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Abstract
Time series of traffic flows, extracted from mobile phone origin–destination data, are employed for monitoring people 
crowding and mobility in areas subject to flooding risk. By applying a vector autoregressive model with exogenous covari-
ates combined with dynamic harmonic regression to such time series, we detected the presence of many extreme events in 
the residuals, which exhibit heavy-tailed distribution. For this reason, we propose a time series clustering procedure based 
on tail dependence which is suitable for data characterized by a spatial dimension, since objects’ geographical proximity is 
taken into account. The final aim is to obtain clusters of areas characterized by the common tendency to the manifestation 
of extreme events, that in this case study are represented by extremely high incoming traffic flows. The proposed method is 
applied to the Mandolossa, a strongly urbanized area located on the western outskirts of Brescia (northern Italy) which is 
subject to frequent flooding.

Keywords Traffic flows modelling · Spatial time series clustering · Copula functions · Tail dependence · Spatial proximity · 
Mobile phone data

1 Introduction

It is widely acknowledged that extreme weather events 
often entail significant societal implications for commu-
nities and individuals. Immediate repercussions include 
the loss of human lives, destruction of crops, damage to 
property, and a decline in overall health and economic well-
being. Given their substantial social and economic impact, 

the statistical analysis of extreme weather phenomena can 
also be approached from a managerial viewpoint. In fact, 
natural Disaster Management (Mishra et al. 2019) recom-
mends the development of a framework of exposure risk 
that can exploited in an early warning perspective. In this 
study, we concentrate on floods. The creation of exposure 
maps for flooding risk is of paramount importance to effec-
tively address such events. Exposure maps cannot ignore the 
temporal dynamic of human presence and people mobility. 
However, traditionally, such maps assume constant crowding 
over time. This assumption deviates considerably from real-
ity, particularly within metropolitan regions. Therefore, pro-
viding a more comprehensive depiction of human presence 
and mobility is of paramount significance when we aim at 
assessing the possible consequences of flooding. So, in this 
paper we model traffic flows, as their in-depth understanding 
constitutes a fundamental element for building flooding risk 
maps (and, ultimately, for risk maps of any natural disaster). 
On the other hand, the use of our model in the construction 
of risk exposure maps is beyond the aims of this work.

To address this, modern sources of mobile phone data 
are increasingly integrated with satellite and sensor tech-
nologies, as exemplified by Pucci et al. (2022), to assess 
both crowding (Metulini and Carpita 2021) and dynamic 
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movements (Tettamanti and Varga 2014) in urban areas. 
Data derived from mobile phone networks have demon-
strated their pivotal role in the examination of subjects of 
considerable importance, such as the social and cultural 
events’ surveillance (Carpita and Simonetto 2014) and the 
variability in the spatial distribution of human presence in 
the neighborhoods of large cities (Mariotti et al. 2022). Spe-
cifically in the context of flood risk, mobile phone data are 
employed to achieve dynamic monitoring of population den-
sity in regions susceptible to hydrogeological vulnerabilities 
(Balistrocchi et al. 2020).

Another application of mobile phone data in the realm 
of traffic flow involves the utilization of mobile phone ori-
gin–destination data to extract information regarding traffic 
patterns. This information is then used to construct statis-
tical models capable of providing accurate predictions of 
human mobility. Metulini and Carpita (2023) proposed a 
model that combines vector autoregressive techniques with 
exogenous covariates and dynamic harmonic regression for 
this purpose. The application of this method was demon-
strated in the case study of Mandolossa, an urbanized area 
prone to flooding situated on the western outskirts of Brescia 
(See Balistrocchi et al. (2020) for more details about the 
area). The study utilized hourly data spanning from Sep-
tember 2020 to August 2021, focusing on traffic flows to 
and from the municipality of Cellatica. While the model 
performed well, it is noteworthy that residuals displayed a 
leptokurtic distribution characterized by heavy tails, pri-
marily determined by a series of extreme events (i.e., days 
with exceptionally high or low traffic flows). Based on these 
observations, we recognize the need to propose an analyti-
cal approach that takes into account extreme events, which 
appear as a structural characteristic of the analyzed phenom-
enon. So, in this work, we resort to the idea of time series 
clustering based on tail dependence coefficients estimated 
by copula functions, proposed by De Luca and Zuccolotto 
(2011). Specifically, we cluster the residuals’ time series 
with respect to their upper tail dependence, because in this 
context we are interested in the extremely high traffic flows. 
To take into account the spatial structure of the analyzed set-
ting, we propose a modification of the basic algorithm with 
the introduction of a spatial proximity coefficient, whose 
impact is tuned thanks to an iterative procedure. The analysis 
aims to identify clusters of regions in which extreme events 
(i.e., extremely high traffic flows) demonstrate a tendency 
to co-occur.

From a methodological point of view, the novelty of this 
paper lies in two main points: (i) the nontrivial combination 
of techniques for multivariate time series modeling (both 
the VARX model and the tail dependence estimation with 
copula functions) and clustering, and (ii) the proposal of 
a clustering procedure able to account for tail dependence 
and spatial proximity. From an empirical point of view, a 

valuable issue is the use of mobile phone data for a Natural 
Disaster Management purpose.

In Sect. 2 we introduce the mobile phone data and the 
data processing strategy adopted to obtain the traffic flows in 
the flood-prone area. Section 3 describes the model adopted 
to estimate the residuals, which are then further analyzed 
with the proposed time series clustering procedure, based 
on upper tail dependence with spatial proximity, which is 
presented in Sect. 4. Section 5 is dedicated to the application 
of the methodological strategy to the case of the Mandolossa 
region. Section 6 concludes the paper.

2  Data and data processing

2.1  Mobile phone data

In our study, we integrate two distinct categories of mobile 
phone data, specifically the Origin–Destination (OD) data 
and the Minimization Drive Test (MDT) technology data, 
which have been generously provided by TIM, the largest 
telecommunications operator in Italy.

Regarding the OD data, we possess a comprehensive 
dataset spanning one year from September 1 st , 2020, to 
August 31st , 2021, which is associated with the Aree di Cen-
simento (ACEs)1 within the province of Brescia. This data-
set captures the dynamics of traffic flows, denoted as flowijt , 
originating from ACE i and arriving at ACE j during the 
t-th time interval, where each time interval corresponds to a 
one-hour duration. To elucidate further, the OD data quanti-
fies the count of mobile phone Subscriber Identity Module 
(SIM) cards that were initially located within a given ACE 
i during the t-th one-hour interval and subsequently, after a 
delay of five minutes or more, were identified within ACE j.

The positions of these SIM cards are recorded at five-
minute intervals, and only the location of the first arrival 
during each five-minute interval, referred to as the sampling 
frequency, is taken into consideration. For instance, let’s 
consider the 1-hour interval t corresponding to 7:00-7:59 
AM on February 1 st , 2021. If a SIM card is detected in ACE 
i between 7:00 and 7:04 AM and subsequently arrives in 
ACE j within the same 5-minute interval, and then reaches 
a third ACE between 7:05-7:09 AM (labeled as z), the flow 
data is attributed to flowizt . However, it is not attributed to 
flowijt or flowjzt . This scenario has the potential to result in 

1 According to the Italian National Institute of STATistics (ISTAT), 
the second highest level of geographical disaggregation is represented 
by the “Aree di CEnsimento” (ACE), that roughly corresponds to a 
municipality (or to a portion of a municipality, in case of large cities). 
Some useful information about the geography and demography of the 
ACEs, such as the surface area and the number of residents according 
to the last census, is freely available on the ISTAT website (https:// 
www. istat. it/ it/ archi vio/ 104317).

https://www.istat.it/it/archivio/104317
https://www.istat.it/it/archivio/104317


3111Stochastic Environmental Research and Risk Assessment (2024) 38:3109–3125 

an underestimation of the actual traffic flows, particularly 
in ACEs with limited geographical dimensions that can be 
traversed in less than 5 min.

It is worth clarifying with an example the distinction 
between the 1-hour and 5-minute time frequency: suppose 
the OD data referring to the flows from a specific origin 
"A" in a specific hour (e.g. 7:00 - 7:59 AM) to a specific 
destination "B". Each retrieved SIM counts as one flow in 
that 1-hour interval only if that SIM is retrieved in "A" in a 
specific 5-minute interval (e.g. 7:00 - 7:04 AM) and in "B" 
in a subsequent 5-minute interval (e.g. 7:05 - 7:09 AM).

In total, the available data, for each time interval t, is 
represented as a non-symmetric square matrix with dimen-
sions N × N , where N = 235 represents the number of ACEs 
in the province of Brescia. Rows in this matrix correspond 
to the ACE of departure, while columns represent the ACE 
of arrival. Three distinct categories of flows can be identi-
fied: flows arriving in ACE i (referred to as "inflows"), flows 
departing from ACE i (termed as "outflows"), and internal 
flows from ACE i to ACE i (referred to as "internal flows"). 
The diagonal elements within each matrix represent the 
flows departing from and arriving in ACE i, which are rec-
ognized as internal flows.

It is noteworthy that the data encompasses both domes-
tic and foreign SIM cards (roaming) connected to the TIM 
network. The data is derived from two types of SIM cards: 
human SIM cards, constituting approximately 85% of the 
total SIM cards, and M2M technology machine SIM cards, 
which account for about 15% of the total. To prevent the 
double-counting of users who may possess both a human 
SIM and devices equipped with an M2M machine SIM, our 
analysis focuses solely on the count of human SIM cards.

Additionally, the "Minimization of Drive Test" (MDT) 
technology, a recent innovation offering highly accurate user 
geolocation data, with an approximate precision of 10 ms, 
is employed. MDT data has seen limited utilization in aca-
demic literature, primarily for technical network control in 
the field of network engineering. To our knowledge, our 
studies (Perazzini et al. (2023) and Perazzini et al. (2023b)) 
mark the initial attempts to employ MDT data for the statisti-
cal analysis of traffic flows.

MDT data constitutes a collection of radio measurements 
of signals transmitted over the 3G/4G mobile network with 
geographic reference to and from terminal devices equipped 
with GPS functionality and with a firmware suitable for the 
MDT (the market share of mobile phone with this tech-
nology is rapidly increasing). Each signal corresponds to 
various activities such as phone calls, text messages, inter-
net browsing, or technical network operations. MDT data 
pertains to devices with SIM cards associated with TIM, 
retrieved within a specific rectangular area encompassing 
approximately 150 square kilometers, roughly correspond-
ing to the flood-prone Mandolossa region. Because of their 

high precision, we can interpret MDT data related to the area 
covered by streets as a valid proxy for street traffic.

Due to the specialized technology required for MDT sig-
nal detection and the time and cost involved in data col-
lection, only five days in November 2021 (Wednesday 10, 
Friday 19, Saturday 20, Sunday 21, Monday 22) are avail-
able for analysis. These days were thoughtfully selected to 
represent a typical week. The data is collected at a 15-minute 
time resolution, enabling observations in time intervals such 
as 00-14, 15-29, 30-44, and 45-59 for each hour of each 
day. In few cases data is missing (i.e., for ten out of the 480 
time intervals). These replacements include the intervals 
04:30-04:44 on all five days, 23:30-23:44, 23:45-23:59 for 
Monday and Wednesday, and 00:00-00:14 on Friday. These 
missing data have been filled by replacing them with the 
average value of other intervals within the same hour of the 
day (despite we found that this replacement strategy is not 
determinant to our scope, since night traffic is very limited 
and regular over different weekdays).

The data is presented in the form of a grid of pixels, each 
measuring 10 ms on each side and identified by their longi-
tude and latitude coordinates. Overall, the database reports 
signals from about 274 thousand cells.

It is important to note that since a single device can send 
or receive multiple MDT signals simultaneously, and only 
about 10% of current electronic devices produce MDT sig-
nals, the number of MDT signals in a pixel in a given time 
interval may be affected by multiple sources of measurement 
error that might affect the quality of the data. Therefore, we 
consider the number of cells in the pixel grid from which 
signals originated in an area, to mitigate this issue.

2.2  Data manipulation

2.2.1  Weighting strategy

In this study, we use Minimization Drive Test (MDT) data to 
weight the Origin–Destination (OD) traffic data concerning 
the traffic on the streets on the flood-prone region of Mando-
lossa. It is worth recalling that OD data represents the traffic 
from a given whole ACE to another given whole ACE, while 
this work aims to analyze the traffic in areas at risk. Since 
MDT data are provided at a fine-grained scale, the joint use 
of OD and MDT data allows us to filter out the traffic not 
pertaining to streets in flood-prone areas. To achieve this, 
we employ the weighting methodology introduced in Sect. 3 
of Perazzini et al. (2023) in conjunction with the following 
resources:

• The administrative boundary map provided by ISTAT, 
accessible at https:// www. istat. it/ it/ archi vio/ 104317.

https://www.istat.it/it/archivio/104317
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• The street map, as defined in Perazzini et al. (2023), 
which is the result of combining two Lombardy Region’s 
released maps related to the Province of Brescia, the first 
being the "DataBase Topografico Regionale" (version 
updated in 2021) and the second the "Uso e copertura 
del suolo della Regione Lombardia 2018".

• The flood risk map with a 20-year time-to-return, as 
detailed in Balistrocchi et al. (2020).

The strategy proposed (and better detailed) by Perazzini 
et al. (2023) aims at computing the ratio of phone users on 
streets that pass by the flood-prone area for each of the 4 
ACEs of interest (and, afterward, for the aggregated area 
constituted by all of them) and to use them as weights. The 
process that led to the construction of the weights is sum-
marized as follows: 

1. Constrain the MDT data to the geographic area overlap-
ping with the four ACEs under investigation.

2. Identify and select the 104 "Sezioni di CEnsimento" 
(SCEs)2 that lie within a 500-meter radius from the 
flood-prone area, as delineated by a flood hazard map 
computed with a 20-year return period.

3. Align the MDT data with the street map and subse-
quently narrow down the dataset to MDT data originat-
ing from street locations. Subsequently, ascertain the 
streets traversing the SCEs identified as critical for flood 
risk management (as determined in step 2), which con-
nect the flood-prone area to the 38 neighboring ACEs.

4. For each ACE and time instance, count the number of 
grid cells emitting MDT signals related to streets.

5. Among the grid cells identified in step 4, quantify the 
number corresponding to streets associated with the 
flood-prone area for each ACE and time instance.

6. Partition the observation period into six intervals of four 
hours each, namely: 0:00-3:59, 4:00-7:59, 8:00-11:59, 
12:00-15:59, 16:00-19:59, and 20:00-23:59.

7. Compute the weights for each of the six time intervals 
using the formula: 

 where i denotes one of the following areas: Brescia 
Mandolossa, Cellatica, Gussago, Rodengo Saiano, and 
T represents a given four-hour interval.

As shown in Fig. 1, the computed ratios appear fairly con-
stant at varying time partitions and the observed days. This 
evidence indicates that the percentage of traffic from an ACE 
that traverses through the flood-prone area is reasonably sta-
ble. So, the weight for each ACE i I.MDTi are computed as 
the average value of the ratios of the 5 time intervals in the 
5 days. The ratio I.MDTi represents the percentage of phone 
users on the streets subject to flood, and can therefore be 
interpreted as the portion of traffic of the ACE potentially 
exposed to floods. This weight is equal to 20% for Brescia 
Mandolossa, 75% for Cellatica, 40% for Gussago, and 10% 
for Rodengo Saiano. In addition, the ratio has been calcu-
lated for the combined area comprising the 4 ACEs, yielding 
a value of I.MDTagg = 30%.

(1)

I_MDT
iT

=

MDT signals from streets connecting the flood prone area
iT

MDT signals from streets
iT

Fig. 1  Mean (bullets) and 
standard deviation (bars) 
of the I.MDT

i
 ratio, for 

i ∈ {Rodengo Saiano,

Brescia Mandolossa,

Gussago, Cellatica} . Considered 
sample: all the four-hour inter-
vals available for all five days, 
excluding the 0:00-3:59 periods

2 SCEs, as defined by the Italian National Institute of Statistics 
(ISTAT), represent the smallest administrative units and can be con-
ceptualized as subdivisions of the ACEs.
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2.2.2  Application of the weights to the response variable

Because we are interested in the flows from/to the area 
of the Mandolossa, our focus is directed towards two 
distinct groups of ACEs, that we treat separately: the 
four ACEs intersecting the flood risk map of the Mando-
lossa, indexed with an i, and specific neighboring ACEs, 
indexed with a j. 38 ACEs in the vicinity of the Mando-
lossa region were identified as neighbors, accounting for 
84% of the total flows to and from the four aforemen-
tioned ACEs of interest (more details can be found in 
Metulini and Carpita (2023)).

To determine the traffic flows in the flood-prone region 
at time t between a given ACE i and a given ACE j, that 
enter the model in Sect. 3 as response variable, we apply the 
weights as follows:

Note that index t represents 1-hour intervals and it should 
not be confused with the previously adopted index T, repre-
senting 4-hour intervals.

For the internal flow, the MDT ratio is applied to the sum 
of flowiit and flowii′t , where both i and i′ are ACEs intersect-
ing the flood risk map of Mandolossa:

3  A VARX model for the traffic flows time 
series

In this research, our focus is directed towards four ACEs 
located within the flood-prone region of Mandolossa and an 
additional 38 carefully selected neighboring ACEs.

Our primary objective is to estimate, for each of the 38 
neighboring ACEs, a Vector Autoregressive Model with 
eXogenous variables (VARX), as defined in Tsay (2013). 
This VARX model enables us to capture the interdepend-
ence within each flow and the dependence among the three 
types of flows, coupled with a Dynamic Harmonic Regres-
sion model (DHR). The DHR component is employed to 
effectively account, through a combination of Fourier bases, 
for the intricate seasonality patterns.

(2)

Inflowjt =
∑

i

(

I.MDTi × flowijt

)

,

Outflowjt =
∑

i

(

I.MDTi × flowjit

)

.

(3)Internalflowt = I.MDTagg ×
∑

i

(

flowiit +
∑

i�≠i

flowii�t

)

.

With the aim to obtain uncorrelated estimated residuals 
that will subsequently be used for clustering purposes, we 
have made modifications to the original VARX DHR model 
introduced and applied by Metulini and Carpita (2023). In 
particular, we allow lags of order smaller than 24 to be uti-
lized in our analysis.

We define the vector ����jt = [Inflowjt,Outflowjt, Internalflowt]
� 

of values in the ℝ+ domain, representing the flows between 
the flood-prone area and the j-th neighboring ACE at time t 
(where t represents 1-hour intervals). Inflowjt , Outflowjt , and 
Internalflowt are defined as in Eqs. (2) and (3). We model 
Flowjt for each neighboring ACE j as a VARX(p), following 
the equation:

Here, �j represents a constant vector of length 3 defined in 
the ℝ domain, p is a positive integer scalar autoregressive 
parameter and Ajh is a 3 × 3 time-invariant matrix of coef-
ficients in the ℝ domain to be estimated. For the stationarity 
issue, a desirable property is that the eigenvalues of A lie 
inside the unit circle in the complex plane. �jt is the 3 × 1 
vector of error terms for the j-th ACE at time t, each one 
distributed as a zero mean white noise process, and where 
each other contemporaneous correlation is allowed. The l × 1 
vector xjt in the ℝ+ domain denotes the exogenous variables 
at time t, and Bj is the 3 ×l matrix of coefficients in the ℝ 
domain associated to the l exogenous variables, such that 
Bjxjt results in a 3 × 1 vector.

It is important to note that the model assumes a contempo-
raneous correlation between inflows, outflows, and internal 
flows. Furthermore, it should be highlighted that the parameter 
p differs from parameters pd and pw used in the work by Metu-
lini and Carpita (2023). In this context, the lag corresponding 
to pd = 1 represents a 24-hour delay (i.e., the same hour, the 
previous day). In contrast, the lag associated with pw = 1 cor-
responds to a 168-hour delay (i.e., considering the previous 
week, the same hour of the same weekday). Since the OD data 
are not "real-time" data and are provided with a delay, we can 
relax the constraint and consider lags of less than 24 h in this 
study. Hence, p = 1 effectively represents a 1-hour lag.

To capture the seasonality of traffic flows, we model Bjxjt 
as a DHR(Kd,Kw ) (Hyndman and Athanasopoulos (2018)). 
Specifically, each element of the vector Bjxjt is a combination 
of daily (d) and weekly (w) periodic functions, as expressed 
in Equation (5). To capture the seasonality of traffic flows, we 
model Bjxjt as a Dynamic Harmonic Regression (DHR) with 

(4)

Flowjt = �j +

p
∑

h=1

AjhFlowjt−h + Bjxjt + �jt, j = 1, ..., 38.
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positive integer scalar parameters Kd and Kw , following the 
approach described in Perazzini et al. (2023):

The parameters �0 , �k , and �k are scalar regression coeffi-
cients to be estimated. Kd and Kw represent, respectively, the 
optimal number of Fourier bases for the daily and the weekly 
pattern, and the positive integer scalars mw = 24 × 7 = 168 
and md = 24 represent the weekly and daily seasonal peri-
ods, respectively.

Note that �0 , �k and �k are allowed to assume different 
values in the three elements of Bjxjt . It is noteworthy that 
the DHR model entails estimating 2 × Kd parameters for the 
daily pattern and 2 × Kw for the weekly pattern, for each 
equation in the VARX model. Additionally, for the sake of 
simplicity, we maintain constant values for parameters p, Kd , 
and Kw across all ACEs, as these parameters are calibrated 
to suit each j in the case study.

We employ the ordinary least squares method, which has 
been shown to be asymptotically equivalent to the maxi-
mum likelihood method in VAR models, as outlined in Tsay 
(2005). The model’s parameters are estimated in R using 
VARX function in MTS package.

4  Time series clustering on upper tail 
dependence and spatial proximity

In this section, we outline the clustering procedure we pro-
pose to determine groups of time series for which extreme 
events (extremely high traffic flows, in this case) tend to 
co-occur. To achieve that, we rely on the method originally 
introduced by De Luca and Zuccolotto (2011), in which 
time series clustering is performed on a dissimilarity matrix 
based on bivariate tail dependence coefficients (that will be 
detailed in the next sections) estimated using copula func-
tions. The concept of exploiting a copula approach to esti-
mate tail dependence for the purpose of time series clus-
tering has been further explored by Durante and Foscolo 
(2013), Durante et al. (2014), Durante et al. (2014), Ji et al. 
(2018), who use conditional Spearman’s correlation coef-
ficients to measure dissimilarity, and Durante et al. (2015) 
who propose to estimate tail dependence coefficients with 
a non-parametric approach. In another direction, Lafuente-
Rego and Vilar (2016) and Vilar et al. (2017) exploit quantile 
autocovariances, while Liu et al. (2018), Yang et al. (2018) 

(5)

�
(r)

0
+

Kd
∑

kd=1

[�
(r)

kd
skd (t) + �

(r)

kd
ckd (t)] +

Kw
∑

kw=1

[�
(r)

kw
skw (t) + �

(r)

kw
ckw (t)], r = 1, 2, 3,

ska (t) = sin

(

2�kat

ma

)

, cka (t) = cos

(

2�kat

ma

)

, a = d,w.

and Yang et al. (2020) resort to the coefficient of weak 
lower-tail maximal dependence, to the jump tail dependence 

coefficient and to the �-tail distance, respectively. Additional 
instances of clustering that rely on copula functions for 
estimating tail dependence coefficients encompass Jun and 
Ziping (2013), De Luca and Zuccolotto (2017b), De Luca 
and Zuccolotto (2017a), Lohre et al. (2020), De Luca and 
Zuccolotto (2021) and D’Urso et al. (2023), where new clus-
tering algorithms are proposed based on the original idea.

In this paper, we propose a new algorithm, to take into 
account spatial proximity between ACEs. The proposed pro-
cedure is based on the dissimilarity matrix of De Luca and 
Zuccolotto (2011) that is opportunely modified, as will be 
clarified below. In addition, with respect to the originally pro-
posed algorithm, this procedure (1) skips the step of express-
ing time series in a high-dimensional space through MDS 
and, more importantly, (2) introduces a method that exploits 
a novel procedure called cutMOB, whose functioning will be 
explained in the following, to optimally compute the dissimi-
larity values, based on a combination of tail dependence and 
proximity coefficients.

The idea of designing a clustering algorithm suited to 
time series generated in a context with a spatial structure has 
already been pursued by Coppi et al. (2010), Disegna et al. 
(2017) and Benevento et al. (2023), but not from an extreme 
events perspective.

In the following, we will begin by providing a brief over-
view of copula functions and their application in estimating 
tail dependence coefficients. Then, we will give details about 
the proposed clustering procedure.

4.1  Copula functions and tail dependence 
coefficients

A 2-dimensional copula (Sklar 1959) is a function denoted by

Given the continuous random variables Xj,Xh , and their 
cumulative distribution functions Uj = Fj(Xj),Uh = Fh(Xh) , 
the 2-dimensional copula function applied to uj, uh , is equiv-
alent to the joint distribution function,

C ∶ [0, 1]2 → [0, 1].

C(uj, uh) = P
(

Fj(Xj) ≤ uj,Fh(Xh) ≤ uh
)
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that is

Then

Copula functions provide a highly flexible description of the 
joint distribution, accomplished through the use of a copula 
function that joins the univariate marginal distributions of 
the random variables. When a copula function is employed 
to describe a joint distribution, various notable characteris-
tics of the multivariate distribution can be readily extracted. 
Examples of such characteristics include the tail dependence 
coefficients (TDCs): given two random variables Xj and Xj , 
the lower and upper TDCs are given, respectively, by

and

In case of upper (lower) tail independence, we have �L = 0 
( �U = 0 ), while non-null values indicate that a dependence 
exists between the extremely high (low) values of the two 
random variables, exhibiting stronger dependence as the 
coefficient value increases.

We distinguish elliptical copulas (the Gaussian copula 
and the Student’s t copula) and Archimedean copulas (see 
Joe (1997) for a comprehensive review). The main feature 
of Archimedean copulas is greater flexibility in modelling 
tail dependencies because the two coefficients can be dif-
ferent, while Gaussian copula does not admit tail depend-
ence and the use of Student’s t copula implies assuming 
equal tail dependence for the two tails.

C(uj, uh) = FX

(

F−1
j
(uj),F

−1
h
(uh)

)

.

FX(xj, xh) = C
(

Fj(xj),Fh(xh)
)

.

�L
j∣h

= lim
v→0+

P(Uj ≤ v ∣ Uh ≤ v)

𝜆U
j∣h

= lim
v→1−

P(Uj > v ∣ Uh > v).

4.2  Upper tail dependence clustering with spatial 
proximities

In this study, our focus lies on upper tail dependence, 
given that the events under scrutiny pertain to exception-
ally high traffic flows. To cluster times series based on 
upper TDCs, the methodology proposed by De Luca and 
Zuccolotto (2011) requires obtaining the N × N dissimilar-
ity matrix Δ , whose generic element �jh is the dissimilarity 
between the ith and the jth time series, with

The dissimilarity matrix Δ is then used as a basis for the 
employed clustering algorithm. In this study, we present a 
clustering algorithm designed to consider, beyond dissimi-
larities, spatial proximity between areas. Therefore, we intro-
duce a novel dissimilarity measure. So, we introduce a new 
dissimilarity measure ��

jh
 as a modification of (6),

where cjh is a proximity coefficient, similar to that proposed 
by Coppi et al. (2010). Different choices are possible for 
the proximity coefficient: a binary indicator assuming value 
0 when the j− th and h− th time series denote traffic flows 
coming from neighbouring areas, and 1 otherwise, as well as 
more refined proposals, such as a distance (actual distance, 
as the crow flies, based on travel time,...) between area i and 
area j. In this work we opt for the binary indicator. The dis-
similarity matrix obtained by (7) is denoted by Δ�.

The parameter 𝜃 > 0 is aimed to adjust the impact of 
the coefficient of proximity in the dissimilarity between 
the time series, and its optimal value can be obtained via 
an iterative procedure, which is detailed in Algorithm 1.

(6)�jh = − log(�U
j∣h
).

(7)��
jh
= − log(�U

j∣h
) + �cjh,

Algorithm 1  Upper tail dependence clustering with spatial proximities



3116 Stochastic Environmental Research and Risk Assessment (2024) 38:3109–3125

Step 3. of Algorithm 1 requires to carry out a hierarchi-
cal agglomerative clustering and obtain the correspond-
ing dendrogram, a tree-like diagram that represents the 
arrangement of clusters produced during the clustering 
process. The tree structure starts with individual data 
points at the leaves and progressively merges them into 
larger clusters according to their similarity (and follow-
ing a specific criterion called linkage), as moving toward 
the root of the tree. Dendrograms allow to understand 
the relationships and hierarchy between different clus-
ters, helping to identify the optimal number of clusters or 
subgroups in the data, but, to do that, decisions have to 
be taken about where to cut the tree to obtain a specific 
number of clusters for further analysis. This decision is 
not always simple, especially when the analysis requires 
cutting a large number of dendrograms, as it is the case 
of analyses that track the changing composition of clus-
ters over time (De Luca and Zuccolotto 2023), or when 
the adopted algorithm requires performing a big number 
of clusterizations, as it is the case of the procedure we 
propose in this paper. In such cases, an automatic cut-
ting procedure helps carry out the analysis in a fast and 
efficient way.

This automatic procedure is adopted in Step 4. of Algo-
rithm 1, where the optimal number of clusters is obtained 
through cutMOB (cut MOdel-Based partitioning), a novel 
method that has proven effective in determining the opti-
mal height at which to cut a dendrogram, proposed in a 
paper by De Luca and Zuccolotto (2023), where a review 
of other possible methods for dendrogram cutting is also 
presented. In brief, the idea on which cutMOB is based 
starts by drawing a plot of the branches’ lengths, in non-
decreasing order, from the first to the last iteration of the 
hierarchical clustering agglomeration path. Recalling that, 
in general, the dendrogram is cut where, at a visual inspec-
tion, the branches begin to be ‘too long’, the graph aims to 
detect an elbow, suggesting where the dendrogram should 
be cut. The elbow is detected thanks to an unusual appli-
cation of the MOB algorithm proposed by Zeileis et al. 
(2008). The functioning of cutMOB is explained in detail 
in the Appendix.

Finally, in Step 5. of Algorithm 1, the efficacy of the 
clusterization is assessed by the adopted internal clus-
tering validation indices, referencing to the dissimilar-
ity matrix Δ . The rationale behind this selection lies in 
the fact that proximity between areas is employed to 
define a set of optimal clusterizations at given values of 
� . However, the final choice among them is determined 
by selecting the one that guarantees the most effective 
separation among clusters, solely in terms of upper tail 
dependence.

5  Case study: traffic flows in Mandolossa

Figure 2a visually illustrates the analyzed flows of people 
in our study by taking as an example the flows between 
Mandolossa and the ACE of Concesio. The Mandolossa 
region, which intersects the flood-prone area, is delineated 
by the orange polygon. The figure also depicts various flows, 
encompassing outflows (indicated by the red arrow), inflows 
(represented by the light blue arrow), and internal flows 
(designated by the green arrow). Notably, internal flows 
encompass traffic between ACEs within Mandolossa and 
traffic within each single ACE. Moreover, the area prone to 
flood risk (with a 20-year time-to-return) is marked in violet.

Figure 2b shows one week (September 9 th , 2020 – Sep-
tember 15th , 2020) of the time series of the three traffic 
flows. A strong daily pattern is evident in all the time series. 
Moreover, a strong contemporaneous correlation is observed 
among the three flows, which stands at about 0.9 depending 
on the cases. These findings, common to the other 37 cases, 
demonstrate the validity of utilizing a VARX model with the 
DHR component to capture the seasonality.

We carry out the data processing procedure described in 
Sect. 2.2 on the data described in Sect. 2.1, then we obtain 
estimated residuals from the model presented in Sect. 3. The 
R codes can be provided upon request. According to the 
modeling strategy, here we are allowed to relax the con-
straint about the impossibility of using previous hours in the 
AR term that was in place in Metulini and Carpita (2023), 
because the aim of this work is not about traffic flows’ now-
casting. Therefore, all AR orders are allowed to be used here. 
It is worth highlighting that we estimate 38 different models 
representing the flow from (to) Mandolossa (as an aggrega-
tion of 4 ACEs) to (from) single neighbor ACEs.

According to model calibration, the optimal number 
of Fourier bases for the DHR component has been inher-
ited from previous works of us (e.g. Metulini and Carpita 
(2023)), So, the model contains 7 daily and 4 weekly Fourier 
bases (i.e. K d = 7 and K w = 4). According to the choice of 
the autoregressive (AR) order, on the model with K d = 7 and 
K w = 4 Fourier basis for the DHR component, we conducted 
a comprehensive examination of various AutoRegressive 
(AR) structures based on the Auto Correlation Function 
(ACF), the Partial AutoCorrelation Function (PACF), and 
the Ljung-Box test (Ljung and Box 1978) applied to the 
estimated residuals. Following this comparison of AR 
structures, we selected a model characterized by the first 
25 lags (i.e., p = 25 ), exhibiting minimal autocorrelation, 
small values of PACF and ACF, and with the null hypoth-
esis of uncorrelated residuals of the Ljung-Box test always 
accepted (i.e. for all the 38 residual vectors estimated from 
the model with p = 25). According to a visual inspection 
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2020−9−9 2020−9−10 2020−9−11 2020−9−12 2020−9−14 2020−9−15

Inflows
Internal flows
Outflows

Fig. 2  Flows between Mandolossa and one of the 38 neighbour ACEs (Concesio). Outflows (red), inflows (light blue), and internal flows (green)
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and the Shapiro-Wilk test, the normality assumption in the 
estimated residuals is not satisfied. This evidence further jus-
tifies the usefulness of the proposed procedure for clustering 
time series. Figure 3 displays, as an example, the diagnostic 
of the inflows’ estimated residuals using the model in eq. 4 
with p = 25, K d = 7 and K w = 4 for the ACE called Brescia 1 
(which corresponds to the yellow polygon on the right of the 
Mandolossa in Fig. 2). The autocorrelation function (center 
left) displays a strong correlation of the first order, while the 
partial autocorrelation function (center right) shows some 
significant correlations at orders 23 to 25 (i.e. the same hours 
of the previous day). The QQ plot shows a departure from 
the normality in correspondence of the left and the right 
tails, which is typical in the case of leptokurtic distribu-
tion. This evidence is confirmed by the value of Skewness 
of 0.299 (slightly skewed distribution) and by the value of 
Kurtosis of 8.768 (which can be associated with leptocurtic 
distributions). For this ACE, the Ljung and Box test does not 

reject the null hypothesis of uncorrelation of the residuals. 
By considering 1 lag in the test, we obtain a statistic of 0.014 
(p-value = 0.906), with 5 lags, the statistic is 1.403 (p-value 
= 0.924), with 10 lags, 1.678 (p-value = 0.998). It is worth 
highlighting here that similar diagnostic results are obtained 
for all 38 considered areas.

While the examination of all estimated residuals could 
be of interest, in this particular application we only con-
sider those associated with the inflows. This choice is made 
because inflows’ estimated residuals allow to cluster ACEs 
based on the traffic dynamics from the surrounding neigh-
borhood to the Mandolossa area.

The estimated standardized residuals of inflows of the 
model (4) with p = 25, K d = 7, and K w = 4 applied to all 
the time series of traffic flows have subsequently been uti-
lized to derive the respective distribution functions Ûjt . For 
each of the (38 × 37)∕2 = 703 pairs (Ûjt, Ûht) , a set of ellipti-
cal (Gaussian and Student’s t) and Archimedean (Clayton, 

Fig. 3  Residuals’ diagnostic: Time series of estimated residuals (top) 
with 95% confidence bands; ACF (center left) and PACF (center 
right), with 95% confidence bounds for strict white noise; a histogram 
depicting the empirical distribution is accompanied by a Normal dis-

tribution curve (positioned in the lower-left corner), as well as a QQ-
plot assessing the normality of the data. Time series of inflows from 
the ACE of Brescia 1 
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Gumbel, Frank, Joe, BB1, BB6, BB7, BB8 and their rotated 
versions) copulas are estimated by Maximum Likelihood 
and the copula which shows the lowest AIC value is selected. 
Copulas that are most frequently chosen are the Student’s t 
copula (85% of the time) and the 180-degree rotated BB7 
copula (13.5%).

After obtaining the estimates of the upper tail depend-
ence coefficients, we executed the clustering procedure out-
lined in Algorithm 1 with Θ = {0.005, 0.01, 0.015,… , 4} 
and employing a hierarchical agglomerative algorithm with 
complete linkage. It is recommended to check the goodness 
of the choice for Θ , by keeping under control the number of 
clusters corresponding to different values of � . Typically, 
when cjh is defined as a binary variable as in this case study, 
as � becomes too large, the procedure generates a huge num-
ber of clusters, as a result of a sort of overfitting due to the 
tendency to cluster together couples of contiguous objects. 
The number of clusters suggested by cutMOB for each value 
of � is displayed in Fig. 4, which shows that the number of 
selected clusters is quite stable around 3 or 4, and hugely 
increases as � approaches the last values of the sequence Θ . 
This confirms that there is no need to explore higher values 
for � . As internal clustering validation indices, we adopted 
the Average silhouette width, the Calinski and Harabasz 
index, and the Dunn index, all suggesting an optimal value 
of around 0.04 for � (Fig. 5).

With � = 0.04 the areas are partitioned into four clusters, 
as depicted in the two panels of Fig. 6. ACEs exhibit a robust 
spatial neighborhood structure, where extreme events tend to 
occur simultaneously in geographically adjacent areas. One 
cluster (colored in blue) consists of ACEs situated in the 
southern outskirts of Mandolossa, characterized by a signifi-
cant network of streets leading to Mandolossa. The second 
cluster (in purple) includes many ACEs not directly contigu-
ous to Mandolossa but connected by extensive roadways. 
The remaining two clusters comprise only a few ACEs, with 
Caino forming a distinct group.

6  Conclusions

The need to predict traffic flows in a flood-prone area is 
really crucial. In this work, we have considered 38 areas 
(ACE) of an Italian region, and estimated 38 dynamic 
models for the traffic flows from (and to) a specific loca-
tion. The traffic flows are identified using mobile phone 
data. After filtering the flows (inflows, outflows, and 
internal flows) using a vector autoregressive model with 
exogenous variables, combined with a dynamic harmonic 
regression model to capture seasonality, the goal has been 
the clustering the inflow residuals of the 38 areas using a 
dissimilarity matrix based on the upper tail dependence 

coefficients and the spatial proximity. The similarity 
between the two areas is therefore defined in terms of the 
joint occurrence of extremely high traffic flows, and spatial 
proximity.

The application of the cutMOB algorithm allows the 
identification of four clusters. As seen from the map in 
Fig. 6, the 4 groups obtained with the cutMOB procedure 
are substantially coherent for road and spatial characteris-
tics. The most evident result concerns the group with the 
single ACE of Caino (yellow), which is very far from the 
Mandolossa alluvial area (orange) and whose traffic inflows 
mainly pass through secondary roads. A second cluster (pur-
ple) groups ACEs located to the west (direction Rovato), 
northeast (direction Cesio), and southeast (direction Flero), 
all areas being relatively far from the alluvial area and whose 
traffic inflows mainly pass through provincial and state 
roads. A third cluster (light blue) groups ACEs being very 
close to the south of the alluvial area (directions Roncadelle 
and Brescia) and whose traffic inflows mainly pass through 
provincial roads, while the last cluster (green) groups ACEs 
to the south and southeast of the alluvial area whose traffic 
inflows mainly pass through secondary roads.

The results obtained with this study, in particular the 
cluster analysis of the extreme traffic flows, have made it 
possible to acquire further useful information regarding 
the mobility of the area considered. This information could 
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Fig. 5  Values of the indices of 
the internal clustering validation 
versus � (Algorithm 1), point 7
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be used to add other explanatory variables to improve the 
dynamic model used for estimating traffic flows in the Man-
dolossa alluvial area or other areas of interest due to critical 
issues related to mobility.

In a broader sense, the methodology proposed in this 
paper has several practical applications in real-life scenarios, 
such as in:

• Public Safety Alerts, where real-time monitoring of traf-
fic flows can help authorities issue timely warnings and 
advisories to residents in flood-prone areas, reducing the 
risk of casualties and property damage.

• Emergency response planning: By analyzing traffic 
flows, authorities can identify critical evacuation routes 
and allocate resources more effectively during flooding 
events, ensuring timely evacuation of vulnerable areas.

• Infrastructure planning: Understanding traffic patterns 
can inform infrastructure development, such as building 
or upgrading roads and bridges to improve flood resil-
ience and minimize disruptions during extreme weather 
events.

• Insurance and risk assessment: Insurance companies 
can use traffic flow data to assess flood risk for differ-
ent areas, adjusting premiums accordingly and providing 
incentives for flood mitigation measures.

• Urban planning: City planners can incorporate insights 
from traffic flow modeling into land use planning and 
zoning regulations to minimize flood exposure for resi-
dential and commercial areas.

• Climate change adaptation: As climate change intensi-
fies extreme weather events, understanding traffic flows 
can inform adaptive strategies to mitigate flood risks and 
enhance community resilience.

Appendix: details about the cutMOB 
procedure

As mentioned above, the idea underlying cutMOB begins 
with plotting the lengths of branches in non-decreasing order 
across the iterations of the hierarchical clustering agglom-
eration path. Typically, dendrograms are cut where, upon 
visual inspection, the branches appear excessively long. The 
objective of the graph is to identify an elbow point, indicat-
ing the optimal location for cutting the dendrogram. In this 
Appendix we show how cutMOB, an automatic procedure 
for dendrogram cutting, works.

We show the example of a set of N = 38 objects, grouped 
into k = 4 clusters, drawn from a 15-dimensional random 
variable by means of the simulation process proposed in 
Waller et al. (1999) and then analyzed with the hierarchical 
clustering algorithm with average linkage. Figure 7 shows 
the resulting dendrogram and the corresponding plot of the 

branches’ lengths, where - through visual judgment - we 
detect two possible elbows, at iteration 33 or 34 (correspond-
ing to the two black points).

In order to detect the elbow in an automatic way, we may 
consider all the possible partitions of the ordered branches 
heights into two parts and, for each partition, fit the points 
by two separate regression lines. The idea is that the parti-
tion ensuring the highest difference in the slope of the two 
regression lines informs about the optimal dendrogram’s 
cut. Figure 8 shows how the idea works, for two selected 
separations in the branch height plot of Fig. 7, at iterations 
33 and 34. Splitting the branch heights at iterations 33 and 
34 correspond to identify the elbow in those points, which 
yields, respectively, 5 and 4 clusters.

For the selection of the iteration that induces the best 
partition, cutMOB relies on the MOB algorithm proposed by 
Zeileis et al. (2008), a technique that combines the statisti-
cal modeling culture and the idea of recursive partitioning. 
In detail, MOB proceeds through the following steps: (1) a 
given parametric model Y = f (X) + � is selected to fit data, 
where Y is an outcome variable modelled as a function of 
a set of covariates X ; (2) starting from the whole dataset, 
data are repeatedly split into two parts, according to a set of 
partitioning variables Z (all the possible splits); for each split 
the model selected in (1) is fitted to the two sets of data and 
a test for the model parameters’ instability is performed; (3) 
if absence of parameter instability is rejected, the data are 
divided into two groups according to the value assumed by 
partitioning variable (and the cutoff value) inducing with the 
highest instability, thus generating two separate sub-datasets; 
and (4) the procedure is reiterated in each of the sub-datasets 
until the test accepts the null hypothesis of no parameter 
instability. Note that the variables X and Z do not necessarily 
have to be distinct.

In cutMOB, the outcome variable Y is set to be the 
branch height, modeled as a function of a unique covariate 
X given by the iteration number, which is also designed 
as (unique) partitioning variable Z. The statistical model 
used to fit Y as a function of X is simple linear regres-
sion. The procedure requires fitting data with the MOB 
and considering only the first split, i.e. the one deter-
mining with the highest parameter instability. Given that 
the search for the split that causes the greatest param-
eter instability in the regression lines leads to the pres-
ence of two regression lines with significantly different 
slopes, this method aligns with the notion of detecting the 
elbow. Figure 9 displays the results of MOB applied to the 
above-mentioned simulated data: the first split suggests 
to assign the first 34 iterations to left node and the last 
three to the right node, thereby identifying the elbow at 
iteration 34. As shown in the bottom panel of Fig. 8, this 
yields a dendrogram’s cut that generates k = 4 clusters 
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Fig. 8  Split of the branch 
height plot into two parts, with 
a regression line fitting the two 
sets of points (right), with the 
corresponding dendrogram cuts 
(left). Examples of split at itera-
tions 33 (top) and 34 (bottom)
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(as many as implied by the data generation process used 
to simulate the data).

Further details on cutMOB and a simulations study can be 
found in the seminal paper (De Luca and Zuccolotto 2023).
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