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Abstract: The aim of this work is to describe an efficient implementation of cubic and multiparameter
real gas models in an existing discontinuous Galerkin solver to extend its capabilities to the simulation of
turbulent real gas flows. The adopted thermodynamic models are van der Waals, Peng–Robinson, and
Span–Wagner, which differ from each other in terms of accuracy and computational cost. Convective
numerical fluxes across elements interfaces are calculated with a thermodynamic consistent linearized
Riemann solver, whereas for boundary conditions, a linearized expression of the generalized Riemann
invariants is employed. Transport properties are treated as temperature- and density-dependent quan-
tities through multiparameter correlations. An implicit time integration is adopted; Jacobian matrix
and thermodynamic derivatives are obtained with the automatic differentiation tool Tapenade. The
solver accuracy is assessed by computing both steady and unsteady real gas test cases available in the
literature, and the effect of the mesh size and polynomial degree of approximation on the solution
accuracy is investigated. A good agreement with experimental and numerical reference data is observed
and specific non-classical phenomena are well reproduced by the solver.

Keywords: discontinuous Galerkin; real gas; equation of state; NICFD

1. Introduction

Nowadays, the increasing interest of industries towards highly accurate simulation tools
motivates the implementation of complex physical models and numerical schemes to reproduce
specific phenomena. In this context, non ideal compressible fluid dynamics (NICFD) is still quite
a challenging task, mainly because the determination of correct thermophysical properties is
crucial to obtain accurate and robust solvers, but also because non-classical behaviors may arise
in these flows. Examples can be found in turbomachinery for organic Rankine cycles (ORC),
carbon capture and storage (CCS), and refrigeration systems.

During the last decades, many real gas models have been proposed to overcome the
limits of the perfect gas law. Actually, the most accurate models are the multi-parameter
Helmholtz energy equations of state (MEoSs). Simpler models are available, generally
written in terms of cubic polynomials of the density. These cubic equations of state (CEoSs)
are widely used, and, sometimes, preferred to MEoSs for the easiness of implementation and
use. CEoSs have simpler formulations, require a very limited number of fluid parameters,
and their computational cost is an order of magnitude lower than MEoSs. However,
for some particular problems or with highly accurate solvers, the adoption of ad hoc
models is desirable to obtain accurate predictions.

The aim of the present work is the development of a highly accurate discontinuous
Galerkin (dG) solver for the simulation of turbulent real gas flows, where the higher
accuracy guaranteed by dG methods is coupled with reliable methods for the calculation of
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thermodynamic properties. In particular, different thermal EoSs are implemented: (i) the
pressure-explicit van der Waals (vdW) [1] and Peng–Robinson (PR) [2] CEoSs, and (ii) the
Helmholtz-explicit MEoS of Span–Wagner (SW) [3].

The test cases chosen to asses the new solver performances are (i) an unsteady shock
tube problem [4], (ii) a stationary supersonic wedge-shaped channel [5], and (iii) an ORC
turbine blade nozzle [6]. Chung et al. model [7] is adopted to compute transport properties.

The implementation of a non ideal EoS in a dG solver requires also the modification of
the algorithm to compute the convective numerical flux and the boundary conditions. The
dG finite element method (FEM) provides by definition a solution that is discontinuous across
elements interfaces in the grid, so a unique value for the convective flux must be determined to
guarantee the conservation and the stability of the numerical scheme, just as in finite volume
methods (FVM). Many procedures for the computation of the convective numerical flux are
available, based on the exact or approximate solution of a Riemann problem, but they assume
an ideal behavior of the flow. As a consequence, a thermodynamic generalization is required,
and the extension to real gas flows of the Roe’s linearization for the Riemann problem [8]
proposed by Vinokur and Montagné [9] is adopted (the average speed of sound at the interfaces
is computed according to Glaister [10]). Moreover, a generalized set of boundary conditions
has to be determined, especially for inflow/outflow boundaries, which are normally based
on the theory of the Riemann invariants. The extension of the Riemann invariants to real gas
models is quite complex, and, for this reason, the linearization proposed by Colonna et al. [11]
is employed in this work to solve the boundary problem in a consistent and generalized way.

The proposed implementation has been used to extend the prediction capability of
the dG-FEM solver MIGALE [12–14], whose performance has been already assessed for
turbulent flows with ideal behavior. The solver adopts an implicit time integration strategy,
and, as a consequence, at each iteration the Jacobian matrix must be computed. In this work,
the automatic differentiation (AD) tool Tapenade [15] is used to derive the exact Jacobian
matrix to keep the solver able to reach the quadratic convergence speed on stationary
problems, which is proper of the Newton-type method. AD has been also employed to
derive some complex thermodynamic derivatives.

This paper is organized as follows. First, a brief description of the dG-FEM solver MIGALE
is presented from the spatial and temporal points of view (Section 2). Then, all the details of
implementation of the real gas models are discussed with a focus on the implementation of the
auxiliary procedures (Section 3). After that, the results obtained from the validation test cases
are discussed (Section 4) and, in the end, some conclusions are presented (Section 5).

2. Discontinuous Galerkin Solver

In this section, the main features of the dG-solver MIGALE [12–14] are outlined. In par-
ticular, the governing equations are presented in Section 2.1 and the discretization methods,
in space (Section 2.2) and time (Section 2.3), are discussed, with a particular emphasis on
the aspect that will be crucial for the implementation of the new thermodynamic models.

2.1. Governing Equations

The set of conservation laws to be solved for inviscid flows is given by the Euler
equations, whereas for turbulent flows by the Reynolds-averaged Navier–Stokes (RANS)
equations, here supplemented by the k − ω turbulence model [12–14]. The RANS and
k−ω model equations can be written using Einstein’s notation as

∂ρ

∂t
+

∂

∂xj
(ρuj) = 0, (1)

∂

∂t
(ρui) +

∂

∂xj
(ρujui) = −

∂p
∂xi

+
∂τ̂ji

∂xj
, (2)
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∂

∂t
(ρE) +

∂

∂xj
(ρujH) =

∂

∂xj

[
uiτ̂ij − q̂j

]
− τij

∂ui
∂xj

+ β∗ρkeω̃r , (3)

∂

∂t
(ρk) +

∂

∂xj
(ρujk) =

∂

∂xj

[
(µ + σ∗µt)

∂k
∂xj

]
+ τij

∂ui
∂xj
− β∗ρkeω̃r , (4)

∂

∂t
(ρω̃) +

∂

∂xj
(ρujω̃) =

∂

∂xj

[
(µ + σµt)

∂ω̃

∂xj

]
+

α

k
τij

∂ui
∂xj
− βρeω̃r + (µ + σµt)

∂ω̃

∂xk

∂ω̃

∂xk
, (5)

where ui is the flow velocity, p the pressure, ρ the density, and

E = e +
1
2

ukuk, H = h +
1
2

ukuk, (6)

τij = 2µt

[
Sij −

1
3

∂uk
∂xk

δij

]
− 2

3
ρkδij, τ̂ij = 2µ

[
Sij −

1
3

∂uk
∂xk

δij

]
+ τij, (7)

q̂j = −(λ + λt)
∂T
∂xj

, (8)

are the total mass-specific internal energy and enthalpy, the turbulent and the overall
shear stress tensors, and the overall Fourier’s conductive heat flux, calculated using both a
molecular and a turbulent thermal conductivity λ and λt = (µtcp)/(Prt), where Prt is the
turbulent Prandtl number. The remaining quantities are the mean strain–rate tensor, i.e.,

Sij =
1
2

(
∂ui
∂xj

+
∂uj

∂xi

)
, (9)

the turbulent dynamic viscosity µt = α∗ρke−ω̃r , the limited mass-specific turbulent kinetic
energy k = max(0, k) and the logarithm of the specific dissipation rate ω̃ = log(ω). α, α∗,
β, β∗, σ, σ∗ are the closure parameters [16]. The production term of the energy equation
and the destruction term of the k and ω̃ equations are computed with the value ω̃r, which
satisfies the realizability condition for the turbulent stresses [12]. In this work, no additional
terms are added in the turbulence model equations to account for compressibility effects.
In fact, this treatment should be considered just for hypersonic flows, i.e., Ma > 5, with cold
walls, which are not present in the proposed testcases. A brief review of the possible
pressure corrections can be found in [17].

Equations (1)–(5) can then be written in the following compact form as

P(w)
∂w
∂t

+∇ · Fc(w) +∇ · Fv(w,∇w) + s(w,∇w) = 0, (10)

where w is the vector of the unknown variables, Fc and Fv are, respectively, the con-
vective and the viscous flux, and s is the vector of the source terms. The matrix P(w)
takes into account the change of variables from the conservative to the primitive set

w =
[

p̃, u1, u2, u3, T̃, k, ω̃
]T

, where p̃ = log(p), T̃ = log(T), and ω̃ = log(ω) are used to
enhance the solver’s robustness [12].

2.2. Spatial Discretization

The weak formulation of the problem is obtained by multiplying Equation (10) by an
arbitrary smooth test function v = {v1, . . . , vm} and integrating by parts over a physical
domain Ω, with m being the total number of unknowns. Once a proper triangulation Th of
the approximated domain Ωh in arbitrary shaped non-overlapping elements having the set
of faces Fh is given, the discrete weak problem is obtained by substituting the continuous
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solution w and the continuous test function v with their discrete finite element approximations
wh and vh, each one belonging to the discrete polynomial space Vh = [Pq

d(Th)]
m expressed in

physical coordinates.
The set of test and shape functions in every element K ∈ Th is chosen here as the

set {φ} of NK
do f orthonormal and hierarchical basis functions having compact support

over K, defined from its principal inertial axes and with NK
do f being the total number of

degrees of freedom of the solution in K. Each component of the discrete elemental solutions
wh,j, with j = 1, . . . , m, can then be expressed as the linear combination wh,j = φlWj,l ,
with l = 1, . . . , NK

do f and ∀K ∈ Th. The direct sum of all the discrete elemental solutions
over Th represents the global discrete solution, which is the objective of the solver. The dG-
FEM spatial discretization of the governing equations consists therefore in seek, at every

time instant, the elements of the degrees of freedom’s vector W ∈ Rne×m×NK
do f with ne being

the total number of elements, such that for i = 1, . . . , NK
do f and k = 1, . . . , ne, they represent

the solution of the semi-discrete weak problem

∑
K∈Th

∫
K

φiPj,k(wh)φl
dWk,l

dt
dx− ∑

K∈Th

∫
K

∂φi
∂xn

Fj,n(wh,∇hwh + r([[wh]]))dx

+ ∑
F∈Fh

∫
F
[[φi]]n F̂j,n

(
w±h , (∇hwh + ηFrF([[wh]]))

±
)

dσ

+ ∑
K∈Th

∫
K

φisj(wh,∇hwh + r([[wh]]))dx = 0.

(11)

As the functional approximation is discontinuous, the sum of the convective and
viscous flux functions F is not uniquely defined at each element’s interface, so a numerical
flux vector F̂ is adopted. The convective part is based on the local solution of linearized
Riemann problems, using the Roe solver [8] generalized to the case of an arbitrary gas model
with the Vinokur-Montagné approach [9] and Glaister’s [10] generalized average speed
of sound. The viscous part is instead centered and discretized with the BR2 scheme [18],
by employing either local and global lifting operators rF(·) and r(·) on the solution’s
componentwise jump [[wh]] = wh|K+nF+ + wh|K−nF− across mesh interfaces. In this sense,
nF± denotes the outward or inward pointing unit vector normal to the interface, whereas
ηF is the stability parameter of Brezzi et al. [19].

To avoid spurious oscillations of the solution, an artificial diffusion contribution is
introduced inside each element using a shock sensor to detect discontinuities. The shock-
capturing term SCT is added to the left-hand side of Equation (11), and, as reported
in [14,20], is given by

SCT = ∑
K∈Th

∫
K

εp
(
w±h , wh

)( ∂φi
∂xn

bn

)(
∂wh,j

∂xn
bn

)
dx, (12)

where b(w) is a unit vector representing the direction along which the dissipation is acting.
In this work, b(w) is given by the logarithmic pressure gradient,

b(wh) =
∇h p̃

|∇h p̃|+ ε
, (13)

where ε is a small value proportional to the machine precision. In Equation (12), εp is the
artificial diffusion coefficient defined in each element as

εp = Ch2
K

∣∣sp
(
w±h , wh

)∣∣+ ∣∣dp(wh)
∣∣

e p̃ fp(wh), (14)
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where C is a user-defined constant, hK is a characteristic dimension of the element K, and
sp
(
w±h , wh

)
is a pressure-based shock sensor defined through the global lifting operator as

sp
(
w±h , wh

)
=

∂ p̃
∂wh,j

ŝj
(
w±h
)
e p̃,∫

K
φi ŝj

(
w±h
)
dx =

∫
∂K
[[φi]]n

(
F̂c,j,n

(
w±h
)
− Fc,j,n(wh)

)±
dσ.

(15)

sp
(
w±h , wh

)
is always active in every element, but the numerical viscosity is introduced

only in regions where unphysical oscillations are present. The remaining terms dp(wh)
and fp(wh) in Equation (14) introduce also the dependence of the numerical viscosity from
the magnitude of the divergence of the convective flux and from the polynomial degree of
discretization, respectively.

2.3. Temporal Discretization

Assembling the elemental contribution of Equation (11), the following system of
ordinary differential Equations (ODEs) in time is obtained

MP(W)
dW
dt

+ R(W) = 0, (16)

where R(W) is the vector of the global residuals and MP(W) is the global block diagonal
mass matrix arising from the calculation of the first integral in Equation (11). The Linearized
Backward Euler (LBE) scheme with a pseudo-transient continuation strategy for stationary
problems is adopted to solve Equation (16) [21], which can be written as[

MP(Wn)

∆t
+

∂R(Wn)

∂W

](
Wn+1 −Wn

)
= −R(Wn). (17)

When the final solution is steady, an exponential CFL law, the function of the residuals
norms, enables the usage of progressively higher values of ∆t that reduce Equation (17)
to a Newton–Rhapson method, which guarantees quadratic convergence rates, once an
exact Jacobian matrix ∂R(Wn)/∂W is provided at every timestep n. The algebraic system
described by Equation (17) is nonlinear, and an iterative solver is required ∀n. In this work,
a restarted version of the generalized minimal residual (GMRES) Krylov’s subspace-type
method is used, as available in the PETSc library [22]. These kinds of methods have been
extensively used and developed during the last decades [23] for their generality and ro-
bustness. They are still the subject of intense research activity to improve their convergence
speeds through techniques such as globalization [24], efficient preconditioning [25], and
Jacobian approximation [26]. Here, the GMRES convergence is enhanced by system precon-
ditioning; MIGALE allows us to choose the block Jacobi method with one block per process,
each of which is solved with ILU(0), or the additive Schwarz method (ASM), as available in
the PETSc library. The ASM [27] is used for the simulation presented in this work.

Devising an effective and robust strategy to increase the CFL number as the residual
decreases is far from trivial, especially for transitional or turbulent simulations, an empiri-
cally determined “CFL law” is here used to speed up convergence. It is based on the L∞

and L2 norms of the residual and depends on three user-defined parameters. The first and
second ones are CFLmin and CFLmax to set the minimum and maximum limits of the CFL
number during the simulation. The third one is an exponent α governing the growth rate
of the CFL number, where typically α ≤ 1. The “CFL law” is

CFL =

CFLmin/ξα if ξ ≤ 1

min
(

CFLexp + βeα
CFLmin

β (1−ξ), CFLmax

)
if ξ > 1

(18)
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where CFLexp = min(1/(2q + 1), CFLmin) is the minimum value between the maximum
CFL number proper of an explicit scheme and the user-defined minimum value, with
q being the polynomial degree of discretization of the solution. The remaining terms are
β = CFLmin −CFLexp and ξ, which is defined as

ξ =


min(1, ξ2) if ξ∞ ≤ 1, ξ2

def
= max

i=1,...,m
(||Ri||2/||Ri 0||2),

ξ∞ if ξ∞ > 1, ξ∞
def
= max

i=1,...,m
(||Ri||∞/||Ri 0||∞),

(19)

where || · ||2 and || · ||∞ are the L2 and L∞ norms of the residual vector of the i-th equation
of the system Ri and Ri 0 is the corresponding residual at the first iteration.

3. Thermodynamic Models

The MIGALE solver’s predicting capabilities are extended with three real gas models:
the pressure-explicit CEoSs of van der Waals [1] and Peng–Robinson [2] (Section 3.1) and
the Helmholtz-explicit MEoS of Span–Wagner [3] (Section 3.2). MEoSs generally require
more coefficients with respect to CEoSs and their computational cost is, therefore, much
higher. On the other hand, they also guarantee superior accuracy for thermodynamic
quantities whose values are crucial during a fluid dynamic simulation, such as the speed
of sound. The implementation of all models is discussed, also describing modifications
needed by other algorithms of the solver, such as the numerical flux computation and
boundary conditions (Sections 3.3 and 3.4).

3.1. Peng–Robinson and van der Waals Models

The pressure-explicit CEoSs of van der Waals [1] and Peng–Robinson [2] can be
obtained from the general formulation [28] as

p(ρ, T) =
ρR∗T

(1− ρB)
− A(T)ρ2

(1− ρB + ρC)(1− ρB + ρD)
(20)

where p is the fluid pressure, ρ the density, T the temperature, R∗ = R/mM the mass-specific
gas constant, R = 8314.463 J/(kmolK) the universal gas constant, and mM the fluid’s molecular
weight. Equation (20) shows also the term A(T), which accounts for intermolecular attractions,
and the terms B, C, and D that account for molecular volume. The term A is usually written
as A = aα2(T), where the function α(T) (if not null) contains the dependence of A(T) from
the molecular shape, whereas a is a constant. For all models that can be obtained from Equa-
tion (20), A, B, C, and D assume different values, depending on the working fluid. In fact, they
depend from some input parameters, which are the critical pressure pcr and temperature Tcr,
the molecular weight, and the acentric factor ω, which is an estimation of the non-sphericity of
the molecules defined as ω = (− log10(psat

r )− 1)|Tr=0.7, where psat
r = psat/pcr, Tr = T/Tcr,

and psat(T) is the saturation pressure. Table 1 summarizes the expressions that must be used
for A, B, C, and D to obtain the van der Waals and the Peng–Robinson gas models, which are
given by

p(ρ, T) =
ρR∗T

(1− ρb)
− aρ2, p(ρ, T) =

ρR∗T
(1− ρb)

− aα2(T)ρ2

(1 + 2ρb− ρ2b2)
. (21)

If A = B = C = D = 0 the ideal gas law p(ρ, T) = ρR∗T is recovered.
Starting from these equations, a complete characterization of a pure single-phase

substance comes from the determination of at least one caloric EoS for each model [29].
A general procedure for any thermal pressure-explicit EoS like the one in Equation (20) is
given by Reynolds [30]. The expression for the mass-specific internal energy takes the form

e(ρ, T) = e0 +
∫ T

T0

c0
v(η)dη +

∫ ρ

0

1
ξ2

[
p− T

(
∂p
∂T

)
ξ

]
dξ, (22)
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whereas the mass-specific entropy is

s(ρ, T) = s0 +
∫ T

T0

c0
v(η)

η
dη − R∗ log

(
ρ

ρ0

)
+
∫ ρ

0

1
ξ2

[
ξR∗ −

(
∂p
∂T

)
ξ

]
dξ (23)

where ξ and η are used as symbolic substitutes of ρ and T in the integral functions and
(ρ0, T0) identifies an arbitrary reference state. The last terms in both Equations (22) and (23)
represent departure functions from the non-polytropic ideal gas behavior since they vanish
for sufficiently rarefied thermodynamic states, i.e., ρ → 0. The remaining two integrals
require instead an expression for the ideal gas contribution to the isochoric specific heat
c0

v(T), which is by definition the limit of cv(ρ, T) as ρ → 0. In this work, a polynomial
function of the absolute temperature in the form c0

v(T) = c0
p(T)− R∗ = c0 + c1T + c2T2 +

c3T3−R∗ is employed for each considered fluid, where c0
p(T) is the ideal gas contribution to

the isobaric specific heat. Coefficients ci for i = 0, . . . , 3 can be determined theoretically from
chemical group contribution methods such as the one in [31], or from given polynomial
fittings of experimental data available in the literature.

Table 1. Expressions for all the quantities involved in Equation (20).

van der Waals Peng–Robinson

A a aα2

B b b

C b (2 +
√

2)b

D b (2−
√

2)b

a 0.421875 (R∗Tcr)2/pcr 0.45724 (R∗Tcr)2/pcr

b 0.125 R∗Tcr/pcr 0.0778 R∗Tcr/pcr

h 0 0.37464 + 1.54226 ω − 0.26992 ω2

α 1 1 + h
(
1−
√

T/Tcr
)

Once the expressions for p(ρ, T) and e(ρ, T) are known, all the other relevant thermo-
dynamic properties can be determined using a combination of them and of their derivatives.
For example, by definition the mass-specific enthalpy and real gas isochoric specific heat
are obtained as

h(ρ, T) = e(ρ, T) +
p
ρ

, cv(ρ, T) =
(

∂e
∂T

)
ρ

. (24)

As reported in [32], the real gas isobaric specific heat and the speed of sound are
obtained from

cp(ρ, T) = cv(ρ, T) +
T
ρ2

(∂p/∂T)2
ρ

(∂p/∂ρ)T
, c(ρ, T) =

√
cp(ρ, T)
cv(ρ, T)

(
∂p
∂ρ

)
T

. (25)

Another important quantity that must be determined is the fundamental derivative
of gas dynamics Γ, that following the work of Cramer [33] can be again expressed as a
function of temperature and density only, as

Γ(ρ, T) =
1

2ρ3c2

{
ρ4
(

∂2 p
∂ρ2

)
T
+ 2ρ3

(
∂p
∂ρ

)
T
+

3ρ2T
cv

(
∂p
∂T

)
ρ

(
∂2 p

∂ρ∂T

)

+

[
T
cv

(
∂p
∂T

)
ρ

]2[
3
(

∂2 p
∂T2

)
ρ

+
1
T

(
∂p
∂T

)
ρ

(
1− T

cv

(
∂cv

∂T

)
ρ

)].

(26)
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This derivative is crucial in real gas dynamics, since with negative values of Γ some
non-classical phenomena may arise, such as expansion shocks or compression fans [34].

Lastly, since the solver works with p and T as independent variables, the computation
of the inverse problem is needed, as

ρ = ρ(p, T), T = T(ρ, p), T = T(ρ, e). (27)

The fluid density is determined from the equation for the pressure. When the models
are derived by Equation (20), the thermal EoS can be reformulated as a third-degree
polynomial in the density, whose coefficients are a function of temperature and pressure,
i.e., d0 + d1ρ + d2ρ2 + d3ρ3 = 0, with di = di(p, T) for i = 0, . . . , 3. The analytical resolution
method of Cardano is employed in this work, whereas the physical meaning and validity
of each root have been determined using the considerations in [35]. For temperature,
some Newton’s iterations are employed on the functions p(ρ, T) and e(ρ, T), since their
derivatives are known and the resulting formulation is more complicated. Initial guesses
are calculated using the polytropic ideal gas model with γ = c0

p(T0)/c0
v(T0).

3.2. Span–Wagner Model

The Helmholtz-explicit MEoS of Span–Wagner [3] is formulated in terms of an optimized
functional fit of experimental measurements, which can be derived for any fluid having a
sufficiently wide and precise range of data [36]. The derived EoS is formulated for the free
Helmholtz energy state function a(ρ, T) = e(ρ, T)− Ts(ρ, T), described in a non-dimensional
form with the summation of an ideal gas contribution and a real gas residual as

a(ρ, T)
R∗T

= ψ(δ, τ) = ψ0(δ, τ) + ψr(δ, τ), (28)

where δ = ρ/ρcr is the reduced density and τ = Tcr/T is the inverse of the reduced
temperature. In Equation (28), the dimensional ideal gas part is defined as

a0(ρ, T) = h0 +
∫ T

T0

c0
p(η)dη − R∗T − T

s0 +
∫ T

T0

(
c0

p − R∗
)

η
dη − R∗ log

(
ρ

ρ0

), (29)

since for the ideal gas p/ρ = R∗T. So, once a suitable approximation of c0
p(T) is provided,

a0(ρ, T) can be completely determined by computing two integrals. In this work, four
different functional forms can be activated by the user, since c0

p(T) is implemented as

c0
p(T) =

npol

∑
i=1

(c1,iTc2,i ) +
nexp

∑
i=npol+1

c1,i
(c2,i/T)2e−c2,i/T(

1− e−c2,i/T
)2


+

nhyc

∑
i=nexp+1

[
c1,i/T2

(cosh(c2,i/T2)2

]
+

nhys

∑
i=nhyc+1

[
c1,i/T2

(sinh(c2,i/T2)2

]
,

(30)

where each term represents an approximation of a statistical mechanical behavior of the
ideal gas heat capacity as suggested by Aly and Lee [37]. In Equation (30), coefficients
(c1,i, c2,i) are considered as user parameter, since many functional fittings can be found in
the literature. The non-dimensional residual part of Equation (28) is similarly provided as
a summation of various activatable terms as
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ψr(δ, τ) =

npol

∑
i=1

(c1,iδ
c2,i τc3,i ) +

nexp

∑
i=npol+1

(
c1,iδ

c2,i τc3,i e−δ
c4,i
)

+

nga1

∑
i=nexp+1

{
c1,iδ

c2,i τc3,i e[−c4,i(δ−c5,i)
2−c6,i(τ−c7,i)

2]
}

+

nga2

∑
i=nga1+1

{
c1,iδ∆c2,i

i e[−c7,i(δ−1)2−c8,i(τ−1)2]
}

,

(31)

with ∆i =
{
(1− τ) + c3,i

[
(δ− 1)2]1/(2c4,i)

}2
+ c5,i

[
(δ− 1)2]c6,i and where the last Gaussian

bell-shaped sums are generally used to improve the fluid description near the critical point [36].
Thanks to the Helmholtz energy definition, all the other relevant thermodynamic

properties can be computed with Maxwell’s relations, such as

p(ρ, T) = ρ2
(

∂a
∂ρ

)
T

, s(ρ, T) = −
(

∂a
∂T

)
ρ

, e(ρ, T) = a(ρ, T) + Ts(ρ, T), (32)

whereas Equations (24)–(26) still hold for the calculation of the enthalpy, specific heats,
speed of sound, and fundamental derivative. The inverse problem of Equation (27) is
here treated with Newton’s iterations also for the density, but since the number of roots
may be higher than the CEoS case, some efficient initial guesses are chosen as suggested
by Span [36]. In particular, the initial guess for the density is provided by the Peng–
Robinson model, whose coefficients are calculated and stored once. For the temperature,
a simplified version of the van der Waals model with a power law ideal gas-specific
heat is analytically inverted. The adopted expression is c0

v(T) = c0
v(T0)(T/T0)

n, where
n = log[c0

v(T2)/c0
v(T1)]/ log(T2/T1) and T1 < T0 < T2 as suggested by [33]. Furthermore,

the van der Waals coefficients are calculated and stored before computations.

3.3. Derivatives

The first and second derivatives of the thermodynamic properties are needed for
the Jacobian matrix of the implicit time integration scheme, the shock-capturing term,
the permutation matrix, and the convective fluxes. In particular, the following derivatives
must be provided:(

∂p
∂ρ

)
e
,
(

∂p
∂e

)
ρ

,
(

∂x
∂ p̃

)
T̃

,
(

∂x
∂T̃

)
p̃
,
(

∂2x
∂ p̃2

)
T̃

,
(

∂2x
∂ p̃∂T̃

)
,
(

∂2x
∂T̃2

)
p̃
, (33)

where x(p, T) can represent e, h, c, s, cv, cp. Since all the properties are formulated as
functions of ρ and T, the exact expressions of their first and second derivatives with respect
to these variables are obtained with the AD tool Tapenade [15]. Then, using the relations
from [38], which involve just the derivatives of p = p(ρ, T), the values of(

∂ρ

∂p

)
T

,
(

∂ρ

∂T

)
p
,
(

∂2ρ

∂p2

)
T

,
(

∂2ρ

∂p∂T

)
,
(

∂2ρ

∂T2

)
p
, (34)

are calculated. Thanks to the chain rule on x = x[ρ(p, T), T], and considering that
∂/∂ỹ = (∂/∂y)(∂ỹ/∂y)−1 = y(∂/∂y), where y can be either p or T, the last five derivatives
in Equation (33) can be rewritten as(

∂x
∂ p̃

)
T̃
= p

[(
∂x
∂ρ

)
T

(
∂ρ

∂p

)
T

]
, (35)
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(
∂x
∂T̃

)
p̃
= T

[(
∂x
∂ρ

)
T

(
∂ρ

∂T

)
p
+

(
∂x
∂T

)
ρ

]
, (36)

(
∂2x
∂ p̃2

)
T̃
= p

[(
∂x
∂ρ

)
T

(
∂ρ

∂p

)
T

]
+ p2

[(
∂2x
∂ρ2

)
T

(
∂ρ

∂p

)2

T
+

(
∂x
∂ρ

)
T

(
∂2ρ

∂p2

)
T

]
, (37)

(
∂2x

∂ p̃∂T̃

)
= pT

[(
∂2x
∂ρ2

)
T

(
∂ρ

∂p

)
T

(
∂ρ

∂T

)
p
+

(
∂2x

∂ρ∂T

)(
∂ρ

∂p

)
T
+

(
∂x
∂ρ

)
T

(
∂2ρ

∂p∂T

)]
, (38)

(
∂2x
∂T̃2

)
p̃
= T

[(
∂x
∂ρ

)
T

(
∂ρ

∂T

)
p
+

(
∂x
∂T

)
ρ

]

+T2

[(
∂2x
∂ρ2

)
T

(
∂ρ

∂T

)2

p
+ 2
(

∂2x
∂ρ∂T

)(
∂ρ

∂T

)
p
+

(
∂x
∂ρ

)
T

(
∂2ρ

∂T2

)
p
+

(
∂2x
∂T2

)
ρ

]
.

(39)

The first two derivatives in Equation (33) are determined as suggested by Cinnella [39].
However, despite Equations (35)–(39) being valid for all the chosen EoSs, the Span–Wagner
model requires a further step, i.e., the computation of all the pure and mixed derivatives,
from the first to the third order of the non-dimensional Helmholtz energy state function.
This task is here performed with the AD tool Tapenade [15].

3.4. Numerical Fluxes and Boundary Conditions

The first thermodynamic generalization required by the solver is the adoption of a
consistent numerical flux for real gas computations. In this work, the generalization of the
approximate Riemann solver of Roe [8] proposed by Vinokur-Montagné [9] is used for the
convective part. This procedure differs from the original Roe version since in the real gas
regime the description of the Roe averaged state must be enriched with the definition of
averaged values of the pressure derivatives χ = (∂p/∂ρ)e and κ = (∂p/∂e)ρ between the
two sides of every mesh interface. These values are here obtained following the procedure
proposed by Glaister [10] and then used to generalize the Roe averaged a speed of sound
for the determination of convective eigenvalues.

For the viscous part, the generalized multiparameter correlation of Chung et al. [7]
for the determination of transport properties in real gas regime is applied. In particular,
the procedure allows for estimating reliable values of the molecular dynamic viscosity and
thermal conductivity of polar and non-polar fluids as functions of ρ and T. The required
additional input data are the critical density ρcr, the dipole moment of the fluid molecules,
and the equilibrium dissociation constant of the substance.

The contribution of the new flux to the global Jacobian matrix is computed with the
AD tool Tapenade [15], an open source algorithm developed by the Institut National de
Recherche en Sciences et Technologies du Numérique (INRIA). AD guarantees that every
derivative will be mathematically exact and will not suffer any truncation error, which is
typical of the finite differences (FD) approach [40]. In fact, every derivative is obtained
with a symbolic optimized differentiation of all the lines of a source code, to generate a new
program that will contain the calculations for both the original outputs and their derivatives.
This is made possible by an iterative application of the chain rule of differentiation since
the whole source code is interpreted as a composite function of all its lines. The chain can
be traveled from top to bottom with the tangent (or direct) differentiation mode or from
bottom to top with the adjoint (or reverse) mode (see [15] for further details). In this work,
the tangent mode has been used, since it is best suited for large amounts of inputs and
is easy to use. In particular, the focus is on the term F̂ = F̂(w±,∇w±) in Equation (11),
where w− and w+ are the unknown variables at the inner and outer side of an element
face. The Jacobian matrix of F̂ is generated column by column, differentiating F̂ one time
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in tangent mode for every component of w± and ∇w±. Every column is then wrapped
with the others to assemble the Jacobian matrix. This often results in an increment of
the computational cost with respect to manually derived analytical procedures, which
are often difficult to obtain. In this work, an ad hoc automated strategy for the use of
Tapenade has been derived, that is able to scan and modify the generated routines to avoid
or regroup redundant computations. The new Jacobian matrix is thus characterized by
a lower computational cost with respect to FD, especially when the thermodynamic or
physical complexity is high. Table 2 reports the time required to perform 105 calls to the
routines to build the Jacobian matrix of an inviscid two-dimensional convective flux and
a three-dimensional turbulent diffusive flux. AD is always less expansive than the FD
counterpart, and shows a maximum reduction in the computing time ≈ 60%.

Table 2. Time required for the evaluation of the Jacobian matrix of some routines through AD and
FDs with ideal gas law.

2D Inviscid Convective Flux

Number of calls AD [s] FD 1st order [s] FD 2nd order [s]

100,000 0.141 0.172 0.281

3D Turbulent Diffusive Flux

Number of calls AD [s] FD 1st order [s] FD 2nd order [s]

100,000 0.344 0.531 0.859

The second generalization concerns inflow and outflow boundary conditions, which
are implemented following the work of Colonna and Rebay [11]. The approach relies on the
determination of a linearized form of the Riemann invariants, that allows the imposition of
the proper set of physical quantities at every boundary face in both subsonic and supersonic
regimes, for both incoming and outgoing flows. The contribution to the global Jacobian
matrix of the residual is also here derived with Tapenade [15], following the same approach
described for the convective and viscous fluxes.

4. Results

In this section, the results obtained with the new solver are discussed and the predicted
solutions are compared with available experimental and numerical reference data.

4.1. Unsteady Shock Tube

The first case consists of the Euler solution of a one-dimensional Riemann problem
proposed by Guardone et al. [4] for the fluid PP10 (C13F22). The aim of the original setup
is to reproduce and capture a non-classical expansion shock at a precise time instant and
spatial location. The length of the tube is 5 m, which is divided into 400 uniform elements.
At x = 3 m, a diaphragm separates two regions, where the fluid is at different densities
and pressure, as reported in Table 3. At time t = 0 s the diaphragm is removed and a right-
running compression shock wave, a contact discontinuity, and a left-running rarefaction
shock wave start to travel along the tube. Peng–Robinson EoS is used against the Martin–
Hou (MH) model employed by Guardone et al. [4] and a second-order approximation is
adopted for the spatial discretization.

The simulation is stopped at t = 29.46× 10−3 s and Figure 1 shows the density and
pressure profiles. The initial condition resulted in an almost isothermal domain and one-
dimensional wave propagation is well captured by the solver. In particular, a rarefaction
shock is observed, as expected, and oscillations of the solution in the neighborhood of
discontinuities are kept small thanks to the shock-capturing term. In this case, the poly-
nomial degrees and the number of mesh elements do not influence the predicted result,
whereas a sufficiently low value for the maximum “CFL” number is mandatory to achieve
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a satisfactory accuracy in time, since the adopted time integration scheme, i.e., the LBE
scheme, has a higher truncation error.

Table 3. Shock tube. Setup for shock tube case [4]. Temperatures TPR EoS are computed with Peng–
Robinson EoS.

Side p [bar] ρ [kg/m3] TPR EoS [K]

Left 15.746 398.883 632.01

Right 13.760 254.712 634.98

0 1 2 3 4 5
240

260

280

300

320

340

360

380

400

420

x [m]

ρ
[k

g/
m

3 ]

0 1 2 3 4 5
13.5

14

14.5

15

15.5

16

x [m]

p
[b

ar
]

Figure 1. Shock tube. Density and pressure profiles at time t = 29.46× 10−3 s. Guardone MH EoS [4],
dG−P2 PR EoS.

4.2. Supersonic Wedge

The second case consists of a supersonic inviscid flow of supercritical gaseous MDM
(C8H24O2Si3) in a wedge-shaped channel. The free stream Mach number at the entry of the
domain is 1.7, whereas pressure and density are 15 bar and 202.888 kg/m3, respectively.
The temperature is 571.72 K, calculated in this condition from Equation (21). The original
problem is used by Pini et al. [5] to assess the performances of the code SU2 using the
van der Waals EoS, which allows for predicting a negative Γ zone for MDM where non-
classical phenomena are possible. Different simulations have been performed for different
polynomial degrees and a number of mesh elements: (i) 42 400 elements and P0 solution
approximation, (ii) 2 650 elements and P4 solution approximation, and (iii) 42 400 elements
and P2 solution approximation. The total number of degrees of freedom for every solution
can be calculated in this case as

Ndo f = m
(q + 2)(q + 1)

3
ne, (40)

where q is the polynomial degree of the discretization, m the number of unknowns, and ne
the number of elements.

The angle formed by the rarefaction shock is reported together with the solution
parameters in Table 4, whereas the value of the same angle from the theoretical relation
reported by Pini et al. [5] is

θ = arcsin

(√
(pu − pd)

(ρu − ρd)

ρd/ρu

(Maucu)2

)
= 30.993◦, (41)

where subscripts u and d refer to the quantities upstream and downstream from the shock,
respectively. Furthermore, Figure 2 shows the Mach number contours obtained for each
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solution. As expected, a reasonable accuracy is obtained even on very coarse grids, thanks to
the high-order dG spatial discretization. Figure 2 shows as increasing the spatial resolution,
both in terms of mesh density and polynomial approximation, the discontinuity given by
the shock can be confined in a narrower stripe of elements. Furthermore, for this case,
the non-classical behavior is well captured.

Table 4. Wedge. Angles for the rarefaction shock in the wedge-shaped channel case.

Elements Degree Ndof θ [◦] Error [%]

42,400 P0 113,067 26.913 13.164
2650 P4 106,000 29.396 5.150

42,400 P2 678,400 30.763 0.742

Figure 2. Wedge. Mach number contours predicted with the following set of mesh elements and
polynomial order: 42,400 and P0 (left), 2650 and P4 (center), and 42,400 and P2 (right).

4.3. ORC Turbine Nozzle

The last problem investigated is the turbulent flow through an ORC turbine nozzle
(the geometry has been provided by Turboden) with the Siloxane MDM as working fluid.
The operating condition is characterized by a total inlet pressure of 8 bar, a total inlet
temperature of 270.5 ◦C, and a total to static pressure ratio of 6. An inviscid two-dimensional
solver was used by Colonna et al. [6], with a Span–Wagner-type MEoS given in the form
of Equation (28), whose coefficients are given in [41]. The same thermodynamic model
is used in this work, but the RANS equation coupled with the k-ω̃ turbulence model are
solved on a quasi 3D domain, as the mesh is two-dimensional and it is extruded on one
element in the third direction. The grid is unstructured with 5305 elements, as shown in
Figure 3. At the inflow, the total temperature, the total pressure, the flow angle α1 = 0◦,
and the turbulence intensity Tu1 = 4.0% are prescribed, whereas at the outflow, the static
pressure is set. Blade wall is considered adiabatic.

All computations are performed for a P2 solution approximation and a convergence
tolerance of 10−10 on the residuals norm is reached for every equation. All the computations
have been run in parallel, initialising the P0 solution from the uniform flow at outflow
conditions and the higher order solutions from the lower order ones. Figure 4 shows the
convergence history of the simulation with PR EoS.
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Figure 3. ORC nozzle. Mesh of the blade channel, 5305 hybrid elements (hexahedral in the boundary
layer and prisms outside). The geometry is distorted because the blade design is confidential property
of the manufacturer.
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Figure 4. ORC nozzle. Convergence history of the simulation with PR EoS.

Figure 5 shows the Mach number and compressibility factor z = p/(ρR∗T) contours
of a mesh section for the solution employing SW model. Some spurious reflections ap-
pear at the outflow boundary and pollute a bit the solution for the lack of non-reflective
boundary conditions. However, the main structures of the flow field are captured and
well-represented by the solver. Figure 6 (left) compares the predicted pressure coefficient
distribution along the blade with the reference numerical data by Colonna et al. [6]. Curves
obtained with Peng–Robinson and ideal gas EoS are also added to highlight the effect
of different thermodynamic models. The matching with the available reference data is
satisfactory and the small differences can be ascribed to the different set of Equations
(Euler for reference and RANS for present computations). Figure 6 (right) shows also
the value of the non-dimensional wall shear stress along the blade for the three mod-
els. Both figures demonstrate an almost perfect matching between PR and SW curves,
whereas some differences are evident when using the ideal gas law. More differences
between SW/PR models and ideal gas EoS can be seen from the pitch-wise distribution
at the outflow section for the flow angle, the Mach number, and the total pressure loss
coefficient ξ = (p01 − p02)/(p02 − p2), as shown in Figure 7. The computations reveal a
very similar behavior between Peng–Robinson and Span–Wagner models, whereas the
ideal gas EoS shows a very different distribution for the Mach number and the total pres-
sure loss coefficient distributions. In particular, the ideal gas EoS predicts higher peaks
in the Mach number distribution, whereas the loss coefficient is lower. These trends are
confirmed also by the mixed-out quantities, as reported in Table 5. The mixed-out values
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for these quantities are calculated for the generic property x with the mass flow average
xMO = (

∫
A ρVxdA)/(

∫
A ρVdA), where A is the outflow section.

Figure 5. ORC nozzle. Mach number (top) and compressibility factor (bottom) contours, P2 solution.
Distorted geometries are depicted because the blade design is confidential property of the manufacturer.
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Figure 6. ORC nozzle. Pressure coefficient (left) and non-dimensional wall shear stress (right)
distributions along the blade profile. Colonna et al. [6] 2D Euler, dG− P2 RANS IG EoS,
dG− P2 RANS PR EoS, dG− P2 RANS SW EoS.

Table 5. ORC nozzle. Mixed-out values of the flow angle, Mach number, and total pressure loss
coefficient with various thermodynamic models, P2 solution approximation.

Model α [◦] Ma ξ

IG −74.20 1.928 0.255
PR −73.41 1.892 0.367
SW −73.43 1.893 0.364
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Figure 7. ORC nozzle. Outlet flow angle (top left), Mach number (top right), and total pressure loss
coefficient (bottom) pitch-wise distribution. dG− P2 RANS IG EoS, dG− P2 RANS PR EoS,

dG− P2 RANS SW EoS.

5. Conclusions and Future Works

A dG-FEM solver with complex thermodynamic models is developed and assessed
with reference literature problems characterized by classical and non-classical gas dynamics
phenomena. Cubic and multiparameter equations of state are implemented to achieve the
best possible accuracy in the determination of thermophysical and transport properties
in a RANS framework. A good agreement of results with respect to the reference is obtained
and non-classical real gas dynamic phenomena are well captured by the solver.

Future works will cover the implementation of ad hoc numerical procedures, with the
aim of achieving a systematical use of the solver for the design process of ORC turbomachinery,
e.g., non-reflective boundary conditions and mixing-planes. The generation and use of efficient
look up tables to speed up computations with heavy gas models will also be evaluated.
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Abbreviations
The following abbreviations are used in this manuscript:

NICFD Non ideal compressible fluid dynamics
ORC Organic Rankine cycle
CCS Carbon capture and storage
EoS Equation of state
CEoS Cubic equation of state
MEoS Multiparameter equation of state
dG Discontinuous Galerkin
vdW van der Waals
PR Peng–Robinson
SW Span–Wagner
MH Martin–Hou
FEM Finite element method
FVM Finite volume method
dG-FEM Discontinuous Galerkin finite element method
LBE Linearized backward Euler
AD Automatic differentiation
GMRES Generalized minimal residual
ASM Additive Schwarz method
FD Finite differences
RANS Reynolds-averaged Navier–Stokes
ODE Ordinary differential equation
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