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A Workflow for Estimating and
Visualising Excess Mortality During the
COVID-19 Pandemic

by Garyfallos Konstantinoudis, Virgilio Gémez-Rubio, Michela Cameletti, Monica Pirani, Gianluca
Baio, and Marta Blangiardo

Abstract COVID-19 related deaths estimates underestimate the pandemic burden on mortality because
they suffer from completeness and accuracy issues. Excess mortality is a popular alternative, as it
compares the observed number of deaths versus the number that would be expected if the pandemic
did not occur. The expected number of deaths depends on population trends, temperature, and spatio-
temporal patterns. In addition to this, high geographical resolution is required to examine within
country trends and the effectiveness of the different public health policies. In this tutorial, we propose
a workflow using R for estimating and visualising excess mortality at high geographical resolution.
We show a case study estimating excess deaths during 2020 in Italy. The proposed workflow is fast to
implement and allows for combining different models and presenting aggregated results based on
factors such as age, sex, and spatial location. This makes it a particularly powerful and appealing
workflow for online monitoring of the pandemic burden and timely policy making.

1 Introduction

Estimating the burden of the effect of the COVID-19 pandemic on mortality is an important chal-
lenge (Weinberger et al., 2020). The estimates of COVID-19 related deaths are subject to testing capacity
and changes in definition and reporting guidelines, raising accuracy and completeness considerations
(Aburto et al., 2021; Konstantinoudis et al., 2022). In addition, the estimates of COVID-19-related
deaths give an incomplete picture of the mortality burden of the COVID-19 pandemic, as they do
not account for the indirect pandemic effects due to, for instance, disruption to health services (Kac-
zorowski and Del Grande, 2021). Alternatively, excess mortality has been extensively used to evaluate
the impact of the COVID-19 pandemic on mortality (Rossen et al., 2020; Islam et al., 2021; Kontis et al.,
2020; Konstantinoudis et al., 2022; Verbeeck et al., 2021).

Excess mortality is estimated by comparing the observed number of deaths in a particular time
period with the expected number of deaths under the counterfactual scenario of the event (pandemic)
not having had occurred. Typically, this counterfactual scenario is calculated using a comparison
period, for instance, several previous years (https://www.euromomo.eu/). Calculating the expected
number of deaths accurately requires accounting for factors such as population trends, seasonality,
temperature, public holidays and spatio-temporal dependencies. While accounting for the above-
mentioned factors, most studies to date have estimated excess mortality at the national level (see Rossen
et al., 2020; Weinberger et al., 2020), and some have examined excess mortality across countries (Islam
et al., 2021; Kontis et al., 2020, 2021).

While national-level estimates of excess mortality give valuable insights into the total number of
excess deaths, they do not allow for evaluation of within-country geographical differences. However,
such information is essential to understand the country’s transmission patterns and effectiveness of
local policies and measures to contain the pandemic (Kontopantelis et al., 2021). Temporal trends in
excess mortality can substantially differ across regions of the same country (Blangiardo et al., 2020),
which makes national-based comparisons even more challenging. Therefore, understanding the effect
of the COVID-19 pandemic on mortality requires higher spatial resolution and models that account
for spatial, temporal and spatio-temporal dependencies.

When working at high spatio-temporal resolution, data are generally sparse, and this leads to
highly variable excess mortality estimates. This is aggravated by the fact that excess deaths tend to
be subject to spatial and temporal correlation. This makes it essential to use statistical methods that
can account for these dependencies and provide robust and accurate estimates. The disease mapping
framework, which is commonly employed in epidemiology to study the spatio-temporal variation of
diseases (Waller et al., 1997; Moraga, 2018), can be exploited to estimate excess mortality at subnational
and weekly level. The Bayesian approach is naturally suited in this context, as it is able to model
complex dependency structures, as well as to incorporate uncertainty in the data generating and
modelling process. In addition, while fully propagating the uncertainty, it allows for summaries of
results at any desired level of spatio-temporal aggregation (using for instance coarser geographical
units suitable for policy implementation). This in combination with fast approximate methods to
inference, such as the Integrated Laplace Approximation (INLA; Rue et al., 2009), make this framework
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Figure 1: Diagram of the workflow: data wrangling in black, analysis in green, post-processing in
orange and packages in red (timeDate; Wuertz et al., 2023, lubridate; Grolemund and Wickham, 2011,
dplyr; Wickham et al., 2023a, stringr; Wickham, 2022, readr; Wickham et al., 2022, tidyr; Wickham
et al., 2023b, reshape2; Wickham, 2007, rgdal; Bivand et al., 2023, spdep; Bivand, 2022, sf; Pebesma,
2018, shiny; Chang et al., 2022, leafpop; Appelhans and Detsch, 2021, shinyalert; Attali and Edwards,
2021, shinydashboard; Chang and Borges Ribeiro, 2021, ecwmfr; Hufkens et al., 2019, ncdf4; Pierce,
2023, raster; Hijmans (2023), data.table; Dowle and Srinivasan, 2022, abind; Plate and Heiberger,
2016, ggplot2; Wickham, 2016, patchwork; Pedersen, 2022, viridis; Garnier et al., 2021, RColorBrewer;
Neuwirth, 2022). NUTS stands for Nomenclature of Territorial Units for Statistics with NUTS3 being
the highest spatial resolution available and NUTS2 coarser but appropriate for policy making.

particularly powerful and appealing for the monitoring of the pandemic burden and timely policy
making.

Here, we describe how to run a study on excess mortality at high spatial and temporal resolution
using a Bayesian approach and R. This tutorial provides a detailed explanation of the modelling
approach used previously to quantify excess mortality in 5 European regions (Konstantinoudis et al.,
2022). We have further modified the way we model long-term trends in Konstantinoudis et al. (2022),
as we showed that it provides more accurate predictions (Riou et al., 2023). Figure 1 illustrates the
workflow followed in this paper together with the main R packages used. Source code for replicating
the data wrangling (R scripts prefixed with 01, 02 or 03), analysis (R scripts prefixed with 04) and
post-processing steps (R scripts prefixed with 05 or 06 and the App folder) and data files are available
from GitHub at https://github.com/gkonstantinoudis/TutorialExcess.

This tutorial is structured as follows: we first describe the modelling framework and present the case
study in Italy. We then show how to run and evaluate the model, and extract and visualise the results.
Finally, we present an R-shiny app which makes the results effectively and easily disseminated.

2 Bayesian hierarchical spatio-temporal model to estimate excess mortal-
ity

We propose a Bayesian hierarchical model to quantify the effect of spatio-temporal location on
excess mortality under extreme events such as the COVID-19 pandemic, stratified by specific age-sex
population groups. To do so, we first describe the statistical model for predicting the number of deaths
from all-causes based on historical data, in the counterfactual scenario in which the pandemic did not
take place. Then, we show how to estimate the magnitude of excess deaths over a specific period of
time, with associated uncertainty, by comparing the predicted versus the actual number of deaths.

Let yjs4¢ and Pjspy be the number of all-cause deaths and the population at risk for the j-th week,
j =1,...,]i, where J; is the total number of weeks of the year ¢ (f = 2015,...2019), the s-th spatial
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unit (s = 1,...S, where S is the number of provinces in Italy), and k-th age-sex group (k = 1,...10).
Also let xyjt, xpt and zjs; denote the adjustment covariates, respectively: public holidays (x1; = 1 if
week j of the t-th year contains a public holiday and 0 otherwise), the year that the j-the week belongs
to, and temperature. We assume that the historical observed number of deaths, conditional on the
risk Fistks follows a Poisson distribution, with a log-linear model for the risk. To simplify notation, we
omit k, although the following model was fitted to all k age-sex groups (with the elements of the linear
predictor also depending on k):

yjst|"jst NPOiSSOH(‘MjSt = rjstpjst)r

1

log (Tjst) = Bojt + Brxuje + Boxor + f(2jst) + bs + wjy. 2

Here, Boj; is the week-specific intercept in year ¢ given by Boj; = Bo + €;; for the k-th age-sex group,
where f is the global intercept and ¢€j; is an unstructured random effect representing the deviation
of each week from the global intercept, which is modelled using independent and identically (iid)
distributed Gaussian prior distribution with zero-mean and variance equal to 7 !. The parameters
B1 and B, are unknown regression coefficients associated to the public holidays covariate x;; and
a long term linear trend. The effect of temperature, f(-), is allowed to be non-linear by specifying a
second-order random walk (RW2) model:

-1
Zjst | Z(j—1)st:Z(j—2)st- Tz ~ Normal <2Z(j71)st +2(j—2)st Tz ) ,

where ;! is the variance.

Terms bs and w; are spatial and temporal random effects, respectively. We specify the spatial
random effect term, bs, with a convolution prior (Besag et al., 1991), and the temporal random effect
term, w; with a non-stationary in time prior. In detail, we model b using a reparameterisation of the
popular Besag-York-Mollié prior, which is a convolution of an intrinsic conditional autoregressive
(CAR) model and an iid Gaussian model. Let u; be the spatially structured component defined by an
intrinsic CAR (Besag, 1974) prior us|u;,i € s ~ (i1, T, 1/ms), where 1 is the mean of the neighbours
and 95 and m; are respectively the set and the number of neighbours of area s, 7, ! the conditional

variance, and v, the unstructured component with prior vs iid Normal(0, T, 1). We model by as follows
(Besag et al., 1991; Riebler et al., 2016; Konstantinoudis et al., 2020):

by = % (VI=¢o: + /gu?)

where u} and v} are standardised versions of us and vs such that their variance is equal to 1 (Simpson
etal., 2017). The term 0 < ¢ < 1 is a mixing parameter, which measures the proportion of the marginal
variance explained by the structured effect. Finally, we assign to the temporal random effect term,
wjt, a Gaussian random walk model of order 1 (RW1). This component captures seasonality and is
specified as:

w]'t | w(]’*l)tl Tw ~ Normal(w(]-,nt, 71;1).

The Bayesian representation of the above model is completed once we select priors for the fixed
effects Bg and B and the hyperparameters: ¢, 7z, T, Tw, and ¢. For the fixed effects we selected mini-
mally informative Normal distributions, whereas for the hyperparameters we specified "penalising
complexity" (PC) priors (Simpson et al., 2017). PC priors are defined by penalising deviations from a
“base” model (e.g., specified in terms of a specific value of the hyperparameters) and have the effect of
regularising inference, while not implying too strong prior information. Technically, PC priors imply
an exponential distribution on a function of the Kullback-Leibler divergence between the base model
and an alternative model in which the relevant parameter is unrestricted. This translates to a suitable
“minimally informative”, regularising prior on the natural scale of the parameter.

In order to quantify the weekly excess mortality at sub-national level for specific age-sex population
groups, we need to predict the number of deaths that would be expected if the COVID-19 pandemic
had not occurred. In Bayesian analysis, this can be performed by drawing random samples from
the posterior predictive distribution (that is, the distribution of unobserved values conditional on
the observed values from previous years). Specifically, letting 6 be the model parameters, D be the
observed data, and yjs4 be the count of deaths that we want to predict, we have:

D) = [ plyja- |0)p(6 | D)do. @

Operationally, we first generate random samples from the joint posterior marginal of the parame-

p(yjst*
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ters specified in Equation (1) at the highest spatial resolution available (NUTS3 regions; Nomenclature
of Territorial Units for Statistics 3 regions, https://ec.europa.eu/eurostat/web/nuts/background/).
Following that, we use the samples to compute the linear predictor, compute the mean parameter of
the Poisson distribution via inverse link function, and obtain the predicted number of deaths, which
represents the baseline number of deaths assuming the pandemic did not take place.

Finally, to estimate the excess deaths, the predicted number of deaths is compared against the
actual observed number of deaths. Further, this allows us to compute the relative change in mortality
(relative to what we would expect if the pandemic did not occur). This is obtained by (i) subtracting
the predicted number of deaths from the observed number of deaths in each time point j in the +*-th
year and spatial unit s (number of excess deaths or NED), and (ii) dividing NED by the predicted
number of deaths for each sample and multiplying by 100 (yielding % relative excess mortality or
REM).

The model estimates are computed using Integrated Nested Laplace Approximation (INLA; Rue
etal., 2009, which performs approximate Bayesian inference on the class of latent Gaussian models (Rue
and Held, 2005). Unlike simulation based Markov chain Monte Carlo method, INLA is a deterministic
algorithm, which employs analytical approximations and efficient numerical integration schemes to
provide accurate approximations of the posterior distributions in short computing times. The INLA
software is provided through the R package INLA, which can be downloaded from https://www.r-
inla.org/.

3 Motivating example: Italy

3.1 Outcome data

We retrieved all-cause mortality data during 2015-2020 in Italy from the Italian National Institute
of Statistics (https://www.istat.it/). Data were available weekly (ISO week), by age (5-year age
groups), sex and NUTS3 regions. As the COVID-19 mortality rates increase with age, we aggregated
mortality counts based on the following age groups: <40, 40-59, 60-69, 70-79 and 80 years and older
(Davies et al., 2021).

3.2 Population data

Population data in Italy during 2015-2020 were retrieved from the Italian National Institute of Statistics.
The data represent the population in Italy on first of January of every year stratified by age (5-year age
groups), sex and NUTS3 regions. To retrieve weekly population, we performed linear interpolation by
the selected age groups (<40, 40-59, 60-69, 70-79 and 80+), sex, and NUTS3 regions using populations
on the first of January of the current and next year. Population counts on the first of January 2021,
which takes COVID-19 deaths in 2020 into consideration, were available at the time of analysis. Our
goal was, however, to predict mortality for 2020, as if the pandemic had not occurred. Thus we
performed an additional linear interpolation by age, sex and NUTS3 regions to predict the population
at January 1st 2021, using the years 2015-2020 (Figure 2, panel A). Object pop is a tibble containing
the NUTS3 region ID (NUTS318CD), age group (ageg), sex (sex), year (year) and population counts
(population):

pop
# A tibble: 6,420 x 5
# Groups: ageg, sex [10]

NUTS318CD ageg sex year population
<chr> <fct> <chr> <dbl> <dbl>

1 TO less40 female 2015 435758
2 TO less40 female 2016 427702
3 T0 less40 female 2017 420498
4 TO less40 female 2018 413141
5 T0 less40 female 2019 406937
6 TO less40 female 2020 402768
7 TO less40 male 2015 449605
8 TO less40 male 2016 443941
9 TO less40 male 2017 439522
10 TO less40 male 2018 433365
# . with 6,410 more rows
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We can use the following code (based on tidyverse and "piping" principles) to calculate the
population of the 1st of January 2021 by NUTS3 regions, sex and age:

pop %>% group_by(NUTS3, sex, age) %>%
summarise(pop = as.vector(coef(Im(pop ~ year)) %*% c(1, 2021))) %>%
mutate(year = 2021) -> pop2021

We acknowledge that the linear trend in the population is a rather simplistic assumption. In
subsequent analyses in Switzerland, we proposed a spatio-temporal approach similar with equation
(1) to model the population counts had the pandemic not occurred (Riou et al., 2023). The code for that
analysis is also online available online (https://github.com/jriou/covid19_ascertain_deaths).
Once we obtained the year 2021 we performed an additional linear interpolation to calculate weekly
number of population as shown on Figure 2, panel B.

3.3 Covariates
We used covariates related to ambient temperature, national holidays, and year of death, to improve

the model’s predictions. Data on air temperature during 2015-2020 in Italy at 2m above the surface
of land were retrieved from the ERA5 reanalysis data set of the Copernicus climate change program
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Figure 2: A schematic representation of the weekly population estimation procedure focusing on
females aged 40-49 in Venice during 2015-2019 as an example. On panel A we show how we used the
historical data (black points) and fit a linear regression (red dashed line) to predict 2021 (red triangle).
On the panel B we show how we predicted weekly population by drawing lines between the years.

A. ERAS temperature at B. NUTS3 regions and C. Mean temperature during the
2015-01-01 00:00:00 centroid of ERAS5 pixels 1st week of 2015

Figure 3: Schematic representation of the temperature misalignment procedure. A) The temperature
obtained by ERA5 at 2015-01-01 00:00:00. B) NUTS3 regions in blue and a sample of the centroids of
the pixels from the ERAS raster. C. Mean temperature per NUTS3 region during the 1st week of 2015.
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(Hersbach et al., 2020). The geographical resolution of the ERA5 estimates is 0.25° x 0.25° (panel A of
Figure 3). We calculated the weekly mean by the centroids of the 0.25° x 0.25° grid (panel B of Figure
3) and then averaged the weekly temperature over the ERA5 centroids that overlay with the NUTS3
regions (panels B and C of Figure 3).

3.4 Fitting the model

The modelling process in INLA consists of three main steps: (1) the selection of priors, (2) definition of
the model "formula" (which sets out the expression for the generalised linear predictor), and (3) the
call to the main function inla, which computes the estimates.

In particular, we constructed the PC priors for 0 = 1/7,0, = V1/1%,0, = /1/7, and
0w = /1/ Ty based on the assumption that it is unlikely to have a relative risk higher than exp(2)
based solely on spatial, yearly and seasonal variation, Figure 4, panel A. For the mixing parameter ¢,
we set Pr(¢ < 0.5) = 0.5 reflecting our lack of knowledge about whether overdispersion or strong
spatial autocorrelation should dominate the field b, Figure 4, panel B.

These assumptions can be encoded using the following code:

# Defines the priors
hyper.bym <- list(
thetal = list('PCprior', c(1, 0.01)),
theta2 = list('PCprior', c(0.5, 0.5))
)
hyper.iid <- list(theta = list(prior="pc.prec”, param=c(1, 0.01)))

# Defines the model "formula"

formula =
deaths ~ 1 + offset(log(population)) + hol + id.year +
f(id.tmp, model = 'rw2', hyper = hyper.iid, constr = TRUE, scale.model = TRUE) +
f(id.wkes, model = 'iid', hyper = hyper.iid, constr = TRUE) +
f(id.time, model = 'rwl', hyper = hyper.iid, constr = TRUE, scale.model = TRUE,
cyclic = TRUE) +
f(id.space, model = 'bym2', graph = "W.adj", scale.model = TRUE, constr = TRUE,
hyper = hyper.bym)

control.family = inla.set.control.family.default()

# Calls INLA to fit the model
inla.mod = inla(formula,
data = dat,
family = "Poisson”,
verbose = TRUE,
control.family = control.family,
control.compute = list(config = TRUE),
control.mode = list(restart = T),
num. threads = round(parallel::detectCores()*.8),
control.predictor = list(link = 1))

After fitting the model, we take 1000 samples from the (approximated) posterior distribution of
the linear predictor and we use each drawn sample as the mean of a Poisson distribution to retrieve
the predicted mortality counts:

post.samples <- inla.posterior.sample(n = 1000, result = inla.mod)
predlist <- do.call(cbind, lapply(post.samples, function(X)
exp(X$latent[startsWith(rownames(X$latent), "Pred”)]1)))

pois.samples <- apply(predlist, 2, function(Z) rpois(n = length(Z), lambda = 7))

This allows us to estimate the entire predictive posterior distribution of the mortality counts,
incorporating both the sampling and the linear predictor uncertainty.

3.5 Model validation

To examine model validity, we performed a cross validation, leaving out one historical year at a
time and predicting the weekly number of deaths by NUTS3 regions for the year left out. As part
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Figure 4: Penalised complexity (PC) priors for the hyperparameters of the spatial field. A) The implied
PC prior for the standard deviation (as the original scale of the prior is the precision). B) The PC prior
for the mixing parameter ¢.

of this validation we used future years to train predictions for past, but in a previous study we also
showed that the model selected was performing well when other types of cross-validations were used
(Riou et al., 2023). For each stratum, we calculated the correlation between observed and fitted and a
coverage probability, i.e. the probability that the observed death fall into the 95% credible interval
(95% Crl) of the predicted.

4 Results

4.1 Cross-validation

Overall, we found that the model performed well in predicting the expected number of deaths. The
correlation between true and expected number of deaths varied from 0.39 (95% CrI: 0.37, 0.40) in
females 40< to 0.95 (95% CrI: 0.94, 0.95) in females 80> and coverage probability from 0.92 in females
40< to 0.96 in males 60-69, 70-79:

# Correlation Coverage
# less40F .39 (0.37, 0.40) 0.92
# 40-59F 0.78 (0.77, 0.78) 0.95
# 60-69F 0.83 (0.82, 0.83) 0.95
# 70-79F 0.91 (0.90, 0.91) 0.95
# 80plusF 0.95 (0.94, 0.95) 0.95
# less40M 0.51 (0.50, 0.52) 0.93
# 40-59M 0.83 (0.83, 0.84) 0.95
# 60-69M 0.87 (0.86, 0.87) 0.96
# 70-79M 0.92 (0.91, 0.92) 0.96
# 80plusM 0.94 (0.94, 0.94) 0.95

4.2 Expected number of deaths

The object pois.samples.list contains 1000 samples from the posterior predictive distribution (2),
i.e. 1000 samples of the expected number of deaths by age, sex, NUTS3 regions and week, had the
pandemic not occurred. We can access the different age-sex groups as follows:

names(pois.samples.list)
# "F_less40" "F_40_59" "F_60_69" "F_70_79" "F_8@plus”
# "M_less40" "M_40_59" "M_60_69" "M_70_79" "M_80plus”

where F stands for females and M for males across the different age groups. To get an idea about the
structure of the data, we can use the head() function for females 60-69 and check the first 10 samples
(V1 through to V10) of excess deaths for the first 6 weeks of 2020 in the 001 region (Torino)

pois.samples.list$F_60_69 %>%

select(paste@(”V", 1:10), EURO_LABEL, ID_space, year) %>%
head()

# V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 EURO_LABEL ID_space year
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# 262 22 18 17 15 17 18 13 19 16 17  2020-Wo1 001 2020
# 263 18 16 21 20 16 23 13 12 23 17  2020-Wo2 001 2020
# 264 17 23 20 26 12 16 12 19 17 13 2020-Wo3 001 2020
# 265 13 8 13 30 22 17 16 22 17 19  2020-Wo4 001 2020
# 266 14 20 15 15 19 18 23 14 12 18  2020-Wo5 001 2020
# 267 17 14 14 9 14 1517 19 19 14  2020-Wo6 001 2020

We can also calculate median and 95% Crl expected number of deaths for this specific age-sex group
across all years by NUTS3 region:

pois.samples.list$F_60_69 %>%
select(starts_with("V"), "ID_space"”) %>%
group_by(ID_space) %>%
summarise_all(sum) %>%
rowwise(ID_space) %>%
mutate(median = median(c_across(V1:V1000)),
LL = quantile(c_across(V1:V1000), probs= 0.025),
UL = quantile(c_across(V1:V1000), probs= 0.975)) %>%
select(ID_space, median, LL, UL) %>%
head()

# A tibble: 107 x 4

# Rowwise: ID_space

# ID_space median LL uL
# <chr> <dbl> <dbl> <dbl>
# 1 001 814 748  885.
# 2 002 72 55 90
# 3 003 139 116 167
# 4 004 212 183. 243.
# 5 005 86 67 107
# 6 006 178 150 208
# 7 007 46 33 62
# 8 008 86 68 107
# 9 009 113 93  135.
# 10 010 341 301. 380
# with 97 more rows

4.3 Excess mortality

The above results can be combined in different ways using the functions get2020data() and
get2020weeklydata() to calculate excess mortality (in the R script functions.R). The function get2020data()
aggregates over the entire country, NUTS2 regions, sex, age and time resulting in the object d, whereas

the function get2020weeklydata() aggregates over the entire country, NUTS2 regions, sex and age

but not over time resulting in the object d_week.

names (d)

# "province" "region” "country”

names (d$province)

# "none" "age" "sex" "agesex"

names (d$province$age)

# "40<" "40-59" "60-69" "70-79" "80+"

names (d$province$sex)

# "F" "M"

names (d$province$agesex)

# "F40<" "F40-59" "F60-69" "F70-79" "F80+" "M40<" "M40-59" "M60-69" "M70-79" "M80+"

n on

Province stands for the NUTS3 regions (the resolution we used to fit the models), region for
the NUTS2 (coarser than NUTS3, appropriate for policy making) and country for the nationwide
aggregation. Within these aggregations users can select the option "none" being the total aggregation
by age and sex, "age" by sex, "sex" by age and "agesex" refers to no age and sex aggregation. The
objects d and d_week have similar structure and contain summary statistics for REM and NED and
posterior probabilities of a positive REM or NED:

head(d$province$none)
# Simple feature collection with 6 features and 24 fields
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Geometry type: POLYGON

#

# Dimension: XY

# Bounding box: xmin: 6.626865 ymin: 44.06028 xmax: 9.21355 ymax: 45.95041

# CRS: +proj=longlat +datum=WGS84

# ID_space SIGLA DEN_UTS observed population mean.REM median.REM  sd.REM

#1 001 T0 Torino 32478 2226317.2 21.37414 21.36545 1.116582

# 2 002 VC Vercelli 3216 168761.7 32.27082  32.15534 3.133142

# 3 003 NO Novara 5274 364529.4 23.62994 23.71569 2.220801

# 4 004 CN Cuneo 8716 585479.3 20.16665 20.22069 1.742638
#5 005 AT Asti 3745  211437.1 26.37080  26.30691 2.660622
#6 006 AL Alessandria 7916 416090.6 28.27706 28.21510 2.052881

# LL.REM  UL.REM exceedance.REM median.REM.cat exceedance.REM.cat median.pred

# 1 19.19396 23.50963 1 20%> (0.95, 1] 26761
# 2 26.51331 38.74179 1 20%> (0.95, 1] 2434
# 3 19.18442 27.97865 1 20%> (0.95, 11 4263
# 4 16.67966 23.54490 1 20%> (0.95, 1] 7250
# 5 21.19545 31.77340 1 20%> (0.95, 11 2965
# 6 24.48449 32.33309 1 20%> (0.95, 11 6174
# LL.pred UL.pred mean.NED median.NED sd.NED LL.NED UL.NED exceedance.NED
#1 26296 27249 5717.153 5717.5 246.42447 5229.975 6182.075 1
# 2 2318 2543 783.265 782.5 57.49419 673.975 898.025 1
# 3 4121 4428 1006.667 1011.0 76.69947 848.925 1153.000 1
# 4 7055 7471 1461.215 1466.0 105.25269 1245.975 1661.075 1
#5 2842 3092 780.189 780.0 62.31281 654.950 903.000 1
# 6 5982 6360 1743.404 1742.0 98.74248 1556.975 1934.125 1
# median.NED.cat exceedance.NED.cat geometry

#1 1000> (0.95, 1] POLYGON ((7.859044 45.59758. .

# 2 [500, 1000) (0.95, 1] POLYGON ((8.204465 45.93567...

# 3 1000> (0.95, 1] POLYGON ((8.496878 45.83934..

# 4 1000> (0.95, 1] POLYGON ((7.990897 44.82381...

#5 [500, 1000) (0.95, 1] POLYGON ((8.046805 45.12815. ..

#6 1000> (0.95, 1] POLYGON ((8.405489 45.20148. ..

Notice that the object d$province$none is a simple feature collection, making mapping it straight-
forward using the ggplot2 package and geom_sf function. In Figure 5 (plots 1A, 2A and 3A) we show
the median posterior of REM for total age and sex at the national, NUTS2 and NUTS3 regional level.
For these plots we used the object d with the selection "none" and plot the median REM (median.REM),
for example for 3A:

# prov <- "Foggia”
# d$province$none %>%

# filter (DEN_UTS == prov) %>%

# select(geometry) %>%

# ggplot() +

# geom_sf(data = d$province$none, aes(fill = median.REM.cat)) +
# geom_sf(fill = NA, col = col.highlight, size = .8) +

# scale_fill_manual(values=colors, name = "", drop = FALSE) +
# theme_light() + ggtitle(paste@(”3A. NUTS3 regions: ", prov))

Overall, the REM in Italy during 2020 was between 15-20%, meaning that 15-20% more people died
that year than how many would be expected based on historical data, see Figure 5, panel 1A. When
the higher geographical resolution is assessed, it was revealed that north and in particular Lombardia
was the region hit the worst, with the REM exceeding 20%, see Figure 5, panels 1B and 1C. Figure 6
shows a measure of uncertainty of the REM, now for the different age groups and both sexes (selection
"age"). The probability of a positive excess (exceedance.REM) in older people was larger than 0.95
almost everywhere, see Figure 6.

Panels 1B and 1C of Figure 5 show the median temporal nationwide excess mortality together
with 95% Crl by sex after aggregating the different age groups (using d_week and the "sex" selection).
We observe a clear first pandemic wave during March and May and a second one during mid October
and December in 2020. During the first pandemic wave, there were weeks when the median REM
reached almost 100% in males, Figure 5.
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Figure 5: Median relative excess mortality by spatial region during 2020: 1A) nationwide, 2A) NUTS2
and 3A) NUTS3 level, and weekly median relative excess mortality and 95% credible intervals (95%
probability that the true value lies within this interval) by sex during 2020 in: 1B) males nationwide,
1C) females nationwide, 2B) males in Puglia, 2C) females in Puglia, 3B) males in Foggia and 3C)
females in Foggia.
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Panels 2B, 2C, 3B and 3C of Figure 5 show the median spatio-temporal excess mortality together
with 95% Crl by sex after aggregating over the different age groups. Panels 2B and 2C highlight the
region of Puglia, where during the first wave of the pandemic experienced increases excess mortality.
This increase follows similar trends as the nationwide excess mortality (Panels 1B and 1C). When we
increase the spatial resolution in panels 3B and 3C, we highlight the province of Foggia, where there
was insufficient evidence of a positive excess during the first wave, but strong during the second.
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Figure 6: Posterior probability that the relative excess mortality is positive for both sexes during 2020
by age group and NUTS3 region.

4.4 Shiny Web-Application

To be able to effectively examine and communicate the different aggregation levels of the output of
our modelling framework, we have also developed a Shiny Web-Application (WebApp), Figure 7.
The WebApp provides spatial, temporal and spatio-temporal analysis tabs, and within each tab there
are plots and summary statistics for the level of aggregation selected from the drop-down menu.
Users can select across different variables (REM or NED), statistics (median or posterior probability),
sex (males, females or both), age group (40 <, 40 — 59, 60 — 69, 70 — 79, 80 > and all) and different
geographical level (national, NUTS2 or NUTS3 regions). Summary statistics for each area are available
and they are displayed in a pop-up window, which is activated by clicking on the area of interest. In
addition, graphical pop-ups are provided to show the weekly estimates for each area with the leafpop
R-package (Appelhans and Detsch, 2021), in the spatio-temporal analysis tab.

The WebApp that we have developed is hosted at http://atlasmortalidad.uclm.es/italyexcess/.
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Figure 7: Shiny App developed to navigate through the excess mortality estimates during 2020 in Italy
across the different aggregations.

5 Summary

This tutorial provides a detailed explanation of the workflow used previously to calculate excess
mortality during the COVID-19 pandemic in 5 European regions (Konstantinoudis et al., 2022). The
main model used here is slightly modified based on updated results (Riou et al., 2023). We have
proposed a Bayesian workflow for estimating excess mortality and shown how to use R and INLA
to retrieve fast and accurate estimates. The proposed workflow also allows for combining different
models and presenting the results stratified by age, sex, spatial and temporal location. We have
given a practical example of how to use the proposed framework to model the excess mortality
during the 2020 COVID-19 pandemic in Italy at small area level. We also developed a Shiny App
to effectively communicate the results. The methodological framework can be extended to monitor
excess mortality caused by other extreme events; for instance, natural hazards such as tropical cyclones
(Parks et al., 2022) or heatwaves (Konstantinoudis et al., 2023). Potential methodological extensions of
the proposed framework also include modelling the younger age groups with a zero-inflated Poisson
distribution. The proposed framework can also be extended to provide an automated tool for online
disease surveillance and policy making.
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