.75
340 [6:00–10:00] avg 10 2101.00 6005.97
340 [6:00–10:00] avg 100 2139.00 40 711.70
340 [6:00–10:00] avg 1000 2139.00 372 184.98
340 [6:00–10:00] avg 10 000 2139.00 3684400.69

340 [6:00–12:00] min 1 1073.00 432.53
340 [6:00–12:00] min 10 1758.00 856.32
340 [6:00–12:00] min 100 2425.00 3948.87
340 [6:00–12:00] min 1000 2523.00 22 597.97
340 [6:00–12:00] min 10 000 2525.00 190 381.94

340 [6:00–12:00] avg 1 1942.00 1441.04
340 [6:00–12:00] avg 10 2502.00 7856.46
340 [6:00–12:00] avg 100 2526.00 55 226.60
340 [6:00–12:00] avg 1000 2526.00 515 360.58
340 [6:00–12:00] avg 10 000 2526.00 5115164.44
Table 16
Detailed results of the sensitivity analysis for the first and second-stage costs obtained by multiplying rebalancing, stockout, excess, and extra
inventory penalties by the multiplier 𝑢.

Instance SP

#stations Time interval Penalty 𝑢 First-stage cost Second-stage cost

50 [6:00–8:00] min 1 27.00 19.41
50 [6:00–8:00] min 10 74.00 27.07
50 [6:00–8:00] min 100 101.00 140.82
50 [6:00–8:00] min 1000 101.00 1408.22
50 [6:00–8:00] min 10 000 101.00 14 082.18

50 [6:00–8:00] avg 1 65.00 30.19
50 [6:00–8:00] avg 10 100.00 129.80
50 [6:00–8:00] avg 100 101.00 1288.63
50 [6:00–8:00] avg 1000 101.00 12 886.26
50 [6:00–8:00] avg 10 000 101.00 128 862.57

50 [6:00–10:00] min 1 60.00 28.77
50 [6:00–10:00] min 10 122.00 53.45
50 [6:00–10:00] min 100 164.00 340.75
50 [6:00–10:00] min 1000 169.00 3375.57
50 [6:00–10:00] min 10 000 169.00 33 755.68

50 [6:00–10:00] avg 1 115.00 53.66
50 [6:00–10:00] avg 10 166.00 312.62
50 [6:00–10:00] avg 100 169.00 3097.74
50 [6:00–10:00] avg 1000 169.00 30 977.40
50 [6:00–10:00] avg 10 000 169.00 309 773.95

50 [6:00–12:00] min 1 71.00 36.11
50 [6:00–12:00] min 10 140.00 66.20
50 [6:00–12:00] min 100 179.00 475.44
50 [6:00–12:00] min 1000 187.00 4709.83
50 [6:00–12:00] min 10 000 187.00 47 098.30

50 [6:00–12:00] avg 1 133.00 62.00
50 [6:00–12:00] avg 10 179.00 414.44
50 [6:00–12:00] avg 100 183.00 4106.95
50 [6:00–12:00] avg 1000 184.00 41 065.51
50 [6:00–12:00] avg 10 000 186.00 410 635.13

100 [6:00–8:00] min 1 65.00 46.06
100 [6:00–8:00] min 10 175.00 57.61
100 [6:00–8:00] min 100 240.00 316.18
100 [6:00–8:00] min 1000 245.00 3119.81
100 [6:00–8:00] min 10 000 245.00 31 198.13
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Table 16 (continued).

Instance SP

#stations Time interval Penalty 𝑢 First-stage cost Second-stage cost

100 [6:00–8:00] avg 1 164.00 72.84
100 [6:00–8:00] avg 10 241.00 385.96
100 [6:00–8:00] avg 100 245.00 3822.96
100 [6:00–8:00] avg 1000 245.00 38 229.64
100 [6:00–8:00] avg 10 000 245.00 382 296.38

100 [6:00–10:00] min 1 155.00 73.04
100 [6:00–10:00] min 10 304.00 129.77
100 [6:00–10:00] min 100 414.00 786.62
100 [6:00–10:00] min 1000 424.00 7796.41
100 [6:00–10:00] min 10 000 424.00 77 964.10

100 [6:00–10:00] avg 1 301.00 147.09
100 [6:00–10:00] avg 10 410.00 979.54
100 [6:00–10:00] avg 100 416.00 9769.17
100 [6:00–10:00] avg 1000 424.00 97 635.72
100 [6:00–10:00] avg 10 000 424.00 976 357.25

100 [6:00–12:00] min 1 206.00 81.46
100 [6:00–12:00] min 10 374.00 165.96
100 [6:00–12:00] min 100 498.00 1136.39
100 [6:00–12:00] min 1000 518.00 11 241.57
100 [6:00–12:00] min 10 000 518.00 112 415.69

100 [6:00–12:00] avg 1 368.00 183.81
100 [6:00–12:00] avg 10 487.00 1333.85
100 [6:00–12:00] avg 100 506.00 13 273.50
100 [6:00–12:00] avg 1000 518.00 132 674.09
100 [6:00–12:00] avg 10 000 518.00 1326740.92

200 [6:00–8:00] min 1 165.00 100.03
200 [6:00–8:00] min 10 383.00 155.63
200 [6:00–8:00] min 100 568.00 713.09
200 [6:00–8:00] min 1000 591.00 6973.97
200 [6:00–8:00] min 10 000 591.00 69 739.70

200 [6:00–8:00] avg 1 399.00 204.66
200 [6:00–8:00] avg 10 579.00 1206.27
200 [6:00–8:00] avg 100 588.00 11 994.34
200 [6:00–8:00] avg 1000 590.00 119 935.37
200 [6:00–8:00] avg 10 000 591.00 1199350.29

200 [6:00–10:00] min 1 370.00 170.03
200 [6:00–10:00] min 10 718.00 290.56
200 [6:00–10:00] min 100 980.00 1733.44
200 [6:00–10:00] min 1000 1028.00 17 027.47
200 [6:00–10:00] min 10 000 1028.00 170 274.66

200 [6:00–10:00] avg 1 734.00 414.49
200 [6:00–10:00] avg 10 983.00 3008.78
200 [6:00–10:00] avg 100 1008.00 29 924.23
200 [6:00–10:00] avg 1000 1027.00 299 136.81
200 [6:00–10:00] avg 10 000 1028.00 2991365.32

200 [6:00–12:00] min 1 477.00 204.39
200 [6:00–12:00] min 10 889.00 384.82
200 [6:00–12:00] min 100 1254.00 2362.29
200 [6:00–12:00] min 1000 1311.00 23 242.26
200 [6:00–12:00] min 10 000 1311.00 232 422.64

200 [6:00–12:00] avg 1 906.00 540.11
200 [6:00–12:00] avg 10 1235.00 3976.79
200 [6:00–12:00] avg 100 1279.00 39 618.78
200 [6:00–12:00] avg 1000 1309.00 396 012.33
200 [6:00–12:00] avg 10 000 1311.00 3960112.30

300 [6:00–8:00] min 1 365.00 208.19
300 [6:00–8:00] min 10 803.00 311.25
300 [6:00–8:00] min 100 1146.00 1580.16
300 [6:00–8:00] min 1000 1191.00 15 527.05
300 [6:00–8:00] min 10 000 1191.00 155 270.49
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Table 16 (continued).

Instance SP

#stations Time interval Penalty 𝑢 First-stage cost Second-stage cost

300 [6:00–8:00] avg 1 834.00 447.61
300 [6:00–8:00] avg 10 1163.00 2939.18
300 [6:00–8:00] avg 100 1183.00 29 240.24
300 [6:00–8:00] avg 1000 1193.00 292 337.69
300 [6:00–8:00] avg 10 000 1193.00 2923376.87

300 [6:00–10:00] min 1 787.00 335.16
300 [6:00–10:00] min 10 1460.00 617.80
300 [6:00–10:00] min 100 1980.00 3923.73
300 [6:00–10:00] min 1000 2068.00 38 670.13
300 [6:00–10:00] min 10 000 2069.00 386 697.95

300 [6:00–10:00] avg 1 1483.00 943.44
300 [6:00–10:00] avg 10 1936.00 7319.28
300 [6:00–10:00] avg 100 2023.00 72 758.28
300 [6:00–10:00] avg 1000 2068.00 727 343.21
300 [6:00–10:00] avg 10 000 2070.00 7273417.49

300 [6:00–12:00] min 1 974.00 396.50
300 [6:00–12:00] min 10 1769.00 832.82
300 [6:00–12:00] min 100 2360.00 5688.90
300 [6:00–12:00] min 1000 2475.00 56 189.05
300 [6:00–12:00] min 10 000 2485.00 561 819.48

300 [6:00–12:00] avg 1 1785.00 1208.12
300 [6:00–12:00] avg 10 2317.00 9626.41
300 [6:00–12:00] avg 100 2427.00 95 842.06
300 [6:00–12:00] avg 1000 2493.00 958 059.05
300 [6:00–12:00] avg 10 000 2499.00 9580545.00

340 [6:00–8:00] min 1 409.00 219.75
340 [6:00–8:00] min 10 876.00 343.10
340 [6:00–8:00] min 100 1274.00 1727.73
340 [6:00–8:00] min 1000 1319.00 16 999.51
340 [6:00–8:00] min 10 000 1320.00 169 993.86

340 [6:00–8:00] avg 1 928.00 510.81
340 [6:00–8:00] avg 10 1293.00 3495.46
340 [6:00–8:00] avg 100 1308.00 34 838.73
340 [6:00–8:00] avg 1000 1320.00 348 318.27
340 [6:00–8:00] avg 10 000 1320.00 3483182.69

340 [6:00–10:00] min 1 869.00 368.02
340 [6:00–10:00] min 10 1603.00 676.05
340 [6:00–10:00] min 100 2128.00 4527.41
340 [6:00–10:00] min 1000 2241.00 44 554.16
340 [6:00–10:00] min 10 000 2247.00 445 512.84

340 [6:00–10:00] avg 1 1615.00 1119.75
340 [6:00–10:00] avg 10 2111.00 8925.33
340 [6:00–10:00] avg 100 2182.00 88 890.92
340 [6:00–10:00] avg 1000 2253.00 888 535.42
340 [6:00–10:00] avg 10 000 2255.00 8885348.83

340 [6:00–12:00] min 1 1073.00 432.53
340 [6:00–12:00] min 10 1934.00 936.65
340 [6:00–12:00] min 100 2563.00 6720.75
340 [6:00–12:00] min 1000 2692.00 66 407.45
340 [6:00–12:00] min 10 000 2694.00 664 063.28

340 [6:00–12:00] avg 1 1942.00 1441.04
340 [6:00–12:00] avg 10 2507.00 11 802.96
340 [6:00–12:00] avg 100 2604.00 117 625.97
340 [6:00–12:00] avg 1000 2697.00 1175739.32
340 [6:00–12:00] avg 10 000 2699.00 11757385.85
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