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Abstract
Given samples from two non-negative random variables,
we propose a family of tests for the null hypothesis that
one random variable stochastically dominates the other
at the second order. Test statistics are obtained as func-
tionals of the difference between the identity and the
Lorenz P–P plot, defined as the composition between
the inverse unscaled Lorenz curve of one distribution
and the unscaled Lorenz curve of the other. We deter-
mine upper bounds for such test statistics under the
null hypothesis and derive their limit distribution, to be
approximated via bootstrap procedures. We then estab-
lish the asymptotic validity of the tests under relatively
mild conditions and investigate finite-sample properties
through simulations. The results show that our testing
approach can be a valid alternative to classic methods
based on the difference in the integrals of the cumulative
distribution functions, which require bounded support
and struggle to detect departures from the null in some
cases. The same approach can be extended to a family
of fractional-degree stochastic orders, including the first
order as a limiting case.
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2 LANDO and LEGRAMANTI

1 INTRODUCTION

The theory of stochastic orders deals with the problem of comparing pairs of random variables,
or the corresponding distributions, with respect to concepts such as size, variability (or riskiness),
shape, aging, or combinations of these aspects. The main notion in this context is generally
referred to as the usual stochastic order or first-order stochastic dominance (FSD), which expresses
the concept of one random variable being stochastically larger than the other (Shaked &
Shantikumar, 2007). For this reason, FSD has important applications in all those fields in which
“more” is preferable to “less”, clearly including economics. However, FSD is a restrictive criterion,
and there are many real-world applications in which it is not satisfied. This has pushed economic
theorists to develop finer concepts, which formed the theory of stochastic dominance (SD),
taking into account variability and shape, in addition to size (Fishburn, 1980; Hadar &
Russell, 1969; Hanoch & Levy, 1969; Muliere & Scarsini, 1989; Wang & Young, 1998; Whitmore
& Findlay, 1978). In this regard, the most commonly used SD relation is the second-order SD
(SSD), expressing a preference for the random variable which is stochastically larger or at least
less risky, therefore combining size and dispersion into a single preorder. This has applications
in economics, finance, operations research, reliability, and many other fields in which decision
makers typically prefer larger or at least less uncertain outcomes.

Given a pair of samples from two unknown random variables of interest, statistical methods
may be employed to establish whether such variables are stochastically ordered. In particular, we
focus on a major problem in nonparametric statistics, that is testing the null hypothesis of dom-
inance versus the alternative of nondominance. About SSD, several procedures are available in
the literature, some of which are described in the book of Whang (2019). We will now recall a few
of these approaches. Davidson and Duclos (2000) proposed a test for SSD based on the difference
between the integrals of the cumulative distribution functions (CDF). The problem with this test
is that dominance is evaluated only on a fixed grid, which may lead to inconsistency. Barrett and
Donald (2003) employed a similar approach, combined with bootstrap methods, to formulate a
class of tests that are consistent under the assumption that the distributions under analysis are
supported on a compact interval. Donald and Hsu (2016) leveraged a less conservative approach
to determine critical values compared to Barrett and Donald (2003), avoiding the use of the
least favorable configuration. We refer the reader to Linton et al. (2005, 2010) for other relevant
approaches. Note that all the aforementioned papers deal more generally with finite-order SD,
and then obtain SSD as a special case. Alternatively, other works focused on tests for the so-called
Lorenz dominance, which is a scale-free version of SSD that applies to non-negative random
variables. For example, Barrett et al. (2014) proposed a class of consistent tests for the Lorenz dom-
inance that rely on the distance between empirical Lorenz curves. In this case, supports may be
unbounded. Critical values are determined by approximating the limit distribution of a stochas-
tic upper bound of the test statistic, similar to Barrett and Donald (2003). Sun and Beare (2021)
used a different and less conservative bootstrap approach to improve the power of such tests, and
established asymptotic properties under less restrictive distributional assumptions.

The main idea of this article follows from noticing that some stochastic orders, including FSD,
can be expressed and tested via the classic P–P plot, also referred to as the ordinal dominance curve
(Beare & Clarke, 2022; Beare & Moon, 2015; Davidov & Herman, 2012; Hsieh & Turnbull, 1996;
Schmid & Trede, 1996; Tang et al., 2017). Following a similar approach, we propose a new class
of nonparametric tests for SSD between non-negative random variables, in which the test statis-
tic is based on what we refer to as the Lorenz P–P plot (LPP), a kind of P–P plot based on unscaled
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LANDO and LEGRAMANTI 3

Lorenz curves. More precisely, the LPP is obtained as the functional composition of the inverse
unscaled Lorenz curve of one distribution and the unscaled Lorenz curve of the other. The key
property of the LPP is that, under SSD, it stays above the identity function on the unit interval.
Therefore, the LPP stands out as a promising tool for detecting deviations from the null hypothe-
sis of SSD. Namely, any functional that quantifies the positive part of the difference between the
identity and the LPP can be used to construct a test statistic. This gives rise to a whole class of
tests, depending on the choice of the functional. The p-values of such tests can then be computed
via bootstrap procedures. In particular, we use a similar idea as in Barrett et al. (2014) to asymp-
totically bound the size of the test, and establish its consistency via the functional delta method.
Note that the consistency of our family of tests is established without requiring a bounded sup-
port, which represents an advantage compared to classic methods based on integrals of CDFs.
Moreover, our simulation studies show that our tests are often more reliable than the established
KSB3 test by Barrett and Donald (2003), which may have problems detecting violations of the null
hypothesis in some cases.

The LPP may also be used to define families of fractional-degree orders “between” FSD and
SSD (or beyond SSD) via a simple transformation. In this regard, we propose a method to define a
continuum of SD relations, called transformed SD, in the spirit of Müller et al. (2017), Lando and
Bertoli-Barsotti (2020), and Huang et al. (2020). Interestingly, our tests can be easily adapted to
this more general family of orders by simply transforming the samples through the same transfor-
mation used in the definition of transformed SD. In particular, FSD can be obtained as a limiting
case, in which the empirical LPP of the transformed sample tends to the classic empirical P–P plot.
This opens up the possibility of applying our class of tests to a wide family of stochastic orders.

The article is organized as follows. Section 2 introduces the LPP and describes the idea
behind the proposed family of tests. In Section 3, we propose an estimator of the LPP and study
its properties. The empirical process associated with the LPP is investigated in Section 4, where
we establish a weak convergence result that can be used to derive asymptotic properties of the
tests. In Section 5, we establish bounded size under the null hypothesis and consistency under
the alternative one, for both independent and paired samples. The extension to a family of
fractional-degree orders is discussed in Section 6. In Section 7, we illustrate the finite-sample
properties of the tests through simulation studies, focusing on tests arising from sup-norm and
integral-based functionals. Finally, Section 8 contains our concluding remarks. All tables and
proofs are reported in the Appendix.

2 PRELIMINARIES

Throughout this article, H denotes a general CDF supported on the non-negative half line, with
finite mean 𝜇H . In particular, we consider a pair of non-negative random variables X and Y with
CDFs F and G, respectively, and finite expectations. When F and G are absolutely continuous, we
will denote their densities with f and g, respectively. Given that stochastic orders depend only on
distribution functions, for any order relation ≻ we may write X ≻ Y or F ≻ G interchangeably.

Let Lp(0, 1), for p ≥ 1, be the class of real-valued functions on the unit interval equipped with
the Lp norm ||.||p, that is, for v ∈ Lp(0, 1), ||v||p = (∫ 1

0 |v(t)|pdt)1∕p, and L∞(0, 1) be the class of
bounded real-valued functions equipped with the uniform norm ||.||∞ (||v||∞ = supt∈[0,1] |v(t)|).
Moreover, let C[0, 1] be the space of continuous real-valued functions on [0,1] also equipped
with the uniform norm. Henceforth, “increasing” means “nondecreasing” and “decreasing”
means “nonincreasing”. Given a function r, we denote with r+ = max(0, r) its positive part. If r is
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4 LANDO and LEGRAMANTI

increasing, r−1(y) = inf{x ∶ r(x) ≥ y} denotes its left-continuous generalized inverse. Finally, ⇝
denotes weak convergence, while →p denotes convergence in probability.

2.1 Stochastic dominance

We say that X is larger than Y with respect to FSD, denoted as X ≥1 Y , if F(x) ≤ G(x),∀x.
Equivalently, X ≥1 Y if and only if Eu(X) ≥ Eu(Y ) for any increasing function u. Within an
economic framework, coherently with the expected-utility approach, one may assume that X and
Y represent monetary lotteries and u is a utility function. Under this perspective, FSD represents
all nonsatiable decision makers, that is, all those with an increasing utility, and therefore can be
seen as one of the strongest ordering principles. On the other hand, FSD has a limited range of
applicability since, in real-world applications, CDFs often cross and hence distributions cannot
be ordered using this criterion.

For this reason, weaker ordering relations have been introduced, among which the most
important is the SSD. We say that X is larger than Y with respect to SSD, denoted as X ≥2 Y , if
∫ x
−∞F(t)dt ≤ ∫ x

−∞G(t)dt,∀x. Equivalently, X ≥2 Y if and only if Eu(X) ≥ Eu(Y ) for any increasing
and concave function u. In economics, SSD generally represents all nonsatiable and risk-averse
decision makers, expressing a preference for the random variable with larger values or smaller
dispersion. For example, X ≥2 Y entails that EX ≥ EY and, in case of equality, Var(X) ≤ Var(Y )
and 𝛾(X) ≤ 𝛾(Y ), where 𝛾 denotes the Gini coefficient. The above definitions may be generalized
to kth order SD, denoted as X ≥k Y , k = 1, 2, 3,…, and represented using the following integral
inequality F[k](x) ≤ G[k](x),∀x, where H[1] = H and H[k](x) = ∫ x

−∞H[k−1](t)dt, for k ∈ {2, 3,…}.
Besides the classic definitions of SD discussed above, different notions—often including FSD

and SSD as special or limiting cases—have been studied in the literature. Notable examples are
the inverse SD (Muliere & Scarsini, 1989), which is based on recursive integration of the quantile
function instead of the CDF, and coincides with classic SD at degrees 1 and 2, and also some
fractional-degree SD relations that interpolate FSD and SSD (see, e.g., Müller et al., 2017), as
discussed in more detail in Section 6.

2.2 The Lorenz P–P plot

The goal of this article is to test the null hypothesis 0 ∶ X ≥2 Y versus the alternative
1 ∶ X ≱2 Y . This requires estimating some kind of distance between the situation of dominance
and the situation of nondominance. The classic solution (Barrett & Donald, 2003; Davidson
& Duclos, 2000) is to construct test statistics based on an empirical version of the difference
∫ x
−∞F(t)dt − ∫ x

−∞G(t)dt, which is expected to be large, at least at some point, if 0 is false. How-
ever, the main issue with the usual definition of SSD, based on these integrated CDFs, is that
such integrals are unbounded in [0,∞), so there are no uniformly consistent estimators for
them unless both distributions have bounded support. Not by chance, Barrett and Donald (2003)
require that F and G have common bounded support [0, a], with a finite, to derive consistent tests
of stochastic dominance of order k, including SSD. To avoid this limitation, we rely on an alter-
native but equivalent definition of SSD in terms of the unscaled Lorenz curve, which is always
bounded. In particular, we observe that some stochastic orders may be alternatively expressed
in terms of a Q–Q plot (Lando et al., 2023) or a P–P plot (Lehmann & Rojo, 1992). Similarly, SSD
can be characterized using the modified P–P plot described below.
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LANDO and LEGRAMANTI 5

Let H−1 be the (left-continuous) quantile function of the CDF H. The unscaled Lorenz curve of
H is defined as LH(p) = ∫ p

0 H−1(t)dt, p ∈ [0, 1]. The symbol LH is often used for the scaled version
of the Lorenz curve, that is LH∕𝜇H , while we use LH to denote the unscaled Lorenz curve, for the
sake of simplicity. Note that LH ∶ [0, 1] → [0, 𝜇H] is increasing, convex and continuous in the unit
interval. Then, L−1

H is increasing and concave in [0, 𝜇H]. However, for technical reasons, we let
L−1

H (y) = 1 for y > 𝜇H , so that L−1
H ∶ [0,∞) → [0, 1].

Now, given the pair of CDFs F and G, consider the increasing continuous function

Z(p) = L−1
G ◦LF(p), p ∈ [0, 1],

which takes values in [0, 1 ∧ L−1
G (𝜇F)], where x ∧ y denotes the minimum between two real num-

bers x and y. Letting 𝜈 = 1 ∧ L−1
F (𝜇G), note that, if 𝜇G < 𝜇F , then 𝜈 < 1 and we set Z(p) = 1 for

p ∈ (𝜈, 1]. Given some point y = LF(p), for p ∈ [0, 1], the graph of Z is a P–P plot with coordi-
nates (L−1

F (y),L−1
G (y)), which will be referred to as the Lorenz P–P plot (LPP). Within an economic

framework, Z(p) returns the probability given by G to the average level of income correspond-
ing to LF(p). In particular, if such a level cannot be reached under G, we have Z(p) = 1. The LPP
is scale-free, like the classic P–P plot; in particular, if X and Y are both multiplied by the same
positive scale factor, then Z remains unchanged.

To see how Z can be leveraged to characterize SSD, first recall that X ≥2 Y if and only if LF(p) ≥
LG(p), ∀p ∈ [0, 1]; see, for example, Shaked and Shantikumar (2007, ch. 4). Such a relation can
be equivalently expressed in terms of Z:

X ≥2 Y ⟺ Z(p) ≥ p, ∀p ∈ [0, 1]. (1)

It is generally complicated to obtain an explicit expression of Z for parametric probabilistic mod-
els. Explicit calculations for the case of a Weibull versus a unit exponential distribution are
provided in Example 1 below, while a graphical illustration is given in Figure 1. Differently, and
more importantly for our testing purposes, the LPP can be computed quite easily in the empirical
case, as discussed in Section 3.

F I G U R E 1 The LPP in Example 1 for the case a = 2, b = 1.5 (dashed), in which F ≥2 G, and for the cases
a = 2, b = 0.8 (dotted) and a = 0.6, b = 1.2 (dot-dashed), in which F ≱2 G.
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6 LANDO and LEGRAMANTI

Example 1. Consider the Weibull distribution F(x) = 1 − exp(−(x∕b)a), with
a, b > 0, and the unit exponential distribution, G(x) = 1 − exp(−x), both supported
on x ≥ 0. In this case, the LPP has the following expression (see the Appendix for
details):

Z(p) = 1 ∧
[

1 − exp

(
1 + W−1

(
b
(
Γ(1 + 1∕a) − Γ

(
1 + 1∕a,− log(1 − p)

))
− 1

e

))]
,

where  indicates the real part of a complex number, Γ(⋅, x) is the incomplete gamma
function and W−1 is the Lambert function (Corless et al., 1996). Using the properties
of SSD and the crossing conditions described in Shaked and Shantikumar (2007), it is
easy to verify that F ≥2 G if and only if a ≥ 1 and𝜇F = b Γ(1 + 1∕a) ≥ 𝜇G = 1. Figure 1
shows the behavior of Z when F ≥2 G and F ≱2 G.

2.3 Detecting deviations from SSD

Denote the identity function by I. The representation of SSD in (1) can be leveraged to construct
a test. In fact, 0 ∶ X ≥2 Y is false if and only if I − Z is strictly positive at some point in the
unit interval. Accordingly, departures from SSD can be detected by quantifying the positive part
of the difference between I and Z. This may be represented by some functional  applied to the
difference I − Z ∈ C[0, 1]. In particular, we propose a family of test statistics obtained as empirical
versions of the functionals

p(I − Z) = ||(I − Z)+||p,
for p ≥ 1, including p = ∞. It can be shown that such functionals satisfy the following properties.

Proposition 1. For every v1, v2 ∈ C[0, 1] and for every p ≥ 1,

1. If v1(x) = 0,∀x ∈ [0, 1], then p(v1) = 0;
2. if v1(x) ≤ 0,∀x ∈ [0, 1], then p(v2) ≤ p(v2 − v1),∀v2;
3. if v1(x) > 0 for some x ∈ [0, 1], then p(v1) > 0;
4. |p(v1) − p(v2)| ≤ ||v1 − v2||∞;
5. cp(v1) = p(cv1), for any positive constant c > 0;
6. p is convex;
7. for any p2 ≥ p1 ≥ 1, p2(v1) ≥ p1(v1).

Henceforth, we will denote simply by  any general functional satisfying the above proper-
ties 1–6. These properties determine a family of functionals which may be used to obtain consis-
tent tests. In particular, Properties 2 and 3 completely characterize SSD, in that  (I − Z) = 0 if
and only if X ≥2 Y , while  (I − Z) > 0 if and only if X ≱2 Y . Differently, Property 7 deals just with
the class p and shows that functionals of this kind measure the deviations from 0 in a mono-
tone way, that is, smaller (larger) values of p downsize (emphasize) deviations, represented by the
function (I − Z)+. Proposition 1 generalizes Lemma 2 of Barrett et al. (2014), which deals with the
special cases of 1 and ∞. They introduced tests for the Lorenz dominance by applying  to the
difference between the (scaled) Lorenz curves, that is  (LG∕𝜇G − LF∕𝜇F). One may extend their
approach to SSD by considering  (LG − LF) (see, e.g., Zhuang et al., 2023). However, in this article,
we propose leveraging  (I − Z), which has some advantages over  (LG − LF). For instance, I − Z
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LANDO and LEGRAMANTI 7

is scale-free by properties of the LPP. On the contrary, if X and Y are multiplied by a positive scale
factor c > 0, then the difference between the unscaled Lorenz curves becomes c(LG − LF). More-
over, |LG − LF| < max(𝜇F , 𝜇G) whereas, for any F and G, |I − Z| is always upper-bounded by 1.

3 ESTIMATION OF THE LPP

3.1 Sampling assumptions

Let  = {X1,…,Xn} and  = {Y1,…,Ym} be i.i.d. random samples from F and G, respectively. As
in Barrett et al. (2014), we will deal with two different sampling schemes: independent sampling
and matched pairs. In the first scheme, the two samples  and  are independent of each other,
and sample sizes n and m may differ. In contrast, in the matched-pairs scheme, n = m and we have
n i.i.d. pairs {(X1,Y1),…, (Xn,Yn)} drawn from a bivariate distribution with F and G as marginal
CDFs. For both sampling schemes, we will consider the asymptotic regime in which n → ∞,
limn→∞ nm∕(n + m) = ∞ and limn→∞ n∕(n + m) = 𝜆 ∈ [0, 1]. These assumptions are quite stan-
dard in the literature (see, e.g., Barrett et al., 2014; Sun & Beare, 2021). For 𝜆 ∈ (0, 1), this implies
that, as n diverges, m also goes to infinity with the same order, as the ratio n∕m tends to 𝜆∕(1 − 𝜆),
which is finite and strictly positive. However, 𝜆 can also take one of the endpoints when one of
the sample sizes grows faster than the other.

3.2 Empirical LPP

The abovementioned random samples  and  yield the empirical CDFs

Fn(x) = (1∕n)
n∑

i=1
1(Xi ≤ x) and Gm(x) = (1∕m)

m∑
j=1

1(Yj ≤ x),

respectively. We denote with X(k) and Y(k) the order statistics of rank k from  and  , and their
sample means with Xn and Y m, respectively. Using the plugin method, the empirical counterparts
of LF and L−1

G are LFn and L−1
Gm

, where LFn(p) = ∫ p
0 F−1

n (t)dt for p ∈ [0, 1], LGm is defined similarly,
and L−1

Gm
is the inverse of LGm . Coherently with our definition of L−1

G , we let L−1
Gm
(p) = 1 for p > Y m.

Note that LFn coincides with the empirical unscaled Lorenz curve (Shorrocks, 1983), that is a
piecewise linear function joining the points (k∕n, (1∕n)

∑k
i=0X(i)), for k = 0,…,n, with X(0) ∶= 0.

Alternatively, LF and L−1
G can also be estimated using the following step functions,

L̃Fn(p) =
⎧⎪⎨⎪⎩

0 p = 0,

(1∕n)
⌈np⌉∑
i=1

X(i) p ∈ (0, 1],

where ⌈⋅⌉ is the ceiling function, and

L̃−1
Gm
(p) =

⎧⎪⎪⎨⎪⎪⎩

0 p ∈ [0,Y(1)∕m),

j∕m p ∈ [(1∕m)
j∑

k=1
Y(k), (1∕m)

j+1∑
k=1

Y(k)), 1 ≤ j ≤ m − 1,

1 p ≥ Y m.
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8 LANDO and LEGRAMANTI

F I G U R E 2 Z̃n,m (solid) versus Zn,m (dashed) for n = 20 and m = 15.

L̃Gm and L̃−1
Fm

are defined similarly. Here, L̃−1
Gm

is the right-continuous generalized inverse of L̃Gm ,
that is, L̃−1

Gm
(p) = inf{u ∶ L̃Gm(u) > p}. Note that LFn and L̃Fn coincide at i∕n, for i = 1,…,n, and,

likewise, L−1
Gm

and L̃−1
Gm

coincide at (1∕m)
∑j

k=1Y(k), for j = 1,…,m, so these alternative empirical
versions of LF and L−1

G are clearly asymptotically equivalent.
According to the different empirical versions of LF and L−1

G , we may obtain different estima-
tors of Z. One may consider Zn,m = L−1

Gm
◦LFn , which is a continuous piecewise linear function, or

alternatively Z̃n,m = L̃−1
Gm
◦L̃Fn , which is a left-continuous step function with jumps at the points

{i∕n ∶ i = 1,…,n}, taking values in {j∕m ∶ j = 1,…,m}. In an economic framework, L̃−1
Gm
(p) gives

the relative frequency of observations from Y whose average level of income is less than p. There-
fore, Z̃n,m(i∕n) returns the relative frequency of observations from Y whose average level of income
is less than that of the poorest i individuals from X , that is, (1∕n)

∑i
k=1X(k). Note that the value of

Zn,m at its “node” points i∕n does not generally coincide with the value of Z̃n,m at its jump points.
The difference between these two functions is depicted in Figure 2. In this article, we will use Z̃n,m
or Zn,m as is more convenient, since the two are asymptotically equivalent. In fact, the sup-distance
among Z̃n,m and Zn,m tends to zero as n and m diverge, as established in the following proposition.

Proposition 2. For any n,m > 0, ||Z̃n,m − Zn,m||∞ ≤ 1∕m. Consequently, as m → ∞,||Z̃n,m − Zn,m||∞ → 0.

In our asymptotic scenario, when n → ∞ we also have m → ∞, hence the second part of
Proposition 2 holds. Moreover, based on the strong uniform consistency of Lorenz curve esti-
mators and their inverse functions (Csörgö et al., 2013; Goldie, 1977), we can prove the strong
uniform consistency of Zn,m and Z̃n,m.

Proposition 3. As n,m → ∞, Zn,m → Z and Z̃n,m → Z a.s. and uniformly in [0, 1].

4 WEAK CONVERGENCE OF THE LPP PROCESS

The empirical process associated with Z, henceforth referred to as the LPP process, may be useful
to characterize the limit distribution of the test statistic under the null hypothesis of SSD. In this
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LANDO and LEGRAMANTI 9

section, we study the asymptotic properties of the LPP process, defined as

n(p) =
√

rn(Zn,m(p) − Z(p)), p ∈ [0, 1],

where rn = nm∕(n + m), and let 𝜈n = 1 ∧ L−1
Fn
(Y m) be the empirical counterpart of 𝜈 = 1 ∧ L−1

F (𝜇G).
For 𝜈 < 1 we know that Z(t) = 1 when t ∈ (𝜈, 1]. In this case we have ||n1(𝜈, 1]||∞ → 0 a.s., since
also Zn,m(p) = 1 for t ∈ (𝜈n, 1] and 𝜈n → 𝜈 a.s. In other words, the interval (𝜈n, 1] contains no infor-
mation. Accordingly, we are particularly interested in the asymptotic behavior of n restricted
to [0, 𝜈n], namely n1[0, 𝜈n]. Weak convergence of the LPP process can be derived under the
following assumptions.

Assumption 1. Both F and G are continuously differentiable with strictly positive
density, and have a finite moment of order 2 + 𝜖 for some 𝜖 > 0. Moreover,
F(0) = G(0) = 0.

Assumption 2. There exists some number c > 0 such that G−1(0+) = c.

The latter assumption does not represent a limitation in terms of applicability. In fact, if
G−1(0+) = 0, one can apply the test to the shifted samples  + 𝛿 and  + 𝛿, for some arbitrar-
ily small 𝛿 > 0, recalling that X ≥2 Y if and only if X + 𝛿 ≥2 Y + 𝛿. In our simulations we set
𝛿 = 10−4, obtaining results that are almost indistinguishable from those under 𝛿 = 0. However,
as the unscaled Lorenz curve is not translation invariant, the outcome of any test based on it
(such as, e.g., Andreoli, 2018; Zhuang et al., 2023) may depend on the shift 𝛿. Actually, in our
experiments, we noted that larger values of 𝛿 may even improve the power of our tests.

The following theorem establishes the weak convergence ofn, leveraging some recent results
in Kaji (2018) that enable the derivation of the Hadamard differentiability of the map from CDFs
to quantile functions (see also Lemma A.18 in Weitkamp et al. (2024)), and the corresponding
weak convergence of the quantile process in the L1 norm, under Assumption 1. As discussed in
Sun and Beare (2021, section 2.4), this extends the applicability of earlier Hadamard differentia-
bility conditions, based on stronger distributional assumptions such as bounded support (Van
der Vaart & Wellner, 1996, Lemma 3.9.23). Because the LPP is obtained using the composition
of L−1

G with LF , Assumption 2 is used in our proof to ensure that the derivative of L−1
G , that is,

(L−1
G )′ = 1∕G−1(L−1

G ), is bounded. This yields the Hadamard differentiability of the composition
map 𝜁(LF ,L−1

G ) = L−1
G ◦LF using Lemmas 3.9.25 and 3.9.27 of Van der Vaart and Wellner (1996).

Finally, the weak convergence of n follows the functional delta method (Van der Vaart &
Wellner, 1996, Sect. 3.9).

Let  be a centered Gaussian element of C[0, 1] × C[0, 1] with covariance function
Cov((x1, y1),(x2, y2)) = C(x1 ∧ x2, y1 ∧ y2) − C(x1, y1)C(x2, y2). Under the independent-
sampling scheme, C(x1, y1) = x1y1 is the product copula, whereas, under the matched-pairs
scheme, C is the copula associated with the pair (Xi,Yi), i = 1,…,n. Now, let 1(x1) = (x1, 1) and
2(x2) = (1, x2). The random elements 1 and 2 are Brownian bridges that are independent
under the independent-sampling scheme, but may be dependent under the matched-pairs one.

Theorem 1. Under Assumptions 1 and 2 and both independent-sampling and
matched-pairs schemes, we have

√
rn(Zn,m − Z) ⇝ 1[0, 𝜈] in C[0, 1], where

(p) =

√
1 − 𝜆∫ p

0 1(t)dF−1(t) −
√
𝜆∫ Z(p)

0 2(t)dG−1(t)
G−1◦Z(p)

.

 14679469, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/sjos.12761 by T

om
m

aso L
ando - U

niversita D
i B

ergam
o , W

iley O
nline L

ibrary on [22/11/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



10 LANDO and LEGRAMANTI

The dependence structure between  and  affects the variance of the limit process , which
is given by

Var((p)) = 1
(G−1◦Z(p))2

[
(1 − 𝜆)Var

(
∫

p

0
1(u)dF−1(u)

)
+ 𝜆Var

(
∫

Z(p)

0
2(u)dG−1(u)

)
− 2

√
𝜆(1 − 𝜆)Cov

(
∫

p

0
1(u)dF−1(u),∫

Z(p)

0
2(u)dG−1(u)

)]
= 1

(G−1◦Z(p))2

[
(1 − 𝜆)∫

p

0
(u − u2)dF−1(u) + 𝜆∫

Z(p)

0
(u − u2)dG−1(u)

− 2
√
𝜆(1 − 𝜆)∫

Z(p)

0 ∫
p

0
(C(u, v) − uv)dF−1(u)dG−1(v)

]
.

Recalling a notion of positive dependence in Chapter 9 of Shaked and Shantikumar (2007), the
copula C is larger than the copula C′ in the positive quadrant dependence (PQD) order if C(u, v) ≥
C′(u, v), for every u, v ∈ [0, 1]. Given F and G, the integrand of the last summand, C(u, v) − uv,
gets larger (smaller) when the copula is larger (smaller) in the PQD order, while it is null under
independence. This implies that Var((p)) is smaller (larger) when the dependence structure is
positive (negative).

It is also interesting to observe that, if X =d Y , the result of Theorem 1 boils down to√
rn(Zn,m(t) − t) ⇝ 1

F−1(t)∫
t

0

(√
1 − 𝜆1(u) −

√
𝜆2(u)

)
dF−1(u)

= 1
F−1(t)∫

t

0
̃(u)dF−1(u),

in C[0, 1], where ̃ is the Brownian bridge defined as ̃ =
√

1 − 𝜆1 −
√
𝜆2.

Finally, note that, using the asymptotic equivalence implied by Proposition 2, all the results
in this section still hold if one replaces Zn,m with Z̃n,m.

5 ASYMPTOTIC PROPERTIES OF THE TEST

As discussed in Section 2.3, deviations from 0 ∶ X ≥2 Y can be measured via the test statis-
tic ̂n =

√
rn  (I − Zn,m). Intuitively, we reject 0 if ̂n is large enough. However, since the null

hypothesis is nonparametric, the main issue is how to determine the distribution of ̂n, or alter-
natively of an upper bound for ̂n, under 0. Following the approach of Barrett et al. (2014), it
is easily seen that, under 0, the test statistic

√
rn  (I − Zn,m) is dominated by

√
rn  (Z − Zn,m),

which therefore can be used to simulate p-values or critical values via bootstrap, thus ensuring
that the size of the test is asymptotically bounded by some arbitrarily small probability 𝛼. Using
the continuous mapping theorem,

√
rn  (Z − Zn,m) is asymptotically distributed as  (), allow-

ing us to derive large-sample properties of the test. The limit behavior of ̂n under the null and
the alternative hypotheses is established in the following lemma.

Lemma 1.

1. Under 0,
√

rn  (I − Zn,m) ≤ √
rn  (Z − Zn,m) ⇝  (). Moreover, for any

𝛼 < 1∕2, the (1 − 𝛼) quantile of  () is positive, finite, and unique.
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LANDO and LEGRAMANTI 11

2. Under 1,
√

rn  (I − Zn,m) →p ∞.

In practice, the limit distribution of
√

rn (Z − Zn,m) under the null hypothesis may be
approximated using a bootstrap approach, as discussed in the next subsection.

5.1 Bootstrap decision rule

Let us denote the bootstrap estimators of the empirical CDFs Fn and Gm with F∗
n and G∗

m,
respectively, defined as

F∗
n(x) = (1∕n)

n∑
i=1

M(1)
i 1(x ≤ Xi), G∗

m(x) = (1∕m)
m∑

j=1
M(2)

j 1(x ≤ Yj),

where M(1) = (M(1)
1 ,…,M(1)

n ) and M(2) = (M(2)
1 ,…,M(2)

m ) are independent of the data and are drawn
from a multinomial distribution according to the chosen sampling scheme. Each M(1)

i (M(2)
j )

counts how many times observation Xi (Yj) is resampled (Van der Vaart & Wellner, 1996, p. 180).
In particular, under the independent-sampling scheme, M(1) and M(2) are independently drawn
from multinomial distributions with uniform probabilities over n and m trials, respectively. Under
the matched-pairs scheme, we have M(1) = M(2) drawn from the multinomial distribution with
uniform probabilities over n = m trials, which means that we sample (with replacement) pairs
of data, from the n pairs {(X1,Y1),…, (Xn,Yn)}. Correspondingly, by applying the definitions in
Section 2, we obtain the bootstrap estimators of the unscaled Lorenz curves, denoted with LF∗

n

and LG∗
m

, as well as the inverse L−1
G∗

m
, and we define Z∗

n,m = L−1
G∗

m
◦LF∗

n
. As is shown below, the ran-

dom process
√

rn  (Zn,m − Z∗
n,m) has the same limiting distribution  (), as

√
rn  (Z − Zn,m).

Therefore, bootstrap p-values are determined by

p = P{
√

rn  (Zn,m − Z∗
n,m) >

√
rn  (I − Zn,m)},

and can be approximated, based on K bootstrap replicates, by

p ≈ (1∕K)
K∑

k=1
1{

√
rn  (Zn,m − Z∗

k;n,m) >
√

rn  (I − Zn,m)},

where Z∗
k;n,m is the kth resampled realization of Z∗

n,m. As usual, the test rejects 0 if p < 𝛼. The
asymptotic behavior of the test is addressed using the following proposition.

Proposition 4. Under Assumptions 1 and 2 and the sampling schemes in Section 3.1,

1. If 0 is true, limn→∞ P{reject 0} ≤ 𝛼;
2. If 0 is false, limn→∞ P{reject 0} = 1.

6 EXTENSION TO FRACTIONAL-DEGREE SD

An important topic in SD theory is represented by SD relations “between” FSD and SSD. This is
motivated by the fact that FSD is a strong requirement, but, on the other hand, SSD corresponds to
total risk aversion, which is quite restrictive in some cases (Müller et al., 2017). There are different
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12 LANDO and LEGRAMANTI

ways to define classes of orders that interpolate between FSD and SSD, and each leads to a
different family of SD relations, typically parameterized by a real number that represents the
strength of the dominance. The first attempt in this direction is ascribable to Fishburn (1980), who
used fractional-degree integration to interpolate the classic kth order SD at all integer orders k ≥ 1.
More recently, Müller et al. (2017), Huang et al. (2020), and Lando and Bertoli-Barsotti (2020)
proposed different parameterizations, with different interpretations and properties, which coin-
cide with classic SD only at orders 1 and 2. In this section, we introduce a simple but very general
family of fractional-degree orders, which have the advantage that they can be easily tested using
the LPP method discussed earlier. This family can be defined as follows.

Let  be the family of increasing absolutely continuous functions u over the non-negative
half line. Under an economic perspective, u may be understood as a utility function, assign-
ing values to monetary outcomes. For some u ∈  , we say that X dominates Y with respect to
u-transformed stochastic dominance (u-TSD), and write X ≥ T

u Y , if u(X) ≥2 u(Y ). TSD has been
studied by Meyer (1977), who denoted it as SSD with respect to u, and by Huang et al. (2020), who
focused on a particular parametric choice of u. Since u-TSD represents SSD between the trans-
formed random variables u(X) and u(Y ), then it can be simply expressed and tested through the
LPP of u(X) and u(Y ).

The behavior of TSD clearly depends on the choice of u. To understand this, let u, ũ ∈  be
two transformation functions defined on the same interval. Generalizing Chan et al. (1990), we
say that u is more convex than ũ and write u ≥c ũ iff u◦ũ−1 is convex. The following theorem shows
that TSD can be equivalently expressed in terms of expected utilities, thus generalizing Theorem 1
of Huang et al. (2020).

Theorem 2. X ≥ T
u Y if and only if E(𝜙(X)) ≥ E(𝜙(Y )), for every increasing utility 𝜙

such that u ≥c 𝜙.

It is easy to see that, if u and 𝜙 are twice differentiable, the condition u ≥c 𝜙 is equivalent
to 𝜌𝜙(x) ≥ 𝜌u(x),∀x, where 𝜌g(x) = g′′(x)∕g′(x) is the Arrow-Pratt index of absolute risk aversion
associated with the utility function g. Moreover, the following general properties hold.

Theorem 3.

1. If u1 ≥c u2 then X ≥ T
u1

Y ⇒ X ≥ T
u2

Y ;
2. X ≥1 Y if and only if X ≥ T

u Y ,∀u ∈  .

Intuitively, the degree of convexity of the function u determines the strength of the SD relation,
and SSD is obtained by taking u to be the identity function, whereas FSD is obtained when u is
“infinitely steep”.

Families of utility functions within  can be obtained easily by composing the quantile func-
tion and the CDF of two absolutely continuous random variables. For example, one may consider
the class of utility functions studied by Huang et al. (2020) and given by uc(x) = exp((1∕c − 1)x),
for c ∈ (0, 1). Since this article deals with tests for non-negative random variables, we focus on a
simpler choice, that is u𝜃(x) = x𝜃 , with 𝜃 ≥ 0. Correspondingly, hereafter we denote the ordering
relation X ≥ T

u𝜃
Y with X ≥ T

1+1∕𝜃Y , thus yielding a continuum of SD relations that get stronger and
stronger as 𝜃 grows. Using Theorem 3, this order is characterized by those utility functions that
have an Arrow-Pratt index larger than or equal to (𝜃 − 1)∕x.

Since X ≥ T
1+1∕𝜃Y is equivalent to X𝜃 ≥2 Y 𝜃 , a test for 1+1∕𝜃

0 ∶ X ≥ T
1+1∕𝜃Y versus 1+1∕𝜃

1 ∶
X≱T

1+1∕𝜃Y is readily obtained by applying our method to the LPP of the transformed random sam-
ples. In particular, we consider the generalized LPP, given by Z̃𝜃

n,m = (L̃𝜃
Gm
)−1◦L̃𝜃

Fn
, where L̃𝜃

Fn
and
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LANDO and LEGRAMANTI 13

F I G U R E 3 The P–P plot (dashed) of two samples of size n = m = 20 versus the generalized LPP Z̃𝜃
n,m

(solid), for 𝜃 = 1, 2, 5, 10. In this example, the plots coincide for 𝜃 ≥ 48.

L̃𝜃
Gm

are the empirical (step-valued) unscaled Lorenz curves corresponding to the transformed
samples {X𝜃

i ∶ i = 1,…,n}, and {Y 𝜃
j ∶ j = 1,…,m}. Z̃𝜃

n,m is a generalized P–P plot, in that it coin-
cides with Z̃n,m for 𝜃 = 1. More interestingly, we prove that, as 𝜃 → ∞, Z̃𝜃

n,m tends to the classic
P–P plot of the nontransformed samples, that is to Gm◦F−1

n , as depicted in Figure 3. In partic-
ular, one may always find some 𝜃 large enough such that the two P–P plots coincide, meaning
that our tests may be also applied to FSD, expressed as G◦F−1(x) ≥ x; see, for example, Davidov
and Herman (2012) and Beare and Clarke (2022) for FSD tests based on the P–P plot. In fact, this
idea is coherent with the intuition that, for 𝜃 → ∞, the stochastic inequality X ≥ T

1+1∕𝜃Y reduces
to X ≥1 Y , as formally established in the following theorem.

Theorem 4.

1. As 𝜃 → ∞, the condition for X ≥ T
1+1∕𝜃Y , that is

∫
x

−∞
F(t)du𝜃(t) ≤ ∫

x

−∞
G(t)du𝜃(t), ∀x,

tends to the condition for X ≥1 Y , that is F(x) ≤ G(x),∀x.
2. There exists some 𝜃0 such that, for 𝜃 ≥ 𝜃0, the generalized LPP coincides with the

classic P–P plot, that is, Z̃𝜃
n,m = Gm◦F−1

n .

To test FSD as a limit case of TSD, one should choose a value of 𝜃 that ensures the result
above. However, if 𝜃 is too large, computations may be difficult, depending on the precision of
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14 LANDO and LEGRAMANTI

the software used. We recommend using 𝜃 = 50, which corresponds to testing ≥ T
1.02, for a good

approximation of FSD.

7 SIMULATIONS

We perform numerical analyses to investigate the finite-sample properties of the proposed tests.
In all simulations, we consider a significance level 𝛼 = 0.1, and run 500 experiments, with
500 bootstrap replicates for each experiment. For simplicity, we set n = m, so henceforth we will
drop the subscript m. Namely, we consider n = m = 50, 100, 200, 500, 1000. The shift 𝛿 is set to
10−4, as discussed in Section 4. All computations have been performed in R, and the code is openly
available at https://github.com/siriolegramanti/SSD.

In light of Proposition 2, instead of Zn we use Z̃n, which can be computed faster. Accord-
ingly, we focus on two different test statistics, namely ∞(I − Z̃n) and 1(I − Z̃n), as defined in
Section 2.3. For n = m, ∞ and 1 can be rewritten, respectively, as

∞(I − Z̃n) = max
i

( i
n
− Z̃n

( i
n

))
, 1(I − Z̃n) =

1
n

n∑
i=1

Ψ
(2i − 1

2n

)
,

where Ψ(t) = (t − Z̃n(t))+. In Section 7.2.4 we also consider test statistics p for a generic p > 1.
Our results are compared with those obtained from the tests of Barrett and Donald (2003),

which represent the state of the art for SSD tests. In particular, Barrett and Donald (2003) propose
three bootstrap-based tests, based on a least favorable configuration, denoted as KSB1, KSB2, and
KSB3, which differ just for the bootstrap method employed to simulate the p-values. We focus
on KSB3 since it is based on the approach that is most similar to ours. Moreover, KSB3 seems to
provide the best results compared to KSB1 and KSB2 as far as SSD is concerned; see tables II-A
and II-B in Barrett and Donald (2003). KSB3 is computed as follows. First, we estimate F[2](x) =
∫ x

0 F(t)dt with F[2]
n (x) = ∫ x

0 Fn(t)dt and G[2](x) = ∫ x
0 G(t)dt with G[2]

n (x) = ∫ x
0 Gn(t)dt. Accordingly,

the test statistic is given by
√

n supx≥0(G
[2]
n (x) − F[2]

n (x)). The p-values are computed by simulating
the distribution of

√
n supx≥0((G

[2]∗
n (x) − G[2]

n (x)) − (F[2]∗
n (x) − F[2]

n (x))), where F[2]∗
n and G[2]∗

n are
bootstrap versions of F[2]

n and G[2]
n , respectively. In particular, the sup is approximated using a grid

of evenly spaced values t1 <…< tr, where t1 and tr are the smallest and the largest values in the
pooled sample, respectively. As for the number of grid points, we set r = 100 as in Barrett and
Donald (2003), but we did not notice substantial differences when r increases.

Note that one pair of distributions gives rise to two different hypothesis tests. In fact, one may
test 0 ∶ F ≥2 G versus 1 ∶ F ≱2 G, but also the reversed hypotheses, denoted as R

0 ∶ G ≥2 F
versus R

1 ∶ G ≱2 F. Except for the trivial case F = G, if Z does not cross the identity we may have
that 0 is true while R

0 is false, or vice versa; differently, if Z crosses the identity, 0 and R
0 are

both false.

7.1 Size properties

To investigate the behavior of the tests under the null hypothesis, we simulate samples from the
Weibull family, denoted by W(a, b), with CDF FW (x; a, b) = 1 − exp{−(x∕b)a}. Since the mean of
a W(a, b) is b∕qa, where qa = 1∕Γ(1 + 1∕a), we let F ∼ W(a, qa), for a = 1.0, 1.1, 1.2, 1.3, and fix
G ∼ W(1, 1). All these distributions have mean 1, and in all these cases0 holds. Clearly, for a = 1
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LANDO and LEGRAMANTI 15

we have F = G, whereas the dominance of F over G becomes stronger, and more apparent, for
larger values of a.

The results in Tables A1, A2a, A3a, and A4a confirm that the proposed tests, both with ∞ and
1, behave as described in Proposition 4, part 1. Namely, the rejection rate tends to be bounded by
𝛼 = 0.1 under 0. More specifically, we observe that the rejection rate of the proposed tests tends
to 𝛼 when F = G (see Table A1), while it tends to 0 when F strictly dominates G (see Tables A2a,
A3a, and A4a). The rejection rate for the KSB3 test by Barrett and Donald (2003) is also asymp-
totically bounded by 𝛼 but, when the dominance is stronger, it is still about 𝛼 for n = 1000. For
such a sample size, the rejection rate of both the proposed tests has already reached 0.

7.2 Power properties

We now investigate the behavior of the tests under 1. Namely, we focus on cases where F is
dominated by G, so that 0 should be rejected quite easily since Z is always below the identity.
As we discuss in Section 7.2.1, the three tests considered behave quite similarly in such cases.
We also focus on critical cases in which neither of the two distributions dominates the other, and
therefore Z crosses the identity. In particular, the most critical situation for our class of tests is
when Z is above the identity everywhere but on a small interval (see Figure 4). The simulation
results in Sections 7.2.2 and 7.2.3 show that, in some of the most difficult cases, 1 and KSB3
struggle to reject 0, whereas the proposed ∞ test stands out as the most reliable.

7.2.1 Weibull distribution

Using the same distributions as in Section 7.1, except for the case F = G, we have that F >2 G
(strictly) and therefore G ≱2 F. In these cases, Z is always above the identity. The results, reported

F I G U R E 4 The behavior of Z for q = 1.2 (solid), q = 1.5 (dashed) and q = 1.8 (dotted) in the
Singh-Maddala case. Especially for q = 1.8, it becomes very hard to detect deviations from 0. In the reverse
cases, the LPPs are just the inverse functions of these.
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16 LANDO and LEGRAMANTI

in Tables A2(b), A3(b) and A4(b), show that the power of the tests increases with the sample size.
In particular, 1 seems to outperform ∞ for smaller sample sizes, while both the proposed 1 and
∞ tests provide larger power compared to the KSB3 test by Barrett and Donald (2003).

7.2.2 Lognormal mixture versus lognormal distribution

As a more critical example, we focus on a special case considered by Barrett and Donald (2003,
Case 5). Here, F is a mixture of lognormal distributions, F = 0.9FLN(0.85, 0.4) + 0.1FLN(0.4, 0.4),
whereas G = FLN(0.86, 0.6). These CDFs cross multiple times, and also Z crosses the identity from
below so that F ≱2 G but also G ≱2 F. In other words, both 0 and R

0 are false. In the latter case,
the null hypothesis is hard to reject, because Z crosses the identity from above, and it exceeds
the identity just in a small subset of the unit interval. Note that Barrett and Donald (2003) just
apply their test to 0 versus 1, overlooking the reverse situation R

0 versus R
1 . As illustrated

in Table A5, 1 exhibits quite a poor performance with the sample sizes considered (to increase
its power up to 0.68, we need to reach n = 5000), while ∞ performs better but with lower power
than KSB3. Conversely, KSB3 has a really poor performance in rejecting R

0 , while the proposed
∞ and 1 tests provide a large power in this critical setting.

7.2.3 Singh–Maddala Distribution

As a third case, let us consider the Singh–Maddala distribution, denoted as SM(a, q, b), with CDF
FSM(x; a, q, b) = 1 − [1 + (x∕b)a]−q. In all the following scenarios, the scale parameter b is set to 1
and hence omitted, while the two shape parameters a and q vary. As in Section 7.2.2, we gen-
erate scenarios in which Z crosses the identity. In particular, we target the worst-case scenarios
for our proposed tests by setting F ∼ SM(1.5, q) and G ∼ SM(1, q), for q = 1.2, 1.5, 1.8. As shown
in Figure 4, larger values of q correspond to cases in which it is harder to detect the difference
between Z and the identity, especially using 1. Tables A6a, A7a, and A8a show that KSB3 deliv-
ers larger power compared to our tests in such critical cases. In particular, while the performance
of ∞ significantly improves for larger samples and lower q, the power of 1 is constantly close
to 0, even for n = 1000 and q = 1.2. In light of part 7 of Proposition 1, this is due to the fact that
1 downsizes the deviations from the null, which are hardly classified as “large”, at least with
the sample sizes considered. In such cases, a test statistic p with larger p may be more effec-
tive, as will be discussed in the next section. However, when applied to the reverse hypotheses
R

0 and R
1 , the proposed tests ∞ and 1 exhibit good performance, with rejection rates signifi-

cantly increasing with n; see Tables A6b, A7b and A8b. On the contrary, KSB3 struggles to detect
nondominance and its power remains close to zero, even for large samples.

7.2.4 Behavior of Tp

As discussed in Section 2.3, one may consider a general statistic p, for p ≥ 1. Our simulation
focus on the choices 1 and ∞ because they are simple to compute, besides being related to some
important statistics. For a general p, the computation can be more complicated and may require
numerical integration. However, we can approximate p by replacing the identity function I with
the step function In, with constant jumps of size 1∕n at each point k∕n, for k = 1,…,n. For this
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LANDO and LEGRAMANTI 17

(a) (b)

F I G U R E 5 Rejection rates of p under independent F ∼ SM(1.5, 1.2), G ∼ SM(1, 1.2), for p = 2 (⧫), p = 5
(○), p = 10 (▴), p = 50 (□). (a) Test for 0 ∶ F ≥2 G (false); (b) Test for R

0 ∶ G ≥2 F (false).

approximation, we can easily compute

p(In − Z̃n) =

(
1
n

n∑
i=1

( i
n
− Z̃n

( i
n

))p

+

)1∕p

.

The performance of p depends on the distributions considered. In general, we note that a larger
value of p may yield a test statistic that is more sensitive when the distance between the LPP
and the identity is small. In Figure 5, we illustrate the behavior of p for p ∈ {2, 5, 20, 50}, F ∼
SM(1.5, 1.2) and G ∼ SM(1, 1.2), which is the same pair of distributions considered in Table A8.
When testing the null hypothesis 0, we may encounter problems in detecting deviations from
the null, as discussed earlier. However, it can be seen that larger values of p correspond to a larger
power, often with a large improvement, especially when moving from p = 2 to p = 5. For the
reversed case R

0 , the results are quite different. In this case, smaller values of p correspond to
larger power, however, all the statistics have a somewhat similar (and good) performance, which
becomes indistinguishable for n ≥ 500. This is logical because this case is easier to detect. Com-
paring these results with those reported in Table A8 we can confirm that ∞ and 1 have the
largest power when testing 0 and R

0 , respectively. Also note that the performance of 50 is very
close to that of ∞, under both scenarios.

7.3 Paired samples

To simulate dependent samples we first draw a sample {(Z1
i ,Z2

i ) ∶ i = 1,…,n} from a bivari-
ate normal distribution, with standard marginals and correlation coefficient 𝜌. Then, by
transforming the data via the standard normal CDF Φ, we obtain a dependent sample
from a bivariate distribution with uniform marginals {U1

i = Φ(Z1
i ) ∶ i = 1,…,n} and {U2

i =
Φ(Z2

i ) ∶ i = 1,…,n}. Finally, a dependent sample from a bivariate distribution with mar-
gins F and G is obtained as {(F−1(U1

i ),G−1(U2
i )) ∶ i = 1,…,n}. In particular, we consider 𝜌 =

−0.75,−0.5,−0.25,+0.25,+0.5,+0.75. As in the previous subsections, we compare our results
with those of KSB3. Note that, although Barrett and Donald (2003) assume independence to
prove the consistency properties of such a test, our simulations reveal that KSB3 exhibits a good
performance even in the dependent case.
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18 LANDO and LEGRAMANTI

In this paired setting, we consider the same Weibull distributions as in Sections 7.1 and
7.2.1, focusing on the case a = 1.1. The results in Tables A9–A14 show that a stronger positive
dependence generally leads to a smaller type-I error probability, under the null hypothesis,
and larger rejection rates under the alternative. The situation is reversed for negative depen-
dence, which negatively affects the performance of all the tests considered. These results can be
explained using the expression of the variance of , derived in Section 4, which suggests that pos-
itive (negative) dependence yields a more (less) efficient estimate of Z, and accordingly, a better
(worse) performance of the test, at least asymptotically.

7.4 Test for FSD

As discussed in Section 6, our methodology also allows to test TSD, including an approximation
of FSD, obtained as ≥ T

1+1∕𝜃 with 𝜃 → ∞. We then apply the method described in Section 6 to
the same Singh-Maddala distributions studied in Section 7.2.3. Since in these cases SSD does
not hold, we have that, a fortiori, the FSD null hypothesis, denoted as 1

0 ∶ F ≥1 G, is also false.
This hypothesis can be tested using a sufficiently large value of 𝜃, as discussed in Section 6. In
particular, we set 𝜃 = 50, which corresponds to approximating the FSD null hypothesis, 1

0 , with
1.02

0 . Our method is compared with the FSD version of the KSB3 test described in Barrett and
Donald (2003). In contrast to the KSB3 test for SSD, this latter test may be shown to be consistent
even in the case of unbounded support.

All the tests considered tend to provide a larger simulated power compared to the SSD case.
This is logical since FSD is more stringent than SSD, and therefore, for the same pairs of distri-
butions, it is easier to detect violations of FSD rather than of SSD. The results in Tables A15–A17
show that KSB3 tends to provide larger power than our ∞ and 1 tests under 1

1 ∶ F ≱1 G. On
the contrary, under the reverse alternative (1

1 )
R ∶ G ≱1 F, KSB3 exhibits a worse performance

than our ∞ and 1, also showing an unexpected behavior, in that its rejection rates first increase
and then decrease as n grows.

8 CONCLUDING REMARKS

In this article, we proposed leveraging the LPP as a new tool to detect deviations from SSD in
the case of non-negative random variables. The same approach can be used to test TSD, hence
including FSD as a limit case. The asymptotic properties in Section 5 and the simulation results in
Section 7 show that our family of tests can be a valid alternative to the established tests based on
the difference between integrals of CDFs, such as those in Barrett and Donald (2003). In particular,
the KSB3 test is outperformed by our proposed sup-based test ∞ in most of the cases analyzed,
sometimes with a remarkable gap.

Among the tests proposed, our simulations reveal that the sup-based test ∞ is also over-
all more reliable than the integral-based 1, which has a lower power in the most critical cases.
However, both tests can be useful. In fact, in light of Proposition 1 part 7, and according to our
numerical results in Sections 7.2.2 and 7.2.3, ∞ performs better than 1 when deviations from 0
are subtle, while 1 provides higher power than ∞ when deviations are more apparent. There-
fore, in applications, it could be useful to use both tests and compare the p-values. It is also worth
noting that the power of our proposed tests improves when the samples are positively correlated,
and deteriorates under negative correlation.
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LANDO and LEGRAMANTI 19

In general, the advantage of using the LPP instead of integrals of CDFs is that it can be approx-
imated uniformly, which allows to establish asymptotic properties without requiring a compact
support; moreover, the LPP has a different sensitivity in detecting violations of SSD, compared
to other methods. With regard to our assumptions, we deal with non-negative random variables
because, otherwise, the unscaled Lorenz curves are not monotone (therefore not invertible), and
the LPP plot cannot be defined. However, in practice, for finite-sample sizes, the tests may be
applied also when negative observations occur. By location-invariance of SSD, this can be done
just by shifting the samples, adding −x∗ + 𝛿, where x∗ < 0 is the minimum value of the pooled
sample and 𝛿 > 0 is an arbitrarily small constant. Finally, the power of our tests may be further
improved by combining the same proposed test statistics with different and less conservative
bootstrap schemes. The latter represents an interesting direction for future work.
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APPENDIX A. TABLES

T A B L E A1 Rejection rates for 0 ∶ F ≥2 G (true) under independent F,G ∼ W(1, 1).

n ∞ 1 KSB3

50 0.09 0.15 0.10
100 0.10 0.15 0.11
200 0.12 0.15 0.11
500 0.09 0.10 0.09
1000 0.08 0.09 0.09

T A B L E A2 Rejection rates under independent F ∼ W(1.1, q1.1) and G ∼ W(1, 1).

n ∞ 1 KSB3

(a) Test for 0 ∶ F ≥2 G (true)
50 0.08 0.10 0.12
100 0.04 0.06 0.11
200 0.03 0.02 0.10
500 0.02 0.00 0.11
1000 0.00 0.00 0.09

(b) Test for R
0 ∶ G ≥2 F (false)

50 0.19 0.31 0.12
100 0.22 0.29 0.11
200 0.27 0.36 0.11
500 0.50 0.54 0.12
1000 0.72 0.72 0.18

T A B L E A3 Rejection rates under independent F ∼ W(1.2, q1.2) and G ∼ W(1, 1).

n ∞ 1 KSB3

(a) Test for 0 ∶ F ≥2 G (true)
50 0.04 0.05 0.12
100 0.04 0.02 0.13
200 0.02 0.00 0.12
500 0.01 0.00 0.11
1000 0.00 0.00 0.10

(b) Test for R
0 ∶ G ≥2 F (false)

50 0.29 0.45 0.14
100 0.37 0.50 0.13
200 0.56 0.66 0.15
500 0.87 0.88 0.26
1000 0.99 0.99 0.48
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22 LANDO and LEGRAMANTI

T A B L E A4 Rejection rates under independent F ∼ W(1.3, q1.3) and G ∼ W(1, 1).

n ∞ 1 KSB3

(a) Test for 0 ∶ F ≥2 G (true)
50 0.03 0.03 0.12
100 0.02 0.00 0.12
200 0.01 0.00 0.11
500 0.01 0.00 0.11
1000 0.00 0.00 0.08

(b) Test for R
0 ∶ G ≥2 F (false)

50 0.41 0.57 0.16
100 0.56 0.67 0.18
200 0.81 0.85 0.28
500 0.99 0.99 0.51
1000 1.00 1.00 0.88

T A B L E A5 Rejection rates under independent F = 0.9FLN (0.85, 0.4) + 0.1FLN (0.4, 0.9), G = FLN (0.86, 0.6).
Note: in case (a), the empirical power of 1 reaches 0.68 for n = 5000.

n ∞ 1 KSB3

(a) Test for 0 ∶ F ≥2 G (false)

50 0.25 0.17 0.43

100 0.43 0.15 0.59

200 0.58 0.10 0.74

500 0.89 0.08 0.98

1000 0.99 0.08 1.00

(b) Test for R
0 ∶ G ≥2 F (false)

50 0.16 0.34 0.03

100 0.17 0.29 0.01

200 0.26 0.30 0.01

500 0.51 0.41 0.01

1000 0.84 0.68 0.02
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LANDO and LEGRAMANTI 23

T A B L E A6 Rejection rates under independent F ∼ SM(1.5, 1.8), G ∼ SM(1, 1.8).

n ∞ 1 KSB3

(a) Test for 0 ∶ F ≥2 G (false)

50 0.02 0.00 0.38
100 0.04 0.00 0.52
200 0.05 0.00 0.63
500 0.11 0.00 0.88
1000 0.23 0.00 0.97

(b) Test for R
0 ∶ G ≥2 F (false)

50 0.56 0.77 0.06
100 0.76 0.87 0.03
200 0.97 0.98 0.02
500 1.00 1.00 0.01
1000 1.00 1.00 0.03

T A B L E A7 Rejection rates under independent F ∼ SM(1.5, 1.5), G ∼ SM(1, 1.5).

n ∞ 1 KSB3

(a) Test for 0 ∶ F ≥2 G (false)

50 0.07 0.01 0.51

100 0.10 0.01 0.66

200 0.16 0.00 0.83

500 0.44 0.00 0.96

1000 0.81 0.00 1.00

(b) Test for R
0 ∶ G ≥2 F (false)

50 0.43 0.68 0.04

100 0.63 0.77 0.01

200 0.92 0.94 0.00

500 1.00 1.00 0.00

1000 1.00 1.00 0.00
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24 LANDO and LEGRAMANTI

T A B L E A8 Rejection rates under independent F ∼ SM(1.5, 1.2), G ∼ SM(1, 1.2).

n ∞ 1 KSB3

(a) Test for 0 ∶ F ≥2 G (false)
50 0.16 0.05 0.64

100 0.24 0.03 0.79

200 0.45 0.01 0.92

500 0.85 0.01 0.99

1000 0.99 0.01 1.00

(b) Test for R
0 ∶ G ≥2 F (false)

50 0.27 0.52 0.03

100 0.48 0.61 0.00

200 0.77 0.83 0.01

500 0.99 0.99 0.00

1000 1.00 1.00 0.00

T A B L E A9 Rejection rates under dependent F ∼ W(1.1, q1.1) and G ∼ W(1, 1); 𝜌 = −0.75.

n ∞ 1 KSB3

(a) Test for 0 ∶ F ≥2 G (true)
50 0.09 0.10 0.11

100 0.04 0.06 0.09

200 0.04 0.05 0.10

500 0.03 0.02 0.08

1000 0.01 0.00 0.07

(b) Test for R
0 ∶ G ≥2 F (false)

50 0.16 0.25 0.11

100 0.17 0.28 0.11

200 0.24 0.30 0.10

500 0.36 0.40 0.11

1000 0.53 0.57 0.14
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LANDO and LEGRAMANTI 25

T A B L E A10 Rejection rates under dependent F ∼ W(1.1, q1.1) and G ∼ W(1, 1); 𝜌 = −0.5.

n ∞ 1 KSB3

(a) Test for 0 ∶ F ≥2 G (true)
50 0.08 0.10 0.11

100 0.04 0.06 0.09

200 0.04 0.04 0.10

500 0.02 0.02 0.08

1000 0.01 0.00 0.07

(b) Test for R
0 ∶ G ≥2 F (false)

50 0.17 0.27 0.11

100 0.19 0.29 0.11

200 0.24 0.31 0.11

500 0.39 0.42 0.12

1000 0.60 0.61 0.15

T A B L E A11 Rejection rates under dependent F ∼ W(1.1, q1.1) and G ∼ W(1, 1); 𝜌 = −0.25.

n ∞ 1 KSB3

(a) Test for 0 ∶ F ≥2 G (true)
50 0.07 0.10 0.11

100 0.05 0.06 0.09

200 0.04 0.04 0.10

500 0.02 0.01 0.08

1000 0.01 0.00 0.07

(b) Test for R
0 ∶ G ≥e q2F (false)

50 0.18 0.27 0.11

100 0.19 0.30 0.12

200 0.28 0.34 0.11

500 0.42 0.45 0.13

1000 0.64 0.68 0.17
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26 LANDO and LEGRAMANTI

T A B L E A12 Rejection rates under dependent F ∼ W(1.1, q1.1) and G ∼ W(1, 1); 𝜌 = +0.25.

n ∞ 1 KSB3

(a) Test for 0 ∶ F ≥2 G (true)
50 0.06 0.09 0.11

100 0.04 0.06 0.11

200 0.04 0.02 0.09

500 0.01 0.01 0.10

1000 0.01 0.00 0.09

(b) Test for R
0 ∶ G ≥2 F (false)

50 0.23 0.36 0.13

100 0.25 0.37 0.12

200 0.35 0.42 0.13

500 0.57 0.61 0.17

1000 0.79 0.79 0.22

T A B L E A13 Rejection rates under dependent F ∼ W(1.1, q1.1) and G ∼ W(1, 1); 𝜌 = +0.5.

n ∞ 1 KSB3

(a) Test for 0 ∶ F ≥2 G (true)

50 0.06 0.10 0.10

100 0.04 0.05 0.11

200 0.03 0.02 0.10

500 0.01 0.00 0.10

1000 0.00 0.00 0.08

(b) Test for R
0 ∶ G ≥2 F (false)

50 0.24 0.43 0.14

100 0.28 0.44 0.13

200 0.42 0.52 0.14

500 0.69 0.74 0.20

1000 0.89 0.91 0.29
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LANDO and LEGRAMANTI 27

T A B L E A14 Rejection rates under dependent F ∼ W(1.1, q1.1) and G ∼ W(1, 1); 𝜌 = +0.75.

n ∞ 1 KSB3

(a) Test for 0 ∶ F ≥2 G (true)
50 0.06 0.11 0.10

100 0.02 0.04 0.11

200 0.02 0.01 0.10

500 0.01 0.00 0.09

1000 0.00 0.00 0.07

(b) Test for R
0 ∶ G ≥2 F (false)

50 0.30 0.57 0.15

100 0.42 0.59 0.15

200 0.61 0.72 0.18

500 0.88 0.91 0.33

1000 0.98 0.99 0.50

T A B L E A15 FSD test. Rejection rates for independent F ∼ SM(1.5, 1.2), G ∼ SM(1, 1.2).

n ∞ 1 KSB3

(a) Test for H1
0 ∶ F ≥1 G (false)

50 0.11 0.14 0.24

100 0.22 0.16 0.41

200 0.44 0.21 0.64

500 0.86 0.42 0.92

1000 1.00 0.82 0.95

(b) Test for (H1
0 )

R ∶ G ≥1 F (false)
50 0.03 0.29 0.19

100 0.10 0.38 0.19

200 0.31 0.53 0.14

500 0.92 0.92 0.05

1000 1.00 1.00 0.00
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28 LANDO and LEGRAMANTI

T A B L E A16 FSD test. Rejection rates for independent F ∼ SM(1.5, 1.5), G ∼ SM(1, 1.5).

n ∞ 1 KSB3

(a) Test for H1
0 ∶ F ≥1 G (false)

50 0.08 0.09 0.15

100 0.11 0.06 0.24

200 0.20 0.05 0.39

500 0.64 0.10 0.85

1000 0.96 0.29 0.97

(b) Test for (H1
0 )

R ∶ G ≥1 F (false)
50 0.08 0.44 0.32

100 0.19 0.56 0.44

200 0.52 0.80 0.52

500 0.99 0.99 0.39

1000 1.00 1.00 0.22

T A B L E A17 FSD test. Rejection rates for independent F ∼ SM(1.5, 1.8), G ∼ SM(1, 1.8).

n ∞ 1 KSB3

(a) Test for H1
0 ∶ F ≥1 G (false)

50 0.03 0.02 0.07

100 0.04 0.02 0.13

200 0.09 0.01 0.24

500 0.36 0.01 0.60

1000 0.77 0.02 0.92

(b) Test for (H1
0 )

R ∶ G ≥1 F (false)
50 0.10 0.59 0.47

100 0.30 0.70 0.63

200 0.74 0.91 0.78

500 0.99 1.00 0.78

1000 1.00 1.00 0.67

APPENDIX B. PROOFS

Calculations of Example 1. The unscaled Lorenz curve of F is

LF(p) = b
(
Γ
(

1 + 1
a

)
− Γ

(
1 + 1

a
,− log(1 − p)

))
,

while
LG(p) = p + (1 − p) log(1 − p).

It is well known (e.g. Goldie, 1977) that LG can be expressed as LG(p) =
MG◦G−1(p), with

MG(x) = ∫
x

0
t dG(t) = 1 − e−x(x + 1), x ≥ 0.
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LANDO and LEGRAMANTI 29

Noting that MG(x) ≤ 𝜇G = 1 for any x ≥ 0, this function can be inverted using the
Lambert W−1 function (Corless et al., 1996), that is M−1

G (t) = −1 − W−1((t − 1)∕e).
Accordingly,

L−1
G (t) = G◦M−1

G (t) = 1 − exp
(

1 + W−1

( t − 1
e

))
.

Finally, by composition, we obtain the expression of Z in Example 1. ▪

Proof of Proposition 1.

1. This follows from the properties of the Lp norm.
2. If v2(x) ≤ 0,∀x ∈ [0, 1] then v1(x) − v2(x) ≥ v1(x),∀x ∈ [0, 1] which implies

(v1(x) − v2(x))p
+ ≥ (v1(x))p

+,∀x ∈ [0, 1] and therefore ||(v1 − v2)+||p ≥ ||(v1)+||p by
monotonicity of integrals.

3. The proof is the same as in Lemma 2 of Barrett et al. (2014) and relies on the fact
that v1 ∈ C[0, 1].

4. Minkowski’s inequality implies that, for some pair of functions u, v ∈ C[0, 1],||u||p = ||(u − v) + v||p ≤ ||u − v||p + ||v||p, so that ||u||p − ||v||p ≤ ||u − v||p, and
similarly, ||u − v||p ≥ ||v||p − ||u||p; therefore, ||u||p − ||v||p| ≤ ||u − v||p. Then

|||(v1)+||p − ||(v2)+||p| ≤ ||(v1)+ − (v2)+||p ≤ ||v1 − v2||p ≤ ||v1 − v2||∞,
where the second inequality follows from the fact that, for every x ∈ [0, 1],|(v1(x))+ − (v2(x))+| ≤ |v1(x) − v2(x)|.

5. The proof follows from absolute homogeneity of the Lp norm.
6. Let 𝛽 ∈ [0, 1]. By convexity of the function (⋅)+, Minkowski’s inequality, and

absolute homogeneity of the Lp norm,

p(𝛽(v2) + (1 − 𝛽)v1) = ||(𝛽v2 + (1 − 𝛽)v1)+||p ≤ ||𝛽(v2)+ + (1 − 𝛽)(v1)+||p
≤ 𝛽||(v2)+||p + (1 − 𝛽)||(v1)+||p = 𝛽p(v2) + (1 − 𝛽)p(v1).

7. This follows from basic properties of Lp norms. ▪

Proof of Proposition 2. Z̃n,m − Zn,m can be expressed as

L̃−1
Gm
◦L̃Fn − L−1

Gm
◦LFn = (L̃−1

Gm
◦L̃Fn − L̃−1

Gm
◦LFn ) + (L̃−1

Gm
◦LFn − L−1

Gm
◦LFn ).

For the first summand, which is the difference between two step functions, we have
L̃−1

Gm
◦L̃Fn (p) ≥ L̃−1

Gm
◦LFn(p) for every p ∈ [0, 1], since L̃Fn (p) ≥ LFn (p) for every p ∈ [0, 1].

Moreover, L̃−1
Gm
◦L̃Fn (k∕n) = L̃−1

Gm
◦LFn (k∕n) for k = 0,…,n, while, within each interval

((k − 1)∕n, k∕n), the difference L̃−1
Gm
◦L̃Fn (p) − L̃−1

Gm
◦LFn (p) is bounded from above by the

height of the jumps of L̃−1
Gm

, that is, 1∕m. For the latter summand, L̃−1
Gm
◦LFn − L−1

Gm
◦LFn ∈

[−1∕m, 0], since clearly L−1
Gm
◦LFn is the linear interpolator of the jump points of the

step function L̃−1
Gm

◦LFn . Hence, the result follows. ▪
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30 LANDO and LEGRAMANTI

Proof of Proposition 3. As proved in Theorem 10.1 and Theorem 13.2 of Csörgö
et al. (2013), L̃−1

Gm
and L̃Fn converge strongly and uniformly to L−1

G and LF , respectively.
Since L−1

G is uniformly continuous in [0,∞) and supp∈[0,1] |LFn(p) − LF(p)| → 0 almost
surely, we obtain that supp∈[0,1] |L−1

G ◦L̃Fn(p) − L−1
G ◦LF(p)| → 0 almost surely. Then, for

every p ∈ (0, 1),

|L̃−1
Gm
◦L̃Fn (p) − L−1

G ◦LF(p)| ≤ |L̃−1
Gm
◦L̃Fn (p) − L−1

G ◦L̃Fn (p)| + |L−1
G ◦L̃Fn (p) − L−1

G ◦LF(p)|
≤ sup

p∈[0,1]
|L̃−1

Gm
(p) − L−1

G (p)| + sup
p∈[0,1]

|L−1
G ◦L̃Fn(p) − L−1

G ◦LF(p)|.
Since both terms in the right-hand side converge to 0 with probability 1, we
obtain that Z̃n,m converges strongly and uniformly to Z in [0, 1]. By Proposition 2,||Z̃n,m − Zn,m||∞ → 0 for n → ∞ and m → ∞, therefore the same property is satisfied
by Zn,m. ▪

Proof of Theorem 1. Let L be the space of maps z ∶ [0,∞) → R with limx→−∞ z(x) =
0 and limx→∞ z(x) = 1, and the norm ||z||L = max{||z||∞, ||1 − z||1}. As shown by
Kaji (2018), under Assumption 1, the map 𝜙(F) = F−1 from CDFs to quantile func-
tions is Hadamard differentiable at F, tangentially to the set L0 of continuous
functions in L, with derivative map

𝜙′
F(z) = −(z◦F−1)(F−1)′.

The linear map 𝜓(F−1) = ∫ .

0 F−1(t)dt coincides with its Hadamard derivative. Accord-
ingly, using the chain rule (Van der Vaart & Wellner, 1996, Lemma 3.9.3), the
composition map 𝜓◦𝜙 ∶ F → LF is also Hadamard differentiable at F tangentially to
L0, with derivative

(𝜓◦𝜙)′F(z) = 𝜓 ′
𝜙(F)◦𝜙

′
F(z) = −∫

.

0
z◦F−1(p)dF−1(p).

Now, observe that ( √
n(Fn − F)√

m(Gm − G)

)
⇝

(1◦F
2◦G

)
in L × L,

as shown in Lemma 5.1 of Sun and Beare (2021). Then, the functional delta method
(Van der Vaart & Wellner, 1996, Theorem 3.9.13) implies the joint weak convergence( √

n(LFn − LF)√
m(LGm − LG)

)
=

( √
n(𝜓◦𝜙(Fn) − 𝜓◦𝜙(F))√

m(𝜓◦𝜙(Gm) − 𝜓◦𝜙(G))

)
⇝

(
(𝜓◦𝜙)′F(1◦F)
(𝜓◦𝜙)′G(2◦G)

)

=

(
− ∫ .

01(t)dF−1(t)
− ∫ .

02(t)dG−1(t)

)
=∶

(F

G

)
in C[0, 1] × C[0, 1]. (B1)

Now, consider the process
√

m(L−1
Gm

(t) − L−1
G (t)), for t ∈ [0, 𝜇G]. LG is increasing and

continuous on [0, 1], therefore the inverse function L−1
G is increasing and continuous

on [0, 𝜇G], moreover the derivative L′
G = G−1 is strictly positive in the unit interval,
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LANDO and LEGRAMANTI 31

since Assumption 2 entails that G−1(0+) = c > 0. Then, using the inverse map theorem
(Van der Vaart & Wellner, 1996, Lemma 3.9.20) the map 𝜂 ∶ LG → L−1

G is Hadamard
differentiable at LG, tangentially to the set of bounded functions on [0, 1], with
derivative

𝜂′LG
(z) = −

z◦L−1
G

L′
G◦L−1

G
= −

z◦L−1
G

G−1◦L−1
G
.

Since rn∕n → 1 − 𝜆 and rn∕m → 𝜆, by (B1) and the functional delta method, the above
result implies

√
rn

(
LFn − LF

L−1
Gm

− L−1
G

)
⇝

(
𝜆F

(1 − 𝜆)𝜂′LG
(G)

)
=∶

(
𝜆F

(1 − 𝜆)G

)
in C[0, 1] × C[0, 𝜇G], (B2)

where G is defined as

G(t) =
∫ L−1

G (t)
0 2(p)dG−1(p)

G−1◦L−1
G (t)

, t ∈ [0, 𝜇G].

Now, consider the maps 𝜋 = 𝜓◦𝜙 ∶ F → LF , 𝜃 ∶ G → L−1
G , and the composition map

𝜁 ∶ C[0, 1] × C[0, 𝜇G] → C[0, 𝜈] defined by 𝜁(𝜋, 𝜃)(x) = 𝜃◦𝜋(x). The Hadamard deriva-
tive of 𝜃 at LF is 𝜃′LF

(𝛼) = ((L−1
G )′◦LF)𝛼 by Lemma 3.9.25 of Van der Vaart and

Wellner (1996), since, by Assumption 2, (L−1
G )′ = 1∕G−1◦L−1

G ≤ 1∕c is bounded and
continuous in [0, 𝜇G]. Therefore we can apply Lemma 3.2.27 of Van der Vaart and
Wellner (1996), which establishes that 𝜁 is Hadamard differentiable at (𝜋, 𝜃), tan-
gentially to the set C[0, 1] × UC[0, 𝜇G], where UC[0, 𝜇G] is the family of uniformly
continuous functions on [0, 𝜇G], with derivative

𝜁 ′𝜋,𝜃(𝛼, 𝛽)(x) = 𝛽◦𝜋(x) + 𝜃′𝜋(x)(𝛼(x)) = 𝛽◦LF(x) + 𝜃′LF
(𝛼(x)) = 𝛽◦LF(x) + ((L−1

G )′◦LF)𝛼(x).

Now, since Z = 𝜁(LF ,L−1
G ), using (B2), the functional delta method and the Hadamard

differentiability of the composition map 𝜁 give√
rn(Zn,m − Z)1[0, 𝜈] =

√
rn(𝜁(LFn ,L−1

Gm
) − 𝜁(LF ,L−1

G ))1[0, 𝜈]

⇝ 𝜁 ′LF ,L−1
G
(𝜆F , (1 − 𝜆)G) =

√
𝜆G◦LF +

√
1 − 𝜆

F

G−1◦L−1
G ◦LF

=
−
√

1 − 𝜆∫ .

01dF−1(p) +
√
𝜆∫ Z

0 2(p)dG−1(p)
G−1◦Z

in C[0, 𝜈],

which implies the statement, since n1(𝜈, 1] ⇝ 0. ▪

Proof of Lemma 1. Bear in mind that1[0, 𝜈] is a mean zero Gaussian process since it
is obtained by integrating and normalizing Gaussian processes. Under 0, p − Z(p) ≤
0, ∀p ∈ [0, 1]. Hence√

rn  (I − Zn,m) ≤ √
rn  (Z − Zn,m) =  (

√
rn(Z − Zn,m)) ⇝  (),
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32 LANDO and LEGRAMANTI

where the last step follows from the continuous mapping theorem, since the map 
satisfies | (u) −  (v)| ≤ ||u − v||∞, where u, v are continuous functions on the unit
interval, as proved in Proposition 1. The (1 − 𝛼) quantile of the distribution of  () is
positive, finite, and unique because  is a mean zero Gaussian process, so the proof
follows the same arguments used in the proof of Lemma 4 in Barrett et al. (2014).
Because, by Proposition 3, Zn,m converges strongly and uniformly to Z, under 1 we
have  (I − Zn,m) →p  (I − Z) > 0. Finally, multiplying by

√
rn, we obtain the second

part of the statement. ▪

Proof of Proposition 4. As proved in Lemma 5.2 of Sun and Beare (2021),(√
n(F∗

n − Fn)√
m(G∗

n − Gn)

)
as∗
⇝
M

(1◦F
2◦G

)
in L × L,

where
as∗
⇝
M

denotes weak convergence conditional on the data a.s.; see Kosorok (2008,
p. 20). The proof of Theorem 1 establishes the Hadamard differentiability of the maps
𝜓◦𝜙 ∶ F → LF and 𝜂◦𝜓◦𝜙 ∶ G → L−1

G , so that the functional delta method for the
bootstrap implies

√
rn

(
LF∗

n
− LFn

L−1
G∗

n
− L−1

Gn

)
P
⇝
M

(
𝜆F

(1 − 𝜆)G

)
in C[0, 1] × C[0, 𝜇G],

where
P
⇝
M

denotes weak convergence conditional on the data in probability; see
Kosorok (2008, p. 20). By the Hadamard differentiability of the composition map
𝜁(LF ,L−1

G ) = L−1
G ◦LF , the functional delta method for bootstrap implies

√
rn(Z∗

n,m −

Zn,m)
P
⇝
M

, which entails that  (
√

rn(Zn,m − Z∗
n,m))

P
⇝
M

 (−) =d  () by the contin-
uous mapping theorem. The test rejects the null hypothesis if the test statistic exceeds
the bootstrap threshold c∗n(𝛼) = inf{y ∶ P(

√
rn  (Zn,m − Z∗

k;n,m) > y| ,) ≤ 𝛼},
but the weak convergence result implies c∗n(𝛼) →p c(𝛼) = inf{y ∶ P( () > y) ≤ 𝛼}.
Hence, Lemma 1 yields the result. ▪

Proof of Theorem 2. Integrating by substitution, we can see that X ≥ T
u Y if and only

if u(X) ≥2 u(Y ), since P(u(X) ≤ t) = FX◦u−1(t), and similarly for Y . Hence, by setting
𝜙 = g◦u, the proof follows from the classic characterization of SSD, since E(g◦u(X)) ≥
E(g◦u(Y )), for any increasing concave function g. ▪

Proof of Theorem 3. Point 1 follows from the fact that u1(X) ≥2 u1(Y ) implies
E(u2◦u−1

1 ◦u1(X)) = E(u2(X)) ≥ E(u2(Y )), because the composition u2◦u−1
1 is concave

by construction. The “only if” part of point 2 is trivial. The “if” part follows from
the characterization of FSD, taking into account that the equivalent condition of
Theorem 2, that is, E(𝜙(X)) ≥ E(𝜙(Y )),∀𝜙 ≤c u, for every u ∈  , implies that such an
inequality holds just for every increasing 𝜙 ∈  . Since any increasing function may
be approximated by a sequence of functions in  , we have X ≥1 Y . ▪
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Proof of Theorem 4.

1. Since X𝜃 = u𝜃(X) has CDF F◦u−1
𝜃

, and similarly Y 𝜃 has CDF G◦u−1
𝜃

, a change of
variable shows that X ≥ T

1+1∕𝜃Y can be expressed as

∫
x

−∞
F(t)du𝜃(t) ≤ ∫

x

−∞
G(t)du𝜃(t), ∀x. (B3)

Integrating by parts and by substitution, we obtain that, for both H = F and H = G,

𝜃
H(x) =∫

x

0
H(t)du𝜃(t) = u𝜃(x)H(x)−∫

x

0
u𝜃(t)dH(t) = u𝜃(x)H(x)−∫

H(x)

0
u𝜃◦H−1(y)dy.

Hence, as 𝜃 → ∞,

𝜃
H(x)

u𝜃(x)
= H(x) − ∫

H(x)

0

u𝜃◦H−1(y)
u𝜃(x)

dy = H(x) − ∫
H(x)

0

(
H−1(y)

x

)𝜃

dy → H(x),

by the Lebesgue dominated convergence theorem, recalling that H−1(y)∕x ≤ 1
as y ≤ H(x). Now, it is readily seen that X ≥ T

1+1∕𝜃Y if and only if 𝜃
F(x)∕u𝜃(x) ≤

𝜃
G(x)∕u𝜃(x) for any x, which implies the result.

2. Let x1,…, xn and y1,…, ym be ordered realizations from X and Y , respectively. For
i = 1,…,n, and j = 1,…,m − 1, Z̃𝜃

n,m(i∕n) returns j∕m if

(1∕n)
i∑

k=1
x𝜃k ∈

[
(1∕m)

j∑
k=1

y𝜃k, (1∕m)
j+1∑
k=1

y𝜃k

)
,

which is equivalent to

xi

[
1
n

( i−1∑
k=1

(
xk

xi

)𝜃

+ 1

)]1∕𝜃

∈

⎡⎢⎢⎣yj

[
1
m

( j−1∑
k=1

(
yk

yj

)𝜃

+ 1

)]1∕𝜃

, yj+1

[
1
m

( j∑
k=1

(
yk

yj+1

)𝜃

+ 1

)]1∕𝜃⎤⎥⎥⎦.
The terms in square brackets can be arbitrarily close to 1 by the choice
of 𝜃. Then, there exists some 𝜃0 such that, for 𝜃 ≥ 𝜃0, (1∕n)

∑i
k=1x𝜃k ∈

[(1∕m)
∑j

k=1y𝜃k, (1∕m)
∑j+1

k=1y𝜃k) if and only if xi ∈ [yj, yj+1). That is, for any i = 1,…,n
and 𝜃 ≥ 𝜃0, Z̃𝜃

n,m(i∕n) returns j∕m if xi ∈ [yj, yj+1), which coincides with the P–P
plot Gm◦F−1

n . ▪
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