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Abstract. The aim of this work is to contribute to the development of a high-order accurate
discretization that is entropy conserving and entropy stable both in space and in time. To
do this, the general framework is based on a high-order accurate discontinuous Galerkin (dG)
method in space with entropy working variables, several entropy conservative and stable nu-
merical fluxes and an entropy conserving modified Crank-Nicolson method. We present the first
results, obtained with the discretizations here proposed, for two bi-dimensional unsteady viscous
test-case: the Taylor-Green vortex and the double shear layer.

1 INTRODUCTION

In the last years entropy-conserving (EC) and entropy-stable (ES) methods have attracted
much interest. The idea to ensure at a discrete level the conservation/stability of entropy dates
back to 80s with the first works of Tadmor, Harten and Hughes et al. [1, 2, 3, 4, 5].

Since these early works, high-order methods, and among them the discontinuous Galerkin
(dG) methods, have attracted significant attention, even if the debate about the superior perfor-
mance of high-order methods with respect to low-order ones is still on today. The main reasons
that have promoted the development of high-order methods are the higher accuracy that they
possess per degree of freedom (DoF) and the smaller numerical dispersion and dissipation er-
rors with respect to low-order methods [6, 7], properties that make these methods an optimal
candidate to solve simulations of turbulent flows. On the other hand, the main drawbacks of
high-order methods are the higher CPU time required per DoF with respect to low-order meth-
ods, and their loss of robustness for discontinuous solutions or when some physical features are
strongly under-resolved, which is really common for turbulent flows (ILES/uDNS). Note that,
at this regards, entropy stable schemes improve the robustness of numerical schemes, in fact,
as demonstrated in [8] and reported in [9], dG methods are stable for linear problem, but, for
scalar nonlinear hyperbolic problems, they are L2-stable only if the following conditions hold:
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i) all integrals must be evaluated exactly; ii) an entropy stable numerical flux is used at element
interfaces.

Starting from the seminal works of 80s [1, 2, 3, 4, 5], several entropy conservative and entropy
stable Riemann solvers [10, 11, 12] and several dG formulations in entropy variables [13, 14,
15] have been developed. In particular, note that in the last works it is adopted a space-
time dG formulation in which all the space and time DoFs are coupled, which clearly leads
to a more CPU time consuming method with respect to the one required with the method of
lines, which is the method here proposed. A framework to construct high-order EC schemes in
periodic domains has been given by LeFloch et al. [16]. Fisher and Carpenter [17] combined this
approach with SBP operators proving that, when the derivative approximations in space are
SBP operators, two-point EC fluxes can be used to construct high-order schemes. Gassner et
al. [18, 19] showed that, when specific numerical volume fluxes in the flux form volume integral of
Fisher and Carpenter are chosen, skew-symmetric-like (split form) DGSEM formulations for the
Euler equations can be discretely recovered. It should be mentioned that most of the described
EC and ES approaches have been developed for semi-discrete Navier-Stokes equations and, to
the best of authors knowledge, it seems that until now the attention has been focused mainly on
the spatial discretization, since only few works have been developed for fully-discrete system of
equations with these properties [16, 20, 21, 22, 23]. Nevertheless, even if EC or ES formulations
in space are used, it is not possible to ensure that these properties are fulfilled for time-dependent
solutions, for which there is a not negligible effect due to the accuracy of the time integration
method used.

In this work we want to contribute to the development of high-order accurate fully-discrete
entropy conserving/stable schemes, extending the work presented in [24, 25] to viscous flows.
The aim is to couple the desirable properties of high-order methods with the superior robustness
given by entropy stable schemes, and the final target is to perform high-fidelity simulations
of complex turbulent flow phenomena with a reduced CPU time. The general framework is
a modal high-order dG discretization in space with entropy working variables, several entropy
conservative and stable numerical fluxes and an implicit time integration method that is entropy
conservative. In particular, the discretization in time is performed with a generalized Cranck-
Nicolson method, which has been inspired by [16, 20, 21] and adapted to the dG discretization
with entropy variables.

The rest of the paper is organized as follows. In the following Section the governing equations
are introduced. Section 3 reviews the main elements of the dG and of the generalized Cranck-
Nicolson method. In Section 4 are shown some first numerical results performed on two bi-
dimensional unsteady viscous test-case: the Taylor-Green vortex and the double shear layer.
The last Section is devoted to conclusions, remarks and possible future developments.
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2 GOVERNING EQUATIONS

The governing equations of compressible viscous flows are the Navier-Stokes equations, writ-
ten here using Einstein notation:

∂ρ

∂t
+ ∂

∂xj
(ρuj) = 0,

∂

∂t
(ρui) + ∂

∂xj
(ρujui) = − ∂p

∂xi
+ ∂τji

∂xj
,

∂

∂t
(ρE) + ∂

∂xj
(ρujH) = ∂

∂xj
[uiτij − qj ] .

(1)

In these equations, i, j = 1, . . . , d, where d ∈ 2, 3 is the geometrical dimension of the problem, E
and H are the total energy and the total enthalpy, respectively, and the pressure, stress tensor
and heat flux vector are given by:

p = (γ − 1) ρ

(
E − ukuk

2

)
, τij = 2µ

[
Sij − 1

3
∂uk

∂xk
δij

]
, qj = − µ

Pr

∂h

∂xj
, (2)

where γ = cp/cv, Pr is the molecular Prandtl number and Sij is the mean strain-rate tensor,
that is:

Sij = 1
2

(
∂ui

∂uj
+ ∂uj

∂xi

)
. (3)

In order to ensure the entropy conserving/stable property in space, we introduce the set of
entropy variables:

v =
{

γ − s

γ − 1 − β|u|2,
ρu1
p

,
ρu2
p

, −ρ

p

}
, (4)

in which, s is the physical entropy, i.e. s = ln(pρ−γ) and β = ρ/(2p), and we rewrite the
system (1) in terms of entropy variables, in a more compact form, as:

P(v)∂v
∂t

+ ∇ · Fc(v) + ∇ · Fv(v, ∇v) = 0, (5)

where Fc and Fv are the convective and the viscous flux functions, respectively, and P (v)
is the matrix that takes into account of the change of variables from the conservative set,
q = (ρ, ρui, ρE), to the entropy set v, which is symmetric positive-definite.

3 SPACE AND TIME DISCRETIZATION

Following the method of lines here adopted, we first consider the dG approximation based
on the spaces:

Pk
d(Kh)def=

{
vh ∈ L2(Ω) | vh|K ∈ Pk

d(K), ∀K ∈ Kh

}
, (6)

where k is a non-negative integer, d ∈ 2, 3 is the geometrical dimension of the problem, Kh = {K}
is a mesh of the domain Ω ∈ Rd, consisting of non-overlapping elements K such that

Ωh =
⋃

K∈Kh

K, (7)
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and Pk
d denotes the restriction to K of the polynomial functions of d variables and total degree

≤ k. For this polynomial space, according to [26], is here considered a set of orthonormal and
hierarchical basis functions, local to each element, and defined on the physical space.

Denoting with F the sum of the convective and viscous flux function, and by using the BR2
scheme proposed in [27], to which the interested reader is referred for further information, the
dG formulation of Eq.s (5) , is given by

∑
K∈Kh

∫
K

ϕiPj,k (vh) ϕl
dVk,l

dt
dx −

∑
K∈Kh

∫
K

∂ϕi

∂xn
Fj,n (vh, ∇hvh + r ([[vh]])) dx

+
∑

F ∈Fh

∫
F

[[ϕi]]n F̂j,n

(
v±

h , (∇hvh + ηF rF ([[vh]]))±
)

dσ = 0,

(8)

for i = 1, . . . , Ndof , where repeated indices imply summation over the ranges k = 1, . . . , d + 2,
l = 1, . . . , Ndof and n = 1, . . . , d. In the above equations, r [[vh]] and rF ([[vh]]) are the global
and the local lifting operator, respectively, which arise from the BR2 dG discretization of the
viscous fluxes, vh is a finite element approximation of the solution v that belongs to the discrete
space Vh

def=
[
Pk

d (Kh)
]d+2

, Fh is the set of the mesh faces defined as Fh
def= F i

h ∪ Fb
h, where F i

h

collects the internal faces of Ωh and Fb
h the faces located on the boundary of Ωh.

The convective numerical flux is computed from the solution of exact or approximated local
Riemann problems in the normal direction at each integration point on elements faces. In the
present work, to compute this term, we use the entropy stable exact Riemann solver of Gottlieb
and Groth [28], labelled ERS in Section 4, and the entropy conservative flux of Ismail and
Roe [11], labelled EC in the same Section.

Moreover, it is important to highlight that, following the approach of Hughes et al. [5], the
system (8) is here numerically solved directly approximating the entropy variables v in the dG
discrete polynomial space. This means that the integrals must be computed exactly to fulfill the
entropy conservation property but, in practice, at the discrete level, integrals are numerically
approximated via quadrature rules, e.g. Gaussian rules. The numerical results presented in [29]
have shown that, by exploiting the over-integration technique, the entropy conservation property
can be verified also at the discrete level.

Rewriting the semi-discrete system (8) for a single element K, we obtain the following compact
form: ∫

K
ϕiP(vh)dvh

dt
dx = R (vh) , (9)

that is used to advance the solution in time when standard time integration methods are em-
ployed, that is, in this work, the standard Crank-Nicolson scheme [30], labelled SCN in Section 4,
and the explicit three-stage, third-order accurate Runge-Kutta scheme [31], labelled RK33 in
the same Section. In particular, when the standard Crank-Nicolson scheme is used, the following
system of algebraic equations is solved:∫

K
ϕiP

(
vn+1/2

h

) vn+1
h − vn

h

∆t
dx = R

(
vn+1/2

h

)
, (10)

where vn+1/2
h = 1/2(vn+1

h + vn
h).
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On the contrary, to preserve the entropy conservation/stable property for time dependent
problems, the entropy conserving Crank-Nicolson method is used. This time integration method,
labelled GCNG in Section 4, is an extension of the generalized Crank-Nicolson method originally
proposed in [16, 20] in the contest of a Finite Volume method and conservative working variables.
Inspired by the above cited works, we have advanced the solution in time in each K element as
follows: ∫

K
ϕi

qn+1
h − qn

h

∆t
dx = R

(
vn+1/2

h

)
, (11)

where qn
h is the projection on the dG space of the conservative variables computed from the

entropy ones, that is: ∫
K

ϕiqn
hdx =

∫
K

ϕiq (vn
h) dx, (12)

and vn+1/2
h is a temporal intermediate state computed as suggested in [21], that is, for the

bi-dimensional problems here investigated:

v
n+1/2
1 = 1

γ − 1

(
γ

ρ̄

ρln − s̄

)
− ū1vn+1

2 − ū2vn+1
3 − 1

2 |ū|2 vn+1
4 ,

v
n+1/2
2 = −ū1vn+1

4 ,

v
n+1/2
3 = −ū2vn+1

4 ,

v
n+1/2
4 = − ρ̄

pln ,

(13)

where the bar symbol denotes the arithmetic average of the variables computed at the time
levels n and n + 1, and the log state of density and pressure is computed as:

◦ln = ◦n+1 − ◦n

log ◦n+1 − log ◦n
. (14)

For the proof of the entropy conservation property of this time integration method and further
details about its implementation, the interested reader can refer to [24].

4 NUMERICAL RESULTS

In this section are presented the first results obtained for two viscous bi-dimensional unsteady
nearly incompressible test-case: the Taylor-Green vortex and the double shear layer. Several
simulations are performed to evaluate the performance of the GCNG time integration method
with respect to the RK33 explicit scheme, and to assess its order of convergence an its accuracy.
Furthermore, the robustness of the proposed numerical framework, when the EC or ES fluxes
are used, has been investigated.
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4.1 The viscous Taylor-Green vortex

The bi-dimensional viscous Taylor-Green vortex [32] has the following exact solution for
incompressible flows:

p = p0 + ρ0V 2
0

4 (cos(2x) + cos(2y)) e−4νt ,

u1 = V0 sin(x) cos(y)e−2νt,

u2 = −V0 cos(x) sin(y)e−2νt,

T = 1,

(15)

where p0 = ρ0 = 1 and V0 = M∞
√

γ. Note that the initial flow field is obtained substituting
in the above equations t = 0. The compressibility effects have been minimized by considering
a Mach number M∞ = 0.1. Furthermore, we have fixed Re = 100. The simulations, that are
advanced in time up to t, that is the time corresponding to one vortex revolution, have been
performed on a computational domain with −π ≤ x, y ≤ π, which has been equipped with
periodic boundary conditions in the two directions and discretized with a [10 × 10] uniform
Cartesian grid.

To remark why we are looking for an entropy conserving time integration method that possess
the good stability property of the implicit methods, it has been made a comparison between the
larger time step size usable with GCNG and the one that must be used, for stability reasons,
with RK33. The result of this study is that the larger usable time step with GCNG is roughly
400 times larger than the one strictly required by the explicit scheme for stability reasons, i.e.
∆tGCNG = t/10, ∆tRK33 ≃ t/4000. One can argue that this favourable comparison is due to
the small Mach number used for this test-case, that the CPU time per time step is clearly not
the same for the two methods, and that the results obtained with GCNG will be less accurate
than the ones obtained with RK33. Nevertheless, it is undeniable that a ratio of 400 is a quite
large value and that, as highlighted in Fig.1, pressure and velocity components, computed with
the implicit and the explicit schemes, are roughly the same.

4.2 The viscous double shear layer

The fully-discrete EC and ES methods are here assessed with a non-smooth test problem,
the viscous double shear layer [32, 33], which initial flow field is:

u1 =
{

U∞ tanh [(y − π/2) /δ1] if y ≤ π,

U∞ tanh [(3π/2 − y) /δ1] if y > π,

u2 = U∞δ2 sin(x),
p = 1 and T = 1,

(16)

where U∞ = M∞
√

γ, δ1 = π/15 and δ2 = 0.05. To obtain a nearly incompressible flow,
M∞ = 0.01. Finally, Re = 500. The computational domain, defined by 0 ≤ x, y ≤ 2π, has
been discretized with a [8 × 8] uniform Cartesian grid, all the boundaries are periodic and the
simulations are advanced in time up to t = 8.
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(a) Pressure (b) Velocity components

Figure 1: Viscous Taylor-Green vortex– Simulations performed with the dG approximation k = 6, the
ERS flux and GCNG and RK33 time integration methods. Pressure (a) and velocity components (b)
along x = 0 and y = 0 lines. The exact analytical solution of an incompressible flow (black lines) is
reported for comparison purpose.

To assess the numerical framework, a time convergence study has been performed, which
results are reported in Fig. 2. Since this problem has no analytical solution, the computed
convergence rate has been evaluated by using several successively refined solutions, obtained by
halving the time step size ∆t, and computing the ε variable, which is defined as:

ε = Ω−1
h

∫
Ωh

(ρ ln p

ργ
) dΩ. (17)

The convergence rate p is then computed as:

p = log2
ε∆t − ε∆t/2

ε∆t/2 − ε∆t/4
. (18)

Note in fact that, in Fig. 2 on the x-axis of the plot it is reported the arithmetic average of
the time step sizes used for two successive simulations, and on the y-axis the absolute value of
the difference between the corresponding two ε values obtained, i.e |εdiff| =

∣∣∣ε∆t − ε∆t/2

∣∣∣. The
figure shows that the computed convergence rate of GCNG is equal to the designed order of
convergence of 2, independently from the numerical flux used, i.e. a conserving (EC) or a stable
(ERS) one. Furthermore, in the plot the results obtained with SCN are reported for comparison
purpose, highlighting that, as already assessed for inviscid flows [24, 25], the accuracy of the
two time integration methods is exactly the same. Quantitative values of the performed time
refinement study are reported in Tab. 1, in which only the results obtained with GCNG and
ERS flux are reported, since almost identical numerical values are obtained in the other cases.

Another very important aspect that this study has put in evidence, is that the use of the
EC flux leads to a divergent solution for the larger time step sizes, independently from the time
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integration method used, i.e. GCNG or SCN. Note, in fact, that in Fig. 2 the results related to
the above cited simulations are not reported.

To better investigate this bad behaviour, a further analysis has been done lowering the
number of krylov subspace with respect to the one used to perform the previous simulations.
The results of this analysis are reported in Tab.2 for the SCN (left table) and the GCNG (right
table) time integration methods. Both the tables show that the use of the EC flux leads to a very
poor robustness property of the discretization, which is caused by the failure of the Newton’s
algorithm when time step sizes typical of implicit methods are used, especially by raising the
dG approximation from k = 1 up to k = 6. Furthermore, by comparing the number of divergent
simulations (cross symbol) performed with odd and even dG approximations it is clear that the
even dG approximations are less robust than the odd ones, thus confirming the odd/even effect
already highlighted in [29] for inviscid flows.

In Tab.3 are shown the results performed with the ES flux, the SCN (left table) and the
GCNG (right table) time integration methods. Both the tables clearly show that the simulations
are more robust if an entropy stable flux is used. In this case, in fact, it is possible to perform
convergent simulations with very large time step size, e.g. ∆t = t/4, even ranging the polynomial
dG approximation up to k = 6.

Figure 2: Viscous double shear layer–Simulations performed with the dG approximation k = 6, ERS
and EC numerical fluxes and GCNG and SCN time integration methods.

5 CONCLUSIONS

In this work are shown the first results obtained for unsteady compressible viscous flows with
a fully-discrete entropy conserving/stable discretization. The method here used is the method of
lines, based on a high-order modal discontinuous Galerkin (dG) method in space and an implicit
second order accurate discretization in time. In particular, in order to obtain an entropy con-
serving/stable scheme in space, the dG approximation has been equipped with entropy working
variables and entropy conservative and stable numerical fluxes. Furthermore, in order to ob-
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∆t ∆tave ε εdiff. p

t/8 7.5 · 10−1 1.4039532257 · 10−6
−4.5935121284 · 10−8

1.54t/16 3.75 · 10−1 1.4498883470 · 10−6
−1.5792012211 · 10−8

2.08t/32 1.875 · 10−1 1.4656803592 · 10−6
−3.7436001683 · 10−9

2.02t/64 9.375 · 10−2 1.4694239593 · 10−6
−9.2119417146 · 10−10

2.01t/128 4.6875 · 10−2 1.4703451535 · 10−6
−2.2901225419 · 10−10

2.00t/256 2.34375 · 10−2 1.4705741658 · 10−6
−5.7194729370 · 10−11

2.00t/512 1.171875 · 10−2 1.4706313605 · 10−6
−1.4339451880 · 10−11

1.99t/1024 5.859375 · 10−3 1.4706456700 · 10−6
−3.6022494600 · 10−12

2.00t/2048 2.9296875 · 10−3 1.4706493022 · 10−6
−9.0056939999 · 10−13

1.97t/4096 1.46484375 · 10−3 1.4706502028 · 10−6
−2.3025557990 · 10−13

2.02t/8192 7.32421875 · 10−4 1.4706504330 · 10−6
−5.6911049995 · 10−14

t/16384 1.4706504899 · 10−6

Table 1: Viscous double shear layer–Simulations performed with the dG approximation k = 6, ERS flux
and GCNG time integration method.

tain a fully-discrete entropy conserving/stable scheme, the generalized Crank-Nicolson method,
originally proposed in [20, 16], has been here extended to the dG approximation with entropy
variables. The numerical results, obtained for two bi-dimensional unsteady viscous test case,
have confirmed the convergence rate of 2 of the time integration method and the odd/even effect
of the dG approximation when an entropy conserving flux is used, already highlighted in [29] for
inviscid flows. Furthermore, when an entropy conserving flux is used, the numerical results show
a very difficult convergence of the Newton’s algorithm. Nevertheless, it is important to notice
that, despite the general fast convergence of Newton’s method, it has various drawbacks that
can cause its failure or a slow convergence, e.g: initial guess too far from the searched solution,
near local maxima and local minima, multiple roots etc. Future work will be devoted to include
more advanced Newton-like solvers based on the nonlinear solvers SNES included in the PETSc
library [34].
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