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Summary

Artificial intelligence (AI) is fast becoming a general purpose technology with
outstanding impacts in industries worldwide, thus supporting the Industry
4.0 revolution. More in detail, nowadays Deep Neural Networks (DNNs)
are widely adopted in several fields, including critical systems, medicine,
self-guided vehicles etc. Among the reasons sustaining this spread there are
the higher generalisation ability and performance levels that DNNs usually
obtain when compared to classical machine learning models.
This thesis provides an evaluation of different AI applications in Industry 4.0,
highlighting the great potential in diverse areas of interest. The rise of Big
Data in the late 2000s, a term referring to the collection of huge amounts
of often unstructured data from diverse sources (e.g., images, text, audio,
medical signals, etc.) has made the role of data center increasingly important
to many applications.

Hard disk drive failures are one of the most common causes of service
downtime in data centers. Predictive maintenance techniques have been
adopted to extend the Remaining Useful Life (RUL) of these drives, and min-
imize service shortage and data loss. Several approaches based on machine
and deep learning techniques have been proposed to address these issues,
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mostly exploiting models based on Self-Monitoring analysis and Reporting
Technology (SMART) attributes. While these models have proven to be
reliable, their performance is affected by the lack of information about the
proximity of disk failure in time. Moreover, many of these techniques are
sensitive to the highly unbalanced nature of existing data-sets, in terms of
good to failed hard disk ratio. In this thesis, a LSTM (Long Short Term
Memory) based model combining SMART attributes and temporal analysis
for estimating a hard drive health status according to its time to failure has
been proposed. Proposed approach outperforms state-of-the-art methods
when evaluated on two data-sets, one containing hourly samples from 23,395
disks and the other reporting daily samples from 29,878 disks. Experimental
results showed that proposed approach is well suited to data-sets with differ-
ent sampling periods, being able to predict hard drive health status up to 45
days before failure. However, the task related to predictive maintenance for
components such as HDD is not the only field of application in fact , in the
last decade Anomalous Sound Detection (ASD) , is becoming an increasingly
challenging task for a plethora of applications due to the widespread diffusion
of Deep Neural Networks. Nevertheless, the arise of recent cyber-physical
attacks (i.e. Triton or Stuxnet), that deceive monitoring platforms, pose novel
and challenging issues. For this reason, advanced predictive maintenance
techniques are starting to exploit sounds generated by particular industrial
equipment, whose analysis can unveil symptom of possible failures. For this
kind of context, it is very easy to collect data related to normal and abnormal
behaviour of a given machinery, thus several kinds of deep neural architec-
tures can be effectively trained to predict eventual downtime situations. In
this thesis, a novel deep learning-based methodology for anomalous sound
detection task, having flexibility, modularity and efficiency characteristics has
been proposed. The proposed methodology analyzes audio clips based on the
mel-spectogram and ID equipment information, while a one-hot encoding
method extracts features that are, successively, used to train an ID Condi-
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tioned Network. In particular, the main novelty of the proposed methodology
concerns the conditioning of an autoencoder by jountly analyzing the rela-
tionships between mel-spectogram and the related machine identifier through
an encoder-decoder architecture for computing an anomaly score related to
the input sequence. Several experiments have been made for investigating
the efficiency and effectiveness of the proposed methodology on multiple
instances of different industrial machines (pumps, valves, slide rails and fans),
achieving low inference time and memory requirements w.r.t. the other ap-
proaches in the literature. Nowadays there are many fields, in addition to
those listed above, that exploit AI advantageously. In particular, the energy
sector is one of those that has taken more advantages from the implementation
of AI approaches, especially Machine Learning models, for several applica-
tions, including energy performance benchmarking of buildings. However,
the black-box approach could lead to a lack of result interpretability thus
preventing the effective application of AI in some real-world scenarios. For
this reason, eXplainable Artificial Intelligence (XAI) tools can be effectively
embedded within an AI-based Energy Analytics methodology in order to
enhance the explainability of the model results. In this thesis, an explainable
AI-based benchmarking framework for estimating the membership to specific
energy performance classes of a large set of Energy Performance Certificates
(EPCs) of flats has been proposed. The classification is obtained by leverag-
ing different black-box classifiers characterized by high accuracy, yet their
inference mechanism is not human-readable. Therefore, a generalizable XAI
methodology, based on the combination of a local explainer together with
a clustering algorithm, is employed to explain the model results and causal
effects between the predictors and target variable to better understand the
model behavior, and the motivations behind correct and wrong performed
classifications. The thesis provides a general methodological approach capa-
ble to exploit a limited number of instances to extract, explain and interpret
inference mechanisms learnt by the model that are useful for the end-user.
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The framework was tested on about 100,000 EPCs of flats located in Italy.
As mentioned before, recently there has been a growing interest in XAI, a
field providing tools, techniques and algorithms designed to generate inter-
pretable explanations, comprehensible to humans, for the decisions made by
a machine learning model. However, it has been demonstrated that DNNs are
susceptible to Adversarial Perturbations (APs), namely procedures intended
to mislead a target model by means of an almost imperceptible noise. The
relation existing between XAI and AP is extremely of interest since it can
help improve trustworthiness in AI-based systems. To this aim, it is important
to increase awareness of the risks associated with the use of XAI in critical
contexts, in a world where APs are present and easy to perform. On this
line, we quantitatively analyse the impact that APs have on XAI in terms
of differences in the explainability maps. Since this thesis wants to be just
an intuitive proof-of-concept, the aforementioned experiments are run in a
fashion easy to understand and to quantify, by using publicly available dataset
and algorithms. Results show that AP can strongly affect the XAI outcomes,
even in the case of a failed attack, highlighting the need for further research
in this field.



Part I

The Fourth Industrial Revolution
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The influence of Artificial Intelligence (AI) on the industry has been so
significant in recent years that it has given rise to a new trend of research and
applications known as "Industry 4.0" . This term refers to the use of artificial
intelligence to facilitate effective data exchange and processing in manufac-
turing technologies, services, and transportation, laying the groundwork for
what is commonly referred to as the fourth industrial revolution.

Figure 1: Timeline for the four industrial revolutions: the first, based on the
invention of the steam engine; the second, thanks to the development of the
assembly line by Henry Ford; the third, with the development of computers
and automation; the fourth, supported by artificial intelligence.

Nowadays, many industries have been impacted by it such as: manu-
facturing [169], logistic [19] and transport systems [159] which represent
only some of the fields in which machine learning is expected to have a very
important impact in the near future.
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Nevertheless, there are many contexts in which some impact are already
visible:

Smart city represents what is expected to be the place where we, as human
beings, will live in the near future. Although the term may suggest
utopian dreams, it actually aims to design cities intended to support
the well-being of citizens, such as by reducing stress, pollution and
optimizing services. [111];

Smart energy harvesting and grid design are becoming extremely impor-
tant, both on a local [153] and on a national [166] scale, in a world
more and more relying on renewable energy rather than fossil fuels;

Automotive and avionics are probably the first use cases in which the use
of machine learning has been applied for the auto-pilot [191, 24]. How-
ever, in an increasingly connected world aiming for self-driving ve-
hicles, adequately controlling large amounts of traffic accurately and
effectively becomes one of the biggest challenges to solve[179];

Telemedicine that, thanks to the ultra wide-band connectivity delivered by
5G technology [183], allow to analyse huge amounts of patients data to
provide AI-based solution in several clinical contexts [117];

Robotics in industrial applications where, thanks to the advances in the
computer vision field, cooperate with and assist humans in safety-
critical environments [99, 68];

Security enforcement, with AI opening new scenario in user identification
[39] and anti-malware protection [92];

The examples listed above are just a few applications and, unfortunately,
represent only one side of the coin. In fact, the disruptive spread and success
of AI also involves some negatives, which find among their most famous
examples applications related to the violation of subjects’ privacy, unethical
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behavior, and attacks on such systems, such as user profiling [6], fake news
generation [143], autonomous weapon systems [9], discriminatory advertising
[47], etc.

We strongly believe that because it is only a very powerful tool, artificial
intelligence is not to blame. However, we argue that in order to develop a
more ethical, equitable, and safe use of artificial intelligence, all stakeholders
such as users, developers, and regulators need to have a very clear idea of
what AI is and what are the implications of its use in various sectors such as
industry.





1
The Artificial Intelligence Era

The term Artificial Intelligence (AI) refers to the ability of a computer to
perform functions similar to the typical reasoning of the human brain.

Although it is thought to have emerged recently, the first studies on
the development of an artificial agent started in the early 1940s. Since the
beginning, AI has been at the center of the debate between scientists and
philosophers, with the former interested in theory and techniques aimed
at developing algorithms that would allow machines to exhibit intelligent
abilities and actions, while the latter interested in aspects related to the
possible implications of considering an artifact as an intelligent entity. In
the opinion of Marvin Minsky, considered one of the fathers of AI along
with Alan Turing and Frank Rosenblatt, the aim of this new field is “to
develop machines capable of autonomously doing things that would require
intelligence if they were done by humans [126].

However, there are some problems in this definition of artificial intelli-
gence, one of them being the unavailability of a universally agreed definition
of “intelligence.” That is why nowadays the most widely used definition is
based on the “imitation game,” a test proposed by Alan Turing in his 1950
article entitled “Computing Machine and Intelligence” [184]. The idea is to
consider a machine that, hidden behind a screen and connected to the world
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through an appropriate communication interface, is able to fool a human tester
into believing that it is interacting with another human being, in which case
it is defined as intelligent. Nowadays, despite the availability of AI models
capable of competing with and, in some cases, even outperforming humans
[13, 178, 127], we are still far from a general AI model that can meet the
definition of an intelligent machine capable of fooling a human being. In fact,
there is a characteristic of even the best-performing AI systems that they are
only suitable for the task for which they were designed, mainly because of
the wide variety of available "input signals" and the lack of generalization
capabilities across domains and tasks. Nevertheless, the use of artificial in-
telligence continues to spread, not only in businesses and high-tech sectors,
but also in everyday applications, with a worldwide impact on the economy
(figure 1.1).
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Figure 1.1: McKinsey Global Institute analysis on the potential impact that
AI will have in the next future on some important industries [118].

1.1 From Shallow to Deep Neural Networks

In recent years, the term artificial intelligence has become more and more
commonly used; in fact, we are increasingly dealing with smart cell phones,
smart voice assistants, etc. Nowadays, the term AI is also often misused,
and one of the effects of this widespread use among the mass audience is the
confusion that arises with all related terms, such as “Pattern Recognition,”
“Machine Learning,” “Deep Learning,” etc. Therefore, in order to help the
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reader better understand the terminology and contributions made in this thesis,
the figure 1.2 gives a brief toponymy of the most commonly used terms in AI.

Figure 1.2: A brief toponymy of some of the most common terms related with
“artificial intelligence”. A box included into another represents the relation
between a sub-concept and a concept.

In fact, usually what the media call AI is indeed machine learning (ML).
Actually, what is capturing the attention is the ability of these types of AI
systems to learn from examples, that is, to learn how to perform a task
through the use of examples. This feature removes the programmer from the
responsibility of writing down the sequence of operations needed to perform a
given task (algorithm), consequently allowing the system to deal with complex
tasks for which it would have been impossible to code a solution.
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Among all ML models, Artificial Neural Networks (ANNs) are surely
the branch that has received the most attention for their inspiration from the
human brain, in fact similar to how the latter consists of a complex intercon-
nected structure of biological neurons, the former is a network of artificial
neurons. Specifically, an artificial neural network is a parallel structure whose
elements are organized in layers and interact with each other to perform, after
an appropriate training phase, the desired task.

More recently, the term Deep Learning is often used as a synonym for
AI/ML. In particular, the term refers to a particular subset of ANNs character-
ized by a very deep structure (composed of many layers). An important key
aspect of deep models is their ability to independently learn, during the train-
ing phase, the best representation of the input (or set of features) for the task
under analysis. This feature, known as feature learning, has been essential to
the spread of AI, as it has enabled its use even in domains lacking effective
features designed by experts. Several networks have been proposed and op-
timized for the analysis of specific types of data , e.g., images , time series,
videos etc. When it comes to elaborate images, Deep Convolutional Neural
Networks (D-CNNs or simply CNNs) have shown incredible performance
in a wide range of research fields, including natural image processing [196],
biomedical applications [66], biometrics [41] and many others [201, 167, 83].
The core of CNNs are convolutional layers, namely layers of neurons lever-
aging the concept of convolution between the input and a kernel to perform
the feature extraction. Unlike the human-based feature extraction, where the
feature design process is fixed, convolutional layers allows CNNs to adapt
the feature extraction during the training itself since the kernels used for
the convolutions are learnt together with the other neurons’ weights. When
several convolutional layers are stacked in sequence, the whole network starts
learning how to extract a hierarchical set of features, from a low to a high
level of details (figure 1.5).
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A Recurrent Neural Network (RNN) is a type of artificial neural network
which uses either sequential data or time series data. Like feedforward and
CNNs, recurrent neural networks utilize training data to learn. They are
distinguished by their “memory” as they take information from prior inputs
to influence both the current input and the output. While traditional deep
neural networks assume that inputs and outputs are independent of each other,
the output of recurrent neural networks depends on prior elements within the
sequence.

Figure 1.3: Illustration showing how a RNN works

A Long Short-Term Memory (LSTM) network is a specific type of RNN.
As mentioned before for RNNs, also LSTMs excel in learning, processing,
and classifying sequential data. The most popular way to train an RNN is
by backpropagation through time. However, the problem of the vanishing
gradients often causes the parameters to capture short-term dependencies
while the information from earlier time steps decays. Long short-term memory
networks aim to overcome the issue of the vanishing gradients by using the
gates to selectively retain information that is relevant and forget information
that is not relevant. Lower sensitivity to the time gap makes LSTM networks
better for analysis of sequential data than simple RNNs. Figure 1.4 shows the
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internal structure of an LSTM cell. It consists of three gates referred to as
input gate, exit gate, and forget gate, governed by the following equations:

ft = σ
(
Wf ∗ [ht−1,xt ]+b f

)
(1.1)

it = σ (Wi ∗ [ht−1,xt ]+bi) (1.2)

C̃t = tanh(WC ∗ [ht−1,xt ]+bC) (1.3)

Ct = ft ◦Ct−1 + it ◦C̃t (1.4)

ot = σ (Wo ∗ [ht−1,xt ]+bo) (1.5)

ht = ot ◦ tanh(Ct) (1.6)

where: ft , it , ot denote, respectively, the forget gate, the input gate, and the
output gate; Wf , Wi, WC , Wo denote the weight matrices related to the relative
gates; ◦ as the symbol for the element-wise product.

The first step performed when data enter the LSTM cell is to select the
information to store. This step is regulated by equation 1.1. The xt data
array containing the values of the features at instant t is input, along with the
ht−1 output. The result obtained is given in input to the activation function
(sigmoid σ ) which returns a value between 0 and 1 for each element of cell
state Ct−1, where 0 and 1 indicate if the element can be ignored or stored in
time, respectively. The second step is related to the input gate and allows
the LSTM to establish which new information to store. This step is realized
through two operations related to equations 1.2 and 1.3. At the end of these
operations, the state of the LSTM cell is updated through equation 1.4. Finally,
the last step consists of the generation of the LSTM output through equations
1.5 and 1.6 which select the part of the new state to be put in output.
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Figure 1.4: Illustration showing LSTM cell and gate.

Deep CNN

Woman

Figure 1.5: Illustration showing how a 3-layered CNN learns to describe a
complex image as composed by many simpler concepts.

Several are the factors that concurred to make neural networks, and in
particular deep architectures, regain popularity. Excluding some mathematical
intuitions, four are the factors that contributed the most:



1.1 From Shallow to Deep Neural Networks | 19

Figure 1.6: Short timeline for some of the AI most important events.

• The rise of Big Data in late 2000, a term referring to the collection of
massive amounts of data often unstructured and coming from different
sources (e.g. images, text, audio, medical signals, etc.). The availability
of public and free to use collections of labelled samples started to show
the limits of kernel machines while allowing researches to experiment
with richer ANNs;

• The computational power needed to optimise the huge number of pa-
rameters (typical of deep architecture) and to iteratively elaborate the
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involved massive training datasets has been a technical limitation for
a long time. On this regards, the advances in General-Purpose GPU
(GP-GPU) computing strongly sustained the spread of deep learning
models, allowing a significant reduction in the required training times;

• The last step to do before really considering deep learning within ev-
eryone’s reach was to make GPU computing accessible (since suited
GPU were, and sometimes still are, relatively expensive). Some com-
panies quickly catch this business opportunity, starting to provide easy
to use web-based virtual machines intended to allow developers to
use remote GPUs for a little price. In 2017, Google publicly released
Colaboratory1, a totally free web-based IDE providing remote GPU
acceleration.

1https://colab.research.google.com/
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Artificial Intelligence in Industry

2.1 HDDs and Predictive Maintenance

Introduced by IBM in 1956, HDDs have become a reliable, wide-spread tech-
nology for data storage. So wide-spread, in fact, that in 2017 Western Digital
predicted that by 2020 70% of all data would be stored in HDDs [Coughlin].
As of March 2019 Backblaze — a pioneer data storage provider — reported
106,238 spinning hard drives in their cloud storage ecosystem spread across
three data centers [87]. Even the rise of modern Solid State Drives (SDDs)
— a storage technology with no moving parts which instead uses semicon-
ductor chips with storage cells — has not affected the popularity of HDDs in
data-centers. There is a simple reason for this: although SSDs consume less
energy, HDDs’ trade-off between storage capacity, life expectancy, and cost
remains unbeaten [Bauer].

While the pervasive use of HDD technology is thus unquestionable, its
reliability remains an important issue. Moreover, the increasing popularity
of big data applications has made it so that storage systems are required to
possess exabytes of capacity, usually resulting in millions of hard disk drives
per data center [88]. Obviously, at such a scale disk failures become the norm.
The fundamental concern is then not just the life-expectancy of a standard
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HDD, nor the quality of information storage, but the frequency of unexpected
failures. Therefore, resources have recently been focused on the search for
optimal strategies to deal with such failures.

In order to come up with cost-effective strategies against data-loss, it is
important to individuate the primary causes of disk failures. Being aware of
these causes is the first step towards mitigating HDD failure risk, as it allows
for a variety of monitoring systems that target each failure source specifically.

As disk failure in large-scale storage systems becomes unavoidable though,
solutions to data-loss have increasingly been relying on redundant arrays
of inexpensive disks (RAID; [64]). However, RAID recovery is a time-
consuming process which requires bringing the failed system offline for
repair. This results in delays on the user side — as the number of data sources
decreases considerably while the damaged disk is being replaced — and in
additional stress on the remaining disk drives due to the intensive read and
write activities [146]. Therefore, while RAID approaches are an effective way
to address the data-loss problem from a general perspective, they remain an
overall unsatisfying solution.

Importantly, these kind of methods are reactive: they provide a safety net
in case a failure occurs. Reactive storage protection approaches thus suffer
from high recovery overheads, which significantly affect data availability and
system performance [146]. For such reasons, recent efforts have been focused
on exploring proactive solutions to HDD failure. If we have technologies
that are able to predict disk failure in advance with a high confidence rate,
then we can plan data rescue operations so that they overlap with regular
storage operations — thus reducing the intervals of data-unavailability. Ef-
fectively predicting HDDs’ health status becomes then the core challenge of
maintenance operations.

In this sense, predictive maintenance models have become the state-of-
the-art in maintenance research, by using historical logs of real-time data to
predict the future failure of still operating hard disks.
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In the last few years, predictive technologies have been relying more
and more on machine learning techniques grounded in big data analysis in
order to monitor the on-line health status of a hard drive, and improve fault
prediction accuracy. Importantly though, this comes with the challenge of
balancing information coming from multiple data sources (e.g., temperature,
vibration), in order to take into consideration all of the possible causes of
failure, and come up with appropriate maintenance strategies. Furthermore, it
has been observed that hard drives often deteriorate gradually over time [170,
a.o.]. Thus, it is important to be able to model the temporal dynamic of the
dependencies within SMART attributes.

However, predictive systems need to strike a careful balance when ex-
trapolating health information from these sources in order to raise failure
warnings, as high false alarm rates would lead to as many overhead costs as
missed disk failures. It is then crucial to find the most sensible way to exploit
each HDD’s health attributes, so to balance high accuracy and conservative
predictions. This requires expert domain knowledge, in order to best tune the
features of the model and address challenged due to feature specificity and
cross-correlation between health attributes.

Moreover, hard disk data vary between manufacturers — and even be-
tween hard disk models within the same manufacturer. This implies that a
previously specified model cannot be carried over to perform equally well in
different data centers, and explicit feature engineering needs to be repeated
multiple times based on the characteristics of each model [171].

In this thesis, we follow recent research in predictive maintenance, and
present a deep learning approach addressing many of the current problems
in the literature (data sparsity, need for domain knowledge, manual feature
engineering).

As mentioned, HDD failure prediction plays a very important and crucial
role in reducing data center downtime and significantly improving service
reliability. By collecting information about the health conditions of HDD in
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Methodology Pros Cons

[129]
A multiple-instance learning framework

using a naive Bayesian classifier
for predicting failures

Maintaining low false alarm rate.
No information about HDD health level status.
The main focus is on false alarm avoidance.

[103]
A classification and regression model

based on SMART attributes for predicting failures Maintaining low false alarm rate.
No information about HDD health level status.
The main focus is on false alarm avoidance.

[198]
An RNN model based on SMART attributes

for evaluating HDD status.
Performs health status assessment.

Health degree settings manually defined
in terms of number and size of each interval.
The prediction phase combines the prediction

obtained by the analysis of the last 1 hour.

[165]
A prediction model based on

a part-voting Random Forest algorithm.
The prediction model differentiates failure
prediction in a coarse-grained manner

The model does not consider data correlation
and historical information about HDDs.

[195]
A prediction model based on

an Online Random Forest algorithm.

The model evolves with sequential arrival of data
on the flying adapting to SMART distribution
over the time

This model does not consider data correlation and
historical information about HDDs.

[190]

A two-step approach:
anomaly detection according to

a sliding window
and a failure prediction

model.

It tries to balance the failure detection rate
and false alarm.

It does not provide any information about
HDD health assessment.
The sliding window is manually computed
based on the number of samples
ignoring correlation with the timestamp.

[10]

Compares two model based
respectively on

Random Forest and
LSTM for HDD RUL

estimation.

It predicts an HDD’s Remaining Useful Life.

Health degree settings manually defined
in terms of number and size of each interval.
Only the current snapshot of
SMART attribute values’s sequence
are considered according to the number of samples
ignoring correlation with the timestamp.

[20]
An LSTM-based prediction model

for Remaining
Useful Life extimation.

It performs a hyper parameter optimization
with to improve the prediction phase.

Health degree settings manually defined
in terms of number and size of each interval.
Only the current snapshot of
SMART attribute values’ sequence
are considered according to the number of samples
ignoring correlation with the timestamp.

[205]
A method based on adversarial

training and layerwise perturbation
for HDD health status prediction.

They propose a Layerwise Perturbation-Based
Adversarial Training method to deal with
overfitting and biased fitting problems.

Health degree settings manually defined
in terms of number and size of each interval.

[25]
Pipeline based on SMART

attributes for disk replacement.

Statistical technique are used
to correlate SMART parameters
and disk replacement.

The authors consider only two classes (healthy
and replaced) and they do not provide any
information about the Remaining Useful Life.

[199]
A cost-sensitive ranking-based

machine learning model for
disk error prediction.

Combining SMART attributes
with system-level signals.

The authors consider only two classes
and they do not provide any information
about the Remaining Useful Life.

[174]
A TCNN-based prediction model
for hardware failure prediction.

TCNN model for analyzing
SMART attribute distribution over time.

The authors consider only two classes
and they do not provide any information
about the Remaining Useful Life.

Table 2.1: Overview of State-of-the-Art approaches

real-time, SMART records have been consistently used in failure detection
systems — though with remarkably low failure detection rates (FDRs).

The use of information collected by sensors online is clearly essential to
efficient prediction systems. Thus, different methods have been proposed to
optimize the performance of SMART based models: from Bayesian classifiers
[71] and support vector machines (SVM; [129]), to classification trees [103],
back-propagation neural networks (BPNNs; [208]), and recurrent neural net-
works (RNNs; [198]). A summary of the approaches analyzed in this Section
is presented in Table 2.1.
Hamerly & Elkan [71] were among the first to use Bayesian modelling in
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failure prediction. The intuition behind their work is to re-frame failure pre-
diction as an anomaly detection problem, and then classify test data based on
the probability of reading from an HDD behaving normally, and information
about the HDD internal conditions. They compare two methods — a mixture
of Naive Bayes sub-models trained on expectation-maximization (EM) and a
Naive Bayes — and show how their models perform significantly better than
previously industry level predictors.
Following this line of investigation, Murray et al. [129] conduct an extensive
evaluation of four different methods (SVM, unsupervised clustering, rank-sum
and reverse arrangements test). They then propose an algorithm based on the
multiple-instance learning framework and a naive Bayesian classifier (mi-NB)
to deal with false-alarm rate (FAR). Also interested in minimizing FAR while
maximizing detection accuracy, Zhu et al. [208] evaluate the accuracy of an
SVM and a back-propagation neural network exploiting SMART attributes
and their change rates. They show that while the SVM model achieves the
lowest FAR (0.03%), the back-propagation model has the best high detection
rate (95%). A similar approach is adopted by Li et al. [103], which propose a
surprisingly well-performing prediction model based on regression trees.
More recently, Xu et al. [198] suggested that the inefficiency of past pre-
diction systems stems from the fact that most HDD are not simply good or
bad, but they are subject to gradual decay. Thus, they use Recurrent Neural
Networks (RNNs) to model gradual changes in sequential SMART attributes
and better capture the shifting nature in HDDs’ health status. Their model
achieves better performance than previous sequence independent models and
short-term sequence dependent models. With a similar goal in mind, Botezatu
et al. [25] designed a pipeline based on SMART attributes for predicting disk
replacements approximately 15 days in advance. To deal with over-fitting
and biased-fitting problems, [205] propose a Layerwise Perturbation method,
using adversarial training to predict HDD health status on the basis of three
health levels manually defined. Furthermore, a cost-sensitive ranking-based
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machine learning model, combining SMART attributes with system-level
signals, has been proposed by Xu et al.[199] for predicting disk error.

Finally, it has been observed that the data available on HDDs’ health status
is highly unbalanced (in particular, in the ratio of healthy and failure samples)
— an imbalance that is bound to affect the performance of prediction system
relying on intrinsic features.

To partially address this issue, Shen et al. [165] propose a failure predic-
tion model based on a part-voting random forest algorithm which compensates
for data unbalance using a clustering-based under-sampling method.

Similarly, Xiao et al. [195] exploit an online random forest prediction
model, which evolves on-the-fly with sequential arrival of data, according to
the variance of SMART distribution over time. Their model addresses both
the problem of labelling sequential samples gathered on-the-fly, and the high
unbalance in the distribution of healthy/failing disks.

Sun et al. [174] propose the use of a temporal Convolutional Neural
Network (TCNN) in order to address the high variability of delay-to-failure
values in real world scenarios with sparse failure samples, while reducing
sensitivity to noise in the analysis of SMART distributions over time. To
address issues due to data sparsity, they extend the binary cross-entropy loss
function emphasizing the loss of misclassified samples. TCNNs within this
approach show superior performance than RNNs and LSTMs.

Similarly efficient methods of failure prediction have highlighted the
fundamental importance of taking into account the sequential nature of the
SMART attributes when modelling failure rates [190]. In this spirit then, it
seems to be crucial to define models that adapt to the dynamical changes in
the SMART attributes, while taking into account the unbalanced distribution
of the training data [170]. In this sense, LSTMs seem to be especially up to
the task, as they have been shown to be sensitive to long-term dependency
and the dynamical nature of time-series data across a variety of domains
[164, 204, 109].
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Thus, we follow recent work on predictive models for HDD failure using
neural-networks [10, 20], and propose a LSTM based model for HDDs’ health
level prediction task, which automatically identifies the HDD health levels.

2.2 Anomaly sound detection

A lot of work discussing deep learning approaches for anomaly detection,
especially for predictive maintenance task, has been recently presented (see
([34, 108, 160, 59, 36]) for more details).

In particular, two interesting approaches for industrial applications are
those proposed by ([28]) and ([81]). The first work designed a methodology
that jointly performs K-means and Self-Organizing maps (SOMs) as a starting
point on which a local Probability Density Distributions (PDD) algorithm
has been applied for detecting anomalies in the monitoring of turbine’s bear-
ing temperature in a hydropower plant. A Convolutional Long Short-Term
Memory (CLSTM) model has been then use in the second work for fault
detection in rotating machinery relying on a combination of statistical and
different features, extracted by performing Fast Fourier Transform (FFT) and
Continuous Wavelet Transform (CWT) of raw signals.

In the last years, different approaches based on encoder architectures ([133,
132, 149]) have been developed for anomaly detection. In ([5]), the authors
proposed an autoencoder-based approach using power consumption of in-
dustrial laundry assets and bearing vibrations data in order to compute an
anomaly degree score of each instance. The reconstruction errors are further
fed into a discriminator with the aim to discern anomalies instances from
normal ones. In turn, ([77]) developed an unsupervised detection model based
on the Long Short Term Memory autoencoder. The model has been trained
to reconstruct input sequences for each timestamp using a sliding-window
method, which are successively labeled as normal or anomalous on the basis
of its reconstruction error. Finally, a majority voting mechanism has been
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applied for making the final decisions, being each timestamp labeled as many
time as the sliding window length.

In ([193]), the authors developed a fault attention generative probabilistic
adversarial autoencoder (FGPAA) to automatically find low-dimensional man-
ifold embedded in high-dimensional space of the signal. Yin et al. in ([202])
proposed an integrated model of the Convolutional Neural Network (CNN)
and recurrent autoencoder for anomaly detection in IoT time series. In ([40]),
the authors designed an unsupervised anomaly detection system for indus-
trial robots based on a sliding-window convolutional variational autoencoder
(SWCVAE), which realizes real-time anomaly detection by coping with
multivariate time series data. Another strategy to deal with the anomaly
detection task concerns a combination of deep and ensemble learning. A
novel method, called ensemble deep autoencoders (EDAEs), has been then
proposed in ([163]) for fault diagnosis of bearings. In particular, the ensemble
of multiple deep autoencoders aims to overcome the low generalization ability
of individual ones.

Indeed, the existing anomaly detection systems used in the industrial
applications depend on the properties of sensors used to monitor an industrial
machine. The majority is focused on visual anomaly detection systems,
which have some drawbacks (i.e. illumination or occlusion by objects),
which strongly affect the performance of the system, especially in terms of
computation power needed to achieve high real time performances.

To overcome these issues, the Anomalous Sound Detection (ASD) sys-
tems [131, 187] have been developed using acoustic data features that are
often processed, like signals representing air pressure values or spectrograms,
often in the Mel scale2, for supporting neural network training process.

2In Mel-Scale the entire frequency spectrum is separated into x evenly spaced frequencies
(bins), where ’evenly spaced’ means that the distance on the frequency dimension approxi-
mates the human auditory system’s response more closely than the linearly-spaced frequency
bands used normally in spectrograms.
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In this context, [22] compared the performances of Convolutional LSTM
autoencoder (Conv-LSTMAE) and sequential Convolutional Autoencoder
(CAE) using sounds retrieved from Youtube videos recorded during industrial
manufacturing processes. The final decision about the generation of an alert
due to the possible presence of anomalies, is made on the comparison between
the reconstruction error of each spectrogram and a pre-defined threshold.
In [136], the authors propose a convolutional autoencoder which receives in
input frames obtained by segmenting mel spectrograms extracted from an
audio dataset for classifying the anomalies into three abnormal categories
that are manually defined. [122] investigated two different approaches for
unsupervised anomaly detection: one based on One-Class Support Vector
Machine (OC-SVM) and one based on autoencoders trained in unsupervised
way. In [90], a few-Shot learNIng with ensured true-PositivE-Rate (SNIPER )
architecture, whose goal is to maximize the true positive rate (TPR) on
already observed anomalies. In particular, it combines the anomaly score
produced by an autoencoder trained in unsupervised manner and a new ad-hoc
similarity score computed by a specific anomaly detector S on the basis
of a comparison between input samples and memorized anomalous sounds.
The authors, further, build S using an approach based on VAE to overcome
the problem of the absence of sufficient overlooked anomalous data. In
[148] two deep learning models have been proposed based respectively on
a dense and convolutional architectures fed with spectrograms aiming to
minimize the reconstruction error between inputs and outputs. For the former,
the encoder and decoder networks consist of four fully-connected layers,
followed by Batch Normalization and ReLU as the activation function while
in the latter the encoder and decoder networks are composed by convolutional
layers with Batch Normalization and the ReLU activation function after each
convolution. A LSTM-based autoencoders architecture for ASD task has been
proposed in [80], that encodes information using LSTM layers, whose output
is, firstly, processed by the LSTM-based bottleneck layer and, successively,
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reconstructed by a stack of sequential LSTM layers. Another interesting
approach has been proposed by [72], that relies on a Transformer-based
and Conformer-based autoencoder for ASD, that extracts sequence-level
information from whole audio inputs using a self-attention mechanism to
perform sequence-to-sequence processing.

Table 2.2 summarizes the state-of-the-art approaches, also focusing on
application domains and their pros and cons.

As can be noted, all the approaches proposed above differ on the basis of
the way autoencoders are built. In fact, the main idea is always to train an
autoencoder to reconstruct the normal audio samples provided in input and
then use it in order to detect anomalies on the basis of reconstruction error.

Nevertheless, there is additional information related to the equipment
which are potentially useful in order to improve the patterns learned from the
model. One of the most important information concerns the ID related to the
equipment which the sound clips are retrieved. In this regard, our main idea
is to use the information related to the particular equipment identifier (ID)
from which the sound clips are retrieved in order to influence autoencoder
behaviour and its capability to reconstruct the inputs.

For this reason, we propose a modular framework for different anomalous
sound detection tasks (i.e. predictive maintenance or surveillance), relying on
two phases: the former jointly analyzes audio clips based on mel-spectogram
analysis and ID equipment information through a one-hot encoding method
for extracting features that are, successively, used in the latter to train an
ID Conditioned Network. In particular, this module is composed by an
autoencoder and ID conditioning neural network, properly trained in a joint
manner with a loss developed ad hoc.

Furthermore, the proposed framework is modular because it is possible to
integrate any type of autoencoder replacing the encoder and decoder blocks
as well as using other types of deep networks by customizing the interaction
with the ID conditioning network.
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Finally, our framework enables real-time analysis by analyzing continuous
audio stream coming from different audio sources on the basis of a customized
sliding windows.
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3
The need of interpretability

The past decade has seen the rise of deep learning techniques applied to
several tasks in a variety of domains (for a recent review, see [162] a.o.).

In particular, the robust coupling of artificial intelligence (AI) and energy
domain knowledge proved to be effective in achieving relevant energy saving
in buildings by exploiting a variety of predictive-based energy management so-
lutions, such as energy consumption forecasting [54, 175, 154], anomaly/fault
detection and diagnosis in buildings and energy systems [74, 142], advanced
energy benchmarking [62, 104], load profiling [52, 110]. Predictive analytics
is de facto considered a cross-sectional application of AI for enhancing energy
management in buildings [207], and until now its use has been associated to
the need of achieving the highest accuracy as possible of predictions at the
basis of decision-making process.

Such use is extensive in many domains including the previously analyzed
domain concerning the estimation of the lifetime of an HDD. In general,
it is difficult to analyze the entire process of disk health deterioration and
predict when disk drives will fail in the future. Due to the common lack of
diagnostic information on disk failure, most approaches rely on SMART (Self-
Monitoring, Analysis and Reporting Technology) data and explore statistical
analysis techniques to identify the onset of disk degradation. It is important
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to note that the decision-making process used by most of these techniques to
arrive at a specific result is often opaque to human users.

For these reason understanding why a certain prediction is provided by
a black-box model is becoming more and more an essential feature of pre-
dictive analytics in several modern contexts, especially when the decisions
of an AI system are required to be transparent and fair (e.g, for certifica-
tion aims, substitution of component). Generally speaking, such task is the
main goal of eXplainable Artificial Intelligence (XAI) [69], which offers
new opportunities for successfully embedding AI-based solutions in indus-
trial applications where explanations of the data-driven AI models is often a
mandatory requirement.

In the last decade, XAI has become for AI researchers an emerging and
very challenging topic whose meaning and usefulness can be summarized
through several key aspects, as reported by the first significant published
studies [150, 23]. Certainly, the two most relevant concepts concern the ability
of an AI system to explain its decisions in intelligible terms to humans [50, 67]
(i.e., Explainability) and, the ability to identify the set of characteristics that
mostly contribute to making a decision [1] (i.e., Interpretability). Therefore,
XAI supports the definition of more explainable models, maintaining a high
level of performances, allowing human users to understand and trust AI-based
systems.

During the last years, different XAI methods and strategies have been
proposed. Usually, they can be classified, according to the granularity of
the related analysis, into local (understand a single prediction) and global
(understand the model behaviour) approaches.

Local XAI methods aim to explain a black-box model outcome on the
basis of local information around the prediction. For instance, [16] have pro-
posed to measure local gradients to exactly identify in which ways changing
the input affects the prediction. Similarly, [151] presented a feature impor-
tance method, which computes the differences between a prediction and the
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obtained solution. Finally, the model-agnostic (LIME) method proposed by
[150] is based on an algorithm that faithfully explains the predictions of any
classifier, by approximating it locally with a fully interpretable model.

The techniques above summarized focus on local explanations to achieve
an overall explanation of a model. On the other hand, other techniques
explicitly try to build global explanations. The most popular methods of this
latter typology rely on features importance to explain tree-based models: the
global Mean Decrease in Impurity (MDI) approach [27] – which exploits
splits’ number of samples – and the Mean Decrease in Accuracy (MDA)
technique [112] – which computes a model mean increase error on the basis
of a random permutation of the features.

Directly related to the task about HDD, Xie et al. [197] presented a XAI
system explicitly designed for disk failure prediction, which is able to infer
the prediction rules learned by a model, in order to make the failure prediction
process transparent.

Recently, also in the energy domain the concept of XAI is being intro-
duced. [55] defined a comprehensive methodology to explain and evaluate
building energy performance models. Whereas, [11] introduced a methodol-
ogy that enhances the existing building benchmarking process of Energy Star
by increasing accuracy and providing additional model output processing to
help explaining why a building is achieving a particular energy performance
score. [2] developed an explainable and interpretable Deep Neural Network
(DNN) model for a Guideless Irregular Dew Point Cooler (GIDPC). The
SHapley Additive exPlanations (SHAP) method was used to assess and inter-
pret the contribution of the operating conditions on performance parameters
of the system. Also [98] employed a XAI-based process for improving the
interpretability of a prediction model. In particular, the study focused on the
forecasting of solar PV system generation and on the use of XAI tools, such
as LIME, SHAP, and ELI5, for model explanations. A further promising
application of XAI in the energy and buildings field concerns with fault detec-
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tion and diagnosis (FDD). In particular, XAI offers the opportunity to explain
which are the boundary conditions related to the detection of a fault/anomaly
during system operation and most of all provides a readable interpretation
about its diagnosis. As a reference, an interesting application of XAI was
proposed by [115] for enhancing FDD analysis based on machine-learning
algorithms (i.e., support vector machine, artificial neural network) conducted
on building Air Handling Unit (AHU).
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Adversarial perturbation in AI application

With the spread of Deep Learning and in particular of CNNs it was only a
matter of time before researchers started analysing aspects associated with
their decision making process and weakness. The former is what laid the
foundation for XAI [69], a set of methods and algorithms intended to shed
lights on the motivations that made an AI model to take a given decision.
Similarly, Adversarial Perturbations (APs) [3] are a good example for the
latter, with their ability to mislead a target CNN.

More in detail, the aim of and AP is to move the target sample beyond the
model decision boundary (figure 4.1). There are two possible ways of doing
it:

• Gradient-based methods exploit the gradients information with respect
to the input in order to determine the best perturbation to add to the
target sample to mislead the target CNN;

• Non-Gradient-based that changes some values in the input data until
a fitness function says that the obtained perturbation is able to mislead
the target classifier.

Since, by definition, an adversarial perturbation should be as invisible as
possible, the hardest part is to determine a small (imperceptible) noise that is
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Figure 4.1: Illustration of an adversarial perturbation attack performed in
the case of a 2D features space. Given a classifier (and thus identified its
decision boundary), an adversarial perturbation attack aims to move correctly
classified samples across the decision boundary. In the example, a dark red
dot and a dark blue cross, previously corrected classified (since laying in
the right subspace identified by the decision boundary) are “pushed” (i.e.
modified by adding some carefully crafted adversarial noise) just enough to
cross the decision boundary. The effect is that now the perturbed samples are
misclassified by the target model. Image adapted from another work3.

still able to mislead the target classifier. Of all research areas for which deep
neural networks have been demonstrating overwhelming performance, com-

3https://pod3275.github.io/paper/2019/08/02/KDwithADVsamples.html
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puter vision is still one of those that mostly catches the interest of researchers.
For this reason, of all deep architecture, Convolutional Neural Networks
(CNN) are among the most popular and used, and, as a consequence, the
most “attacked”. Indeed, in 2013 it has been shown that given a target CNN,
it is possible to craft samples able to arbitrarily mislead it [176]. It is worth
noting that the authors not only proved the existence of blind-spots in CNNs,
but also introduced a method for the generation of adversarial samples based
on the Limited Memory Broyden–Fletcher–Goldfarb–Shanno (LM-BFGS)
algorithm and on the network loss function value.

Two years later, the Fast Gradient Sign Method (FGSM) laid the founda-
tions for attacks exploiting the network gradient to generate an adversarial
sample [65]. In short, given a victim CNN and a clean input image, the FGSM
multiplies a user-defined standard deviation ε by the sign of the prediction
gradient (with respect to the input class) to generate an additive perturbation.
The FGSM Iterative Method [97] was proposed to perform a semi-automatic
tuning of the ε value by using an iterative procedure. In this case, a small
magnitude perturbation is calculated and applied several times, instead of
applying a stronger noise in a single shot. DeepFool [128] made a step further
by introducing an efficient iterative approach exploiting the network gradient
of a locally linearized version of the loss. This allows generating a sequence
of additive perturbations that move the clean sample on the edge of the classi-
fication boundaries. Finally, Momentum Iterative Method [49] introduced a
momentum-based iterative FGSM like approach, resulting in a procedure able
to stabilize the update directions and thus to escape from poor local maxima
determined during its execution. Meantime, other researches focused their
attention on the development of adversarial perturbation techniques aimed
to surpass some limitations, rather than only looking for performance. The
Carlini Wagner L2 method [32] proposed to construct the adversarial samples
using the same basic idea of [176], but with some significant improvements
considering i) three possible targeted attack (best, worse and average case),
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ii) three different distance metrics between the clean and the adversarial
sample (L0, L2, L∞) and iii) different optimization algorithms. Finally, the
algorithm performs a greedy search to determine a discrete perturbation, to
make it robust to rounding operations performed in the [0−255] value image
representation. With the aim of modifying as few pixels as possible, the
Jacobian-based Saliency Map Attack (JSMA) performs a greedy iterative pro-
cedure that i) evaluate a saliency map based on the target class classification
gradient ii) to determine the most influencing pixels [135]. The algorithm
iterates until the adversarial sample is generated or the number of modified
pixels exceeds a fixed threshold (meaning that the attack is failed). With the
same aim, the One-Pixel Attack [172] defined a totally different manner to
reach the solution. The idea is to modify a very reduced number of pixels
without having any prior information on the network. On a different side, the
Feature-Opt method [156] approaches the adversarial perturbation problem
focusing on the image representation at the internal layers of a CNN instead
of considering the output of the classification layer. The aim is to generate
an adversarial sample that not only causes an erroneous classification, but
that also has an internal representation closer to the target class rather than
to the clean one. Nowadays, many researchers are introducing XAI methods
as part of the development loop of machine learning models, in applications
ranging from biomedical to security. For example, in [140] the authors used
Grad-CAM and Guided BackPropagation (GBP) [168] to analyse the clin-
ical coherence of the features learned by a CNN for automated grading of
brain tumours in MRI. More recently, Chen et al. [38] used Gradient Class
Activation Mapping (Grad-CAM) [161] to generate the explainability map
of a model, showing that it focused its attention in high-dimensional bands
excited by structure resonance.

Focusing on adversarial perturbations, the vast majority of the works
target the development of new perturbation strategies or the design of attacks
against some critical applications. Nonetheless, in some previous works, we
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showed that APs can also be leveraged to increase fairness and security with
AI. In particular, in [119] we showed how to design an adversarial patch able
to prevent ethnicity recognition in automatic face analysis, while in [120] we
attacked a fingerprint authentication system to shed lights on light-heartedly
use of CNN in security-critical applications.

As illustrated by the aforementioned example, XAI and APs have the
potential to help the improvement of both accountability and reliability of
CNNs. Some authors tried to make a step further by “contaminating XAI”
with APs and vice-versa. In [95] the authors exploit XAI to make OnePixel
[173] (a famous AP algorithm) more robust. On the other hand, in [57] the
authors proposed a way to detect APs by means of XAI, by using the latter as
a way to extract a “fingerprint” of the image.

Besides these experiments, the relation existing between XAI and APs
is extremely of interest, since it can help increase AI reliability and trust-
worthiness of AI-based systems. On this line, in [203] the authors analysed
the propagation of adversarial noise through CNNs layers, by measuring the
similarity between the feature map of clean and of adversarially perturbed
images. Similarly, in [46] the authors analyse how the “strength” of the noise
affects the prediction accuracy. Finally, in [78] the authors demonstrated how
XAI and APs are connected by a generalised form of hitting set duality, also
proposing an algorithm to move from one to the other.

The latter three examples are the closest to this paper. However, each of
them lacks some aspects, such as a “human interpretable” outcome [203], a
quantitative analysis of the results [46] or experiments and proofs made on
more realistic datasets [78].





Part II

AI techniques for predictive
maintenance





5
HDD health assessment

5.1 Introduction

Hard disk drives (HDD) are nowadays a primary type of storage in data
centers. Due to this pervasive use, HDD failure is now one of the main
factor for data center downtime, unavailability, and data loss — with obvious
effects on overall business costs and reliability. Thus, an important line of
research has focused on developing robust predictive maintenance techniques,
to reliably predict HDD failures, and timely adopt maintenance strategies to
increase the Remaining Useful Life (RUL) of these drives.

HDD maintenance actions include inspection, testing, repair, and replace-
ment — basically any action aimed at preserving the quality of the system
while improving its availability and extending its life. Obviously, in order
for maintenance costs for large distributed systems to remain effective, such
actions have to be properly organized according to well-defined strategies.
Because of the dimensions of most data-centers, properly scheduling these
actions is not a trivial problem, and maintenance policies have become a
fruitful topic of research [71, 170, a.o.].

Recently, the dissemination of condition monitoring equipment and the de-
velopment of methods for deterioration prognosis and residual life estimation
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have shifted the interest of most practitioners towards predictive maintenance
techniques [165]. Predictive maintenance seeks to anticipate system failures
in order to plan timely interventions on the system. In such frameworks,
decisions are based on a system’s online health prognostic information (i.e.,
information about the system future state), rather than on the online diagnostic
information (i.e., information on the system current state) [198].

Due to this shift in focus towards predictive systems, machine learning
approaches have been gaining increasing popularity [129, a.o.]. In particu-
lar, models based on Self-Monitoring, Analysis and Reporting Technology
(SMART) have shown high accuracy levels by relying on internal attributes
of HDDs as indicators of drive reliability.

Importantly, most prediction systems analyze HDD failure as a binary
classification task, simply distinguishing between good hard drives and those
at high risk of failure. However, the complexity of the prediction task and
the unbalanced nature of the data used in training have shown how these
models’ performance goes down significantly when they are tested on data-
sets representative of real-world environments [15].

Moreover, it has been suggested that, due to the non-linear pattern dynam-
ics found in real-world systems, the ability to model the proximity of possible
failures in time (and not just the chance of failure) could fundamentally
change the way maintenance strategies are optimized [20]. Following this
intuition, in this thesis has been implemented a HDD health level prediction
task that models the health degree of a HDD unit according to its estimated
time to failure.

In particular, a framework that leverages a Long Short Term Memory
model for HDDs’ health level prediction has been designed. Its main charac-
teristics can be summarized as follows:

• it automatically identifies the HDD health levels by considering the
distribution of SMART attribute values over the time;
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• it improves prediction accuracy by considering sequential dependencies
in SMART attributes;

• it relies on an automated strategy for identifying the number and size
of hard drive’s health degree settings.

First, an automated step for HDD health level definition using a Regression
Tree (RT) algorithm has been implemented. Then LSTM networks [75] is
exploited to model the sequential dependencies between SMART attributes
over time. LSTMs are particularly appropriate for this task, as they were
explicitly designed to model long-range dependencies in temporal sequences.

While LSTM approaches to RUL estimation have been successfully ex-
plored in the past [20, 205, 93], proposed methodology proves more flexible
to the highly complex nature of the data by relaxing the predefined health
degree levels traditionally used in the literature in favor of dynamically gen-
erated ones. Identifying HDD health levels automatically allows to take full
advantage of the information available in the training sets, and to obtain
finer-grained predictions beyond what would be available through the simple
binary classification task used in current systems.

In order to support the efficacy and practicality of the proposed model in
real-world scenarios, its performance over two data-sets has been evaluated.
For each hard drive in used data-sets, the attribute sequences from specific
time windows (TW) of varying size (from 4 to 48 hours for the first data-set
and from 5 to 14 days for the second ones) has been extracted, and how
this approach outperforms a variety of models and methods in the previous
literature [198, 103, 208, a.o.].

5.2 Methodology

Since hard drives often deteriorate gradually rather than abruptly, we argue
that temporal analysis methods should be employed to model the sequential
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nature of the dependencies within SMART attributes over time. Thus, an
approach to estimate the Remain Useful Life (RUL) of a HDD has been
proposed, by automatically identifying specific health conditions on the basis
of SMART attributes values. This methodology is grounded in three main
steps:

• Hard drive health degree definition: in which a status (or health level)
is defined for each hard drive according to its time to failure;

• Sequences extraction: in which sequences in a specific time window
are extracted for each hard drive;

• Health Status assessment through LSTM: in which a health level is
associated to each temporal sequence.

In what follows, are described each component of proposed framework in
detail.

5.2.1 Health degree definition

Hard drive failure in real-world data centers is a gradual process of deteri-
oration. To address the gradient nature of the decay, the health status (or
level) of a HDD according to its time before failure has been defined. Differ-
ently than [198], an automated step for HDD health level definition has been
implemented.

More specifically, in this step has been considered only the hard drives
that are going to fail, introducing for each of them an additional feature
representing the time before failure. The data-set reports, for each hard disk,
the temporally sorted sequence of SMART attributes with a specific sampling
period. Denoting with m j be the number of samples for the hard disk j, it is
possible associate each sample with an index i from 0 to m j −1, representing
the number of samples that follow it in the sequence describing hard disk
failure. As a consequence, the sample with index i = 0 is the last sample
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before failure. In Figure 5.1, Time-to-failure is the feature representing the
time before failure for each hard drive whose meaning depends on sampling
period while f1, f2, ..., fn are the SMART attributes.

The idea is to build a Regression Tree (RT) for each SMART attribute
fi with i = 1,2...n, having the feature representing the time before failure as
predictor and fi as the numeric target value. Among all the resulting trees
(one for each SMART attribute fi), the one with the highest performance is
selected, showing the attribute most temporally dependent. Since the selected
Regression Tree (RT) presents splits only on the feature Time-to-failure, the
latter is used to distinguish hard drive health levels according to time before
failure. Figure 7.2 is an example of hard drive health levels identification by
means of the Regression Tree algorithm. Each internal node represents a split
on the feature Time-to-failure, resulting in the definition of four health degree
levels.
As mentioned above, the automated step for health-level definition only
considers those hard drives that are going to fail. A different level or status
should be assigned to samples belonging to hard drives that will not fail since
they have been excluded in this step. More specifically, the samples belonging
to the hard drives that will not fail are labelled as Good.

5.2.2 Sequence extraction

To explore the temporal dependencies within the SMART features periodically
collected for each hard drive, feature sequences in specific time windows
(TW) have been extracted.

Let w and at be the time window size and the set of SMART features
( f1, f2... fn) at time t, respectively. Proposed model aims to predict hard drive
health status at time t + 1 (Hs(t + 1)) considering the sequence (at−w+1...,
at−1, at). For each at , the health status Hs(t) is defined as the Regression
Tree built according to in Figure 5.4, and the feature sequence for each hard
drive at time t is extracted considering the w−1 previous samples (cf. Figure
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Figure 5.1: Time to failure is a feature representing the time before failure for
each hard drive sample, while f1, f2, ..., fn are the SMART attributes.

5.3). Each sequence results in a bidimensional array of size w×n, where n is
the number of SMART features considered. For each hard drive, sequences
are extracted with a stride of one. It follows that m j −w+1 sequences are
extracted for each hard drive, where m j is the number of samples for the disk
j.

For each sequence (at−w+1..., at−1, at), the hard drive’s health level is
defined by the health level of the set of features at+1. The result of this step is
a sequence-based data-set — a set of bidimensional arrays, each associated
to a health level representing the hard drive’s health condition between two
consecutive samples (i.e., at and at+1).

5.2.3 Health Status assessment through LSTMs

Based on what established in the previous sections, it should be clear how
hard drives’ health level prediction consists in a multiclass classification task,
where each feature sequence is assigned to one of the classes (health levels)
introduced in Section 7.2.1.
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Figure 5.2: Identification of hard drive health levels by means of a Regression
Tree algorithm. Each internal node represents a split on the feature Time-to-
failure, resulting in the definition of four health degree levels.

Figure 5.3: Sequence extraction step for a single hard drive.

Because of the sequential, gradiently changing nature of the SMART
features, it is important that designed model is able to capture dependencies
across features over time. Long Short Term Memory networks (LSTMs) are
extension to recurrent neural networks, explicitly designed with the purpose
of learning long-term dependencies [75].
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In the proposed framework, the input to each LSTM layer is a three-
dimensional data structure of size z×w×n, where:

• z is the the total number of sequences (or the batch size at each itera-
tion);

• w is the size of each sequence — that size of a time window, in terms
of time steps;

• n is the total number of features describing each time step.

Since the percentage of failed hard drives is often small compared to the
percentage of good hard drives, the sequence extraction step may result in an
unbalanced data-set with the majority of sequences belonging to the Good
level. As a consequence, a data balancing step is introduced, so that the input
to the network is a set of balanced data.
In particular, the sequence-based data-set is balanced by replicating the se-
quences belonging to the minority classes. Sequences replication is an effi-
cient balancing strategy that avoids the polarization of the classification model
on a single class without creating synthetic data or reducing the data-set size
by sampling the instances beloging to the majority class. The implemented
classification network has two stacked LSTM layers with 128 units, followed
by a single dense layer.

5.3 Experimental Evaluation

This section aims to evaluate the effectiveness of the proposed approach. The
prediction performance of the model have been tested on the two different
SMART data-set, and then compared with those of three other methods
explored in the literature: a Classification Tree model, a Random Forest
model, and a model based on Multiclass Neural Networks.
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5.3.1 Baidu data-set

The first SMART data-set used for the analysis was collected from a single run-
ning data center of Baidu Inc 4, and contains samples from 23,395 disks. All
samples refer to an enterprise-class disk model of Seagate (ST31000524NS).
Each disk was labeled Good or Failed, with only 433 disks in the failed class
and the rest of disks (22,962) in the good class. As the ratio of Good vs.
Failed disks is approximately 1 : 50, so this a highly unbalanced data-set.

SMART attribute values were read per-hour for each disk. For Good
disks, every sample collected over a week is kept in the data-set, so every
good disk is associated to 168 samples. For Failed disks, samples in a longer
time period (20 days before actual failure) are saved, resulting in a maximum
of 480 samples per disk. Note though that a specific disk could actually be
associated to a smaller number of samples, if it failed during the 20 days of
operation since the start of data collection. Finally, each entry in the data-set
contains the 14 features listed in Table 5.3.1, with values for every attribute
value scaled to the same interval [−1,1].

5.3.2 Backblaze data-set

The Backblaze data-set 5 contains daily data collected from 50,984 hard disks.
Each sample consists of information about timestamp, disk serial number, disk
model, disk capacity and values for 90 SMART attributes. Moreover, for each
sample the feature failure is set to 0 if the drive is alive while it is set to 1 if the
disk has been replaced the following day. All samples before February 2014
have been excluded, since more than 70% of SMART parameters had not
been collected. We focused on samples belonging to Seagate ST4000DM000,
since it is the most populated model in data-set (29,878 disks in total; 29,083
good disks and 795 failed disks). Among all the SMART attributes, the ones

4http://pan.baidu.com/share/link?shareid=189977&uk=4278294944
5https://www.backblaze.com/b2/hard-drive-test-data.html

http://pan.baidu.com/share/link?shareid=189977&uk=4278294944
https://www.backblaze.com/b2/hard-drive-test-data.html
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SMART ID # Attribute Name
Serial Number
Label

1 Raw Read Error Rate
3 Spin Up Time
5 Reallocated Sectors Count
7 Seek Error Rate
7 Power On Hours
187 Reported Uncorrectable Errors
189 High Fly Writes
194 Temperature Celsius
195 Hardware ECC Recovered
197 Current Pending, Sector Count
5 Raw Value of Reallocated Sectors Count
197 Raw Value of Current Pending Sector Count

Table 5.1: SMART attributes as features

that are shared between the Backblaze and the Baidu data-sets (see Table
5.3.1) have been selected. However, also the SMART attribute with ID 195
(Hardware ECC Recovered) has been excluded, since no sample had a value
associated to this feature. Finally, the values for every SMART attribute were
scaled to the interval [−1,1].

5.3.3 Preprocessing

Data preprocessing consisted of two main steps:

Features Selection

The feature representing disk capacity have been excluded in the Backblaze
data-set. Importantly, the attributes Label for Baidu, failure for Backblaze,
and Serial Number for both data-sets are necessary in order to distinguish
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between failed and good hard drives and to create sequences for each hard
drive. However, they are not taken into account during sequence classification.

For good hard drives, each sample was associated to the health degree
level Good, while for failed hard drives, their remaining functioning time
depends on the number of samples collected for said device.

Health degree computation

The way health degree levels are computed differs between the Baidu and the
Backblaze data-sets.

• Baidu data-set. For failed disks, stored samples correspond to a
period of 20 days before actual failure. Thus, we propose a model for
predicting hard drive health status 20 days in advance. As mentioned in
Section 7.2.1, hard drive health degree definition depends on the splits
of the selected Regression Tree (RT) model on the feature Time-to-
failure. Recall that the Baidu data-set presents samples read per-hour
for each disk. For this reason, the feature Time-to-failure Hour to
failure have been renamed. The regression tree built with the feature
Raw value of Current Pending Sector Count reported in Figure 5.5
has been selected. Specifically, the selected Regression Tree suggests
distinguishing 6 different levels of health degree for hard drives that
will fail. We then introduced a different level for those hard drives that
will not fail. This results in the definition of 7 levels, named as follows:

– Good: the hard drive works properly. This level is associated to
samples belonging to hard drive that will not fail;

– Very Fair: the hard drive works properly, but a fault or an error
may have occurred;

– Fair: the health status of the disk drive is fair and the hard drive
is probably going to fail in less that 332 hours (approximately 14
days);
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– Soft Warning: the hard drive is going to fail in less that 235 hours
(approximately 10 days);

– Warning: the hard drive is going to fail in less that 179 hours
(approximately 7 days);

– Alert: the hard drive will fail in less than 96 hours (approximately
4 days);

– Red Alert: the hard drive will fail in less than 47 hours (approxi-
mately 2 days).

The levels Good and Very Fair represent HDDs still in good health
conditions. They both imply that a hard drive works properly, and thus
time constraints are left unspecified. The other statuses are associated
with different degrees of deterioration. Therefore, we classify a hard
drive as being in a Good status, if its health level is characterized as
Good, Very Fair, or Fair. A hard drive is classified as being in a Failed
Status, if its health level is in Soft Warning, Warning, Alert, or Red Alert.
Figure 5.4 shows the health degree settings for a single hard drive, as
used in our evaluation. By assumption, the health degree level Good
in never assigned to failed hard drives because of the high probability
of errors or faults. Thus, the distinction between good and failed hard
drives is preserved.

Figure 5.4: Hard drive’s health degree settings for the Baidu data-set

• Backblaze data-set. Since samples were collected from February 2014
to December 2015, failed disks present a long observation period. As
a consequence, there is a high probability that at the beginning of that
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Figure 5.5: Identification of hard drive health levels by means of the Regres-
sion Tree algorithm built on the feature RawCurrentPendingSectorCount for
the Baidu data-set. For each leaf node mse is the mean squared error of the
samples, samples is the number of samples in that node, and value is the value
of the SMART attribute fi for the samples in that leaf. For each internal node,
we report the condition on the feature Hour to failure.
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period, the disks having samples for more than one year were good disks.
It is not possible to determine the exact time of error occurrence. For
this reason, we focused on the last q samples of each failed hard drives,
where q is a prediction window that determines the period in which hard
drive health status should be assessed. Specifically, proposed approach
is able to predict hard drive health status q days before failure.

Different values for q have been explored, from 15 to 45 days. After
choosing the value for q, hard drive health levels are defined according
to Section 7.2.1. Since the Backblaze data-set contains daily samples
for each hard drive, the feature Time-to-failure has been renamed Day
to failure. We then selected the regression tree built with the feature
Raw value of Current Pending Sector Count.

Figure 5.6 shows the regression trees obtained by selecting q = 15 ,
q = 30 and q = 45. More specifically, Figure 5.6b and 5.6c suggest
distinguishing 3 different levels of health degree for hard drives that
will fail, while Figure 5.6a suggests 2 levels. Then a different level for
those hard drives that will not fail has been introduced. When q is set to
30 or 45, the result is the definition of 4 levels, labelled Alert, Warning,
Very Fair and Good. In turn, if q is set to 15, we define 3 levels, labelled
Alert, Warning and Good. The levels Good and Very Fair represent
HDDs still in good health conditions. Therefore, we classify a hard
drive as being in a Good status, if its health level is characterized as
Good or Very Fair while a hard drive is classified as being in a Failed
Status, if its health level is in Warning or Alert. Figure 5.7 shows the
health degree settings for a single hard drive, as used in our evaluation.
Similary to the Baidu data-set, the health degree level Good is never
assigned to failed hard drives due to the high probability of errors or
faults.
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(a) Regression
tree obtained with
q=15

(b) Regression
tree obtained with
q=30

(c) Regression
tree obtained with
q=45

Figure 5.6: Identification of hard drive health levels by means of the Regres-
sion Tree algorithm built on the feature RawCurrentPendingSectorCount for
the Backblaze data-set. For each leaf node mse is the mean squared error of
the samples, samples is the number of samples in that node, and value is the
value of the SMART attribute fi for the samples in that leaf. For each internal
node, we report the condition on the feature Day to failure.

5.3.4 Experimental setup

As discussed above, an automatic step for hard drive health levels definition
has been proposed, building a Regression Tree (RT) for each SMART attribute
fi, with the feature representing the time before failure as predictor. The
selected trees (see Figure 5.5 and 5.6) consider the SMART attribute Raw
Value of Current Pending Sector Count as numerical target value. The function
measuring the quality of a split is the mean squared error (mse). The minimum
number of samples required for leaf node in the Regression Tree is 20000 for
the Baidu data-set and 1830, 1380, and 1200 for the Backblaze data-set with
q = 45, q = 30 and q = 15 respectively.

Proposed approach has been evaluated with respect to three of the se-
quence independent methods most used in the literature: a Classification Tree
(CT), a Random Forest (RF), and a Multiclass Neural Network (MNN) —
a deep neural network with dense layers. These models are sequence inde-
pendent because they generalize over input samples rather than sequences,
and thus don’t take the temporal dependencies of the SMART attributes into
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(a)

(b)

(c)

Figure 5.7: Hard drive’s health degree settings for Backblaze data-set for
q=15 (figure 5.7a), q=30 (figure 5.7b) and q=45 (figure 5.7c).

account. Downstream of the parameters optimization, the number of trees for
RF is set to 110 and 210 for the Baidu data-set and the Backblaze data-set
respectively, and the minimum number of samples required for leaf node in
CT is 20 for both data-sets.

The RT, CT and RF models have been implemented using the Python
scikit-learn package, and Keras with Tensorflow as the backend for LSTM
and Multiclass NN models.

As standard for this kind of techniques, the original SMART data-set was
divided into training, validation and test sets. More specifically, we take the
70% of the data as training set, the 15% as validation set and the remaining
data as test set.
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During the training phase of the LSTM and Multiclass NN models, the
maximum number of epochs is set to 150, and the batch size to 500. As an
optimizer, we use Adam [86] with learning rate set to 0.001.

5.3.5 Performance Evaluation

Since each sequence is associated with one of the levels presented in Section
7.2.1, the HDD’s health level assessment as defined in this approach is a
multiclass classification problem with multivariate input variables.

The performance of proposed approach is first evaluated in terms of
accuracy, precision, and recall. Since the distinction between good and
failed hard drives is preserved in the labelling of the data-set, we express
the results in term of accuracy on good sequences (ACCG) and accuracy on
failed sequences (ACCF ) — respectively, the fraction of sequences correctly
classified as Good, and the fraction of sequence classified as the health levels
suggested by the regression trees. We also consider the evaluation criteria
introduced in [198], and measure the accuracy of classifying good and failed
sequences for a tolerance of misclassification up to one health level (ACCTOL

G

and ACCTOL
F ).

Finally, we evaluate performance in terms of failure prediction, by assess-
ing failure detection rate (FDR) and false alarm rate (FAR) for each model.
This is done by considering the levels Good, Very Fair, and Fair as Hard
drive good statuses; and the levels Soft Warning, Warning, Alert, and Red
Alert as Hard drive failed statuses (see Figure 5.4 and 5.7). Intuitively, FDR
is the fraction of failed sequences that are correctly classified as failed, while
FAR is the fraction of good sequences that are incorrectly classified as failed.

5.4 Results

In this thesis we proposed a methodology to perform hard drive health status
assessment exploiting the temporal dependencies of SMART attributes. In
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TW SIZE [hour] Accuracy Precision Recall ACCG ACCF ACCTOL
G ACCTOL

F FDR FAR
48 99.80% 99.1% 98.9% 99.83% 93.17% 99.89% 98.31% 98.2% 0.2%
36 98.78% 98.8% 98.7% 99.80% 91.89% 99.87% 97.45% 97.37% 0.2%
24 99.33% 98.9% 98.8% 99.66% 91.87% 99.74% 96.97% 97.64% 0.2%
12 98.71% 98.8% 98.6% 99.58% 78.06% 99.68% 90.54% 92.14% 0.4%
6 98.08% 98.3% 98.1% 99.43% 65.4% 99.59% 84.35% 86.8% 0.6%
4 97.74% 98.1% 97.8% 99.28% 60.29% 99.53% 82.47% 85.08% 0.6%

Table 5.2: Performance values for the LSTM models obtained by varying TW
size on the Baidu data-set.

q [day] TW SIZE [day] Accuracy Precision Recall ACCG ACCF ACCTOL
G ACCTOL

F FDR FAR
15 5 95.88% 96.90% 95.10% 97.28% 66.56% 97.89% 98.08% 75.53% 2.82%
15 7 95.81% 97.10% 96.00% 97.02% 70.27% 97.93% 98.45% 79.34% 2.70%
30 5 94.54% 96.50% 94.60% 96.38% 56.07% 97.68% 88.30% 76.03% 2.73%
30 7 93.93% 96.80% 94.40% 95.59% 59.15% 97.07% 89.37% 80.70% 3.29%
30 10 95.25% 97.40% 96.10% 96.84% 61.84% 97.59% 91.35% 85.48% 2.73%
45 5 94.45% 96.70% 94.93% 95.95% 66.16% 97.80% 90.67% 78.30% 2.50%
45 7 95.82% 97.00% 95.85% 97.28% 68.34% 98.12% 89.37% 77.75% 2.17%
45 10 96.56% 97.72% 96.82% 97.71% 75.08% 98.36% 93.30% 84.18% 1.83%
45 14 98.45% 98.33% 98.34% 99.21% 84.49% 99.40% 96.65% 91.48% 0.72%

Table 5.3: Performance values for the LSTM models obtained by varying
prediction window (q) and TW size on the Backblaze data-set.

Model Accuracy ACCG ACCF ACCTOL
G ACCTOL

F FDR FAR
CT 97.01% 97.01% 58.94% 99.09% 85.77% 84.16% 1.00%
RF 98.13% 98.13% 59.44% 99.82% 85.65% 85.36% 0.40%
MNN 96.24% 98.57% 38.99% 99.14% 69.59% 73.03% 1.20%

Table 5.4: Results of sequence independent models on the Baidu data-set.

Model Accuracy ACCG ACCF ACCTOL
G ACCTOL

F FDR FAR
CT 83.80% 83.87% 56.31% 95.63% 88.46% 63.58% 4.69%
RF 85.77% 85.77% 71.75% 93.68% 93.82% 80.66% 6.49%
MNN 96.17% 99.15% 39.78% 99.88% 69.20% 85.75% 0.95%

Table 5.5: Results of sequence independent models on the Backblaze data-set.

Metric Good Very Fair Fair Soft Warning Warning Alert Red Alert
Accuracy 99.49% 75.10% 63.17% 41.39% 72.60% 47.44% 61.88%
Precision 100.00% 58.40% 50.90% 57.10% 46.60% 59.20% 60.10%
Recall 99.30% 75.06% 63.20% 41.40% 72.40% 47.30% 61.90%

Table 5.6: Results of best model on the Baidu data-set detailed by each class.

order to asses the effectiveness of the proposal, this section reports the perfor-
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Metric Good Very Fair Warning Alert
Accuracy 99.21% 87.80% 78.10% 84.42%
Precision 99.90% 69.40% 64.70% 73.10%
Recall 98.80% 87.80% 78.10% 84.40%

Table 5.7: Results of best model on the Backblaze data-set detailed by each
class.

Model Accuracy ACCG ACCF ACCTOL
G ACCTOL

F FDR FAR
our approach 98.45% 99.21% 84.49% 99.40% 96.65% 91.48% 0.72%
K-Means [25] 93.90% 99.70% 61.76% 99.20% 88.10% 74.47% 2.30%
Smote [199] 97.37% 99.86% 51.87% 99.88% 83.68% 58.43% 0.80%

Table 5.8: Results obtained by varying different balancing methods on the
Backblaze data-set

Model Accuracy ACCG ACCF ACCTOL
G ACCTOL

F FDR FAR
our approach 99.80% 99.83% 93.17% 99.89% 98.31% 98.2% 0.2%
K-Means [25] 92.32% 99.91% 38.26% 99.95% 68.36% 68.77% 1.09%
Smote [199] 98.03% 99.95% 51.55% 99.97% 77.19% 76.40% 0.29%

Table 5.9: Results obtained by varying different balancing methods on the
Baidu data-set

Dataset Method ACC ACCG ACCF ACCTOL
G ACCTOL

F FDR FAR
Backblaze manual 97.54% 98.78% 75.26% 99.06% 93.31% 90.63% 0.89%
Backblaze automatic 98.45% 99.21% 84.49% 99.40% 96.65% 91.48% 0.72%
Baidu manual 99.15% 98.95% 92.38% 99.29% 97.74% 97.82% 0.37%
Baidu automatic 99.80% 99.83% 93.17% 99.89% 98.31% 98.20% 0.20%

Table 5.10: Results obtained by varying different methods to define hard drive
health levels

mance of proposed methodology, and a comparison with several state-of-art
approaches.

Firstly, we report the results for both sequence dependent and sequence
independent approaches. In particular, Table 5.4 and 7.4 show results of the
LSTM based approach on the Baidu and Backblaze data-sets, respectively.
Performance is reported for different sizes of the time window (TW) used
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Author Methods ACCG ACCF ACCTOL
G ACCTOL

F
Xu et al. [198] Multiclass NN 99.19% 16.01% 99.40% 43.34%
Xu et al. [198] CRF 99.57% 28.51% 99.59% 61.30%
Xu et al. [198] RNN 99.73% 41.05% 99.93% 64.86%
Our Approach LSTM 99.83% 93.17% 99.89% 98.31%

Table 5.11: Comparison of our best model (LSTM - 48h) on the Baidu data-set
with previously proposed models on the hard drive health status assessment
task

Author Methods FDR FAR
Xu et al.[198] Multiclass NN 83.21% 0.60%
Xu et al.[198] CRF 85.50% 0.22%
Xu et al.[198] RNN 87.79% 0.004%
Li et al.[103] CT 95.49% 0.09%
Zhu et al.[208] BP NN 94.62% 0.48%
Shen et al.[165] RF 97.67% 0.017%
Our Approach LSTM 98.20% 0.20%

Table 5.12: Comparison of our best model (LSTM - 48h) on the Baidu data-
set with previously proposed models on the hard drive failure prediction task.

Author Methods Accuracy Precision Recall
Zhang et al.[205] LPAT+All 92.6% 89.30% 88.70%
Sun et al.[174] TCNN — 75.00% 67.00%
Basak et al.[20] LSTM — 84.35% 72.00%
Our Approach LSTM 98.45% 98.33% 98.34%

Table 5.13: Comparison of our best model (LSTM - TW = 14 days and
q = 45 days) on the Backblaze data-set with previously proposed models on
the hard drive health status assessment task.

in the sequence extraction step. We explored time window sizes from 4 to
48 hours for the Baidu data-set, and from 5 to 15 days for the Backblaze
data-set. For the latter, we considered a prediction window (q) varying from
15 to 45 days. As expected given the ability of LSTMs to learn long-distance
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Author Methods FDR FAR
Shen et al.[165] RF 94.89% 0.44%
Xiao et al.[195] ORF 98.08% 0.66%
Our Approach LSTM 98.20% 0.20%

Table 5.14: Comparison of our best model (LSTM - TW = 14 days and
q = 45 days) on the Backblaze data-set with previously proposed models on
the hard drive failure prediction task.

dependencies, the best results are obtained with time windows of 48 hours
and 15 days for the Baidu and Backblaze data-sets, respectively.

Tables 5.4 and 7.2a report results for the sequence independent mod-
els. More in details, such models take hourly samples as input rather than
sequences. The best results in terms of accuracy on failed sequences are
obtained with RF for the Baidu data-set, and MNN for the Backblaze data-set.
Results show that a sequence dependent approach provides higher perfor-
mance than a sequence independent methodology, since the former is able
to capture the SMART attribute temporal dependencies. For completeness,
Table 5.4 and 7.4 report the performance of obtained best models detailed by
each class.

In order to evaluate the effect of the automatic health degree definition
step (as detailed in Section 7.2.1), Table 5.4 compares the performance of the
model using automatically or manually selected health levels. For the manual
set-up, hard drive health levels were split only considering the features Hour
to failure and Day to failure — respectively for the Baidu and Backblaze
data-set. Specifically, we define weekly (seven-day long) intervals. The
only exception being the first interval, which is defined as relative to three
days before failure. This comparison clearly highlights the effectiveness of
automatically detected degree levels, as the automatic approach consistently
outperforms the manual split the variety of evaluation metrics considered.

Furthermore, we evaluate how the balancing method affects performance,
by comparing proposed approach with respect to the methods in [25] and
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[199]. In particular, Botezatu et al. [25] selected a representative subset of
healthy disks by means of a K-means clustering algorithm, while Xu et al.
[199] applied an over-sampling technique (SMOTE) to balance the minority
classes. Table 5.4 and Table 5.4 report the results obtained by varying the
balancing method, and show that the best results on both data-sets are obtained
using proposed method.

Finally, a comparison between proposed methodology and some other
proposals in the literature has been performed, which had also been tested
on the SMART data-set. Tables 5.4, 5.4, 7.4a and 7.4 compare obtained best
results on the Baidu and Backblaze data-sets with different approaches for
hard drive health status assessment and hard drive failure prediction tasks.
Results for the first experiment are shown in Table 5.4. The performance
of proposed approach on the Baidu data-set have been compared against a
method based on Recurrent Neural Networks (RNN) (Xu et al.[198]), a model
based on a Multiclass Neural Network (Mutliclass NN), and one based on
Conditional Random Fields (CRFs) for hard drive health status assessment.

In Table 5.4, are considered once more the models in Xu et al.[198], which
were adapted to the hard drive failure prediction task by implementing a voting
rule mapping different health levels to two separate classes. Then, the models
in Li et al. [103] , Zhu et al. [208] and Shen et al. [165] have been considered
— respectively, a Classification Tree (CT) model, a Backpropagation (BPNN)
and a Random Forest (RF) model.

Lastly, Table 7.4a and Table 7.4 compare obtained best result on the
Backblaze data-set with other state-of-the-art methods in the literature: Zhang
et al. [205], a method based on adversarial training and layerwise perturbation
(LPAT); Sun et al. [174], a temporal convolutional neural network for failure
prediction; Basak et al. [20], an LSTM-based prediction model for RUL
estimation; Shen et al. [165] and Xiao et al. [195], a prediction model based
on part-voting Random Forest and Online Random Forest.
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To summarize, proposed approach outperforms all these models in terms
of accuracy on failed sequences, FDR, and FAR both for hard drive health
status assessment and hard drive failure prediction tasks. Importantly, experi-
mental results demonstrate that proposed approach is feasible for HDD health
status assessment task due to the pre-processing phase and the definition of a
specific model (LSTM) relying on temporal sequence. Crucially, by showing
how proposed model outperforms exiting methods based on LSTMs and
CNNs (Table 7.4a), these comparisons highlight the essential contribution of
proposed approach.





6
Anomalous Sound Detection

6.1 Introduction

During the last two decades, Anomalous Sound Detection (ASD) is becoming
a more and more challenging task for a plethora of applications. Generally
speaking, ASD aims at identifying whether the sound emitted from a given
object is normal or anomalous, and in different cases the early detection of
such anomalies can help to prevent several critical problems [131, 28].

Just to cite several examples, modern surveillance systems integrate au-
dio and video streams to automatically recognize in a more effective way
suspicious events occurring within a given area [37], advanced predictive
maintenance techniques are starting to exploit the sound generated by an
equipment to understand when some downtime situations could arise, even-
tually, the sound analysis is increasingly leveraged to mitigate the effects of
cyber-physical attacks [194] on different kinds of systems.

Traditional approaches adopt different kinds of supervised machine learn-
ing models to accomplish classification or regression tasks on labelled data [131,
17, 202]. Alternatively, unsupervised models have been used to distinguish
between normal and abnormal situations with and without any a-priori knowl-
edge [182, 43, 193].
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Surely, more recently, the most diffused machine learning techniques are
represented by deep learning approaches that have been successfully exploited
in different and heterogeneous contexts, such as medical, surveillance, finance
and predictive maintenance applications as demonstrated by several recent
surveys [56, 106, 188, 82, 18, 45]. Nevertheless, the arise of recent cyber-
physical attacks (i.e. Triton or Stuxnet), that deceive monitoring platforms,
pose novel and challenging issues. For this reason, in this thesis, we focus
on the predictive maintenance task, using sounds generated by particular
industrial equipment (e.g., rotating machinery, pump or slide rail), whose
analysis can unveil symptom of possible failure [70]. For this kind of context,
it is very easy to collect sound data related to normal and abnormal behaviour
of a given machinery, thus several types of deep neural networks can be
effectively trained to predict eventual downtime situations and choose the
best deep architecture for a specific problem.

In this thesis, a novel deep learning-based methodology for anomalous
sound detection task having flexibility and efficiency characteristics that can
be considered essential for real scenarios have been proposed.

In particular, proposed approach is flexible from two different point of
views: firstly, it can be easily applied to multiple instances of the same
equipment as well as different machines and, successively, it is possible to in-
stantiate any type of autoencoder, replacing the encoder and decoder blocks by
using other types of deep networks. Finally, has been analyzed how proposed
methodology, considering both LSTM and CNN-based autoencoders, can be
applied in real scenario by processing continuous audio streams coming from
different audio sources in real-world factories on the basis of a customized
sliding windows.

Summarizing, the main novelties of the proposed approach concern:

• the design of a general methodology, relying on two different instances
of autoencoders (Long-Short Term Memory and Convolutional Neural
Network), for unsupervised anomaly detection;
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• the encoding of machine identifier using one hot-encoding strategy in
order to correlate each machine with relative mel-spectogram produced
by audio analysis;

• the conditioning of an autoencoder by jointly analyzing the relationships
between mel-spectogram and the related machine identifier through an
encoder-decoder architecture for computing an anomaly score related
to the input sequence;

• the flexibility of the proposed methodology and its application in real
scenario have been evaluated on audio streams recorded from multiple
instances of different machine types (pumps, valves, slide rails and
fans) of MIMII dataset [145], achieving low inference time and memory
requirements.

6.2 Methodology

One of the main challenging task for predictive maintenance problem concerns
the Anomaly Detection, defined as a set of techniques for identifying some
anomalous warning or failure states of an examined industrial machine aiming
to improve maintenance activities’ scheduling [132]. Several approaches
[160], mainly based on the analysis of sensors data, have been proposed in
literature to deal with this task although the arise of recent cyber-physical
attacks (i.e. Triton or Stuxnet), that deceive monitoring platforms, pose novel
and challenging issues. For this reason, novel features have to be investigated,
as well as equipment sounds, that can be used by external systems in order to
address these types of attacks. In this section, proposed approach is described
in terms of addressed task (Section 6.2.1) and designed methodology (Section
6.2.2), composed by an Offline Training and Online Operation Phases, that is
respectively discussed in Section 6.2.2 and 6.2.2.
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6.2.1 Task Definition

Proposed approach is focused on the anomaly sound detection (ASD ) task
under unsupervised settings, whose aim is to compute an anomaly score by
inferring features from a sequence of K audio signals S = {x1,x2, ...,xK},
recorded from different versions of industrial machine M (i.e. industrial
pumps or valve) over a time horizon T . In particular, proposed approach
aims to learn normal behaviors of each machine in order to compute an
anomaly score τxi , representing the reconstruction error made by the model,
to the examined sequence xi.

6.2.2 Methodology Description

The proposed ASD methodology is composed by two main phases: an offline
phase (Figure 6.1), aiming to train an autoencoder model on the basis of
extracted features from a pre-collected normal audio clips (Figure 6.2), and
an online operation phase (Figure 6.3), that supports analysis and detection in
real scenario.

Offline Training Phase

Figure 6.1: Overview of offline training phase of the proposed ASD system.

As shown in Figure 6.1, the offline training phase relies on three modules,
starting from the Audio Pre-processing and IDs Pre-processing, whose aims
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concern, respectively, features extraction from audio signals and encoding of
ID string code of each machine version, until to ID Conditioned autoencoder,
that jointly analyzes outputs of two previous modules through an encoder-
decoder architecture for computing an anomaly score related to the input
sequence. In particular, the Audio Pre-processing module is composed by
two different components: Mel-Spectrogram extractor, that produces n×q
images in log-mel-scale (Mel-Spectrograms) from the audio signal as input,
and Normalization and Frames generator, which performs a segmentation
in n×m overlapping frames of the generated Mel-spectrograms, that have,
firstly, been normalized.

Figure 6.2: Features extraction block

The most important parameters involved into this transformation process,
whose graphical abstraction is shown in Figure 6.2, are the length of the
window (n_ f f t) used for Short-Time Fourier Transform (STFT) to produce
spectrum of audio signal, the length of the overlap between two successive
windows (hop_length) to produce the spectrogram and the number of bins
used for the transformation into the Mel scale (n).

The IDs Pre-processing aims to encode this ID string, whose length
depends by the number of different machine versions, through an One-Hot
Encoder. For sake of simplicity, let V be the number of versions of the
generic machine M – identified as ID00, ID01, ID02, ID03 – the one-hot
encoder converts these strings to [0,0,0,1], [0,0,1,0], [0,1,0,0] and [1,0,0,0],
respectively. In particular, this block must ensure that all frames of the
same spectrogram are associated to the same binary sequence because each
spectrogram is segmented in frames. The main idea concerns the use of
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audio signal’s IDs to enable the encoder-decoder architecture to distinguish
sound signals even if there is one model trained on data belonging to different
versions of the machine M. For this reason, the IDs binary sequences must
be involved into the training process, as can be seen into the ID Conditioned
Autoencoder module.

This module is composed by two components that receive in input a set
of spectrogram frames, one-hot-encoded ID arrays and strings produced by
Label Generation. The autoencoder relies on encoder-decoder architecture,
in which the former encodes the input spectograms (E : X → Z ) that are,
successively, reconstructed by the latter (D : Z →X ), where E is the domain
related to the latent representation (Z) of input (X) produced by encoder and D
represents the domain of reconstructed latent samples performed by decoder.
The encoder and the decoder can be created with different type of layers,
like convolutional, LSTM or fully-connected layers. The layer in between
the encoder and the decoder is a latent or encoded representation of the
input X also named Z. Differently from conventional autoencoders, in this
architecture decoder input is not Z, but its mathematical combination with
the output of conditioning functions: H(Z, l) = Hγ(l) ·Z +Hβ (l). In fact,
the ID Conditioning Neural Network module, firstly performed the one-hot
encoded of ID binary sequences as input (Hγ and Hβ : Y → Z ) in order
to map it into Hγ(l) and Hβ (l), with the same size as code from Z . The
conditioning functions can be realized, for example, using dense layers and
activation functions. In conclusion the output of the entire autoencoder is
D(H(E(X), l)). The goal of ID conditioning is to inform the model about
the presence of different machines of the type M, for the recognition of
their different normal behaviours. The concatenation has been introduced to
reduce the number of false negatives because normal sound of a machine M
with ID w could be different from normal sound of a machine M with ID z
this could generate some false negatives. It happens because autoencoder is
unable to separate different machine versions normal behavior. Therefore,
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this concatenation strategy has been chosen for a twofold reason: on the one
hand, the use of one-hot vector concatenation brings a loss of information by
encoding this choice in binary although it turns out to be more efficient and
on the other hand, the latent representation has been used in order to improve
the context representation related to each machine. In general, anomalous
sound of a machine M with ID x could be similar to normal sound of machine
M with ID y and this could generate some false negative (FN), because the
autoencoder is unable, in this case, to distinguish this anomalous behaviours
from normal one on which it has been trained on. The key concept is that
the autoencoder must be trained to reconstruct normal audio spectrograms
in input only if the provided ID is correct. With this assumptions, after the
training, if a normal test sample is placed in input, a low reconstruction error
(in terms of mean absolute error or mean squared error) is expected, while if
there is an anomalous one, an high reconstruction error is generated, even if
this anomalous behavior is similar to a normal behaviour of another machine.
The similarity problem is so resolved by the presence of the ID.
Nevertheless, the training process needs to be revised for supporting the
autoencoder in recognizing the relationships between machine identifiers
(IDs) and audio signal, because the ID conditioning in latent space is not
enough. For this reason, the Label Generation module randomly changes
with a probability 1−α the correct ID binary sequence associated to an audio
signal with another one available. In particular, it adds the string match or
not-match (corresponding to the output of the Random Match - Non Match
association module) for each frame associated to the same audio clip on the
basis of decisions. For instance, considering 100 audio signals and α equals
to 0.75, we assign 75 audio signals to the correct ID whilst the remaining 25
will be associated to a random one from those available (so that the frame
belonging to the same spectrogram have the same ID binary sequence and the
same string).
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Furthermore, a new loss must be used and tuned in the training process
because the classical difference between the encoder input and the decoder
output is not enough because the association between ID and audio sig-
nal may not be correct. In fact, the loss function must be calculated as
||D(H(E(X), l))−X || if the label is match, in other words if the association
between frame and corresponding ID is correct, while it assumes an arbitrary
value C in the calculation of the loss ||D(H(E(X), l))−C|| otherwise (the
label is not-match). In this way, the autoencoder learns the differences be-
tween machine versions, because it understand which is the correct ID string
associated to a clip using the vector C with the aim to reduce the false positive
(FPR) and the false negative rate (FNR).

Online Operation Phase

Figure 6.3: Overview of online operating phase of the proposed ASD system.

In operational phase, proposed approach should be able to work with
a continuous audio stream coming from machines, which are analyzed on
the basis of a sliding windows. Figure 6.3 shows the architecture for online
operation phase, whose left side analyzes raw audio signal stream using
sliding windows. In particular, the sliding window component takes in input
the stream and samples the last T seconds from it every h seconds. The
obtained audio signals is processed through mel-spectrogram extractor and the
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frame generator, whose details are yet described in the offline operation phase.
Finally, the Anomalous Sound Detection aims to identify a sound signal as
normal or anomalous one. In particular, it is composed by three components:
the Pre-trained Autoencoder, the outcome of the offline architecture, the
Reconstruction Error Calculator, computing the difference between the input
and the output of the autoencoder, and Thresholding, whose aim is to classify
a sample in anomalous or normal ones. The threshold value could be chosen
using reconstruction errors of training samples or different approaches based
on ROC curves, as detailed in Section 4.6.

6.3 Experimental Evaluation

The aim of this approach is to investigate the sound analysis to deal with
the more recent cyber-physical attacks, whose aim is to deceive monitoring
platform affecting the performance of classical predictive maintenance tools.

In according to addressed research question, the aim is to design an
experimental protocol able to evaluate how proposed strategy is capable of
recognizing in an effective and efficient way possible anomalous situations
by considering sound provided by different machinery.

In this section the experimental evaluation of the proposed approach is de-
scribed in terms of efficacy and efficiency on the DCASE dataset, whose char-
acterization is shown in Section 6.3.1. We further discussed pre-processing
phase for generating images from audio signals (see Section 6.3.2) and autoen-
coder structure, also optimized the related hyperparameter (see Section 6.3.4).
Finally, performance metrics are described in Section 6.3.5.

Two types of autoencoders are considered in order to investigate the ID
conditioning effects, also analyzing its compatibility with different encoding
and decoding processes. According to their autoencoder’s models, the overall
architectures are identified as ID Conditioned LSTM Autoencoder (IDC-
LSTM-AE ) and ID Conditioned Convolutional Autoencoder (IDCCAE ), that
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are implemented and trained on four machines available in DCASE dataset.
Specifically, one model for each industrial machine has been trained aiming
to improve the learning of specific patterns, although this choice reduces
the amount of sample investigated by proposed model. In particular, the
main idea is supported by the evidence that each equipment performs own
operations and suffers of different anomalous conditions.

The proposed approach has been deployed on Google Colab6, on which
we used the following technological stack composed by Tensorflow7, Keras8

and SciKit-Learn9.

6.3.1 Dataset and Recording Procedure

Proposed methodology has been evaluated on the Unsupervised Detection
of Anomalous Sounds for Machine Condition Monitoring dataset, provided
by DCASE 2020 TASK 2 belonging to MIMII dataset [145]. In particular,
it contains audio clips recorded from four different machine types (pumps,
valves, slide rails and fans), each one composed by four different versions.
Table 6.1 shows information about machines’ operations and possible failures
that could occur. In particular, clips are recorded by a circular microphone
array so that single-channel-based or multi-channel-based approaches can be
evaluated.

This challenge is only based on the first channel of multi-channel record-
ings and the sampling rate of all signals has been down-sampled to 16 kHz. It
is worth to note the presence of real factory environmental background noise
mixed with the target machines sounds. Table 6.2 provides some details about
machines and the number of audio clips found in training and test sets.

In conclusion, four models have been trained, one for each machine type,
using training and test sets of all available IDs.

6https://research.google.com/colaboratory/
7https://www.tensorflow.org
8www.keras.io
9https://scikit-learn.org/stable/

https://research.google.com/colaboratory/
www.keras.io
https://scikit-learn.org/stable/
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Machine Type Operations Anomalous Conditions

Pump
Suction from/discharge
to a water pool.

Leakage, contamination,
clogging, etc.

Fan
It works to provide a
continuous flow or gas
of air in factories

Unbalanced, voltage change,
clogging, etc.

Slide Rail
Slide repeat at
different speeds

Rail damage, loose belt,
no grease, etc

Valve
Open/close repeat with
different timing

More than two kinds
of contamination

Table 6.1: Machine descriptions with some anomalous conditions.

ID00 ID02 ID04 ID06
Machine Type train test train test train test train test

PUMP 906 243 905 211 602 200 936 202
FAN 911 507 916 549 933 448 915 461

SLIDER 968 456 968 367 434 278 434 189
VALVE 891 219 608 220 900 220 892 220

Table 6.2: Number of training and test samples.

6.3.2 Pre-Processing Phase

This section describe the pre-processing operations on the dataset for perform-
ing the experimental analysis, also discussing about parameters selections
regarding mel-spectrograms extraction, normalization, frames generation and
IDs pre-processing. In particular, the same parameters are used for all ma-
chines in the mel-spectrograms extraction task, that has been performed by
using the Librosa library10: the number of bins (n_mels) is 128, the STFT
window (n_ f f t) is 1024 and the hop_length is 512.

Due to the duration of each clip (10 seconds) and the above mentioned
parameters, each mel-spectrogram has the dimension of 128×313 while the
frames generation specifications are shown in Table 6.3.

10https://librosa.org/

https://librosa.org/
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IDCCAE IDC-LSTM-AE
Machine Num. Frames Hop-Size Num. Frames Hop-Size

Pump 15 20 12 25
Fan 15 20 12 25

Valve 15 20 16 18
Slider 21 14 22 13

Table 6.3: Frame generation details.

In particular, the column Num. Frames reports the number of frames
extracted from each spectrogram for each machine, while the Hop-Size rep-
resents the segmentation time-window shift, whose difference with respect
to the the window’s length determines the overlap between two successive
frames according to their timestamps. Regarding the normalization, a Z-Score
is applied on spectrograms sets extracted for each ID of each machine’s type
before the frame generation. For both instances of the proposed methodology,
frames fed into autoencoders for training have the size of 128x32. In conclu-
sion, the ID strings used to identify each machine type are 00, 02, 04 and 06
(as can be seen in Table 6.2) and they are encoded respectively to [0,0,0,1],
[0,0,1,0], [0,1,0,0] and [1,0,0,0].

Finally, four models for each architecture type must be trained to detect
eventual anomalies. Moreover, for match and not-match transformations an
α = 0.75 is chosen, while the vector C is chosen equal to 5, after optimization.

6.3.3 Autoencoder Structure

This section describes the architecture of IDCCAE and IDC-LSTM-AE (see
Figure 6.4), whose conditioning phase is a sequence of mathematical oper-
ations, in which encoder output and ID conditioning network outputs are
involved, as seen in Section 6.2. In particular, the Encoded ID is analyzed
through a dense and an activation layer to produce the ID conditioning net-
work first output, which is multiplied with encoder output. The second output
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is further computed by using a dense layer with the same Encoded ID pro-
vided input while the final representation (decoder input) is computed by
adding the multiplication output to the second output.

The Figure 6.4a reports a detailed view of encoder and decoder block
in the convolutional instance of the proposed methodology. The encoder
network consists in a stack of five hidden layers with convolutional filters of
32, 64, 128, 256, and 512. In particular, each component of the encoder is a
block composed by a stack of different layers: a convolutional layer followed
by batch normalization and the ReLU activation function. The bottleneck
consists of a layer with 40 convolutional filters, reducing the encoder feature
maps to a 40-dimensional encoded representation of the input. Finally, the
decoder network is composed of a fully-connected layer which reshapes its
input to the shape of the last layer of the encoder and five ConvTransposeBlock
(Conv2DTranspose layers followed by batch normalization layers and ReLu
activation functions) mirror the encoder. Conditioning operations are those
explained in previously.

In turn, the Figure 6.4b describes the architecture of the LSTM based
autoencoder. Encoder is composed by three LSTM layers with a decreasing
number of units (64,32 and 16), which indicate the dimensionality of their
output space. In this architecture, the 128x32 frames placed in input are
seen as time-series of 32 timesteps each characterized by 128 features, which
correspond to the frequency amplitudes (the n_mels bins). The decoder is the
reversed version of the encoder, where at the beginning there is a RepeatVector
layer which repeats its input n times. Specifically, the input is repeated 32
times like the number of timesteps. This architecture tries to capture the
temporal relationship between sequential frequency amplitudes through time,
in order to learn a better function to reconstruct the inputs. Finally, encoder
output is a 16-dimensional representation of its input, while the conditioning
operations are those explained before.
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(a) ID Conditioned Convolutional Autoencoder

(b) ID Conditioned LSTM Autoencoder

Figure 6.4: Architectural details of the two designed architectures.
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6.3.4 Hyperparameters Tuning

In this section the hyperparameter tuning strategy of the proposed model is
described. In particular, the following model parameters have been explored:
the constant vector C, that must be reconstructed by the autoencoder when
the provided ID is wrong, α , being the percentage of correct frame-ID cou-
ples in training set. We performed a grid search setting α and C to {0.9,
0.75, 0.5} and {0, 2.5, 5, 10}, respectively. During the training phase other
parameters are optimized for improving the performances of the proposed
methodology. In addition to those seen for IDCCAE and IDC-LSTM-AE,
we also optimized batch size ({64,128,256,512}), number of epochs (in the
[50, 200] range) and learning rate ({10−2,10−3,10−4,10−5}) as autoencoder-
independent hyperparameters using ADAM as optimizer. Table 6.4 reports the
best hyperparameters found at the end of the optimization process, together
with those seen at the beginning of this paragraph.

IDCCAE IDC-LSTM-AE
Machine BS EP LR BS EP LR

Pump 256 100 0.0001 512 100 0.001
Fan 512 100 0.0001 256 100 0.001

Valve 64 100 0.0001 512 100 0.001
Slider 12 100 0.0001 512 100 0.001

Table 6.4: Batch size (BS), learning rate (LR) and number of epochs (EP)
chosen. These parameters are used to get final results of the experimental part
of this text.

Finally, Mean Squared Error (MSE) has been chosen to evaluate recon-
struction errors for all models and all machine types.

6.3.5 Evaluation and Performance Metrics

In this section are described the metrics used to evaluate the performances of
trained models. The metrics used for models evaluation are the area under
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the receiver operating characteristic (ROC) curve (AUC) and the partial-AUC
(pAUC). The ROC curve shows the trend of the true positive rate (TPR) in
function of the false positive rate (FPR) at the variation of a parameter, the
pAUC is calculated as the AUC over a low FPR range [0, p], with p= 0.1. The
proposed approaches has been evaluated in terms of the following metrics:

AUC =
1

N−N+

N−

∑
i=1

N+

∑
j=1

H (Aθ (x+j )−Aθ (x−i )) (6.1)

pAUC =
1

⌊pN−⌋N+

⌊pN−⌋

∑
i=1

N+

∑
j=1

H (Aθ (x+j )−Aθ (x−i )) (6.2)

where Aθ (·) is the anomaly score generated by the autoencoder, · is the
flooring function and H returns 1 when x> 0 and 0 otherwise. Here, {x−i }

N−
i=1

and {x+j }
N+
j=1 are normal and anomalous test samples, respectively, and have

been sorted so that their anomaly scores are in descending order. Here, N−

and N+ are the number of normal and anomalous test samples, respectively.

According to the above formulas, anomaly scores of normal test samples
are used as thresholds. The anomaly score associated to a test sample is calcu-
lated taking the reconstruction errors average over all frames extracted from
it and after the application of normalization. The pAUC is defined because it
is especially important to increase the TPR under low FPR conditions, in that
if an ASD system gives false alerts frequently we cannot trust it.
In conclusion, because the results produced with a GPU are generally non-
deterministic, means and standard deviations are calculated from 10 inde-
pendent trials. In particular, once trained a model is evaluated on test sets
generating for each ID AUC and pAUC values. Moreover, mean values of
AUC and pAUC are calculated from those obtained for each ID. Mean values
are used to calculate mean and standard deviation over independent trials.
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6.3.6 Threshold Definition

In this section an online version of the proposed methodology is shown.

The online architecture uses the autoencoder trained with offline pro-
cedures to reconstruct the spectrograms placed in input. Successively, a
reconstruction error evaluation on the basis of a threshold is performed.

This section explains a possible way to calculate an optimal threshold, but
it is not the only one, since different approaches about threshold definition
and its optimization process can be found in literature.
To calculate an optimal threshold the concept of optimal must be firstly
defined. In fact, once defined a threshold ε and a test set is evaluated, a confu-
sion matrix could be calculated, from which true positive rate (TPR, where
positive means anomalous), false positive rate (FPR) and other important
measures can be extracted. The threshold goodness is related to the weights
and the importance associated to these measures. In anomaly detection task
is important to have an high TPR and as low as possible value of FPR.

To this purpose, the Youden’s index J is defined [22]:

J = Sensitivity+Speci f icity−1 (6.3)

Sensitivity = T PR =
T P

T P+FN
(6.4)

Speci f icity = T NR =
T N

T N +FP
= 1−FPR

= 1− FP
T N +FP

(6.5)

J = T PR+(1−FPR)−1 = T PR−FPR (6.6)

The higher J is, better the threshold is, according to this definition of
optimum, and to achieve the best, the threshold that corresponds to the max
value of J must be found.
Practically, the optimal threshold has been calculated using following steps:
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1. Reconstruction errors calculated from test set samples (anomaly scores)
are collected.

2. Using scikit-learn function metrics.roc_curve FPR, TPR and Thresh-
olds, are calculated and also used to visualize ROC curve. FPR, TPR
and Thresholds are three arrays of the same length.

3. The optimal threshold corresponds to the element of Thresholds array
at the index on which there is a maximum value of T PR−FPR. In
other way, a vector of the differences between TPR and FPR can be
calculated and then the index of the maximum difference in this vector
is the index of the optimal threshold in Threshold array.

Following, Figure 6.5 shows the ROC curves calculated for IDCCAE
architecture trained on audio clips recorded from pumps. It shows the ROC
curves in blue and the bisector lines in red, while black dashed lines indicate
the values of J. Moreover, red dots are used to mark the FPR and TPR which
correspond to optimal thresholds, also numerically reported.
In conclusion, in online detection phases there are two alternatives:

• Calculate and use a different threshold for each ID string (or machine
type), even if the model used for prediction is one;

• Calculate and use only one threshold, regardless of the different ma-
chine versions (last ROC curve in Figure 6.5).

The first option implies that during detection the architecture is able to se-
lect the right threshold based on the ID associated to audio clip placed in input.
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(a) ROC curve for machine with id00

(b) ROC curve for machine with id02 (c) ROC curve for machine with id04

(d) ROC curve for machine with id06 (e) ROC curve for all machines

Figure 6.5: ROC curves obtained using IDCCAE model on pumps test audio
clips for the machine described in Table 3. The image shown below is the
ROC curve calculated using the predictions of all four kinds of pump, with
the threshold calculated.
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Model Pump Fan Valve Slider Memory
(MiB)Training Inference Training Inference Training Inference Training Inference

IDCCAE 1h 26min 51s 3,19s 1h 58min 29s 3,04s 1 h 21 min 51s 2,94s 2h 2min 40s 2,78s 8
IDC-LSTM-AE 3min 49s 15,4s 6min 44s 14,7s 5 min 9s 15,1s 5min 56s 14,6s 64

Table 6.5: Efficiency evaluation of IDCCAE and IDC-LSTM-AE models with
respect to IDCAE ones in terms of training and inference time and used
memory.

6.4 Results

This section discusses about the results obtained by the IDCCAE and IDC-
LSTM-AE models with respect to different competitors in terms of efficiency
and efficacy analysis.

The efficiency of the proposed models has been evaluated by investigat-
ing their training and inference time, also considering their used memory.
Specifically, the two proposed models based on LSTM and CNN respectively
have been compared. The experiments have been performed using the entire
dataset by averaging on ten independent trials.

Table 6.5 shows that the IDC-LSTM-AE achieves best results in terms of
training although the inference time is highest, also requires a large amount of
memory (64 MiB). On the other hand, IDCCAE requires a very high training
time whilst achieving very good results in terms of both inference time (on
average 2.98s) and used memory (8 MiB).

However, despite the high demand for training time of IDCCAE, the
obtained results suggest its applicability in a real-world scenario due to
low inference times and low memory usage, also allowing its use in edge
computing.

In turn, the efficacy analysis has been evaluated comparing the proposed
models with respect to different competitors in terms of AUC and pAUC. In
particular, the IDCCAE architecture has been compared with a similar version
of the architecture without the ID conditioning mechanism (CAE [148]).
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In the same way, the IDC-LSTM-AE has been evaluated using the results
obtained by a similar LSTM autoencoder without conditioning [80].

Both are also compared with results of the baseline model provided by
DCASE authors [84]. It consists of a dense autoencoder composed by three
layers in both the encoder and decoder components with 128 units, a latent
space with 8 units and finally the ReLU activation function.

Finally, proposed approaches has been compared with another approach
based on id_conditiong methodology applied to autoencoder [84].

Table 6.6 shows results obtained by all models for each type of machinery.
For pump machinery, IDC-LSTM-AE achieves the best result in terms of AUC
(78.29%) while IDCAE [84] shows an increase of 0.66% in terms of pAUC
w.r.t proposed approach. In turn, for fan machinery IDCAE and IDCCAE
are the best models in terms of AUC and pAUC respectively (77.45% and
70.33%). In turn, for slider and valve IDCCAE achieves the highest results
for pAUC metric 84.14%, while CAE results the best model for AUC metric
reporting an increase of 0.78% and 4.1% w.r.t. IDCCAE.

In summary, IDCCAE proposed model achieves the best performance on
three types of machinery in terms of pAUC. In turn, IDC-LSTM-AE is the
best model in terms of AUC only for pump machinery. Remarkable are the
results obtained by IDCCAE for the pAUC metric because it means there are
higher values of true positive and lower values of false positive, this is very
important due to if an ASD system gives false alerts frequently we cannot
trust it.

Finally, the results show that the proposed methodology, which leverages
ID Conditioning, Mel-Spectogram and novel loss function for improving the
model’s performance, achieves the best value in terms of AUC and pAUC for
all machines considered.
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Pump Fan

Model AUC pAUC AUC pAUC
Mean Std.Dev Mean Std.Dev Mean Std.Dev Mean Std.Dev

Baseline 72.89% 0.70% 59.99% 0.77% 65.83% 0.53% 52.45% 0.21%
CAE [148] 72.07% - 60.96% - 66.78% - 52.63% -
LSTM [80] 73.94% - 61.01% - 67.32% - 52.05% -
IDCAE [84] 77.29% - 70.33% - 77.45% - 70.32% -

IDCCAE 76.63% 1.87% 67.90% 1.87% 71.05% 0.72% 70.33% 0.55%
IDC-LSTM-AE 78.29% 2.21% 69.67% 2.44% 67.66% 2.29% 65.83% 1.12%

Slider Valve

Model AUC pAUC AUC pAUC
Mean Std.Dev Mean Std.Dev Mean Std.Dev Mean Std.Dev

Baseline 84.76% 0.29% 66.53% 0.62% 66.28% 0.49% 50.98% 0.15%
CAE [148] 91.77% - 76.20% - 78.83% - 53.10% -
LSTM [80] 84.99% - 67.47% - 67.82% - 51.07% -
IDCAE [84] 80.04% - 68.25% - 78.26% - 55.80% -

IDCCAE 90.99% 4.30% 84.14% 6.46% 74.73% 5.00% 61.18% 5.07%
IDC-LSTM-AE 82.62% 1.90% 74.48% 2.64% 62.98% 2.99% 59.71% 1.53%

Table 6.6: Mean and std.dev. of AUC and pAUC for convolutional archi-
tectures on 10 independent trials. Results found in [148] are reported for
comparison. Best results for each metric are marked in bold.
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An Explainable Artificial Intelligence

methodology for HDD fault prediction

7.1 Introduction

IT infrastructures can be affected by data center’s equipment failures, whose
downtime costs have been growing significantly — ranging, for instance, from
5,600/minute in 2010 to 8,851/minute in 2016 [144]. As Hard Disk Drives
(HDDs) have become a primary type of storage in data centers, HDD failure-
rate is now one of the main factor for data center downtime, unavailability,
and data loss — with obvious effects on overall business costs [157, 25].
Additionally, HDDs’ reliability is affected by the complex interaction of a
variety of factors (i.e., temperatures, workloads), which are difficult to address
directly. Monitoring HDD’s internal status is thus fundamental to reduce
overhead costs due to downtime scheduling maintenance on the basis of self-
monitoring, analysis, and reporting technology (SMART, [7]) for improving
its availability and extending its life. While efficient planning of maintenance
operations is clearly valuable, more modern approaches have been focused
on proactive analysis: predictive strategies to identify HDDs’ status in terms
of binary classification (healthy or faulted).
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Obviously, a plethora of approaches have been proposed with this aim,
most of them using SMART attributes to predict disk replacement ahead of
failure [25, 116]. However, health assessment of HDDs based on SMART
statistics is not a trivial task, in particular if we are interested in estimating how
much functioning time a specific HDD has left (remaining Useful Life, RUL).
In particular, the historical data available about HDDs is highly imbalanced,
with the majority of information available only describing healthy hard drives.
Thus, any efficient solution to health status prediction will have to deal with
this issue.

In this thesis, we propose a framework that predicts HDD health status,
exploiting the peculiarities of LSTMS to take advantage of the variation is
SMART attribute values over time. In doing so, we address one of the biggest
challenges to the use of deep learning approaches in predicting HDD health
status: namely, the imbalanced nature of the available data-sets. Moreover,
we show how explainable artificial intelligence tools can we used to probe the
results of proposed model, and support practitioners in their decision-making.

7.2 Methodology

Since hard drives often deteriorate gradually rather than abruptly, we argue
that temporal analysis methods are more appropriate than methods that do not
consider time when modeling the sequential nature of the dependencies within
SMART attributes. Thus, we suggest an approach to estimate and explain the
RUL of a HDD, by automatically identifying specific health conditions on
the basis of SMART attributes values. This methodology is grounded in four
main steps (Fig. 7.1): i) Hard drive health degree definition; ii) Sequences
extraction; iii) Health Status assessment through LSTM; iv)Explainer of HDD
Health Status via XAI tools.
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Figure 7.1: The proposed schema: Hard drive health degree definition; Se-
quences extraction; Health Status assessment through LSTM; XAI Explainer
of HDD Health Status.

7.2.1 Health degree definition

In this step we consider only the hard drives that are going to fail, introducing
for each of them an additional feature representing the time before failure.
Denoting with m j be the number of samples for the hard disk j, it is possible
associate each sample with an index i from 0 to m j − 1, representing the
number of samples that follow it in the sequence describing hard disk failure.
As a consequence, the sample with index i = 0 is the last sample before
failure. Time-to-failure is the feature representing the time before failure
for each hard drive whose meaning depends on sampling period while f1,
f2, ..., fn are the SMART attributes. The main idea is to build a Regression
Tree (RT) for each SMART attribute fi with i = 1,2...n, having the feature
representing the time before failure as predictor and fi as the numeric target
value. Among all the resulting trees (one for each SMART attribute fi), the
one with the highest performance is selected, showing the attribute most
temporally dependent. Since the selected Regression Tree (RT) presents splits
only on the feature Time-to-failure, the latter is used to distinguish hard drive
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health levels according to time before failure. In Figure 7.1 is reported an
example of hard drive health levels identification by means of the Regression
Tree algorithm. Each internal node represents a split on the feature Time-to-
failure, resulting in the definition of four health degree levels. The samples
belonging to hard drives that will not fail are labelled as Good by default.

7.2.2 Sequence extraction

We extract feature sequences over specific time windows (TW), to explore
the temporal dependencies within the SMART features periodically collected
for each hard drive. Let w and at be the time window size and the set of
SMART features ( f1, f2... fn) at time t, respectively. Proposed model aims
to predict hard drive health status at time t + 1 (Hs(t + 1)) considering the
sequence (at−w+1..., at−1, at). For each at , the health status Hs(t) is defined,
and the feature sequence for each hard drive at time t is extracted considering
the w−1 previous samples. Each sequence results in a bi-dimensional array
of size w× n, where n is the number of SMART features considered. For
each hard drive, sequences are extracted with a stride of one. It follows
that m j −w+1 sequences are extracted for each hard drive, where m j is the
number of samples for the disk j. For each sequence (at−w+1..., at−1, at), the
hard drive’s health level is defined by the health level of the set of features
at+1. The result of this step is a sequence-based data-set. More specifically,
the data-set consist of bi-dimensional arrays, each associated to a health
level representing the hard drive’s health condition between two consecutive
samples (i.e., at and at+1).

7.2.3 Health Status assessment through LSTMs

This step consists of a multiclass classification task, where each feature
sequence is assigned to one of the classes (health levels) introduced in Section
7.2.1. Due to the sequential, gradually changing nature of the SMART
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features, it is important that proposed model is able to capture dependencies
across features over time. Long Short Term Memory networks (LSTMs) are
extension to recurrent neural networks, explicitly designed with the purpose
of learning long-term dependencies. They are widely used nowadays, as
they work tremendously well on a large variety of problems. In the proposed
framework, the input to each LSTM layer is a three-dimensional data structure
of size z×w× n, where: i) z, is the the total number of sequences (or the
batch size at each iteration); ii) w is the size of each sequence — i.e., the size
of a time window in terms of time steps; iii) n is the total number of features
describing each time step. The implemented network has two stacked LSTM
layers with 128 units, followed by a single dense layer.

7.2.4 Explainer of HDD Health Status through SHAP

Finally, each extracted sequence is explained by means a model-agnostic XAI
tool: SHapley Additive exPlanations (SHAP, [113]) assigning to each feature
of a model, an importance value for a specific prediction. All testing sequences
are classified by the LSTM model, delivering a confusion matrix. Denoting
by i and j the row and column indexes — i = 1,2, ...,n and j = 1,2, ...,n
with n the number of classes — respectively, each element is identified as
ai j and represents the number of instances of i class classified as j. Let Si j

be the sequences of the test set belonging to class i but classified as j, the
aim is to explain this misclassification, to understand each predicted class
characteristic.

7.3 Evaluation

We test the prediction performance of the model on Backblaze SMART data-
set11, and then compare its performances against three popular methods in

11https://www.backblaze.com/b2/hard-drive-test-data.html

https://www.backblaze.com/b2/hard-drive-test-data.html
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the existing literature: a Classification Tree (CT) model, a Random Forest
(RF) model, and a model based on Multiclass Neural Networks (MNN).
In particular, we used the Backblaze data-set that contains daily data col-
lected from 50,984 hard disks. We focused on samples belonging to Seagate
ST4000DM000, since it is the most populated model in data-set (29,878
disks in total; 29,083 good disks and 795 failed disks). Among all SMART
attributes, the most influential attributes have been selected after a feature
selection phase12. Finally, the values for every SMART attribute were scaled
to the interval [−1,1]. Data pre-processing consisted of two main steps: Fea-
tures Selection and Health degree computation. In the first step, the features
Reallocated Sectors Count and Current Pending, Sector Count were removed
in order to preserve their raw values — that is the features Raw Value of
Reallocated Sectors Count and Raw Value of Current Pending Sector Count
— since the latter seem more sensitive to the health condition of hard drives.
We also excluded the feature representing disk capacity. Importantly, the
attributes failure and Serial Number are necessary in order to distinguish
between failed and good hard drives and to create sequences for each hard
drive. However, they are not taken into account during sequence classification.
For good hard drives, each sample was associated to the health degree level
Good, while for failed hard drives, their remaining functioning time depends
on the number of samples collected for said device. In the Health degree
computation step, we focused on the last q samples of each failed hard drives,
where q is a prediction window that determines the period in which hard drive
health status should be assessed. Specifically, proposed approach is able to
predict hard drive health status q days before failure. We explored different
values for q, from 15 to 45 days. After choosing the value for q, hard drive
health levels are defined according to Section 7.2.1. Since the Backblaze data-
set contains daily samples for each hard drive, the feature Time-to-failure has
been renamed Day to failure. We then selected the regression tree built with

12https://www.backblaze.com/blog/hard-drive-smart-stats/

https://www.backblaze.com/blog/hard-drive-smart-stats/
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(a) (b)

Figure 7.2: (a) HDD health levels by means of a Regression Tree. Each
internal node represents a split on the feature time-to-failure, resulting in the
definition of four health degree levels. (b) Sequence extraction step for a
single hard drive.

the feature Raw value of Current Pending Sector Count. We then introduced
a different level for those hard drives that will not fail. When q is set to 30 or
45, the result is the definition of 4 levels, labelled Alert, Warning, Very Fair
and Good. In turn, if q is set to 15, we define 3 levels, labelled Alert, Warning
and Good. The levels Good and Very Fair represent HDDs still in good health
conditions. Therefore, we classify a hard drive as being in a Good status, if
its health level is characterized as Good or Very Fair while a hard drive is
classified as being in a Failed Status, if its health level is in Warning or Alert.

7.3.1 Experimental setup

We propose an automatic step for hard drive health levels definition, build-
ing a Regression Tree (RT) for each SMART attribute fi, with the feature
representing the hours before failure as predictor. The selected tree consider
the SMART attribute Raw Value of Current Pending Sector Count as numer-
ical target value. The function measuring the quality of a split is the mean
squared error (mse). The minimum number of samples required for leaf node
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in the Regression Tree is 1830, 1380, and 1200 with q = 45, q = 30 and
q = 15 respectively. We evaluate proposed model with respect to three of
the sequence independent methods most used in the literature: CT, a RF, and
a MNN. These models are sequence independent because they generalize
over input samples rather than sequences, and thus don’t take the temporal
dependencies of the SMART attributes into account. We implement the RT,
CT and RF models using the Python scikit-learn package, and we use Keras
with Tensorflow as the backend for LSTM and Multiclass NN models. As
standard for this kind of techniques, the original SMART data-set was divided
into training, validation and test sets. More specifically, we take the 70% of
the data as training set, the 15% as validation set and the remaining data as
test set. Downstream of the parameters optimization, the number of trees
for RF is set to 210 and the minimum number of samples required for leaf
node in CT is 20. During the training phase of the LSTM and Multiclass
Neural Network models, the maximum number of epochs is set to 10, and
the batch size to 500. We use Adam as an optimizer, with learning rate set
to 0.001. The performance of proposed approach is first evaluated in terms
of accuracy, precision, and recall. Since the distinction between good and
failed hard drives is preserved in the labelling of the data-set, we express
the results in term of accuracy on good sequences (ACCG) and accuracy on
failed sequences (ACCF ) — respectively, the fraction of sequences correctly
classified as Good, and the fraction of sequence classified as the health levels
suggested by the regression trees. We also measure the accuracy of classifying
good and failed sequences for a tolerance of misclassification up to one health
level (ACCTOL

G and ACCTOL
F ). Finally, we evaluate performance in terms of

failure prediction, by assessing failure detection rate (FDR) and false alarm
rate (FAR) for each model. This is done by considering the levels Good, Very
Fair as Hard drive good statuses; and the levels Warning, Alert as Hard drive
failed statuses. Intuitively, FDR is the fraction of failed sequences that are
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q [day] TW SIZE [day] Accuracy Precision Recall ACCG ACCF ACCTOL
G ACCTOL

F FDR FAR
15 5 95.88% 96.90% 95.10% 97.28% 66.56% 97.89% 98.08% 75.53% 2.82%
15 7 95.81% 97.10% 96.00% 97.02% 70.27% 97.93% 98.45% 79.34% 2.70%
30 5 94.54% 96.50% 94.60% 96.38% 56.07% 97.68% 88.30% 76.03% 2.73%
30 7 93.93% 96.80% 94.40% 95.59% 59.15% 97.07% 89.37% 80.70% 3.29%
30 10 95.25% 97.40% 96.10% 96.84% 61.84% 97.59% 91.35% 85.48% 2.73%
45 5 94.45% 96.70% 94.93% 95.95% 66.16% 97.80% 90.67% 78.30% 2.50%
45 7 95.82% 97.00% 95.85% 97.28% 68.34% 98.12% 89.37% 77.75% 2.17%
45 10 96.56% 97.72% 96.82% 97.71% 75.08% 98.36% 93.30% 84.18% 1.83%
45 14 98.45% 98.33% 98.34% 99.21% 84.49% 99.40% 96.65% 91.48% 0.72%

Table 7.1: Performance values for the LSTM models obtained by varying
prediction window (q) and TW size on the Backblaze data-set.

correctly classified as failed, while FAR is the fraction of good sequences that
are incorrectly classified as failed.

7.4 Results

Table 7.4 shows results of proposed LSTM based approach. Performance is
reported for different sizes of the time window (TW) used in the sequence
extraction step. We explored time window sizes from 5 to 15 days.

For the latter time-interval, we considered a prediction window (q) vary-
ing from 15 to 45 days. As expected given the ability of LSTMs to learn
long-distance dependencies, the best results are obtained with a time window
spanning 15 days. Table 7.2a reports results for a set of sequence indepen-
dent models previously explored in the literature, taking hourly samples as
input rather than sequences. The best results in terms of accuracy on failed
sequences are obtained with MNN. Overall though, these results show that
sequence dependent approaches provide higher performance than a sequence
independent methodologies.

Finally, Table 7.4 reports the performance of obtained best models detailed
by each class.

Proposed methodology has been compared to other sequence dependent
approaches, which had been tested on the SMART data-set. Tables 7.4a
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Model Accuracy ACCG ACCF ACCTOL
G ACCTOL

F FDR FAR
CT 83.80% 83.87% 56.31% 95.63% 88.46% 63.58% 4.69%
RF 85.77% 85.77% 71.75% 93.68% 93.82% 80.66% 6.49%
MNN 96.17% 99.15% 39.78% 99.88% 69.20% 85.75% 0.95%

(a)

Metric Good Very Fair Warning Alert
Accuracy 99.21% 87.80% 78.10% 84.42%
Precision 99.90% 69.40% 64.70% 73.10%
Recall 98.80% 87.80% 78.10% 84.40%

(b)

Table 7.2: (a) Results of sequence independent models on the Backblaze
data-set. (b) Results of best model on the Backblaze data-set detailed by each
class.

Metric Good Very Fair Warning Alert
Accuracy 99.21% 87.80% 78.10% 84.42%
Precision 99.90% 69.40% 64.70% 73.10%
Recall 98.80% 87.80% 78.10% 84.40%

Table 7.3: Results of best model on the Backblaze data-set detailed by each
class.

Author Methods Accuracy Precision Recall
Zhang et al.[205] LPAT+All 92.6% 89.3% 88.7%
Basak et al.[20] LSTM — 84.35 72.0%
Our Approach LSTM 98.45% 98.33% 98.34%

(a)

Author Methods FDR FAR
Shen et al.[165] RF 94.89% 0.44%
Xiao et al.[195] ORF 98.08% 0.66%
Our Approach LSTM 98.20% 0.20%

(b)

Table 7.4: Comparison of obtained best model (LSTM - TW = 14 days and
q = 45 days) on the Backblaze data-set with previously proposed models on
the hard drive health status assessment and failure prediction tasks ((a) (b)
respectively).
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Author Methods FDR FAR
Shen et al.[165] RF 94.89% 0.44%
Xiao et al.[195] ORF 98.08% 0.66%
Our Approach LSTM 98.20% 0.20%

Table 7.5: Comparison of our best model (LSTM - TW = 14 days and q = 45
days) on the Backblaze data-set with previously proposed models on the hard
drive failure prediction task.

and 7.4 compare obtained best results with different approaches for hard
drive health status assessment and hard drive failure prediction tasks. In
particular, Table 7.4a and 7.4 compare obtained best result with some other
state-of-the-art methods in the literature: Zhang et al. [205], a method based
on adversarial training and layerwise perturbation (LPAT); Basak et al. [20],
an LSTM-based prediction model for RUL extimation; Shen et al. [165] and
Xiao et al. [195], a prediction model based on part-voting Random Forest
and Online Random Forest. Proposed approach outperforms all these models
in terms of accuracy on failed sequences, FDR, and FAR both for hard drive
health status assessment and hard drive failure prediction tasks. Importantly,
experimental results demonstrate that proposed approach is feasible for HDD
health status assessment task due to the pre-processing phase and the definition
of a specific model (LSTM) relying on temporal sequence. Finally, SHAP
tools are used to explain each extracted sequence. To minimize the number
of false negative alarms, we are interested in explaining why samples are not
placed in the damaged class — that is, Alert. We focused on the damaged
class because HDDs are the main cause of downtime and unavailability for a
data center. Since the cost of their replacement has a significant impact on
the business continuity and financial resources of a company, so an accurate
analysis of these cases is not only desirable, but necessary.

Figure and 7.3a Figure 7.3b show summary plots combining feature
importance with feature impact on model output. Specifically, the y-axes
shows features ordered by importance, and and the x-axis shows the related
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(a) (b)

(c)

Figure 7.3: Summary plot of Good sequences classified as Good.

SHAP values. Moreover, each point is characterized by a color representing
the feature values from low to high. Temperature Celsius (TC), Seek Error
Rate(SER), Power on Hours (PoH) and Spin Up Time (SUT) are the most
important features. As can be seen from the plots above, the most important
features for the sequences classified as part of the Good class are: i) TC, which
is almost always low; ii) PoH, with high value; iii) SER, which often assumes
low values; iv) SUT, with low values. On the other hand, for the sequences
classified as belonging to the Alert class the most important features are: i)
SER, which always assumes high values; ii) PoH with low values; iii) TC,
which often assumes high values; iv) SUT that takes high values. Finally,
Figure 7.3c reports an example of a false negative sequence with true class
Alert, and classified with Good. This plot highlights the causes that led to
an incorrect classification: SER and Raw Read Error Rate contain some
outliers (low values) which have a greater impact on the output than the
other (high values); moreover, SUT often assumes low values. Overall, these
results show the advantages of employing XAI techniques in conjunction
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with deep learning models. In the case of HDD failure detection, the insights
gained from XAI-based analysis helps identify false negatives cases. It should
be possible to use this additional information to define better maintenance
plans, this allowing companies to optimize operating costs, and increase the
reliability of the provided services.





8
Bridging the gap between complexity and

interpretability of a data analytics-based

process for benchmarking energy

performance of buildings

8.1 Introduction

The building sector is recognised as one of the largest primary energy con-
sumers worldwide. According to the International Energy Agency (IEA)
among the EU member countries, buildings are responsible for about the 21%
of total final energy consumption [123]. Specifically, more than the 50% of
this energy amount is used by heating and cooling systems installed in resi-
dential buildings [123]. As a consequence, the building sector is currently one
of the most strategic targets for decreasing overall energy demand, improving
energy efficiency to achieve demanding decarbonisation objectives.

In this context, energy benchmarking systems play a key role in the evalu-
ation of the energy performance of buildings supporting different stakeholders
(public and private) in the process of energy management and planning for
achieving energy saving objectives. Cities around the world began benchmark-
ing their building stock after realizing the potential of energy benchmarking
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systems and recorded an energy saving up to 8% in a reference period of 3-4
years from their implementation [12, 60].

From the technical point of view, the main goal of a benchmarking sys-
tem is to evaluate, in a systematic way, the divergence between the energy
performance of a building/system and a reference baseline. Four types of
baselines can be considered in existing benchmarking methods: previous per-
formance of similar buildings (i.e., external benchmarking), current/intended
performance of similar buildings (i.e., external benchmarking), previous per-
formance of the same building (i.e., internal benchmarking), and intended
performance of the same building (i.e., internal benchmarking) [107]. The
first two types of baselines are used by regulators, public authorities, or pri-
vate building portfolio managers to encourage owners to improve energy
efficiencies of their buildings [42]. On the other hand, internal benchmark-
ing techniques are exploited at single building level for energy performance
tracking and continuous commissioning purpose.

According to the modeling approach considered, benchmarking systems
can be further classified in calculation-based and data-driven ones [189].
The calculation-based benchmarking system compares the observed energy
consumption with a simulated benchmark, representing an archetype or a
theoretical energy performance [101]. Simulation tools, belonging to the
so-called white box methods, are by now the main instrument to assess the
energy performance of buildings and to evaluate the possible scenarios for
energy retrofit [53, 76, 121, 100, 177]; they also provide the most reliable
results at the design stage of a building [4]. This approach was however of
limited use for large building stocks because it is time-consuming, labour
intensive [58], and it requires detailed building information which is not
always easily available at large scale [206]. On the other hand, the data-
driven benchmarking process compares the observed energy consumption
with a benchmark value obtained from actual energy consumption data. The
most common data-driven benchmarking processes, proposed in the literature,
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are performed through statistical models [102], data analytics techniques
[141, 30, 61] and simple normalization of the energy consumption with
respect to floor area and/or volume as a way to compute the mean or median
value [189].

With the rapid growth of stored and open data in building sector and
the necessity to extract knowledge from these large data sets to improve the
building performance, data-driven benchmarking systems are more and more
emerging [134, 200, 152]. The choice of the most suitable strategy (simple
normalization, statistical models or data analytics techniques) to develop a
benchmarking process mainly depends on the quantity and the quality of the
available information and on properties of the considered dataset.

In the last decades, instruments, such as, Energy Performance Certificates
(EPCs) have emerged as a key tool for driving the definition of energy ef-
ficiency policies for the building sector. As a reference, under the Energy
Performance Buildings Directive (EPBD) (2002/91/EC), EPCs have become
compulsory in EU Member States. The EPBD allows member states to define
the actual implementation of its directives. In Italy the EPBD is currently
implemented by various national legislative decrees and technical standards,
but there are different rating schemes developed in local areas (regions and
autonomous provinces). EPCs provide theoretical measure of building perfor-
mance if they are operated in standard conditions. However, the performance
gap, i.e. the difference between estimated and actual energy performance
could be significant. For instance, [138] stated that for the Swedish EPCs
data-set the performance gap is about the 20% for energy consumption assess-
ments. An EPC is therefore not fully representative of the actual performance
during operation but makes it possible to conduct comparisons between a
building and its peers.

As emerged from the scientific literature, EPCs data sets represent today
great sources of information and a growing number of researchers are using
them for addressing different tasks in the context of building energy manage-
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ment [138] including advanced benchmarking analysis [14]. The interest in
energy performance assessment is increased especially to estimate how the
combination of different features affects the energy needs in buildings [11].
In fact, from the design point of view, it is crucial to determine the effect
of the building features on its future energy performance in the early design
phase. Similarly, for existing buildings, it could be useful to evaluate the
feasibility and impact of a refurbishment plan. Regardless the scope to be
pursued, estimating building energy performance in a quick and reliable way,
for different combinations of building features, is essential for different actors
such as building owners, designers, facility managers and public authorities
[14, 29]. Despite this, building professionals are typically suspicious towards
the prediction results of data-driven processes because they cannot always
fully interpret the model inference mechanism. In fact, what not-expert users
need in practice is not only the result obtained through a single prediction,
but also explanations for improving the awareness of the decision-making
process. In this perspective it is becoming more and more important to de-
velop predictive analytics tools capable of providing feedbacks about the
reasons behind a certain prediction with robust indication of the supporting
and conflicting evidences towards it [55, 125, 12].

Explainable artificial intelligence, also called XAI, is an emerging subject
in the field of big data analytics. It aims to provide methods and tools to
enhance the model usability breaking the trade-off between model complexity
and model interpretability [55]. Considering the practical difficulties faced by
building professionals in utilized advanced supervised learning techniques,
XAI is very promising to fully exploit the potential of advanced machine
learning techniques in the building application field [158, 125, 12].

According to the aforementioned motivations, the objective of this work is
twofold. Firstly, the work proposes a data-driven process capable to estimate,
for a large set of EPCs of flats, the membership to specific energy perfor-
mance classes for benchmarking purpose. The classification task is performed
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through different ML classifiers characterised by high accuracy but whose
inference mechanism, despite in some cases is human-readable, can not be
easily interpreted by the end-user. Secondly, a XAI-based explanation process
is introduced to provide insight about the behaviour of classification models
used to benchmark the energy performance of buildings and to understand the
motivations behind correct and wrong classifications (this information can be
very helpful for e.g., certification entities or technical figures). To this aim,
the explanation process combines the XAI tool called LIME together with
k-means clustering method for providing local but representative explanations
of model predictions. The proposed methodology was then tested on an EPC
data-set related to about 100,000 flats located in Piedmont (north-western
region in Italy).

In the light of the objective of this activity, the following Section ??
reports and discuss the literature concerning the implementation of XAI-
based processes in different fields of research including the one of energy and
buildings. The main contributions to the literature, an the novelty introduced
with this study, are presented and discussed in 8.2.

8.2 Novelty and contribution of the work

The work presented in this thesis aims to introduce a novel approach in
explanation analysis leveraging local XAI tools, such as LIME, for providing
insights about the behaviour of classification models used for benchmarking
the energy performance of buildings.

The approach combines different advanced data analytics techniques with
the aim of maintaining the output of an external building energy benchmark-
ing process human-readable and interpretable while providing accurate and
reliable results. This aspect is extremely valuable for such kind of benchmark-
ing systems because it is usually employed by regulators, public authorities, or
managers involved in the decision-making process of large building portfolio



112 | Bridging the gap between complexity and interpretability of a data
analytics-based process for benchmarking energy performance of buildings

energy management. For this reason the proposed approach was tested on an
EPCs dataset related to the energy performance evaluated for about 100,000
flats located in Piedmont (north-western region in Italy).

Despite the spread of XAI techniques in several domains, to the best of
authors’ knowledge, the proposed approach represents the first attempt to
investigate the problem of explainability in the Energy Analytics domain for
the automatic estimation of building energy performances using an EPCs
dataset. In particular, different ML models were firstly developed in order to
solve the classification task under analysis (estimation for a new instance of
its membership to an energy performance class). Successively, a XAI-based
process was used to probe the rationale behind model decisions in order to
understand the motivations behind right and wrong classifications.

In this context the main innovative aspects introduced by the present
approach can be summarised as follows:

• The proposed framework makes it possible to employ the best classifier
for energy benchmarking (in terms of achieved accuracy) regardless
to its level of interpretability. From the energy point of view, the inter-
pretability of the data-driven model used for benchmarking building
energy performance is often considered a constraint in the selection of
the prediction model to be used and can have repercussion on the final
achievable accuracy [31, 30, 14]. Following the proposed approach the
end-user has the possibility to easily probe the rationale behind model
decisions following an agnostic approach and then to select the model
that can better extract the main patterns from data, achieving the best
accuracy.

• In this study a detailed analysis was performed for better understanding
the behaviour of the model in handling classifications in border areas
across adjacent energy performance classes. The analysed dataset
is particularly dense and includes about 100,000 EPCs of flats. As a
consequence, each energy performance class can not be considered well
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separated from the adjacent ones. In this context the main targets of the
explanation analysis are the instances misclassified due to border effects
in order to understand the model behavior and assess the trustworthiness
of its predictions in such particular cases.

• The explanation analysis has been conceived both to support the end-
user during the deployment phase of the benchmark model (i.e., expla-
nation at single prediction level) and to guide the analyst in extracting
the macro-behaviors of the classification models under particular condi-
tions (i.e., misclassification of border objects). The latter objective has
been pursued by coupling the local explanation algorithm, i.e., LIME
with a k-means clustering analysis, in order to firstly recognise the
most significant groups of similar instances in the dataset and then
explain predictions with reference to prototype objects (i.e., cluster
centroids) that have been intended as representative of groups of in-
stances. In this way, the analyst is provided with a set of reference
explanations to assess some key feature combinations that could lead
to more certain/uncertain predictions.

The rest of the proposed approach is organized as follows. Section 8.3 pro-
vides an overview and a brief theoretical description of the data analytics
methods used for conducting the analysis. Section 8.4 presents and describes
the case study considered for the analysis. Section 8.5 introduces the method-
ological framework behind the analysis performed. Eventually, Sections
9.3 and 8.7 present and discuss the results obtained while in Section ?? the
concluding remarks and future research perspectives are reported.

8.3 Materials and Methods

In this section, the data analytics methods employed in this work are briefly
described. The method descriptions are not intended to be exhaustive, but they
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are aimed to underline the main model features according to the objectives of
this study. In particular, the classification algorithms used for developing the
energy benchmarking model based on EPCs are described. Successively, a
brief introduction to k-means clustering technique is provided. Eventually, the
main theoretical principles of the LIME explanation algorithm are reported.

8.3.1 Classification Algorithms

As well known, classification is related to a predictive modeling problem
where a class label has to be predicted starting from labelled input data. There
exists a plethora of classification algorithms that can be conveniently used
depending on the dataset features. Below, the five algorithms exploited in
the present study (i.e., Decision tree, Random Forest, Extremely Random-
ized Tree, Bagging classifier, MultiLayer Perceptron) were introduced and
described.

A Decision Tree (DT) [147] is a supervised learning algorithm that fits
well with many kinds of classification problems. Given a set of labelled data,
a decision tree produces a sequence of IF-THEN rules that can be used to
classify the data. It works like a flow chart, separating data points into two
similar categories at a time from the “tree trunk” to “branches”, to “leaves”,
where the categories become more finitely similar. DT requires little data
preparation, and can handle both numerical and categorical data. However,
it can create complex trees that do not generalize well, and can be unstable
because small variations in the data might result in a completely different tree
being generated.

The Random Forest (RF) [27] algorithm is an expansion of the DT concept.
The term “forest” is referred to an ensemble of DTs, usually trained with
the “bagging” method. The general idea of the bagging method is that a
combination of learning models increases the overall result. Specifically, it
develops a number of DTs on various sub-samples of the dataset and uses
average to improve the predictive accuracy of the model and control over-
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fitting. The sub-sample size is always the same as the original input sample
size but the samples are drawn with replacement.

Similar to RF classifier, in this study were also used the Extra Trees (ET)
[63] classifiers — also known as Extremely Randomized Trees. The two
ensembles have a lot in common. Both of them are composed by a large
number of DTs, where the final decision is obtained taking into account the
prediction of every tree. The main differences are the following: i) RF uses
replicas, it subsamples the input data with replacement, whereas ET uses the
whole original sample; ii) RF chooses local optimum splits while ET chooses
it randomly.

Bagging Classifier (BC) [26] is an ensemble meta-estimator that fits
base classifiers each on random subsets of the original dataset and then
aggregate their individual predictions to form a final prediction. Such a meta-
estimator can typically be used as a way to reduce the misclassification error
of a black-box estimator, by introducing randomization into its development
procedure and then making an ensemble out of it. The total expected error
of a classifier is made up of the sum of two components, the bias and the
variance. More in details, the bias for a learning rate problem is the error
rate for a particular learning algorithm and measures how well the learning
method matches the problem. Since the used training set is finite and not
fully representative of the population of instances, a second source of error is
inevitably introduced. The variance is the expected value of this component
of error, over all possible training sets and test sets. Combining multiple
classifiers generally decreases the total expected error by reducing the variance
component: the more classifiers that are included, the greater the reduction in
variance.

Eventually, a MultiLayer Perceptron (MLP) was implemented. In partic-
ular, an MLP is a class of feedforward artificial neural network (ANN) and
consists of at least three layers of nodes: i)input layer; ii) hidden layer and
iii) output layer. Except for the input nodes, each node is a neuron that uses a
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nonlinear activation function. MLP utilizes a supervised learning technique
called backpropagation for training.

As demonstrated by the recent literature [8, 124], the presented classifica-
tion approaches are some of the most spread ones in the energy analytics field,
especially for building energy performance assessment and load forecasting.

8.3.2 Clustering

Clustering consists in grouping together objects that are similar to each other
and dissimilar to the objects belonging to other clusters [181]. In this study,
the similarity between objects was based on a measure of the Euclidian
distance (Eq. 8.1), as follows:

d(x,y) = 2

√
n

∑
i=1

(xi − yi)2 (8.1)

where, x and y are two vectors of length n representing the samples.

K-means is a partitive clustering algorithm [181] that consists in grouping
data objects into non-overlapping subsets (i.e., clusters) such that each data
object can be included only in one sub-set. K-means is used for grouping data
objects in a pre-determined number of K clusters which are represented by a
prototype object called centroid (i.e., mean of the points in the n-dimensional
space). The first step of K-means consists in the setting of the number K of
desired clusters to which corresponds a prototype object (centroid) randomly
located in the n-dimensional space [181]. Each object in the dataset is then
assigned to the closest centroid, and each group of objects assigned to the
same centroid represents a cluster. The centroid of each cluster is then
recalculated as the average of all the objects assigned to the cluster. This
process is repeated until the data objects do not change cluster anymore, and
the centroids do not change position.
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8.3.3 Local agnostic explaination analysis with LIME

One of main features of LIME is its modeling-agnostic nature, that makes the
XAI tool applicable to any ML model. More in detail, LIME provides the
local interpretability of a model: each instance is fed into the model providing
both a prediction and a local sensitivity analysis with the aim of highlighting
how sensitive the outcome is to each input feature.

In other words, the algorithm infers the behavior of the model by perturb-
ing the input data and analyzing how the predictions change accordingly. In
practise, the output of LIME is a list of explanations reflecting the contribution
of each feature to the outcome of a given instance. As a consequence, LIME
enables the local interpretability of a prediction, allowing to determine how
the change of a feature will impact the model output.

The above discussed process, related to the explanation produced by
LIME can be formalized as follows. Considering a local point x the relative
explanation is obtained with the following generic formula (Eq. 8.2):

ξ (x) = argmin
g∈G

L( f ,g,πx)+Ω(g) (8.2)

where G is a class of potential interpretable models, Ω(g) expresses a measure
of the complexity of the interpretability of g ∈ G. The model being explained
be denoted f, so f(x) is the probability that x belongs to a certain class. Fur-
thermore, πx(z) is defined as proximity measure between an instance z to x,
so as to define locality around x.

Eventually, L( f ,g,πx) is a measure of how unfaithful g is in approximating
f in the locality defined by πx. In order to ensure both interpretability and
local fidelity, we must minimize L( f ,g,πx) while having Ω(g) be low enough
to be interpretable by the human user.
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8.4 Case study

The analysed case study pertains to EPCs issued for about 100,000 flats
located in Piedmont region (Italy). The EPCs include several features that im-
pact on the building energy performance, as well as the parameters employed
to determine its energy needs. Based on the analyses on EPCs previously car-
ried out in [31] and [48], a proper selection of important and easy-to-collect
variables has been carried out. The following four main types of input vari-
ables to the benchmarking model, were identified: (i) Geometry, (ii) Envelope,
(iii) Time and (iv) System.

The variables in the category Geometry include different geometric fea-
tures of the flat, which impact on its energy need and performance. Several
variables belong to this category such as the average ceiling height, the heat
transfer surface and the gross heated volume of the flat.

The variables in the category Envelope are representative of the main
physical properties of the opaque and transparent envelope of the flat (e.g., the
thermal transmittance values of the opaque and transparent building envelope).

Moreover, in the category Time are included time variables such as the
construction year of the building (in which is located the flat considered).

Lastly, the variables related to the heating system belong to the category
labelled as System (e.g., the average overall efficiency of the system for space
heating). The variable average overall efficiency of the heating system is
calculated according to the standard efficiency values for each subsystem (i.e.,
generation, distribution, control, emission) reported into the part 2 of [186].

Among all the variables that can be extracted from an EPC, the Primary
Energy Demand for space heating PEDh has been selected as the target
variable of the benchmarking analysis. PEDh (expressed in kWh/m2y) is an
energy-related variable defined for benchmarking purposes (it contributes
to assign an energy class label to the flat) and consists in an estimation of
the energy demand of a flat under standard use conditions. The PEDh value
pertains to the energy demand referred to a standard period of a heating season
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and it is normalized by the flat floor area. PEDh is part of the estimated
overall Primary Energy Demand of flats (PED) which also includes the
Primary Energy Demand for domestic hot water (PEDw). More specifically,
the heating energy demand is assessed performing an energy balance of the
flat. The modeling of the building geometry considers real shapes and self
or over shading of other buildings/external obstructions. The calculation
procedure considers a quasi steady-state approach based on the monthly
balance of heat losses (due to transmission and ventilation) and heat gains
(considering both solar and internal gains) that are evaluated in monthly
average conditions. In particular the standard monthly outdoor climatic
conditions (i.e., temperature and solar radiation) referred to a location on the
national territory are reported in the national technical regulation UNI 10349-
1. Specifically, the monthly outdoor climatic conditions, reported in the part 1
of [185], are evaluated according to the standard [79] which prescribes the
use of at least 10 years of measured meteorological data for the calculation.
The estimation of the transmission heat losses is performed considering actual
stratigraphies and thermal properties of opaque and transparent envelopes
and as well as the thermal bridging effect. In standard rating conditions,
parametric values related to floor area or heated net volume, are used for
defining the ventilation rates and internal heat gains. The dynamic effects and
their influence on the net heating energy demand are modeled by introducing
the dynamic parameters such as utilization factors and adjustments of the set-
point temperature related to intermittent heating/cooling or set-back. These
dynamic parameters are related to the building thermal inertia, the ratio
between heat gains and heat losses and the occupancy/system operation
schedules. From the system side, the annual PED for space heating depends
on different efficiencies considering the thermal losses in the various heating
sub-systems (emission, control, distribution, generation). For the heating
season, the average system efficiency is calculated as the ratio between the
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net building energy need and the PED for heating. Furthermore, the PED
also takes into account the electrical energy demand of auxiliary systems.

In order to remove the climatic effect and make flats comparable, PEDh

is recalculated according to a reference standard climatic condition. More
specifically, all the EPCs issued in Piedmont region provide an estimation
of the PEDh for the standard climatic conditions of the actual city (in which
the building is located), and for the city of Turin (i.e., Province capital). As
a consequence, the PEDh values considered in this study assume all flats
as located in the same city considering then the same standard monthly
outdoor climatic conditions (i.e., temperature and solar radiation). In this way,
comparisons among flats are consistent. Nevertheless, if the performance
rating of a flat is required to be performed for a city different from Turin, a data
scaling process based on the use of standard Degree Days (DD) represents
a robust approach. In particular, the scaling of the estimated PEDh can be
obtained by multiplying it for the ratio between the standard DD value referred
to the actual location of the flat and the ones of Turin.

8.5 Methodology

In this section the conceived methodology is presented and described. The
proposed methodology aims to develop an energy benchmarking tool based
on a classification model. Successively a XAI-based process is employed to
interpret the obtained results in order to better understand the model behaviour
and the motivations behind correct and wrong classifications. As described in
the previous sections, develop a high performance and interpretable model is
not a straightforward task and it needs to take into account several aspects.
The methodology unfolds over four stages as shown in Fig. 8.1.

1. Data pre-processing stage: all the preliminary tasks necessary to pro-
vide the proper dataset to the algorithms were implemented.
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Figure 8.1: Methodological framework of the proposed study.

2. Classification stage: several classification algorithms were trained and
tested, with the aim of evaluating how a classification model assigns
the flats to different predefined energy performance classes.

3. Clustering stage: a clustering analysis was performed on the correct
and wrong classified instances in order to identify the most relevant
predictions to be explained.

4. Explanation stage: all the representative instances identified by means
of the clustering analysis were explained and interpreted using the XAI
algorithm LIME.

In the following, each stage of the methodology is described and discussed
in more detail.

8.5.1 Data preprocessing

The EPC dataset includes several variables of different types (numerical,
categorical, textual, etc.) related to different features affecting building energy
performance as well as the variables used to quantify its energy demand. Some
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of the available variables were not necessarily relevant for next data analysis,
which means that their inclusion in the set of features could have increased
the complexity of the benchmarking model. For this reason the dataset was
inspected from energy domain experts, in order to remove the less relevant
features for the analysis. The selection of the predictors has been driven from
previous experiences collected on the same case study [31, 14, 48] and from
the need of considering only easy-to-collect variables typically included in a
EPC. All the selected features have an influence on primary energy demand
from the physics point of view. It is worth to note that most of the discarded
variables were poorly related with the target variable or redundant with other
ones. In particular, the experiments were performed exclusively on attributes
that can be categorized as geometric, thermophysical, and system-based
features. The geometric and thermophysical variables are real-life variables
that can be collected through surveys and inspections from energy experts
before issuing an EPC. While the system-based variable (i.e., Average global
efficiency for space heating) can be easily evaluated, with a certain degree
of uncertainty, on the basis of pre-calculated values of efficiency referred to
each subsystem considering the real generation system, distribution network,
terminal unit, and control system installed in the building. According to
this assumption, other variables that could have had a high influence on the
target variable, but are difficult to be collected or involve complex calculation
procedures to be determined, were excluded. The final set of variables,
considering both inputs and output, is reported in Tab.8.1. For the sake
of clarity, the variable aspect ratio (R) refers to the ratio of heat transfer
surface area (S) to the gross heated volume (V ) while the average U-values of
the thermal transmittance (Uo and Uw) define the ability of the opaque and
transparent envelope of the flat to transmit heat under steady-state conditions.
The U-value is a measure of the quantity of heat that flows through unit area
in unit time per unit difference in temperature of the environments (i.e., indoor
and outdoor environment) between which the structure is located.
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Category Name Symbol Unit
Input variables

Geometry

Floor Area A m2

Heat transfer surface S m2

Average ceiling height H m
Gross Heated Volume V m3

Aspect ratio R m−1

Envelope
Average U-value of vertical opaque envelope Uo W/m2K
Average U-value of the windows Uw W/m2K

System Average global efficiency for space heating ηh −
Target variable

Energy Normalized primary energy demand for space heating PEDh kWh/m2y

Table 8.1: List of the input and output variables considered in the analysis.

After the feature selection, a data cleaning analysis was performed to
remove statistical outliers and inconsistencies from the EPC dataset. Eventu-
ally a data transformation analysis was performed on the target variables in
order to obtain a set of energy performance classes from numerical values of
PEDh. Specifically, four reference classes have been considered representing
respectively low energy demand flats (class A), medium energy demand flats
(Class B), high energy demand flats (Class C) and very high energy demand
flats (Class D). This data transformation is necessary for the construction of
the classification models, which are based on a categorical response variable.
The selection of threshold values between consumption classes must be accu-
rate to obtain reliable information from the dataset. This step was performed
considering PEDh distribution and selecting as threshold values, between
the classes, the 25th, 50th and 75th percentile respectively. In this way, each
energy performance class roughly includes the same number of flats avoiding
then class imbalance problems that could compromise the performance of
the classifiers. As a result Class A includes flats with PEDh < 91 kWh/m2y,
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Class B includes flats with PEDh values between 91 and 141 kWh/m2y, while
flats in Class C have 141 kWh/m2y ≤ PEDh < 203 kWh/m2y, and in Class
D PEDh ≥ 203 kWh/m2y.

8.5.2 Classification analysis

The classification analysis was aimed to develop a benchmarking model capa-
ble of predicting the membership of a new flat to one of the pre-determined
energy performance classes as defined above (A, B, C, D). To this purpose,
the EPC dataset was grouped by contiguous class forming three binary data
sets respectively A−B, B−C and C−D. Each dataset has been split 80%
in the training set and the remaining 20% in the testing set. Therefore, it
was carried out an exploration of ML models from the simplest to the most
complex one. The following classification models were trained and tested for
each dataset considered in this study: Multilayer perceptron (MLP), Decision
Tree (DT), Random Forest (RF), Extra Trees (ET) and Bagging Classifier
based on Decision Tree (BC).

Eventually, for each of the three data sets, the algorithm which achieved
the best accuracy in testing was selected as the most valuable candidate for
being used as an energy performance benchmarking model. In addition, in
order to uniquely select which of the three classifiers should be used for
classifying an unseen flat during the deployment phase of the benchmarking
tool, a model selection technique has been implemented (Fig. 8.2).

In particular, the model selection technique exploits class contiguity by
analyzing the probabilities associated with class pairs for each model. As a
reference, for a new instance the first model (i.e., binary classifier A−B) is
used. If the probability class of A is higher than B the first model is assumed
to be the most suitable for performing the prediction of the new instance,
otherwise the new instance is also put through the second model. In this
case, if the first and second model (i.e., binary classifier B−C) have both
the probability of class B greater than class A and class C respectively, then
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Figure 8.2: Graphical representation of the model selection process.

the model with the highest probability of class B is chosen for performing
the prediction on the new instance. Conversely, if the probability of class
C is higher than class B for the second model, then the third model is also
considered. At this stage, the above described process is the same for selecting
the best model among the second and third classifier (i.e., binary classifier
C−D).

Finally, a global SHAP analysis was performed for each of the obtained
models with the aim to determine the global importance of each input variable
in terms of impact that it has on the model predictions. To this purpose,
according to [114] the average of absolute shapley values per feature across
the data were considered.



126 | Bridging the gap between complexity and interpretability of a data
analytics-based process for benchmarking energy performance of buildings

8.5.3 Clustering analysis

The next step, after the configuration of the benchmarking models, was the
clustering analysis. In particular, once the trained models were obtained, the
predictions on the test sets were computed. Successively, a cluster analysis
was performed in order to generate high level explanations. The result of
this step, consisted in the identification of clusters that were representative
of correctly predicted instances and misclassified ones, considering each
pair of adjacent energy performance classes. Fig. 8.3 shows a graphical
representation of the types of instances that were clustered through a K-means
algorithm. As a reference for the pair of adjacent energy performance classes
A and B the four clustering analysis were performed on the following types
of instances in the testing set:

• objects labelled as A and correctly predicted as A;

• objects labelled as B and correctly predicted as B;

• objects labelled as A and wrongly predicted as B;

• objects labelled as B and wrongly predicted as A;

For each type of instances, all the variables labelled as input in Tab 8.1
were used by a k-means algorithm for identifying ten clusters of similar ob-
jects. Successively, only the centroids of the biggest clusters were considered
in the following explanation analysis. In particular, the clusters which cover at
least the 90% of the entire group of instances of the same type were selected.
In this way, with a local explanation of the predictions pertaining the most
relevant centroids, it is possible to extract useful knowledge about the model
behaviour considering a limited number of instances in a particularly dense
dataset as the considered one.
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Figure 8.3: Graphical representation of the types of clustered instances.

8.5.4 Explaination analysis

Eventually, each representative instance (i.e., centroid) extracted from the
previously selected clusters was explained with an XAI model-agnostic tool,
that is LIME, assigning to each input variable (i.e., features of the centroid) a
value of importance for a specific prediction. In particular, the main target
was to explain both correct and wrong representative classifications, in order
to extract, explain and interpret significant inference mechanisms learnt by
the benchmarking model useful for the analyst and the end-user. In fig. 8.4
the typical output of the LIME tool, that explains the prediction of a binary
classifier, is depicted. More in detail, the LIME output presents on the y-axis
the input variable of the model ordered by decreasing importance, while on
the x-axis the impact of each feature on the prediction for a given class. The
use of color indicates the class towards which a feature has the highest impact.



128 | Bridging the gap between complexity and interpretability of a data
analytics-based process for benchmarking energy performance of buildings

Figure 8.4: Graphical representation of the LIME output

8.6 Results

This section discusses the obtained results. The main goal is to present which
are the outcomes of the proposed approach and most of all how they can
be effectively used for interpreting the behaviour of the developed energy
benchmarking model.

8.6.1 Classification Results

As previously explained in section 8.5, a specific pre-processing stage was
considered before performing the classification task. In particular, after the
data cleaning phase, the PEDh values referred to the analysed flats, were
discretized and labelled with the energy performance classes A, B, C or
D. The discretization was performed considering the PEDh distribution
and selecting as threshold values between the classes the 25th, 50th, 75th

percentiles respectively as shown in Fig. 8.5.

Successively, the dataset was splitted 80% in the training set and 20%
in the testing set and the five selected classifiers (i.e., Multilayer perceptron
(MLP), Decision Tree (DT), Random Forest (RF), Extra Trees (ET) and Bag-
ging Classifier based on Decision Tree (BC)) were developed and compared.
Tab.8.2 shows the results obtained for each classifier in terms of accuracy,
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Figure 8.5: Identification of the energy performance classes on the PEDh
distribution

precision and recall achieved in the testing phase. In particular according to
the results obtained the RF was selected as the most suitable energy bench-
marking model for energy performance classes A−B while the ET for the
classes B−C and C−D. Furthermore, in Tab. 8.3 are reported the confusion
matrices related to the best models selected for each class pair.

Model Acc. A−B Pre. A−B Rec. A−B Acc. B−C Pre. B−C Rec. B−C Acc. C−D Pre. C−D Rec. C−D
DT 74.5% 74.7% 75.0% 67.3% 67.8% 66.7% 69.3% 67.9% 74.7%
RF 77.8% 78.6% 77.2% 69.5% 70.4% 67.8% 70.7% 70.2% 72.9%
ET 76.9% 78.5% 74.7% 69.6% 70.5% 67.7% 71.1% 71.0% 73.0%
BC 77.2% 77.9% 76.6% 68.1% 69.1% 67.2% 68.0% 69.1% 67.2%
MLP 75.7% 71.8% 80.5% 67.9% 67.8% 68.9% 70.4% 66.6% 74.2%

Table 8.2: Testing accuracy (Acc.), precision (Pre.) and recall (Rec.)
achieved by each developed classifier.

Successively, a model selection technique has been employed on one hand
to combine the best models, and on the other hand to identify the right model
to use with a new sample according to the process described in Section 8.5.
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[Random Forest]
act. A act. B

pred. A 3483 1035
pred. B 948 3461

[Extra Trees]
act. B act. C

pred. B 3081 1414
pred. C 1277 3155

[Extra Trees]
act. C act. D

pred. C 3299 1237
pred. D 1338 3068

Table 8.3: Confusion Matrices related to the best models, (a) Random Forest
for the class pair A−B, (b) Extra Trees for the class pair B−C and (c) Extra
Trees for the class pair C−D.

As a reference, the whole approach (i.e., based on the combination of
three contiguous binary classifiers) was compared with a traditional multiclass
classification approach. The proposed approach outperforms the multiclass
approach by 5% in terms of overall accuracy.

Eventually, in Fig. 8.6 the results obtained through a global SHAP analysis
are reported for each of the obtained best models with the aim to highlight
which are the most important features. In particular, for all of the three
classification models the Uo is the most impacting variable followed by Uw

or R. The efficiency of the heating system and the heat transfer surface are
always ranked as the 4th and 5th most impacting variable respectively, while
the other extensive geometric variables (i.e., V , A and H) have the lowest
importance. This is consistent with the fact that the dataset includes only
EPCs referred to flats that can be considered quite similar for what concerns
heated gross volume, floor area and average ceiling height.

8.6.2 Clustering Results

After the identification of the best classifiers to be used as energy benchmark-
ing models for the considered set of flats, the clustering stage was performed.
In particular, among each pairs of contiguous energy performance classes,
the K-means algorithm was used to identify the main groups of misclassified
or correctly classified flats according to the eight input variables considered
in the classification stage. As previously explained, the clustering algorithm
was initialised setting the number of desired clusters K = 10 for each type of
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(a) Random Forest (A−B) (b) Extra Trees (B−C)

(c) Extra Trees (C−D)

Figure 8.6: Global SHAP values evaluated for assessing the impact of each
predictor on model output considering (a) the Random Forest for the class
pair A−B, (b) the Extra Trees for the class pair B−C and (c) the Extra Trees
for the class pair C−D.

instances, then only the most populated clusters, that cover at least the 90%
of total, were considered.

Tab. 8.4 reports the obtained results related to the contiguous energy
performance classes A and B. In particular, the tags A −→ B, B −→ A refer to
the flats misclassified in the class B and A respectively, while tags A −→ A and
B −→ B were assigned to the flats correctly classified in A and B. From the
table it can be seen that for each type of instances considered, the biggest
three clusters were able to include more than the 90% of the instances. It
means that, according to the concept of similarity behind cluster analysis,
by explaining the predictions performed for the centroids of the 12 clusters
considered, the analyst can have a look at local behaviours of the classifier
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1.3

Instance type Cluster ID n. of instances % of total
1 607 53.20%

A −→ B 2 414 36.28%
3 89 7.80%
1 422 43.59%

B −→ A 2 296 30.60%
3 154 15.86%
1 2494 73.85%

A −→ A 2 445 13.18%
3 431 12.76%
1 2544 74.13%

B −→ B 2 539 15.71%
3 232 6.76%

Table 8.4: Cardinality of clusters identified among correct and wrong classi-
fied instances pertaining to the contiguous energy performance classes A and
B

that can be used for extracting significant inference mechanisms learnt by
the energy benchmarking model. In order to better characterise each cluster
identified for the classes A and B, the components of each centroid were
reported in Tab.8.5 with the evidence of the relative calculated average PEDh

value.

Instance type Cluster ID A V H S R Uo Uw ηh PEDh
1 80 305 3.8 213 0.7 0.5 2.5 0.80 79

A −→ B 2 71 277 4.0 104 0.4 0.9 3.1 0.70 78
3 185 688 3.8 460 0.7 0.5 2.3 0.80 73
1 191 759 4.0 541 0.75 0.3 1.9 0.80 104

B −→ A 2 68 259 3.8 93 0.4 0.7 2.6 0.80 108
3 70 264 3.9 189 0.7 0.4 2.0 0.80 106
1 72 277 3.9 156 0.6 0.4 1.9 0.80 59

A −→ A 2 194 777 4.0 543 0.7 0.3 1.8 0.90 65
3 67.5 265 3.9 79.4 0.3 0.8 2.8 0.80 62
1 73 284 3.8 169 0.7 0.8 2.9 0.70 121

B −→ B 2 62 232 4.0 164 0.3 0.85 4.9 0.70 116
3 189 711 3.8 478 0.7 0.6 2.6 0.80 119

Table 8.5: Components of cluster centroids related to energy performance
classes A and B

In addition Fig. 8.7 shows a graphical representation of the normalised
centroid components referred to the most populated cluster of each instance
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type. The figure is particularly useful to infer some main differences among
each group of instances. For example the centroids of the cluster 1 of A
−→ A and B −→ B describe similarities in terms of geometric features (A, V ,
H, R) and dissimilarity for thermophysical properties, such as Uo and Uw.
For what concerns the centroids of the cluster 1 of A −→ B and B −→ A the
combination of the input variables leads to PEDh values that are close to the
border (i.e., 91 kWh/m2y) between the two contiguous energy performance
classes A and B. As explained in the section 8.5 the same clustering process
was also performed on the correct and wrong predictions of the classes B−C
and C−D. The main results were included in Appendix A and Appendix B.

Figure 8.7: Graphical representation of the normalized centroid components
related to the biggest cluster evaluated for each instance type.

8.6.3 Explanation Results

The results of the clustering analysis allowed to identify centroids that can
be considered as archetypes among the analysed flats. The components of
each centroid were used as input values of the classification model in order to
predict for those objects the membership to a specific energy perfomance class.
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(a) Centroid of cluster 1 (b) Centroid of cluster 2 (c) Centroid of cluster 3

Figure 8.8: LIME outputs referred to the predictions of (a) centroid of Cluster
1, (b) centroid of cluster 2 and (c) centroid of cluster 3, evaluated among the
instances A −→ A

The next step employed the LIME tool for explaining why the model produced
a specific prediction considering both correctly and wrongly classified flats.

In this section, for the sake of brevity, we only reported the explanation
outputs related to the clusters of the A−B classes. The results obtained for
classes B−C and C−D were included in Appendix A and B respectively.
In particular, as shown in Fig. 8.8, 8.9, 8.10 and 8.11, the bars of colour red
indicate the variables (and their specific numeric ranges), that support the
model in predicting the class A while the green bars indicate the features that
had the opposite effect dragging the prediction toward class B. The combined
effect of all the input variables determined the final probability class value that
was reported in the top left corner of each figure. The first three explanations,
pertaining the centroids representative of the flats labelled as A and correctly
classified, are shown in Fig. 8.8. The explanations of the centroid 1 and 2 were
characterized by a very high class probability (over 75%). It means that when
the energy benchmaking model classified the archetype flats corresponding to
the two centroids, the model expressed a very high confidence in estimating
their membership to the energy performance class A.

In particular the greatest impact toward class A is associated to the vari-
ables Uo and Uw that are lower than 0.4 and 1.9 W/m2K respectively suggest-
ing the presence of well insulated envelope. Despite this, the 3rd centroid was
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(a) Centroid of cluster 1 (b) Centroid of cluster 2 (c) Centroid of cluster 3

Figure 8.9: LIME outputs referred to the predictions of (a) centroid of Cluster
1, (b) centroid of cluster 2 and (c) centroid of cluster 3, evaluated among the
instances B −→ B

(a) Centroid of cluster 1 (b) Centroid of cluster 2 (c) Centroid of cluster 3

Figure 8.10: LIME outputs referred to the predictions of (a) centroid of
Cluster 1, (b) centroid of cluster 2 and (c) centroid of cluster 3, evaluated
among the instances A −→ B

(a) Centroid of cluster 1 (b) Centroid of cluster 2 (c) Centroid of cluster 3

Figure 8.11: LIME outputs referred to the predictions of (a) centroid of
Cluster 1, (b) centroid of cluster 2 and (c) centroid of cluster 3, evaluated
among the instances B −→ A
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correctly classified but with a low confidence (i.e., 57%) due to higher values
of Uo and Uw (that suggested a classification in class B) but lower heat transfer
surface S and aspect ratio R respect to the other two centroids. It means that
flats with these characteristics, can lead to potential weak predictions of the
energy benchmarking model even though correctly classified. Fig. 8.9 shows
the explanation results pertaining the predictions of the three centroids evalu-
ated for the instances correctly predicted as B. The 1st centroid was classified
with a very high confidence of about 85%. For this case, all the variables
that had an impact on the explanation, supported the classification in the right
class. In particular, the most important features (ηh ≤ 0.70 and 0.60 < Uo ≤
0.80) describe a flat with both envelope and heating system less efficient than
flats in the energy performance class A. The 2nd centroid was classifed with
a confidence of about 75%. In this case, the two most important variables
disagreed in the prediction explanation. In fact, a value of Uo higher than 0.80
W/m2K supports the class B while the aspect ratio R ≤ 0.40 is typical of flats
in class A. A low value of R often corresponds to small areas of heat transfer
surfaces S then giving less importance to envelope performance variables.
The last centroids of the instances B −→ B, was explained with a probability
of 67% with the most three significant variables that support the class B.

Fig. 8.10 shows the explanations referred to the misclassified instances
of the type A −→ B. In particular, the 1st centroid is wrongly classified as B
with a strong confidence of about 67%. For this case the geometrical and
thermophisical variables have values closer to the ones of class B rather
then class A. Only the ηh is consistent with the global efficiency values of
buildings labelled as A. The buildings with this specific configuration of
variables are particularly difficult to be classified also considering that they
are characterized by an annual PEDh (of 79 kWh/m2y) value very close to
the left border between the classes A and B (91 kWh/m2y). Similarly, the
2nd centroid was also misclassified with high probability (i.e., 74%) due to
a particular combination of the building features. For this case, the high
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values of Uo and Uw were mitigated by a small heat transfer surface and low
aspect ratio. It means that flats with these characteristics belong to class A,
mostly due to geometrical aspects that positively impact on the heating energy
need. Conversely, the 3rd centroid was classified as B despite the values of
Uw and ηh were consistent with the ones of flats in class A. However the
geometry of the flat (Heat transfer surface and aspect ratio) and an high value
Uo have a negative impact on the transmission heat losses. The resuls is a
misclassification with a very low probability for class B. It means that the
classification of such instance among class A and B is almost random for the
developed classifier.

Eventually, Fig. 8.11 shows the explanations pertaining to the misclassi-
fied instances of the type B −→ A. Also in these cases the combination of high
values of aspect ratios combined with low values of thermal transmittances
and vice versa, represent the main source of misclassification.

As a final remark, all the performed explanations demonstrated to be
strongly consistent with the results obtained through the global SHAP analysis
(Fig. 8.6) in terms of feature importance.

8.7 Discussion

The present approach focused on the analysis of EPCs evaluated for about
100,000 flats located in Piedmont (North-western region of Italy). The pro-
posed methodology was based on the analysis of open data of EPCs and
provides a robust approach for the automatic asset rating of flat energy perfor-
mance. The methodology proposes a classification approach to benchmark
the ideal Primary Energy Demand for space heating (PEDh) of flats accord-
ing to the certification scheme used to issue their EPCs. In this section,
the interpretation and the possible exploitation of the results obtained are
discussed.
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The classification process was based on the transformation of the numeri-
cal variable PEDh in four categorical contiguous classes identified according
to the principle of equal frequency. This choice was driven by expert knowl-
edge, in order to avoid class imbalance problems. However the ranges of
PEDh that characterise each class resulted to be different between each other
especially for what concern energy performance class labelled as D. The
classification layer was designed to be flexible and generalizable as much as
possible. In particular the classification was addressed as a three-step process.
Firstly the EPC dataset was segmented in contiguous classes generating three
binary datasets A−B, B−C and C −D respectively. Secondly, for each
pair of classes five different classification models were trained and validated.
Eventually, a model selection technique technique was implemented in or-
der to combine the best models, which aimed to identify the right model to
use with unseen data of a real-world scenario. The proposed classification
process outperformed the traditional multiclass approach by 5% in terms of
accuracy. From a methodological perspective, the experimental evaluation
demonstrated that the approach allows to produce differentiated models, able
to fit better the specific features of the related EPC segments by exploiting
a limited number of input variables. In fact, thanks to the adoption of the
model selection technique it was possible to use, for the pairs of contiguous
energy performance classes, different algorithms to address the classifica-
tion task. In addition, it is worth to note that the proposed classification
approach still remains valid also considering a different discretization of
the target variable that can be then set by the user (e.g., public authority)
according to its specific needs. Another innovative aspect of the present work,
pertains to the introduction of a generalizable approach for explaining the
estimation capabilities learnt by the classification models. The explanation
layer makes the results obtained from the developed energy performance
benchmarking model, understandable and exploitable also for non-domain
experts. Useful information can be obtained from this benchmarking tool
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as it helps to discover in a straightforward way energy patterns among large
dataset and at the same time understand the strengths and limitations of the
estimation tool developed. To this purpose the agnostic XAI tool LIME was
employed. LIME is a local explainer extremely effective in providing easy
interpretations of classification results for binary problems. However, the
local nature of the explanation provided should be taken into account for
ensuring the feasibility of the prediction explanations, especially if large
datasets are analysed. To overcome such barrier, a two-step analysis was
proposed, combining LIME with an unsupervised clustering technique (i.e.,
K-means). The main reason behind this analysis, lied on the opportunity
of extracting prototype instances in the dataset (i.e., cluster centroids) from
specific groups of flats characterised by similar features (geometry, opaque
and transparent envelope transmittances, system efficiencies etc.). In this
way, leveraging the concept of similarity, exploited by clustering analysis, it
was possible to provide local explanations of a representative combination
of building features. This approach made it possible to better investigate
rightly and wrongly classified instances understanding which are the main
combinations of input variables that led to a specific classification results. In
this perspective the explanation layer offers different opportunities from both
analyst and end-user side (e.g., public authority, energy regulator, building
portfolio manager). The advantages for the analyst can be summarized as
follows:

• break the trade-off between model complexity and model interpretabil-
ity that often constrains energy benchmarking analysis;

• refine the model and improving the feature selection. The analyst
can exploit the results of a XAI process for detecting the presence of
input variables with low importance or which contribution to the learnt
mechanism is meaningless and removing them from the input set;
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• easily understand the strengths and weakness of the developed model.
During the testing and validation of the model, the analyst can use the
output of the XAI layer to infer specific patterns that can be associated
with high/low performances of the model;

• infer the rational behind each prediction of the model.

On the other hand the advantages for the end-user can be summarized as
follows:

• understand why a certain prediction is provided and what are the sup-
porting and conflicting model features towards it;

• according to the explanations provided for each cluster centroid, iden-
tify which are the specific combinations of building features that can
compromise the trustworthiness of the model;

• easily understand which are the most important features that strongly
influence the energy performance of a flat/building.

As a reference, the end-user can be aware about specific feature combinations
of flats that led the model, during the validation phase, to a misclassification.
There is a great added value in this kind of information given that the end-
user can associate to the prediction of an unknown instance (i.e., a new
flat) an explanation and a misclassification risk according to which is the
closest centroid considering the features of the flat. In general, designers and
authority planners can exploit such tool to understand where put their effort,
among large stocks of buildings, and which could be the most convenient
retrofitting strategies to be promoted considering the feature combination of
the buildings of interest. In this way it is possible to support the definition of
robust financial investment policies that leverage such knowledge and help to
devise more targeted actions to improve energy efficiency in diversified stocks
of buildings. Currently, XAI is then established as an essential requirement
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towards more effective and powerful AI-based systems in many domains,
and energy is included as well. From a regularity perspective, XAI is also
fundamental in order to verify machine learning models and to preserve
characteristics such as fairness and transparency that are more and more
required to modern AI-based decision support systems.





9
Reliability of eXplainable Artificial

Intelligence in Adversarial Perturbation

Scenarios

9.1 Introduction

In recent years, Artificial Intelligence (AI) has reached a significant advance
providing solutions in many application areas. In particular, there has been a
massive increase in the use of Machine Learning (ML) algorithms to solve
tasks in different fields of science, business and social workflow. This spread
is related in part to the intensification of research in Deep Learning (DL), a
set of artificial neural networks characterised, among other things, by a high
number of layers.

This causes deep neural networks to have a larger number of parameters,
making them complex to understand and more difficult to interpret, further
pushing toward the idea of considering them as obscure black-box models.
Since these black-box learning models are increasingly used to make impor-
tant predictions in critical contexts [41][85], the demand for transparency is
growing. Indeed, the risk is to create and use decisions that are not justifiable,
legitimate or simply do not allow detailed explanations of their behaviour
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[69]. Thus, explanations supporting the output of a model are crucial in many
areas such as precision medicine, autonomous vehicles, security and finance.
For the above mentioned reasons, the number of research and use of eXplain-
able Artificial Intelligence (XAI) is rapidly growing. The interest for XAI
has also been manifested by governments, with the European Regulation on
General Data Protection (GDPR) showing the important realisation of ethics
[33], trust [192], prejudice [35] of IA, as well as the impact of adversarial
perturbation [97] in deceiving classification decisions, especially in the case
of Convolutional Neural Networks (CNNs).

The term Adversarial Perturbation (AP) refers to the whole of techniques
that inject an image with a suitable, hardly perceptible, perturbation (noise)
to mislead a target machine learning model. Since their introduction [65],
AP algorithms have been used against a wide variety of models in several
application domains [3]. Considering APs evolution and the spread of XAI
in critical contexts, it was just a matter of time before researchers started
working on the use of APs against XAI algorithms. On this line, a very
recent work [96] proposes a black-box attack against XAI in security-critical
contexts, intending to raise the attention on the problem.

This work aims to increase awareness of the risks associated with the use
of XAI in critical contexts. On this line, quantitatively analyse the impact that
APs have on XAI in terms of differences in the explainability maps. Since
this work wants to be just an intuitive proof-of-concept, the aforementioned
experiments are run in a fashion easy to understand and to quantify, by using
publicly available dataset and algorithms.

9.2 Methods

To quantify the effects of APs on XAI algorithms, we defined a set of experi-
ments intended to measure the obtained impact while producing outcomes
easy to understand. To help to match the latter point, we focused on the image
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classification task for its intuitive interpretation. Nonetheless, to make the
reported analysis rigorous, we:

• perform the experiments on Dog vs Cat [51] and UIUC Sports Event
Dataset (Event8) [105], two datasets chosen for their characteristics.
More in details, the first dataset represents a very human interpretable
problem, consisting in the binary classification of dogs and cats images.
The second dataset describes a more complex scenario, still easily
interpretable by a human observer, involving the classification of images
in eight different sport events categories (e.g. rowing, sailing, etc.);

• used four different CNNs, pre-trained on ImageNet and fine-tuned on
the considered datasets. Among all the available networks we selected
those that, for structure and characteristics, allow us to cover a wide
part of the current literature in image classification. In particular, we
used AlexNet [94], ResNet18 [73], ResNet34 [73] and EfficientNet-
B0 [180]. Table 9.1 reports a brief recap of their characteristics and
performance on the ImageNet dataset;

• we analysed the effects of two different adversarial perturbation al-
gorithms, chosen for their intuitiveness (the first) and diffusion (the
second). The first algorithm used is the iterative Fast Gradient Sign
Method (iFGSM) [97], leveraging the sign of the prediction gradient
(with respect to the input’s class) to craft an additive perturbation. The
second is DeepFool [128], an efficient iterative method exploiting a
locally linearized version of the loss to generate a series of additive
perturbations;

• considered two different versions of a XAI method, Layered Grad-
CAM and Guided Grad-CAM [161]. Layered Grad-CAM calculates
the target output gradients with respect to the selected layer, multiplying
the average gradient for each channel by the level activations. Finally,
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the results are summed over all channels. On the other hand, Guided
Grad-CAM is an extension of Grad-CAM which calculates the element
produced by guided backpropagation with upsampled Grad-CAM at-
tributes. In particular, the Grad-CAM attributes are calculated with
respect to the layer provided in input, and the attributes are upsampled
in order to match the size of the input.

Model Top-1 Error Top-5 Error Parameters Depth

AlexNet [94] 43.45 20.91 60,965,224 8
Resnet18 [73] 30.24 10.92 11,177,538 18
Resnet34 [73] 26.70 8.58 21,285,698 34

EfficientNet-B0 [180] 22.90 6.70 5,330,571 18

Table 9.1: List of selected CNNs, evaluated on the ImageNet classification
challenge [155]. For each network, the top-1 and top-5 error, together with the
number of parameters and layers (depth) are shown. Reported numbers refer
to the corresponding PyTorch [139] implementation (excluding EfficientNet,
for which we refer to [180]).

The choice of publicly available datasets and of famous and diffused
architectures is intended to make the reported examples as reproducible as
possible. With the same aim, we used some open-source toolboxes for both
XAI and AP algorithms. In particular, the interpretation of trained models and
related outputs is based on Captum [91], a library of interpretability models for
PyTorch offering a series of attribution algorithms that allow understanding
the importance of input characteristics, hidden neurons and layers. Similarly,
for the adversarial perturbations, we used the Adversarial Robustness Toolbox
(ART) [130], a Python library designed to assess machine learning security
against several adversarial threats.
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9.3 Results

Within the experimental setup described in the previous section, we run the
adversarial perturbation algorithms against all the considered CNNs, trained
on both datasets, evaluating the output of the XAI methods before and after
the adversarial attacks (Figure 9.1). To this aim, defined Xc and Xp as the ex-
plainability maps obtained on the clean and perturbed images respectively, we
measure the Correlation Coefficient (CC) and the Dice Similarity Coefficient
(DSC) as

CC =
∑
(
Xc −Xc

)(
Xp −Xp

)√(
∑
(
Xc −Xc

)2
)(

∑
(
Xp −Xp

)2
) (9.1)

DSC = 2∗
n(Xc ∩Xp)

n(Xc)+n(Cp)
(9.2)

where n(·) is the number elements in each XAI map. It is worth noting that
in equation 9.1 the sum is over map elements, while in equation 9.2 Xc and
Xp are binary maps obtained by thresholding (using 0.9 as threshold) the
corresponding probability maps.

Since the aim is to measure the impact of APs on XAI in a realistic sce-
nario, realistic parameters for the AP algorithms have been set. In particular,
for iFGSM method we set ε = 0.1, while for DeepFool method we set the
maximum number of iterations imax = 100 and ε = 10−06. As a result, the
adversarial attacks may not be successful for all the considered images. There-
fore, the results are reported by dividing the cases in which the adversarial
perturbation was successful and the cases in which it failed.

We start by reporting the boxplots for the CC and for the DSC evaluated
on the explainability maps (before and after the perturbation) for all the
considered CNNs, by varying the dataset, the XAI and the AP algorithms. All
the plots have been drawn in couples, with green bar referring to positive XAI
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Clean image (Dog: 100% - Cat: 0%)

Perturbed image (Dog: 23.41% - Cat: 76.59%)

Figure 9.1: Example of explanation maps for a clean (top row) and for a
successfully perturbed (bottom row) image of a dog. In green, the explanation
map for the portions of the image that have contributed to the selected output
(dog in the case of the clean image, cat in the case of the perturbed image). In
red, the explanation map for the portions of the image that have contributed
to the non-selected output (cat in the case of the clean image, dog in the
case of the perturbed image). It is worth noting that the portion of the image
contributing to the predicted class is in both cases close to the dog’s face.

maps (i.e. the portion of the image that contributed to the predicted output)
and red bar referring to negative XAI maps (i.e. the portion of the image that
contributed to the non-predicted output).

Figures 9.2 and 9.3 report the results obtained on the Dogs vs Cats dataset,
under the DeepFool attack, using the Layered Grad-CAM algorithm for
successfully perturbed images (the former) and failed-attacks ones (the latter).
Similarly, figures 9.4 and 9.5 reports the DSC measured under the same
experimental settings. Results show that, in all the cases and for all the CNNs,
the XAI masks strongly vary after the perturbation, for both the positive and
negative masks, as well as for successful and failed attacks. Interestingly,
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from a visual perception perspective (figures 9.6 and 9.7), the portion of the
image contributing to the predicted class is in both cases over the subject face
(thus even when the network wrongly classifies the images into the opposite
class).

Figure 9.2: Correlation Coefficient (CC) between the Layered Grad-CAM
outputs before and after the execution of DeepFool, for all the images in the
Dogs vs Cats dataset for which the attack succeeded.

Figures 9.8 and 9.9 report the same set of results, obtained for the same
dataset and with the same AP algorithm, but by using Guided Grad-CAM
(GGC) as XAI procedure. At a first sight, the plots seem to suggest that the
perturbation did not affect this scenario. However, as clearly shown in figures
9.10 and 9.11, those results are because of the huge number of pixels that
remained unchanged after the perturbation (as GGC works as pixel level).
Indeed, if we measure the CC only over the portions of the explanation maps
that actually changed, the values drop (on average) of ∼ 0.4.
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Figure 9.3: Correlation Coefficient (CC) between the Layered Grad-CAM
outputs before and after the execution of DeepFool, for all the images in the
Dogs vs Cats dataset for which the attack failed.

Similar results have been obtained for the FGSM perturbation algorithms
and for the Event8 dataset (reported only in the supplementary material
document due to paper length limits), suggesting that the number of classes
and the perturbation algorithms do not change the effects that adversarial
perturbations have on explainability maps.
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Figure 9.4: Dice Similarity Coefficient (DSC) between the Layered Grad-
CAM outputs before and after the execution of DeepFool, for all the images
in the Dogs vs Cats dataset for which the attack succeeded.
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Figure 9.5: Dice Similarity Coefficient (DSC) between the Layered Grad-
CAM outputs before and after the execution of DeepFool, for all the images
in the Dogs vs Cats dataset for which the attack failed.
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Clean image (Dog: 0% - Cat: 100%)

Perturbed image (Dog: 51.93% - Cat: 48.07%)

Figure 9.6: Example of explanation maps for a clean (top row) and for a
successfully perturbed (bottom row) image of a cat. In green, the explanation
map for the portions of the image that have contributed to the selected output
(cat in the case of the clean image, dog in the case of the perturbed image). In
red, the explanation map for the portions of the image that have contributed
to the non-selected output (dog in the case of the clean image, cat in the
case of the perturbed image). It is worth noting that the portion of the image
contributing to the predicted class is in both cases over the cat’s face.
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Clean image (Dog: 100% - Cat: 0%)

Perturbed image (Dog: 56.09% - Cat: 43.91%)

Figure 9.7: Example of explanation maps for a clean (top row) and for an un-
successfully perturbed (bottom row) image of a dog. In green, the explanation
map for the portions of the image that have contributed to the selected output
(dog in both cases). In red, the explanation map for the portions of the image
that have contributed to the non-selected output (cat in both cases). It is worth
noting that the portion of the image contributing to the predicted class is in
both cases over the dog’s face.
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Figure 9.8: Correlation Coefficient (CC) between the Guided Grad-CAM
outputs before and after the execution of DeepFool, for all the images in the
Dogs vs Cats dataset for which the attack succeeded.
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Figure 9.9: Correlation Coefficient (CC) between the Guided Grad-CAM
outputs before and after the execution of DeepFool, for all the images in the
Dogs vs Cats dataset for which the attack failed.
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Clean image (Dog: 0% - Cat: 100%)

Perturbed image (Dog: 90.32% - Cat: 9.68%)

Figure 9.10: Example of explanation maps for a clean (top row) and for a
successfully perturbed (bottom row) image of a cat. In green, the explanation
map for the portions of the image that have contributed to the selected output
(cat in the case of the clean image, dog in the case of the perturbed image). In
red, the explanation map for the portions of the image that have contributed
to the non-selected output (dog in the case of the clean image, cat in the
case of the perturbed image). It is worth noting that the portion of the image
contributing to the predicted class is in both cases close to the cat’s face.
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Clean image (Dog: 0% - Cat: 100%)

Perturbed image (Dog: 49.90% - Cat: 50.10%)

Figure 9.11: Example of explanation maps for a clean (top row) and for an un-
successfully perturbed (bottom row) image of a cat. In green, the explanation
map for the portions of the image that have contributed to the selected output
(cat in both cases). In red, the explanation map for the portions of the image
that have contributed to the non-selected output (dog in both cases). It is
worth noting that the portion of the image contributing to the predicted class
is in both cases close to the cat’s face.



Discussions and Open Issues

This thesis proposes a methodology for predicting hard drives’ health level
which combines machine learning prediction techniques based on LSTMs,
with an automatic approach for hard drive health status definition. In the past
decades, being able to predict the health level of HDD timely and accurately
has started playing a fundamental role in the administration of large data cen-
ters, as optimizing maintenance strategies has obvious impacts on overhead
costs. LSTMs are interesting in the context of HDD failure prediction, as
they are able to take advantage of the highly sequential nature of the infor-
mation available to the model. To explore the effectiveness of this idea, we
investigated how extracting sequences over time windows (TW) of different
sizes affects the performance of the LSTM model. In line with the ability of
LSTMs to learn long-distance dependencies, the best results were obtained
with 48-hour time windows size and 14-day time windows size for Baidu and
Backblaze datasets respectively. Furthermore, we showed that LSTM based
models outperform sequence independent models in classifying sequences
belonging to hard drives that are going to fail. As can be seen from the
summary Tables 5.4, 7.4, 5.4 and 7.2a the performance gap between models
on healthy samples or sequences is small. We interpret this as evidence of
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the fact that it is not difficult for a classifier to identify good sequences, but it
is hard to identify disks at risk of failure. In such cases, the LSTM models
strongly outperforms the sequence independent models. Propose approach
achieves state-of-the-art results on a hard drive health status assessment task
(Tables 5.4 and 7.4a) over the SMART data-set, and competitive results in
terms of FDR and FAR scores (Tables 5.4 and 7.4). Moreover, as shown
in Tables 5.4 and 7.4, our approach outperforms the others in term of FDR.
Although our model does not result in the lowest FAR value (Table 5.4), it
keeps it to a reasonably low value. Importantly, the advantage of our solution
compared to that introduced in [198] lies specifically in the implementation of
a step for the automatic definition of health levels. Notably, LSTMs have been
already used in the past in predictive maintenance tasks. The fundamental
contribution of this thesis though, is in the way LSTMs are coupled with
a technique to address the unbalanced nature of the training data, and the
data-driven definition of health degree levels. Traditionally, HDD have been
classified based on fixed health levels determined by domain experts. In
this sense, optimal maintenance strategies would benefit from as detailed
a prediction as possible, while maintaining high accuracy. However, the
complex nature of HDD health status makes this technique less effective
over real world data, thus requiring trade-offs between detailed and timely
predictions, and prediction accuracy. By providing an automatic methodology
to detect ranges on the base of each disk’s behavior, our approach shows more
flexibility to the varied nature of the underlying data, thus outperforming a
variety of alternative models. Comparisons with alternative methods also
based on LSTMs support the effectiveness of the particular approach taken in
this thesis, and shows the advantages (in terms of accuracy of the prediction
task) of enriching LSTMs with data-driven, flexible identification of HDD
health levels and health degree settings (Table 7.4a and Table 7.4).

Additionally, our model automatically extracted degree levels were as-
sessed over a range of prediction windows (15 to 45 days) compatible with
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what already present in the literature, thus supporting the reliability of the
approach in real-word scenarios. Based on such results, we argue that the
health level prediction task should be preferred to other forms of evaluations
when considering these kind of predictive models, as its results provide the
most insightful information towards hard drive maintenance. Future work
should be focused on exploring the best way data center’s technicians and
manager can leverage the finer-grained predictions provided by our approach
to optimize long-term maintenance. Furthermore, we should conduct an
extensive, detailed investigation of different health degree settings, evaluating
the trade-offs of incorporating constraints from real-world applications into
the automated processes discussed in this thesis so to further refine health
degree definition strategies. As mentioned before, anomaly detection can
be seen as a data-driven approach for predictive maintenance. Since it gives
the possibility to avoid downtime, to reduce costs related to unnecessary
operations and to optimize maintenance procedures, in last years a lot of
anomaly detection system have been developed and studied by researches. In
this thesis, we designed an anomaly sound detection framework for predictive
maintenance, demonstrating that the involvement of machines identifiers (use-
ful for conditioning) into the autoencoder learning process enables models
training on sounds recorded in proximity of different versions of the same
machine type (like different pumps), improving their detection capabilities.
Moreover, the experimental part of the work shows that the conditioning can
be done with a classical neural network, which is also compatible with the
various types of encoder-decoder layers. Experiments have been conducted
on DCASE 2020 Task 2 Challenge dataset, which is already arranged to face
the task in unsupervised way, replicating a real scenario in which normal
sound clips represent most of the available data for training phase. Two
instances of the proposed framework have been realized, the first based on
convolutional autoencoder, while the second uses a recurrent approach based
on LSTM layers in both encoder and decoder. Experimental results have
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been evaluated using AUC and pAUC, as indicated by the challenge, and
they highlight improvements up to 17.61%, with respect to the corresponding
non-conditioned autoencoder versions and the baseline model results, espe-
cially for pAUC. Future works will be devoted to analyze different types of
conditioning networks (i.e. Variational AutoEncoders (VAE) or Generative
Adversarial Networks (GANs)) and operations together with the application
of several pre-processing strategies to get better training performances, like
noise reduction, with the aim of reducing the audio clips background noise
surely present in factory environments, or audio data augmentation techniques,
as well as pitching, time-shifting and so on.

As discussed in Chapter X , there is not only a need for a methodology to
achieve high accuracy but in several domains there is a need to interpret by
which criteria a given prediction was obtained.

For this reason, we have argued how XAI tools can improve HDD pre-
ventive maintenance systems, by providing a transparent interpretation of
the model’s prediction. In the future, it will be interesting to further assess
the contribution to XAI technologies to the design of accurate HDD health
supervision strategies. In order to validate the use of xai in multiple applica-
tion domains this thesis proposed a multi-step methodology to automatically
benchmark energy performance of flats by means of classification algorithms.
The analysis was complemented including in the analytical process an ex-
planation layer based on the LIME tool in order to make the results of the
analysis interpretable as much as possible. The methodology was tested on a
large collection of EPCs pertaining about 100,000 flats located in Piedmont
(Italy). Thanks to the performed analysis, also some limitations of this work
have emerged, especially for what concerns the deployment phase of the
energy performance benchmarking tool. In particular the main limitations
of our work are related to the quality of EPCs data. In fact, EPCs can be
subjected to different kinds of errors (i.e., clerical and calculation errors made
by technicians while issuing the EPC) with potential negative impact on the
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accuracy of the developed models. In the perspective of increasing the size
of the EPC source dataset, a robust pre-processing layer need to be deployed
in order to avoid a decrease of model performance over time. In addition,
still considering the deployment phase, the re-training of three binary clas-
sification models instead of one multiclass classifier, represents a task with
higher computational cost. Respect to the future work, further research will
be focused on the testing of alternative configurations of algorithms (i.e., clas-
sifiers, clustering algorithms, XAI tools) with respect to the one considered
in this study by performing a benchmark analysis between them especially
from the explainability point of view. Eventually, particularly promising is
the integration of a XAI layer also in other building Energy Management
and Information System (EMIS) tools that typically leverage AI techniques
such as advanced controllers and automated anomaly detection and diagnosis
systems. Finally, as discussed in Chapter XXX, the raise of APs and the
spread of XAI in critical contexts are pushing researchers in analysing the
risks that the former can have on the latter. If, on one hand, some works are
analysing this problematic relation [46][78][203], on the other some authors
are already designing attacks in critical scenarios [96]. The aim of this the-
sis was to increase awareness on the risks associated with the use of XAI
in critical contexts by providing a quantitative analysis of the impact that
adversarial perturbations have on XAI methods in terms of differences in the
explainability maps. To this aim, we defined a set of experiments intended to
measure the obtained impact while producing outcomes easy to understand.
To help to match the latter point, we focused on the image classification task
for its intuitive interpretation. Nonetheless, to make the reported analysis rig-
orous, we considered four different Convolutional Neural Networks (CNNs),
two AP algorithms, two XAI methods and two public datasets. Reported
results show that APs can strongly affect the XAI outcomes, even in the case
of a failed attack. In particular, the Correlation Coefficient (CC) and Dice
Similarity Coefficient (DSC) distributions suggest not only that the injected
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perturbations are able to mislead the target CNN, but also that the effects
on the XAI maps are not deterministic. Indeed, while the maps themselves
are different before and after the perturbation, this difference is not easily
perceptible by a human operator unaware of the attack, since the portion of
the images that support the decision taken by the networks are almost the
same. Interestingly, this happens for all the considered networks and for all
the considered XAI and AP algorithms. Even the number of classes in the
used dataset does not seem to affect the reported behaviour. Future works will
further analyse the reported aspects, also by considering the effects on bigger
datasets (with hundred of classes) and by taking into account black-box AP
algorithms.
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