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FOREWORD 
 

The IFAC SAFEPROCESS 2024 is continuing the successful series of symposia held in Baden-Baden 
(Germany, 1991), Helsinki (Finland, 1994), Hull (UK, 1997), Budapest (Hungary, 2000), Washington DC (USA, 
2003), Beijing (China, 2006), Barcelona (Spain, 2009), Mexico City (Mexico, 2012), Paris (France, 2015), 
Warsaw (2018), and Paphos (Cyprus, 2022). The Department of Engineering of the University of Ferrara, Italy, 
organized the IFAC SAFEPROCESS 2024 in Ferrara, Italy, for the first time since its first edition, on June 4–
7, 2024. 

 
The theory and practice of control and technical diagnostics are facing big problems as the complexity of 

modern industrial systems and processes keeps growing. The need for greater reliability in their operation, 
control quality, and security is also growing. Early detection and diagnosis of faults and cyberattacks are critical 
to avoid performance degradation and damage to machinery or human life. 

 
The SAFEPROCESS symposium is a triennial IFAC meeting and a major international gathering of 

leading academic and industry experts from all over the world. It aims at strengthening the contact between 
academia and industry to build up new networks and cultivate existing relations. High-level speakers have 
given talks on a wide spectrum of topics related to fault diagnosis, process supervision, safety monitoring, 
fault-tolerant control, cyber-security, as well as state-of-the-art applications and emerging research directions. 
The symposium has also served as a forum for young researchers, giving them the opportunity to present their 
scientific ambitions and work to an audience consisting of international technical diagnostics and control 
communities. 

 
Fault diagnosis and fault-tolerant control have developed into major research areas at the intersection of 

system and control engineering, computer science, applied mathematics and statistics, or soft computing, as 
well as application fields such as mechanical, electrical, chemical, and aerospace engineering. IFAC is 
recognised as playing a crucial role in this aspect by launching a triennial symposium dedicated to this subject. 

 
The SAFEPROCESS 2024 program can be accessed at https://www.safeprocess2024.eu/#. The 

program consisted of nineteen regular and five invited sessions on three parallel tracks. It also contained six 
keynote talks prepared by outstanding academics and industrials who introduced advanced results on fault 
diagnosis, fault-tolerant control, root cause analysis, and cyberattack prevention. In particular, Prof. Ron J. 
Patton (UK), from the Univ. of Hull, delivered the speech entitled “Offshore Wind Turbine Rotor Imbalance, a 
Fault-Tolerant Control Problem”; Prof. Christophe Combastel (FR), from the Univ. of Bordeaux, delivered the 
speech entitled “ Reachability and Filtering for Safe Processes: From Zonotopes to Functional Sets with Typed 
Symbols”; Prof. Roger Dixon (UK), from the Univ. of Birmingham, gave the talk “Fault Tolerance in Railways: 
“The Evolution of a Radical Next Generation Track Switch”; Dr. Steinert Olof (SE) from Scania, delivered the 
speech “Harnessing Data for Predictive Maintenance and Collaboration, Boost Innovation”; Prof. Biao Huang 
(CA), from the Univ. of Alberta, talked about “Advancing Causal Analysis for Fault Detection and Root Cause 
Analysis in Process Systems Engineering”; and Prof. Ping Zhang (DE), from the Univ. of Kaiserslautern-
Landau, gave the talk “Detection and Avoidance of Cyber Attacks on Industrial Control Systems”. 

 
The symposium received one hundred seventy-eight submissions, divided into three sets: one hundred 

forty regular papers, thirty-one invited papers, and seven invited sessions. The rejection rate for submissions 
was 23%. The symposium had one hundred eighty-seven participants, including one hundred twenty-two 
academics and sixty-five students. Regarding the statistics, we identified an average of 3.6 authors per paper. 
The number of participating countries was forty-eight. Regrettably, we failed to achieve a satisfactory balance 
between geographical regions. The countries with the most papers, in decreasing order, are China, France, 
Germany, Italy, Spain, Sweden, the United Kingdom, the United States of America, the Netherlands, and 
Mexico. 

 
One pre-symposium tutorial, a roundtable, and a benchmark competition were also included in the 

technical program. As a result, Vasso Reppa from Delf University of Technology, Mayank S. Jha, and Didier 
Theilliol from the University of Lorraine organized the roundtable titled "Gnosis for Maintenance: From 
Diagnosis to Prognosis and Health-Aware Control." The meeting was very active, with comments and 
questions from more than fifty attendees in a two-hour session. Additionally, Eric Frisk, Daniel Jung, and 
Mattias Krysander from Linköping University organised a competition on fault detection and isolation 
techniques with incomplete data. The airflow system of an internal combustion engine was considered an 
industrial benchmark. The competition was intriguing and a good motivating example for young researchers. 
A two-hour special session presented the results of the six participants. The young researchers Nicolas 
Anselmi, Andrea Arici, Francesco Corrini, and Mirko Mazzolen from the University of Bergamo, Italy, took first 
place in the competition, and the two next classified also obtained a diploma. 
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Regarding the pre-symposium tutorials, three proposals were received; however, only one met the 

minimum registration quota defined by the organizers. Linlin Li from the University of Science and Technology 
Beijing, Zhiwen Chen from Central South University, and Steven X. Ding from the University of Duisburg-Essen 
integrated the tutorial, entitled "Control Theory-Informed Machine Learning for Fault Diagnosis in Dynamic 
Control Systems." The tutorial was free for students, and there were thirty-three attendees. 

 
The symposium recognized three awards: the Paul M. Frank Theory Paper Award given to Louis Goupil, 

Louise Travé-Massuyès, Elodie Chanthery, Thibault Kohler, Sébastien Delautier for the paper entitled “Tree-
Based Diagnosis Enhanced with Meta Knowledge Applied to Dynamic Systems”; the IFAC Young Author 
Award given to Henrik Sebastian Steude*, Lukas Moddemann, Alexander Diedrich, Jonas Ehrhardt, Oliver 
Niggemann for the paper entitled “Diagnosis Driven Anomaly Detection for Cyber-Physical Systems”; finally, 
the Best Application Paper Award was given to Andrea Mattioni, Lucas José da Silva Moreira, Herve Yves 
Guy Bernard Louis Roustan, Gildas Besancon, Mirko Fiacchini for the paper entitled “A step towards 
implementation of state observers in industrial aluminium smelters”. 

 
SAFEPROCESS 2024 was the first IFAC SAFEPROCESS symposium to be streamed thanks to the 

University of Ferrara YouTube channel, enabling researchers and practitioners to participate either physically 
or online. As a result, the sessions are still accessible through the complete playlist at 
www.youtube.com/playlist?list=PLL80i9P61J-O-4-Y79u-KKkoHybZw9d0k. The presentations provided 
participants with an invaluable opportunity to learn from the knowledge and experiences of world-renowned 
scientists and experts. Covering a range of exciting topics, these sessions generated ideas, concepts, and 
methods that will make future industrial systems and processes more efficient and safer. 

 
As International Programme Committee Chair and General Chair, we are filled with immense pride and 

joy as we reflect on the success of this remarkable event. The hard work, dedication, and collaborative spirit 
of everyone involved have truly paid off, creating an unforgettable experience for all participants. We extend 
our heartfelt gratitude to all who contributed, and we look forward to many more successful IFAC 
SAFEPROCESS symposia in the future. 

 
 

Cristina Verde 
International Program Committee Chair 

 
Silvio Simani 
General Chair 
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Identification of relevant symptoms
of performance degradation

in industrial machines

P. Boni ∗, R. Sala ∗, M. Mazzoleni ∗, F. Pirola ∗, F. Previdi ∗

∗ Department of Management, Information and Production Engineering,
University of Bergamo, via Marconi 5, 24044 Dalmine (BG), Italy

Abstract: In the last decades, manufacturing companies increasingly recognized the role of
maintenance in guaranteeing high performances for their machines. At the same time, companies
realized that, through the analysis of operational data, knowledge on the health status and
performance of the machines could be generated, and maintenance-related optimizations and
services could be offered to customers. In this setting, the identification of causes leading to
degradation of key performance indicators (KPIs) of a machinery is of paramount importance
in deciding what actions to take to improve machines performances. In this paper, we propose
the use of symptomatology indicators that allow to automatically estimate symptoms of KPI
decay in industrial machines. The effectiveness of the proposed symptomatology analysis is
experimentally evaluated on real data coming from a set of four shrink wrappers, showing the
benefits of the proposed indicators both on client and producer side.

Keywords: performances degradation, key performance indicator, symptomatology indicators

1. INTRODUCTION

Data collection and analysis are among the most discussed
themes following the spreading of the fourth industrial
revolution (Lamnabhi-Lagarrigue et al., 2017; Mazzoleni
et al., 2022). Therefore, manufacturing companies are
exploring with increasing interest the field of data-driven
business models, thanks to the possibility to optimize their
production processes (Thoben et al., 2017). Maintenance
is among the fields that can benefit the most from this,
both as an internal function and as a service offered to
customers. Through the collection of selected data from
the field and the definition of performance and health
indicators, companies can have a clear picture of a machine
behaviour, identifying early problems and preventing major
failures that critically affect the business (Pech et al., 2021).

The integration of data-driven strategies in maintenance
decision-making - being it internal or external - can con-
tribute to improve several aspects of the company op-
erations, both in industrial and safety-critical contexts
(Valceschini et al., 2022b; Boni et al., 2023). For instance,
new maintenance strategies can be introduced, moving
from the corrective towards condition-based and/or pre-
dictive ones, also improving the preventive ones in the
meantime (Converso et al., 2023; Valceschini et al., 2022a;
Maurelli et al., 2024). Moreover, spare parts and work-
force management can be optimized, reducing the spare
parts consumption as well as improving the schedule of
maintenance interventions. Also, this can impact machines
design, which can be enhanced by studying the behaviours
of the components during the actual machine’s operating
time. By knowing the health variation and studying failure
causes and frequency, designer can apply modifications to
reduce failures, prolong useful life and increase productiv-

ity (Sala et al., 2021). The definition of collection and
processing approaches and performance/health indicators
is fundamental to support such offering (Carvalho et al.,
2019).

In this paper, we propose symptomatology indicators for
automatically estimating symptoms of performance degra-
dation in industrial machines. We show how the proposed
indicators can be leveraged both on client and producer
side, in order to effectively asses what actions to take for
improving the monitored machine performances. Experi-
mental results on four shrink wrappers show the benefits
of the proposed symptomatology analysis.

The remainder of the paper is as follows. Section 2 presents
the developed symptomatology indicators. In Section 3
the experimental results of the symptomatology analyses
conducted on shrink wrappers, by means of the proposed
indicators, are presented. Section 4 concludes the paper.

2. IDENTIFICATION OF KPI DECAY SYMPTOMS

Consider a dataset D of machine variables gathered at
different time instants. Define the set of interest X as the
collection of variables of interest x ∈ X . For instance, X
can be defined as the set of machine alarms, with x being a
monitored alarm in X . The measure of incidence Ix ∈ R≥0

is defined as the measure of a certain characteristic of
x as computed from D, such as occurrence measures,
time durations, etc. Considering a threshold θ for a key
performance indicator (KPI) of the machinery, the measure
of incidence Ix can be split in two terms:

• I+x ∈ R≥0, which measures the incidence of a charac-
teristic of x above θ;
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1. INTRODUCTION

Data collection and analysis are among the most discussed
themes following the spreading of the fourth industrial
revolution (Lamnabhi-Lagarrigue et al., 2017; Mazzoleni
et al., 2022). Therefore, manufacturing companies are
exploring with increasing interest the field of data-driven
business models, thanks to the possibility to optimize their
production processes (Thoben et al., 2017). Maintenance
is among the fields that can benefit the most from this,
both as an internal function and as a service offered to
customers. Through the collection of selected data from
the field and the definition of performance and health
indicators, companies can have a clear picture of a machine
behaviour, identifying early problems and preventing major
failures that critically affect the business (Pech et al., 2021).

The integration of data-driven strategies in maintenance
decision-making - being it internal or external - can con-
tribute to improve several aspects of the company op-
erations, both in industrial and safety-critical contexts
(Valceschini et al., 2022b; Boni et al., 2023). For instance,
new maintenance strategies can be introduced, moving
from the corrective towards condition-based and/or pre-
dictive ones, also improving the preventive ones in the
meantime (Converso et al., 2023; Valceschini et al., 2022a;
Maurelli et al., 2024). Moreover, spare parts and work-
force management can be optimized, reducing the spare
parts consumption as well as improving the schedule of
maintenance interventions. Also, this can impact machines
design, which can be enhanced by studying the behaviours
of the components during the actual machine’s operating
time. By knowing the health variation and studying failure
causes and frequency, designer can apply modifications to
reduce failures, prolong useful life and increase productiv-

ity (Sala et al., 2021). The definition of collection and
processing approaches and performance/health indicators
is fundamental to support such offering (Carvalho et al.,
2019).

In this paper, we propose symptomatology indicators for
automatically estimating symptoms of performance degra-
dation in industrial machines. We show how the proposed
indicators can be leveraged both on client and producer
side, in order to effectively asses what actions to take for
improving the monitored machine performances. Experi-
mental results on four shrink wrappers show the benefits
of the proposed symptomatology analysis.

The remainder of the paper is as follows. Section 2 presents
the developed symptomatology indicators. In Section 3
the experimental results of the symptomatology analyses
conducted on shrink wrappers, by means of the proposed
indicators, are presented. Section 4 concludes the paper.
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Fig. 1. Possible cases in (3) for the γx indicator. The
variables x which are eligible as symptoms of a KPI
degradation below the given threshold θ lie in the red
areas (γx > 1).

• I−x ∈ R≥0, which measures the incidence of a charac-
teristic of x below θ.

Define as a symptom of the degradation of a machine KPI
the evidence of the cause (or causes) that led the KPI to
degrade.

Given a dataset D and a set of interest X for a machinery,
the aim is to identify what variables of interest x ∈ X are
the most symptomatic of a KPI degradation, according to
a chosen measure of incidence Ix computed from D.

2.1 Definition of the symptomatology indicators

Given a KPI threshold θ and the measures of incidence I+x
and I−x of the variables of interest x ∈ X , the incidence
rates of x above and below θ are defined, respectively, as

P+
x =∆

I+x
y∈X I+y

, P−
x =∆

I−x
y∈X I−y

. (1a)

The incidence rates P+
x , P−

x ∈ [0, 1] represent the percent-
ages of incidence of x respectively above and below a fixed
KPI threshold θ. The larger P−

x is with respect to P+
x , the

more eligible x is as symptom of a KPI decay below θ. So,
we define the γx indicator as follows:

γx =∆
P−
x

P+
x
, (2)

with γx ∈ R+. Hence, the γ indicator measures how much
more x incides below than above a fixed KPI threshold θ.
In particular, the following cases can occur:


γx = 0, x incides only above θ;
0 <γx< 1, x incides more above than below θ;
γx = 1, x incides equally above and below θ;

1<γx<∞, x incides more below than above θ;
γx = ∞, x incides only below θ.

(3)

A graphical visualization of the cases in (3) is shown in
Figure 1. From (3), it is trivial to notice that the variables
in X eligible as symptoms of a KPI decay below θ are the x
such that γx > 1, that is the ones with a greater incidence
rate below θ than above θ (lying in red areas in Figure 1).

However, being (2) based solely on the ratio between
the incidence rates P−

x , P+
x , the information about their

magnitudes, that can be relevant for the analysis, is lost. For
instance, consider x1, x2 ∈ X with P−

x1
≫ P−

x2
, such that

Fig. 2. Distances dx̌ (purple dotted lines) of the variables
x̌ (red crosses), from the equilibrium zone. In this
example ϑ = 2, so that the x̌ are such that γx̌ ≥
2, while the other variables (blue circles) are not
considered in the analysis by means of the d indicator.

1 < γx1
< γx2

: then, indicator (2) estimates x2 as a more
relevant symptom compared to x1, without considering the
extremely higher incidence rate of x1 below θ.

In order to include in the symptomatology analysis the
information on the magnitudes of the incidence rates in (1),
consider first only the variables x with an arbitrary large
value γx. As noticed above, by looking at (3), the variables
of interest x such that γx > 1 are the most relevant for
the analysis of a KPI decay, according to the indicator (2).

Hence, the set qX of the variables of interest x̌, obtained
filtering X by means of (2), is defined as

qX =∆ {x̌ | x̌ ∈ X , γx̌ ≥ ϑ, ϑ > 1} , (4)

where ϑ is an arbitrary threshold for the variables selection.
The larger the threshold ϑ, the stricter the selection of the

symptomatic variables x̌ ∈ qX .

Given the variables x̌, the magnitudes of the corresponding
incidence rates P+

x̌ , P−
x̌ are leveraged to compute the

distances of the x̌ from the equilibrium zone, that is the
locus of points such that γx = 1, i.e. when P+

x = P−
x . From

geometrical properties, the distance of a variable x̌ from
the equilibrium zone is defined as

dx̌ =∆
P−
x̌ − P+

x̌√
2

, (5)

with dx̌ ∈
�
0, 1/

√
2

. Figure 2 shows a graphical example

of the distances dx̌ from the equilibrium zone, with ϑ = 2.
The indicator (5) can be interpreted as a measure of how
much a variable x̌ is distant from the equilibrium zone.
The higher dx̌, the more relevant x̌ is as a symptom of KPI
degradation below the given threshold θ.

However, the d indicator may mask the effect of variables
with lower incidence rates below θ, but with larger values
of the γ indicator. Consider the example shown in Figure 2:
the variable x̌1 is the least relevant in the analysis according
to the indicator (5), since dx̌1 < dx̌2 < dx̌3 . However, at
the same time, x̌1 has the largest value of the indicator
(5), as γx̌1 = ∞ since it lies on the P−

x axis (see Figure 1
for reference), meaning that variable x̌1 has incidence only
below the KPI threshold θ, see (3). The idea is then to
combine the information provided by both indicators (2)
and (5), leveraging the respective advantages. So, let the
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information on the magnitudes of the incidence rates in (1),
consider first only the variables x with an arbitrary large
value γx. As noticed above, by looking at (3), the variables
of interest x such that γx > 1 are the most relevant for
the analysis of a KPI decay, according to the indicator (2).

Hence, the set qX of the variables of interest x̌, obtained
filtering X by means of (2), is defined as

qX =∆ {x̌ | x̌ ∈ X , γx̌ ≥ ϑ, ϑ > 1} , (4)

where ϑ is an arbitrary threshold for the variables selection.
The larger the threshold ϑ, the stricter the selection of the

symptomatic variables x̌ ∈ qX .

Given the variables x̌, the magnitudes of the corresponding
incidence rates P+

x̌ , P−
x̌ are leveraged to compute the

distances of the x̌ from the equilibrium zone, that is the
locus of points such that γx = 1, i.e. when P+

x = P−
x . From

geometrical properties, the distance of a variable x̌ from
the equilibrium zone is defined as

dx̌ =∆
P−
x̌ − P+

x̌√
2

, (5)

with dx̌ ∈
�
0, 1/

√
2

. Figure 2 shows a graphical example

of the distances dx̌ from the equilibrium zone, with ϑ = 2.
The indicator (5) can be interpreted as a measure of how
much a variable x̌ is distant from the equilibrium zone.
The higher dx̌, the more relevant x̌ is as a symptom of KPI
degradation below the given threshold θ.

However, the d indicator may mask the effect of variables
with lower incidence rates below θ, but with larger values
of the γ indicator. Consider the example shown in Figure 2:
the variable x̌1 is the least relevant in the analysis according
to the indicator (5), since dx̌1 < dx̌2 < dx̌3 . However, at
the same time, x̌1 has the largest value of the indicator
(5), as γx̌1 = ∞ since it lies on the P−

x axis (see Figure 1
for reference), meaning that variable x̌1 has incidence only
below the KPI threshold θ, see (3). The idea is then to
combine the information provided by both indicators (2)
and (5), leveraging the respective advantages. So, let the

symptomatology indicator δx̌ be defined as

δx̌ =∆ γx̌ · dx̌∑
y̌∈ qX dy̌

, (6)

with δx̌ ∈ R+. The indicator (6) is a single and aggregate
indicator that measures how much a variable of interest
x̌ ∈ qX is symptomatic of a KPI degradation below a chosen
threshold θ. The higher the value of δx̌, the more the
variable x̌ is relevant as symptom of a KPI decay below θ
for the monitored machinery. Algorithm 1 summarizes the
steps needed for the computation of the indicator (6).

Algorithm 1 Symptomatology indicator

Inputs: variables of interest x ∈ X , KPI threshold θ,
variables filtering threshold ϑ

Output: δ indicator values for the variables x̌ ∈ qX
1: for each x ∈ X
2: Compute the measures of incidence I+x , I−x w.r.t. θ
3: Compute the incidence rates P+

x , P−
x via (1)

4: Compute γx via (6)
5: end for

6: Filter X to obtain qX , as defined in (4)

7: for each x̌ ∈ qX
8: Compute dx̌ via (5)
9: Compute δx̌ via (6)

10: end for

Notice that the symptomatology indicator as defined in (6)
allows to evaluate symptoms of a KPI degradation with
respect to a fixed threshold θ, making the symptomatology
analysis dependent on the specific considered threshold. In
the next section, we show how the symptomatology analysis
by means of (6) can be carried out without depending on a
specific threshold θ. Furthermore, we show how the analysis
results can be leveraged on both client and producer side.

2.2 Use of the symptomatology indicators

The symptomatology indicator (6) is a powerful instrument
for estimating what variables of interest are most symp-
tomatic of a KPI degradation below a given threshold θ,
for the monitored machine. However, it lacks generality,
since it is strictly dependent on a specific KPI threshold θ.
In order to untie the symptomatology indicator from such
dependence, the idea is to carry out the symptomatology
analysis by means (6) for different values of the KPI
threshold θ, and then combining the results.

In order to do so, define the set Θ of Nθ KPI thresholds θ
to evaluate. From now on, we denote the results referred to
a specific threshold by using θ as apex. For each threshold

θ ∈ Θ, identify the corresponding set qX θ and compute
δθx̌ for the variables in the set, by means of Algorithm
1. The obtained symptomatology indicator values are not
comparable from one threshold to another, because the

Nθ obtained sets qX θ are (likely) different, with different
variables and a different number of elements. For example,
considering a symptomatic variable x̌ such that δθ1x̌ = δθ2x̌ ,
with θ1 ̸= θ2, the two indicators values are not comparable.
Indeed, it can not be stated a priori that x̌ is equally
relevant as a symptom for a KPI decay with respect to
θ1 and θ2. In fact, it may be that x̌ is simultaneously the
most and the least relevant symptom with respect to θ1

and θ2 respectively (or vice versa), when considering all

the other variables in qX θ1 and qX θ2 .

Hence, in order to make the symptomatology analysis
results comparable between different thresholds, the θ-
dependent δθx̌ indicator values are normalized as follows:

δ̃θx̌ =∆
δθx̌∑

y̌∈ qX θ δθy̌
, (7)

with δ̃θx̌ ∈ (0, 1]. The result is a normalized symptomatol-
ogy indicator that allows to compare results referring to
different thresholds. Notice that the identified symptoms
may differ between the considered thresholds in the set Θ.
Then, define the set of all the symptomatic variables per
threshold, without repetitions, as:

qXm =∆
⋃

θ∈Θ

qX θ =
{
x̌ | ∃ θ ∈ Θ : x̌ ∈ qX θ

}
. (8)

Given the set qXm, we define the machine symptomatology
indicator δm as:

δmx̌ =∆
∑

θ∈Θ δ̃θx̌∑
y̌∈ qXm

∑
θ∈Θ δ̃θy̌

, (9)

with δmx̌ ∈ (0, 1]. The δm indicator measures how much
a variable of interest is generally symptomatic of a KPI
degradation for the monitored machinery, thus abstracting
the analysis from the concept of KPI threshold θ. The
higher the δm indicator value of a variable x̌, the more x̌ is
a relevant symptom of a KPI degradation of the machine.
Algorithm 2 summarizes the steps needed to compute the
machine symptomatology indicator (9).

Algorithm 2 Machine symptomatology indicator

Inputs: inputs of Algorithm 1, KPI thresholds θ ∈ Θ

Output: δm indicator values for the variables x̌ ∈ qXm

1: for each θ ∈ Θ
2: Compute δθx̌ by means of Algorithm 1

3: Compute δ̃θx̌ via (7)
4: end for

5: Obtain the set qXm, as defined in (8)

6: for each x̌ ∈ qXm

7: Compute δmx̌ via (9)
8: end for

The symptomatology analysis results obtained by means
of (9) can be of particular aid on the client side. Indeed,
the variables with the highest values of the (9) are the ones
to which the client must pay more attention and take care
of, to enhance the machine performance. For instance, by
considering the machinery alarms as variables of interest
x, the alarms with highest δm indicator values may give
an indication to the client on what machine components
are faulty and need maintenance or replacement.

By taking a step further, consider now a set M of similar
machines m. For each machinery m ∈ M a symptoma-
tology analysis is carried out and the δm indicator values
are computed via Algorithm 2. As before, we can group

the machines symptoms in the sets qXm into a unique set
defined as

qXDB =∆
⋃

m∈M
qXm =

{
x̌ | ∃m ∈ M : x̌ ∈ qXm

}
. (10)
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Given the set qXDB in (10), we define the database symp-
tomatology indicator δDB ∈ (0, 1] as:

δDB
x̌ =∆

∑
m∈M δmx̌∑

y̌∈ qXDB

∑
m∈M δmy̌

, (11)

The indicator (11) measures how much a variable of
interest is symptomatic of a KPI degradation for the
machines in M. Thus, the database indicator generalizes
the symptomatology analysis to a type of machinery, rather
than to a single instance of that machine type. The
indicator (11) can be used to create a symptomatology
database, where the most relevant symptoms of a KPI
degradation for similar machinery are gathered.

Algorithm 3 Database symptomatology indicator δDB

computation

Inputs: inputs of Algorithm 2, similar machines m ∈ M
Output: δDB indicator values for the variables x̌ ∈ qXDB

1: for each m ∈ M
2: Compute δmx̌ by means of Algorithm 2
3: end for

4: Obtain the set qXDB , as defined in (10)

5: for each x̌ ∈ qXDB

6: Compute δDB
x̌ via (11)

7: end for

The indicator (11) can be particularly helpful on the pro-
ducer side. Indeed, the most relevant symptoms stored in
the symptomatology database give an indication to the
producer on how to improve the design of the produced
machines to achieve better performances. For instance,
consider again the machine alarms as variables of interest.
The alarms with the highest values of (11) can point out the
most critical components of the produced machines, sug-
gesting a more frequent maintenance of such components
or their replacement in the machines production line.

3. APPLICATION TO SHRINK WRAPPERS

The considered application regards the estimation of the
symptoms of a KPI degradation of four packaging machines,
namely shrink wrappers (SWs), which belong to the same
production line. First, Section 3.1 describes the experimen-
tal set-up and reports the main goals of the analysis. Then,
in Section 3.2 we present the results obtained conducting
a symptomatology analysis via the indicators (9) and (11).

3.1 Shrink wrapper design, monitored KPIs and objectives

The considered SWs consist of four serial working zones:

(1) entry zone: the input products to be packed are
canalized in rows and moved by conveyor belts;

(2) separator zone: the products are grouped according
to a pre-set production recipe;

(3) packing zone: a tray is added to the group of products,
which is then bundled by wrapping it with a thin
plastic film;

(4) shrink tunnel : heat is applied in order to make the
wrapping film to shrink tightly over the packed group.

Figure 3 shows a schematic of the SWs working process.
Each SW is equipped with a number of sensors to monitor
the machine health status, and to report malfunctions by
triggering specific alarms.

Fig. 3. Schematic of the considered SWs working process.

The SWs performances are evaluated by means of different
KPIs. The value at a time instant t of a KPI is given by a
moving average, which is based on the past 60 KPI values
computed per minute, up to instant t. When the machine
starts, the KPI value at t is computed by means of the
available per minute values, if their number is less then 60.
When the SW is turned off, the KPIs computation stops.
The KPI considered in the following analysis is the overall
equipment effectiveness Rs, computed by the SW producer
by considering the efficiency of a SW in terms of percentage
of planned production time, without unexpected technical
difficulties or maintenance needs (Muchiri and Pintelon,
2008). For the SW producer, a good efficiency guarantee is
when Rs ≥ 94%. The aims of the SWs analysis are:

O1) to give indications to the client on what to do when
the Rs indicator does not meet the expectations;

O2) to give indications to the producer on how the ma-
chine design can be enhanced to improve the SWs
performances, in terms of Rs.

3.2 Experimental results of the symptomatology analyses

The symptomatology analyses were conducted on four
similar shrink wrappers produced by the same manufac-
turer, each belonging to different clients. Hence, the set of
monitored machines is M = {SW1, SW2, SW3, SW4}. The
considered SWs datasets gather the information measured
by the machines sensors, such as alarms count and duration,
external temperature, used recipe and so on. The available
data were gathered in the same period of eight months,
every five minutes during the working activity of the SWs.

The considered set of interest X consists in the stop reasons
of the machines, with a stop reason being an alarm that
triggered a SW to stop working. So, the considered variables
of interest x ∈ X are the alarms which are identified as stop
reasons in the SWs datasets. Table 1 shows a partial list
of the identified SWs stop reasons, each with an associated
identifier (ID). Note that when a SW is working normally
without downtimes, the stop reason ID is set to 0.

The chosen measure of incidence Ix for the stop reasons
in X is the last occurrence measure, which is based on
counting only the last instance of x in an interval of its
consecutive occurrences in time order. The idea is that
if a stop reason occurs for more consecutive timestamps,
then the last occurrence in the interval is associated to the
least Rs value of the sequence. This allows to analyse the
machines stop reasons based on the actual corresponding
Rs degradation. Figure 4 shows the difference in choosing
total and last occurrence as measure of incidence for the
stop reasons, highlighting the higher effectiveness of the
latter in capturing the actual decay of the Rs indicator.
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Given the set qXDB in (10), we define the database symp-
tomatology indicator δDB ∈ (0, 1] as:

δDB
x̌ =∆

∑
m∈M δmx̌∑

y̌∈ qXDB

∑
m∈M δmy̌

, (11)

The indicator (11) measures how much a variable of
interest is symptomatic of a KPI degradation for the
machines in M. Thus, the database indicator generalizes
the symptomatology analysis to a type of machinery, rather
than to a single instance of that machine type. The
indicator (11) can be used to create a symptomatology
database, where the most relevant symptoms of a KPI
degradation for similar machinery are gathered.

Algorithm 3 Database symptomatology indicator δDB

computation

Inputs: inputs of Algorithm 2, similar machines m ∈ M
Output: δDB indicator values for the variables x̌ ∈ qXDB

1: for each m ∈ M
2: Compute δmx̌ by means of Algorithm 2
3: end for

4: Obtain the set qXDB , as defined in (10)

5: for each x̌ ∈ qXDB

6: Compute δDB
x̌ via (11)

7: end for

The indicator (11) can be particularly helpful on the pro-
ducer side. Indeed, the most relevant symptoms stored in
the symptomatology database give an indication to the
producer on how to improve the design of the produced
machines to achieve better performances. For instance,
consider again the machine alarms as variables of interest.
The alarms with the highest values of (11) can point out the
most critical components of the produced machines, sug-
gesting a more frequent maintenance of such components
or their replacement in the machines production line.

3. APPLICATION TO SHRINK WRAPPERS

The considered application regards the estimation of the
symptoms of a KPI degradation of four packaging machines,
namely shrink wrappers (SWs), which belong to the same
production line. First, Section 3.1 describes the experimen-
tal set-up and reports the main goals of the analysis. Then,
in Section 3.2 we present the results obtained conducting
a symptomatology analysis via the indicators (9) and (11).

3.1 Shrink wrapper design, monitored KPIs and objectives

The considered SWs consist of four serial working zones:

(1) entry zone: the input products to be packed are
canalized in rows and moved by conveyor belts;

(2) separator zone: the products are grouped according
to a pre-set production recipe;

(3) packing zone: a tray is added to the group of products,
which is then bundled by wrapping it with a thin
plastic film;

(4) shrink tunnel : heat is applied in order to make the
wrapping film to shrink tightly over the packed group.

Figure 3 shows a schematic of the SWs working process.
Each SW is equipped with a number of sensors to monitor
the machine health status, and to report malfunctions by
triggering specific alarms.

Fig. 3. Schematic of the considered SWs working process.

The SWs performances are evaluated by means of different
KPIs. The value at a time instant t of a KPI is given by a
moving average, which is based on the past 60 KPI values
computed per minute, up to instant t. When the machine
starts, the KPI value at t is computed by means of the
available per minute values, if their number is less then 60.
When the SW is turned off, the KPIs computation stops.
The KPI considered in the following analysis is the overall
equipment effectiveness Rs, computed by the SW producer
by considering the efficiency of a SW in terms of percentage
of planned production time, without unexpected technical
difficulties or maintenance needs (Muchiri and Pintelon,
2008). For the SW producer, a good efficiency guarantee is
when Rs ≥ 94%. The aims of the SWs analysis are:

O1) to give indications to the client on what to do when
the Rs indicator does not meet the expectations;

O2) to give indications to the producer on how the ma-
chine design can be enhanced to improve the SWs
performances, in terms of Rs.

3.2 Experimental results of the symptomatology analyses

The symptomatology analyses were conducted on four
similar shrink wrappers produced by the same manufac-
turer, each belonging to different clients. Hence, the set of
monitored machines is M = {SW1, SW2, SW3, SW4}. The
considered SWs datasets gather the information measured
by the machines sensors, such as alarms count and duration,
external temperature, used recipe and so on. The available
data were gathered in the same period of eight months,
every five minutes during the working activity of the SWs.

The considered set of interest X consists in the stop reasons
of the machines, with a stop reason being an alarm that
triggered a SW to stop working. So, the considered variables
of interest x ∈ X are the alarms which are identified as stop
reasons in the SWs datasets. Table 1 shows a partial list
of the identified SWs stop reasons, each with an associated
identifier (ID). Note that when a SW is working normally
without downtimes, the stop reason ID is set to 0.

The chosen measure of incidence Ix for the stop reasons
in X is the last occurrence measure, which is based on
counting only the last instance of x in an interval of its
consecutive occurrences in time order. The idea is that
if a stop reason occurs for more consecutive timestamps,
then the last occurrence in the interval is associated to the
least Rs value of the sequence. This allows to analyse the
machines stop reasons based on the actual corresponding
Rs degradation. Figure 4 shows the difference in choosing
total and last occurrence as measure of incidence for the
stop reasons, highlighting the higher effectiveness of the
latter in capturing the actual decay of the Rs indicator.

Table 1. Stop reasons ID and name.

ID Stop reason name

1 Anomaly at cardboards enable zone
2 Anomaly at cardboards running zone
3 Cardboards reserve end
4 Drive shutdown – Film wrapper
5 Electronic divider at a standstill
6 Infeed conveyor off
7 No cardboard in ramp 1
8 No film on the pack
9 Outlet conveyor off
10 Outlet obstruction
11 Pack down in film enable area
12 Product flow end
13 Separator zone anomalous situation
14 Stop command by operator

0 SW working normally (no stop reasons)

Fig. 4. Total and last occurrence as measure of incidence
for the stop reasons. Red cells point out the data
considered for the analyses in the two cases. The
last occurrence measure better captures the actual
Rs degradation, here with respect to the stop reasons
1 and 7.

The variables filtering threshold is set to ϑ = 2. Hence, for

each SW, the sets qX θ, gathering the most relevant symp-
toms of the Rs degradation with respect to a threshold
θ, consist of the stop reasons such that the γx indicator
in (2) has at least value 2, see (4). In other words, for
the computation via Algorithm 1 of the symptomatology
indicator δx̌ in (6), the only considered stop reasons are
those whose incidence rate below the Rs threshold θ is at
least double than their incidence rate above such threshold.

In order to achieve objective O1, the machine symptoma-
tology indicator δm in (9) is leveraged. For each SW in
M, the δm indicator for the stop reasons was computed
by means of Algorithm 2, by considering Nθ = 94 different
Rs thresholds in the set Θ = {1, 2, ... , 94}, see (8).

Figure 5 shows the symptomatology analyses results ob-
tained by means of the (9) for the considered machines n
M. Generally, for all the SWs, it can be noted how the
most relevant symptom has a δm value which is particularly
larger if compared to the other ones. This highlights how
the most symptomatic stop reason has a great importance
in pointing out the possible causes for the Rs degradation.

In particular, SW3 is the one that exhibited the highest gap
between the first two most symptomatic stop reasons, with
δm3 being seven times larger than δm2 . Stop reason 3 refers

Fig. 5. Machine symptomatology indicator δm in (9) for the
SWs in M with respect to the Rs KPI, considering the
machine stop reasons as variables of interest. The five
stop reasons identified as the most relevant symptoms
of Rs degradation for each SW are shown.

to the lack of trays that have to be applied to the group
of products, hence its highest estimated symptomatology
gives an indication to the SW3 client to pay more attention
to the provision of trays to the machine. Instead, the
analysis conducted on SW1 pointed out the stop reasons 1
and 13 as the most relevant symptoms of Rs degradation,
which refer to an error in a group of products position or
size, in packing and separator zone respectively. Generally,
such errors are due to faults on the sensors used to pack the
products, thus suggesting the replacement of such sensors
or their more frequent and careful maintenance.

For all the considered SWs in M, the results of the symp-
tomatology analyses highlighted stop reasons related to ma-
chines problems that are well-known by the expert tech-
nicians of the clients. Therefore, such results corroborates
the effectiveness of the δm indicator in (9) in automatically
estimating the most relevant symptoms of performances
degradation in industrial machines.

The database symptomatology indicator δDB defined in
(11) was employed to achieve objective O2. Figure 6 shows
the SW symptomatology database obtained computing (11)
by means of Algorithm 3. In the obtained database, the
stop reason 3 is identified as the most relevant symptom
of the Rs indicator degradation among the SWs in M,
although it appears as a symptom only for SW3, as shown
in Figure 5. This is due both to the particularly high
value of δm3 and to the limited number of considered SWs,
which does not allow to effectively generalize the analysis.
Hence, in this case, the results based on the δDB indicator
(11) turns out to be biased with respect to the most
symptomatic stop reason of SW3. Beyond this, notice how
the other highest δDB indicator values are associated to
the most recurrent symptomatic stop reasons in the SWs,
thus highlighting the symptoms of the Rs decay that are
in common between the SWs.
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Fig. 6. Symptomatology database for the SWs based on
indicator δDB in (11) with respect to the Rs KPI,
considering the machine stop reasons as variables of
interest. The ten stop reasons identified as the most
relevant symptoms of Rs degradation over all the
machines are shown.

One of the main Rs degradation symptoms in the obtained
symptomatology database is the stop reason 4, which indi-
cates that the driver of the brushless motor connected to
the film wrapper (packing zone) is blocked. Such problem
can be due to software issues in the microcontroller of the
motor driver, hence pointing out to the SWs producer the
need to check the corresponding code for any errors or bugs
that may be causing the issue. As for stop reasons 1, 6 and
13, they all refer to problems in the position or size of the
group of products, in different SW zone. In order to limit
such issues, the producer may consider improvements in the
produced SWs design. For instance, the number of sensors
used to pack the products may be increased, or they can
be substituted with more reliable ones.

The obtained symptomatology database highlights issues
in the SWs design that are known to the producer of
the considered SWs, thus confirming the effectiveness of
the δDB indicator (11), despite the limited number of
analysed SWs. The above presented results show how the
machine and database symptomatology indicators can be
particularly useful in analysing and pointing out problems
in industrial machines, both on client and producer side.
Clients can leverage the δm indicator in (9) to spot issues in
new acquired systems, for which sufficient experience and
knowledge are not yet available. Besides, a symptomatology
database based on the δDB indicator in (11) can help manu-
facturers in improving the design of the produced machines,
by pointing out common and most critical symptoms of
performances degradation to treat.

4. CONCLUSIONS

This paper presented the use of symptomatology indicators
to automatically estimate the symptoms of a KPI degrada-
tion in industrial machineries. Symptomatology analyses
conducted on a set of four shrink wrappers highlighted
the benefits of the defined indicators both on client and
producer side. At the same time, the experimental results
show how such indicators allow to make decisions more
efficiently on possible actions to improve performances
of the industrial machines. Future research is devoted to

improve the symptomatology indicators accuracy, and to
leverage them for predictive maintenance purposes.
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