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Abstract: The ability to predict the maximal performance of an industrial robot executing
non-deterministic tasks can improve process productivity through time-based planning and schedul-
ing strategies. These strategies require the configuration and the comparison of a large number
of tasks in real time for making a decision; therefore, an efficient task execution time estimation
method is required. In this work, we propose the use of neural network models to approximate the
task time function of a generic multi-DOF robot; the models are trained using data obtained from
sophisticated motion planning algorithms that optimize the shape of the trajectory and the executed
motion law, taking into account the kinematic and dynamic model of the robot. For scheduling
purposes, we propose to evaluate only the neural network models, thus confining the online use
of the motion planning software to the full definition of the actually scheduled task. The proposed
neural network model presents a uniform interface and an implementation procedure that is easily
adaptable to generic robots and tasks. The paper’s results show that the models are accurate and
more efficient than the full planning pipeline, having evaluation times compatible with real-time
process optimization.

Keywords: robot process optimization; task scheduling; real-time management; task time mapping;
AI in robotics

1. Introduction

The throughput of an industrial application using one or more robots with a fixed
base depends on the cycle time of the movement executed by the robot to perform the task.
Therefore, the choice of movements with the shortest cycle time increases the number of
operations in the reference time, enhancing the robot application’s productivity.

The cycle time of pick and place operations depends on several aspects, such as the
kinematic structure of the robot, its inertial characteristics, and the properties of its actuation
and transmission systems, which all concur to limit the maximal achievable velocities and
accelerations; an important role is played also by the trajectory’s shape, by the motion
profile on it, and by its position inside the robot’s working volume.

The choice of the robot’s movement with the shortest cycle time is straightforward
for fixed pick and place positions. In this case, an offline procedure based on the robot’s
software environment can be used. In more complex cases, however, the pick and place
positions are not known in advance, and moreover might be non-stationary; for such cases,
then, three types of pick and place tasks may be distinguished: (a) tasks on fixed pick
and place targets, which are known in advance and do not change in time; (b) stationary
pick and place tasks, in which the targets do not move while the robot is performing its
operations but which are dynamically reconfigured and a priori unknown; (c) on-the-fly
pick and place tasks, in which the targets are not known in advance and also move while
the robot operates on them.

Tasks of type (b) and (c) occur, e.g., in modular multi-robot work cells where a series of
robots operates on a transportation system that intermittently or continuously conveys the
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items to be processed. Each robot, which, as exemplified in Figure 1, must sort, manipulate,
and rearrange items randomly loaded onto the transportation system, operates therefore
under time constraints in a time-varying and non-deterministic environment.

Figure 1. Schematic representation of a non-deterministic and time-constrained on-the-fly
manipulation task.

In this kind of application, the definition of the robot’s movement with the shortest
cycle time is a complex process, requiring an optimization strategy based on the changing
scenario that the robot is presented with and on the robot’s characteristics. For station-
ary pick and place positions, the process optimization problem concerns the sequencing
of the tasks. For on-the-fly manipulation, an additional optimization problem, i.e., the
computation of the best position at which the robot intercepts its moving target, must be
preliminarily solved.

Additional problems that must be solved after a task has been scheduled are first the
geometric motion planning, which defines the shape of the trajectory to be executed by the
robot, and then the generation of the motion law along the geometric path.

The load balancing and task assignment problems for assembly lines and multi-robot
cells have been treated in the current literature from an operational research perspective.
In [1–5], the actual capabilities of the robot are indeed expressed in terms of its cycle
times, which are considered not as a function of the properties of the robot and of the
tasks but either as a random variable [1], as an average value to which other independent
contributions (such as waiting times) might added [2,3], or as a single fixed value [4,5].

The intercept problem both for manipulators and for mobile robots, in which the pre-
cise estimation of the task times becomes a focal point, emerges in a variety of applications
and has been treated according to several approaches. In [6], a Particle Swarm Optimization
method is proposed for a coal gangue processing plant served by a conveyor and by Carte-
sian robots; [7] discusses a heuristic algorithm for the real-time solution of the rendezvous
problem between unmanned aerial vehicles operating in a leader-follower configuration.
In [8], the intercept problem for objects moving on a conveyor belt was solved online
within a bisection search algorithm, which requires the evaluation of the task times of a
robot moving with trapezoidal velocity profiles. A similar concept was described earlier
in [9], in which the traveling time curve of the robot is iteratively approximated online; the
possibility of recomputing the intercept position in case of variations of the moving target’s
trajectory is also included. In [10], target tracking and collision avoidance with moving
obstacles are jointly treated using a Model Predictive Control framework in which neural
networks are used to implement the models of the robot and of the obstacle dynamics.

These works are characterized by the online definition of the task time curves of
the robot, or, as in [10], by a reactive approach that does not require the evaluation of
the task time curve. Alternative approaches are instead based on the pre-evaluation of
the robot task times. This general idea is discussed in [11], in which the execution times
are obtained from the Reflexxes Motion Library [12]; an early example of an analogous
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concept can be found in [13], in which experimental data collected from the actual use
of the robot are arranged in a simple task time lookup table. More recently, also [14]
solved the optimal intercept problem for pick and place tasks on a rotating table using a
two-dimensional task time table adapted to the radial geometry of the problem; the motion
planning of each trajectory is performed using the commercial software that accompanies
the robot controller. In a similar vein, [15] constructs a task time table needed for pick and
place operations on a moving conveyor. In that work, the dependence of the cycle time
function on the manipulator’s specific properties is highlighted. The procedure for the
determination of the cycle time data is not described, as reliance is again placed on the
Reflexxes Motion Library. The authors assume that the velocity of the conveyor is fixed,
and only a rectangular portion of the workspace of the robot is considered. In [16], the
concept of a task-dependent map emerges in relation not to the execution times but rather
to the energy consumption associated with each operation. The resulting energy map is
three-dimensional and expressed in a cylindrical system.

To maximize the throughput of the robot, it is necessary to minimize the execution
times of its tasks; hence, the minimization of the travel time along a given geometric path
under constraints determined by the physical properties of the robot has received consid-
erable attention and has been treated successfully according to a variety of methods. The
algorithm described by Bobrow et al. [17] constructs time-optimal trajectories character-
ized by C0 velocities using a numerical integration approach. Further refinements were
proposed by [18]. A similar result is obtained through an algorithm based on reachabil-
ity analysis developed in [19], while other commonly applied approaches are based on
convex optimization [20]. These methods differ in terms of ease of implementation and
computational cost; a further significant difference lies in their ability to include more or
less straightforwardly third-order constraints whose main purpose is the limitation of the
motion jerk. Such constraints were included in an exact but cumbersome way within the
numerical integration approach [21], whereas methods based on convex optimization were
shown to be able to consider motion jerk constraints rather straightforwardly, though not
exactly [22,23]. A commonality of these works is that the geometric path is considered a
given; the problem of generating suitable geometric trajectories remains therefore out of
their scope. The geometric path planning, indeed, is more application specific and thus
less amenable to be treated in a standard way. Different strategies and ideas, a review
of which can be found in [24], can be specialized for use in diverse fields such as race
driver modeling [25], routing of mobile robots for agricultural applications [26], CNC
milling [27,28], and fixed-based robots operating in cluttered environments [29].

The current literature reveals the following gaps:

• the scheduling, the optimal intercept computation, and the trajectory execution time
minimization are treated in isolation, without considering the interdependencies
between them;

• the scheduling algorithms often do not consider accurately that different tasks are
associated with different execution times;

• the cycle or task time maps are developed without a focus on the optimal (as opposed
to feasible) times;

• the cycle time maps or tables cover only a portion of the useful workspace of the
manipulator and appear tailored to a specific application;

• the methods employed for the generation of the cycle time maps are known to scale
poorly to problems featuring a high number of degrees of freedom.

To address these gaps, this work proposes a mapping of the robot’s task time using
neural networks. The use of a neural network model results in a task time map covering
the entire workspace of the robot and presenting a uniform software interface.

For the collection of the data needed to train the map, the authors take into account
all the aspects that determine the task time, namely the kinematics and dynamics of the
manipulator, the geometric motion planning, and the task time optimization. This paper
illustrates therefore the geometric planning and task time minimization procedures that
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enable the generation of the task time data directly from simulations. Since these software
modules are based on the mechanical model of the robot, its properties and limitations are
reflected in the generated training dataset and therefore also in the trained task time map.
The proposed approach remains applicable also in cases in which the software modules for
the generation of appropriate datasets are not available, since the neural network model
can also be trained with experimental data, whose collection is however more expensive
and time consuming.

The geometric planning and task time minimization are relatively demanding proce-
dures, which should be invoked sparingly during real-time computations. The evaluation
of the task time map, on the contrary, is orders of magnitude faster, making the map itself
an essential component of the real-time optimizing scheduler that solves the intercept
problem and defines the robot’s tasks. In particular, since the pick and place targets are
moving, the task has to be defined in a useful time window, before the targets move past
the robot’s reach. The task time map is therefore used to speed up these computations.

The main contributions of the article are:

• the development of a systematic architecture for the representation of the task time
maps as neural networks;

• the illustration of a computational procedure for the generation of the dataset needed
to train the task time models;

• the demonstration of the use of the task time maps to solve the optimal intercept
problem in an industrial application case.

The paper is structured as follows. An outline of the problem and an overview of
the proposed solution are first presented. The proposed methodologies and the necessary
algorithms for the creation of the task time map are then illustrated; their implementation in
relation to a full-featured case study is then shown. The results concerning two applications
of the task time map are finally discussed: one related to pick and place operations on
items carried by a conveyor that advances intermittently, the other related to on-the-fly
manipulation of objects moving on a conveyor that advances continuously and with slowly
adjustable speed.

2. Methods
2.1. Problem Statement and Solution Outline

The paper denotes as a task or job a configurable elementary operation that can be
performed by the robot. Chaining multiple elementary tasks results in a composite task;
a task that is executed in a repeating pattern constitutes a work cycle. The scheduler is a
proper software algorithm that selects and configures the next job assigned to the robot
among all the possibilities. Several scheduling strategies that aim at the maximization
of the throughput of the system, such as the Shortest Job Next or the Highest Response
Ratio Next rules, require the knowledge of the execution times associated with each of
the possible tasks. To implement this kind of scheduler, a map that associates the jobs
that can be executed inside the workspace of the robot to their minimal execution time is
then needed. If required by the application, the map can be used by the scheduler also
for solving the optimal intercept problem, which likewise is governed by the task time
function.

An elementary task is defined by a geometric path and by the motion profile on it. The
geometric path γ : [ulb, uub]→ Ω ⊂ Rn f is a function mapping a real number belonging to
the interval [ulb, uub] into the n f -dimensional robot’s task space Ω. A point in Ω is denoted
as p; v and a denote likewise velocities and accelerations.

The motion profile on the geometric path is representable as a function
u : [ts, t f ] → [ulb, uub], where [ts, t f ] is the time interval in which the motion is ex-
ecuted. Therefore, to define a task, two issues arise, namely the definition of the function γ
and of the function u. Once these two functions have been defined, the task execution time
Ttask = t f − ts is also defined. In robotic applications, the definition of the geometric path
and of the motion profile is typically decoupled. The geometric path is commonly defined
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by the Geometric Trajectory Planner (GTP); the motion profile can be on the other hand
defined by a separate software module, the Task Time Optimizer (TTO). The GTP and the
TTO can be thought of as two higher-order functions, denoted each as G and H, that accept
a certain number of inputs and have as output, respectively, functions γ and u . Concerning
the GTP module, it can be said that its implementation is highly application-specific. In
general, however, the geometric definition of a task requires a set of position, velocity, and
acceleration boundary conditions plus a set of further configuration parameters; the output
is a geometric path. Denoting as cG the further configuration parameters, we can write the
following:

γ← G(cG, ps, vs, as, p f , v f , a f ) . (1)

As already stated in the introduction, standard algorithms for the TTO exist; irrespec-
tively of the implementation details, these algorithms can be assumed to take the form of a
higher-order function:

u← H(cH , γ, ps, vs, as, p f , v f , a f ) , (2)

where cH are configuration parameters of the task time optimizer. The output of H, usually
determined through an optimization procedure that takes into consideration the properties
of the robot, is the motion profile u.

The functions G and H must be such that the following equalities hold:

γ(u(ts)) = ps (3)

γ̇(u(ts)) = vs (4)

γ̈(u(ts)) = as (5)

γ(u(t f )) = p f (6)

γ̇(u(t f )) = v f (7)

γ̈(u(t f )) = a f . (8)

In light of assignments (1) and (2), it can be said that each elementary task is ultimately
defined by the boundary conditions ps, vs, as, p f , v f , a f and by the parameters cG, cH .
Therefore, the task execution time Ttask is also a function of these same parameters. It is
clear that the evaluation of Ttask is an expensive procedure that requires the application of
G and H.

In general terms, we define as the task time map T̂task a function of the form:

T̂task = T̂task(cG, cH , ps, vs, as, p f , v f , a f ) (9)

whose output nominally matches Ttask.
Without loss of generality, this work considers applications where the configuration

parameters are embedded into the GTP and TTO implementations. Additionally, since for
motion control purposes the enforcement of acceleration boundary conditions is not strictly
required, in the following discussion we do not consider them as input parameters. As a
result of these assumptions, which still allow us to deal with most industrial cases of any
practical interest, the task time map will assume the form: T̂task = T̂task(ps, vs, p f , v f ).

The paper presents the development of the task time map as a neural network model
and the definition of a strategy for generating suitable training datasets. Moreover, the
paper presents how the map is helpful for efficiently solving the optimal intercept problem.
Further uses, discussed conceptually in this article, are related to implementing efficient
scheduling algorithms usable in real-time software applications.

To precisely define the optimal intercept problem, the authors assume that the motion
of the target (i.e., of the object to be intercepted by the robot) is a known curve in Ω of
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the form γtgt(t). In addition, the time derivatives of γtgt are known. The solution of the
following equation formally defines the optimal intercept problem:

Ttask(ps, vs, γtgt(t), γ̇tgt(t)) = t . (10)

The quantities ps and vs are determined by the current state of the robot. Equation (10)
is therefore univariate; its solution yields the time tintercept and position γtgt(tintercept) at
which the robot can intercept the target. As the solution is in general not unique, the one
characterized by the minimal tintercept should be selected.

In order to solve the optimal intercept Equation (10), numerical solving is required,
which can involve a large number of iterations. However, substituting Ttask with T̂task
can significantly reduce the computation time. This approach meets the soft real-time
constraints, which are necessary because the environment in which the robot operates is
not stationary.

Within a complete software stack for a practical robotic application, the GTP and TTO
modules should be reasonably efficient, as they are used once for each scheduled task to
fully define it; the task time map T̂task on the other hand needs to be not only accurate but
also much faster than the direct determination of Ttask because both the solution of the
optimal intercept and the task scheduling require its frequent evaluation.

The scheduling and planning operations are represented graphically in Figure 2
according to the above discussion, though with an eye towards the industrial case of
interest, which is a pick and place line with conveyors moving with quasi-statically
adjustable velocity.

Figure 2. Pictorial representation of the scheduling, geometric motion planning, and task time
optimization pipeline.

The scheduler requires as inputs the current position prbt and velocity vrbt of the
manipulator’s end effector and a list of current positions ptgt,1 . . . ptgt,n and velocities
vtgt,1 . . . vtgt,n of the pick and place targets, which are detected, e.g., by a vision system.

The scheduler performs two operations according to the information provided by the
task time map. First, if the targets are moving, it computes the positions at which the robot
should intercept them. Subsequently, it identifies the target that should be processed next
among all the possibilities.

The outputs of these operations are the position and velocity boundary conditions
of the trajectory needed to perform the pick or place task: the scheduler sets the starting
position and velocity ps and vs equal to the current position and velocity of the robot; the
final position and velocity p f and v f are instead defined according to the solution of the
intercept problem of the chosen target. Once ps, vs, p f , and v f have been defined, the
geometric planning can be performed, yielding a parametric curve γ(u). This curve defines
the geometry of the trajectory, but not the motion law on it, whose generation is demanded
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instead to the task optimization routine, which outputs the time reparametrization γ(u(t))
and in suborder the actual task execution time Ttask.

The geometric trajectory planning is strongly tied to the type of application and can
be developed only in relation to it. This work proposes a geometric planning approach
suitable for pick and place applications where the manipulator can either perform pick and
place operations on stationary targets or also follow non-stationary picking and placing
positions, which move along a given direction. This problem arises when the manipulator
is used to pick and place the payload from and onto moving conveyors. We note that the
implementation of the Geometric Trajectory Planner defines classes of parametrized tasks,
which, in our case, there are two: stationary and on-the-fly pick and place tasks.

In Figure 3, the input–output relationships between the environment, the scheduler,
the GTP, and the TTO are illustrated in accordance with the description above.

Figure 3. Input–output representation of the scheduling, geometric motion planning, and task time
optimization pipeline.

Here, it can be seen clearly that the task time estimation needed by the scheduler
is provided by the task time map, which ideally should coincide with the function that
associates the tasks with their execution times. The exact evaluation of the task time
function using the GTP and the TTO is however rather expensive; therefore, for scheduling
purposes, the task time map is used in their stead to efficiently determine the task times.

To generate the map, a representative sample of the task times must be collected. The
task time data can be obtained from the robot’s tasks offline simulation, performed using
the GTP and the TTO. The training data can also be obtained by experimental tests using the
robot for the given payload, for the given boundary conditions, and for a set of trajectories
whose starting and ending points thoroughly cover the working space. In this case, the cost
and the time for collecting the data can be high, but the need for the development of the
GTP and TTO is removed, as reliance can be placed on the robot’s accompanying software.
In addition, in this case, the proposed approach based on the creation of the task time map
as a deep learning model remains still valid. Within this work, the authors focus on the
computational approach, notwithstanding the fact that the experimental generation of the
needed dataset remains a possibility.

The proposed approach is useful for applications that involve robots and movements
with several degrees of freedom, where each task can be configured according to a large
number of parameters, i.e., the initial and final positions and velocities of the robot. In these
cases, the simpler table-based lookup approaches do not exhibit either a uniform interface
or a general implementation procedure and are not suitable for the description of the task
time map, not only because of the irregular geometry of the robot’s workspace but also
because of the large dimensionality of the problem. The representation of the task time map
through the use of artificial neural networks overcomes the difficulties associated with more
traditional table-based lookup structures: in addition to being inherently mesh-free and
adaptable to the workspace geometry, it also offers the advantages both of a standard query
interface and of a generation methodology that remains independent from the specific
characteristics of the robot and of the application.
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The paper also address the fact that an accurate and reliable model can be generated
only from task time data that reflect:

• the kinematic and dynamic properties of the robot;
• the parameters of the actuators and transmission systems;
• the behavior of the Geometric Planning Module;
• the behavior of the Task Time Optimizer.

This work proposes therefore a systematic procedure that includes the following steps:

• the parametrization of the tasks to be executed by the robot using the GTP;
• the offline generation of a dataset of optimal execution times using the TTO;
• the generation, using deep learning models, of an accurate and efficiently queryable

map of the optimal task times over the entire workspace of the robot.

2.2. Geometric Trajectory Planning

The geometric trajectory planner accepts as inputs the configuration parameters of the
path’s geometry. These are the initial and final configurations of the manipulator, expressed
as position and velocity boundary conditions.

The geometric planner should generate as its output a parametric curve γ(u), with
parameter u belonging to an interval [ulb , uub]. In this paper, curves having C2 continuity
are considered in order to avoid points along the trajectory necessarily characterized by
unbounded motion jerk. Clearly, the curves should also belong entirely to the workspace
of the robot and should not cross any singular configuration.

How to efficiently achieve these goals depends on the properties of the robot, which
determine the shape both of the workspace and of the singular loci. Additional require-
ments are obstacle avoidance and specific shape characteristics, which furthermore depend
on the robot’s environment and on the type of task. Therefore, we postpone the detailed
description of our Geometric Trajectory Planner implementation to the application case
presented in Section 3.

2.3. Task Time Optimization

As already stated in the introduction, several methodologies are well described in
the literature for the implementation of the Task Time Optimizer (TTO) as a constrained
optimization process that accepts as inputs a geometric description of the trajectory and
higher-order boundary conditions. The constraints are computed according to:

• the actual performances of the actuation drives and of the transmissions;
• the model of the mechanical dynamics of the manipulator;
• the properties of the payload.

The main output of the TTO is the motion along the geometric path that minimizes the
travel time while remaining compatible with the performances of the robot. The minimal
execution time can also be obtained as a further output of the TTO.

Let q be the parameters describing the robot pose in the joint space, and let the
dynamics of the robot be expressed in the form:

M(q)q̈ + C(q, q̇)q̇ +∇U(q) = τ , (11)

where M is the mass matrix, C is the Coriolis matrix, U is the potential energy, and τ are
the torques exerted at the joints.

The task time optimization typically uses a robot’s dynamics formulation that neglects
the compliance of the transmission units and of the links; this simplification can be consid-
ered acceptable whenever these aspects have been appropriately considered during the
design stage of the robot, as shown, e.g., in [30,31].

Using Lagrange equations, it can be straightforwardly shown that C(q, q̇) is homoge-
neous with respect to q̇:

C(q, αq̇) = αC(q, q̇) . (12)



Robotics 2023, 12, 143 9 of 34

Even though γ(u) is typically formulated in the task space, the robot’s inverse kine-
matic relationships can be applied to express the same motion in the joint space. The
path-projected dynamic equations can be then expressed in the form:

mi(u)ü + ci(u)u̇2 + gi(u) = τi , (13)

where mi, ci, gi are each the ith elements of the vectors:

m(u) = M(q(u))q′(u) (14)

c(u) = M(q(u))q′′(u) + C(q(u), q′(u))q′(u) (15)

g(u) = ∇U(q(u)) . (16)

Each power drive system (i.e., the driver-motor unit) actuating the robot is character-
ized by a maximum admissible torque τpds,max,i, by a rated torque τpds,rated,i, by a maximum
velocity ωpds,max,i, and by an inertia Jm ,i, all expressed at the motor shaft. Additionally, the
transmission system is characterized by a reduction ratio it,i, by an efficiency ηt,i, and by
an inertia Jt ,i, typically expressed with respect to the input shaft. All these parameters are
fundamental in determining the minimal execution time of a given trajectory; although they
are considered as a given as far as the TTO is concerned, they must be carefully selected
during the design phase of the manipulator. A procedure for the proper configuration of
the power drive systems and transmissions is illustrated in [32].

The inertial properties of motor and transmission are easily projected on the output
shaft and thus accounted for within M.

Assuming a continuative use, the following constraints can be conservatively enforced:
∣∣∣mi(u)ü(u) + ci(u)u̇2(u) + gi(u)

∣∣∣ ≤ ηt,iit,iτpds,rated,i . (17)

In this way, it can be ensured that the constraints on the RMS torque (and therefore also
on the peak torque) are satisfied. The constraints on the maximum rotational speed of the
actuators can moreover be written as:

−
ωpds,max,i

it,i
≤ qi

′(u)u̇ ≤
ωpds,max,i

it,i
. (18)

As suggested in [20], the following change of variables is introduced: let

x(u) = u̇2(t(u)) ; (19)

then:

x′(u) = 2ü(t) . (20)

Constraints equivalent to those of Inequality (18) can be written as:

qi
′2(u)x(u) ≤

(
ωpds,max,i

it,i

)2
(21)

while Inequality (17) can be rewritten as
∣∣∣∣
mi(u)

2
x′(u) + ci(u)x(u) + gi(u)

∣∣∣∣ ≤ ηt,iit,iτpds,rated,i . (22)
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The optimal function u̇opt(u) =
√

xopt(u) is commonly intended as the one minimizing the
total traveling or task time Ttask, itself expressible as:

Ttask =
∫ uub

ulb

du√
x(u)

. (23)

The optimization problem described above, in which Ttask is the cost function, needs to be
discretized in order to be solved. The constraints are therefore enforced not on the entire
interval of definition of the parameter u but only on a finite number of values uj, with
j = 0, 1, . . . , m− 1. To obtain a finite number of decision variables x, the function x(u) is
assumed to be of the form:

x(u) = N(u)Tx (24)

x′(u) = N′(u)Tx , (25)

where N(u) is a suitable vector-valued shape function. The shape function can be isolated,
leading to the reformulation of the jth constraint inequalities as:

(mi(uj)

2
N ′(uj) + ci(uj)N(uj)

)>
x ≤ ηt,iit,iτpds,rated,i − gi(uj) (26)

(mi(uj)

2
N ′(uj) + ci(uj)N(uj)

)>
x ≥ −ηt,iit,iτpds,rated,i − gi(uj) (27)

(qi
′(uj))

2N(uj)
>x ≤ ω2

pds,max,i , (28)

which are linear with respect to the decision variables x. The cost function Ttask can be
approximated as follows:

T̃task =
n

∑
k=1

∆u√
N(uk)>x

, (29)

leading to the optimization problem:

T̃task,min = min
x

T̃task under constraints (26)–(28) . (30)

As T̃task is convex with respect to x, the solution of the time reparametrization problem for a
given trajectory can be found using appropriate convex optimization solvers. On the other
hand, the structure of the problem and of the constraints suggests the setup of a different
optimization problem, namely:

Φ(x) =
[
1, 1, . . . , 1

]
x (31)

Φmax = max
x

Φ(x) under constraints (26)–(28) . (32)

Objective function Φ(x) is linear with respect to the decision variables; its optimization
problem is therefore a linear program (LP). Maximizing Φ(x) results in the approximate
maximization of the integral average of the squared velocity over the geometric path. While
this does not lead to strictly minimal trajectory execution times, intuition suggests that the
result should well approximate the optimal one. To confirm this expectation, the authors
generated a set of random trajectories; each trajectory was optimized according to both the
convex minimization problem (30) and the linear program (32), yielding, respectively, the
trajectory execution times Ttask ,CM and Ttask ,LP.

Figure 4 reports the comparison between the two methods. The histogram shows that
the solution obtained from the linear programming approach is slightly worse than the one
determined from the convex minimization. However, the gap between the two is typically
less than 1%. Qualitative inspection of the obtained solutions also revealed that not only
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the task times but the overall motion profiles obtained with either method are very similar
to each other.

−5 −4 −3 −2 −1 0 1 2 3 4 5
0

1000

2000

100
Ttask,LP − Ttask,CM

Ttask,CM

n

Figure 4. Statistical comparison between the trajectory execution times obtained through convex
optimization and linear programming.

Given the greater computational efficiency of LP solvers, our final implementation
of the TTO is reliant on the solution of Equation (32). Once a solution is available, the
trajectory execution time Ttask can still be determined from Equation (23). As shown in [23],
once a first solution to the time optimal reparametrization has been found, it can be used
to approximately compute additional constraints that are added to the problem described
above in order to constrain not only the velocities and torques but also the time derivative
of the torques. The resulting parametrization is then characterized by limited motion jerk.

2.4. Task Times Map Based on Neural Networks

The Geometric Trajectory Planner and the Task Time Optimizer can be jointly used to
generate during an offline phase the data needed to construct the task time map, which
itself will be used during the online phase by the task scheduler.

Consider a robot having an n f -dimensional task space that performs motions that start
and terminate with given positions and velocities. The procedure for the dataset generation
is the following:

• sample the position and velocity boundary conditions ps, p f , vs, and v f ;
• for each set of boundary conditions, generate a geometric path using the GTP;
• for each motion path, compute the optimal execution time Ttask using the TTO and

store explicitly the association between the inputs (ps, p f , vs, v f ) and Ttask.

The dataset can then be used to train the task time model. Figure 5 represents the
conceptual scheme of the training process that involves the data coming from the GTP,
TTO, and boundary conditions; in this representation, the generation of the data and the
training are simultaneous, even though in practice the two phases can be decoupled.

Once the functionality of the GTP is fixed, it is clear that the number of input vari-
ables it accepts increases with the number n f of task space DOFs (degrees of freedom) of
the manipulator.

Velocity boundary conditions that are a priori undefined can also occur in some
applications, such as on-the-fly pick and place operations over one or multiple conveyor
belts moving at slowly variable speeds, leading to a further increase in input variables.
Considering, for example, a 6-DOF manipulator, a general trajectory is parametrized in
terms of 24 position and velocity boundary conditions, to which a further 12 acceleration
boundary conditions could be added if required by the application. Even considering the
common special case of null terminal velocities, 12 position boundary conditions should be
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specified in order to completely define the motion path. On the other hand, lower DOF
manipulators such as 3-DOF Cartesian robots or 4-DOF SCARA manipulators are also
commonly encountered.

Figure 5. Conceptual diagram of the training process of the task time model; ps, p f , vs, and v f

represent the position and velocity boundary conditions of the trajectory, while Ttask and T̂task denote
each the actual task time of the trajectory and its estimation.

It can be concluded that the estimation architecture for the optimal task time map
should be adaptable with minimal variations to the number of input parameters as well as
powerful enough to deal with a potentially large input space.

These considerations tend already to rule out lookup tables; these could work well
for inputs having lower dimensionality but quickly become unwieldy when high numbers
of inputs are considered. Structured grids are also a poor match for manipulators having
irregular working volumes. These problems can be mitigated but not completely solved
using unstructured or adaptive lookup structures.

On the other hand, a number of mesh-free approximation methods exist, among which
are radial basis function interpolation and Gaussian process regression; both these methods
present attractive properties, such as being adaptable to irregular input spaces and having
a low number of tuneable parameters. Their scalability to large datasets is however poor,
as their training and evaluation time are each cubic and quadratic with respect to the
number of data points. This might become a point of failure as the dimensions of the
problem increase, since it can be expected that to achieve sufficient predictive capabilities,
the amount of training data must increase.

This reasoning has led us to the use of a feedforward neural network as our approxi-
mation architecture, which has all the advantages of mesh-free methods and, compared
to more traditional machine learning methods, can scale to handle larger datasets and
problems having high dimensionality. In its most basic form, the neural network accepts
the trajectory boundary conditions as inputs and has the task time estimate T̂task as its
single output. Auxiliary outputs could concern, e.g., the feasibility of the trajectory.

The architectures of the hidden layers and the training hyperparameters are, on the
other hand, largely unconstrained and can be adapted to the specific dataset. Despite
the internal differences, the training procedure remains largely the same; the neural net-
work model is thus applicable with minimal variations to different robots performing
various tasks.

In summary, with respect to the use of alternative methods, the following advantages
can be expected from the use of a neural network:

• ability to sample the task space in an unstructured way;
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• lower persistent memory usage (which is used not for the Ttask samples directly but
rather for the parameters of the neural network);

• more straightforward adaptability to different kinds of manipulators;
• tuneability of the internal architecture for achieving the desired performances;
• application-independent software interface and generation procedure.

3. Case Study Description

A meaningful case study for the proposed approach is constituted by a
4-DOF 5R manipulator designed for fast pick and place applications. Similarly to more
commonly used 4-DOF SCARA manipulators, the 5R uses a screw-spline mechanism for the
roto-translation of the end-effector along and around the vertical axis. As depicted
in Figure 6, the in-plane motion of the 5R ’s end-effector is obtained thanks to a pla-
nar mechanism that features two parallel kinematic chains actuated by two electric motors
fixed to the frame of the robot.

(a) The 5R robot. (b) Schematic representation of the 5R.
Figure 6. 5R manipulator at the University of Bergamo and schematic representation of its actuation
and transmission systems.

In Figure 7, the notable points and angles needed to describe the planar linkage are
shown. It should be noted that the actuated angles q1 and q2 are constrained to rotate
within bounds enforced by mechanical endstops. In particular:

q1,min = 60° ≤ q1 ≤ q1,max = 210° (33)

q2,min = −30° ≤ q2 ≤ q2,max = 150° . (34)

Since the mechanical endstops are not symmetrical, the actual workspace will also be
asymmetrical, despite the symmetry of the idealized kinematic scheme.

One peculiarity of this manipulator is constituted by the timing belt transmission sys-
tems housed inside the links, which allow to actuate the screw-spline using two additional
brushless motors also attached to the robot’s fixed frame. Interestingly, this mechanical
arrangement leads not only to the reduction of the moving mass but also to the complete
kinematic and dynamic decoupling between the motions of the screw-spline and of the
planar arms.
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Figure 7. Notable points and angular quantities of the 5R planar linkage.

This is due to the unitary transmission ratio of the belt transmission systems and
to the negligible friction torques of the ball bearings used to constrain the pulleys and
the links. Under these conditions, it can be shown that the motion of the planar linkage
and of the ball-screw-spline do not display a mutual influence; the former is exclusively
determined by generalized coordinates q1 and q2 and motor torques τ1 and τ2, whereas
the latter depends only on coordinates q3 and q4 and motor torques τ3 and τ4. Without
introducing further assumptions, then, these two sub-systems can be analysed separately.
In particular, the kinematics and dynamics of the screw-spline mechanism are invariant
with respect to the joint configuration and are thus fully described by a constant Jacobian
matrix. Let zee and φee be the vertical position and the rotation of the end effector; let q3
and q4 be the joint coordinates associated, respectively, to the helical and to the prismatic
joints constraining the screw-spline. The following kinematic relationships hold:

[
zee
φee

]
=

1
2π

[−pss pss
0 2π

]
=

[
q3
q4

]
. (35)

The kinetic and potential energies of the screw-spline can therefore be expressed with
respect to the joint variables as follows:

Tss =
1
2

(
(J3 +

mee p2
ss

4π2 )q̇2
3 + (J4 +

mee p2
ss

4π2 + Jee)q̇2
4 −

mee p2
ss

2π2 q̇3q̇4

)
(36)

Uss = meeg
pss

2π
(q4 − q3) . (37)

The kinematics of the planar mechanism were instead obtained from the in-plane
closure equation:

−−→
OS1 +

−−→
S1E1 +

−→
E1P =

−−→
OS2 +

−−→
S2E2 +

−→
E2P . (38)

The Jacobian matrices relating the velocities Ė1 and Ė2 to the joint velocities q̇1 and q̇2
can be trivially written as:

DE,1 = lprox

[− sin(q1) 0
cos(q1) 0

]
(39)

DE,2 = lprox

[
0 − sin(q2)
0 cos(q2)

]
. (40)
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The Jacobian analysis of the 5R end-effector kinematics is performed in such a way as
to assign a clear geometric interpretation to the semi-Jacobian matrices, which relate the
velocity at the joints to the velocity at the end-effector. These are:

[
(P− E1)

>

(P− E2)
>

]
Ṗ =

[
(P− E1)

>DE,1
(P− E2)

>DE,2

][
q̇1
q̇2

]
. (41)

From the analysis of these two matrices, it emerges that the singular configurations
for the 5R are those for which two consecutive links are collinear. As will be shown, this
characterization makes it straightforward to geometrically detect configurations that are
approaching a singularity and to isolate a singularity-free portion of the workspace. A
more in-depth discussion of the singularities for the five bar linkage can be found in [33].

Multiplying both sides of Equation (41) by the inverse of the matrix appearing on the
left-hand-side, it is possible to highlight the Jacobian matrix relating the joint velocities q1
and q2 to the planar velocity at the end-effector:

Ṗ = DP

[
q̇1
q̇2

]
. (42)

The distal angles ϕdist,1 and ϕdist,2 can be expressed as:

ϕdist,j = arctan

(
yP − yEj

xP − xEj

)
. (43)

Since the Jacobian matrices DP, DE,1, and DE,2 have already been made explicit, it is
straightforward to find the Jacobian matrices Dϕ,dist,j relating ϕ̇dist,j to the joint velocities q̇1
and q̇2. Similarly, the Jacobian matrices of the centers of mass Gp1, Gp2, Gd1, Gd2 of each
link can be easily deduced from DE,1, DE,2, Dϕ,dist,1, Dϕ,dist,2, and DP.

Assuming that the planar mechanism operates in the horizontal plane, the potential
energy U5R of the 5R is constant; the kinetic energy of the planar system, on the other hand,
can be written as:

T5R =
1
2
[
q̇1 q̇2

](
mprox,1D>G,p1DG,p1+

mprox,2D>G,p2DG,p2+

mdist,1D>G,d1DG,d1+

mdist,2D>G,d2DG,d2+

Jdist,1D>ϕ,dist,1Dϕ,dist,1+

Jdist,2D>ϕ,dist,2Dϕ,dist,2 + Jprox

)[q̇1
q̇2

]
,

(44)

with:

Jprox =

[
Jprox,1 0

0 Jprox,2

]
. (45)

The Lagrangian function of the entire system is:

L(q, q̇) = T5R + Tss −U5R −Uss . (46)

Consequently, the dynamics of the system were obtained using Lagrange equations:

d
dt

∂L
∂q̇k
− ∂L

∂qk
= τk (47)
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and afterwards were rearranged to obtain relationships formally identical to Equation (11).
A more detailed discussion of the dynamics of the 5R robot can be found in [34].

The selection of the transmission and of the power drive systems was performed
according to the procedure detailed in [32]. All the parameters related to the actuation
and transmission systems are thus fully defined and reported in Table 1. Accordingly,
the contributions associated with the motors and with the transmissions are included as
appropriate within the overall dynamics of the system.

Table 1. Main parameters of the four servoaxes.

Servoaxis 1 Servoaxis 2 Servoaxis 3 Servoaxis 4

τpds,rated , [N m] 0.7 0.7 0.36 0.36
τpds,max , [N m] 1.4 1.4 0.72 0.72

ωpds,max ,
[
rad s−1] 500 500 500 500

Jm ,
[
kg m2] 1.7× 10−5 1.7× 10−5 2.4× 10−6 2.4× 10−6

ηt ∼1 ∼1 ∼1 ∼1
Jt ,
[
kg m2] 2.485× 10−5 2.485× 10−5 2.05× 10−5 2.05× 10−5

it 64 64 10 10

During the motion, the manipulator should not cross any singular configuration,
change its assembly, or violate the physical constraints introduced by the mechanical
endstops. The actual workspace is consequently reduced to the configurations that satisfy
the following conditions:

q1 ≥ q1,min (48)

q1 ≤ q1,max (49)

q2 ≥ q2,min (50)

q2 ≤ q2,max (51)
−→
E1P · j(−−→S1E1) ≤ 0 (52)
−→
E2P · j(−−→S2E2) ≥ 0 (53)
−−−→
EavgP · j(−−→E1E2) ≥ 0, (54)

with

Eavg =
1
2
(E1 + E2) (55)

i(
−→
AB) =

−→
AB/||−→AB|| (56)

j(
−→
AB) =

[
−i2(
−→
AB) , i1(

−→
AB)

]>
. (57)

In particular, the enforcement of inequalities (48)–(51) and conditions (52)–(54) (which
were determined from the analysis of Equation (41)) prevents the crossing of singular
configurations and the change of assembly or operating mode. In Figure 8, the useful
workspace resulting from inequalities (48)–(54) is shown, both in the taskspace and in
the jointspace. The boundaries of the filled area either are determined by the mechanical
endstops or correspond to singularities. Inside the admissible area, the reciprocal condition
number:

rσ =

√
σmin
σmax

, (58)
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with σmin and σmax being the minimum and maximum singular values of the matrix DPD>P ,
is represented. A further condition fixing a minimum value for the reciprocal condition
number can be defined in order to stay sufficiently clear of singular configurations:

rσ ≥ δσ . (59)
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(a) Taskspace representation
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(b) Jointspace representation

Figure 8. Reciprocal condition number represented in the admissible portions of the workspace.

For the first numerical example detailed below, the parameter δσ has been set to 0.1;
for the second application, instead, we selected δσ = 0.2.

The main properties of the robot are:

• length of the proximal links lprox = 250 mm;
• length of the distal links ldist = 250 mm;
• frame length l f = 180 mm;
• mass of the proximal links mprox,1 = mprox,2 = 2.9 kg;
• mass of the distal links mdist,1 = mdist,2 = 2.9 kg;
• barycentric inertia of the proximal links Jprox,1 = Jprox,2 = 5.22× 10−2 kg m2;
• barycentric inertia of the distal links Jdist,1 = Jdist,2 = 5.22× 10−2 kg m2;
• mass of the screw-spline and of the end-effector mee = 0.36 kg;
• screw-spline pitch pss = 2 mm;
• rotational inertia of the end-effector Jee = 6.40× 10−6 kg m2;
• rotational inertia of the transmission system actuating the screw-spline helical joint

J3 = 1.20× 10−6 kg m2;
• rotational inertia of the transmission system actuating the screw-spline prismatic joint

J4 = 1.20× 10−6 kg m2.

The mass parameters of the links also take into account the masses of the pulleys and belts.

Geometric Planning for the 5R Robot

The GTP here proposed is configured for the parametrization of two different types of
motions:

• stationary pick and place tasks, where the initial and final velocities are null;
• on-the-fly pick and place tasks, such as those represented in Figure 1, where the initial

and final velocities are non-null and aligned to the x-axis.

For stationary pick and place motions, a simple portal-like trajectory is sufficient. On the
contrary, for on-the-fly manipulation tasks, more complex composite trajectories, such as
the one represented qualitatively in Figure 9, are needed.
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x
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(b) descent task

(c) grasping/release task

(d) ascent task

Figure 9. Examples of a composite trajectory for on-the-fly pick and place.

In that figure, it can be seen that the on-the-fly manipulation trajectory is constituted
by four portions:

• an intercept motion (a), which happens in a slightly elevated plane and which ter-
minates with an x-y position, a rotation and a velocity that match those of the pick
and place target; its terminal position can be found, as will be shown, by solving the
optimal intercept problem;

• a descent motion (b) through which the gripper approaches the target from above;
• a grasping/release motion (c) during which the gripping device operates to grasp or

release the item;
• an ascent motion (d) through which the gripper attains the proper vertical clearance.

The motions (b) (c) and (d) constitute the tracking phase proper, since all have a velocity
along the x-axis that matches the one of the pick and place target. The duration of motion
(c) is determined by the operating time of the gripping device and therefore is not a target
for optimization. The motions (b) and (d) are usually quite short, as the vertical excursion
is typically very limited in pick and place applications. For the 5R robot considered in
the example, moreover, the optimal time needed to perform a given vertical motion is a
function only of the vertical displacement itself, due to the screw-spline being a linear
time-invariant system decoupled from the planar five bar mechanism. Once the vertical
displacement is fixed, the task times of (b) and (d) are known constants. In particular,
considering a vertical displacement of the end-effector ∆zee = 20 mm, we obtained the
following task times:

Ttask(b) = 0.076 82 s (60)

Ttask(d) = 0.076 82 s . (61)

The fact that the Ttask(b) is equal to Ttask(d) is not surprising, given the symmetry of the
problem, in which gravity:

• assists the acceleration phase of the descent motion (b);
• opposes the deceleration phase of the descent motion (b);
• opposes the acceleration phase of the ascent motion (d);
• assists the deceleration phase of the ascent motion (d).

In cases featuring different robots, it is entirely possible to construct time maps for
motions (b) and (d) using the general approach here proposed. It should be remarked
that, in general, the execution times of tasks (b) and (d) are a function only of the starting
position and velocity; the dimensionality of the problem is therefore lower compared to the
one associated with motion (a). Finally, it can be noted that the map associated with motion
(a) needs to be evaluated more frequently for the solution of the optimal intercept problem,
whereas maps for motions (b) and (d) are not invoked for this purpose. It can be easily
observed in Figure 8 that the useful workspace is not convex, neither in the task space nor
in the joint space. The geometric planning, even for simple point-to-point trajectories, is
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therefore not entirely straightforward. A variety of solutions might be adopted; the one
here proposed features minimum-length trajectories planned in the task space.

This choice is motivated by the fact that, already, for δσ = 0.1, the useful workspace is
a normal domain, clearly having two function-like lower and upper boundaries, which are
denoted in the following as ylb(xee), yub(xee) and which can be numerically evaluated, e.g.,
using a zero-finding algorithm on the boolean function obtained from the simultaneous
enforcement of Inequalities (48)–(54) and (59). This, in turn, allowed us to set up the
geometric planning of a point-to-point minimum length motion as a convex quadratic
program (CQP) that yields a control polyline, which can be easily postprocessed in order to
fully define the trajectory.

Consider at first only the planar motion. Fixing the feasible initial and final positions
ps and p f of the manipulator, the coordinates xee,s, yee,s, xee, f , and yee, f are fixed. Let xsol
and xconstr be equally spaced arrays of ncqp and mcqp elements each:

xsol =
[

xsol,1 = xee,s, xsol,2, . . . , xsol,ncqp = xee, f

]
(62)

xconstr =
[
xconstr,1 = xee,s, xconstr,2, . . . , xconstr,mcqp = xee, f

]
. (63)

Let y =
[
yee,1, yee,2, . . . , yee,ncqp

]
be ncqp decision variables.

Finally, let Nxsol (xee) be the shape functions yielding the linear interpolation of y
over xsol . The constraints of the problem can then be written in linear form as:

yee,1 = yee,s (64)

yee,ncqp = yee, f (65)

N>xsol
(xconstr,k)y ≤ yub(xconstr,k) (66)

N>xsol
(xconstr,k)y ≥ ylb(xconstr,k) (67)

for k = 1 , . . . , mcqp. Finally, as the quadratic cost function (which has the same minimum
point of the squared-length function):

L2 =
ncqp

∑
i=2

(yee,i − yee,i−1)
2 (68)

admits a positive definite Hessian matrix, the minimum length polyline joining the initial
and final configurations can be found as the result of a convex quadratic program.

The minimum length polyline so obtained constitutes the basic solution from which a
variety of motions can be easily constructed, as exemplified in Figure 10. For example, it is
entirely straightforward to add to each point a desired out-of-plane displacement, e.g., to
obtain a motion suitable for stationary pick and place actions; the rotational coordinate of
the end effector can also be added as dictated by the requisites for the specific application.
It is then possible to join two consecutive line segments with circular arcs in order to obtain
a C1 continuous path whose arc parameter is easily computed. Furthermore, a smoothing
operation can be applied to yield a C2 path; given the fact that the geometric primitives we
used are integrable in closed form, the filter we developed is constituted by an analytical
integral average over a window, which slides along the arc parameter of the curve and
whose size is calculated in relation to the length of each constitutive segment or arc. An
analogous idea can be found in [28], in which, however, a discrete time FIR filter is used to
obtain continuous geometric accelerations.

In addition, the changes of directions needed for on-the-fly pick and place operations
can be prepended or appended to the trajectory as required to obtain the proper alignment
with the tracking direction. These trajectories, in particular, are constructed assuming that
the items are moving along one or more conveyor belts aligned to the xee-axis and such
that the end-effector moves in plane in order to reach the position above the target with the
velocity needed to initiate the subsequent descent, grasping/release, and ascent motions.
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(a) Point-to-point paths.
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(b) Tracking paths.
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(c) Static pick and place paths.
Figure 10. Examples of point-to-point paths (a), tracking paths (b), and paths for stationary pick and
place tasks (c).

Since both stationary and on-the-fly pick and place tasks have been considered at the
geometric level, two families of parametric tasks are to be optimized in terms of execu-
tion times. Of these families, the former is characterized by null initial velocities, while
the velocity boundary conditions of the latter are free parameters appearing alongside the
initial and final positions. The task time models for these two kinds of motions accept there-
fore a different number of input parameters, and, as detailed in the following discussion,
they are characterized by different internal architectures. Despite these differences, they
offer a very similar query interface and are trained and deployed in an almost identical
manner, showcasing the adaptability of the proposed method to different task typologies.

4. Computational Results and Discussion
4.1. Software and Hardware Setup

The task time datasets were generated using an in-house object-oriented C++ codebase.
The main modules of our software implement:

• an abstract class representing a generic n-DOF manipulator, from which specific
implementations (among which the one relative to the 5R robot) are derived;

• an abstract class representing a generic TTO, from which specific implementations are
derived according to the different optimization methods;

• an abstract class representing a generic n-DOF geometric path, with its derived imple-
mentations;

• a set of routines implementing the GTP for the 5R robot;
• a utility class dedicated to the multithreaded generation of the dataset.

To solve the linear program (32), we use the Gnu Linear Programming Kit (GLPK);
we treat the quadratic optimization problem arising during the geometric trajectory plan-
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ning using the OSQP solver [35]. To accurately compute the task time Ttask according to
Equation (23), we implemented the algorithm proposed by [36]. This method was selected
due to its ability to treat integrable singularities at finite points, which, in our case, occur
when the motion has null velocities at the extremities; in those cases, we allowed small
initial and final accelerations to mathematically ensure integrability.

Each model was trained on a dataset of 106 trajectories, whose initial and final poses
were sampled according to a uniform random distribution in the task space, considering:

• a rotation range for the end-effector equal to ∆φee∈[−π , π];
• a range for the initial and final velocities equal to v ∈

[
0.05 m s−1 , 0.5 m s−1];

• initial and final x-y positions that satisfy inequalities (48)–(54) and (59).

The neural network architectures were defined and trained using the PyTorch library.
The main hyperparameters characterizing the training process are:

• loss function: MSE (Mean Squared Error)
• training algorithm: SGD (Stochastic Gradient Descent)
• batch size: 2048 data points.

The determination of the hyperparameters has not been automated; instead, they have
been experimentally tuned in order to obtain a compromise between training speed
and accuracy.

For both models, the accuracy and precision of the prediction are evaluated through
the distributions of the prediction error and of the relative prediction error. The prediction
error is defined as:

εTtask = Ttask − T̂task , (69)

where T̂task is the task time estimate obtained from the trained model. On the other hand,
the relative prediction error is defined as:

εTtask ,% = 100
Ttask − T̂task

Ttask
. (70)

Both error distributions were computed on the test dataset.
Three additional quantities that are considered to evaluate the soundness of the

proposed methods are:

• Tplan, the average execution time of the entire motion planning and optimization
pipeline for a single trajectory;

• Teval,cpu, the average evaluation time of the task time map on a single CPU core;
• Teval,gpu, the average evaluation time of the task time map on the GPU.

These values were obtained by performing all the required computations on a machine
running a Linux operating system and having the specifications detailed below:

• CPU: Intel® Core™(Santa Clara, CA, USA) i7-8750H processor 2.2 GHz (9 MB cache,
up to 4.1 GHz, 6 processors);

• GPU: Nvidia® (Santa Clara, CA, USA) GeForce® (Santa Clara, CA, USA) GTX 1050,
4 GB, GDDR5;

• RAM: 16 GB DDR4 SO-DIMM, 2400 MHz.

Clearly, the usefulness of the task time map is predicated not only on the achievement
of sufficient accuracy but also on evaluation times (either Teval,cpu or Teval,gpu) much lower
than the planning time Tplan. Within the scope of this work, the average evaluation time of
the models is conservatively determined through the execution of the model itself within
the Python3 interpreter, whereas Tplan is determined using the C++ implementations of
the GTP and TTO. These quantities are summarized for both the stationary and the on-
the-fly pick and place case studies in Table 2. A histogram of the planning times for a
representative sample of trajectories is reported in Figure 11.
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Table 2. Comparison of the evaluation times of the neural network models and of the
GTP-TTO algorithms.

Task Type Teval,cpu, [µs] Teval,gpu, [µs] T plan, [µs] T plan/Teval,cpu T plan/Teval,gpu

Stationary
Pick and

Place
81 6 49,419 610.11 8236.5

On-the-fly
Pick and

Place
2310 73 56,985 24.7 780.6

20 40 60 80 100 120 140 160
0

100

200

300

Tplan, [ms]

n

Figure 11. Histogram of measured planning times.

4.2. Stationary Pick and Place Task Time Map

A feedforward neural network having three hidden layers was selected; the main
parameters of the network are summarized in Table 3.

Table 3. Main parameters of the neural network architecture for the stationary pick and place task
time map.

Layer 1 Layer 2 Layer 3

Type Fully connected Fully connected Fully connected
Activation ReLU ReLU Linear

Dropout probability 0.20 0.20 0.20
nin 5 2048 2048
nout 2048 2048 1

In Figure 12, the top panel shows the histogram of the prediction error εTtask , while
the bottom one depicts the histogram of the relative prediction error εTtask ,%. These errors
are small both in absolute and relative terms; therefore, the map output cannot reliably
discern two tasks whose duration difference is less than the error introduced. From the time
duration point of view, these tasks are practically equivalent due to the limited percentual
error. Regarding the effective behavior of the robot, we can discuss two main scenarios.

In the first, the command to the robot uses the boundary conditions and the map task
time T̂task. Therefore, the robot executes the task in the given time. If T̂task > Ttask, the task
is executed with speeds and accelerations lower than those generated by the TTO. On the
contrary, if T̂task < Ttask , the task will be executed with higher speeds and accelerations,
provided that the robot can reach these. In general, the TTO should optimize the task
execution times considering conservative estimates of the robot’s capabilities so that the
small adjustments described here remain compatible with the actual peak performances of
the manipulator.
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In the second, the command to the robot considers only the boundary conditions. In
this case, the task execution time is Ttask due to the robot’s TTO, and the robot can realize
the task. The subsequent task can be executed after the completion of the previous one.

To verify that the use of the resulting model is compatible with the time requirements
of an online scheduling algorithm, we evaluated the average time needed on the one hand
to evaluate the neural network and on the other to execute the GTP and the TTO processes.
The average evaluation times are:

• Teval,cpu = 81.38 µs on a single CPU core, using the Python-3 interpreter;
• Teval,gpu = 5.96 µs on the GPU, using the Python-3 interpreter;
• Tplan = 49.4 ms on the CPU, using the C++ implementation of the GTP and TTO.

Even without the GPU, then, it can be observed that the evaluation of the model to yield
T̂task is two orders of magnitude faster than the direct evaluation of the task time Ttask using
the GTP and the TTO; further and significant speedups can moreover be obtained using
the GPU.
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εTtask
, [ms]
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5

(a) Prediction error
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εTtask,%
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(b) Relative prediction error
Figure 12. Stationary pick and place task time prediction errors calculated on the test dataset.

A qualitative inspection of the predicted task times T̂task was also performed as shown
in Figures 13–16. In particular, by fixing the initial pose and the total rotation of the end-
effector, it is possible to visualize the task time estimate as a function of the final Cartesian
coordinates of the gripper. The initial configuration is shown in the figures with a red
marker. It can be seen that T̂task is positively correlated with the total displacement achieved
at the end-effector. The isolines of T̂task are not, however, merely radial, as they are a more
general function not only of the non-linear kinematics and dynamics of the mechanism but
also of the actuation systems, whose main properties and non-linearities (namely the torque
and velocity saturations) are accounted for within the overall motion planning strategy
and are thus reflected in the outputs of the task time model.

In this example, the rotational displacement has a rather small effect on the total
execution time of the trajectory. It can be seen, however, that for small displacements, the
execution of the end-effector rotation can constitute the bottleneck of the overall motion.
This fact becomes apparent only when closely focusing on the size of the region enclosed
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in the isoline closest to the initial configuration considered at different magnitudes of the
rotational displacement.
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(a) ∆φee = −3.14 rad (b) ∆φee = −1.88 rad (c) ∆φee = −0.628 rad

(d) ∆φee = 0.628 rad (e) ∆φee = 1.88 rad (f) ∆φee = 3.14 rad

Figure 13. Stationary pick and place task time model evaluated at different end-effector rotational
displacements ∆φee; the initial configuration of the robot, shown as a red marker, has been fixed at
xee = 0.0 m, yee = 0.25 m.
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Figure 14. Stationary pick and place task time model evaluated at different end-effector rotational
displacements ∆φee; the initial configuration of the robot, shown as a red marker, has been fixed at
xee = −0.25 m, yee = 0.15 m.
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Figure 15. Stationary pick and place task time model evaluated at different end-effector rotational
displacements ∆φee; the initial configuration of the robot, shown as a red marker, has been fixed at
xee = 0.25 m, yee = 0.15 m.
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Figure 16. Stationary pick and place task time model evaluated at different end-effector rotational
displacements ∆φee; the initial configuration of the robot, shown as a red marker, has been fixed at
xee = 0.0 m, yee = 0.47 m.

The resulting task time map covers the entire useful workspace of the robot; during
the design phase, it enables therefore greater freedom in the definition of the layout of the
elements surrounding the robot; it also provides insight into the more convenient locations
in which to position, e.g., the transportation systems.
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4.3. On-the-Fly Pick and Place Task Time Map

The task time map of on-the-fly pick and place operations naturally lends itself to
the determination of the optimal intercept position for pick and place targets moving at a
known speed profile. The need for this often arises when considering a system in which
the items are picked and placed on continuously moving conveyors.

This type of planning has been illustrated qualitatively in Figure 17, which represents
graphically Equation (10). In Figure 17a, the problem has been represented in the x-y plane
in which the conveyor, depicted in green, is located; in the figure, the robot’s workspace
(represented as a grey area) can be seen, along with the initial positions of the manipulator’s
end-effector (red marker) and of the target (blue marker). As the target moves along the
dotted blue line, the intercept will necessarily happen on a point belonging to it, with a
final end-effector orientation and velocity (not depicted for simplicity) also dictated by the
configuration of the target. The determination of the optimal intercept point is performed
as shown in Figure 17b, where the time-displacement functions of the target and of the
robot are displayed. The target function is a line, since its velocity is constant; on the other
hand, the robot’s function can be obtained from the evaluation of the task time map. The
optimal intercept position is at the intersection of these two functions, as the operation can
happen as fast as possible and without having to wait for the target. When an intersection
is not present, it might mean that the robot cannot operate fast enough in order to reach
the target (robot time function entirely above the target time function) or, conversely, that
the robot necessarily has to wait for the target to enter the workspace (robot time function
entirely below the target time function). In the first case, the operation is not feasible, while
in the second, the intercept position that minimizes idle time is at the boundary of the
workspace itself.
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(a) Schematic representation of the optimal intercept problem seen in the x-y plane.
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(b) Schematic representation of the optimal intercept problem seen in the x-t plane.

Figure 17. Graphical representation of an optimal intercept position computation.

A feedforward neural network having four hidden layers was selected; the main
parameters of the network are summarized in Table 4.
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Table 4. Main parameters of the neural network architecture used for the on-the-fly pick and place
neural network model.

Layer 1 Layer 2 Layer 3 Layer 4

Type Fully connected Fully connected Fully connected Fully connected
Activation ReLU ReLU ReLU Linear
Dropout

probability 0.05 0.05 0.05 0.05

nin 5 8192 8192 8129
nout 8192 8192 8192 1

The minimum reciprocal condition number of the initial and final positions has been
set to δσ = 0.2 so that some additional space for the turning manoeuvers is always available.

The evaluation times of the on-the-fly pick and place model are:

• Teval,cpu = 2.31 ms on a single CPU core;
• Teval,gpu = 73.42 µs on the GPU;
• Tplan = 56.9 ms on the CPU, using the C++ implementation of the GTP and TTO.

Figures 18–21 show the task time maps at selected initial positions and velocity
boundary conditions. As expected, then, in these figures, it is clearly shown that motions
with a monotonically increasing xee coordinate can be executed in a shorter amount of
time. On the contrary, the turning manoeuvers required for the robot to move towards
decreasing xee coordinates require a significant amount of time, thus making the task time
function quite dissimilar from a simple overall displacement function.
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(d) v0 = vf = 0.32m s−1 (e) v0 = vf = 0.41m s−1 (f) v0 = vf = 0.50m s−1

Figure 18. On-the-fly pick and place task time model evaluated for different end-effector initial and
final velocities v0 and v f ; the initial configuration of the robot, shown as a red marker, has been fixed
at xee = 0.0 m, yee = 0.25 m.
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Figure 19. On-the-fly pick and place task time model evaluated for different end-effector initial and
final velocities v0 and v f ; the initial configuration of the robot, shown as a red marker, has been fixed
at xee = −0.25 m, yee = 0.15 m.
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(a) v0 = vf = 0.05m s−1 (b) v0 = vf = 0.14m s−1 (c) v0 = vf = 0.23m s−1

(d) v0 = vf = 0.32m s−1 (e) v0 = vf = 0.41m s−1 (f) v0 = vf = 0.50m s−1

Figure 20. On-the-fly pick and place task time model evaluated for different end-effector initial and
final velocities v0 and v f ; the initial configuration of the robot, shown as a red marker, has been fixed
at xee = 0.25 m, yee = 0.15 m.
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Figure 21. On-the-fly pick and place task time model evaluated for different end-effector initial and
final velocities v0 and v f ; the initial configuration of the robot, shown as a red marker, has been fixed
at xee = 0.0 m, yee = 0.47 m.

The computational burden substantially increases together with the size of the network;
still, it remains competitive with respect to the full planning time of the trajectory, especially
if the GPU is used to evaluate the task time map. This increase in size of the network was
dictated by the need to achieve sufficient accuracy. In Figure 22, the error distributions
are shown; the lower accuracy obtained with the on-the-fly pick and place task time map
(as compared to the stationary pick and place model) can be attributed to the higher
dimensionality of the inputs and to the more complex shape of the trajectories; still, the
error distribution remains reasonably concentrated around zero and is compatible to an
adequate prediction of the actual task times.

In the case of on-the-fly pick and place tasks, the calculation of the intercept point
depends on map task time T̂task. We can consider two possible application scenarios, as
previously discussed; if the command to the robot uses the boundary conditions and
the map task time T̂task, the robot executes the task in the given time and, therefore, the
intercept error is null. If, on the contrary, the command to the robot uses only the boundary
conditions, the actual and predicted task times will be different. Considering the worst case
of a maximum prediction error of 20 ms and a maximum conveyor velocity of 0.5 m s−1, in
this case, at the end of the intercept task, the target reaches a position different from the
robot’s, with a spatial error equal to 10 mm. This might be acceptable or not according to the
picked item’s geometry and size. Concerning the computational costs associated with the
full planning pipeline, the following considerations can be made: Figures 13–16 and 18–21
show that even the shortest trajectories require more than 100 ms for their execution; on the
other hand, in the histogram depicted in Figure 11, it can be seen that the execution of the
complete motion planning pipeline, composed of the GTP and TTO, requires practically
always less than 80 ms; this result, moreover, is tuneable by acting on the parameters of the
optimization routines (chiefly the number of decision variables and constraints), sacrificing,
if needed, accuracy for speed. Even in the most unfortunate cases (with comparatively
short trajectory execution times and relatively long planning times), it is possible to plan
the next trajectory while the current one is being executed. Since the conveyors move
at quasi-constant velocities, it is indeed feasible to predict the motion of the targets with
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reasonable accuracy in order to plan in advance the next task assigned to the robot. This
kind of plan-in-advance strategy is needed in any case for the on-the-fly pick and place
tasks since the robot terminates its current trajectory with a non-null velocity and therefore
immediately needs a new setpoint to safely prosecute its motion. As a further benefit,
this strategy makes it unnecessary to consider, during the optimal intercept computation,
the calculation times. The implementation of the overall planning system here briefly
delineated should therefore allow the parallel execution of the control algorithms and of
the planning operations, and additionally, it should perform short-term forecasts of the
pick and place targets’ states.
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Figure 22. On-the-fly pick and place task time prediction errors calculated on the test dataset.

To highlight the usefulness of the proposed method, we show in Table 5 the computa-
tional costs associated with the solution of a few optimal intercept problems. The problem
was solved thanks to an iterative root finding algorithm applied to Equation (10) using
either the task time map or the direct evaluation of the GTP and TTO. In the table, the
parameters concerning four different intercept tasks are shown. It can be seen that the
solution of the intercept problem using either the task time map or the actual task time
function requires a similar number of function evaluations. However, the difference lies
in the cost of each evaluation. It can be seen that the total solution time is in the order of
several hundreds of milliseconds using the direct computation approach. On the other
hand, using the task time map, the problem can be solved within a a few tens of millisec-
onds (using the CPU) or in roughly one millisecond (using the GPU). Without the use of
the task time map, therefore, the plan-in-advance strategy described above is not feasible
since the computation times would be much longer than the trajectory execution times. On
the contrary, the use of task time maps leads to calculation times compatible with a real
application.
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Table 5. Solution times for several optimal intercept problems using different methods.

Task
Configuration

Data
Task 1 Task 2 Task 3 Task 4

xrbt,0, [mm] −300 175 −300 175
yrbt,0, [mm] 150 300 150 300

ϕrbt,0, [°] 0.0 0.0 0.0 0.0
vrbt,0, [m s−1] 0.2 0.2 0.2 0.2
xtgt,0, [mm] −150 −150 150 150
ytgt,0, [mm] 400 400 175 175

ϕtgt,0, [°] 0.0 0.0 0.0 0.0
vtgt,0, [m s−1] 0.2 0.2 0.2 0.2

Ttask evaluations 15 15 17 12
T̂task evaluations 14 15 16 11

Solution time
with GTP-TTO,

[ms]
869 869 985 695

Solution time
with task time

map (CPU), [ms]
32 34 37 25

Solution time
with task time

map (GPU), [ms]
1.02 1.09 1.17 0.80

5. Conclusions

The paper presents a general methodology for mapping the minimal task times of
industrial manipulators whose trajectories can have an arbitrary position in the workspace.
The proposed methodology uses neural network models to approximate the task time
function of a generic multi-DOF robot. Moreover, the work proposes a complete simulation-
based workflow for determining the data needed to train the neural network that considers
the manipulator’s non-linear kinematics and dynamics and the actuation
system’s properties.

The neural network proposed for the task time mapping can be also trained using a
different set of data with respect to those proposed by the authors. For instance, the data
can be collected from simulations performed in the manufacturer’s software environment
or by the experimental measure of the task time obtained by a robot that executes a
comprehensive set of trajectories from and to any points belonging to the workspace. The
proposed workflow is however cheaper and does not require the setup of the experimental
investigation, also introducing considerable time saving. The workflow presented for
determining the training data considers trajectory optimization and advanced motion
planning along it and is able to satisfy stationary and on-the-fly pick and place robot jobs.
The paper presents these topics both theoretically and numerically.

The results show that the evaluation of the presented task time map is 600 to 8000
times faster than the direct use of the GTP-TTO algorithm. In more complex cases dealing
with on-the-fly pick and place, the task time map evaluation is 20 to 780 times faster than
the direct computational effort.

Even without specialized hardware, compared with the direct evaluation of the task
times, the neural network model offers significant, orders-of-magnitude speedups, which
can be further increased through the use of standard GPU computing or, if needed by
more demanding applications, with dedicated AI hardware accelerators. Therefore, the
neural network model has been found remarkably advantageous in terms of accuracy,
computational efficiency, adaptability to diverse applications, and ease of deployment;
the methodology proposed by the authors is therefore shown to be suitable for schedul-
ing strategies requiring real-time evaluation of the minimal task time. Neural networks
are demonstrated to constitute a convenient architecture for implementing the task time
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model, as they are inherently mesh-free and more readily scalable (unlike more traditional
lookup tables). The case study here proposed can be immediately adapted to a wide array
of practically relevant industrial processes, namely all those plants that feature straight con-
veyor belts and 4-DOF manipulators such as SCARA, Clavel Delta, linear Delta, palletizing,
Adept Quattro, and Cartesian robots. In cases characterized by a higher number of degrees
of freedom, we expect that the dimensions of the neural network would increase. For
example, a similar application with pick and place operations also requiring general spatial
rotations would involve a larger number of input parameters to be fed into the neural
network; it can be anticipated that the training and use of the task time models would
be more expensive; the overall approach would remain however unchanged. Indeed, the
neural network models are easily applied to different robots and tasks while keeping a
uniform software interface. In addition, composite or hierarchical tasks, such as the shown
on-the-fly pick and place operations, can be treated using the proposed methodology
through the mapping of each subtask time.

Application to an industrial robot would require the use of the motion planning
strategies implemented by its manufacturer, both for the generation of the task time map
and in general for the utilization of the manipulator. The core of this work, namely the
method for task time mapping, would still be applicable. In particular, if the motion
planning strategy is unknown, the method is applicable using a task time dataset generated
through experimental execution of a sufficiently exhaustive set of trajectories.

As a future work, the authors are planning to experimentally validate the developed
methodology on the actual manipulator, whose open architecture makes it straightforward
to apply the techniques as here described.

Another prosecution of this research is related to the possibility of completely sub-
stituting the GTP and the TTO with a neural network that outputs the entire motion
profile.

Finally, an additional future work will concern the application of the proposed method
to a simulated multirobot plant, with a greater focus on the productivity advantages that
can be obtained thanks to scheduling algorithms based on the task time map.
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