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a b s t r a c t

This work presents a Model Predictive Control (MPC) for the artificial pancreas, which is able to
autonomously manage basal insulin injections in type 1 diabetic patients. Specifically, the MPC goal
is to maintain the patients’ blood glucose level inside the safe range of 70-180 mg/dL, acting on the
insulin amount and respecting all the imposed constraints, taking into consideration also the Insulin
On Board (IOB), to avoid excess of insulin infusion. MPC uses a model to make predictions of the
system behavior. In this work, due to the complexity of the diabetes disease that complicates the
identification of a general physiological model, a data-driven learning method is employed instead. The
Componentwise Hölder Kinky Inference (CHoKI) method is adopted, to have a customized controller for
each patient. For the data collection phase and also to test the proposed controller, the virtual patients
of the FDA-accepted UVA/Padova simulator are exploited. The MPC is also tested on simulations with
variability of the insulin sensitivity and with physical activity sessions. The final results are satisfying
since the proposed controller is conservative and reduces the time in hypoglycemia (which is more
dangerous) if compared to the outcomes obtained without the IOB constraints.

© 2024 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

Diabetes is a common chronic metabolic disorder character-
ized by the body’s inability to correctly balance the Blood Glucose
(BG) level, due to the absence or not enough insulin production by
the pancreas. In particular, Type 1 Diabetes (T1D) is characterized
by the autoimmune destruction of the insulin-producing beta
cells. This drives the patient into a state of hyperglycemia, so
hen the BG level is above 180 mg/dL, which has long-term
omplications, such as cardiovascular disease, neuropathies or
idney damage. Thus, T1D patients require daily insulin injections

to maintain the BG level inside the euglycemic range (i.e. between
0 and 180 mg/dL). Below this threshold, the patient is in a
tate of hypoglycemia, which is dangerous in the short-term since
can even lead to the diabetic coma (Katsarou et al., 2017). In
order to ease patients’ and caregivers’ life, the therapy is try-
ing to get more and more automatized, miming the functioning
of a healthy pancreas. Specifically, the Artificial Pancreas (AP)
implements such a treatment in a closed loop. It is a system
made of three components: the sensor that measures the glucose
at the interstitial level every few minutes (Continuous Glucose
Monitoring, CGM), and the control algorithm that computes the
insulin amounts that are then injected into the subcutaneous

∗ Corresponding author.
E-mail address: beatrice.sonzogni@unibg.it (B. Sonzogni).
https://doi.org/10.1016/j.ifacsc.2024.100294
2468-6018/© 2024 The Author(s). Published by Elsevier Ltd. This is an open access a
tissue through the pump. The APs currently on the market are
ybrid closed loop systems, since the administration of the basal
nsulin (which is the small, continuous and constant amount in-
ected to manage the BG in fasting periods) is automatic, while for
ostprandial boluses (i.e. bigger amount injected at meal times
o face the BG increase due to carbohydrate ingestion or when
he BG level is unexpectedly too high) it still requires the manual
ntervention of the patients (Moon, Jung, & Park, 2021).

Model Predictive Control (MPC), due to its predictive capability
and the possibility to add constraints to the problem, is one of the
most widely used control algorithms for the AP. MPC is a control
trategy that uses a dynamic model to forecast the future behav-
or of a system. Based on this prediction, it calculates the best
equence of control actions at every sampling time, by solving a
inite horizon optimal control problem. Then, only the first value
f the control action sequence is applied to the system and the
rocess is repeated at each sampling time, in a receding horizon
ashion (Rawlings, Blake, & Mayne, 2009). Over the last few years,
the use of MPC as a control algorithm for AP has been extensively
tudied and tested (Abuin, Rivadeneira, Ferramosca, & González,
2020; Cairoli, Fenu, Pellegrino, & Salvato, 2020; Del Favero, Tof-
fanin, Magni, & Cobelli, 2019; Gondhalekar, Dassau, & Doyle III,
2016; González, Rivadeneira, Ferramosca, Magdelaine, & Moog,
2017, 2020; Hajizadeh, Rashid, & Cinar, 2019; Hovorka et al.,
2004; Shi, Dassau, & Doyle, 2018; Soru et al., 2012; Toffanin et al.,
2013), thanks to its capability to anticipate unwanted fluctuations
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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in glycemic levels and to calculate the amount of insulin to be
njected, taking into account all the constraints.

T1D is a disease that varies both among and within patients
and this is due to differences in the blood glucose response to
meals or insulin, which can also vary according to daily state.
Identifying a general model to describe the insulin-glucose sys-
tem is therefore difficult. This work aims to use data-driven
approaches, that is, to use the current and past data of a patient
to obtain the future BG, and then to be able to calculate the
correct amount of basal insulin to be delivered. This facilitates
and improves T1D management by providing a customized MPC
algorithm for the AP. Recently, different types of learning-based
MPCs have been proposed in the literature (Hewing, Wabersich,
enner, & Zeilinger, 2020), which are based on different learn-

ng methods. Specifically, we use the Componentwise Hölder
inky Inference (CHoKI) method, a nonparametric learning tech-
ique that favors the design of robust MPCs that are stable by
esign (Manzano, Muñoz de la Peña, Calliess, & Limon, 2021).
In this case, starting from the work proposed in Sonzogni,

anzano, Polver, Previdi, and Ferramosca (2023), in the MPC
ptimization problem is considered also a dynamic safety con-
traint on the maximum basal insulin value, which is based on
he Insulin On Board (IOB). To take into account the insulin
mount of the boluses that is still active in the patient, when
omputing the quantity of the basal corrections, to reduce the risk
f hypoglycemic events.
The virtual patients of the UVA/Padova simulator (The Epsilon

roup, 2016) are exploited to collect the data needed to learn the
ystem behavior and also to test the proposed control algorithms.
his is a simulator accepted by the Food and Drug Administration
FDA) as a substitute for pre-clinical studies and it contains pop-
lations of virtual subjects; in particular, we have used the adults
ith T1D.
The same proposed CHoKI-based MPC has been also tested on

patients whose insulin sensitivity varies intra-subjects through-
out the day. Moreover, other simulations are performed to assess
the controller’s ability to deal with physical activity sessions.

The rest of this work is structured as follows: Section 2
presents the CHoKI learning method and the version tailored to
he T1D patient case. Section 3 analyses the proposed model
predictive control problem. The implementation of the designed
controller in the UVA/Padova simulator is presented in Section 4,
nd Section 5 concludes the paper.

Notation:
A set of integers [a, b] is denoted Iba, R

n is the set of real vectors
f dimension n and Rn×m is the set of real matrices of dimension
×m. Given v , w ∈ Rnv , the notation (v , w) implies [vT , wT

]
T and

≤ w implies that the inequality holds for every component. ∥v∥

tands for the Euclidean norm of v and |v| = {w : wi = |vi|, ∀i}.
iven two sets A, B, A⊖B denotes the Pontryagin difference. Their
artesian product is denoted A × B = {(x, y)|x ∈ A, y ∈ B}. The
ositive box B(v) ⊂ Rnv of radius v is defined as B(v) = {y :

0 ≤ y ≤ v} and the ball B(v) ⊆ Rnv of radius v is defined
as B(v) = {y : |y| ≤ v}. An n,m-dimensional matrix of ones is
denoted 1n×m. The ith row of a matrix M is denoted Mi.

2. Problem statement

The analyzed problem is based on the CHoKI formulation
roposed in Sonzogni et al. (2023), which is briefly reported in
he following.

The system is a sampled continuous-time one, described by an
 priori unknown discrete-time model, whose measured output
s y(k) ∈ Rny and whose input is u(k) ∈ Rnu . In this case,
here is one output (ny = 1) which is the glucose level, in
g/dL, and there are two inputs (n = 2), which are the meal
u s

2

(u1, the disturbance) in g of carbohydrates and the insulin (u2,
he manipulated variable) in pmol. A sampling time of 5 min is
onsidered.
The measured output can be modeled as a nonlinear autore-

ressive exogenous (NARX) model, with the following state-space
epresentation:

y(k + 1) = f
(
x(k), u1(k), u2(k)

)
+ e(k),

where e(k) ∈ Rny is process noise and the regression state x ∈ Rnx

is

x(k) =

(
y(k), . . . , y(k − na), u1(k − 1), . . . , u1(k − nb),

u2(k − 1), . . . , u2(k − nc)
)
, (1)

where na ∈ N0 is the memory horizon for the glucose values, nb ∈

N0 for the meals and nc ∈ N0 for the basal insulin injections.
The arguments of f are then aggregated into w = (x, u1, u2) ∈

Rnw so that it is possible to build a data set of ND observations,
denoted D = {(yk+1, wk)}, for k = 1, . . . ,ND − 1.

2.1. Componentwise Hölder Kinky Inference (CHoKI)

The purpose of this subsection is to be an introduction to
the choice of learning method. Kinky Inference (KI) (Manzano,
imon, Muñoz de la Peña, & Calliess, 2020) is a class of learn-
ng approaches that includes Lipschitz interpolation, which is
 technique based on Lipschitz continuity of the ground truth
unction. There exists an extension of the Lipschitz continuity,
amed Hölder continuity, defined as follows:

Definition 1 (Hölder Continuity). A function f : W → Y is Hölder
ontinuous if there exist two real constants L ≥ 0 and 0 < p ≤ 1
such that for all w1, w2 ∈ W ,

∥f (w1) − f (w2)∥ ≤ L∥w1 − w2∥
p, (2)

where L represents the smallest Lipschitz constant and p is called
he Hölder exponent, W ⊆ Rnw is the input space and Y ⊆ Rny is
he output space.

In the case of p = 1, it means to have Lipschitz continu-
ity (Manzano et al., 2021).

To catch different variations of the output according to the
changes of each component of the input regressor, the Compo-
nentwise Hölder Kinky Inference (CHoKI) (Manzano et al., 2021)
can be implemented. This method is based on the componentwise
Hölder continuity, which considers matrices L and P , instead of
the Hölder constant L and exponent p. This is useful in cases
where a function may have sudden variations along one dimen-
sion of the input, while changing smoothly along other input
imensions.

Definition 2 (Componentwise Hölder Continuity). Given the matri-
es L and P ∈ Rny×nw , a function f : W → Y is componentwise
L-P-Hölder continuous if ∀w1, w2 ∈ W and ∀i ∈ Iny1
|f (w1) − f (w2)| ≤ dPL (|w1 − w2|) (3)

where

dPL (w) :=
(
a : ai =

nw∑
j=1

Li,jw
Pi,j
j , ∀i ∈ Iny1

)
. (4)

Then, assuming that f is Hölder continuous and given a data
et D of inputs/outputs observations, the CHoKI predictor for a
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query q ∈ Rnw is:

f̂ (q; Θ,D) =
1
2

min
i=1,...,ND

(
ỹi + dPL

(
|q − wi|

))
+

1
2

max
i=1,...,ND

(
ỹi − dPL

(
|q − wi|

))
, (5)

where Θ = {L,P} and f̂ is still componentwise L-P-Hölder
continuous.

According to (5) it is possible to predict a new output ŷ(k +

) = f̂
(
w(k); Θ,D

)
. Then, the prediction model can be formu-

ated in state-space as follows:
x̂(k + 1) = F̂

(
x(k), u1(k), u2(k)

)
ŷ(k) = Mx̂(k)

(6)

where F̂
(
x(k), u1(k), u2(k)

)
=

(
f̂ (x(k), u1(k), u2(k)), y(k), . . . , y(k−

a + 1), u1(k), . . . , u1(k − nb + 1), u2(k), . . . ,
2(k − nc + 1)

)
and M = [Iny , 0, . . . , 0].

If the matrices L and P are unknown a priori, they must be
estimated. To do that, an optimization problem is solved offline,
splitting the data set D into two disjoint data sets: Dtrain for the
estimation and Dtest for the validation. The optimization problem
is:

Θ = arg min
Θ

g(Θ,Dtrain,Dtest) (7a)

s.t. |ỹi − ỹj| ≤ dPL (|wi − wj|), ∀wi, wj ∈ WD, wi ̸ = wj (7b)

0 < Pij ≤ 1, Lij > 0, i ∈ Iny1 , j ∈ Inw
1 , (7c)

where WD represents the input data points in D. The cost func-
ion g(Θ,Dtrain,Dtest) to be minimized is:

g(Θ,Dtrain,Dtest) =
1

NDtest

NDtest∑
i=1

∥f̂ (wi; Θ,Dtrain) − ỹi∥2, (8)

being f̂ (wi; Θ,Dtrain) the predictions made with the CHoKI in (5)
(computed with the data in Dtrain), which are compared to ỹi, that
re the measured values of the noisy data set Dtest.

2.2. CHoKI implementation for T1D patient

In this subsection, the CHoKI method explained in Section 2.1
is designed to learn the dynamics of the T1D patient.

To this aim, to implement the CHoKI strategy, the first step is
the data collection. This is a fundamental phase since the quality
f the generated data set will affect the performance of the CHoKI
redictor and thus the functioning of the controller. This is done

by employing the virtual T1D adult patients of the UVA/Padova
simulator. For each of them, several simulations were made,
varying the initial glycemic condition, the basal insulin quantity
(from 0 to 500 pmol) and the carbohydrates of the meals (with
he post-prandial boluses, given 20 min after the meal time). All
hese simulations were set to obtain an appropriate distribution
f the points in the space, looking at the input–output represen-
ation. The simulator allows the inclusion of some noises on the
ensor and on the pump, to perform more realistic simulations.
Specifically, the available virtual typical commercial CGM was
selected as a sensor, with auto-regressive noise with inverse
Johnson transform distribution. The noise on the virtual pump
is normally distributed with a mean of 0 pmol and a standard
deviation of 0.1. Also, an error with a normal distribution with
a standard deviation equal to 30% of the meal amount is added
to the carbohydrate estimation.

Only the relationship between BG, meals and basal insulin is
onsidered, as the aim of the proposed controller is to manage
asal insulin injections automatically, while meal boluses are

delivered manually (assuming they are a function of meals). The
HoKI requires the data to be in the right NARX shape, thus the
3

model orders na, nb and nc have to be identified and this is done
hrough a cross-validation procedure.

In particular, many combinations of model orders were tested.
he Root Mean Squared Error (RMSE) among the 1-step ahead
redictions and the actual values were measured on an unused
1-day data set. The selected orders were chosen based on the
owest RMSEs, but a trade-off with model complexity was also
onsidered to avoid the risk of overfitting. The resultant orders
re na = 5, nb = 9 and nc = 3, being each sampling time 5 min
ong.

To obtain the predictions employing (5), the hyperparameters
Θ = {L,P} must be estimated according to (7). We assumed to
have P = 1ny×nw and thus the optimization problem is solved
to obtain just the values of the matrix L. In this case, only three
values are estimated: La ∈ R for the glucose part, Lb ∈ R for the
meals and Lc ∈ R for the insulin. Therefore, L contains those three
values repeated to reach the right dimension (i.e. the regressor
length nw), thus L = [La1na; Lb1nb; Lc1nc ].

Some a priori knowledge was utilized in order to set the
constraints of the optimization problem: as the L initial value
the Lipschitz constant Lwas exploited, which is obtained from the
LACKI (Lazily Adapted Constant Kinky Inference) method (Manzan
et al., 2020), based on the Hölder continuity property. The up-
per and lower bounds for La, Lb and Lc were set as [10;10;10]
and [0;0.9;0.09], respectively, thanks to previous analyses.

The fmincon MATLAB function was implemented to solve the
optimization problem (7). For each patient, once the L is found,
the model is validated on a new data set, to verify its ability to
predict future BG values, comparing them with the real outputs.
The outcomes of the validation are reported in Table 1, where the
RMSE and the GoF (goodness of fitting) are shown, comparing the
predictions and the real data of the validation data set (4 days).

Specifically, RMSE =

√∑Nval
i=1 (yi−ŷi)2

Nval
and GoF = 100

(
1 −

∥yi−ŷi∥
∥yi−ȳi∥

)
,

here Nval is the number of data in the validation dataset, yi are
the real values, ŷi are the predictions of the next BG sample and
¯ i is the mean value. For each subject, the resulting L, the uref and
the L are reported in Table 2.

Further analysis was also carried out, starting with a fixed
egressor and varying the input values, to ensure that the CHoKI
trategy had correctly learned the effect of each input on the
utput. The fixed regressor has BG set to 120 mg/dL, no meals
nd constant basal insulin equal to the reference value uref of each
atient, obtained from the standard therapy provided by the sim-
lator. As an example, the results obtained from subject Adult 9
re displayed in Fig. 1: it can be seen how the glucose trend (blue

lines) decreases when the amount of the basal insulin injections
ncreases and it rises when there is carbohydrate ingestion. This
holds for all the considered virtual patients.

3. CHoKI-based robust MPC

The control objective is to drive and maintain the BG level
nside the euglycemic zone, which is given by 70 and 180 mg/dL,
atisfying all the inputs and output constraints. The basal insulin
mount u2(k) must be inside the range U = {u : 0 ≤ u ≤

00 pmol}, ∀k. It is the control action, whose values are calculated
o that the BG level y(k) remains in the set Y = {y : 55 ≤ y ≤

00 mg/dL}, ∀k, not to arrive to extreme hyper- or hypoglycemic
onditions. An additional constraint is set on the maximum value
f the basal insulin, according to the IOB estimation.
In this case, the open-loop predictions of the MPC control

problem are computed with the CHoKI predictor (5), assuming
that a physiological model for T1D patients is not available. To
ensure the robustness of the MPC to possible model-system
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Table 1
RMSE and GoF (validation).
Adult #1 #2 #3 #4 #5 #6 #7 #8 #9 #10 mean value

RMSE 9.28 7.59 7.38 5.98 9.21 7.65 15.21 5.84 9.32 7.17 8.46
GoF 78.59 77.65 72.97 84.67 74.92 82.23 72.23 86.14 82.41 77.61 78.94
Table 2
MPC settings.
Adult uref

[pmol]
ND L (LACKI) [La; Lb; Lc ] (CHoKI) µ (90%)

[mg/dL]
Nc ϵ Q

#1 122.38 4775 3.46 [0.74; 5.46; 0.29] 14.83 2 10 1
#2 134.89 4950 3.28 [4.89; 3.96; 0.09] 10.19 2 20 1
#3 149.97 4990 3.08 [0.71; 5.45; 0.09] 9.29 3 10 1
#4 95.07 4768 3.21 [0.87; 9.94; 0.13] 8.19 3 10 1
#5 91.83 4156 6.56 [0.84; 5.52; 0.44] 13.91 2 5 1
#6 190.22 5339 3.41 [4.72; 3.52; 0.09] 11.27 1 1 1
#7 124.923 4803 4.09 [9.80; 0.9; 1.39] 11.89 1 10 1000
#8 105.83 4703 2.58 [1.08; 5.84; 0.09] 7.8 3 1 100
#9 94.59 3976 3.72 [1.13; 4.09; 0.09] 11.63 2 1 100
#10 124.86 4966 3.29 [3; 2; 0.09] 10.1 1 20 1
Fig. 1. In each graph, the vertical dashed red line marks the end of the fixed regressor, when the inputs displayed in the titles are applied. The blue line is the
lucose trend. In a) the glucose increases a bit, due to the absence of basal insulin. In b) the glucose remains stable since the insulin amount is the reference value
nd equal to the regressor values. In c) the glucose decreases due to the basal amount of 180 pmol. In d) the glucose increases due to the presence of the meal

and no basal insulin.
a

s

mismatches, the output constraints are tightened at each step
ccording to an error that represents the uncertainty of the pre-
ictions based on the data. The system in closed loop is shown to
e Input-to-State Stable (ISS) (Manzano et al., 2021, Theorem 3)
ith the proposed controller.
The set of restricted output constraints is given by

Yj = Yj−1 ⊖ Rj, (9)

along the prediction horizon, j = 1, . . . ,N . Rj are the reachability
ets that account for the possible errors in the nominal predic-
ions and Y0 = Y . To compute Rj, the starting point is to consider
 sequence of future inputs u(k + 1) and c1 ∈ Rny , such that

|y(k + 1) − ŷ(1|k)| ≤ c1. (10)

The difference between a prediction made at time step k+j based
on the measurement at step k, and the prediction made at step k
based on the measurement at step k + 1, for a given sequence of
control inputs, is bounded by the sets
|ŷ(j|k) − ŷ(j − 1|k + 1)| ∈ Mj ⊆ Rny , (11a)
4

| ̂w(j|k) − ŵ(j − 1|k + 1)| ∈ Gj ⊆ Rnw . (11b)

The sets M and G can be calculated from the equations

Mj = B
(
dPL (Gj−1)

)
, (12a)

Gj = Mj × · · · × Mσ (j) × {0} × · · · × {0}, (12b)

with σ (j) = max(1, j− na) and M1 = B(c1). The set Rj is defined
s Rj = {y : |y| ∈ Mj} for all j ∈ IN1 .
In Manzano et al. (2021) is also shown that cj ∈ Rny and

dj ∈ Rnw are such that Mj = B(cj) and Gj = B(dj). Then, the
ets Mj and Gj can be computed using the recursion

cj = dPL (dj−1), (13a)

dj = (cj, . . . , cσ (j), 0, . . . , 0), (13b)

with c1 = µ (where µ is the maximum absolute error obtained
in the validation phase) and then, R = B(c ).
j j
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In our specific control problem, an a posteriori analysis showed
that extreme deviations from nominal predictions are highly un-
likely. Then, the value representing the 90th percentile of the
probability distribution is used as µ instead of the maximum
error (see Table 2).

Remark 1. To deal with the infeasibility of possible solutions
utside the 90% region, some slack variables δ = {δmin, δmax} are
dded to the optimization problem; therefore the constraints on
he glucose become ŷ(j|k) ∈ Yj,δ, ∀j ∈ IN1 , with

Yj,δ =
{
y : ymin(j) − δmin(j) ≤ y ≤ ymax(j) + δmax(j)

}
, (14)

where ymin and ymax are the extreme values of Yj from (9).

3.1. Terminal ingredients computation

The tightened constraints are computed as described in the
revious section, for all subjects, only once and offline. This tight-

ening implies the definition of the length of the control horizon
Nc , which may vary for each virtual patient. The control horizon is
calculated as the maximum possible value that makes it possible
to have a set of constraints that is not empty, but it also takes
nto account the need to have reasonable ranges according to the
ystem.
A prediction horizon Np longer than the control horizon Nc is

considered to increase the domain of attraction and the predictive
bility of the controller, thus Np > Nc . A local control law for
he predictions from Nc to Np must be established to apply this
pproach. We use the following:

u = K (x − x) + u, (15)

with u = (u1, u2) and where K ∈ Rnu×nx is the control gain of
 Linear Quadratic Regulator (LQR) and (x, u) is an equilibrium
oint around which the system F̂ (x, u) is linearized. In particular,

x is constructed as per (1), using y = 120 mg/dL of glucose, and
u = (0, uref). Matrices A ∈ Rnx×nx and B ∈ Rnx×nu of the linearized
model x(k + 1) = Ax(k) + Bu(k), are calculated numerically from
the input–output data using the CHoKI model. In this way, each
element A(j, i) and B(j, i) is obtained by considering that

A(j, i) =
∂ F̂j
∂xi

=
F̂j(xi + ϵ) − F̂j(xi − ϵ)

2ϵ
, B(j, i) =

∂ F̂j
∂ui

,

where ϵ can be different for each subject (see Table 2). Note that
(1, 1) =

∂yk+1
∂yk

and B(1, 1) =
∂yk+1
∂u1,k

.

3.2. Insulin on board

The MPC algorithm also includes a dynamic safety constraint
n the maximum basal insulin value, which is based on the
mount of IOB. The IOB represents the quantity of injected insulin
till active in the body, which depends on patient dynamics and
n the duration of insulin action (DIA). The IOB at each sampling
ime k can be estimated considering the residuals of the past
nsulin administration, which means having:

IOB(k) = a(k − 1)ub(k − 1) + · · · + a(k − nIOB)ub(k − nIOB), (16)

where the insulin action curve is represented by a and the vector
f the insulin boluses administration history is ub. The time of
nsulin action is nIOB, considered with a sampling time of 5 min.
pecifically, in this case, it is nIOB = 72, which means considering

6 h (note that taking into account an insulin duration of 6 h
is a less conservative approach than considering a duration of
8 h) (León-Vargas, Garelli, De Battista, & Vehí, 2013).

The upper constraint is considered to limit the basal correc-
ions, in order to avoid giving too much insulin, and thus to
educe the risk of hypoglycemic events. This means that the basal
5

insulin amount u2 must be inside the new range

U2 = {u : 0 ≤ u ≤ umax
2 }, (17)

where umax
2 is the value of the upper constraint for the basal

omputation and it comes from:

umax
2 (k, j) =

{
ulim
2 − IOB(k, j) if ulim

2 > IOB(k, j)
uref otherwise (18)

where ulim
2 = 500 pmol is the basal insulin maximum amount

that can be injected, and considering the sampling time k and j =

, . . . ,Np − 1 (Ellingsen et al., 2009). The IOB varies along the
prediction horizon (i.e. with j), which means that the estimations
decrease according to the insulin action curve, without consider-
ing possible new meal boluses. This implies that the basal upper
bound is equal to the reference value uref when the maximum
limit ulim

2 is less than the insulin still active from the previous
boluses injection (i.e. IOB), otherwise, the upper bound is equal to
the difference between ulim

2 and IOB(k). The weights of the insulin
action curve a are obtained from

(
(DIA − tb)/DIA

)
, where DIA =

 h and tb is the time passed from the previous bolus. In Fig. 2
an example of the IOB estimation for virtual Adult 10 is reported.
This shows that (16) approximates quite well the real values (blue
line) and the choice of DIA equal to 6 h is appropriate. The initial
IOB value after a bolus could be different between the two curves.
This is because the estimated IOB is based on the value of the
bolus calculated for the meal, on the other hand, the real IOB is
based on the value that is actually injected, which may vary from
the calculated value due to pump noise.

Remark 2. To address any potential infeasibilities during the MPC
resolution, Np slack variables δu were included in the optimization
problem. These were added to the upper bound umax

2 in Eq. (17),
obtaining

U ′

2 =
{
u(j) : 0 ≤ u(j) ≤ umax

2 (j) + δu(j)
}
, ∀j ∈ INp−1

0 . (19)

3.3. CHoKI-based MPC implementation

Starting from the proposal in Sonzogni et al. (2023), the MPC
optimization problem which considers also the IOB is set as
ollows:

min
u2,ya,δhyper,δhypo,δmin,δmax,δu

VN (x̂, u; Θ,D) (20a)

s.t. x̂(0|k) = x(k) (20b)
x̂(j + 1|k) = F̂

(
x̂(j|k), u1(j), u2(j)

)
, j ∈ INc−1

0 (20c)

x̂(j + 1|k) = F̂
(
x̂(j|k), K (x̄ − x(j)) + ū

)
, j ∈ INp−1

Nc
(20d)

ŷ(j|k) = Mx̂(j|k), j ∈ INp−1
0 (20e)

u2(j) ∈ U ′

2, j ∈ INp−1
0 , (20f)

ŷ(j|k) ∈ Yj,δ, j ∈ INc−1
0 (20g)

ŷ(j|k) ∈ YNc ,δ, j ∈ INp−1
Nc

(20h)

u1(j) = 0, j ∈ INp−1
1 (20i)

70 − δhypo ≤ ya ≤ 140 + δhyper (20j)

δhyper ≥ 0, δhypo ≥ 0 (20k)

δmin(j) ≥ 0, δmax(j) ≥ 0, j ∈ INp−1
0 (20l)

δu(j) ≥ 0, j ∈ INp−1
0 (20m)

where (20i) is used since the meals are not predictable, Yj,δ comes
from (14) and (20f) is the constraint that takes into consideration
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Fig. 2. The estimated boluses IOB is represented as the orange line and the IOB computed by the simulator is in blue. This is an example of the virtual patient Adult
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o
e
m
0
5

w

s
i

the IOB, from (19). The tightened constraints are computed as
xplained in the previous section, for all the subjects, and the

resulting Nc are reported in Table 2. The prediction horizon is set
o Np = 12 for all subjects, to reach 60 min of predictions.

The cost function VN (x̂, u; Θ,D) to be minimized is designed
y summing several components, namely:

VN (x̂, u; Θ,D) = VNc + VNp + Vs + λVP + Vδ + Vu. (21)

Specifically, the stage costs VNc , along the control horizon Nc −

, and VNP , along the prediction horizon Np − 1 starting from Nc ,
re:

VNc =

Nc−1∑
j=0

∥ŷ(j|k) − ya∥2
Q + ∥u2(j) − uref∥

2
R, (22a)

VNp =

Np−1∑
j=Nc

∥ŷ(j|k) − ya∥2
Q . (22b)

where the insulin target uref is the constant basal insulin dose
elivered by the UVA/Padova simulator for the default continuous
herapy of the selected virtual patient. For the implementation
f the MPC in a zone control fashion is required the presence of
he setpoint ya, which is an auxiliary optimization variable and
t has to be within 70 and 140 mg/dL. Two slack variables δhypo
nd δhyper are added to this interval for ya, which are other opti-
ization variables used to increase the range in the constraints
hen necessary. Therefore, an additional stationary cost Vs has
o be considered. In Vs, the slack variables are weighted by some
onstants, that are set to be phypo > phyper to reflect the higher
anger of hypoglycemia compared to hyperglycemia (Abuin et al.,

2020).

Vs = phyperδ2hyper + phypoδ2hypo. (23)

The terminal cost VP penalizes the difference between the last
state x̂(Np|k) and the reference state (xref, which contains the set
point ya, no meals and uref).

VP = ∥x̂(Np|k) − xref∥2
P , (24)

where P is the solution to the Riccati equation, given the LQR
ontrol gain K for the linearized system around the reference
point (in Section 3.1). The terminal cost is normally used to
nsure the stability of the MPC and in this case, it is weighted
y a factor λ > 0, as no terminal constraint is taken into account.
Other slack optimization variables are considered in the

lycemic constraints (14). Thus, for the same reason as before,
6

the cost Vδ must be included to penalize them by considering two
weights, where pmin > pmax,

Vδ =

NP∑
j=1

∥δmin(j)∥2
pmin

+ ∥δmax(j)∥2
pmax

. (25)

The last component is the cost Vu, to penalize additional
slack variables δu which are included in the control action con-
straints (20f),

Vu =

NP∑
j=1

∥δu(j)∥2
pu . (26)

Furthermore, many combinations of weights were tested and
the following were selected: R = 10, phypo = 1 · 107, phyper =

1 · 106, pmin = 1 · 107, pmax = 1 · 106, pu = 1 · 107 and λ = 10.
The values of Q are shown in Table 2 and note that in the cases
where R is greater than Q , this means that a more conservative
controller is applied.

4. Results

The proposed MPC was tested on the virtual adult patients
f the UVA/Padova simulator, with customized controllers for
ach subject. Three days were simulated, with the following three
eals per day: 20 g at 06:00am, 90 g at 12:00pm, and 30 g at
7:00pm for the first day; 30 g at 07:00am, 80 g at 12:30pm, and
0 g at 08:00pm for the second day; and 40 g at 06:30am, 100 g

at 01:00pm, and 60 g at 07:30pm for the last day. The meals
ere announced, and the postprandial boluses were computed

by the simulator and injected 20 min after the meal’s start. All
the devices have the same noise setting as in the data acquisition
stage, including the carbohydrate estimation error with a normal
distribution with a standard deviation equal to 30% of the meal
amount, for the bolus computation.

The results of the simulations for all patients are shown in
Fig. 3. The top graph displays the BG trends caused by the insulin
injections depicted in the bottom graph, which vary based on the
patient model. The primary objective is to reduce the frequency
and the severity of hypoglycemic events, which are very danger-
ous in the short term, and it can be seen that such a result is
achieved. There are some hyperglycemic peaks, in particular for
the Adult 7, who goes above 300 mg/dL, with a solution that is
till feasible thanks to the slack variables in the constraints. This
s due to the MPC setup which ends up being over-conservative.

The results obtained in this work are compared to the ones re-
alized following the procedure reported in Sonzogni et al. (2023),
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Fig. 3. The upper plot displays BG trends for all patients. The green zone represents the safe range and the black triangles depict meals. The lower plot shows basal
nsulin injections computed by the proposed MPC.
Fig. 4. Comparison of the BG values: the mean and the standard deviation of the simulations performed with IOB constraints are represented in blue, and without
them are in red.
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whose simulations are conducted without the IOB constraints. In
particular, the comparison of the mean and standard deviation of
the BG values for the two cases is shown in Fig. 4, where the blue
otted line represents the mean values of the cases with the IOB
onstraints and the blue area displays their standard deviations,
hile the cases without the IOB are in red. This indicates that

ncluding the IOB in the constraints means to have a more con-
ervative controller, since the BG level is higher in the cases with
he IOB safety constraints. It is also confirmed looking at the BG
nd basal insulin average values reported in Table 3 (i.e. mean
nd standard deviation), where the average BG values of the
imulations with IOB constraints are higher than in the ones
ithout them, because of less insulin amount. This is due to the

fact that the controller does not manage post-prandial boluses. As
a result, when the BG value is high at mealtime, the bolus amount
tends to be higher (computed by the simulator). This leads to
igher IOB, which in turn limits the basal corrections.
7

Another important tool for assessing AP performance is the
ime In Ranges (TIRs). This shows the percentage of time a patient
pends in each specific BG range. In particular, as required by
he American Diabetes Association (ADA), the TIRs targets are as
ollows: < 5% of time with BG higher than 250 mg/dL, < 25%
etween 180-250 mg/dL, > 70% between 70-180 mg/dL, < 4%
etween 55-70 mg/dL and < 1% for BG lower than 55 mg/dL.
he proposed controller ensures that the requirements for the
ypoglycemic ranges are always met, which is the main objective.
owever, the controller permits the subjects to stay a little longer
n the two hyperglycemic ranges, which also means that they
tay within the 70-180 mg/dL range for less than 70% of the
imulation time. The results are displayed in Fig. 5, where, for
each subject, the graph on the left is for the cases without the
IOB, while the one on the right is for the cases with the IOB
constraints.

The conservative results are a consequence of the linear func-
tion used to estimate the IOB. In fact, as shown in Fig. 2, the IOB
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Fig. 5. TIRs results of the simulations performed with (graph on the right) and without the IOB constraints (graph on the left). Each bar represents a specific subject.
Table 3
Comparison of the BG mean and standard deviation (in mg/dL), of the basal insulin u2 mean and standard deviation (in pmol), and
GRI for the controller with (on the right) and without (on the left) the IOB constraints.
Adult Without IOB constraint With IOB constraint

BG mean ± std
[mg/dL]

u2 mean ± std
[pmol]

GRI BG mean ± std
[mg/dL]

u2 mean ± std
[pmol]

GRI

#1 159.78 ± 30.27 92.71 ± 46.78 14.15 180.27 ± 38.89 68.42 ± 48.17 38.20
#2 140.16 ± 27.15 114.09 ± 55.68 7.12 178.99 ± 34.44 35.70 ± 62.60 31.72
#3 152.05 ± 27.50 133.43 ± 42.58 12.21 168.81 ± 30.65 114.00 ± 57.49 23.40
#4 154.08 ± 33.94 71.86 ± 41.67 14.61 164.28 ± 37.47 64.56 ± 39.02 23.31
#5 147.05 ± 34.62 78.31 ± 31.37 13.78 156.21 ± 34.58 68.00 ± 33.14 18.96
#6 126.17 ± 37.56 184.03 ± 39.44 7.58 171.12 ± 45.56 52.49 ± 83.82 29.87
#7 151.86 ± 70.35 102.92 ± 95.51 53.87 197.67 ± 59.71 93.18 ± 72.71 61.23
#8 169.55 ± 37.75 53.39 ± 68.33 28.95 191.58 ± 41.80 20.36 ± 40.42 50.50
#9 159.26 ± 52.18 55.32 ± 72.10 31.26 194.82 ± 50.46 13.74 ± 41.78 55.03
#10 119.26 ± 28.86 120.24 ± 25.11 4.35 168.43 ± 31.11 43.90 ± 56.27 22.75
a
t

g
i

t
(
T
i
B
t

h

is always overestimated. This can be improved searching for a
polynomial or exponential function.

An additional useful tool can be the Glycemia Risk Index
(GRI) (Klonoff et al., 2022), which is a quantitative measure de-
signed to provide a comprehensive evaluation of an individual’s
susceptibility to hypoglycemia or hyperglycemia. It is obtained
from

GRI =

(
3.0

(
p1 + 0.8p2

))
+

(
1.6

(
p4 + 0.5p3

))
,

where the first part is the hypoglycemic component and the
econd is the hyperglycemic one. It considers the same percent-
ages of the TIRs, where p1 is the percentage of time in which
he subject’s BG is less than 54 mg/dL, p2 for the BG between
54 and 70 mg/dL, p3 for the BG between 180 and 250 mg/dL
and p4 for BG higher than 250 mg/dL. The GRI can be displayed
graphically on a grid with the hypoglycemia component on the
horizontal axis and the hyperglycemia component on the vertical
axis. Diagonal lines divide the graph into five zones (quintiles)
based on overall glycemia quality, from best (0th-20th percentile)
to worst (81st-100th percentile).

The GRI values are reported in Table 3, while the two compo-
ents are represented in Fig. 6b to understand which is the higher
ne, where each dot on the graph describes a specific subject in

the cases without the IOB, and the squares are for the ones with
the IOB constraints. In the cases without the IOB, Adult 7 is in
Zone C, Adult 8 and Adult 9 are in Zone B, and the others are in
safe Zone A. While in the cases with IOB, due to the higher BG
values, Adult 7 is in Zone D, Adult 8 and Adult 9 are in Zone C,
dult 5 in Zone A and the others are in Zone B. All the subjects
except for Adult 7 and Adult 9 in the cases without the IOB
constraint, due to the hypoglycemic events highlighted in Fig. 5a)
8

lay on the y-axis, this is because our controller is designed to
void hypoglycemia, which is why the higher risk component is
he hyperglycemic one.

Up to now, the average results are evaluated, but to have a
more complete analysis, also the Control-Variability Grid Analysis
(CVGA) can be assessed. The CVGA (Magni et al., 2008) is a
raphical representation that provides both visual and numerical
nformation about the quality of glycemic control. In Fig. 6a, each
dot on the graph describes a specific subject in the cases without
IOB, while the squares are for those with IOB restrictions, with
the minimum BG value as the x-coordinate and the maximum
BG value as the y-coordinate. As recommended by Magni et al.
(2008), the lower bound of CVGA is set at 2.5% of the distribution
of data and the upper bound at 97.5%. Considering the simula-
ions with the IOB, these worst cases are all in the safe zones
except for Adult 7, Adult 8 and Adult 9, who are in Zone C).
his demonstrates how including the IOB constraint resolves the
ssues related to hypoglycemic events, increasing the minimum
G value, even at the cost of also increasing the maximum value,
hus moving the squares up vertically on the graph.

The current controller may be too conservative, especially
for Adult 7, as it keeps the virtual patient in a hyperglycemic
state for an extended period. Consequently, further analysis is
necessary to improve control, especially considering the patient’s
igh variability and complex response to insulin.

4.1. Simulations with insulin sensitivity variations

In this Section, the proposed CHoKI-based MPC with the IOB
constraints is tested on the same virtual patients, but with vari-
ations in the insulin sensitivity, thanks to the availability of
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Fig. 6. Results of the simulations performed with the IOB constraints (squares), compared to the ones without them (dots): a) CVGA and b) GRI.
Fig. 7. Proposed controller applied to the virtual patients with varying insulin sensitivity. Upper plot: BG trends of all patients, with the green zone for the safe
range and the black triangles for the meal times. Lower plot: basal insulin injections.
c

the circadian variability option in the updated version of the
UVA/Padova simulator (DMMS.R version 1.3). Insulin sensitivity
refers to how responsive the cells are to insulin and this can vary
in the subject during the day (Visentin, Dalla Man, Kudva, Basu,

 Cobelli, 2015). The simulations are performed with the same
etting as in the previous cases and the results are presented
n Fig. 7, where the upper part shows the BG trends that are
btained thanks to the insulin injections displayed in the lower
raph. To better evaluate the performances of the proposed con-
roller in managing the variations in the insulin sensitivity, the
VGA, GRI and TIRs results are considered as well (see Fig. 8a,

Fig. 8b and Fig. 9, respectively).
The cases reported in this Section derive from the attempt

o control a more complex system due to the variability of in-
ulin sensitivity, which affects the relationship between glucose,
nsulin, and carbohydrates. This leads to more fluctuations in
lucose levels, as depicted in the upper part of Fig. 7. This is

evident when looking at Adult 7, who worsens compared to the
case without variability (as shown in Fig. 3), both because the
 s

9

hyperglycemia peak is higher, but also due to greater fluctuations
in glucose level, since the patient goes also in hypoglycemia (but
> 54 mg/dL). Fig. 8a shows the CVGA outcomes, where Adult
7 is in the D zone, Adult 5, 6 and 9 are in the Upper C zone,
while the others are in the Upper B zone. Fig. 8b displays the GRI
values, where Adult 7 is in Zone D, while Adult 4, 5 and 6 are
in Zone B, and the remaining ones are in Zone C. These results
are quite promising, since they demonstrate that the proposed
controller can still prevent hypoglycemic events while remaining
conservative, even in the presence of insulin variability. However,
the variations in insulin sensitivity affect the ability of the CHoKI
learning method, even if the outcomes are similar to the previous
ase, leading to hyperglycemic events (see Adult 7).
The CHoKI technique estimates the parameters L and P once

and offline. To better manage the insulin variability a possible
solution could be to use an adaptive CHoKI, which can update
L and P values depending on the blood glucose and insulin
ituation.
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Fig. 8. Results of the simulations performed with the IOB constraints, applied to the varying insulin sensitivity case: a) CVGA and b) GRI.
Fig. 9. TIRs results of the simulations performed with the IOB constraints, applied to the varying insulin sensitivity case.
z
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4.2. Simulations with insulin sensitivity variations and physical ac-
ivity

Physical Activity (PA) has many benefits for T1D patients,
ncluding enhancements in cardiorespiratory fitness, in the body
omposition, in achieving the glycemic goals, and in the overall
uality of life (American Diabetes Association, 2004; Riddell et al.,

2017). On the other hand, there are many factors that affect
he relationship between insulin and glucose levels, which can
hus create issues for the patient, primarily due to the risk of
ypoglycemia.
This is why, in this Section, the PA is included in the analysis.

The simulations are set up in the same way as described in
ection 4.1, adding also training sessions. PA is not announced,
t is considered as an external disturbance, and it is involved so
o analyze its impact on glucose, verifying the performance of the
roposed controller in managing these variations.
Specifically, the UVA/Padova allows to add PA by setting the

tarting time, the duration, and the intensity level (expressed as a
ercentage of the oxygen consumption maximum rate, %VOmax

2 ).
n this work, PA was performed, at different times, on the first
10
and third day of the simulation. This is done to alternate be-
tween a day of exercise and a day of rest, avoiding more than
two days without PA, as recommended by the ADA (Colberg
et al., 2016). To reproduce a physical activity session, includ-
ing warm-up, high-intensity resistance bursts, aerobic exercise,
and cool-down phases, the following plan is implemented: light
intensity for 10 min (25% VOmax

2 ), high intensity for 10 min
(65% VOmax

2 ), moderate intensity for 20 min (50% VOmax
2 ), and light

intensity for 5 min (25% VOmax
2 ) (Licini et al., 2024).

The results are reported in Fig. 10, where in the lower graph
there are the basal insulin injections, while in the upper graph
there are the BG values, the meals (i.e. the black triangles) and
the PA, represented as horizontal lines with different colors ac-
cording to the intensity level. Fig. 11a shows the CVGA outcomes,
while Fig. 11b shows the GRI results. Adding PA introduces more
variability in the scenario, leading to increased BG oscillation.
This is particularly evident in Adult 7, which goes both in hyper-
and hypoglycemia ranges. In fact, the CVGA point is in the C
one, especially due to hyperglycemic issues (visible in the TIRs
n Fig. 12), this is confirmed also by looking at the GRI, which
is equal to 64.28, thus in the D zone. The controller is able to
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Fig. 10. Proposed controller applied to the virtual patients with varying insulin sensitivity and PA. Upper plot: BG trends of all patients, with the green zone for
the safe range and the black triangles for the meal times. The horizontal lines depict the PA, considering light blue for the light intensity, yellow for the moderate
intensity, and red for the high intensity PA. Lower plot: basal insulin injections.
Fig. 11. Results of the simulations performed with the IOB constraints, applied to the varying insulin sensitivity case with PA: a) CVGA and b) GRI.
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manage also this disturbance, since the outcomes are similar to
he previous cases, being conservative. This can be seen in Fig. 12,
here the TIRs results show that all the virtual patients stay in
yperglycemic ranges for high percentages of the time and never
n hypoglycemia (except for Adult 7).

There exist some guidelines for hypoglycemia prevention,
ased on carbohydrate requirements and glucose concentration

before exercise (Riddell et al., 2017). These suggestions to the pa-
tient include consuming carbohydrates before or during physical
activity, delaying the session if BG is too low, and continuously
monitoring glycemia.

Remark 3. The outcomes and performances reported in this
ection are in silico results, since they are obtained by applying
he proposed control algorithm to the virtual adult patients of the
UVA/Padova simulator. This means that such results may differ
from those that might be obtained if the proposal was applied to
a real patient.
11
5. Conclusion

A new MPC algorithm based on the CHoKI learning method
was proposed to be used in the AP for managing basal insulin
n T1D patients, including IOB estimation to limit the amount
f basal insulin injections. The whole system was tested on
he virtual patients of the UVA/Padova simulator. The proposed
ontroller aims to drive and maintain the BG level inside the eu-
lycemic range most of the time, trying to avoid the more danger-
us hypoglycemic events. The obtained results seem promising,
ince the estimation of the IOB in the MPC helps in achieving
uch an aim. To decrease the level of the hyperglycemic events,
he IOB estimation could be improved. In particular, a polynomial
r exponential curve can be tried instead of the linear weights
mployed in this case.
The outcomes end up being conservative, however this conser-

ativeness is a limitation of the CHoKI learning method (Manzano
t al., 2021). Therefore, future work will focus on finding new

methods to reduce this limitation.



B. Sonzogni, J.M. Manzano, M. Polver et al. IFAC Journal of Systems and Control 31 (2025) 100294

w
a
c

i
t
p
o

o
t
C
F
r

t

p
6
c
i
t
-
a

Fig. 12. TIRs results of the simulations performed with the IOB constraints, applied to the varying insulin sensitivity case, with PA.
The proposed controller was also tested on virtual patients
ith variability in insulin sensitivity and also considering physical
ctivity, to evaluate the performances of the proposal under more
hallenging scenarios. To improve these results, the next step for
future works could be to identify multi-models, dividing the day
nto some intervals (such as breakfast, lunch and dinner) and
rying to learn different behavior, with the aim of controlling
atients more accurately, thanks to the inclusion of the analysis
f insulin sensitivity variations during the day.
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