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Abstract
The aim of this thesis is to advance our ability to model the decision making-process in
social systems, with the overarching goal of helping policymakers and government bodies
take mathematically backed decisions. Toward this aim, we adapted a complex network
approach, leveraging tools from network science, control theory, and social science which
altogether offers a powerful and multidisciplinary approach to tackle the complexity that
pervades social dynamics. We explored the conditions under which we can confer given
controllability and observability properties to complex networks of dynamical systems,
so to have an insight on our ability to steer or monitor their collective behaviors in the
presence of realistic constraints. Then, we studied the opinion dynamics in groups of
interconnected individuals discussing on a given topic, that is, we analyzed the evolu-
tion over time of their opinions under the effect of social ties and other psychological
traits, such as stubbornness or the tendency to conform. Opinions dynamics models
enable us to describe the collective behaviors that occur in real world social groups and
to unveil how the social interactions, namely the peer pressure and other biases, shape
our opinion formation and result in the group exhibiting behaviors such as consensus,
disagreement, or polarization of opinions. In particular, we analyzed how external influ-
ences, such as the ones exerted by opinion leaders (the so-called influencers) can steer
the opinion profile of a social group towards a desired state at steady state. To this aim,
we borrowed a tool from network control, namely pinning control, to show how agents
with relatively few connections can exploit the structure of the social interconnections
to diffuse their influence throughout the social group. Using heuristic approaches and
leveraging theoretical and graphical knowledge of the network dynamical systems under
investigation, we showed that a smart selection of the individuals to directly influence
allows to maximize the effect of persuading actions of opinion leaders. Finally, we il-
lustrated how the model we proposed can provide quantitative predictions on opinions’
distribution in a given population, which in turn can be used to gauge the effectiveness
of different awareness campaigns strategies aimed at mitigating vaccine hesitancy.
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Introduction
In the last decades, modeling and controlling of complex dynamical systems has drawn
great attention from the scientific community because of the need to capture the increas-
ing complexity that pervades a wide variety of fields such as business and management,
social sciences, information technology, finance, and especially those where an analyt-
ical framework can support decision-making process [3–6]. For example, let us reckon
on enterprises having to cope with growing complexity originating from an extremely
competitive economy, the higher demand of sophisticated and customizable products
and the unpredictability of online purchases. The same challenges must be made by
governments when dealing with events, such as pandemics, wars, economic crises, that
have a global impact and require the coordination of many entities and decisions to be
readily made. These are only a few of the examples that motivate the attempt made in
this thesis to endow policymakers and government bodies of tools to allow taking math-
ematically backed decisions. Indeed, the overarching goal is to use a comprehensive
quantitative approach that can help describe, analyze and then smartly act on dynam-
ical process within a general framework, that can support decision-making in a wide
range of application.

Schooling of fishes, fleets of robots, social groups, power grids, what they have in
common? At first glance, one could answer “nothing” as they belong to very different
environments, but actually they are all examples of networks of dynamical systems,
that share some key aspects: a dynamical nature, that is the evolution over time of their
characteristics, both at an individual level and on a collective one, and an underlying
structure that describes in which ways their components interact to each other, namely
the network of interconnections, which plays a fundamental role in determining the
dynamics of the whole.

Complexity theory is the mathematical tool that enable us to study how such in-
terconnected dynamical systems can give a rise to collective mechanisms that we can
observe in real life. “Complex” does not mean necessarily “complicated”: a complex
system is made up with simple elements among which there are strong local interac-
tions, that lead to an emergent and unexpected global behavior of the system in a whole
self-organized way, that is, without any central control unit. Typically, complexity does
not refer to the individuals’ dynamics, but to their interconnections among each other
and with their environment. An effective way to represent an ensemble of connected
dynamical systems is in terms of a network, where a graph describes the interactions
among the individuals.

Studying complex systems as networks provide a cross-disciplinary framework that
allows to analyze, monitor, control, and predict the evolution over time of different types



2 Introduction

of network systems because, thanks to their similar topological properties, they tend
to exhibit similar non-trivial collective behaviors such as synchronization, consensus,
organization in hierarchical structures.

Complexity theory has been the methodological backbone of this thesis, which is orga-
nized in two parts. Part I focused on expanding the theory on control of network dynam-
ical systems with the goal of investigating sufficient conditions for unilateral controlla-
bility and observability, to complex networks of Linear Time-Invariant (LTI) dynamical
systems. Addressing these problems can help us to unveil under which conditions we can
effectively act and monitor these network dynamical systems under realistic constraints
that make control and observe them a tough goal, to ultimately support decision-making
process on how to allocate limited resources such as sensors and actuators.

The second part, instead, focused on a specific complex system of interest, namely
social systems. Specifically, in complex networks of social systems, the object of study
are the opinion dynamics in groups of individuals sharing information on a given topic
through a network of interaction. Their social ties among the individuals, as well as
their intrinsic characteristics, such as stubbornness or susceptibility to social pressure,
contribute to the dynamical diffusive process of opinion formation, which results in
interesting collective behaviors such as consensus, disagreement, and polarization. In this
thesis, we have revisited classic opinion dynamics models to also describe the decisions
associated to the opinions, trying to uncover which are the mechanisms that influence
opinion formation and decision-making in large social groups.

Finally, we leveraged pinning control, a classic control strategy for network systems,
to model how opinion leaders (aka influencers) shape the action of social groups, uncover-
ing topological factors that can be exploited to maximize their (beneficial or detrimental)
effect on the outcome of a discussion. This mathematical description allowed a quanti-
tative understanding on how opinion diffuse on social media, an understanding that can
help policymakers to test the effectiveness of potential initiatives. Finally, we took a
step forward to bridge the gap between explanatory models and applications, by provid-
ing a method to tune the parameters of these models. In this way, models can provide,
beyond a qualitative description of the social phenomenon under analysis, also the abil-
ity of predicting future scenarios. To demonstrate our approach, we have considered as
a paradigmatic example the controversial debate on vaccines during Covid-19 pandemic,
where we have used an opinion dynamics model tuned on survey data to evaluate the
effectiveness of different awareness campaign strategies to tackle vaccine hesitancy on a
group of Italian citizens.
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Figure 0.1. Co-occurence graph of keywords of articles included in this thesis.



4 Introduction

Thesis outline
The thesis is divided in three parts:

I. theoretical background,

II. literature review,

III. contributions.

In part I, we introduce the key concepts of graph theory, the main complex networks
topologies and their properties that have been considered in the works presented be-
low. Then, we provide theoretical background on the most commonly studied emerging
behaviors in the context of complex networks of dynamical systems, with emphasis on
synchronization and consensus. Next, we tackle the problem of controlling these net-
work dynamical systems, first from the standpoint of conferring given controllability and
observability properties and then focusing on structural approach and pinning control
as mathematical tools to achieve control goals.

Part II presents a comprehensive taxonomy of the literature on opinion dynamics,
providing a critical overview highlighting gaps, limitations, and potential future direc-
tions in this field of application of complex dynamical networks.

Part III consists of edited versions of four contributions, with additional unpublished
analyses and considerations.

Then, conclusions and open problems are discussed. Finally, the thesis also includes
two appendices:

– Appendix A collects the printed version of journal papers co-written by the author
of this thesis.

– Appendix B gives a brief introduction to Natural Language Processing tasks and
methods.



Part I
Theoretical Background





CHAPTER 1
Complex networks of

dynamical systems
Studying complexity by means of networks of dynamical systems has been inspired by
two seminal articles: one by Watts and Strogatz on Small-World networks [7] and the
other by Barabási on Scale-Free networks [8] which both investigated structural prop-
erties of complex networks. The network structure is essential in modeling interactions
among single systems, as they lead to the emergence of interesting macroscopic behav-
iors of the ensemble that cannot be deduced from the microscopic properties of its parts.
On the other hand, another key aspect to investigate is the dynamical nature of such
systems, that is how the state, i.e., the set of variables that best characterize the inter-
connected system, changes over time. Since then, a series of metrics have been proposed
to quantify and compare the properties of these types of networks with real-world ones,
to link topological features with given interesting behaviors. Indeed, nature offers a
lot of examples of collective behaviors such as flocking of birds, flashing of fireflies, self-
organization in ants colonies. When we consider an ensemble of dynamical systems that
are decoupled, their dynamics is simply the sum of individuals’ dynamics. Let us think
about some people in a room without any visual or verbal communication tie: they think
exactly the same as if they were alone. Whereas, when they interact with each other,
there may be the emergence of collective behaviors, such as synchronization, consensus,
coordination, polarization, that cannot be explained only looking at the individual dy-
namics. Hence, we want to learn from nature how the feedback paradigm and so the
interconnection between systems is crucial to the emergence of an observed (analysis
problem) or desired (control problem) collective behavior to better comprehend these
fascinating phenomena and become able to replicate/induce them also in real-world ap-

Figure 1.1. Examples of complex systems: from the left school of fishes, social systems, flock
of birds, fleets of drones.
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plications such as formation in robotics, time-synchronization in power grids, consensus
in opinion dynamics, see Figure 1.1.

The mathematical models considered in this thesis will describe complex networks of
dynamical systems assumed made up by nodes which represent single dynamical systems
coupled with a given interaction protocol occurring onto a certain network topology. The
general network model is described by the following set of ordinary differential equations
(ODEs):

ẋi = fi (xi) + gi(ui(xi, xj)) ∀i, j = 1, . . . , N (1.1)

Note that an analogous model can be given in discrete-time, i.e.,

xi(k + 1) = ϕi (xi(k)) + gi(ui(xi, xj)) ∀i = 1, . . . , N (1.2)

Therefore, we can identify the following three key ingredients to characterize a com-
plex network model:

(a) The interconnection structure that represents network topology and can be de-
scribed by the adjacency matrix A := aij ∈ R≥0, i, j = 1, . . . , N .

(b) A model of the intrinsic dynamics of each agent i. The dynamical system can be
represented in Continuous-time (CT) or in Discrete-time (DT). In CT, it has the
form of an Ordinary Differencial Equation (ODE)

ẋi = fi (xi) , ∀i = 1, . . . , N

where xi ∈ Rn represents the vector of the state variables of each system, say n,
and thus the network state will be the stack vector x ∈ Rn×N , and fi(xi) is the
i-th component of the smooth vector field f : Rn → RN .
In compact form, we have in CT, a set of ODEs

ẋ = f(x),

and analogously, in DT, we have a set of Discrete Difference Equation (DDE)s

x(k + 1) = ϕ(x(k)), k = 1, . . . , N,

where ϕ : Rn → RN .

(c) The interaction protocol gi(ui(xi, xj)) defines how the single entities interact with
each others: the most common framework in the literature is the linear diffusive in-
teraction protocol where gi(·) is the identity matrix and ui = σi

∑N
J=1 aij [h (xj) − h (xi)],

where σi represents the coupling strength or gain associated to agent i, aij is the
generic element of the adjacency matrix A, and h(·) is a function of the state
variables xi ∀i = 1, . . . , N .
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For simplicity, some assumptions are usually made:

• The agents are homogeneous, that is, all nodes are identical and share the same
dynamics fi(x) = fj(x) = f(x)

• All the states are measurable: h(j) = x(j)

• The network is static: σ and A are time-invariant

With these assumptions, the model simplifies as follows:
ẋi = f (xi) + σ

∑
j∈Ni

aij (xj − xi) ∀i = 1, . . . , N (1.3)

In this framework, a complex network is made up of many entities, or nodes, each of
which represents a dynamical system. For a single nonlinear dynamical system, we can
write its state space model as

ẋ(t) = f(t, x(t), u(t); Θ) (1.4a)
y(t) = h(t, x(t), u(t); Θ) (1.4b)

where the vector x ∈ RN represents the state of the system at time t, the input vector
u ∈ RM captures the known input signals, and the output vector y ∈ RP is the set
of measures. The functions f(·) and h(·) are generally nonlinear, and Θ is the set
of system’s parameters. Equations (1.4a) and (1.4b) are called the state and output
equations, respectively.

If f(·) and h(·) are linear and the parameters are time-invariant, we can define the
class of LTI systems:

ẋ(t) = Ax(t) + Bu(t); (1.5a)
y(t) = Cx(t) (1.5b)

The matrices A ∈ RN×N , B ∈ RN×M , C ∈ RP ×N in Eq. (1.5) admit two different
interpretations depending on whether we refer to a dynamical system or a network of
N dynamical systems. In the first case the matrix A defines the system dynamics, the
matrix B represents the effect of M inputs in the vector u on the N state variables x
and the matrix C defines which P linear combinations of state variables are measured
and form the output vector y. In the second interpretation, A = {aij}N

i,j=1 is the network
adjacency matrix associated to a graph. Its ij-th element is different from zero if the
dynamics of the state xi of node i is affected by the state xj of node j. The elements on
the diagonal aii capture the intrinsic node dynamics and are represented as self-loops
(i.e., connections from a node to itself) in the graph. In this second scenario, the matrix
B identifies the nodes where the M input signals are injected, the actuators or driver
nodes. Along the same lines, the matrix C indicates the sensor nodes, i.e., the nodes
whose state we are able to directly measure.

In the next subsection, some fundamental concepts of graph theory and network
science will be given in order to better understand the link between dynamical systems
and complex networks.
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1.1 Graph theory
A very intuitive way of describing how entities are interconnected forming a network
is visualizing their communication ties by means of a graph and its properties. In the
following, some definitions are given:

Definition 1. A graph G = {V , E} is a pair of sets, where V = {1, . . . , N} is the set of
vertices or nodes and E ⊂ V × V is the set of edges (i, j) ∈ E : i, j ∈ V connecting node
i and j.

Figure 1.2. Example of the real network of US airports. The nodes size and color are related
to their centrality: the nodes in green are the hubs, the ones with higher average degree.

Definition 2. A graph is called undirected when the direction of the edges is not specified,
that is (i, j) = (j, i) ∈ E .

Definition 3. A directed graph or digraph is a graph where the edges are a set of ordered
pairs, that is, (i, j) ̸= (j, i) ∈ E .

Definition 4. Given a pair of nodes (i, j) we say that i and j are connected if (i, j) ∈ E .
The set of neighbors of node i is: Ni = {j : (i, j) ∈ E} ⊂ V.

Figure 1.3. Our “influence” convention for edge notation for directed graphs.
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Definition 5. A weighted graph is the triplet G = {V , E , W}, where V is the set of nodes,
E ⊆ V × V is the set of edges, and W is the set weight function that associates to every
edge (i, j) ∈ E a positive weight wji.

Definition 6. Given a subset Vs ⊂ V of the nodes of graph G, we define the subgraph
Gs of G as the pair (Vs, Es), where Es := E ∩ (Vs × Vs).

Definition 7. Given two vertices, say i and j, i is reachable from j if there exists a
directed path from j to i. If this holds, i is in the downstream of j and j is in the
upstream of i.

Definition 8. For an undirected graph G, a path between nodes i and j(i, j ∈ V) is
a sequence of distinct nodes k1, . . . , kℓ ∈ V such that all consecutive pairs are edges of
G : (j, k1) , (k1, k2) , . . . , (kℓ, i) ∈ E .

Definition 9. For a digraph G a (directed) path between i and j is a sequence of
distinct nodes k1, . . . , kℓ ∈ V such that all consecutive pairs are directed edges of G :
(j, k1) , (k1, k2) , . . . , (kℓ, i) ∈ E (the directed path is j → k1 → . . . → kℓ → i).

Definition 10. A (directed or undirected) path that begins and ends at the same node
is called a cycle. A graph is said acyclic if it contains no cycle.

Definition 11. A graph is called covered by a subgraph if they have the same set of
vertices.

Definition 12. A state vertex is called source if it has only edges that come out from it.

Definition 13. A state vertex is called sink if it has only edges that enter in it.

Definition 14. A stem is an elementary path in which its start node is a source and its
end node is a sink.

Definition 15. A bud is a cycle with an additional edge that ends but not begins in a
vertex contained in the cycle itself.

Definition 16. We define a stem-cycle disjoint subgraph as a subgraph of G composed
of disjoint stems and cycles. We say that a stem-cycle disjoint subgraph spans from a
given set of nodes, if the source node of each stem in the subgraph is encompassed in this
set.

Definition 17. A state vertex is called inaccessible if there isn’t any direct path from
drivers to it.

Definition 18. A (undirected) graph G is connected if there is am (undirected) path
between any two nodes.

Definition 19. A digraph is strongly-connected if for any vertex pair (i, j) there exist
either a directed path from vertex j to vertex i or a directed path from vertex i to vertex
j.
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Definition 20. A SCC of a directed graph is a maximal strongly connected subgraph.

Definition 21. A Root Strongly Connected Component (RSCC) is an SCC whose nodes
have incoming edges only from nodes of the same SCC.

Definition 22. A condensation of a graph say C, is a DAG that is a directed graph G ′,
whose vertices are strongly connected components of G, and the edge in G ′ is present
only if there exists at least one edge between the vertices of corresponding connected
components.

Figure 1.4. On the left panel we have a graph in which we can identify 3 SCC, on the right
the DAG of this graph.

Definition 23. For an undirected graph, the degree of a node i is the number of its
neighbors δ(i) = |Ni|.

Definition 24. For digraphs, for a given node i, we define the node in-degree (out-degree)
δin

i (δout
i ) as the number of inbounding (outgoing) edges of i, kin

i := |N in
i |(kout

i := |N out
i |).

Then the degree of node i is defined as ki := δin
i + δout

i . Note that for any graph holds
that |E| = ∑

i δin(i) = ∑
i δout(i).

Figure 1.5. In-degree and out-degree of node i

Definition 25. A node with zero in-degree is called a root while one with zero out-degree
is called a leaf of G.
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Definition 26. The weighted in/out-degree are computed in terms of the weights of
matrix W :

δin
w (i) =

n∑
j=1

wij

δout
w (i) =

n∑
j=1

wji

Definition 27. The degree distribution P (k) is defined as the probability that a randomly
chosen node has degree k or, equivalently, as the fraction of nodes in the network that
have degree k.

Definition 28. The in-degree distribution P (kin) of a digraph is a function that as-
sociates to each integer kin ∈ [0, ∞) the fraction of nodes having in-degree equals to
kin.

Definition 29. The out-degree distribution P (kout) of a digraph is a function that
associates to each integer kout ∈ [0, ∞) the fraction of nodes having out-degree equals to
kout.

The network topology is the structure accordingly to which the links and nodes of
a network are arranged to be interconnected; however, if the number of nodes explodes,
then, graphs are not as informative as before, thus it is more convenient to describe the
interconnections with an associated matrix

Definition 30. Considering a matrix R, it is defined as non-negative if all of its entries
rij are non-negative, that is rij ≥ 0.

Definition 31. An adjacency matrix A = {aij}N
i,j=1 is a non-negative matrix which

synthesizes the information on the interaction among the nodes of the network. It is a
square matrix with nodes both on the rows and columns A ∈ RN×N whose ij-th element
aij ≥ 0 with i ̸= j if there is an edge connecting the node j to the node i. If the matrix
A is symmetric, the graph is undirected.

Definition 32. A graph is strongly connected if and only if the matrix associated to it
is irreducible. [9].

Definition 33. A non-negative matrix R is said to be row-stochastic if, for all i =
1, . . . , n, there holds that ∑n

j=1 rij = 1 whereas it is said to be doubly-stochastic if∑n
j=1 rij = 1 and ∑n

i=1 rij = 1.

Definition 34. A non-negative square matrix R ∈ Rn×n is primitive if there exists
k ∈ N such that Rk > 0.

Definition 35. An irreducible matrix is a matrix in which the sum of the power k of R
is strictly greater than zero: ∑n−1

k=0 Rk > 0.
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Definition 36. The Laplacian matrix L = D − A is the difference between the degree
matrix, which on the super diagonal has the degree of each node and zero otherwise, and
the adjacency matrix.

Definition 37. Given a matrix, say F , we denote its rank by ρ(F ).
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1.2 Complex network topologies
Complexity stands for the nontrivial structure of interconnection among the entities con-
sidered. In the literature, some models of artificial topologies of complex networks have
been proposed, each of which resembles some feature observed in real-world networks.
In a spectrum ranging from the most human-made to the most realistic, let us give a
brief insight on regular lattices, random, small world and Scale Free networks.

Traditionally, the connection structure was modeled either completely regular (each
node is linked to a fixed, known a priori number of neighbors) or completely random
graphs. Random networks were theorized in 1960 by Erdős-Rényi [10] defined as net-
works whose degree distribution follows a Poisson distribution with a single parameter
lambda that corresponds both to its first and second moment, that is, is expected value
and its variance

pk = λkmax

kmax!
e−λ.

Both in nature and in engineered networks there are a lot of examples of intercon-
nections that do not fall in neither of these two categories, as they are provided with
non-trivial topological features. Therefore, there is the effort to find new network mod-
els that could mimic the structural properties of real networks, namely the complex
networks.

In 1998, Watts and Strogatz [11] investigated in particular two network features: the
characteristic path length L that is the length of the shortest path between any two
nodes averaged over all possible pairs, and the clustering coefficient Cc that measures
the cliquishness of a typical neighborhood (that is the likelihood that given three nodes
they form a triangle of interconnections). They assessed that regular networks are
characterized by high L and low Cc, random networks exhibit both low L and Cc but,
instead, most of the real networks did not lie in these two simple categories, but stayed
somewhere in the middle, being characterized by low mean characteristic path length
but high clustering coefficient. Hence, starting from a regular graph, they thought of
randomly rewiring a fraction of edges accordingly to a probability p : the more p is
increasing the more the network becomes random, generating a new topology model
called Small World or Watts and Strogatz (WS) network. It has been proved that a
rewiring probability of 0.15 is sufficient to reveal WS features.

Even if the small world networks have been a huge step forward in modeling real
networks, they are still characterized by a certain homogeneity of degree, however as
Barábasi and Albert noted in 1999 [12], studying the features of the World Wide Web
or of genetic networks, many real networks are characterized by a scale-free power law
degree distribution.

A Scale-Free network is defined as a network whose degree distribution follows a
power law pk = Ck−γ that provides that a node has exactly k links. For a scale-free
network, the nth moment of the degree distribution is: ⟨kn⟩ = C

kn−γ+1
max −kn−γ+1

min
n−γ+1
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For many scale-free networks, the degree exponent γ is between 2 and 3. Hence,
for these in the n → ∞ limit, the first moment ⟨k⟩ is finite but the second and higher
moments go to infinity. This divergence helps us understand the origin of the “scale-free”
term. Indeed, if the degrees follow a normal distribution, then the degree of a randomly
chosen node is typically in the range k = ⟨k⟩± λk. For power law distributions with
γ < 3, instead, when we randomly choose a node, we do not know what to expect: the
selected node’s degree could be low or arbitrarily large. Hence, networks with γ < 3 do
not have a meaningful internal scale but are “scale-free”.

Comparing Erdős-Rényi and Scale-Free networks, it can be noted that:

• For small k, a scale-free network has a large number of small degree nodes, most
of which are absent in a random network.

• For k ≈ ⟨k⟩ in a random network there is an excess of nodes with degree k ≈ ⟨k⟩.

• For large, k the probability of observing a high-degree node, or hub, is hugely
higher in a scale free than in a random network.

Generation algorithms for synthetic networks
Random networks can be generated by following few simple steps:

• start with N disconnected nodes,

• draw from a uniform distribution a pair of nodes to be connected,

• generate a link between the selected nodes unless they are already connected or
they are the same node

These steps must be repeated until the network has a predefined number of edges |E|.
Small world networks start from a regular network (ring lattice) of N nodes of mean
degree k. Each node is connected to its k/2 nearest neighbors on either side. For each
node in the graph, a target edge is rewired with probability p. The rewired edge cannot

Figure 1.6. Increasing disorder in graph topologies: from left to right, regular, small-world,
scale-free and random graphs.
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Figure 1.7. Example of a random network of 50 nodes.

be a duplicate or self-loop. So when p = 0, no edges are rewired and the model returns
a ring lattice. In contrast, when p = 1, all the edges are rewired and the ring lattice is
transformed into a random graph. When 0 < p < 1 the features of a small world graph
can be appreciated.

Barábasi and Albert realized that two aspects of generation of real networks were
not incorporated in these models. First, both models assume that we start with a fixed
number N of vertices that are then randomly connected (Erdős-Rényi (ER) model), or
reconnected (WS model), without modifying N . In contrast, most real world networks
form themselves by adding new nodes that are connected to the vertices already present
in the network, thus the number of vertices N increases during the time. Moreover, the
random network models assume that the probability that two vertices are connected is
random and uniform. In truth, there is a higher probability that the new node will be
linked to a vertex that already has numerous connections. These ideas concentrate in
two concepts: growth and preferential attachment.

The steps of the algorithm to generate a scale free network are: start with a small
number, say m0, of vertices, at every time step add a new vertex with m ≤ m0 edges that
link the new vertex to m different vertices already present in the system. The probability
π that a new vertex will be connected to vertex i depends on the connectivity ki of that
vertex, so that π (ki) = ki∑

j
kj

. After t time steps, the model leads to a scale-free network
with t+m0 vertices and mt edges. The algorithms presented above were used to generate
undirected random, small world and scale free graphs.

In the following several procedures to generate directed graphs are illustrated.



18 1 Complex networks of dynamical systems

Figure 1.8. Example of small world network with a rewiring probability of p = 0.16.

Scale-free networks were generated by means of the directed version of the static
model [13]. The static model steps to generate a directed network are: consider N
vertices, which are indexed by an integer i = 1, . . . , N . Assign two weights pi = i−αout

and qi = i−αin to each vertex for outgoing and incoming edges, respectively. Both control
parameters αout and αin are in the interval [0, 1). Then two different vertices (i, j) are
selected with probabilities, pi/

∑
k pk and qi/

∑
k qk, respectively, and an edge from the

vertex i to j is created with an arrow, i →> j unless one exist already. This process
is repeated until mN edges are created. Then, the mean degree is 2m. The scale free
networks generated have both out-degree and in-degree distributions that follow a power
law with the exponents γout and γin, respectively. They are given as γout = (1 +αout/αout
and γin = (1 + αin) /αin. Thus, choosing various values of αout and αin, we can determine
different exponents γout and γin.

Random networks were generated by means of the configuration model [8]. In the
network generated by this model, each node has a pre-defined degree ki, but otherwise
the network is wired randomly. The probability to have a link between nodes of degree
ki and kj is pij = kikj

2L−1 . The configuration model steps are assigning a degree to each
node, represented as stubs or half-links. The degree sequence is generated analytically
from a Poisson distribution. We must start from an even number of stubs, otherwise we
are left with unpaired stubs. Randomly select a pair of stubs and connect them. Then,
randomly choose another pair from the remaining 2L − 2 stubs and connect them. This
procedure is repeated until all stubs are paired up. Depending on the order in which
the stubs are chosen, we obtain different networks. Some networks include cycles, others
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Figure 1.9. Example of a scale-free network of 50 nodes.

self-loops or multi-links. Yet, the expected number of self-loops and multi-links goes to
zero in the N → ∞ limit. By repeatedly applying this procedure to the same degree
sequence, different networks with the same pk can be generated.

Network centrality metrics
When networks are generated through these advanced and realistic algorithms, their
nodes do not share the same importance in diffusing a process through the network:
centrality metrics quantifies how important, or central, the different nodes of a network
are. There have been proposed numerous centrality metrics in the literature [14–16], but
why is it relevant? Because these metrics can measure and thus identify how influential a
node is in propagating the process occurring on the network: for instance, its opinion or
social norm if considering individuals discussing on a topic, or an illness if the network
models the contacts in an epidemic outbreak, or, more in general, if we want to act
individually on the network to stop/promote a certain behavior globally, and we want
to find which node is better to target to efficiently do the task.

Centrality metrics are based on the knowledge of some characteristics of the connec-
tivity of each node:

• Degree Centrality (DC), for undirected graphs, counts how many social connections
(aka, the number of neighbors) a node has: DCi := ∑N

j aij. In a digraph, it can
be defined both for in-neighbors and out-neighbors. For weighted networks, the
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sum of the edge weights is used rather than the number of connecting edges. The
limitation is that it relies only on local information at one step.

• Betweenness Centrality (BC) measures how often each graph node appears on the
shortest path between two nodes in the graph. Since there can be several shortest
paths between two graph nodes s and t, the centrality of node i is: BC(i) =∑

s,t ̸=i
n(i)st

Nst
where n(i)st is the number of shortest paths from s to t that pass

through node i, and Nst is the total number of shortest paths from s to t.

• Eigenvector Centrality (EC) is a positive multiple of the sum of adjacent central-
ities. Relative scores are assigned to all nodes in a network based on an assump-
tion that connections to high-scoring nodes contribute more to the score of the
node than connections to low-scoring nodes. It uses the eigenvector correspond-
ing to the largest eigenvalue of the graph adjacency matrix, and it is defined as
EC(i) = k−1

1
∑

j aijxj, with the constant k1 ∈ R.

• Pagerank centrality results from a random walk of the network. The centrality
score is the average time spent at each node during the random walk: at each
node in the graph, the next node is chosen with a certain probability from the set
of successors of the current node in digraphs (neighbors for the undirected case).
It is criticized because it does not deal with acyclic graphs.

• Hubs/authority centrality are two linked centrality measures that are recursive.
The hubs score of a node is the sum of the authorities scores of all its successors.
Similarly, the authorities score is the sum of the hubs scores of all its predecessors.
The sum of all hubs scores is 1 and the sum of all authorities scores is 1.
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1.3 Emerging collective behaviors
Collective behavior in complex dynamical systems networks represents an emerging phe-
nomenon in which ’coordinated motion’ is driven by local interactions that occur in
communication ties between entities. The way in network nodes interact is influenced
by various constraints, both physical and biological, but the most important is the way
in which the network of interconnection is perceived from the single entity, that is, the
definition of neighborhood. These phenomena are called emergent because they arise
naturally in a wide range of real-world groups, including fish, birds, and humans, with-
out a control unit that dictates how the single entity must behave in order to get a
desired coordinated behavior of the whole.

Every emerging collective behavior can be seen in the broadest sense as a coordi-
nation among entities to reach a certain state of the whole only by means of local
interactions. There are a lot of examples from biological, economics, epidemiological,
and social networks, only to mention a few, that surround us:

• flocks of birds often exhibit coordinated movements, maintaining a specific forma-
tion. This behavior helps them optimize their flight efficiency and avoid predators.

• synchronization of fireflies exhibiting synchronized flashing patterns. When fireflies
in proximity synchronize their flashing, it can create mesmerizing light shows in
nature;

• neuronal synchronization: in the brain, groups of neurons can synchronize their
firing patterns, leading to the emergence of specific brain rhythms like alpha, beta,
or gamma oscillations. These rhythms are associated with different cognitive func-
tions;

• stock market bubbles and crashes: financial markets are influenced by the collective
behavior of traders and investors. The emergence of stock market bubbles, followed
by sharp crashes, is a classic example of how collective behavior such as herding
or imitation can impact economic systems;

• disease spread: the diffusion of diseases in populations, such as the transmission
of infectious diseases like COVID-19, is an example of collective behavior within
epidemiological networks;

• Information cascades: in social media networks, such as Twitter or Facebook,
information or trends can spread rapidly as users share and repost content. This
can lead to viral phenomena where a piece of information becomes widely adopted
in a short period.

Here, we define more formally two of the main categories of collective behaviors that
have been extensively studied in the literature, namely synchronization and consensus,
due to the fact that understanding them and under which circumstances they arise have
practical implications in our society.
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When the collective behavior consists in achieving a common and time-varying final
state for all the agents, it can be deemed as synchronization. Consensus is the particular
case of synchronization when the final common state is a constant trajectory, namely a
point in the state space.

Synchronization and consensus
Given a complex network, synchronization implies convergence of all nodes to the same
asymptotic time-varying solution xs(t) (i.e., common limit cycle or chaotic attractor).
We recall that xs(t) is unknown a priori. There are different types of synchronization [17]:

if all agents are homogeneous, we can reach perfect synchronization, which implies
that all nodes trajectories contract onto the synchronous manifold, i.e.,

lim
t→∞

xi(t) = xs(t) ⇔ |xi − xj| = 0.

One of the reasons diffusive coupling has been the most studied in the literature is
that the completely synchronized state x1(t) = x2(t) = · · · = xN(t) = s(t) is a natural
solution of Eq. (1.3). It defines a linear invariant manifold, the synchronization manifold,
where all agents evolve synchronously as ṡ = f(s). Note that s(t) may be an equilibrium
point (in this case, it translates into a consensus problem), a periodic orbit, or even a
chaotic solution.

When the agents are not identical, generalized synchronization is addressed, and it
implies that there is a function Φ such that, when t → ∞, xi = Φxj which means that
the dynamics of one system is dependent on the other. Perfect synchronization is the
particular case of generalized synchronization when Φ is the identity.

Bounded synchronization [18] implies that the mismatch between the trajectories of
individual agents are upper limited by a small scalar ε

lim
t→∞

xi(t) = xs(t) ⇔ |xi − xj| ≤ ε.

When the dynamics of the i-th node is

ẋi = f (xi) + σ
∑

j∈Ni

Lijxj i = 1, . . . , N

then, synchronizing the network means finding the range of values of σ so that all systems
in the network evolve asymptotically along the same trajectory xs(t).

Consensus is a particular case of synchronization, typically studied for linear dynam-
ical systems, and it defines a condition in which the ensemble of interconnected agents
reaches, asymptotically, a constant steady-state [19].

Mathematically, it can be defined as

lim
t→∞

xi(t) = c ∈ R ∀t. (1.6)

The difference with respect to synchronization is that the solution to which the system
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Figure 1.10. Example of a coupled Chua’s circuit network [1] of 100 nodes synchronizing on
a time-varying trajectory.

converges cannot be time-varying, as the individual dynamics of each agent is often
neglected for these systems [20].

Consensus emerges when the dynamical matrix that governs the networked systems
has a single zero eigenvalue that corresponds to the unitary eigenvector, the agreement
subspace, and thus we can appreciate how the structure determines the emergence of
collective behaviors. Consensus problems in multi-agent systems have gained significant
research attention due to their applications in fields like aerial vehicles, air traffic control,
wireless sensor networks, and decision-making. The master stability function has been
useful for studying synchronization over static networks, while pinning control schemes
have been explored to induce synchronization. [21]

1.4 Control of complex network of dynamical
systems

Once we have assessed that complexity is an integral part of most of the systems that
surround us, a question arises: how can we tame complexity, that is, control systems
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Figure 1.11. Example of 100 nodes reaching consensus, i.e., synchronizing on a constant
trajectory.

to make them exhibit desired collective behaviors onto a predefined solution known a
priori? Control theory provides the theoretical tools to determine how to influence the
behavior of a network of dynamical systems, choosing which and how many inputs must
be injected so that the system’s outputs reach a desired trajectory or final state. The
key idea in control is feedback, that is, applying a function of the error, expressed as the
difference between the actual and desired output, to the system as an input, forcing the
system’s output to converge to the reference.

Controllability and observability
Before proposing a control scheme for a system or a network of dynamical systems, we
need some conditions under which we are guaranteed that the control is feasible.

Controllability is a prerequisite for the implementation of a control strategy in a
network of dynamical systems [22].

Definition 38. A complex network of dynamical systems is controllable if it is possible
to steer the states associated to all the nodes from any initial condition to zero in finite
time.
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Definition 39. An LTI DT system is controllable to the origin in k steps if ∀x0 ∈ Rn

there exists a sequence u(0), . . . , u(k−1) ∈ Rm such that 0 = Akx0+∑k−1
j=0 AjBu(k−1−j)

This implies that we can move the state variable of each node of a network to a
predefined value, corresponding to the system’s desired position in the state space. Our
ability to do so is largely determined by the network topology.

Controllability has been mostly studied in the case of linear dynamical systems for
different reasons: first, linear systems offer an accurate model for some real problems,
such as consensus in multi-agent networks; second, also when there are nonlinear interac-
tions between the components, the first step in any control challenge is to establish the
controllability of the locally linearized system. Finally, as the complex network topol-
ogy adds a new layer of complexity to the controllability problem, focusing on the linear
case allows understanding the impact of the topological characteristics on our ability to
control, regardless of their nonlinear dynamics.

Definition 40. A dynamical system is reachable if it is possible to reach any state in
finite time, starting from zero initial conditions.

Definition 41. An LTI DT system is reachable if ∀x1, x2 ∈ Rn there exist k ∈ N and
u(0), . . . , u(k − 1) ∈ Rm such that x2 = Akx1 +∑k−1

j=0 AjBu(k − 1 − j)

Note that analogous definition can be given for LTI systems in continuous time, for
which the controllability and reachability properties are equivalent [23].

For what concerns nonlinear dynamical systems, many tried to generalize the concept
of controllability; however, it has not been possible to overcome mathematical issues.
Instead, a weaker form of controllability, called accessibility, has been proposed.

Definition 42. Accessibility concerns the possibility of reaching or accessing an open set
of states in the state space from a given initial state. If the system is locally accessible
from an initial state x0, then we can reach or access the neighborhood of x0 through
trajectories that are within the neighborhood of x0.

This is the reason most nonlinear systems are studied in the neighborhood of their
equilibrium points: studying the controllability properties of its linearization around an
equilibrium point or along a trajectory can often offer an efficient test of local nonlinear
controllability.

Thus, in the case in which the network is composed of linear time-invariant systems,
then some algebraic criteria have been proposed in the literature:

• Kalman test: The pair (A, B) is controllable if and only if the controllability matrix

K = [B AB A2B . . . AN−1B], (1.7)

has full rank ρ(K) = N.

• Popov-Belevitch-Hautus (PBH) test: ρ([sI − AB]) = N ∀s ∈ λ(A)
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Note that the PBH test and Kalman’s rank condition are equivalent. Yet, the former
connects the controllability of the pair (A, B) to the eigenvalues and eigenvectors of the
state matrix A.

Any feedback control action assumes that the state of the system or a network of
dynamical systems is known (or at least a reliable estimate of it) for each time instant.
This translates into assuming a prerequisite, dual to controllability, called observability.

Definition 43. A system is said to be observable if it is possible to recover the state of
the whole system from the measured inputs and outputs.

When a system is observable, it means that we can estimate the state variables of
each unit x(t) by some measurements of its outputs y(t). Instead of monitoring each
node of the network with sensors, a fact that could be unfeasible or not convenient, we
rely on a subset of nodes and then exploit the network structure. In fact, it is possible
to do so exactly because systems are interconnected and so the state of some nodes
depends on the state of their neighbors, thus it is possible to reconstruct their states
even though they are not directly measured. So, a system is observable if there is a
known relation between the outputs y(t), the state vector x(t), and the inputs u(t) such
that the system’s initial state x(0) can be inferred.

For linear systems, observability and controllability are mathematically dual concepts.
Indeed, considering an LTI system

ẋ(t) = Ax(t) + Bu(t),
y(t) = Cx(t).

the duality principle states that the triple (A, B, C) is observable if and only if its
dual system

(
AT, CT, BT

)
is controllable. Graphically, this translates in studying the

controllability properties of the transposed network defined by AT, which is obtained by
flipping the direction of each link in G(A).

Thus, we can use a dual Kalman test for observability.

Definition 44. the system (A, B, C) is observable if and only if the observability matrix

O =



C
CA
CA2

...
CAN−1


has full rank, i.e., ρ(O) = N

In this case, the N rows of the observability matrix O are linearly independent, thus
the N state variables can be recovered by linearly combining the output variables y(t).



1.4 Control of complex network of dynamical systems 27

Target controllability and observability
When for physical or economical constraints there are not enough actuators to guarantee
the complete controllability or more generally, if we want to exert control only onto a
subset of nodes, the so-called targets, we can pose the controllability problem of how
can we smartly select a subset of nodes to directly control with a fixed cardinality in
order to obtain the largest controllable subnetwork. This problem has been addressed
in [24] and solved by adapting the graphical interpretation of Hosoe’s theorem [25] to the
optimization problem under investigation. As in partial controllability, dually we could
settle for observing only a fraction of the state variables of the system, the targets. In case
those target variables cannot be directly measured, we can refer to target observability to
optimally select the nodes to be sensors that can infer the state of the target variables.
Analogously to optimal driver selection, this optimization problem can be tackled by
means of a graphical approach, recalling that

Definition 45.
The state of a target node xt can be observed from a sensor node xs only if there is a
directed path from xs to xt.

Figure 1.12. Driver/sensor node selection example: actuator nodes in red and sensor nodes
in green.
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Parameter identification
A particularly relevant observability problem is the so-called parameter identification
problem (PI) in control theory [26]. In most models, it assumed that the system pa-
rameters are known. Yet, this is not the case for most complex systems, in which the
parameters are unknown or known only approximately. Under which conditions can we
infer the parameters from the knowledge of the inputs and the outputs of the system?
If we consider the system parameters Θ as constant state variables and extend the state
vector to include a larger them, i.e., (x(t), Θ), we can check the observability of the ex-
tended system with the traditional tool, thus the identifiability problem could be recast
as an observer design problem [27]
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Structural controllability
Any complex network of dynamical LTI systems is controllable if we control each node
individually with an independent signal. However, this approach is unfeasible for large
complex systems. Hence, the literature has focused on solving the so-called minimal
controllability problems, that is, finding the minimum set of pivotal nodes, namely driver
nodes, that if injected with control inputs, can guarantee controllability of the entire
network, exploiting the network structure to permeate the control action. In this thesis,
when we refer to this problem we intend to find a matrix B ∈ RN×N whose columns are a
subset of that of the N-dimensional identity matrix and that has as the minimum number
of columns such that the network is controllable. Namely we assume that each control
input ui can directly control only one node (aka state variable). Structural controllability
provides a feasible, easy-to-use and computationally efficient methodology to solve such
controllability problem.

Conversely, Kalman and PBH tests imply the knowledge of all the parameters of the
equations that describe the LTI system, an assumption that deos not always holds. More-
over, the Kalman criterion is suitable when the dimension of the controllability matrix
is small, otherwise there are computational problems. Hence, for large complex systems,
there is the need of a novel approach that does not require numerically calculating the
rank of the controllability matrix. Thus, there have been some advances to overcome
these difficulties, by mapping the control problem into well-studied network problems,
like matching, and borrowing some tools from statistical physics like the cavity method,
that were traditionally beyond the scope of control theory [28].

Structural controllability deals with structural linear systems [29, 30], whose triplet
(A, B, C) is composed by structured matrices.

Definition 46. A structured matrix is defined as a matrix with either independent (free)
parameters or fixed zeros.

Definition 47. The pair (A, B) is structurally controllable if we can set the nonzero
elements in A and B such that the resulting system is controllable in the usual sense.

The power of structural controllability comes from the fact that if a system is struc-
turally controllable, then it is controllable for almost all (except for Lebesgue measure’s
cases) possible parameter realizations. Thanks to the graphical interpretation of Lin’s
structural controllability theorem, this approach provides conditions to test the struc-
tural controllability of a network of dynamical systems without expensive matrix oper-
ations.

Definition 48. A digraph contains a dilation if there exists a subset of nodes S ⊂ V
such that the neighborhood set of S, denoted as T (S), has fewer nodes than S itself.
Here, T (S) is the set of vertices j for which there is a directed edge from j to some other
vertex in S. Note that the input vertices are not allowed to belong to S but may belong
to T (S).
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Definition 49. A cactus is a subgraph defined recursively as follows. A stem is a
cactus. The union of a stem S0 and buds B1, B2,...,Bl then S0 ∪ B1 ∪ B2∪, . . . , Bl is a
cactus if for every i(1 ≤ i ≤ 1) the initial vertex of the distinguished edge of Bi is not
the terminal vertex of S0 and is the only vertex belonging at the same time to Bi and
S0 ∪ B1 ∪ B2∪, . . . , ∪Bi−l. A set of vertex disjoint cacti is called a cactus.

Figure 1.13. Example of internal and external dilation, respectively, on the left and right.
Red diamonds are driver nodes, namely, the nodes where the control input is directly injected.

Figure 1.14. An example of a cactus.

It is the minimal structure which contains neither inaccessible nodes nor dilations.
In this analysis a cactus is always a set of stems and buds linked to the stems which
must be originated by a driver.

Theorem 1. The following three statements are equivalent:

1. An LTI system (A, B) is structurally controllable.

2. The digraph G(A, B) contains no inaccessible nodes.

3. The digraph G(A, B) contains no dilations.
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Figure 1.15. An example of uncontrollable network due to the presence of inaccessible nodes.

4. G(A, B) is spanned by a cactus

This theorem has mathematical consequences because in structurally controllable
networks the structured matrix [A; B] is irreducible and has full generic rank. Indeed,
the presence of inaccessible state vertices means that the structured matrix [A; B] is
reducible, i.e., there exists a permutation matrix P such that:

PAP −1 =
[

A11 0
A21 A22

]
and PB =

[
0

B2

]

where A11 ∈ RK×K , A21 ∈ R(N−K)×K , A22 ∈ R(N−K)×(N−K), and B2 ∈ R(N−K)×M with
1 ≤ K ≤ N .

Furthermore, the presence of a dilation is equivalent to the statement that the struc-
tured matrix [A; B] has generic rank less than N : rankg[A; B] < N where the generic
rank is the maximum rank that the matrix attains as a function of the free parameters.

Basically, this theorem allows saying that a system is structural controllable if and
only if it doesn’t have any inaccessible nodes because they couldn’t be influenced by
the input control and if it does not have any dilations, i.e., any expansion of the graph
in which there are more sinks than sources, because two subordinates can’t be indepen-
dently controlled if they share one superior. These two statements are equal to the third
one, that is that the graph is spanned by a cactus, because a cactus is the minimum
structure which does not contain neither inaccessibility nor dilations.

Pinning control
If we want to steer the agents’ dynamics towards a desired solution, we can think of
controlling their behavior adding some feedback control input, but where? The simplest
strategy could be to act on each node (i.e., each dynamical system) in centralized fashion.
However, this approach is unfeasible when we are facing large-scale networks. Going
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towards distributed decentralized control, the idea is to exploit the strong dependence
between the dynamics of the network and the network structure: this concept is the basis
of pinning control [31, 32], where, by means of an additional dynamical system (i.e., a
node), whose trajectory acts as reference, called pinner, the feedback control action is
directly injected in a small fraction of nodes of the network, the pinned nodes. The pinner
plays the role of a leader, and it is connected only to the pinned nodes, the followers, but
taking advantage of the network topology, the control action can permeate through all
the nodes, achieving the control goal. Pinning control is also known as leader-follower
control, as the pinner exerts a leadership within interconnected groups that significantly
influences the collective behavior of the whole. In this scenario, leaders have more
information than their followers or other “special” characteristics. If a network cannot
synchronize/reach consensus spontaneously, we can design controllers that, applied to
a subset of pinned nodes, help achieving the collective goal. This procedure, known as
pinning control, is fundamentally different from spontaneous synchronization, where we
do not specify the synchronized trajectory s(t). Hence, the system “self-organizes” into
the synchronized trajectory under appropriate conditions. In pinning control, we choose
the desired trajectory s(t), aiming to achieve some desired control objective, and this
trajectory must be explicitly taken into account in the feedback controller design. Thus,
the design of the control scheme must take into account the dynamical characteristics
of each component as well as the network’s topology.

A pinning control problem mathematically translates into a closed-loop dynamics
where the network is no longer homogeneous because we have M pinned nodes and
N − M uncontrolled ones:{

ẋi = f (xi) − σ
∑

j Lijh (xj) + ũi i = 1, . . . , M
ẋi = f (xi) − σ

∑
j Lijh (xj) i = M + 1, . . . , N

If the goal is that all nodes synchronize asymptotically onto a desired trajectory
xs(t), one can think of an additional proportional control action where σ is the coupling
strength of pinning control:

ũi = σ [xs(t) − xi(t)]
Finally, the closed loop network equation will be:

ẋi = f (xi) − σ
∑

j

Lijh (xj) + δiσ [xs(t) − xi(t)] i = 1, . . . , N (1.8)

Figure 1.16. A network example in which the red node is the pinner.
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where δi is an indicator function which is 1 for the pinned nodes and 0 otherwise.
The pinner has its own dynamics, described in Eq. 1.9, that is not influenced by the

other agents, and defines the desired trajectory. ṡ = f(s, t)
s(0) = s0

(1.9)

If the pinner’s goal is to guide the group to a common state, this translates in a
specialized consensus problem known as leader-follower consensus [21]. In any case, the
pinning control problem consists not only in designing the strength of the pinner control
action, but also in determining which and how many nodes need to be pinned.

Analogously to other control problems, before delving into the control scheme, we
need some conditions of pinning controllability.

As the nodes’ dynamics is inhomogeneous, the Master Stability Function approach
cannot be directly applied to the pinning controlled network. However, extending the
network to N + 1 nodes, so that y1 = x1,..., yN = xN and yN+1 = s. The dynamics of
the i-th agent

ẋi = f(xi, t) − σ
N∑

j=1
lijh(xj) + ui (1.10)

becomes

ẏi = f(yi, t) − σ
N+1∑
j=1

mijh(yj) ∀i = 1, .., N + 1 (1.11)

where mij is the (i, j) element of a N + 1 dimensional square matrix M :
l11 + δ1k1 . . . l1N −δ1k1

... . . . ... ...
lN1 . . . lNN + δNkN −δNkN

0 . . . 0 0

 . (1.12)

Here, M is the effective coupling matrix of the (N + 1)-dimensional extended system.
As M = (mij)(N+1)×(N+1) is a zero row-sum matrix, we can sort its eigenvalues as
0 = λ1 ≤ Re{λ2} ≤ · · · ≤ Re{λN+1} and apply the MSF approach to numerically explore
the local stability of the synchronization manifold of the controlled network. The role of
the control and coupling gain, and the number and the selection of pinned nodes has on
local pinning controllability has been systematically studied [32]. For example, under
some assumption on f and h, the network can be controlled through only one pinned
node. In particular, if the graph is undirected and connected or directed and strongly-
connected, it is possible to reach synchronization by pinning just one randomly selected
node. If the graph is directed and its condensation has a spanning tree, the pinned node
should belong to its root. On the other hand, if the condensation has multiple-sources,
more than just one node must be pinned. Considering that the number of connections
of the pinner can be limited, it is not always possible to control all the nodes. Hence,



34 1 Complex networks of dynamical systems

the partial pinning control problem [33] is considered. It consists in identifying the
combination of the pinned nodes that maximize the number of vertices that are able to
slide towards the pinner’s trajectory.

To control digraphs, some assumptions on the individual dynamics, such as the
QUAD assumption, need to be made. If we consider N-dimensional dynamical systems
of the form ẋ = f(x, t) where x ∈ RN is the state of the system and the vector field
f : RN × R+ → RN the QUAD assumption can be defined:

A function f : RN × R+ → RN is QUAD(∆, w) if and only if for any x, y ∈ RN

(x−y)T [f(x, t)−f(y, t)]−(x−y)T ∆(x−y) ≤ −w(x−y)T (x−y) where ∆ is a diagonal
matrix and w is a scalar. If we look at y as the reference trajectory where we want to
converge, the QUAD assumption means that the differences between vector fields in the
left hand-side are always upper limited by the product between the mismatch of state
variables and a constant w, this implies that the coupling effect can be made stronger
than the vector field mismatch. The QUAD condition is an assumption on the vector
field usually made in the literature to prove global network synchronizability by means
of appropriate Lyapunov function because as it has a quadratic form, and as it is an
upper bound it ensures the existence of an appropriate Lyapunov function.

While in undirected networks the pinned nodes can be chosen arbitrarily, even if
there are of course some optimal choice in selecting them in order to minimize the control
effort, in directed network it is necessary to pin at least one node in each (RSCC) of the
network [34]. Theorem 1 of [33] guarantees that the DAG condensation of the network
is pinning controllable if we pin at least a node in each RSCC and if the coupling gain
σ and the control gain K are large enough. Generally, it has been shown that, in the
case of diffusive coupling, counterintuitively, for undirected networks pinning the nodes
with low degree, instead of hubs, is more convenient when the coupling strength σ is
small, whereas, for directed networks, nodes with very small in-degree or large out-degree
should be pinned first [35]. We will see that this is not the case when the coupling is
not linear but saturated (See Paper C).

In all the contributions presented in this thesis, control problems on complex net-
works of dynamical systems have been proposed, and the methodologies presented in
this section have been used to give theoretical conditions under which the problem for-
mulations could be solved.

Regarding the problem formulations, all the works focused on control problems in
the context of opinion dynamics (see next section for an overview). Even though talking
about control of opinions might have ethics implication, many phenomena like fake
news, targeted advertising, propaganda, awareness campaigns, daily affect our opinion
formation in everyday life. An intuitive way to capture, and thus understand, the
influence of these factors is modelling them as controllers. Hence, exploiting the role of
control in opinion dynamics can be useful to deeply understand how opinions’ influence
can be exerted in order to apply some countermeasures against malicious agents or
instead helping promote initiatives for the well-being of social groups. Indeed, possible
control goals in such context could be

• Reach/prevent consensus (to take a collective decision or to preserve diversity)
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• Disagreement containment (compromise)

• Steer the opinion of the majority of the agents toward a desired value (Media,
Propaganda)

• (Discourage)Promote (un)healthy social norms (campaigns)

• Mitigate adversarial influences (fake news, bot)

and some of them have been addressed in this dissertation.

Figure 1.17. Our framework idea of bridging the gap between opinions, decision-making, and
the role of influencers and policymakers in social systems.
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Part II
Literature Review





CHAPTER 2
Complex networks of social
systems: opinion dynamics

models
Opinion dynamics (OD) is a multidisciplinary research field that combines tools and
knowledge from different scientific areas such as social sciences, control theory, applied
mathematics and computer science. Its aim is to study the process of opinion forma-
tion of a single individual as the output of the interaction of a group of agents that
resembles a complex system [36]. Opinion dynamics deals with the development and
analysis of dynamical models that capture how individuals in a social network inter-
act and exchange opinions; an individual’s opinion may evolve over time as a result of
becoming aware of the opinions of their neighbors and considering them (to a certain
extent) to update his own opinion. Opinion dynamics models can be aggregated, that is
referred to a community or a category of people, or agent-based where each individual
is represented by an agent and the opinion of an individual on a topic is represented
by a numerical value, evolving in time. In the latter case, the one considered in this
thesis, the network of interactions between individuals is conveniently captured by a
graph, where a node represents an individual, while edges represent a communication
tie between two individuals. Agent-based opinion dynamics models are examples of how
single dynamics, if interconnected on a network, can lead to interesting emergent global
behaviors that reflect real social phenomena, like consensus, polarization, or persistent
disagreement [37].

In the literature, there have been proposed numerous opinion dynamics models, dif-
fering on the opinion state space, the opinion evolution rule chosen and the nature of
the time period in which the evolution occurs, for an overview see [38,39]. Therefore, a
first categorization can be made of how the opinion is mathematically translated.

• Discrete-state opinion models inspired by physics phenomena, such as Sznajd
model [40] and the Voter model [41], where the opinion is represented by a dis-
crete number, commonly −1 or 1 to indicate the disagreement/agreement towards
a certain topic;

• Continuous-state opinion models such as the DeGroot model [42], the Friedkin-
Johnsen model [43], the Deffuant and Weisbuch model [44,45] and the Hegselmann-
Krause model [46] in which opinions are real numbers that lie in the range [0, 1],
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Figure 2.1. Sketch of the 3 main social emerging phenomena in opinion dynamics: from
left to right, consensus corresponds to the exact agreement onto a single opinion of the whole
group, fragmentation refers to the persistent disagreement on more than two opinions and
polarization concerns with the phenomenon of extremization of the opinions of the groups
towards two opposite opinions.

expressing the intensity towards two extremes of a spectrum regarding a certain
topic.

2.1 Discrete state space models
When it is necessary to represent situations with two (or more) alternatives, it may be
convenient to associate with each agent a discrete opinion, xi ∈ Z.

The Voter, Galam and Snajzd models are the most popular discrete opinion state
models [40, 47, 48]. They all share a basic mechanism:

• at each iteration, a pair of neighboring nodes is randomly selected,

• if their opinions are different, one of them changes it accordingly to an updating
rule,

• the updating stops when it reaches a steady state: consensus or stalemate

The Voter model was introduced in [49] and is called like that due to its political
applications. This model describes the social dynamics of public choices on social issues.
In the Voter model, all agents are placed in regular lattices, each agent’s opinion (or
choice) is denoted as a binary variable, and an agent updates his/her opinion based on
that of a randomly selected neighbor.

More formally, ∀i, xi(k) ∈ [±1]. The agent i will randomly select an agent j among
the four neighbors of the lattice and follow his/her opinion => xi(k + 1) = xj(k).

Galam model is based on the local majority rule, that is, in a small social group,
individuals always reach consensus as the minority subordinate to the majority. Agents
have discrete opinions ±1 and can interact with all other agents in an all-to-all graph.
At each time step, a group of r agents is selected randomly, and they all take the
most preferred opinion within the group. Defined x̃ as the mode of the opinions of a
neighborhood, Galam model prescribes
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xi(k + 1) = x̃j(k), ∀i = 1, . . . , r, ∀j ∈ Ni.
Snajzd model employs the theory of social impact [40] based on the consideration

that a group of individuals with the same opinion can influence their neighbors more
than one single individual. At each time step, a pair of neighboring agents is selected
and, if their opinion coincides, all their neighbors take that opinion. Otherwise, the
neighbors take contrasting opinions.

Formally,

• In each iteration, a pair of agents i and i + 1 is selected to influence their nearest
neighbors, i.e., the agents i − 1 and i + 2.

• If xi(k) = xi+1(k), then xi−1(k + 1) = xi+2(k + 1) = xi(k)

• If xi(k) = −xi+1(k), then xi−1(k + 1) = xi(k) and xi+2(k + 1) = xi+1(k)

These three models share a very intuitive modeling framework that is suitable to
represent discussion on a topic that involves few alternatives, such as political referendum
or product adoption. However, discrete opinion state models they are very simplistic as
they consider a predefined update rule that is not inspired by real world mechanisms
but is mostly random and overlooks the role of complex topology in determining the
opinion dynamics of the individuals. Moreover, they do not lend themselves to being
mathematically analyzed, they do not allow investigating transient dynamics because
they are not provided of any inertia mechanism. They are memory-less as updating
rule is based only on the current state of the agents, thus they cannot consider how
intrinsic beliefs influence agents in the opinion formation process. Finally, they cannot
describe the intensity of opinions towards a certain topic but only their preferences
among different alternatives.

2.2 Continuous state space models
For a more refined modeling of the opinion formation process, continuous state space
models have been proposed in the literature, as their nature of associating a real value
of an opinion from 0 to 1 lends itself to take into account an intensity of belief, rather
than a simple preference among options. They can be enriched by a set of parameters to
capture psychological traits of agents and can be studied not only to replicate collective
behaviors, but also for analyzing all the evolution of opinion formation process. In figure
2.2

2.3 Averaging linear models
The literature of opinion dynamics dates back to 1956 when the psychologist French [50]
proposed a mathematical model to represent social power, intended as the ability of an
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Figure 2.2. Taxonomy of the main opinion dynamics models categorized on the basis of
opinions’ update rules.

individual to influence the behavior of a social group. Then, about 20 years later, the
statistician DeGroot [42] revived the interest towards social systems presenting a very
similar model, called “iterative opinion pooling”, where the focus was shifted to study
how consensus can emerge in a group of people with different opinions. The model
proposed, in fact, is a decentralized iterative averaging algorithm in which each agent
modifies its opinion averaging the opinions of its neighbors, with no global knowledge of
the opinion profile, that is the opinion of all the group at a certain time instant.

From this groundbreaking model stems the entire category of models of opinion
dynamics based on the averaging process, a process of “compromise” in which opinions
of neighbors are attracted to each other to become more similar.

DeGroot
The evolution over time of the opinion of agent i can be described by means of an
averaging rule in the following way:

xi(t + 1) = wi1x1(t) + wi2x2(t) + . . . + winxn(t) (2.1)

That is, agent i updates his opinion xi(t+1) at time t+1 by taking a weighted average of
all the opinion of all other agents j at time t, where the weight that agent i gives to the
opinion of agent j is denoted by wij. If wij is 0, then the agent i is not influenced by agent
j in forming its opinion. The element wii ≥ 0 represents the openness of agent i to others’
opinions: if wii = 0 there is no self-reinforce of its opinion and the opinion formation
completely relies on the others’ opinions, whereas the agent with wii = 1 is a stubborn
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or so-called zealot agent, that remains anchored to its initial opinion xi(t) = xi(0)∀t. In
matrix form, Eq. (2.1) rewrites as

x(t + 1) = Wx(t) t = {0, 1, . . . , T} (2.2)

where W is a weighted non-negative row-stochastic adjacency matrix. Note that xi(t) ∈
R≥0, thus, the vector x(t) = [x1(t), . . . , xN(t)] ∈ RN represents the opinion profile at
time t of all N interconnected agents.

According to Perron-Frobenius theorem [9], if the matrix W is primitive and row-
stochastic the system is marginally stable, then the opinion profile at steady state will
be a consensus on the weighted-average of the initial opinions of the agents. If W is
doubly-stochastic, the consensus value will be exactly the average of the initial opinions.
In this sense, the system is said to have a “memory”, because the equilibrium point of
the agreement subspace, towards which the system converges to, is determined by the
initial conditions.

Figure 2.3. Evolution over time of opinions according to DeGroot model.

2.4 Beyond consensus
In classical engineering applications, such as fleets of drones, wireless sensor networks,
power grids, the main focus has been deriving under which condition synchronization or
consensus could emerge because the control tasks were mostly coordinating the entities
in order to achieve a collective task. Even in real complex systems such as small groups
of individuals, ant colonies, honeybees, or school of fishes, the emergent behavior is coop-
eration towards a common goal. However, when we shift towards a large-scale networked
system such as social networks encompassing millions of users or entire populations, the
emergent behaviors that we can observe are not always intended to collaboration or
compromise. Instead, many scientific studies have stressed the increment of social phe-
nomena like group polarization or anti-conformism, persistent disagreement (or known
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as fragmentation), manipulation or spreading of misinformation. These findings moti-
vate how important it is to model other phenomena beyond consensus that can capture
also antagonism or disagreement over social ties, and also stress how important is the
way in which information is conveyed and shares among peers.

Friedkin-Johnsen model
To make the study of opinion formation more adherent to the reality, variations of the
DeGroot model have been proposed during the last decades to investigate how different
social phenomena may arise. This has been done by encompassing in the agents’ dynam-
ics some additional psychological traits involved in an individual’s opinion formation
process. Whereas DeGroot model captures how a group of interconnected individu-
als can reach consensus of opinions via an averaging mechanism modelling conformism,
reaching consensus in real situations is not that common, especially when considering
a large social group, it can happen that different opinions coexist at steady state. This
phenomenon is called fragmentation.

The Friedkin-Johnsen (F-J) model is an extension of the DeGroot model, in which
each individual is assumed to be attached to its intrinsic belief with a certain intensity,
namely it could be more or less stubborn. In the seminal paper of Friedkin and Johnsen
[43], these prejudices of the agents are imagined being generated by some exogenous
conditions in the past.

In the classical version of F-J model [43], the interconnection among individuals is
represented by an undirected connected graph G = {V , E , W} where V is the set of the
N nodes or individuals, E = {(i, j) ⊆ V × V} is the set of edges, namely the links
connecting individuals and W are the weights associated to each link in E . The opinion
xi of the i-th agent at each time instant t evolves as follows:

xi(t + 1) = λi

∑
j∈Ni

wijxj(t) + (1 − λi)xi(0) (2.3)

where λi ∈ [0, 1] is the phycological trait of being susceptible to the social pressure of
the agent i, namely it represents the complement to the stubbornness of the agent: the
more susceptible is to the opinion of other neighbors the less stubborn is and vice versa.
The averaging occurs over the set of the neighbors of agent i : Ni = {i ∈ V : (i, j) ∈ E},
and wij = 1

|Ni| weighs the opinion of neighbor j, where | · | denotes the cardinality of a
set. Finally xi(0), that is, the opinion of agent i at the beginning, represent its prejudice
toward a certain topic of discussion.

In matrix form, the model translates in:

x(t + 1) = ΛWx(t) + (In − Λ)x(0) (2.4)

where Λ = diag{λ} is the diagonal matrix of the susceptibilities of each individual,
IN is the identity matrix of size N , W is the row-stochastic matrix whose element wij
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is how much agent i weighs the opinion of agent j, and x(0) is the state vector of the
initial opinions of the network.

Assuming that Λ ̸= In, that is, there exists at least one non-stubborn agent, the
opinions of the agents will converge [51] at steady-state toward x̄ = [x̄1, . . . , x̄n]T :

x̄ = (In − ΛW )−1(In − Λ)x(0) (2.5)

It can be shown that this equilibrium point x̄ is globally asymptotically stable [52]
and belongs to the convex hull of the initial conditions barx ∈ co(x(0)), modelling the
fact that the discussion among people yields the opinions to get closer to each other,
namely shrinking the opinion profile even though the steady state is not consensus in
general, i.e. x̄i ̸= x̄j.

As for the previous model, in the Friedkin-Johnsen there is a “memory effect” of the
initial opinions in the outcome of the interaction process among the agents by considering
inhomogeneous terms, functions of the initial conditions. Different from the majority of
opinion dynamics models proposed in the literature, this model has been experimentally
validated for small and medium-size groups, as reported in [53–55].Thus, this F-J enables
to model a well-known sociological behavior that emerges in real-world communication.

Figure 2.4. Evolution over time of opinions according to F-J model.

2.5 Modelling sophisticated social traits with
nonlinear coupling

Stubbornness is not the only psychological trait that influences the opinion formation pro-
cess, resulting in disagreement. Also, competitiveness or cognitive biases can (mis)guide



46 2 Complex networks of social systems: opinion dynamics models

us in interacting with other people on a certain topic. Among the different updating
rules proposed to capture disagreement, we recall the following well-established ones:
antagonistic interactions [56–58], interacting only people with similar opinions [46, 59],
imitation or herding [37, 60].
In the following, there is a brief description of some emblematic averaging models with
nonlinear coupling-weight dynamics.

Altafini model

In order to encompass also negative ties that links interconnected people such as com-
petitiveness or antagonism, Altafini in 2012 [56,61] proposed an opinion dynamics model
that occurs on a signed graph based on the following intuitive assumption: if positive
edges correspond to collaboration, trust, or cooperation among the agents, then negative
edges should correspond to antagonism, mistrust, or rivalry. He extended the consensus
algorithm to the case where there are antagonistic interactions, considering structurally
balanced graphs. Moreover, these negative ties can lead to boomerang effects, first de-
scribed in [62]: in the process of persuasion, opinions (even close to each other initially)
can become opposite. we define a structurally balanced graph as a network that can
be partitioned into two vertex subsets, such that intra-group edges are all positive and
inter-group edges are all negative. When a graph is structurally balance, we can achieve
the so-called bipartite consensus where agents are split into two disjoint subcommunities
V1, V2 : V1 + V2 = V

|x(k)| k→∞−→ x∗ →

 xi(k) k→∞−→ x∗ ∈ V1

xj(k) k→∞−→ −x∗ ∈ V2

Figure 2.5. Evolution over time of opinions according to Altafini model.
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Bounded confidence models
Disagreement cannot persist only when there are antagonistic ties. Another way of
modelling this phenomenon is reflecting upon the fact that individuals are more likely
to weigh positively opinions of like-minded individuals and to discard the ones that are
too far away from its own, this bias is known in psychology as biased assimilation [59].
The opinion dynamics models that focuses on how people tend to group together with
similar individuals, aka homophily [63], are called bounded confidence models [44, 46].

Hegselmann-Krause model
The Hegselmann-Krause (H-K) model [46] is quite similar to the DeGroot, the subtle yet
significant difference is the set of neighbors of each agent i is time-varying as it is defined
in the basis of the opinions at each time instant: each individual is connected only with
the ones whose opinions differ from them by no more than a certain confidence level ϵ.
In this model, the opinion xi(t) is a real number ∈ [0, 1], and two opinions are similar if
the absolute value of their difference |xi(t) − xj(t)| is smaller than the threshold ϵ ∈ R.

The resulting time-varying non-linear opinions updating rule is

xi(t + 1) = 1∑n
j=1 wij(xi(t))

n∑
j=1

wij(xi(t))xj(t) (2.6)

{
wij(x(t)) = 1 if |xi(t) − xj(t)| ≤ ϵ
wij(x(t)) = 0 otherwise

This model is able to capture what in literature is called “strong diversity” that is the
opinion profile at steady-state will converge to a configuration of persistent disagreement
or fragmentation, with a range of different opinion values. However, in H-K model if
an agent i disregards the opinion of agent j because they do not fall in their confidence
bound, a split in their connection occurs and cannot be reestablished, a fact that is it
not so common in real world. Agent i interacts only with like-minded agents defined by
a certain confidence level ε.

For each agent i we denote a confidence set as

D(i, x) = {1 ≤ j ≤ n, |xi − xj| ≤ ε}

The update rule consists in an average of the trusted agent opinions

xi(k + 1) = |D(i, x(k))|−1 ∑
j∈D(i,x(k))

xj(k)

The possible asymptotic behaviors are three: fragmentation, polarization (fragmentation
in only to groups) or consensus, depending on ε.
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Figure 2.6. Evolution over time of opinions according to H-K model at varying ε.

Deffuant-Weisbuch model
The Deffuant-Weisbuch model is very similar to the HK model and it is defined by the
following updating rule:

xi (k + 1) = xi (k) + µ(xj (k) − xi(k)) (2.7a)
xj (k + 1) = xj (k) + µ(xi (k) − xj(k)) (2.7b)

where µ is the so-called learning rate that usually lies in (0, 0.5] to avoid crossover.
The update takes place only if |xi(k) − xj(k)| ≤ ε. The main difference is that the
update is not synchronous for all agents: at each time instant, two agents are randomly
chosen from the set of all individuals. Depending on the parameters � and µ, a consensus,
polarization, or fragmentation of opinion distribution will be obtained.

2.6 Cutting-edge models
Beyond the classical opinion dynamics models that laid the foundations of this research
field, a lot of new models have been proposed in the literature recently [64–71]. They
revisit and combine well-established models or propose new frameworks to take into ac-
count more complex mechanisms such as accounting for multiple opinions simultaneously
onto different topics (multidimensional opinion state space), multi-body interactions go-
ing beyond peer-to-peer communication ties, sequential topic discussion, discrepancies
in what we think and what we say etc. In the following, some interesting examples
of these cutting-edge models are briefly reported, also to show how they rely on the
classical models in their main mechanisms.

Expressed and private opinion (EPO) model
To take into account that more often than not individuals tend not to be completely
sincere about what they think, due to peer pressure, shame, willingness to conform, the



2.6 Cutting-edge models 49

author of [37] proposed an opinion dynamics model to study the discrepancy between
private and expressed opinion can arise in social groups.

Each individual in the network has both a private and an expressed opinion: an
individual’s private opinion evolves under social influence of the average of the expressed
opinions of its neighbors, whereas the agent updates its expressed opinion modifying his
private opinion under the pressure to conform to the average of the expressed opinions
of its neighbors.

Formally, private opinion of agent i, xi(t) evolves as

xi(t + 1) = λiwiixi(t) + λi

n∑
i ̸=j

wij
ˆxi(t) + (1 − λi)xi(0) (2.8)

and expressed opinion x̂i(t) is updated according to

x̂i(t + 1) = ϕixi(t) + (1 − ϕi)x̂avg(t) (2.9)

where x̂avg(t) =
∑n

i=1 xi(t)
n

is called the public opinion and ϕi ∈ [0, 1] is a resilience
parameter, that is the ability for individual to withstand group pressure.

We can observe that an individual’s expressed opinion is a convex combination of
his/her private opinion and the public opinion in the previous round of discussion. The
private opinion evolves according to the F-J with the peculiarity that only the expressed
opinions are known (observable) by each agent.

Figure 2.7. Evolution over time of opinions according to EPO model.

Continuous Opinions Discrete Actions model
The Continuous Opinions Discrete Actions (CODA) model proposed by Martins [72] is
a hybrid model where each individual is only aware of the (discrete) choices of other
individuals, whereas their (continuous) opinions remains private. It has been initially
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proposed to explain the emergence of extreme opinions in the population, but it is also
the first attempt to model simultaneously the evolution of opinions and decisions. This
model consists of three key ingredients:

• opinions are continuous variables bounded between 0 and 1, and they are private
(unobservable)

• individuals can take binary actions that are observable;

• individuals update opinions by incorporating peer behavior using a Bayesian up-
date rule;

Initially, agent i has a given opinion pi(0) ∈ (0, 1) about which decision qi is better.
The action value qi(k) ∈ {0, 1} is a quantized version of pi(k) defined by:

qi(k) =


0 ifpi(k) < 0.5
0 ifpi(k) = 0.5andpi(k − 1) < 0.5
1 otherwise

Each agent has access only to the action of its neighbors. The opinion of agent i
updates according to the following rule:

pi(k + 1) = pi(k) + pi(k) (1 − pi(k))
ni

∑
j∈Ni

(qj(k) − pi(k))

The model can capture different behaviors observed in networks of social groups such as
dissensus, clustering, oscillations, opinion propagation [73].

Nonlinear opinion dynamics model
Recently, in [74], has been proposed a model that claims to be a generalization of most of
the classical models presented in the previous section, and still to avoid a paradox that
constitutes a limitation of averaging linear models. Indeed, this mechanism implies that
the strength of the coupling between the opinions of two individuals increase linearly
with their difference. It means that the more divergent the two agents’opinions are, the
more strongly they will be attracted to each other. This is not the case in many real
cases, where two individuals with too divergent opinions will rarely compromise to agree
on the same opinion, indeed this consideration is the one that has inspired bounded
confidence models.

This recent model presents a generalized framework in which the opinion update
process is nonlinear, introducing a saturation of the opinion exchange, meaning that,
given an agent i and its neighbors j ∈ Ni, there is a certain threshold onto the difference
of opinions xi − xj beyond which the influence that the others can have on the opinion
of agent i is limited.

The general formulation of the multi-option model is quite complicated. Thus, let
us first introduce some quantities
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• No ≥ 2 is the number of available options

• Na is the number of agents

• Zi = (zij, i = 1, . . . , Na, j = 1, . . . , No) is the vector of state variable associated to
agent i

• Z = (Z1, . . . , ZNa) = is the whole system state matrix

• di > 0 weighs the linear resistance term

• ui ≥ 0 weighs the social influence term

• bij is the input (bias) of agent i on option j

When the resistance parameter di dominates the attention parameter ui, it means
that the agent is weakly susceptible to other agents’ opinions. When ui dominates di,
the agent is strongly attentive to other agents’ opinions. A shift from a weakly attentive
to a strongly attentive state can be induced, for instance, by a time urgency (election day
approaching) or a spatial-urgency (target getting closer) to form an informed collective
opinion. Then, we have four gains of the couplings αi, βi, γik, δik i ̸= k

• αi intra-agent same option coupling

• βi intra-agent inter-option coupling

• δik inter-agent same option coupling

• γik inter-agent inter-option coupling

Note that αi ≥ 0 as options are self-reinforcing, βi < 0 as options are mutually
exclusive, if (γik − δik) > 0 agents cooperate because agent i give credit to agent k ’s
preference, otherwise (γik − δik) < 0 agents compete because agent i prefers what agent
k dislike.

Now we can provide the general formulation

Żi = P0Fij(z)

Fij(z) = −dizij + ui

S1

αizij +
Na∑
k=1
k ̸=i

γikzkj

+
No∑
l=1
l ̸=j

S2

βizil +
Na∑
k=1
k ̸=i

δikzkl


+ bij

Furthermore, let us note that the larger di is, the more resistance the agent has in
forming an opinion. If all the other terms are zero, then it drives the systems towards
the neutral point, the indecisiveness. Moreover, the social influence term can act only
in a bounded way in either direction, as opinion exchanges are saturated. Finally, note
that if ui is small it means that inertia dominates thus, the system behaves linearly
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Figure 2.8. Representation of the four couplings of the general version of this model.

zi ≈ bij. Otherwise, if ui is large, social pressure dominates, hence the system behaves
non linearly |zi| ≫ |bij| .

This model prescribes a particular single dynamics such as ẋi = −dixi + uiS(xi)
Hence, this intrinsic dynamics of opinion formation can give a rise to a bifurcation,

even in the absence of inputs, as long as the attention parameter is sufficiently high,
that is the opinions at steady state can be more extreme than the initial ones.

Figure 2.9. Evolution over time of the opinion of a single agent at varying its initial conditions.

Beyond capturing opinion formation starting from indecisiveness, this model, adding
a nonlinear coupling, is able to replicate behaviors of the classical opinion dynamics
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models as simplified subcases and a rich ensemble of properties that cannot be captured
by linear models such as multistable agreement and disagreement, tunable sensitivity
to input, robustness to disturbance, opinion cascades. In continuous time linear mod-
els, consensus on non-zeros values and dissensus are never exponentially asymptotically
stable because the Jacobian of these models have a zero eigenvalue. Saturating opinion
exchanges makes the model structurally stable, the equilibria hyperbolic, and it weak-
ens the conditions for stable disagreements in steady states (e.g., balanced coupling of
network graph or time-varying structure). Non-linearity enables the coexistence and
simultaneous stability of many consensus and dissensus equilibria.

In the case of the classical two-options model, at steady state we have bistability
with two stable equilibria and the neutral state as unstable equilibria

More formally, the two-options model is

ẋi = −dixi + uiŜ(αixi +
n∑

k=1
k ̸=i

γi,kxk) + bi (2.10)

Figure 2.10. Evolution over time of opinions according to the two-option model in a network
of 100 individuals.
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2.7 Critical overview
Wanting to contribute to a critical insight of the wide literature on opinion dynamics,
here I try to briefly state what has been done up to now and what are the gaps and
the new perspectives that I found to be the most relevant underlining, among them, the
ones I tried to address by means of my research work. Indeed, my attempt in this thesis
has been developing a modeling framework for the coevolution of opinion dynamics and
collective decision-making in complex social systems that could

1. be representative of the dynamics over time of large social networks;

2. bridge the gap between opinion dynamics and decision-making;

3. capture the role of influencers in opinion formation;

4. be tuned on data.

Network control theory has brought new life to the opinion dynamics literature,
rooted in 1950, because, thanks to its mathematical tools, it enables us to model, ana-
lyze in rigorous fashion and replicate some collective behaviors that occurs in real-world
situations that encompass social groups. Opinion dynamics models helped to shed some
light on the underlying mechanisms that regulate social interaction and opinion forma-
tion over time: it helped comprehend how people in a society or network influence each
other’s opinions, gain insights into human behavior, collective decision-making, and the
emergence of shared norms and beliefs, understand how network structures influence
the likelihood of consensus or polarization, together with network theory helps us under-
stand how the topology of connections affects the speed of information spread, provide
insights into the mechanisms behind the dissemination of information, rumors, and news,
provide valuable insights for policymakers, social scientists, and organizations when con-
sidering potential outcomes of different interventions or strategies, provide insights into
strategies to mitigate the negative consequences of extreme polarization while fostering
healthy debate. As stated in [75] “Idealized models of opinions dynamics are useful as
proofs of concept to test the consistency of descriptive theories of collective behavior,
and to explore the potential outcomes of sociopolitical scenarios based on simplified hy-
potheses of human interaction.” However, there are still some gaps that need to be filled
in order to exploit the full potentiality of opinion dynamics.

Issue 1 Indeed, a lot of work has been devoted to study in which conditions consensus
can emerge or be induced. Consensus formation has attracted most of the attention from
the researchers because of its practical usefulness in some societal-relevant applications.
It has been thought that reaching consensus was critical in a decision-making process
ranging from politics to health education to economics. However, nowadays, the amount
of interconnections and also the way how people can interact with each other has changed
so drastically that consensus might not be the most interesting regime state that systems
may reach [76]. In fact, if we consider large complex networks of individuals, it is quite
unrealistic that they all agree on a topic, as it is evident from social networks debates
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daily. Fragmentation and polarization are the most common scenarios that we can
observe in reality. Some studies like [77, 78] tried to replicate or minimize polarization.
In this thesis, we wanted to unveil the mechanism of influencing opinions so to exploit
the knowledge of such collective behaviors and take them into account when trying to
diffuse some idea in the network in support of vaccine willingness or product adoption.

Issue 2 The study of dynamical models of opinion evolution on social networks has
drawn the interest also of the control community because as stated in [39]

“Opinions and beliefs are at the basis of behavior, and can be seen as the in-
ternal state of individuals that drives a certain action. Hence understanding
opinion formation and evolution is key to explaining human choices. Opin-
ion formation is a complex process depending on the information that we
collect from peers or other external sources, among which mass media are
certainly the most predominant. Hence, understanding how these different
forces interact can give insight into how complex non-trivial collective human
behavior emerges and how well formulated information may drive individuals
toward a virtuous behavior.”

With the development of information and network technology, opinion dynamics on
social network is often an integral part of large-scale decision-making [79]. Many works
point out that a bridge lacks between opinion dynamics and Group Decision Making
(GDM) research: for example, on one hand, deploying complex networks topologies
(e.g., Erdős-Rényi random graph or the scale-free network) to represent the relationships
among decision makers, has been a tool overlooked in GDM literature. On the other
hand, there are only few works trying to model at the same time how the opinion
disagreement translates into agents’ decisions. Moreover, Noorazar in [76] highlighted
the need to study more deeply the presence of non-cooperative agents. Indeed, the
premise at the base of all the literature on consensus formation was that the people
were cooperative and willing to compromise in order to get cohesion on a topic, an
assumption that seems reasonable for example when considering small groups of people
in a meeting trying to come up with new ideas or initiatives, but this is not the case of
public discussions.

Issue 3 Strictly linked to the previous point, there is the issue of how opinion for-
mation processes can be (intentionally) influenced: some individuals may manipulate
the opinions and relationships towards an established purpose. Indeed, even though the
majority of individuals in a society have quite similar behaviors, say ordinary, there exist
a minority of individuals with specific characteristics such as opinion leaders, informed
agents, stubborn agents or zealots and contrarians. Opinion leaders can be defined as
individuals who have a great amount of influence on the decision-making of other peo-
ple [80]. The influencers have a crucial role in determining the opinion formation of
other agents. Identifying influencers can be key in different fields of applications such as
in marketing to efficiently promote the adoption of new products by means of targeted
advertising [81]; political science where opinion leaders propagate their beliefs and norms
to the population arena [82]; public health that support the adoption of evidence-based
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healthcare initiatives [83];education in which they can actively contribute to enhancing
teaching quality, shaping student perspectives [84]. A plethora of methods to detect
influencers in social networks have been proposed in the past 40 years, being differ-
ent based on the research field of origin. They can be mainly classified into centrality
measures, link topological ranking measures, entropy measures, and node embedding
measures [85,86]. The effort in this thesis is to link influencer detection, opinion dynam-
ics and control theory to model the effect of this “particular individuals” in the opinion
formation and decision-making process.

Issue 4 Even though agent-based opinion dynamics models have a powerful explana-
tory nature, their predictive one is rather limited by parameter tuning that still rep-
resents a significant challenge: in [87] it is claimed that “there is a striking imbalance
between empirical evidence and theoretical modelization, in favor of the latter”. Gener-
ally, studies in opinion dynamics devote a lot of attention to simulation analyses, but
the data sets used are often from random data in simulations, and there are few studies
involving the opinion dynamics simulations analysis with real data [38]. Moreover, tran-
sient dynamics and the memory effect of social interaction have been overlooked [88] and
more complete datasets could enable also the tuning of the timescale of the evolution
over time of opinions, namely giving a real estimate of how long the time step and the
transient are and thus how long it takes to reach the steady state predicted by the model.
This motivates our attempt to use real data from surveys or social networks to provide
of an empirical validation of these interesting models that have not been fully exploited
in all their potential.

Different from other types of data, gathering empirical data on opinions poses chal-
lenges, as it requires transforming opinions expressed in words into measurable quantities
suitable for mathematical modeling. Moreover, there is the problem of how to collect
these data. The two major sources are surveys and online social media data, and both
are not free of limitations: surveys are the most intuitive way of collecting opinions of
people, as they come from a design of experiment in which what and how to ask is care-
fully decided to retrieve data reliably. Surveys are easy to interpret as they are made
for acquiring information and can be statistically representative even if administrated
to a small group of people as individuals can be selected to have a sample stratified
for categories as age, income, educational background etcetera. However, they come
with some drawbacks, as they are costly and time-consuming both in the design and
informtion collection phases. Furthermore, there is risk of biased answers due to bore-
dom, willing not to express opinions that are perceived as minority. Finally, surveys do
not provide information on how opinions have formed. On the other hand, online social
networks could seem like a goldmine of freely expression of individuals’ ideas, and it is
also possible to investigate how people change opinions over time and how they interact
with other users. However retrieving data from social media requires automated data
processing tools which do not guarantee that the translation from words to numbers is
reliable and free of noise. Moreover, the population that “lives” on social networks may
not be representative of the one in real life. Thus, it is desirable to use both sources of
information carefully, being aware of their potential and their limitations.

Anyhow, this difficulty in collecting reliable data has led to the dominance of mod-
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eling and simulation at the expenses of experimental works in the field. Sociological
theories are translated into mathematical rules, often relying on common sense rather
than empirical validation [88], even though the relevance of these models of probing sce-
narios, testing theoretical consistency, and exploring emergent behaviors [75] remains
indubitable.
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Contributions





Contributions
In the following a summary of each work included in this thesis is presented.

Paper A – Partial Controllability of Network
Dynamical Systems With Unilateral Inputs
Paper A is a reformatted version of

C. Ancona, F. Lo Iudice, A. Coppola, P. De Lellis and F. Garofalo, “Partial
Controllability of Network Dynamical Systems With Unilateral Inputs,” in IEEE

Control Systems Letters, vol. 6, pp. 2252-2257, 2022, doi:
10.1109/LCSYS.2022.3140208.

Summary: Our ability to control network dynamical systems is often hindered by
constraints on the number and nature of the available control actions, which make con-
trolling the whole network unfeasible. In this letter, we focus on the case where unilateral
inputs are exerted on a subset of the network nodes. Leveraging the observation that,
different from the case of subsystems, unilateral node reachability and controllability
are equivalent, we provide conditions for a given node subset to be unilaterally control-
lable. The theoretical findings are then employed to develop a computationally efficient
heuristic to select the nodes where the unilateral inputs should be injected.

Authors’ contributions: The author of this thesis contributed with the other
authors to theoretical derivations and to the drafting of the manuscript. Numerical
simulations were devised and implemented by the author of the thesis.
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Paper B – Partial observability of complex
networks
Paper B is a draft version of an ongoing work

Summary:The study of the controllability properties of complex networks has been
the focus of numerous researchers in the past decade. When a network is considered
as a whole, indeed all controllability results extend to the case of observability as well.
However, when controllability and observability are sought of only a fraction of the
network nodes, or in other words of a given subnetwork, then the subtle yet significant
differences between a network and a large-scale dynamical system arise, leading to the
surprising observation that the theoretical tools used to study subnetwork controllability
do not extend to subnetwork observability. In this work we show that this loss of duality
between controllability and observability of complex networks reflects into a substantial
difference in our ability of controlling and observing complex subnetworks and it brings
out the need of finding a novel strategy to place sensor nodes with respect to the well-
established one for driver nodes selection.

Authors’ contributions: The author of this thesis contributed with the other
authors to the devise of heuristic algorithms and to the drafting of the manuscript.
Numerical simulations were devised and implemented by the author of the thesis.
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Paper C – Influencing Opinions in a Nonlinear
Pinning Control Model
Paper C is a reformatted version of

C. Ancona, P. De Lellis and F. Lo Iudice, “Influencing Opinions in a Nonlinear
Pinning Control Model,” in IEEE Control Systems Letters, vol. 7, pp. 1945-1950,

2023, doi: 10.1109/LCSYS.2023.3284342.

Summary: This letter studies how opinions and subsequent actions of groups of
individuals are shaped by opinion leaders, nowadays denoted influencers. We model an
influencer as a pinner that exerts a control input on a small subset of individuals, and
leverages the interaction network to affect the action of a large fraction of individuals. We
provide sufficient conditions so that a given agent takes the same action as the pinner.
Based on these conditions, we design a heuristic for the pinned node selection that
maximizes the number of nodes taking the action elected by the pinner. The performance
of the heuristic is then numerically tested against standard pinning strategies.

Authors’ contributions: The author of this thesis contributed with the other
authors to theoretical derivations and to the drafting of the manuscript. Numerical
simulations were devised and implemented by the author of the thesis.
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Paper D – A model-based opinion dynamics
approach to tackle vaccine hesitancy
Paper D is a reformatted version of

Ancona, C., Iudice, F.L., Garofalo, F. et al. A model-based opinion dynamics approach
to tackle vaccine hesitancy. Sci Rep 12, 11835 (2022).

https://doi.org/10.1038/s41598-022-15082-0

Summary: Uncovering the mechanisms underlying the diffusion of vaccine hesi-
tancy is crucial in fighting epidemic spreading. Toward this ambitious goal, we treat
vaccine hesitancy as an opinion, whose diffusion in a social group can be shaped over time
by the influence of personal beliefs, social pressure, and other exogenous actions, such
as pro-vaccine campaigns. We propose a simple mathematical model that, calibrated
on survey data, can predict the modification of the pre-existing individual willingness
to be vaccinated and estimate the fraction of a population that is expected to adhere
to an immunization program. This work paves the way for enabling tools from net-
work control towards the simulation of different intervention plans and the design of
more effective targeted pro-vaccine campaigns. Compared to traditional mass media
alternatives, these model-based campaigns can exploit the structural properties of social
networks to provide a potentially pivotal advantage in epidemic mitigation.

Authors’ contributions: The author of this thesis contributed with the other
authors to theoretical derivations and to the drafting of the manuscript. Numerical
simulations were devised and implemented by the author of the thesis.
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In this thesis, different models and problem formulations have been considered, nev-
ertheless all of them aim to investigate how the complexity and control theory tools can
help modelling, analyzing and validating what-if scenarios of collective behaviors that
can emerge in groups of interconnected individuals to ultimately provide a support for
decision-making processes in social systems.

In Paper A, we analyze the controllability property of a simple LTI model and con-
sider economic and physical constraints to the available control inputs. Nameluy, the
inputs are assumed to be limited in number and unilateral, i.e., they can take either pos-
itive or negative values but not both. This scenario is reasonable when trying to steer
the states of a large scale network of dynamical systems towards a desired equilibrium.
Considering the context of shaping the opinion formation process of a large group of
interconnected individuals, we can think of government bodies that want to ensure that
a new initiative will bring the expected outcome, considering the limited budget and the
fact that they can provide an incentive/fee but not both on the same issue, or a company
that, not being allowed to make comparative advertising as in Italy, can only promote
its products and want to know how effective could be its campaign in convincing people
to buy its products. Thus, having at disposal a theoretical framework that can provide
conditions on effectiveness of their measure can represent a competitive advantage on
the market.

Paper B tackles the problem of conferring observability to the largest subnetwork
of a complex network of LTI dynamical systems in case the number of sensors at dis-
posal is strictly smaller than the one required to observe all the nodes of the network.
We highlight the differences in considering subsystems and subnetworks and propose a
heuristic to maximize the number of observable nodes in the network. If we interpret
the LTI network systems as a social group discussing on the adoption of a product, we
can translate the ability to observe the network dynamics in practical implications like
reconstructing the behavior of consumers to have feedback on effectiveness of targeted
advertising promoted by some company or monitoring the acceptance of a certain social
norm furthered by government bodies.

Paper C investigates the role of opinion leaders in influencing the opinion and thus the
action of a group of interconnected individuals. To do so, a nonlinear opinion dynamics
model, one of the most recent and complete available in the literature, is studied in the
presence of a virtual node, a pinner, that exert its influence on a subset of individuals
with the goal of convincing them to take its own action. This phenomenon is what can
be seen on social media, like Twitter, where an individual that has gained social power
is not influenced by the other in the community but tends to promote a certain action
(for instance, a stance in a political referendum or a preference among similar product
of different brands). Theoretical conditions are derived so that an individual takes the
same action as the pinner, and they are leveraged to devise a strategy to maximize the
number of people that follow the opinion leader.

In Paper D, we consider a classic opinion dynamics model, that by Friedkin-Johnsen,
that can capture the attachment of each individual towards an intrinsic belief, and try to
make a step in bridging the gap between the descriptive capability of opinion dynamics
models and the predictive potential that these models have by tuning its parameters on
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survey data. To do so, we consider the paradigmatic example of COVID-19 vaccination
to capture how on one hand, the fragmentation of opinions towards this divisive topic
is related to taking an actual action (agent-based decision-making process), and on the
other hand, how having a model could benefit the government bodies, who promoted
the awareness vaccination campaigns, to decide towards who they should devote their
effort to gain the largest increase in vaccination acceptance. To do so, methods from
parametric identification have been used as well as data sources from surveys on vaccine
willingness of a representative sample of Italian citizen at the beginning of the vaccination
campaign together with a network of interactions borrowed from Facebook. On this
testbed the effectiveness of different vaccination campaigns differing for the criterion
with which individuals were targeted to diffuse vaccine acceptance was evaluated in
what-if scenarios.

Papers A, C, D have been already published in Q1-ranked journals, whereas paper
B is a draft version of a paper in the process of being submitted soon.



CHAPTER 3
On controllability and

observability of subnetwork
of dynamical systems

Introduction and Motivation

For what concerns the theoretical-oriented works in this thesis, they address the analysis
of complex dynamical networks properties such as controllability and observability. Be-
ing able to control and observe the complex network of dynamical systems is an essential
goal because it enables us respectively to bring the network’s elements from any initial
state to a target one or to reconstruct any initial states thanks to known inputs and
measured outputs. Control and observation are key issues in most complex networks
related problems because the ultimate proof of deeply understanding the dynamics of
interaction between elements of a certain system is, on one hand, to be able to influence
their behavior towards to a desired one and on the other hand to monitoring if above-
mentioned control is actually effective. Conferring these desired properties to networks
of interest could be cumbersome when feasibility constraints hold [89], such as when we
can deploy only unilateral inputs, that is inputs can assume only positive or negative
values, for example just think of international trade networks: economic policies such as
import restrictions and tolls as well as subsidies of the domestic production acts as one-
sided controls. The paper [90] addresses this particular issue, providing both theoretical
results and heuristic solutions to find the maximal complex dynamical subnetworks when
both limited number of actuators and unilateral control inputs are the only available.
Indeed, another common and relevant issue in real large-scale applications is that of the
availability and the selection of actuators/sensors to control/monitor the network of in-
teractions is constrained by both economical and physical limitations [24]. Hence, there
is the need to select actuators/sensors in an optimal way to confer desired properties
to the largest subnetwork possible. Analytical and heuristic solutions has been already
proposed in the literature for ensuring the controllability and observability of the whole
network, however, being often an unfeasible problem for large-scale networks, our article
aim to fill the gap for what concerns the partial framework, namely the controllability
and observability of the largest subnetwork. In particular, the work entitled “Observabil-
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ity of complex dynamical networks” deals with the partial observability problem, that
is observing the largest subnetwork possible, proposing a smart sensor node selection in
order to maximize our ability to observe a complex network in case of a limited number
of sensors available. This work lends itself to market-oriented applications or more gen-
erally to all the cases in which there is the need of monitoring the evolution over time of
some dynamics occurring on a network or the effectiveness of some designed campaigns:
for example, the potential could be to dynamically observe the customers preferences, in
order to give the company a competitive advantage, enabling it to use the reconstructed
tastes as an input to improve the design process of new products or existing items or to
estimate the perception of people on a key societal issue related to education or health to
collect information that could drive the decision-making onto next initiatives. Sticking
with the former example, the ultimate goal would be that of creating a dynamical feed-
back loop between product innovation and customers preferences in order to update the
real needs and desires of the consumer. The idea of reconstructing costumer preferences
is not brand new because companies already monitor our navigation data to reconstruct
our purchases preferences as we can notice each time a site ask us for the cookie con-
sent. The innovation of our approach stands in an agent-based modeling approach, that
is, looking at the customers who share their purchases preferences as a network where
the node represents the customer and the link between them represent their interaction.
Thanks to opinion dynamics theory, we can model the opinions’ evolution as a dynam-
ical system, to which we can apply the tools of control theory to observe and predict
how opinions change over time. This could strongly support the design or rethinking of
products in order to dynamically adapt them to the customers’ needs, reducing the gap
between demand and offer.
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3.1 Paper A - Partial controllability of network
dynamical systems with unilateral inputs

In the last decade, since the publication of Liu’s work [28] revived the interest towards
classical control problems in the complex network framework, a lot of work have been
devoted to modeling, mathematically analyze and derive conditions under which net-
work complex systems can be controlled [91–96], with a particular attention to design
decentralized control strategies to induce the emergence of collective behaviors, mostly
synchronization and consensus [97–100]. However, as we stated in Section 1, control-
lability is a prerequisite of control design, thus many works focused on translating the
concept of controllability of dynamical systems to the complex networks of dynamical
systems’ framework, solving the minimal controllability problem, that is finding the min-
imum set of driver nodes, that, if injected with control inputs, can guarantee complete
controllability [101, 102], minimum energy problems that take into account also the en-
ergy required to make the network controllable [103–105]. the next step has been the
one to address more realistic scenario that account for the fact that achieving complete
network controllability can be unnecessary or unfeasible, due to the limited amount of
actuators and thus the problem of partial controllability, namely controlling the largest
subnetwork, arise [24, 106].

A further restriction on the nature of control inputs, typically overlooked in the
literature on network control, is their sign over time, namely only unilateral inputs
are available [107, 108]. Application areas with naturally unilateral control inputs in-
clude the optimal power flow problem in power grids, where nodes are either loads that
absorbs power or generators producing it and not vice versa [109,110], in biological net-
works with nodes corresponding to molecular components, a drug acting on a molecule
constitutes a control action that can inhibit or activate genes but not both simultane-
ously [111], control of wire-driven parallel robots that can be only pushed or pulled on a
plane [112, 113], marketing campaigns where comparative advertising is forbidden thus
it is not possible to simultaneously promote a product and discourage the adoption of
the competitors [114], Other examples of unilateral controls can be found in mobility
networks transport measures like traffic lights or speed limitations, in international trade
networks trade policies such as import restrictions and tolls as well as subsidies of the
domestic production, in water distribution networks, pumps and valves [108].

The first articles tackling the problem of considering constrained control inputs dealt
with null-controllability of dynamical systems [115,116], but recently the same problem
has been addressed in the network dynamical systems’ framework. In [108] the minimal
input problem have been mathematically solved to make the whole network unilaterally
controllable. The literature gap that we filled with this work has been tackling the
controllability problem of a subset of the network nodes with unilateral inputs. This
translates to a control design problem to select the actuator nodes to maximize the num-
ber of nodes unilaterally controllable. When considering unilateral inputs, the network
controllability cannot be studied through structural approaches, nor through classical
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Figure 3.1. Application areas where unilateral inputs naturally exists.

Figure 3.2. Disposing of only unilateral control hinder our ability of conferring controllability
to networks: in this toy example with a two-node network where we control node 1 with a
positive input, differently from the unconstrained case, we cannot control the whole network.

algebraic controllability tests for LTI systems. Having at disposal less theoretical tools
to solve this particular controllability problem makes it more challenging than the un-
constrained case, see Fig. 3.2. We tackled this problem by first characterizing the part
of the state space that is unilaterally controllable, namely the convex cone containing
the unilaterally controllable subspace, which we show to differ from the one containing
the unilaterally reachable states. Then, by means of a suitable projection, we translated
these results for network dynamical systems, to finally derive the conditions for unilat-
eral reachability and controllability of a node subset that we showed to be equivalent for
networks. To solve the minimal driver node selection strategy for maximizing the unilat-
erally controllable subnetwork we proposed a greedy heuristic based on the theoretical
findings, which provided a suboptimal solution to the NP-hard problem of maximizing
the number of unilaterally controllable nodes.
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Preliminaries
Some preliminaries on vectors, matrices and geometric definitions are provided in addi-
tion to the theoretical background in section 1.1 for the sake of clarity.

Let us recall that a real matrix M ∈ Rm×m is diagonalizable if and only if all of its
eigenvalues are semisimple, that is, their algebraic and geometric multiplicity coincide.
Given a set H, we denote by |H| its cardinality, and given a vector space, we denote by
0 its origin. Given a real vector space Rn, we denote by Rn

≥0 (Rn
≤0) the set of vectors in

Rn with nonnegative entries. Let D be a set of |D| = k vectors d1, . . . , dk in Rn, Span(D)
is the set of all linear combinations of the vectors in D. Additionally, the positive span
Span+(D) of D is the set of all linear combinations with nonnegative coefficients, that is,
Span+(D) = {∑k

i=1 αidi | αi ∈ R≥0}, which constitutes a polyhedral convex cone [117].
If D is a singleton, then Span+(D) is called a ray. Note that all the rays and the
singleton O = {0} are degenerate cones. Given a convex polyhedral cone C, we define
its dimension |C| as the number of vectors required to generate it. The lineality space
of a convex cone C is defined as the largest subspace X l := C ∩ −C contained in C,
whose dimension is the so-called lineality of C [118]. Next, let us denote by ei the i-th
versor in Rn. Given an index set K, we define XK as the subspace linearly spanned by
∪i∈K{ei}. Furthermore, given a vector d ∈ Rn, we denote by projXK

(d) = ∑
i∈K

(
dTei

)
ei

the orthogonal projection of d along XK. Finally, given a real matrix M ∈ Rm×m, we
denote by spec(M) its spectrum, and, given a complex vector c ∈ Cn, we denote by
Re(c) and Im(c) its real and imaginary parts, respectively.

Problem formulation
Let us consider a linear dynamical network on a graph G = {V , E}. Defining the network
state x = [x1, . . . , xn]T, with xi ∈ R being the state of the i-th node, the network
dynamics are given by

ẋ(t) = Ax(t) + Bu(t), (3.1)

where A ∈ Rn×n is the adjacency matrix of G, whose ij-th entry, denoted aij, is one
if (i, j) ∈ E and zero otherwise; matrix A encapsulates both the individual dynamics
and the interaction between the network nodes, which are encoded by the diagonal and
off-diagonal elements of A, respectively; matrix B ∈ Rn×m is the input matrix, whose
ij-th element modulates the effect the unilateral input uj has on the dynamics of node
i.

Here, we consider the case in which the inputs are unilateral.

Definition 50. The input u(t) to network (3.1) is called unilateral if (u(t) ∈ Rm
≥0, ∀t)or(u(t) ∈

Rm
≤0, ∀t).

In what follows, without loss of generality, we consider only nonnegative inputs,
whereby their sign will be determined by the selection of matrix B. More specifically,
we make the following assumptions on network (3.1):
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Assumption 1. Matrix A is diagonalizable and u(t) ∈ Rm
≥0 for all t.

Assumption 2. [108] Each column of matrix B belongs to the set B = {ei, −ei, i =
1, . . . , n}.

Note that 1 is made only for the sake of clarity and brevity, but the results hold for
negative inputs and can be easily extended to the case of non-diagonalizable dynamics
matrix A. Regarding 2, it means that we aim to minimize the number of dedicated
actuator nodes that receive independent input signals. One signal can drive only one
actuator node.

In what follows, we focus on the case in which unilateral controllability of the whole
network is not feasible due to a limitation on the number of inputs available, whereby the
conditions given in [108] do not hold. The problem then arises of selecting the input so
that the state of a subset of the network nodes can be steered towards any desired value.
Before formally stating this problem, we need to formally define unilateral reachability
and controllability of a node subset Vs, whose associated state xs is the vector stacking
the states of all nodes in Vs.

Definition 51. A node subset Vs ⊂ V is unilaterally reachable if the state of its nodes xs

can be steered from 0 to any target value in finite time, through an appropriate selection
of a unilateral input u(t).

Definition 52. A node subset Vs ⊂ V is unilaterally controllable if, for all initial
conditions xs(0), the state of its nodes can be steered towards any target value in finite
time through an appropriate selection of the unilateral control actions u(t).

Given the adjacency matrix A, the controllability problem is that of designing the
input matrix B fulfilling Assumption 2 that maximizes the cardinality of the set Vs =
Vs(B) of unilaterally controllable nodes, that is,

max
B⊂B

|Vs| (3.2a)

subject to∑
i,j

|bij| = m (3.2b)

Vs unilaterally controllable (3.2c)

Solving problem (3.2) requires first finding the conditions that allow to define when
a set of nodes is unilaterally controllable given a set of control inputs of cardinality m,
and then devising an input placement algorithm that finds a unilaterally controllable
node subset of maximal dimension.
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Unilateral reachability and controllability of a node
subset
Here, we start by characterizing the set of unilaterally reachable states, to then find the
(non-unique) unilaterally controllable node subsets. Then, we characterize unilateral
controllability to show that, different from the case of subsystems, node reachability and
controllability are equivalent. Before giving our main results, we need to introduce the
following definitions. We characterize the set of unilaterally reachable states: as matrix
A is supposed to be diagonalizable we will have n semi-simple eigenvalues associated
to n left and right eigenvectors linearly independent chosen to maximize the number of
those orthogonal to the columns of matrix B. Then we can define the reachable cone
as the positive span of the set {γi} where γi is defined based on the product between li
and B following the PBH test.

Let L := {l1, . . . , ln} be a set of (unit norm) linearly independent left eigenvectors
of A with maximal number of elements orthogonal to the columns of the matrix B, and
γi = γi(lT

i B) the vector

γi=



0, if lT
i B = 0, Im{{li}} = 0, (3.3a)

{ri, −ri}, if lT
i B /∈ (Rm

≥0 ∪ Rm
≤0 \ O), Im{{li}} = 0, (3.3b)

ri, if lT
i B ∈ (Rm

≥0 \ O), Im{{li}} = 0, (3.3c)
−ri, if lT

i B ∈ (Rm
≤0 \ O), Im{{li}} = 0, (3.3d){

Re{ri}, − Re{ri}, Im{ri}, − Im{ri}
}
, otherwise, (3.3e)

for i = 1, . . . , n. Additionally, we denote by Cr(B) the positive span of the set of all γi-s,
that is,

Cr(B) := Span+({γ1, . . . , γn}). (3.4)

Theorem 2. If Assumption 1 holds, then

(i) the cone Cr(B) is the set of unilaterally reachable states of the pair (A, B);
(ii) the lineality space X l of Cr(B) is the largest unilaterally reachable subspace of
the pair (A, B).

Proof.
Statement (i). Let us consider the transformation z = Tx, where T is the matrix

obtained by juxtaposing row-wise the vectors in L. As A is diagonalizable, we can write
A = T −1ΛT , where Λ = diag{λ1, . . . , λn}, with λi being the i-th eigenvalue of A. In
these new coordinates, the dynamics of network (3.1) become

ż(t) = Λz(t) + TBu(t).

By setting z(0) = 0, we obtain its forced dynamics as

z(t) =
∫ t

0
exp(Λ(t − τ))TBu(τ)dτ,
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whose i-th component can be expressed as

zi(t) =
∫ t

0
exp(λi(t − τ))

m∑
j=1

lT
i bjuj(τ)dτ

=
m∑

j=1
lT
i bjηj(uj),

(3.5)

where ηj(uj) =
∫ t

0 exp(λi(t − τ))uj(τ)dτ . Since x = T −1z, and as the columns of T −1 =
T T are the right eigenvectors r1, . . . , rn of A, zi(t) represents the dynamics along the
eigenvector ri, for all i = 1, . . . , n. Let us now distinguish the case in which ri is
associated to a real or to a complex eigenvalue, respectively:
Case (a): Im(λi) = 0. From Assumption 1, we have that ηj(uj) ≥ 0 for all j. Next, we
distinguish 4 subcases depending on the product lT

i B:

• if lT
i B = 0, then any x̃ ∈ Span({ri}) is unreachable;

• if lT
i B ∈ (Rm

≥0 ∪ Rm
≤0 \ O), then there exist j, m such that lT

i bjηj(uj) < 0 and
lT
i bmηm(um) > 0. Hence, any x̃ ∈ Span({ri}) is unilaterally reachable;

• if lT
i B ∈ (Rm

≥0 \ O), then any x̃ ∈ Span+({ri}) is unilaterally reachable;

• if lT
i B ∈ (Rm

≤0 \ O), then any x̃ ∈ Span+({−ri}) is unilaterally reachable.

Case (b): Im(λi) ̸= 0. As A is a real matrix, each complex eigenvalue will have a
complex conjugate. Therefore, the modal dynamics associated to λi and its complex
conjugate occur along the two dimensional subspace X̃ = Span(Re{ri}, Im{ri}) of Rn

and, according to the Euler’s formula, can be expressed as a sum of sinusoidal functions.
Hence, all the states belonging to X̃ are reachable if there exists an index j such that
projX̃ lT

i bj ̸= 0. If, instead, such an index did not exist, then no state would be unilaterally
reachable. Finally, considering that (i) if two (or more) states are unilaterally reachable,
then any positive combination of the these states is also unilaterally reachable, and (ii)
any linear combination involving an unreachable state defines another unreachable state,
Statement (i) follows.

Statement (ii). From Statement (i), no state outside Cr(B) is reachable. Therefore,
Statement (ii) follows.

Recall that controllability property can be defined as being able to move the system
from an initial state x(1) to any other state x(2), and reachability as the ability to get
from the origin x(0) = 0 to any other state x(2) and null-controllability to get from an
initial state x(1) to the origin 0. Hence, being able to get from any state x(1) to any
state x(1) (thus controllability) implies reachability as you can select the origin as x(1)
and being able to reach any state x(2). Indeed, reaching x(2) from x(1) is equivalent
to reaching from 0 to x(2) exp(At)x(1). Since all the states are reachable from 0, this
implies controllability. This is not true anymore for unilateral inputs: different from the
general case of systems, unilateral reachability does not imply unilateral controllability.
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Lemma 1. Let Assumption 2 hold, then the set of controllable states is Cc(B) := X l(B)∪
{x ∈ Rn : − exp(At)x ∈ Cr(B)}.

Proof. The thesis follows from the consideration that a point x̄ is controllable if and
only if − exp(At)x̄ is reachable.

Even though the set of reachable states differs from that of controllable states, For
node subsets instead the equivalence between controllability and reachability is pre-
served, even under the assumption of unilateral inputs. The next section will show these
theoretical findings.

Node subset unilateral reachability
When studying partial unilateral controllability of network dynamical systems, we need
to preserve the association between state variables and network nodes. Therefore, we now
provide the following theorems and corollaries characterizing the unilateral reachability
and controllability of a node subset.

Theorem 3. Given network (3.1) and a node subset Vs ⊂ V, if Assumption 1 holds and
projXVs

(Cr(B)) = XVs, then Vs is unilaterally reachable.

Proof. From Definition 51, for a node subset Vs to be reachable, for all x̄s ∈ R|Vs|

and x(0) : xs(0) = 0 there must exists a unilateral input u(t) that steers the network
towards a state x̄ such that the projection of x̄ on the subspace XVs spanned by the
versors {ei | i ∈ Vs}, is x̄s. This is equivalent to the existence of a point ¯̄x ∈ Cr(B) such
that

projXVs

¯̄x = x̄s − projXVs
exp(At)x(0). (3.6)

As from Theorem 2 Cr(B) is the unilaterally reachable cone, and projXVs
(Cr(B)) = XVs

by hypothesis, a point ¯̄x fulfilling (3.6) exists for all x̄s and x(0) : xs(0) = 0, and thus
the thesis follows.

Interestingly, we note that the number of unilaterally reachable nodes may be larger
than the dimension of the largest unilaterally reachable subspace.

Node subset unilateral controllability
Theorem 4. Given network (3.1), if Assumption 1 holds, then a node subset Vs is
unilaterally reachable if and only if it is unilaterally controllable.

Proof. Unilateral controllability of a node subset trivially implies its unilateral reacha-
bility, see Definitions 51 and 52. Hence, let us focus on proving that the viceversa holds.
From Definition 52, for a node subset Vs to be controllable, for all x̄s and x(0) there
must exists a unilateral input u(t) that steers the network towards a state x̄ such that
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Figure 3.3. In this toy example, there are no reachable directions, however node 1 is control-
lable as in its direction there are two nonzero projection of opposite signs. The dimension of
the largest unilaterally controllable node subset can be larger than the unilaterally reachable
subspace.

the projection of x̄ on the subspace XVs is x̄s. This is equivalent to the existence of a
point ¯̄x ∈ Cr(B) such that

projXVs

¯̄x = x̄s − projXVs
exp(At)x(0). (3.7)

As from Theorem 3 if Vs is unilaterally reachable then projXVs
Cr(B) = XVs , by hypothesis

a point ¯̄x fulfilling (3.7) exists for all x̄s and x(0). Hence, Vs is unilaterally controllable.

The equivalence between unilateral reachability and controllability of node subsets
allows to derive a set of corollaries that characterize partial unilateral controllability of
network systems.

Corollary 1. Given network (3.1) and a node subset Vs ⊂ V, if Assumption 1 holds
and projXVs

(Cr(B)) = XVs, then Vs is unilaterally controllable.

Proof. Combining Theorems 3 and 4, the thesis follows.

Corollary 2. Let Cr(B) be the unilaterally reachable set of the pair (A, B). There exists
a controllable node subset Vs such that |Vs| ≥ |X l(B)|.

Proof. From Theorem 2 we know that if Cr(B) is the unilaterally reachable set, this
implies that X l(B) is its lineality space of dimension |X l(B)|. Moreover, considering that,
for a given subspace X there always exists a set of indices K and the associated subspace
X̄ = Span(∪i∈K{ei}) such that projX̄ X = X̄ , this holds also for X = X l(B). Therefore,
from Theorem 2 there exists a unilaterally reachable node subset Vs of dimension at least
equal to |Vs| = |X l(B)|, that, from Theorem (4), is also unilaterally controllable.

The next corollary provides a sufficient condition guaranteeing that there exists a
unilaterally controllable node subset Vs that contains a given node i.

Corollary 3. Given an integer i ≤ n, if there exist two indices j and l such that rT
j ei > 0,

rT
l ei < 0, and rj ∪ rl ∈ Cr(B), then there exists a unilaterally controllable node subset Vs

such that i ∈ Vs.

Proof. Considering that projei
Cr(B) = ei, the thesis follows from Corollary 1.
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Greedy Algorithm
In what follows, we shall leverage the theoretical findings of Section 3.1 to design a
heuristic for solving problem (3.2). Before illustrating the derivation of the algorithm,
we need to introduce the spanning set W(B) of the lineality space X l(B) ∈ Cr(B) ,
which can be computed as

W(B) =
|X l(B)|⋃

i=0
wi, (3.8)

where

wi =


{ri}, if lT

i B /∈ (Rm
≥0 ∪ Rm

≤0 \ O), Im{{li}} = 0,{
Re{ri}, Im{ri}

}
, if lT

i B ̸= 0, Im{{li}} ̸= 0, (3.9)
0, otherwise.

Furthermore, let S be the set of all subspaces of Rn such that

projX Cr(B) = X , ∀X ∈ S.

From Theorem 2, solving problem (3.2), that is, finding a maximal unilaterally control-
lable node subset, is equivalent to finding the matrix B⋆ that maximizes the cardinality
of the largest subspace in S. Namely,

B⋆ := arg max
B

(
max
X ∈S

|projX Cr(B)|
)

. (3.10)

Unfortunately, (3.10) is a combinatorial problem that can only be solved through exten-
sive search, which is unfeasible even for a network of a handful of nodes.

Since finding an exact solution of (3.10) is typically unfeasible, we propose a two-step
procedure for the selection of matrix B. In Step 1, we seek for a heuristic approach that
tries to maximize the lineality |X l(B)|, which from Corollary 2 is a lower bound for the
cardinality |Vs| of the unilaterally controllable node subset Vs. Then, Step 2 attempts to
add to Vs the nodes fulfilling the sufficient condition for node unilateral controllability
given in Corollary 3.

Step 1. Heuristic maximizing |X l(B)|.
Here, we seek for the suboptimal solution

B̃⋆ := arg max
B

(
max

X l
|projX lCr(B)|

)
(3.11)

to problem (3.10). The heuristic we propose (Step 1) takes as inputs matrix A, its
spectrum, the set of left eigenvectors L, and the corresponding set of right eigenvectors
R. Denoting Bk the B̃ selected at the k-th iteration, the algorithm starts with B0 =
0n×m. Then, at each iteration, one or two columns are added to B̃. Defining ∆(β) :=
|X l([Bk−1, β])| − |X l(Bk−1)|, where β ∈ B, we can now distinguish two different cases:
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1. If there exists β ∈ B such that ∆(B) > 0, then only one column is added at step
k, that is,

Bk = [Bk−1, β⋆],
where

β⋆ =


arg max

β∈B
|X l(Bk)|, if ∃! arg max

β∈B
|X l(Bk)|, (3.12a)

arg max
β∈B

|C(Bk)|, if ∄! arg max
β∈B

|X l(Bk)|1. (3.12b)

2. If, instead, a β ∈ B such that ∆(B) > 0 does not exist, we add two columns to
Bk−1 at step k, that is,

Bk = [Bk−1, β⋆⋆, −β⋆⋆],
where

β⋆⋆ = arg max
β∈B

|X l([Bk−1, β, −β])|. (3.13)

Summing up, at each step k our updating rule attempts to add the input that
maximizes the lineality |X l(Bk)|. When such an input is not unique, it selects the input
that adds the largest number of rays in Cr(Bk). If instead we cannot find a β such that
∆(β) is positive, then we add the two inputs that maximize |X l(Bk)|. The algorithm
stops when Bk ∈ Rn×m. Once we computed B̃ = Bm, we need to identify one of the
unilaterally controllable node subsets V1

s corresponding to B̃. To this aim, we leverage
Corollary 2, which states that there exists a unilaterally controllable node subset V1

s

with |V1
s | = |X l(B̃)| such that projXV1

s

Xl(B̃) = XV1
s
. To identify such a node subset, we

compute the set W(B̃) according to (3.8)-(3.9). Then, we build the set V1
s so that the

elements of the sets V1
s and W(B̃) can be associated into |V1

s | pairs (vj, wi) such that (i)
no pairs share a common element and (ii) each pair (vj, wi) is such that eT

vj
wi ̸= 0. To

do so, we associate a binary variable yij to all possible pairs (i, j) ∈ Y , where

Y = {(i, j)|eT
i wj ̸= 0 ∧ wj ∈ W(B̃)},

and solve the following optimization problem

max
∑

(i,j)∈Y
yij (3.14a)

subject to∑
i:∃(i,j)∈Y

yij ≤ 1, ∀j (3.14b)
∑

j:∃(i,j)∈Y
yij ≤ 1, ∀i (3.14c)

yij ∈ {0, 1} (3.14d)
1With a slight abuse of notation, here we mean that such a β exists but is not unique.
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Then, the controllable node subset can be obtained as V1
s := {i : yij = 1}. Note that,

albeit problem (3.14) is formulated as an integer linear problem, it can be solved in
polynomial time as the constraints in (3.14b) and (3.14c) define a totally uni-modular
matrix.

Step 2. Enlarging the unilaterally controllable node subset.

In the second step, we enrich the unilaterally controllable node subset V1
s by exploiting

the set Cr(B̃) \ X l(B̃). To do so, let us define the set

Q(B̃) :={rj : rj ∈ Cr(B̃), −rj /∈ Cr(B̃)}∪
{−rj : −rj ∈ Cr(B̃), rj /∈ Cr(B̃)}

(3.15)

whose positive span is Cr(B̃) \ X l(B̃). We can then leverage Corollary 3 to add a
node, say i, to V1

s for each triplet (qj, ql, ei) such that (qj, ql) ∈ Q(B̃), ei : i /∈ V1
s , and

sgn eT
i qj = − sgn eT

i ql, as specified in Step 2.

Step 1 Maximizing the lineality |X l(B)|.
Inputs: A, Λ, m
procedure Initialization(B0 = ∅, X l(B0) = O, W(B0) = ∅ )

while k ≤ m − 1 do
if ∃ β ∈ B : |X l([Bk−1, β])| > |X l(Bk−1)| then

compute β⋆ as in (3.12a), (3.12b)
set Bk = [Bk−1, β⋆]
compute W(Bk)
k = k + 1

else
compute β⋆⋆ as in (3.13)
set Bk = [Bk−1, β⋆⋆, −β⋆⋆]
compute W(Bk)
k = k + 2

end if
end while
if k = m then

compute β⋆ as in (3.12a), (3.12b)
set Bk = [Bk−1, β⋆]
compute W(Bk)

end if
end procedure
Outputs: B̃ = Bm, W(B̃)
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Application on a sample network
To illustrate our heuristic, we consider a linear network dynamical system on the graph
G depicted in Fig. 1, whose dynamics is regulated by matrix

A =



1 −4 0 0 0 0 0
4 1 0 0 0 0 0
1 0 3 0 0 0 0
0 0 1 4 0 0 3
0 0 0 0 2 −3 0
0 0 0 0 3 2 0
0 0 0 0 −3 0 0


,

with spectrum {4, 3, 0, 1 + 4i, 1 − 4i, 2 + 3i, 2 − 3i}. Let us assume that we can inject
m = 2 unilateral control. The input matrix B̃ is designed following Step 1, that is, by
maximizing the lineality |X l(B̃)|. At k = 1, four possible selections of β (e2, e6, −e2
and −e6) yield the same (positive) ∆(β). Hence, β⋆ should be selected among these four
according to Eq. (3.12b). However, since all selections would yield the same |C(B1)|, the
selection is performed randomly, and we set B1 = −e6, with the set W(B1) being [r6, r7].
At k = 2, −e2 is the unique β returning ∆(β) > 0. Hence, we select node 2 as the second
and last node where a control signal is injected, i.e., we set B̃ = B2 = [−e6; −e2] and
W(B̃) = [r1, r4, r5, r6, r7].

Having selected the matrix B, we now turn to finding one of the possibly multiple
unilaterally controllable node subsets V1

s such that

|V1
s | = |X l(B̃)|

by solving the optimization problem (3.14). Among the multiple equivalent solutions to
this ILP, we randomly pick V1

s = {v2, v3, v4, v5, v6}.
Finally, considering that, from (3.15), Q(B̃) = {r2, −r3}, and as there does not exist

a triplet {j, l, ei} such that qj, ql ∈ Q(B̃), ei : i /∈ V1
s , from Step 2 of the proposed

heuristic we cannot further extend the unilaterally controllable node subset, i.e., Vs =
V1

s = {v2, v3, v4, v5, v6}.

Step 2 Enlarging the unilaterally controllable node subset associated to B̃

Inputs: V1
s

compute the set Q(B̃) as in (3.15)
while ∃{j, l, ei} : qj, ql ∈ Q(B̃), ei : i /∈ V1

s do
if sgn eT

i qj = − sgn eT
i ql then

Set V1
s = V1

s ∪ {i}
Set Q(B̃) = Q(B̃) \ {qj, ql}

end if
end while
Output: Vs = V1

s .
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Figure 3.4. Network topology: the nodes in red are the driver nodes where, according to the
proposed heuristic, the negative unilateral control inputs are injected, © 2022 IEEE.

Conclusion
In this letter, we tackled the problem of studying the controllability of network of LTI
dynamical systems when the control inputs are both constrained in number and in sign,
namely unilateral. Specifically, we focused on the realistic case where the constraint
on the number and type of inputs, for physical or economic limitations, prevents the
achievement of complete controllability of the network system, whereby only a node
subset can be made controllable. In this constrained framework, we have characterized
the reachable and controllable subset of an LTI system, that, for the particular nature
of the control inputs, is a cone and not a subspace as always. Then, we characterized
the largest unilaterally reachable subspace contained in the unilaterally reachable cone,
and the controllability subspace, showing that reachability do not imply controllability
in subsystems. Then, looking at a network dynamical system, we identified theoretical
conditions under which unilateral reachability and controllability of a node set hold, and
we showed that these two properties are equivalent for subnetworks, different from the
general case of subsystems.

These theoretical findings enabled us to give a (suboptimal) solution to the problem
of finding the largest subnetwork unilaterally controllable given a fixed number of con-
trol inputs, strictly smaller than the one needed to fully control the whole network with
unilateral inputs, problem solved in [108] After showing that maximizing the size of a
unilaterally controllable nodes’ subset is a combinatorial problem, we have leveraged
the theoretical findings on unilateral controllability to build a heuristic that can find
a suboptimal solution to this problem in polynomial time, as illustrated on a sample
network. Our work has laid the foundations of partial controllability under unilateral
inputs, thus paving the ways for future studies in this area of research that aims to take
into account some constraints in the availability and feasibility of control actions in real-
worlds scenario to bridge the gap between theoretical findings and practical applications.
However, the work is not free of limitations: first, the heuristic proposed does not guar-
antee any optimality in the driver node selection, thus, alternative heuristic approaches
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may be developed and tested against the one proposed in this manuscript. Moreover,
once partial controllability has been guaranteed, the problem of evaluating the energy
associated to the control action arises, thereby minimum energy control problems could
be formulated in this setting.
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3.2 Paper B - Partial observability of complex
networks

Introduction

Since Nature and PNAS published the works [119, 120], the study of the controllability
and observability properties of complex networks of dynamical systems has attracted
remarkable interest among the scientific community [22, 24, 121–124]. One of the main
differences between systems and networks is that controllability and observability are
properties that must be conferred to a network, rather than verified. Many works tackled
the problem of smartly selecting the set of drivers/ sensor nodes to ensure complete
controllability/observability [119, 125, 126]. However, achieving these two goals is often
unfeasible in real applications, due to physical and economical constraints that limit the
actual number of driver and sensor nodes available. As a matter of fact, in most cases
guaranteeing controllability and observability of only a fraction of the network nodes,
a subnetwork from now on, is sufficient to achieve the desired control goal [127, 128].
Nevertheless, it has been recently highlighted [121] that, when the controllability and
observability properties of a subnetwork are considered, then the subtle yet critical
differences between networks and dynamical systems emerge. Indeed, as the state of
a subnetwork is the collection of the state of its nodes, then we cannot perform any
projection, that is, a change of basis to evaluate whether a subnetwork is controllable
and/or observable, without losing the association between states and nodes.

Even though this inability to perform a state transformation does not preclude to
leverage structural controllability theory to optimally select driver nodes, this is no longer
true when we seek to ensuring subnetwork observability [121]. This theoretical finding
has the direct consequence that the strategies proposed in the literature for solving the
minimum input problem given a fixed number of driver nodes cannot be used by duality
when addressing the sensor node selection problem. Hence, this remains an overlooked
problem in the literature.

The aim of this work is twofold: first, we want to show that, with the same number of
sensors and drivers to place, subnetworks are much harder to be observed than to be con-
trolled, due to theoretical differences between systems and network which have practical
consequences in hindering our observability ability. Second, we illustrate through nu-
merical analyses that the existing tools to optimally select driver nodes are not suitable
for sensor node selection, especially for Erdős-Rényinetworks, as they lead to a relevant
loss in terms of the size of the subnetwork we can make observable. Thus, the need of
finding a novel sensor nodes selection strategy arises and indeed an efficient heuristic is
presented as a result of the exploitation of the knowledge of key topological features of
the network.
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Theoretical background
In this work, we will refer to structured linear systems/networks [29, 30], whose triplet
(A, B, C) is composed by structured matrices. As we address the problem of partial
controllability/observability we define

Definition 53. The controllable subspace as the set of all vectors x ∈ RN that can be
reached from the origin.

Definition 54. The unobservable subspace as the set of all nonzero initial conditions
x(0) ∈ RN that produce a zero free response.

With a slight abuse of notation, we will refer to the generic rank ρg(K) (ρg(O)) of the
controllability and observability matrices K and O in the sense that, given the triplet
(A, B, C), the ranks decreases only for a set of Lebesgue measure zero of the values of the
free entries of the triplet. Different from the case of complete controllability/observabil-
ity, when we study subnetwork controllability/ observability, that is when we have at our
disposal only a fixed number M of driver (sensor) nodes not large enough to control/ob-
serve all the network, the duality between the two properties is lost [121]. Although
ρg(K) (ρg(O)) coincides with the dimension of the controllable subspace (orthogonal
complement of the unobservable subspace) this correspondence is no longer true when
considering subnetworks. Indeed, while the dimension of the controllable subnetwork
|Gc(M)| is equals to ρg(K), ρg(O) constitutes only an upper bound for the dimension of
the observable subnetwork |GT

o (M)|. Hence, while revisiting structural controllability
tools [25, 30, 129] and exploiting that maximizing |Gc(M)| is equivalent to maximizing
ρg(K) allows to find the largest controllable subnetwork |G∗

c (M)| [128], this approach
is no longer applicable to find the largest observable subnetwork |G∗T

o (M)| due to the
theoretical differences mentioned above.

In [121] it has been shown that |GT
o (M)| is actually equals to the largest number of

elements n1 of the canonical basis N that are encompassed in the orthogonal complement
to the unobservable subspace of the pair (A, C). However, a graphical translation of this
geometrical condition still lacks, and thus the problem of optimally selecting sensor
nodes can only be solved by means of an exhaustive search, unfeasible for large-scale
networks.

Problem Formulation
The first goal of this work is to uncover the practical consequences of the theoretical dif-
ferences between controllability/observability properties when the driver (sensor) nodes
at our disposal constitute a set ΩS of cardinality |ΩS| = M < NS where NS is the
number of driver (sensor) nodes that ensures complete controllability (observability). In
this scenario, we want to quantify how harder it is to make a subnetwork observable
rather than controllable in terms of the difference between the size of the controllable
or observable subnetworks defined as ∆(M) := |Gc(M)| − |GT

o (M)|. In order to analyze
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∆(M) regardless of the number of driver (sensor) nodes M , we introduce a parameter,
inspired by the permeability index in [128] that, in the thermodynamic limit N → ∞ is
defined as

µ∆ :=
∫M

0 ∆(M) dM∫M
0 (|Gc(M)| − M) dM

. (3.16)

Roughly speaking, µ∆ is a measure of the average ratio between the actual ∆(M) and
the ∆(M) given the sequence |Gc(M)|. Note that ∆(M) = 0 for all M ≥ Ns. Note that
µ∆ is well-defined only if

∫M
0 (|Gc(M)| − M) dM ̸= 0 consistently with the fact that if

this integral is zero, then ∆(M) cannot be different from zero. Moreover, µ∆ is equals
to 0 if the observable subnetwork coincides with the controllable one and is equals to 1
if |GT

o (M)| = M for all M .
A first method used to assess how harder it is to observe a subnetwork rather than

control it is to evaluate µ∆ considering the set of driver nodes ΩD onto G as a set of
sensor nodes ΩS onto GT . We will analyze two alternative strategies to select ΩS: the set
could be built randomly or optimally. If we choose to select ΩS in an optimal way, we
can recast the problem of quantifying how limited our ability is to observe a subnetwork
rather than control it, into solving the following optimization problem:

min
ΩS(M)

µ∆ ∀M = 1, ..., M (3.17)

ΩD(M) given

that implies finding the optimal ∆∗(M) := |G∗
c (M)| − |G∗T

o (M)|. Even if a geometrical
condition to evaluate the dimension of the observable subnetwork |G∗T

o (M)| exists, as it
does not map into a graphical condition, this opimization problem can only be solved
by means of an exhaustive search, unfeasible for large-scale networks. Thus, the need of
building an effective heuristic for the sensor nodes selection arises and the first question
that this paper wants to answer is if the driver nodes selection tools could perform
decently even in maximizing |GT

o (M)|.

Finding controllable and observable subnetworks
Before delving deeper into the reasons behind this crucial difference between network
controllability and observability, let us give our first contribution, that is, let us show
that this theoretical difference reflects into subnetworks being much harder to be made
observable rather than controllable.

We considered two datasets of 1000 nodes directed synthetic networks, the first
one encompassing Erdős-Rényi (ER) networks generated by means of the configuration
model [130], and the second one made of Scale-Free (SF) networks generated by means
of the directed version of the static model [131]. Each dataset encompasses 9 subsets
of 10 network topologies differing from each other for the value of the network average
degree ⟨k⟩ in the range of 2, . . . , 10. For each network in each dataset we deployed
the strategy in [128] to select an optimal sequence of sets of drivers, i.e., a sequence of
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matrices B(M) that maximizes |Gc(M)| for all values of M . Then, we evaluated the
corresponding sequence of dimensions of the observable subnetwork |GT

o (M)| where the
sensor sets are defined by the matrices B(M)T . We find that the network topology has
a substantial influence on the quantity ∆(M), an influence that can become dramatic
depending on the network degree distribution. Namely, as shown in Figure 3.5 in panels
(a) and (b), ∆(M) is much smaller for SF networks rather than for ER networks. This
is due to the fact that, increasing M , in Erdős-Rényi networks we tend to observe an
explosive (first order) phase transition both in |Gc(M)| and |GT

o (M)|, but with the ex-
plosion from | · | << 1 to | · | ≈ 1 occurring much later in the case of |GT

o (M)| than in the
case of |Gc(M)|. On the other hand, in Scale Free networks we observe a smooth (second
order) phase transition both in |Gc(M)| and |GT

o (M)| with the transition of the former
being a little faster than that of the latter. Hence, we can state that the homogeneity
of Erdős-Rényi networks induces a delay in the explosion of |GT

o (M)| with respect to
|Gc(M)|. Moreover, as shown in Figure3.5(c), we find a positive correlation between
µ∆ and the network average degree, with the increase in µ∆ with ⟨k⟩ being much more
significant for ER networks rather than for SF networks. Summing up, our analysis
suggests that for degree heterogeneous networks the difference between |Gc(M)| and
|GT

o (M)| is limited regardless of the average degree, and existing driver node selection
tools can be used also to achieve efficient sensor nodes placement. On the other hand,
for homogeneous networks ∆(M) is usually large, and it becomes larger as the average
degree increases. The latter class of networks motivate us to look for a better sensor
node selection strategy than simply applying to the case of subnetwork observability the
algorithms devised for subnetwork controllability.
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((a)) ((b))

((c))

Figure 3.5.
((a))((b)) Evolution
of the observable sub-
network size |GT

o (M)|
for a Erdős-Rényi and
Scale-Free network,
respectively.((c))
shows the evolution
of µ∆ as a function
of average indegree
⟨k⟩ related the two
datasets described
above.
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Topological Considerations
The fact that the topological properties influence the ability of controlling or observ-
ing a network is not surprising: for example, Liu et al [119] showed how sparsity and
heterogeneity make networks more difficult to control. Dealing with observability in-
stead, it seems that degree homogeneity combined with high density negatively influ-
ences our ability to observe a subnetwork. Hence, dense and homogeneous networks
like Erdős-Rényi ones are much harder to observe rather than to control. Why observ-
ing a subnetwork is more challenging than controlling it? One network motif that can
play a crucial role in hindering our ability to observe a subnetwork is the presence of
dilations. We recall that a digraph contains a dilation if ∃ S ⊂ V : |T (S)| ≤ |S| with
T (S) = {vj|(vj → vi) ∈ E(G), vi ∈ S}. In other words, a dilation is a region of the
graph where there is an expansion, that is it can be identified a subset of nodes whose
cardinality is smaller than the one of its neighbors. Moreover, in the structural control-
lability framework, we know that, in absence of cycles, a node can control/observe at
most one of its direct neighbors, but when there is a dilation a node has, for definition,
more than one neighbor: this phenomenon has different effects on controllability and
observability. Let us show them in a simple example of a three-node dilation:

Figure 3.6. Three-node dilation example in controllability case (a) and observability case (b)
where node 1 is respectively a driver or a sensor

Looking at this simple dilation in the context of controllability (Figure 3.6a), if node
1 is selected as driver node, either node 2 or node 3 can be considered controllable, with
the downside that the other node is perturbed,i.e., it is dragged to a point of the state
space that cannot be assigned a priori [121]. Nevertheless, if we look at the same dilation
in the observability context (Figure 3.6b), that is if we select as a sensor node 1, neither
node 2 nor 3 can be observed, as the only information we can reconstruct is a linear
combination of their states. Generalizing this exemplification to a large-scale network,
the dilations become numerous and they would involve a relevant number of nodes, thus
our ability to observe the network is extremely reduced compared to the controllability
case.

Once pointed out the key role of dilations in hindering our ability of observe a
subnetwork, let us explain why this effect is even more dramatic in a specific class of
synthetic networks such as the Erdős-Rényi. We recall that, in general, a digraph can be
decomposed into different structures: the giant strongly connected component (GSCC),
in which any node is reachable from any other node by means of a directed path and
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whose dimension scales with network size, the giant IN-component (GIN), formed by
the nodes from which it is possible to reach the GSCC (and analogously the giant OUT-
component GOUT), the tendrils that are the nodes that cannot reach or be reached by
the GSCC (among them, the tubes that connect the GIN and GOUT) and finally a set
of disconnected components (DC) [132]. In [133], [134] has been proved that, as the
average degree k ≥ 2, the GSCC arises both in Erdős-Rényi and Scale Free networks.
Nevertheless, the homogeneity that characterizes the random networks entails that, as
the average degree increases, the upstream of the sensor nodes grows but it is also more
likely to include more dilations which involve the nodes in the GSCC. In heterogeneous
networks, instead, dilations are more concentrated around the hubs nodes, thus they
encompass a limited number of nodes provoking a less remarkable effect in reducing
|GT

o (M)|.
Geometrically, this translates into the fact that, as the average degree increases, the
dimension of the orthogonal complement to the unobservable subspace likely increases,
as well as the directions of the canonical basis that have nonzero orthogonal projection
on the orthogonal complement of the unobservable subspace, reducing the number of
elements ei of the canonical basis and as a result the actual number of the observable
nodes. Thus, differently from the case of controllability where our unique goal was to find
the biggest stem-cycle disjoint partition which spans from the drivers (i.e. maximizing
ρg(K)), in the case of partial observability, maximizing ρg(O) is not enough because it
constitutes only an upper bound for the number of observable nodes. Consequently, a
more efficient heuristic must exploit the knowledge of this pivotal network motif in order
to place a fraction of the M sensor nodes available trying to solve part of the dilations.
Recalling that Lin’s structural controllability theorem [30] ensures that a digraph is
structurally controllable/observable if it contains no dilations, hence all dilations can be
solved only relying on M = NS sensor nodes available. However, the scenario of partial
observability implies that M < NS, thus a question arises: which dilation could give
us the larger improvement when solved, that is which criterion should we use to place
sensor nodes in order to prioritize the removal of certain dilations? In fact, let us stress
that not all the dilations have the same effect: some are more damaging than the other
(as they encompass more nodes), that is that solving certain specific dilations can lead
to a larger increment in the ability of observing the subnetwork. Our conjecture is that
the dilations that involve the most connected nodes, i.e. the nodes in the giant strongly
connected component, hinder the observability properties of Erdős-Rényi networks the
nmost and thus an heuristic built to solve them will be more efficient.

A novel sensor nodes selection strategy
Exploiting the previous topological considerations regarding the role of dilations, here
we propose a novel heuristic algorithm to better select sensor nodes, i.e. to increase the
dimension of the achievable observable subnetwork |GT

o (M)|, with respect to choosing
sensors likewise to driver nodes. Summing up, a trade-off has to be found in order to
obtain the biggest sensor nodes upstream possible that encompasses no dilations: on one
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hand, we want to select sensor nodes in order to maximize ρg(O) because a node can
be observable only if it is included in the stem-cycle disjoint partition that ends in the
sensor nodes and, on the other hand, we want to place a fraction of the M sensor nodes
at our disposal to solve some dilations, in particular the ones that involve the nodes of
the GSCC.

The sensor selection strategy that we propose here is a constructive heuristic that
consists in comparing, at each iteration in the range of M = 2, . . . , NS − 1 (thus except
for the first one), alternative ways to add a sensor to the set ΩS and choosing the one
that leads to the larger |GT

o (M)|. Let us note that the first sensor node is selected max-
imizing ρg(O). In order to recast this geometrical condition into a graphical approach
we revisited the strategy in [128]: a weighted augmented graph G ′(V ′, P ′, W ′)T is built
in which the M output variables that we measure in the network are represented as one
additional node called N +1. N +1 is initially connected to every other node of GT with
edges of unit weight, and have zero weight edges coming from each node of G ′T that is
also a node of GT . The edges entering N + 1 node allow the state measurement of any
nodes of the network, while the outbounding edges allow M cycles to be closed. Then,
the goal is to find the biggest stem-cycle disjoint partition of G ′T : we associate a binary
decision variable yij to each edge p′

ij of G ′T . Next, we associate a unit weight w′
ij to each

decision variable yij that is linked to either an edge pij of G ′T that is also an edge of GT

or an edge pij of G ′T that enters N + 1 node. All the edges already existing in the graph
G ′T are considered with unit weight. The optimization problem of maximizing ρg(O)
can now be translated into a problem on the graph G ′. This problem translates into a
polynomial Integer Linear Program (ILP) problem in which we must select, among all
the partitions of G ′ in disjoint cycles, the one that encompasses the maximum number
of edges with unit weight and satisfies the following constraints:

max
y

∑
i

∑
j

w′
ijyij (3.18)

subject to
yij ∈ {0, 1} ∀i, j|p′

ij ∈ P ′ (3.19)∑
j

yij = 1 ∀i = 1, ..., N (3.20)
∑

i

yij = 1 ∀j = 1, ..., N (3.21)∑
j

yN+1,j = M (3.22)
∑

i

yj,N+1 = M (3.23)∑
j∈RSCC⊂GOUT

yN+1,j ≥ 1 (3.24)

Here (3.19), a binary decision variable yij is associated with each edge p′
ij of the

graph G′; if yij = 1, then the corresponding edge p′
ij will be part of the cycle partition.
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The product w′
ijyij will return a unit cost only either when the selected edge of G ′T is

also an edge of G or if the edge enters N + 1. Hence, (3.18) represents the maximal
achievable dimension of the observable subnetwork |GT

o (M)| with that choice of sensor
nodes. Eqs. (3.20) and (3.21) guarantee that the solution be a cycle partition of G ′T

by forcing each one of its vertices to have exactly one inbounding and one outgoing
edge. Let us note that we identify as a root strongly connected component (RSCC) a
SCC whose nodes have incoming edges only from nodes belonging to the same SCC. Eq.
(3.24) guarantee that we select at least a sensor among the RSCCs ⊂ GOUT in order to
ensure that the GSCC is encompassed in the sensor nodes upstream as it encompasses
a large number of cycles that should be included in the solution in order to maximize
|GT

o (M)|. Furthermore, let us note that it has to be ensured that all the nodes of the
the stem-cycle disjoint partition that ends in the sensor nodes are accessible from at
least one of the sensor node. This can be guaranteed by pruning the network from the
inaccessible nodes relative to that choice of sensor nodes at each iteration. Finally, we
obtain the largest stem-cycle disjoint subgraph of G that ends in M sensor nodes. At this
point we have to evaluate |GT

o (M)|: a condition to prove the observability of a node is to
verify that, adding that node as a sensor, that is adding an element ei of the canonical
basis in the matrix BT = C (and thus in O), the size of the orthogonal complement
of the unobservable subspace does not increase, because that would mean that ei was
already included in it. Therefore, we implement the ILP, adding, in a iteratively way,
a new node as a sensor to G ′T , in a way that it must be included in the solution of
the optimization problem and verifying if the size of the orthogonal complement of the
unobservable subspace would increase or not.

From the second iteration on, the sensor node can be chosen with three alternative
strategies: the former is the one just described, the second follows the same strategy
of the former, thus maximizes ρg(O) but at each iteration only adds a single sensor
node F to the current set of sensors ΩS rather than M as in the first strategy, the
third alternative, instead, aims to exploit the knowledge of dilations role to better place
sensor nodes. In particular, some candidate sensors ΩQ are selected among the nodes
which are not encompassed by Σ that is the stem-cycle disjoint partition that ends in the
sensor nodes placed up to the previous iteration. These candidates are a subset of the
unobservable nodes set ΩU that are in dilations with at least a node in the upstream of the
sensors already placed. At each iteration the dimension of the observable subnetwork is
evaluated for both strategies. Finally the new sensor node is selected as the one yielding
the largest increment on the dimension of the observable subnetwork |GT

o (M)|. These
steps are iterated until all the ND − 1 sensors available are placed.

Heuristic Steps
Let us consider a certain network where we want to place iteratively the M sensor nodes
at our disposal in order to achieve the largest observable subnetwork possible. Then, the
3through Tarjan’s depth-first search algorithm [135] which runs in polynomial time linearly with the
number of nodes and edges O(|V| + |E|).
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Step 3 Sensor Node Selection Algorithm
Network pre-processing:
Decompose G(AT ) in its SCCs. 3

Identify the GSCC and its downstream GOUT.
Find the RSCCs ⊂ GOUT.

Inputs: AT ∈ RN×N , Ω = 1, . . . , N , NS, ΩS ∈ RNS−1, M = |ΩS|, RSCCs ⊂ GOUT

procedure Initialization(O is empty, ΩS is empty, ΩU is empty, ΩQ is empty,
Σ ≡ Ω)

while M < NS do
Select M nodes ΩM ⊂ (Ω ∖ ΩS) as sensors solving the ILP in 3.2
Evaluate |GT

o (ΩM)| solving the ILP in 3.2
Select a node L ∈ (Ω ∖ ΩS) as a sensor solving the ILP in 3.2
Evaluate |GT

o (ΩS ∪ L)|
Evaluate O
Select a set of candidate sensors ΩQ ⊂ (ΩU ̸⊂ Σ) := ∑

i=1,...,|ΩU | O(ΩQ, i) = 1
if ΩQ ̸= ∅ then

Select as a sensor Q∗ ∈ ΩQ = arg max |GT
o (ΩQ)| where |GT

o (ΩQ)| is evaluated
solving the ILP in 3.2

else
Q∗ = ∅ ⇒ |GT

o (ΩS ∪ Q∗)| = 0
end if
if |GT

o (ΩS ∪ Q∗)| > |GT
o (ΩM)| then

ΩS = {ΩS ∪ Q∗}
else if |GT

o (ΩS ∪ L)| > |GT
o (ΩM)| then

ΩS = {ΩS ∪ L}
else

ΩS = ΩM

end if
M = M + 1

end while
end procedure

steps required to implement the strategy proposed in the previous section are presented
in Algorithm 3.

Results
Solving iteratively the heuristic presented above for M = 1, . . . , NS − 1, the sequence
of sets of selected sensor nodes ΩS and the corresponding cardinality of the observable
subnetwork |GT

o (M)| can be obtained. Then, we compared these results with the ones



3.2 Paper B - Partial observability of complex networks 93

obtained by means of the first strategy of only maximizing the upper bound ρg(O)
presented in the 3.5(c) in terms of the µ∆ index regarding only the Erdős-Rényi dataset.
As we can see in Fig.3.7, placing sensor nodes exploiting the key role of dilations that
involve the most connected nodes, allows us to have an improvement of the order of 25%
on average in our ability to observe a subnetwork. In particular, can be noted that as
long as the average degree ⟨k⟩ < 7, the improvement is significant, then, it seems that
with average degree ⟨k⟩ ≥ 8, the dimension of the GSCC become larger (up to 95% of
the dimension of the network) and the dramatic effect of the dilations prevails.

Investigating more in detail the evolution of |GT
o (M)| in function of the number of

sensor nodes placed for a specific Erdős-Rényi network with ⟨k⟩ = 6, we can appreciate
how the second strategy (in green) allow us to anticipate the explosion of |GT

o (M)| with
respect to one that follows the same logic of driver nodes placement (in blue). More
specifically, the ability of observing the subnetwork improves significantly when a third
of the ND sensor is at disposal. This “inertia” is due to the fact that in order to have
a significant improvement firstly we have to make the sensors upstream large enough to
encompass a relevant number of the nodes composing the network.

Conclusions
Starting from the theoretical differences between partial controllability and observabil-
ity of subsystems and subnetworks highlighted in [121], we showed their practical conse-
quences in our ability of observing a subnetwork, namely observe the largest node subset
with a fixed limited number of sensor nodes at disposal, for two of the most relevant
classes of synthetic networks, Erdős-Rényi and Scale Free networks. Then, we stressed
how conferring observability to a subnetwork is way more challenging than conferring
controllability, highlighting which topological properties play a key role in hindering our
ability to observe a subnetwork. Then, we numerically implemented a sensors selection
heuristic strategy, and demonstrated that it performs better than selecting sensors in
the same way we select driver nodes. We found that exploiting the understanding of
dilations in hindering partial observability, we can achieve a relevant improvement in
the number of observable nodes, placing the same number of sensor nodes. Nevertheless,
as a graphical mapping of the geometric observability condition still lacks, future work
should be focused, on one hand, on finding a theoretical upper bound for the dimension
of the observable subnetwork given a fixed number of sensor nodes to be placed and
on the other hand, on identifying which are the topological features of large observable
subnetworks.
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Figure 3.7. Comparison of the evolution of µ∆ as a function of the average degree ⟨k⟩ between
the former (in red) and latter (in blue) strategy

Figure 3.8. Observable subnetwork dimension evolution with regards to the improved strategy
(in green) presented in 3 for a Erdős- Rényi network with average degree ⟨k⟩ = 6.



CHAPTER 4
On opinions’ fragmentation
in decision-making of large

social networks
Conferring controllability and observability to complex networks of dynamical systems
is a way to understand under which conditions our ability of controlling a network holds
true. Hence, it constitutes a prerequisite for control complex networks of dynamical
systems, a problem that has been tackled in the previous two works in chapter 3. The
following papers, instead, aim to dive in a particular category of network dynamical
systems, namely large-scale social networks, in order to capture: (i) how opinions of
social groups evolve over time, (ii) how these opinions can be shaped by particular
individual known as opinion leaders or influencers, and (iii) how these translate into
decisions-making processes. Both works select an opinion dynamics model that is able
to replicate the emergence of persistent disagreement or fragmentation that arise from
a discussion on a divisive topic among numerous individuals, but the two models differ
onto their level of complexity due to the ultimate goal of each paper, as described below.
Then, either model is complemented by an output function that allows to model also the
decision-making process relative to a certain formed opinion. Finally, they explore the
potential of opinion leaders to shape the discussion in order to obtain a desired decision
profile at steady state. In both papers, shaping action of influential individuals has been
modeled by means of a control tool, namely pinning control, that allow to exploit the
interaction structure of the social network to diffuse the leader’s opinion and convince as
many individuals as possible to adopt their action. Even though these papers have a lot
of similarities, they tackle different methodological issues: in [136], we aimed to unveil
the theoretical conditions under which a certain alternative, the one sponsored by an
influencer, namely the pinner, can be preferred by the majority of networked individuals.
They are assumed to discuss a topic, such as the political elections, the acceptance
of a vaccine, the adoption of a product, according to a cutting-edge nonlinear opinion
dynamics model that accounts for self-opinion formation and goes beyond linear diffusive
coupling [137]. This work enable to discover the potentiality of influencers in diffusing an
opinion in a social network with a strategy rooted in theoretical findings. However, the
high complexity of this model, as many parameters are needed to capture sophisticated
opinion formation mechanisms, hinders the capability of solving another crucial problem
in control theory that is identifiability. For this reason, in [138] we select a simpler



96 4 On opinions’ fragmentation in decision-making of large social networks

model, the Friedkin-Johnsen [43], that allow us to capture heterogeneity of opinions due
to intrinsic biases but keeping the number of parameters, and thus the complexity of the
model, limited in order to enable us tuning it on survey data, providing a validation of
the what-if scenarios proposed to compare the effectiveness of different pro-vaccination
initiatives of government bodies captured by means of an external influence, a pinner
node, that resemble an awareness campaign. In fact, from a critical overview of the state
of the art of opinion dynamics literature, we can assess that most of the existing studies
have been focused on attempting to mathematically capture some typical phenomena
of opinion formation process such as the emergence of consensus [42, 56], the raise of
extremism [57], the persistency of opinions heterogeneity [46, 139]. From a modelling
point of view, agents’ characterization translates into defining one or few parameters per
agent that describe their attitude during the opinion formation process.

Even though these models have been acknowledged to be able to qualitatively capture
the aforementioned phenomena observable in society, the so-called stylised facts, the
scientific community itself admits that the majority of opinion dynamics models have
been not validated yet. Indeed, a so-called replicative validity intended as the mere
ability of matching what can be qualitatively observed in real experiments and the
results of simulations, is not enough to assess the robustness of quantitative outcomes
of the simulations. The ultimate goal is to make these models decision-making support
tools able to quantitatively capture and predict the factual emerging behaviors in social
groups. A first attempt in this direction has been made in the work [138].
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4.1 Paper C - Influencing Opinions in a
Nonlinear Pinning Control Model

Introduction
In today’s world, technology has changed dramatically the way how people acquire and
share information, but more importantly the way in which information are conveyed
by companies or public authorities. The opinion formation process occurs especially on
social media platforms where users with provided with high visibility, the influencers,
becomes key players in shaping the beliefs towards societal issues in education [140],
health [141], politics [142], or consumer preferences [143]. Thus, the need for a deep
understanding of how opinions form and can be influenced to lead to a certain decision,
an aspect that has been overlooked in the literature of opinion dynamics in favor of
consensus emergence or mitigating polarization because most of the works are linked to
modeling small social groups. However, capturing the mechanisms that make influencers
opinion leaders and unveiling their persuading effect on the opinion formation process
of the others, namely the followers, is crucial and remains only partially unrevealed
[144,145]. If we interpret these influences as control inputs and the followers as a group
of interconnected individuals, the analogy with pinning control is crystal clear, where
the influencer is modeled as the pinner and influence the state (or opinion) of the other
nodes in a leader-follower scheme [138, 146–150].

The action of similar individuals like zealots (stubborn agents that do not consider
the others’ opinions and thus do not update theirs) has been analyzed when referring
to classic opinion dynamics models, based on averaging updating rules that imply that
the more divergent two agents’ opinions are, the more they tend to get closer [42,43,56].
But, in this work, we wanted to add the effect of external influences introducing the
pinning control formalism in the modeling framework proposed in [74, 151], where the
influence an agent has on the opinion of the others is capped by a saturation, overcoming
the paradox of averaging linear models.

We complemented the model with an output function describing the action, that is
a choice between two alternative options, associated to the opinion pf each individual,
as typically done in CODA models [70]. Then, we add a virtual node, the pinner,
which corresponds to (one or more) influencers trying to steer the action of the group
towards one of the two options, the one preferred by itself. In this framework the control
goal, thus the pinner’s one, is that of selecting the individuals to directly influence in
order to maximize the number of agents that will align with its action, by exploiting its
topological centrality in the network.

By breaking down the network into distinct layers, we can provide sufficient condi-
tions for the interaction structure, the selection of pinned nodes, and the control gain
ensuring that a designated group of agents within the network will align their actions
with the pinner. Leveraging these theoretical insights, we design a heuristic control strat-
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egy aimed at identifying the optimal set of pinned nodes to maximize the number of
nodes aligned with the pinner’s action. Our experiments reveal that this novel heuristic
strategy outperforms traditional pinning strategies based on centrality metrics [152,153].

Uncontrolled dynamics and parameter setting
We consider a group of N interconnected agents discussing on a given topic to finally take
a decision, one per individual, between two alternative actions A−1 and A+1. We assume
that the opinion diffusion process occurs on a weighted directed graph G = {V , E , W},
where nodes in V represent the N individuals, an edge (i, j) ∈ E implies that node
i influences node j, whereas the matrix W is the matrix of weights whose i-th entry
wij > 0 identify the strength of interaction between two individuals.

Inspired by the two-option model in [154], we describe the evolution over time of
the opinion of agent i as its scalar state xi(t) ∈ R, and model the corresponding action
yi(t) ∈ {−1, 1} that agent i would take given its opinion at time t as a discrete variable.
In the absence of external influences, our model is described by

ẋi(t) = −dxi(t) + c tanh
(

αxi(t) +
N∑

k=1
aikxk(t)

)
, (4.1a)

yi(t) = sgn(xi(t)), (4.1b)

where aij is the ij-th entry of the adjacency matrix A associated to G (aij ̸= 0 if
j influences i), d > 0 captures the resistance each agent has to change opinion, the
attention parameter c ≥ 0 weighs the opinion exchange term, thus, the larger it is, the
more agent i will give credit to the opinions of the neighbors, and α > 0 modulates how
much agent i reinforces its own opinion, that is the attachment towards its own opinion;

yi(t) = −1 corresponds to agent i preferring A−1 (respectively, (yi(t) = 1) corre-
sponds to (A+1) at time t, whereas yi(t) = 0 corresponds to agent i being undecided.
We say that agent i has a stronger opinion than j at time t if the magnitude of his/her
opinion is larger than that of agent j |xi(t)| > |xj(t)|. Note that the strength of an
opinion is measured by its distance from the undecided state 0, and thus it is possible
to compare strengths of opinions corresponding to discordant actions.

In this study, we set the parameters c, d, and α in (4.1) so that c > d/α. This ensures
that the single-agent dynamics in the absence of interactions (i.e., when aik = 0 for all
k), has an unstable fixed point at 0 and two stable fixed points in x̄ and −x̄, which are
the two solutions of the implicit equation

x

tanh (αx)
= c

d
, (4.2)

and, for any finite α, have magnitude smaller than c/d [74]. Note that as the opinion
of an individual may evolve also in the absence of interactions, this model (4.1) lends
itself to take into account the personal opinion formation process, where an agent may
modulate the strength of its opinion based on the acquisition of new information or
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critical thinking [154]. A reinforcement effect is observed when, as in our study, c is
selected to be larger than d/α: the left panel of Figure 4.1 shows that, when the agents
at time 0 share similar opinions towards the action to prefer A−1 (that is, xi(0) < 0 for
all i), the sharing of opinions leads to amplify the conviction towards this choice, thus
they would asymptotically take the same action, but with a stronger opinion.

Pinning control to influence opinions
Different from [154], here we consider the case where (one or more) influencers, labeled
with the Greek letter ι, try to steer the decision towards one of the two options. This
enables us to mimic the action of a high-profile agent that voluntarily wants to convince
its audience to be aligned with his preference. To capture this scenario, we model
the effect of the influencers through a virtual node ι with no incoming edges that, in
agreement with the literature on consensus and synchronization in network systems, is
called pinner and is unidirectionally coupled to a subset D1 ⊆ V of so-called pinned
nodes [31, 35, 106,146,155,156]. We assume that its opinion, independent of that of the
other agents as there is no incoming edges that connects the pinner to the other agents,
is already formed (or formed on a much shorter timescale), so that xι(t) = x̄ι for all
t, with x̄ι corresponding to one of the two equilibria ±x̄ of the decoupled single-agent
dynamics. This means that the pinner had a fully-formed and convinced opinion that
had already led to prefer a certain alternative. The action associated to the constant
opinion of the pinner is ȳι(t) = sgn(x̄ι) for all t.

The pinner influences the decision process of the other agents by directly affecting
the opinions of a subset of agents, namely the pinned nodes, and exploiting the network
structure to diffuse its effect on the rest of the network. The presence of the control
action from the pinner to the pinned nodes modifies model (4.1) as

ẋi(t) = −dxi(t) + c tanh
(
αxi(t) +

N∑
k=1

aikxk(t) + hiκιx̄ι

)
,

yi(t) = sgn(xi(t)), (4.3)

for i = 1, . . . , N , where the control gain κι > 0 modulates the influence that the pinner
has on the dynamics of the pinned nodes; and, ∀i = 1, . . . , N, hi = 1 if i is pinned, i.e.
i ∈ D1, whereas hi = 0 otherwise. The right panel of Figure 4.1 shows the persuading
effect of a pinner on a group of interconnected agent that at time 0 would take the
opposite action of the pinner, with the pinner able to convince a fraction of them to
change their opinion and subsequent action.

Control objectives
The aim of the control input hiκιx̄ι in (4.3) is to select the set of pinned nodes D1 that
maximizes the number of individuals that, after a sufficient amount of time, will take the
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Figure 4.1. The left panel displays the opinion dynamics of N = 30 agents coupled on an
Erdös-Rényi graph with probability p = 0.6, and evolving according to (4.1) with c = 3, d =
α = 1, and initial conditions uniformly randomly selected in [−3, 0]. The right panel depicts
the dynamics of the same network in the presence of a pinner (in dashed red) that is connected
to 3 agents according to (4.3) and steers the other agents towards a positive opinion. When
the agents enter the blue shaded area, they will always take the same action as the pinner,
thus belonging to the set Q defined in (4.4). Also, their opinion will become stronger than
that of the pinner: as they enter the gray shaded area, that they also belong to the set Qstr
defined in (4.6). In both panels, black and red lines identify the opinion dynamics of agents
opting for A−1 and A+1 at the end of the simulation, respectively.

same action as the pinner. To formally define this control design problem, we introduce
the set

Q = {i ∈ V : there exists t̄ such that
y(t) = ȳι for all t > t̄ },

(4.4)

whose composition will depend on the choice of κι and D1. For any κι, we can state the
following optimization problem:

max
D1

|Q(κι, D1)| (4.5a)

subject to
|D1| = M, (4.5b)

with M < N as the number of nodes that are directly controlled may be limited by
physical or economic constraints.

Depending on the context, one may be interested not only in convincing agents to take
the same action as the pinner, but also to make their opinion at least as strong as that
of the pinner. For instance, this is the case in which, agents deliberately starts to incite
the crowd to maintain ferment in a certain discussion to exaggerate their effect [157,158].
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In such case, we can define the set Qstr ⊆ Q as

Qstr = {i ∈ V : there exists t̄ such that
y(t) = ȳι and |x(t)| ≥ |xι| for all t > t̄ },

(4.6)

and state the following problem:

max
D1

|Qstr(κι, D1)| (4.7a)

subject to
|D1| = M. (4.7b)

The right panel of Figure 4.1 reports an instance where, for a given choice of κι and D1,
Qstr and Q coincide. If this happens for all possible choices of κι and D1, then problems
(4.5) and (4.7) would also coincide.

Main results
We first show that the proposed opinion dynamics model is well-posed, as the controlled
dynamics (4.3) are bounded to ensure that the modeling framework encompasses only
realistic scenarios. Then, we provide sufficient conditions so that an agent forms an
opinion that is coherent with the one of the pinner and more intense with respect to the
influencer’s opinion, that is, it belongs to Qstr (and therefore to Q as well).

The following lemma ensures that the opinions at steady-state are bounded by finite
values that depend on the model’s parameters.

Lemma 2. Under the dynamics (4.3), the absolute value of the agents’ opinion is
asymptotically bounded by c/d, that is, for all i = 1, . . . , N ,

lim sup
t→+∞

|xi(t)| ≤ c

d
. (4.8)

If, additionally, |xi(0)| ≤ c/d, then, for all t ∈ R≥0,

|xi(t)| ≤ c

d
. (4.9)

Proof. Let us define two auxiliary dynamical systems
˙̄xi = −dx̄i + c, x̄i(0) = xi(0). (4.10a)
ẋi = −dxi − c, xi(0) = xi(0). (4.10b)

As tanh(·) ∈ [−1, 1], from (4.3) and the Comparison Theorem for ordinary differential
equations [159], we have that

xi(t) ≤ xi(t) ≤ x̄i(t), ∀t ≥ 0. (4.11)

As limt→+∞ x̄i(t) = c/d and limt→+∞ xi(t) = −c/d, inequality (4.8) follows. Next, note
that xi(t) = (xi(0) + c/d) exp{(−dt)} − c/d and x̄i(t) = (xi(0) − c/d) exp{(−dt)} + c/d.
As |xi(0)| ≤ c/d, from (4.11), inequality (4.9) follows.
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Remark 1. We consider opinions that are bounded in a set centered at the undecided
opinion xi = 0. Considering Lemma 1, from now on we will assume |xi(0)| ≤ c/d, so
that c/d will represent the maximum strength an opinion can have at any time instant.

We define λi(t) = ∑N
k=1 aikxk(t) + hiκιx̄ι as the interaction term in (4.3), which can

be rewritten as

ẋi(t) = −dxi(t) + c tanh
(
αxi(t) + λi(t)), |xi(0)| ≤ c/d, (4.12a)

yi(t) = sgn(xi(t)). (4.12b)

In what follows, we first provide a condition on the absolute value and sign of the social
interaction term λi(t) so that agent i belongs to Q, that is, in finite time, agent i will
take the same action of the pinner, and its opinion will be at least as strong as that of the
pinner, so that i also belongs to Qstr. Then, we provide conditions on the control gain
κι and on the network topology such that the sufficient condition on λi(t) is fulfilled.

Let us define t1,i as the first instant such that the action of agent i coincide with the
one of the pinner, namely yi(t) ∈ {ȳι, 0}, with t1,i = +∞ if such an instant does not
exist, and

λ̃ := − tanh−1
(√

1 − d/cα
)

+ cα

d

√
1 − d/cα. (4.13)

Next, we define the set Ti := {τ : ∀t > τ, yi(t) = ȳι and |xi(t)| ≥ |x̄ι|} and the scalar

t2,i :=
{

min Ti, if Ti ̸= ∅,

+ ∞, otherwise.
(4.14)

In simple words, t2,i, when finite, is the smallest time instant such that node i takes the
same action as the pinner with an at least as strong opinion, thereby guaranteeing that
i ∈ Qstr.

The following theorem provides sufficient conditions on the magnitude of the coupling
term so that agent i will align its decision to the one of the pinner, with a stronger opinion
towards that preference, if they are fulfilled.

Theorem 5. Under the dynamics described by Eqs. (4.12), if

∃ϵ > 0 : |λi(t)| ≥ |λ̃| + ϵ, (4.15)
sgn(λi(t)) = sgn(x̄ι), (4.16)

for all t ≥ 0, then

∃t1,i < +∞ : yi(t) = ȳι, ∀t > t1,i, (4.17a)
∃t2,i ∈ [t1,i, +∞[ : |xi(t)| ≥ |x̄ι|, ∀t > t2,i. (4.17b)

Proof. For clarity, in the proof we consider ȳι = 1, but the derivations hold ceteris
paribus for ȳι = −1.
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Existence of a finite t1,i: Let us start by showing that if xi(0) < 0 then there exists
a time instant t̃ such that xi(t̃) = 0. Note that, as the hyperbolic tangent is strictly
monotone increasing, assumptions (4.15)-(4.16) imply that

ẋi(t) ≥ f(xi, ϵ) := −dxi + c tanh
(
αxi + λ̃ + ϵ

)
, (4.18)

for all xi ∈ [−c/d, 0]. Function f has two stationary points, whereby setting ∂f(xi, ϵ)/∂xi =
0, one obtains

x⋆
i,1 =

−cα/d
√

1 − d/cα − ϵ

α
,

x⋆
i,2 =

2 tanh−1(
√

1 − d/cα) − cα/d
√

1 − d/cα − ϵ

α
.

Evaluating the function at x⋆
i,1 and x⋆

i,2, respectively, yields

f(x⋆
i,1, ϵ) = ϵd/α > 0, (4.19)

f(x⋆
i,2, ϵ) = 2ϕ(c) + ϵd/α > ϵd/α > 0, (4.20)

where we used that, for all c > d/α, ϕ(c) = (c
√

1 − d/cα − d/α tanh−1(
√

1 − d/cα) > 0.
Noting that

1. f is continuous and differentiable;

2. f is positive at the extrema of the interval [−c/d, 0], whereby f(0, ϵ) = c tanh
(
λ̃ + ϵ

)
>

0, and f(− c
d
, ϵ) = c + c tanh

(
−α c

d
+ λ̃ + ϵ

)
> 0 as tanh(·) > −1;

3. f is positive and lower bounded by ϵd/α at both its stationary points;

we obtain f(xi, ϵ) ≥ ε, for all xi ∈ [−c/d, 0], with

ε = min{c tanh
(
λ̃ + ϵ

)
, c + c tanh

(
−αc/d + λ̃ + ϵ

)
, ϵd/α} > 0.

Therefore, from (4.18) we then have

ẋi(t) ≥ f(xi, ϵ) ≥ ε > 0, ∀t : xi(t) ∈ [−c/d, 0]. (4.21)

In turn, this implies that xi(t) > xi(0) + tε for all t such that xi(t) < 0. As xi(0) ≥
−c/d, we can then conclude that t̃ ≤ c/dε. Then, from the continuity of f(·) and as
f(0, ϵ) ≥ ε > 0 we have t1,i = t̃ (4.17a). Note that this also proves the existence of t1,i

when xi(0) = 0.
Finally, if xi(0) > 0, then t1,i = 0 follows from the continuity of f(·). Indeed, as

f(0, ϵ) ≥ ε > 0, then there exists a finite x̃i such that 0 < x̃i ≤ xi(0) and f(x̃i, ϵ) > 0.
Existence of a finite t2,i: Now, let us study the dynamics (4.12) for t > t1,i. As

xi(t) > 0 for all t > t1,i, to prove (4.17b), consider that

ẋi(t) > −dxi + c tanh
(
αxi + λ̃

)
> g(xi) := −dxi + c tanh(αxi).

(4.22)
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As ẋi = g(xi) is a bistable dynamical system with the stable fixed points at ±x̄ι, and
starting at xi(t̃) > 0, the dynamics governed by g(xi) monotonically converge to x̄ι, thus
from (4.22) the existence of a finite t2,i follows.

Next, we leverage the result of Theorem 5 to guarantee that a given agent will belong
to Qstr. To do so, we define the extended graph G̃ obtained by adding the pinner and
its ingoing edges to G. Let D ⊆ V be the set that includes all nodes that are destination
of a directed path originating from s in G̃, and let q ≤ N be the maximum length of
the shortest path from s to a node in D. We focus on D as the opinion dynamics of the
nodes in V \ D cannot be affected either directly or indirectly by the pinner as there not
exists a path connecting them to the pinner.

Next, we relabel the nodes in V so that the nodes belonging to D are the first |D|, and
decompose D in q disjoint subsets (layers) D1, . . . , Dq, so that i ∈ Dl if the shortest path
in G̃ that connects s to i has length l, for l = 1, . . . , q (the first layer D1 coincides with the
set of pinned nodes). Finally, we define the set Bl := {j ∈ ∪l

k=1Dk : j ∈ Qstr} ⊆ ∪l
k=1Dk

of nodes in the layers 1, . . . , l that in finite time will take the same action as the pinner
with an at least as strong opinion.

Now, let us study the behavior of the nodes belonging to D1, that is, the pinned
nodes. Denoting δin

i = ∑N
k=1 aik the weighted in-degree of node i, we can give the

following Corollary of Theorem 5 on the magnitude of control gain so that the pinned
nodes will take the same action of the pinner:

Corollary 4. For any i ∈ D1, if

κι >
|λ̃| + ϵ + c

d
δ in

i

|x̄ι|
, (4.23)

then i ∈ B1.

D1

D2

Figure 4.2. Decomposition in layers of a sample graph G = {V, E}: the pinner (in red) has 3
outgoing edges that point to the nodes in D1 = {1, 2, 3}, whereas the set D2 is composed by
nodes 4 and 5 that are at two steps away from the pinner. Note that D = D1 ∪ D2 does not
encompass node 6, which is not influenced by the pinner, and therefore in this case D ⊂ V.
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Proof. Let us recall that λi(t) = ∑N
k=1 aikxk + κιx̄ι. Then, as |xk| ≤ c/d from Lemma 2

and Remark 1, and as ∑N
k=1 aik = δin

i by definition, then from (4.23) we have that (4.16)
holds. Furthermore, the same arguments imply that

|λi(t)| ≥ κι|x̄ι| −
N∑

k=1
aik|xk| ≥ κι|x̄ι| − c

d
δ in

i .

Hence, also (4.15) holds, and therefore from Theorem 5 the thesis follows.

We can now study the dynamics of a generic node i ∈ Dl, l ≥ 2, that is, the ones
who are indirectly connected to the pinner. Let us define bi as the sum of the weights
of the edges entering node i from every node j ∈ Bl−1, that is, bi := ∑

j∈Bl−1 aij, which
implies that 0 ≤ bi ≤ δ in

i . Then, we can give the following sufficient condition for a node
i to belong to the set Bq ⊆ Qstr of nodes in D that take the same action with an at least
as strong opinion as the pinner.

Corollary 5. For any i ∈ Dl, and l ≥ 2, if Bl−1 ̸= ∅, and there exists ϵ > 0 such that

bi >
|λ̃| + ϵ + c

d
(δ in

i − bi)
|x̄ι|

, (4.24)

then i ∈ Bq.

Proof. Let us note that

λi(t) =
∑

j∈Bl−1

aijxj(t) +
∑

j /∈Bl−1

aijxj(t). (4.25)

Moreover, consider that, from Lemma 2, we have∣∣∣∣∣∣
∑

j /∈Bl−1

aijxj(t)

∣∣∣∣∣∣ ≤ c

d
(δ in

i − bi) (4.26)

and from Theorem 5 and the definition of Bl−1 we have that∣∣∣∣∣∣
∑

j∈Bl−1

aijxj(t)

∣∣∣∣∣∣ ≥ |x̄ι|bi, (4.27)

for all t ≥ tl := maxj∈Bl−1 t2,j. Hence, combining Eqs. (4.26)-(4.27), and from (4.24),
λi(τ), with τ = t − tl, satisfies (4.15)-(4.16), and thus the thesis follows from Theorem
5.

Note that in (4.24) the lower bound of bi is given in implicit form to underline the
analogy with (4.23).

Corollaries 4 and 5 hold for any initial opinion in the set [−c/d, c/d]. Hence, they
allow exploring layer by layer the part of the network whose dynamics is affected by the
persuading action of the pinner and determine which agent we can guarantee will belong
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to Qstr. In particular, condition (4.23) of Corollary 4 guarantees that, even in the worst
case where all the agents (except for the pinner) influencing agent i have the opposite
opinion of the pinner with maximum strength c/d, the control gain κι is strong enough to
ensure assumption (14) of Theorem 1 is fulfilled. Condition (4.24) of Corollary 5 shows
that, different from layer 1, in the other layers the control gain has only an indirect
influence. Indeed, for a given level l, κι may affect the cardinality |Bl−1| of the set of
neighbors of node i that take the same action and have an opinion at least as strong as
that of the pinner. The larger |Bl−1|, the more nodes in layer l will belong to Qstr, since
bi in (4.24) will be larger.

Pinning selection strategies
Once derived the mathematical conditions that guarantee the belonging of a certain
node to the set of nodes that represent the agents that will be aligned with the pinner’s
decision, corollaries 4 and 5 can be used in an algorithmic fashion to identify a set
of nodes B̃q that we can guarantee will belong to Bq, that is, the set of nodes in the
layer q that will take the same action as the pinner with an at least as strong opinion,
for any |xi(0)| ≤ c/d. More specifically, condition (4.23) can be used to compute the
pinned nodes that belong to B̃1, and then condition (4.24) can be iteratively applied to
sequentially compute B̃2, . . . , B̃q among the nodes that are indirectly influenced by the
pinner.

Noting that the set of nodes that we prove to take the same action as the pinner
with an opinion at least as strong as the one of the pinner is a subset Bq ⊆ Qstr, we
can then use the cardinality of the estimation of this set q̃(D1, κι) := |B̃q|, evaluated
algorithmically through the two corollaries 4 and 5, as a proxy for the effectiveness of
the choice of the set of pinned nodes D1 with a given cardinality M in solving problem
(4.7), for a given selection of the control gain κι. In what follows, assuming we do not
consider any restriction on the control gain κι, we propose a greedy heuristic that solves
in polynomial time the NP-hard problem of selecting D1 with the goal of maximizing
q̃∞(D1) := limκι→+∞ q̃(D1, κι). We compare the effectiveness of the solution with respect
to both Problems (4.5) and (4.7) against alternative choices of the pinned nodes based
on centrality metrics, similar to what has been done in [152, 153].

Heuristic strategy for selecting D1
Starting from an empty set of pinned nodes, namely D1 = ∅, our greedy strategy
sequentially adds nodes so that, at every iteration, q̃∞ is maximized given the current
cardinality of D1. The heuristic stops as soon as |D1| = M . Defining

κ̄ι := max
i∈V

|λ̃| + ϵ + c
d
δ in

i

|x̄ι|
,

as the control gain ensuring, from Corollary 4, that any pinned node belongs to Qstr the
steps of our algorithm are:
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1. initialize D1 = ∅, and set κι > κ̄ι;

2. using Corollaries 4 and 5 compute q̃(D1 ∪ {i}, κι) for all i ∈ V \ D1;

3. randomly select i⋆ in the set

arg max
i∈V\D1

q̃(D1 ∪ {i}, κι), (4.28)

and update D1 = D1 ∪ {i⋆};

4. if |D1| < M , go to step 2, otherwise stop the algorithm.

Performance in a sample retweet network from Twitter

We compare the proposed heuristic both against chance, that is, a random selection
of the set D1, and alternative topological strategies, which consist in encompassing
in D1 the nodes with maximum (or minimum) outdegree, indegree, and betweenness
centrality [160]. To do so, we extracted a directed unweighted subgraph of 580 nodes of
a retweet graph from [2]. Then, we set the number of pinned nodes to M = 0.05N , and
evaluated the following metrics to assess the performance of the proposed heuristic:

• m1 = |Q ∩ D|/|D| and m2 = |Q|/|V|, that is, the fraction of nodes in D and in V ,
respectively, that take the same action of the pinner;

• m3 = |Qstr ∩ D|/|D| and m4 = |Qstr|/|V|, that is, the fraction of nodes in D and V ,
respectively, that take the same action of the pinner and have an opinion that is at
least as strong as that of the pinner;

Note that m1 and m3 focus on the nodes that, given the selection D1, are directly affected
by the pinner, whereas m2 and m4 evaluate the effectiveness of D1 for all the agents in
V . We evaluated these metrics for initial opinions

1. drawn from a uniform distribution in [−c/d, c/d],

2. furthest from that of the pinner, i.e. xi(0) = −c/d as we set ȳι = 1.

For case 1), the results are averaged over 1000 random selections of the initial conditions.
Table 4.1 shows that the proposed heuristic outperforms the alternative strategies. Also,
metrics m1,2 and m3,4 are equivalent when all agents start with opinions that are furthest
from the pinner, and the ranking of the strategies does not change depending on the
metric. Moreover, we observe that the maximization of the out-degree is the topological
strategy that more closely matches the performance of the proposed heuristic.
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Table 4.1. Comparison of our strategy (heur) against a random selection, the maximization
or minimization of the out-degree δout, in-degree δin, or the betweenness centrality bc for two
alternative choices of initial conditions.

Strategy
Initial conditions Metrics heur rand δmax

out δmin
out δmax

in δmin
in bcmax bcmin

xi(0) ∼ U(− c
d
, c

d
)

m1 0.92 0.65 0.90 0.54 0.90 0.58 0.90 0.57
m2 0.92 0.63 0.90 0.53 0.89 0.57 0.90 0.56
m3 0.81 0.61 0.80 0.53 0.79 0.57 0.80 0.56
m4 0.7 0.5 0.68 0.41 0.68 0.47 0.68 0.45

xi(0) = − c
d
, ∀i

m1 0.30 0.081 0.27 0.070 0.14 0.070 0.22 0.050
m2 0.30 0.081 0.27 0.070 0.14 0.070 0.22 0.050
m3 0.22 0.061 0.20 0.050 0.11 0.050 0.16 0.050
m4 0.22 0.061 0.20 0.050 0.11 0.050 0.16 0.050

Performance in synthetic networks

As pinning the nodes with maximum out-degree leads to performance close to the pro-
posed heuristic strategy, we performed a comprehensive numerical analysis on Erdös-
Rényi (ER) and Scale Free (SF) graphs, generated by means of the configuration model,
to assess whether the proposed heuristic yielded a significant improvement. For both
ER and SF topologies, and for each value of the average degree, varied between 1 and 5
with step 1, we generated 100 graphs of N = 500 nodes, and we computed the average
values of m1, . . . , m4 setting xi(0) = −c/d for all i. As shown in Figure 4.3, in all syn-
thetic networks the proposed heuristic outperforms pinning the nodes with maximum
out-degree, and a t-test confirms that the difference is significant, with a p-value smaller
than 0.001.

In the following, are presented additional topological considerations that have not
been published for the sake of brevity.

Topological features of pinned nodes
The existing algorithms for solving the minimum input problems, that is for selecting
the minimum number of nodes to directly control, namely the driver nodes, to ensure
both controllability or to pinning control either the whole network or the largest sub-
network, prescribe to avoid hubs [8], or more in general, very central nodes. This kind
of selection is counterintuitive, as centrality has been extensively used as a proxy to
identify influential nodes. Our heuristic driver node selection strategy, leveraging the
realistically saturated dynamics of [137], allow to smartly select the most influential
nodes to maximize their capability of diffusing their opinions in the network. In Table
4.2 we can appreciate how the average in-degree, out-degree and betweenness centrality
are substantially higher than the average of the whole network nodes. This finding has
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Figure 4.3. Comparing the proposed heuristic against pinning the nodes with maximum
out-degree in terms of the fraction m2 of nodes taking the same action of the pinner. The left
and right panel refer to ER and SF networks, respectively. The probability of ER graphs is
equal to ⟨δ⟩/N , the exponent of the power law of SF network is equal to 2.6. Each data point
is averaged over 100 realizations of the graph topology.

Network metrics Pinned nodes metrics
average in-degree 8.03 25.62

average out-degree 8.03 26.31
average betweenness 1022 6303

Table 4.2. Comparison between network centrality metrics and pinned nodes centrality met-
rics for the Twitter network used in the previous example.

also been confirmed by repeating the same analysis on ER and SF datasets as shown in
Figures 4.4, 4.5.

Conclusions
In this work, we deployed pinning control as a mean to enhance the impact of an in-
fluencer within social groups engaged in interactions governed by a nonlinear opinion
dynamics model. We established specific conditions regarding the network’s structure
and control parameters to ensure that individuals not only adopt the same action but
also possess opinions that are at least as influential as those of the influencer. Our find-
ings guided the development of a heuristic approach for strategically selecting the nodes
where inputs should be introduced to maximize the influencer’s reach, while adhering
to a constraint on the number of nodes to be pinned. Future research endeavors should
focus on validating our results using real-world data sourced from online social media
platforms and exploring scenarios that incorporate heterogeneous agent parameters or
involve multiple influencers vying for influence over other agents.
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Figure 4.4. Comparison of network centrality metrics of ER dataset (in blue) with the pinned
nodes’ centrality metrics (from the left, average in degree (in green), average out degree(in
violet) and average betweenness (in red)) at varying the average degree.

Figure 4.5. Comparison of network centrality metrics of SF dataset (in blue) with the pinned
nodes’ centrality metrics (from the left, average in degree (in green), average out degree (in
violet) and average betweenness (in red)) at varying the average degree.
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4.2 Paper D - A model-based opinion
dynamics approach to tackle vaccine
hesitancy

Introduction

Vaccine hesitancy has long been a subject of debate within the scientific community
and the society in general, as it could heavily hinder our ability to fight viruses, see
the recent revival of measles both in Europe and US [161–163]. A hesitant attitude in
a non-negligible part of the population has always been observed world-wide [164–166].
Tackling this issue has become even more crucial during the COVID-19 pandemic due to
the pervasive use of social media, which favored a radicalization of the opinions [167], and
transformed a subset of vaccine hesitant into fierce no-vax, causing subsequent delays in
our race towards herd immunity [168]. In this context, unveiling the underlying mecha-
nisms by which opinions on vaccines form and translates into getting a jab or not could
be essential to promote vaccination, and keeping the pandemic under control. Indeed,
opinion formation is not only affected by the social pressure exerted through traditional
media outlets such as newspapers or TV, but also by peer-to-peer interactions on social
networks. We capture this opinion diffusion on large groups of networked individuals by
means of an opinion dynamics model, tuned on survey data on vaccine willingness in the
Italian population. Our ultimate goal is that of allowing to simulate what-if scenarios
and compare the effectiveness of specifically designed pro-vaccine campaigns aimed at
diffusing the vaccine literacy and boosting immunization acceptance [169]. Namely, we
consider the willingness of getting vaccinated among a sample of Italian citizen, whose
diffusion in a social group can be shaped over time by the influence of intrinsic biases,
peer pressure and other exogenous actions, representing awareness campaigns. Such
promoting actions were traditionally enforced by the government by means of general
mass media such as newspapers or TV. However, given the current capillarity of social
networks, they are becoming the main means for pro-vaccine awareness campaigns.

Our goal in [138] has been to capture opinion diffusion on large groups of networked
individuals by means of an opinion dynamics model and to endow it of a predictive
capability, thereby enabling proactive interventions [170]. This paper made a first step
in this direction, proposing a scaled model and tuning it on a survey, and hypothesizing
different targeted vaccine promotion campaigns to finally compare their effectiveness
on the basis of the expected fraction of the population that, subject to each different
campaign, will decide to take the vaccine, mathematically backing the decisions of gov-
ernment bodies on how devote the limited resources available in the most smartly way.
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Opinion dynamics modeling of vaccine acceptance
Vaccine hesitant individuals are defined by WHO as “a heterogeneous group that are
indecisive in varying degrees about specific vaccines or vaccination in general”. Hence,
vaccine willingness is a “fluid” opinion on vaccination that can be molded by social
interaction and external stimuli.

Our modelling assumption is that the vaccine willingness of the i-th of a population
of N networked individuals, xi(k), is shaped in time by social interactions according to
the Friedkin-Johnsen model [43], i.e.,

xi(k + 1) = λi

∑
j∈Ni

wijxj(k) + (1 − λi)xi(0). (4.29)

Here, the so-called susceptibility λi ∈ [0, 1] modulates the convex combination between
agent i’s innate opinion xi(0) and the social pressure modeled as the average of the
current willingnesses xj(k) of its neighbors in the network (the agents in the set Ni).
The complement to 1 of λi captures the agent’s stubbornness. In model (4.29), vaccine
willingness diffuses along an undirected connected graph G = {V , E} with self-loops at
each node, where V is the set of the N individuals, and E = {(i, j) ⊆ V × V} is the
set of edges connecting neighboring individuals. Departing from the consideration that
radical views generally translate into foreseeable (unsurprising) actions, while actions
related to moderate opinions are far more uncertain, we posit that the probability of an
individual accepting a jab at a certain time k, pi(k), depends linearly on its willingness
xi(k). Hence, we can extend the model of xi(k) to pi(k) obtaining

pi(k + 1) = λi

∑
j∈Ni

wijpj(k) + (1 − λi)pi(0). (4.30)

According to our model, the binary decision of taking or refusing a jab becomes a
Bernoulli random variable whose parameter is pi(k).

Equation (4.30) can be rewritten in compact matrix form as

p(k + 1) = ΛWp(k) + (IN − Λ)p(0), (4.31)

where Λ = diag{[λ1, . . . , λn]T} encodes the susceptibilities of each individual and IN is
the identity matrix of size n. Moreover, W is a row-stochastic matrix that captures
the structure of the graph G, whereby its ij-th entry wij is wij = 1/|Ni| if (i, j) ∈ E
and zero otherwise, with | · | denoting the cardinality of a set. Finally, p(0) encodes the
initial willingness of being vaccinated. Note that λi = 0 corresponds to zealot [171,172],
who never changes its opinion while actively trying to convince the others. Assuming
that Λ ̸= IN , that is, there exists at least an agent i such that λi < 1, the vaccination
probabilities will converge at steady-state toward [173]

p = (In − ΛW )−1(IN − Λ)p(0), (4.32)

where p = [p1, . . . , pN ]T. Knowing the distribution of all individual vaccination proba-
bilities p(k) allows computing the probability that, at time k, a given fraction of the
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population is willing to be vaccinated. Indeed, this event can be viewed as the outcome
of a Poisson binomial experiment, which is a collection of N independent yes/no experi-
ments with success probabilities p1(k), . . . , pn(k). The same consideration holds for the
steady-state distribution p.

A scaled model of vaccine willingness in the Italian
population.

Figure 4.6. Topology of the Facebook friendship network in [2].

We exploit our modeling framework to build a scaled representation of vaccine will-
ingness in the Italian population. Since we focus on interactions taking place through
online social media, we borrowed the graph describing social interactions among the
individuals from a Facebook friendship network [2], see Figure 4.6. We associate to the
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individuals of our scaled model vaccine willingnesses (see section 4.2 below for details)
whose distribution is compatible with the outcome of a survey conducted on a sample
of the Italian adult population at the end of the first lockdown [165], when the vaccine
availability was long to come. From these data we were able to estimate the susceptibili-
ties λi so as to preserve, at steady-state, the aforementioned association, see the section
4.2 for details and the Figure 4.7 for a graphical representation.

The steady-state distribution of the vaccine willingness enables the evaluation of the
probability that any given fraction of the population gets vaccinated, which in turn al-
lows computing the expected fraction of the population that, at the time of the survey,
would have taken a jab had this opportunity been given.

Tuning the model parameters on real data.
The parameters that need to be selected in model (4.31) are related to i) how individuals
are connected, which is encapsulated by the network topology, described by matrix W ,
and ii) the inherent characteristics of each individual, captured by the susceptibilities
λ1, . . . , λn, and by the initial probabilities p1(0), . . . , pn(0), a measure of their pre-existing
attitude towards vaccines. The network matrix W has been borrowed from a Facebook
social friendship network [2], composed by n = 1446 nodes, with |E| = 59600 edges
describing their mutual interactions. We have chosen the individual parameters so that
the steady-state probabilities p in (4.32) are compatible with the outcome of a survey
administered to a sample of Italian citizens [165]. Toward this goal, we first translated
the survey outcome into target steady-state values p⋆, to then tune the susceptibilities λi

and find a set of initial attitudes pi(0) so to obtain the p that best matches p⋆ in the least
square sense (see Figure 4.7 for a visualization of p and p⋆). *Description of the dataset
from [165] and choice of p⋆. The authors of [165] tested the beliefs and attitudes of Ital-
ian citizens towards a possible COVID-19 vaccine through the administration of surveys,
based on the Likert scale, to a stratified sample of 1004 individuals, representative of the
Italian adult population aged between 18 and 70 years old. The respondents filled the
survey during the first days following the end of Italy’s strict lockdown begun in March
2020, when no vaccine was available yet. The survey contained general questions about
their lives and health habits, as well as specific questions related to the COVID-19 pan-
demic. In this work, we focused on the 5th Likert item of the survey, which reads ‘I am
willing to vaccinate, if a vaccine against COVID-19 were to be found’, with five options,
ranging from 1 = ‘not likely at all’ to 5 = ‘absolutely’, and computed the fraction fj of
agents choosing answer j to question 5, for j = 1, . . . , 5. Accordingly, we partitioned
our social network of n = 1446 nodes into 5 classes, where the j-th class is populated by
the cj = fjn agents expected to choose option i. As fjn is not necessarily an integer, it
is rounded so that ∑5

i=1 cj = n, and each agent is randomly assigned to each class. We
then converted the categorical values of the Likert scale into continuous values in the
interval [0, 1] following the approach in [174], and splitting it in 5 sub-intervals, one for
each class (alternative approaches have been proposed e.g. in [175, 176]). Namely, the
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Figure 4.7. Violin plots of the steady-state opinion distribution from the model calibrated
as described in the main text (light blue), with that obtained from the survey data (blue),
respectively. On the right, the violin plots of the initial and final opinions’ distribution of
vaccine willingness, respectively. Data points corresponding to agents’ opinions in the two
endpoints are colored accordingly to their Likert score on the vaccine willingness survey.

jth class was associated to a range rj = [0.2(j − 1), 0.2j], j = 1, . . . , 5, where the steady-
state vaccination probabilities p⋆ should lie, see Table 4.3. Given an agent i assigned to
class j, the steady-state vaccination probability p⋆

i has been extracted from a uniform
distribution in rj.

Likert item point Probability range rj

(1) Not likely at all. 0 - 0.2
(2) A little likely. 0.2 - 0.4
(3) Not likely nor unlikely. 0.4 - 0.6
(4) Very likely. 0.6 - 0.8
(5) Absolutely. 0.8 - 1

Table 4.3. Conversion of discrete vaccine willingness Likert score to continuous probability
of getting vaccinated.

*Selection of the behavioral parameters λ and p(0). Once we generated target
steady-state probabilities p⋆ as explained above, we selected the individual parameters
in our network so that the network dynamics converge to the steady-state vaccination
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probability p that is the closest possible to p⋆ in the least square sense. Namely,

min
λ,p(0)

∥p − p⋆∥2 (4.33a)

subject to
0 ≤ pi(0) ≤ 1, i = 1, . . . , n, (4.33b)
λT
1n = ρn, 0 ≤ λi ≤ 1, i = 1, . . . , n, (4.33c)

⌊5p⋆
i ⌋

5
< pi ≤ ⌈5p⋆

i ⌉
5

, i = 1, . . . , n, (4.33d)

p = (In − ΛW )−1(In − Λ)p(0), (4.33e)

where ⌊·⌋ and ⌈·⌉ map a real number to its previous or next integer, respectively, and
1n is the vector of all ones. Notice that the set of enforced constraints (4.33b)-(4.33e)
guarantee that the outcome of the optimization is meaningful. Indeed, constraint (4.33b)
guarantees that the probabilities lie in [0, 1], (4.33c) that the average susceptibility to
the neighbors’ opinion is 0 < ρ < 1 and the individual susceptibilities belong to [0, 1],
whereas (4.33d) enforces that if p⋆

i ∈ rj, then also p̄i ∈ rj, that is, each agents stays in
the target class identified by p⋆. Finally, constraint (4.33e) ensures that the steady-state
values p̄ are compatible with the dynamics (4.31). In Figure 4.8 the distribution of the
susceptibilities inferred is shown. In all our numerical analysis, we selected the largest
value of ρ for which problem (4.33) admits a solution, that is, ρ = 0.58. However, our
main results would still hold for lower values of ρ, see Section 4.2.1 for further details.

Figure 4.8. Histogram of estimated stubbornness λ̂i and its estimated PDF.

Incorporating pro-vaccine campaigns into the model.
According to the Friedkin-Johnsen model, the individuals can neither change their own
belief nor their susceptibility, thereby in the time-scale of a campaign we can only act
on the social interaction term λWp(k) in (4.31). Exploiting tools from network control
[106,177], we incorporate a pro-vaccine campaign in model (4.29)-(4.30) as an additional
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virtual node, an influencer agent, whose willingness is xl(k) and associated probability
of accepting a jab pl(k) = 1 ∀k. The influencer agent is connected through a directed
link to a fraction ϕ of targeted individuals. Agent i will weigh the opinion of this virtual
agent proportionally to the intensity of the vaccination campaign. Hence, the dynamics
of the targeted agents becomes

pi(k + 1) =
(

(1 − α)λi

∑
j∈Ni

pj(k) + αpl(k)
)

+ (1 − λi)pi(0). (4.34)

where α ∈ [0, 1] quantifies the effort per target individual. Hence, we characterize the
overall effort 0 ≤ η ≤ 1 of a campaign as the product of the two parameters α and ϕ.

In compact terms, Equation (4.31) modifies as

p(k + 1) = Λ
(

(In − α∆)Wp(k) + αδpl

)
+ (In − Λ)p(0), (4.35)

where δ = [δ1, . . . , δn]T, with δi being 1 if node i is targeted by the campaign, and 0
otherwise, ∆ = diag{δ}, 0 ≤ α ≤ 1 quantifies the intensity of the vaccination campaign,
pl = 1 is the vaccination probability the campaign is targeting, and we set p(0) = p̄.
Namely, α = 0 corresponds to no effect, whereas α = 1 to the agents disregarding the
opinion of the other neighbors, and only considering the that of the virtual neighbor l.
The same approach can be used to incorporate the effect of hoaxes and misinformation,
just by setting pl to zero.

During the ongoing pandemic, health authorities of most countries have conducted
traditional pro-vaccine campaigns through mass media to fight vaccine hesitancy [178–
180]. In our modeling framework, this means that the influencer (in this case, the health
authority) is connected to all the network agents, that is, ϕ = 1. However, in the era of
online social media and targeted marketing, one could argue that a targeted pro-vaccine
campaign, where the influencer devotes a larger individual effort α to a small fraction ϕ
of the agents, could outperform traditional mass campaigns given the same overall effort
η.

To dispel this doubt, we exploit our scaled model to design three alternative targeted
campaigns, differing for the selection of the targeted agents, denoted in the following as
Strategies 1, 2, and 3, respectively. Strategy 1, as in classical network science approaches,
targets the most connected agents, i.e. the agents that have the greatest topological
advantage for spreading opinions favorable to vaccination. Strategy 2 mitigates the
effect of the antivax by targeting their neighbors, whereas Strategy 3 directly targets
the most susceptible agents.

Comparing pro-vaccine campaigns.
Leveraging our scaled model, we conducted a numerical analysis to compare the effective-
ness of targeted and mass campaigns on our synthetic population. Our simulations show
that i) the targeted campaigns outperform a general mass-media campaign, and ii) the
best strategy for targeting individuals depends on the overall effort η of the campaign.
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Indeed, for all possible selections of η, it is possible to find a targeted strategy that
yields an advantage compared with general mass-media campaigns, with an increase of
the expected number of vaccinated individuals that reaches a maximum 5% for η = 0.25,
see the left panel of Figure 4.9. Interestingly, for low efforts (η < 0.1), any strategy is
capable of increasing the effectiveness of the vaccination campaign, with the merely
topological approach of Strategy 1 being the most effective. When more resources can
be devoted to the campaign, our model predicts that a finer characterization of the indi-
viduals is required to substantially increase the expected vaccinated population, see the
right panel of Figure 4.9. In particular, for all η ≥ 0.1, Strategy 3, which relies on the
estimation of the individual susceptibility, proves to be the best campaign. One could
argue that the expected advantage of targeted strategies over the general alternative
could be irrelevant, should the variance be high. However, as shown in Section 4.2.1,
the variance of the distribution of the fraction of vaccinated individuals tends to 0 as
the size of the populations increases, and is negligible when we consider the population
of a country like Italy. These results are robust to changing the graph underlying our
scaled model, see Section 4.2.1.

Figure 4.9. Comparison of targeted and traditional provax mass campaigns. The left panel
depicts, for each effort η, the additional population fraction ∆⋆

µ and ∆0
µ that is expected to be

vaccinated when the best targeted campaign (identified by circles) or the mass provax campaign
(identified by triangles) are employed, respectively. The right panel displays for each effort η
and targeted strategy s, the ratio between the fractions of the population µs(η) and µ0(η) that
are expected to be vaccinated when strategy s and the traditional campaign are employed,
respectively. In both panels, Strategy 1, 2, and 3 are depicted in blue, green, and magenta,
respectively, the intensity of the vaccination campaign is set to α = 1 and for the maximum
effort η = 1, all points are superimposed since all strategies would be equivalent.
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Impact of antivax campaigns.
Our model can also be used to assess the possible impact of antivax campaigns. Analo-
gously to the provax case, we incorporate the role of antivax campaigns attempting to
polarize the vaccination probabilities towards zero by setting pl(k) = 0 for all k. More-
over, we assume that the selection of the agents targeted by the antivax influencer is
made according to the same criteria defining the provax strategies. As illustrated in Fig-
ure 4.10, antivax campaigns can be even more impactful than their provax counterparts,
and thus can represent a serious hindrance in our quest to stem the transmission of the
virus.

Figure 4.10. Comparison of the targeted and traditional mass antivax campaigns. The
left panel depicts, for each effort η, the additional population fraction ∆⋆

µ and ∆0
µ that is

expected to be vaccinated when the best targeted (identified by circles) or the mass (identified
by triangles) antivax campaigns are employed, respectively. The right panel displays, for each
effort η and targeted strategy s, the ratio between the fractions of the population µs(η) and
µ0(η) that are expected to be vaccinated when strategy s and the mass antivax campaign are
employed, respectively. In both panels, Strategy 1, 2, and 3 are depicted in blue, green, and
magenta, respectively, the intensity of the vaccination campaign is set to α = 1, and, for the
maximum effort η = 1, all points are superimposed since all strategies would be equivalent.

4.2.1 Additional analyses

Consideration on the variance of the Poisson Bernoulli distribution
of the population
The model presented interprets each agent’s opinion as its probability pi of getting
vaccinated. We can then associate to each agent i = 1, . . . , n independent Bernoulli
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variables X1, . . . , XN , with heterogeneous probability of success p1, . . . , pN , respectively.
As our ultimate goal is to estimate the expected fraction of the population that will get
vaccinated, we define the stochastic variable

YN = 1
N

N∑
i=1

Xi,

whose expected value and variance can be computed as

E[YN ] = 1
N

N∑
i=1

pi, Var[YN ] = 1
N2

N∑
i=1

pi(1 − pi), (4.36)

respectively. Its variance is, instead,

Var[YN ] = E [Y 2
N ] − E2[YN ] = E

(∑N
i=1[Xi]
N

)2−
(

1
N

N∑
i=1

pi

)2

=

1
N2

N∑
i=1

pi −
(

1
N

N∑
i=1

pi

)2

= 1
N2

N∑
i=1

(pi − p2
i ),

Figure 4.11. Complementary CDF of the fraction of population that will get vaccinated Yn

in free evolution.

Scaling the Poisson Binomial distribution
Note that Yi is a Poisson binomial distribution (scaled by the factor 1/N), that is the sum
of N independent Bernoulli distributions. Here, we study how its moments scale with
the population size N . Denoting N0 = 1446 the number of participants to the survey
on which the opinion dynamics model is parametrized in the main text, we scale the
population as multiples of N0, so that we can always associate a vaccination probability
pi to a fraction 1/N0 of the total population N , for all i = 1, . . . , N0. Specifically, we
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introduce the parameter βk := ⌊lk/N0⌉ with lk = 10k, and k = 4, . . . , 7. This gimmick
allows us to inspect the behavior of the moments of the Poisson Binomial distribution
when the size of the population is N = βkN0. In turn, from equation (4.36) this reflects
into the following scaling behavior of the first and second moment of YN

E[Yn] = 1
βkn0

n0∑
i=1

βkE(Xi) = 1
n0

n0∑
i=1

pi = E[Yn0 ]. (4.37a)

Var[Yn] = 1
(βkn0)2

n0∑
i=1

βkpi(1 − pi) = 1
βk

Var[Yn0 ]. (4.37b)

Hence,

• the expected value E [YN ] of the fraction of the population that will get a shot of
vaccine does not change with the population size;

• the variance Var[YN ] decreases linearly with the population size.

Table 4.3 reports the mean and variance of YN for different orders of magnitudes for lk,
whereas Figure 4.12 the error bar of the fraction of vaccinated population as a function
of the population size N .

lk βk E [YN ] Var[YN ]

104 7 0.6171 1.773e-05
105 69 0.6171 1.799e-06
106 692 0.6171 1.793e-07
107 6916 0.6171 1.794e-08

Table 4.4. First and second moment of YN as the population size N = βkN0 varies.

Parametric analysis of ρ

In section 4.2 of the main text, we presented a constrained least square optimization
problem aimed to realistically calibrate the model parameters consistently with survey
data. In particular, in the main text we explained that constraint (4.33c) sets the average
susceptibility to be equal to a value ρ, and that problem (4.33) admits a solution only if
ρ ≤ 0.58. In the main text, all the analysis have been performed for ρ = 0.58. Here, we
perform a parametric analysis of the results, whereby we vary ρ in the interval [0.18, 0.48]
with step 0.1. Figure 4.13 illustrates that the results are qualitatively similar, the only
difference being the attenuated effectiveness of all the strategies, since lower values of
the λi correspond to a more stubborn population.
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Figure 4.12. Error bar plot of the mean and standard deviation of Yn.

Robustness analysis
To test the robustness of our results, we have run additional simulations varying the
graph through which opinions diffuse. To do so, we repeated the same analysis performed
in the main text on a pool of real and synthetic networks, whereby we compared the
effectiveness of the targeted campaigns to that of mass campaigns. As shown in Figures
4.14-4.17, the results are consistent with the case illustrated in the main text, that is,
the targeted campaigns always outperform the traditional mass-media ones.

The pool of synthetic networks is made of 10 unweighted undirected graphs of size
N = 1500, extracted from a Scale-Free distribution with exponent γ = 2.8 and average
degree kav = 80, consistently with the properties of the real online social networks
reported in [2], and repeated the same analysis performed in the main text. The 3
real networks, called soc-fbHamilton46, socfb-Simmons81 and Hamsterster, have been
retrieved from the network repository [2].

Consideration on the transient
In this thesis, we have looked only at the steady-state vaccination probabilities to assess
the effectiveness of the campaigns. However, capturing the evolution over time of vaccine
willingness by means of an opinion dynamics model also allow investigating what happens
in the transient dynamics. This can be key especially when news generate shocks in
the public opinion bringing it towards another steady state, thus arising the need of
readily redesign the awareness campaigns by policymakers. Establishing if the transient
dynamics will be affected by an overshoot or an undershoot could be crucial in designing
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Figure 4.13. Comparison of targeted and traditional mass campaigns for different values
of the average susceptibility ρ (set to 0.18, 0.28, 0.38, and 0.48, from top to bottom). The
left panels depict, for each effort η, the additional population fraction ∆⋆

µ and ∆0
µ that is

expected to be vaccinated when the best targeted campaign (identified by circles) or the mass
campaign (identified by triangles) are employed, respectively. The right panels display for
each effort η and targeted strategy s, the ratio between the fractions of the population µs(η)
and µ0(η) that are expected to be vaccinated when strategy s and the traditional campaign
are employed, respectively. In all panels, Strategies 1, 2, 3 are depicted in blue, green, and
magenta, respectively, and the intensity of the vaccination campaign is set to α = 1.

the campaign timing, as these phenomena will translate in a boost or a decrease of the
campaign effectiveness. Assuming that the discrete-time LTI system described by the
FJ model used to capture opinion dynamics is completely controllable/observable, that
the control action is additive and constant (e.g., a step), that the output is a linear
function of the state as the expected value of the Poisson binomial distribution is the
mean of the vaccine willingness there is no instantaneous relation between the inputs
and the output, the system’s transfer function is strictly proper.

As matrix C = 1/N1
T
N , the relative degree of the transfer function should be 1. We

want to show that the output function y = Cp = p/N1
T
N that represent the fraction of

population that we expected to get the vaccination to have a first order-like transient
dynamics.
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Figure 4.14. Comparison of targeted and traditional mass campaigns effectiveness averaged
on a pool of 10 Scale-Free synthetic networks. The left panels depict, for each effort η, the
additional population fraction ∆⋆

µ and ∆0
µ that is expected to be vaccinated when the best

targeted campaign (identified by circles) or the mass campaign (identified by triangles) are
employed, respectively. The right panels display, for each effort η and targeted strategy s,
the ratio between the fractions of the population µs(η) and µ0(η) that are expected to be
vaccinated when strategy s and the traditional campaign are employed, respectively. In all
panels, Strategies 1, 2, 3 are depicted in blue, green, and magenta, respectively, and the
intensity of the vaccination campaign is set to α = 1.

In Figure 4.18 we can observe how numerical simulations show that the behavior is
compatible with the dynamics of a system with relative degree equals to 1, namely a
first order-like transient dynamics, for all media campaigns, no overshoot or undershoot
are observed.

Recalling that an overshoot could be generated by multiple poles that depend on
the dynamics matrix and thus cannot be imposed or Left Half Plane (LHP) zeros that
makes the system response faster and depends also on the structure of matrices B and
C, a future work can be related to investigate if it is possible, given the matrices A and
C, to choose B in such a way to induce an overshoot, thus to boost the effectiveness of
awareness campaigns.

Discussion
In this paper, we proposed a model-based approach rooted in opinion dynamics to an-
alyze the evolution over time of opinions towards vaccines within a population. To
endow this model of a quantitative capability, we calibrated it on survey data on vac-
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Figure 4.15. Comparison of targeted and traditional mass campaigns. The graph deployed is
an unweighted, undirected network of Facebook friendships. The number of nodes N = 2300,
the number of edges |ϵ| = 96400, the average degree kav = 83.

Figure 4.16. Comparison of targeted and traditional mass campaigns. The graph deployed
is an unweighted undirected network of the friendships and family links between users of the
website http://www.hamsterster.com.. The number of nodes N = 2400, the number of
edges |ϵ| = 16600, the average degree kav = 13.

http://www.hamsterster.com.
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Figure 4.17. Comparison of targeted and traditional mass campaigns. The graph deployed
is an unweighted undirected network of Facebook friendships. The number of nodes N = 1500,
the number of edges |ϵ| = 33000, the average degree kav = 43.

cine willingness of a sample of Italian citizens. Having at disposal such a scaled model
allow to predict, with a certain level of confidence, how many individuals of a given
population will decide to get vaccinated, thus enriching the information on only a sam-
ple extracted from a population that originating from surveys on vaccine willingness.
Moreover, it allows testing the effectiveness of alternative what-if scenarios simulating
different awareness campaigns enacted on social platforms. Prior to their implementa-
tion, these campaigns can be designed and tested on a scaled model to maximize their
effectiveness.In particular, we exploited the calibrated model to test the effectiveness of
three targeted pro-vaccine campaigns against that of a traditional mass media alterna-
tive.

Our results indicate that targeted campaigns always outperform mass campaigns
in convincing individuals to get vaccinated, yielding the maximum increment in the
expected fraction of the population willing to be vaccinated for intermediate values of
the overall effort of the campaign. Moreover, they show that media campaigns increase
the expected fraction of vaccinated individuals by somewhere in between 10% and 15%
with the last percentage points to be gained by designing smart, targeted social media
campaigns rather than mass campaigns. This demonstrates how having at disposal a
model of opinion dynamics can practical affect the decision-making process of managerial
board or government bodies, that can exploit this quantitative tool to smartly invest
in targeted campaigns in order to maximize the effectiveness of their (mathematically
backed) initiatives.

However, one could argue if a marginal increase of vaccinated individuals can make
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Figure 4.18. Transient dynamics of the fractions of the population µs(η) and µo(η) that
are expected to be vaccinated when strategy s and the traditional campaign are employed,
respectively.

a difference. From the perspective of protecting public health, the empirical answer lies
in the recent data showing that avoiding saturation of the healthcare system is a matter
of slight differences in the number of vaccinated individuals [181]. Modest increases in
the effectiveness of a campaign can well be the difference between expecting or not to
live with the virus without restrictions.

From a methodological perspective, our work represents a first step toward bridging
the abstract literature on opinion dynamics with the key problem of providing easy-to-
use quantitative tools to test the effectiveness of awareness campaigns to support the
decision-making process. The simplicity of the selected model and of the calibration
procedure we propose is one of the strengths of our approach. The reductive choice
of characterizing the behavior of each individual through the Friedkin-Johnsen model
allows for a first assessment of the effectiveness of pro-vaccine campaigns on the basis of
data collected from a single survey. Indeed, the strength of our inherently causal model-
based approach lies in the ability of teasing out the relationship between the choice of
the targets of the campaign and its effectiveness. This ease of interpretation is a feature
we believe should be retained even when more refined data on vaccine hesitancy are
considered.

Although the results are promising, our work is not free of limitations. First, in its
current incarnation, model calibration is only concerned with steady-state vaccination
probabilities. This is certainly sufficient when the campaigns are planned way ahead of
the administration of the vaccine. However, in the case of a new epidemic, news from
media outlets may perturb the beliefs of the population, see e.g., the scientific and social
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debate on the AstraZeneca vaccine [182, 183]. In such cases, the campaign should be
immediately redesigned, and tailored on the basis of the response time of the population.
Our model has the potential to account for these transient dynamics, provided that sev-
eral snapshots of the opinions of the same cohort of the population are available. It is
worth pointing out that the three strategies we propose require different information lev-
els, thus posing different feasibility issues. Indeed, targeting the most connected agents
only requires knowledge of the unweighted topology of the social network. Attempting
instead at neutralizing the antivax requires complementing this structural information
with that on the agents’ vaccine hesitancy, which can be monitored by means of, for
example, sentiment analysis on social media [184, 185]. Finally, directly influencing the
most susceptible agents constitutes a psychological targeting strategy (see [186] and the
references therein for alternative methods to do so) that requires assessing the personal-
ity traits of each individual.

Implementing smart, targeted campaigns entails the use of tools from artificial in-
telligence and data science, with higher investments needed compared to traditional
campaigns. It is reasonable to ask whether this additional burden is worth carrying:
from an ethical perspective, one could argue that targeting individuals based on infor-
mation obtained from its online social media might surpass the borders protecting the
privacy of the population. Where the optimal trade-off lies between feasibility and ethics
is the subject of ongoing worldwide discussions [187].

There are also several directions along which this work can be extended: first, al-
ternative models of opinion dynamics could be considered. In the spectrum of model
complexity, we decided to opt for the simplest one, so as to minimize the number of
parameters to be tuned. Should one have more data for finer calibrations, alternative,
more complex models of opinion dynamics could be considered to account, e.g., for
bounded confidence [46], or for the difference between private and publicly expressed
opinions [188]. Finally, since it has been observed that social networks may be char-
acterized by the presence of communities of like-minded individuals [189], which are
socially well-connected and share many interests, an open research question is to eval-
uate how these densely connected communities may affect the effectiveness of targeted
vaccination campaigns.
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4.3 Preliminary results on non-conventional
data sources

Conferring a predictive validity to opinion dynamics models requires a thorough col-
lection of real data that could represent the measurements/observations of the actual
opinions in the population under study. Different data sources can be deployed for this
aim: one of all, traditional surveys, that are specifically designed questionnaires con-
ducted on a representative sample of the population. This tool, while easy to administer
and providing statistically accurate outcomes, is not free of limitations. One-time sur-
veys are not suitable to follow trends in real time or over periods of time in the past,
making it difficult to track changes in the population’s sentiment, unless longitudinal
surveys are available, that is two or more surveys are iterated over time on the same set
of respondents. Such repetition is often expensive and time-consuming, making frequent
periodic surveys impractical and rare, except for rare exceptions such [190, 191], thus
hindering the modelling of cause and effect phenomena. Furthermore, especially online
surveys, suffer from other limitations as they are completed only by persons who are
literate and who have access to the internet, and by those who are sufficiently biased
to be interested in the subject [192]. More importantly, as respondents are “forced” to
answer to specific questions and do not express spontaneously their opinion, boredom
and/or insincerity could be a non-negligible factor. Linked to this point, answer options
to surveys questions could lead to inaccurate data because certain answer options may
be interpreted differently by respondents.

These reasons motivate the usage of other sources of information for capturing opin-
ions: social media. The extreme penetration of social networks in our daily life has drawn
the attention of the scientific community in considering posts on Facebook, tweets on
Twitter or discussions on blogs such as Reddit as proxies for retrieving information on
opinion trends. These data, being shared voluntarily and publicly and being intrinsically
available over time, could overcome the aforementioned limitations of surveys. However,
exploiting textual data for retrieving information implies data handling procedures ca-
pable of converting text into quantitative data.

In the following, we present preliminary results on the extension of the analysis
made in [138]. In this work, we retrieve textual data from Twitter to extract an opinion
distribution of Italian Twitter users’s vaccine willingness in order to i) verify if the
opinion distributions of two different sources of information are comparable or not and
motivate the outcomes; ii) check if, as stated in the literature, the opinions retrieved
from social networks are more polarized; iii) assess the robustness of the aforementioned
strategies proposed in [138] starting from different opinion distributions with respect to
the one reported in [193].
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4.3.1 Data collection
Several public datasets of tweets related to the coronavirus pandemic are available in
English, including the ones presented in [194], however almost none is available in Italian.

#novaccino #iovaccino #libertadiscelta #vaccinocovid19
#iiononmivaccino #iomivaccino #novax

#provax #iononsonounacavia #dittaturasanitaria
vaccino covid-19 vaccinazione covid-19

vaccino covid vaccinazione
vaccini

Table 4.5. Keywords and Hashtags used for the queries.

Thus, we took advantage of the fact that Twitter (now X) made available their
Application Programming Interface (API) to collect public data from their sites from
2021 to 2022. Indeed, even though Twitter has always provided Twitter REST API to
get static data like user profile information, and streaming API2 to get streaming data
like tweets, for a short period of time had allowed to access the complete archive of tweets
thorough the option full archive, which allows to download data in any time window for
free. In order to collect a tweets’ dataset on COVID-19 vaccination in Italy, we queried
Twitter’s Streaming API searching for Italian tweets from April 1st 2020 to December 31-
th 2020 containing at least one of the keywords reported in . We collected 128434 tweets
in Italian language matching the specific set of keywords regarding COVID-19 vaccine,
that were posted during April 2020, that is almost at the end of the first lockdown,
when the vaccine availability was long to come. In order to build a less possible biased
data set, we generated several random subsample of tweets: in particular, we selected
500 tweets from each day of April where more than 1000 tweets were posted, obtaining
7000 tweets; then we sampled 3 random sample of 1446 tweets, to match the size of the
network considered in [138]. We preprocessed tweets by removing URLs, lowering, and
removing special Twitter specific characters. Emoji has been maintained because most
of the advanced tools of Natural Language Processing (NLP) are capable to learn also
by them the overall meaning of a textual dataset.

4.3.2 Experimental analysis
Recently, some surveys on Deep Learning methods for Natural Language Processing
have been published, see [195–198]. They encompass the most important articles in
text analytics of the last years, and all agree on showing that methods based on neural
networks and transformers outperform other machine learning methods in text analytics
tasks. Furthermore, among the numerous works that focus on sentiment analysis, there
are few that attempt to solve very challenging tasks such as multilingual classification
or multi-label classification using transfer learning paradigm of BERT-based architec-
ture [199, 200] and zero-shot classification [201–204], but the works that combine more
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than two of the above-mentioned tasks together are rare [205]. In particular, our work
positions itself in transfer learning framework [206]. The process of transfer learning
provides the exploitation of a pre-trained model as a starting point, and a second phase
of fine-tuning it on a new task by updating its weights. By leveraging the knowledge
gained through transfer learning and fine-tuning, the training process can be improved
and made faster compared to starting from scratch. Moreover, our case-study of COVID-
19 vaccination, has been commonly used as test bed in the literature, [207–210], as it is
well suited for opinion mining provided the social media hype on this relevant societal
topic.

Our goal has been to evaluate vaccine willingness of a sample of Italian Twitter
users by implementing a fine-grained sentiment analysis on tweets via a deep learning
language model called BERT (for more information on NLP techniques, see Appendix
B. To do so, we had to face two different challenges: first, we needed a labeled dataset
of Italian tweets, second, we wanted to classify the tweets on a 5-point scale (from 1
to 5 corresponding to strongly disagree to strongly agree) regarding Covid-19 vaccine
willingness. In the literature, there are some works as [208, 209, 211] that perform a
similar task, namely a fine-grained sentiment analysis 5 classes with the help of the SST-
5 English dataset, however, being in another language it has not been suitable for our
purpose. Previous work that tried to form a baseline dataset of Italian tweets is [212]
where BERT is adjusted to perform NPL tasks including sentiment analysis in Italian,
however this model is pretrained to give as output a binary sentiment detection, whereas
our goal was to capture the intensity of the opinions towards vaccination in a scale from
1 to 5, similarly to the Likert one used in [165].

Hence, we used a sequence of two different BERT versions: one trained on a 5-
star product reviews and a BERT version pretrained on plain text, that is able to get
contextual meaning of words across different domains, exploiting the potential of transfer
and in-context learning typical of transformers architectures [199, 213]. This choice
was made following the proposed approach showed in [214], tested on the most famous
Italian dataset for sentiment analysis that exists in the literature, the SENTIPOLC 2016.
There are two reasons for this choice: first, the pre-trained models are widely available
in many languages, avoiding the time-consuming and resource-intensive model training
on tweets from scratch that requires manual labelling and thus could inject some bias
or subjectivities; second, available plain text corpora are larger than tweet-only ones,
allowing for better performance.

We started from the complete dataset retrieved by querying the API according to
Table 4.5 made of 128434 tweets, then we balanced it in order to have classes of the
same frequency, obtaining a dataset of 38150 tweets (7630 for each class). We deployed
a pipeline encompassing two transformer-based models for fine-grained sentiment detec-
tion of Italian tweets: in details, we pre-labelled tweets to fine-tune a plain version of
BERT. We first assigned a label to each tweet, performing unsupervised classification
using a variant of BERT pretrained on more than 500000 product reviews for sentiment
analysis in six languages, including Italian. It classifies the sentiment of each review as a
number of stars between 1 and 5 with an accuracy of 59% and an accuracy off-by-one of
95%. We checked that the model performs well on the vaccine topic by visual inspection
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on simple trial sentences.
We then used this prelabelled tweets to perform the fine-tune phase in a supervised

manner of a basic variant of BERT, that comes with 12 layers with hidden size 768 and
was trained on multilingual plain text in order to obtain a multi-classifier for our specific
task.

Average accuracy 0.90
Average accuracy off-by-one 0.93

Macro F1-Score 0.67

Table 4.6. Fine-tuning performances.

Table 4.7. Confusion matrix of the fine-tuning phase.

Fine-tuning has been performed with both hold out and k-fold validation, with the
latter achieving better performances. We have fine-tuned the model for 3 epochs, using
a learning rate of 2e − 5 [207] suitable for text classification on tweets. Performances of
the fine-tuning phase are shown in Table 4.7.

4.3.3 Polarization in social networks
Since the Seventies, social experiments [215] on a group of people stated the emergence
of polarization in social groups: keeping track of individuals’ attitude before and after a
discussion over a topic, they have shown that the average post-discussion attitude in a
group moved away from the mid-point, becoming more extreme. [216] Group polarization
can be defined as the tendency for groups to show more extreme opinions or actions when
compared to the ones made by individuals. In particular, in [217], has been stressed the
interdependency between choice shift and group polarization: choice shifts occur when,
after a social interaction, the average attitude of the group members differs from the
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members’ average initial attitudes; group polarization instead occurs when the choice
shift exaggerates the initial attitudes. One of the reason of this behavior has been
exposed by the Social Comparison Theory: at first people enter a discussion sharing
moderate opinions with respect to their true ones due to fear of being judged, however,
when group discussion reveals that other people have similar but more extreme attitudes,
moderate positions are eroded by discussions and extreme positions encouraged as more
recognizable [217].

Sociological theory agrees on some factors or cognitive biases that may favor polar-
ization in a social networks: homophily and biased assimilation. Homophily is defined
in [63] as the fact that people’s personal networks are homogeneous with regard to
many sociodemographic, behavioral, and intrapersonal characteristics. Biased assimila-
tion is the tendency to interpret information in a way that supports a desired conclusion.
Supporting facts may seem overwhelmingly strong, and negating facts may seem auto-
matically weak. This view of humans as biased information processors has led to the
formulation of the echo chamber hypothesis [218]. According to this hypothesis, peo-
ple’s tendency to prefer congenial information and disregard uncongenial information
leads to the creation of attitudinally homogeneous networks, also called echo chambers
where group members mutually validate and perpetuate their worldviews, becoming im-
mune to other viewpoints, that is enforcing their stubbornness and prejudices, leading
to polarization.

Hence, to capture these emerging collective behaviors, new models of opinion forma-
tion have been proposed in the last 10 years. It has been studied that these cognitive
biases, naturally present in interacting humans, have been used in recommendation al-
gorithms in online social media and networks, and they are the main reason why online
discussions result in opinions extremism. Ideally, social networks, and the Internet in
general, should increase the diversity of information and opinions that individuals are
exposed to. Counterintuitively, social networks have also been widely associated to
increased polarization in divisive topics in politics, science, and healthcare. Somehow,
despite the exposure to a wide variety of opinions and perspectives, individuals form
different clusters, unable to reach consensus with one another.

According to [219], social media companies encourages the exposure of content sim-
ilar to our views to increase engagement and ad revenue. Such recommendations can
be direct: friend or follow suggestions on social platforms, or they can be based on
historical data of each user to filter and sort their feeds with posts that they are most
likely to engage with. By recommending such content, it has been argued that social
network companies create “filter bubbles” of similar-minded users. Many attempts have
been done to experimental support these reasonable theories [220]. The danger of filter
bubbles was recently highlighted by Apple CEO Tim Cook in a commencement speech
at Tulane University [220]. Filter bubbles have been blamed for the spread of fake news
during the Brexit referendum and the 2016 U.S. presidential election, protests against
immigration in Europe, and even measles outbreaks in 2014 and 2015.

Further findings have shown that biased assimilation is not the only cause of polariza-
tion: also the exposure to opposing views might lead to polarization, for example in [221]
have established a relationship between network heterogeneity and polarization called
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backfire effect in which users exposed to radically different views end up being more
polarized to their own opinions. In [222] argued that network negativity bias, a negative
valence in the tone of discussions, might fuel polarization both in selective exposure and
in backfire contexts. Studies on social media language use have reported that negativity
outweighs positivity, particularly for controversial topics [223–226]. “Negative language
is shared more frequently, and it is used to express feelings towards rival groups, these
dynamics are likely to perpetuate more intergroup hostility, which plays a role in af-
fective polarization and sectarianism” [227]. In [228] it has been shown that radical
users seeking wider audiences and more followers may have an incentive to ramp up the
vitriolic rhetoric, increasing negative attitudes about vaccine and potentially driving a
larger gap in favor of vaccine hesitancy, which might further increase polarization.

Summarizing, it emerges that social media enable dysfunctional collective behaviors
as homophily and biased assimilation are favored by social media algorithms, as well as
negativity bias, fueling polarization as a result of the combination of weak regulation
and lack of ethical design. With these additional experiments, we wanted to verify if the
phenomenon of polarization also emerges in Italian tweets on vaccine willingness.

4.3.4 Comparison between survey data and Twitter
data

Figure 4.19. Comparison between survey and Twitter data distribution among 5 classes.

Our results in Figure 4.19 show a stance position regarding willingness to take the
vaccine among Twitter users’ (on the right) that is very different from the one obtained
from survey data [193] (on the left), confirming what we expected by the current litera-
ture.

Given these findings, we wondered, given this great difference between the distribu-
tion of the opinions of online users and those reported by a statistically representative
survey, if the control strategies proposed in [138] are still effective and thus robust in
the case of polarization of opinions.
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4.3.5 Results
We simulated and compared the outcome of the 3 different strategies of implementing
awareness campaigns proposed in [138] starting from the opinion distributions compat-
ible with the Twitter data (similarly with what we have done for survey data) for the
same parameter selection of [138].

Our simulations show that: (i) targeted campaigns outperform a general mass-media
campaign.
(ii) the best strategy for targeting individuals depends on the overall effort η of the
campaign.
Indeed, for all possible selections of η, it is possible to find a targeted strategy that
yields an advantage compared with general mass-media campaigns, with an increase of
the expected number of vaccinated individuals that reaches a maximum 5% for η = 0.3.
Interestingly, for low efforts (η < 0.1), strategy 1 and 3 are capable of increasing the
effectiveness of the vaccination campaign, with the merely topological approach of Strat-
egy 1 being the most effective.
In particular, for all η ≥ 0.1, Strategy 3, which relies on the estimation of the individual
susceptibility, proves to be the best campaign.
Surprisingly, Strategy 2 for small effort values in (0.1, 0.3) seems to be less advantageous
in respect to a traditional mass campaign for all the three choices of susceptibilities of
the agents.

Figure 4.20. Comparison of targeted and traditional mass campaigns.

The left panel depicts, for each effort η, the additional population fraction ∆∗
µ that

is expected to be vaccinated when the best targeted campaign (identified by circles) or
the mass campaign (identified by triangles) are employed, respectively. The right panel
displays, for each effort η and targeted strategy s, the ratio between the fractions of
the population µs(η) and µo(η) that are expected to be vaccinated when strategy s and
the traditional campaign are employed, respectively. In both panels, Strategy 1, 2, 3 are
depicted in blue, green, and magenta, respectively, and the intensity of the vaccination
campaign is set to α = 1.



136 4 On opinions’ fragmentation in decision-making of large social networks

From the results obtained, the control strategies are robust even in the case in which
there are extremely opinionated individuals. In particular, all the pro-vaccine campaigns
implemented lead to an increase in the expected fraction of users to be vaccinated, and
the most beneficial strategy is the one that targets the most susceptible users.

4.3.6 Conclusions
In this analysis on social media data, we showed that the opinions’ distribution that
can be retrieved from Twitter data of a random sample of Italian citizen is substantially
different from the one obtained by administering a survey to a stratified sample of Italian
citizens. Then, as expected, we detected an increment in the opinions belonging to more
extreme classes, showing the phenomenon of polarization. Finally, we have shown that
although Twitter users have more extreme and convinced views, the strategies we have
implemented to enact pro-vaccine campaigns are robust and can influence also these
extremist users’ decision-making by incentivizing them to get vaccinated.

This is a preliminary step in tuning the parameters of opinion dynamics models by
means of non-conventional data gathered automatically and for free from social media.
Exploiting massive available social network data could allow acting more readily in
planning effective strategies among policymakers.



Conclusion
In this thesis, we showed how complex network dynamical systems can be used to model,
analyze, monitor and influence real-world collective behaviors that may emerge in large-
scale networks, with a focus on opinion dynamics. Namely, we studied the mechanisms
that determine decision-making processes in social groups of interconnected individuals
discussing on a given topic. The ultimate goal of this thesis was to provide mathemat-
ical tools to make policymakers and relevant stakeholders (such as government bodies
or management groups) able to better comprehend social phenomena and their root
causes to then devise efficient control strategies that help diffuse social norms or market
preferences, depending on the target application.

Toward this overarching goal, we started by performing a comprehensive taxonomy
of most of the opinion dynamics models in the literature, providing a critical overview
that highlights gaps and limitations, emphasizing those that have been addressed in
this thesis, that is, (i) simultaneously modeling the evolution over time of opinions
and their associated decisions, (ii) using control theory to gauge the effect of opinion
leaders on opinion dynamics in social groups and pinpoint influence mechanisms, and
(iii) bridging the gap between opinion dynamics mathematical models and real data of
opinion evolution.

To model the role of influencers and policymakers in social groups, we moved in two
parallel directions. On one hand, we developed theoretical tools to endow a network
of controllability and observability properties that are compatible with the limitations
that typically arise in the context of social interactions. Namely, we considered the case
where control inputs are constrained, for instance in sign, and only some network nodes
can be directly affected by control signals or sensed as is typical in social groups where
only the opinion of agents that express their opinions can be monitored. In turn, these
limitations hinder our ability to control/observe the whole network, hence the need to
study under which (sufficient) conditions and devise algorithms to find the maximal
controllable/observable subnetwork.

In paper A, we tackled the problem of select the network nodes where to inject the
control inputs to ensure the unilateral controllability of the largest subnetwork of dy-
namical systems. We considered a realistic scenario in which the set of available control
inputs were limited both in number and in sign, hindering our ability of controlling the
whole network. Thus, after having defined the properties of controllability and reacha-
bility for subsystems and subnetwork, and having highlighted the similarities and the
differences, we derived a heuristic strategy to maximize the number of nodes unilaterally
controllable given a fixed number of control inputs.

In paper B, we focused to make observable the maximum number of nodes in a
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complex network of dynamical system in case the number of sensors was not enough to
ensure complete observability of the whole network. We derived an ad hoc solution to
this problem, since the duality with controllability could not be leveraged due to the
considered constraints. Namely, we devised a heuristic procedure that the specificity of
this constrained observability problem to optimize the sensor node selection procedure.
Tackling these problems with rigorous fashion to enable us to deploy in a more efficient
and effective way the limited resources at disposal to achieve a desired collective behavior.

The rigorous solution of constrained controllability and observability problem can
support the design of a campaign in government bodies or companies when policymakers
or marketing department must decide whether to invest in some activities or not.

The next step is then to understand how they can smartly optimize their effort to
get the most out of their initiatives. Towards this goal, we have studied how the opinion
dynamics occur in social groups translate into actions. We considered that the collec-
tive behaviors go beyond classical consensus, different from engineered systems, due
to cognitive biases, antagonistic ties, extremism, external influences, typical of human
nature.Therefore, we revisited the classical models to capture the heterogeneity of opin-
ions, persistent disagreement and polarization that we observe in the real world settings
to explore some what-if scenarios, investigate the beneficial or detrimental effects of
some external actions carried out by peculiar individuals, resembling opinion leaders or
influencers.

In paper C, we incorporated the influence effect of an influencer in a network of
interconnected individuals exchanging opinions according to a nonlinear opinion dynam-
ics model that accounts for the fact that, due to intrinsic beliefs and cognitive biases,
the influence of the neighbors in the opinion formation of the individual is capped by
a certain threshold. We assumed that this peculiar agent, a so-called pinner in control
theory, exerted a shaping action on a select subset of individuals, exploiting the network
structure to diffuse and thus convince the largest number of individuals to take its same
action, strictly correlated to its opinion. Indeed, we complemented this model with an
output function that allows to link how opinion translates in decisions. We derived
sufficient conditions on the control gains and on the network structure to achieve its
goal, namely convincing as many individuals as possible to take the same action of the
pinner, resembling the persuading effect that high-profile people has on the majority of
the society on divisive topics like political propaganda, costumers preferences and ethical
debates.

In paper D, we made a first step towards bridging the models of opinion dynamics
and data available of the opinion of social groups. Specifically, we used pinning con-
trol to study the problem of vaccine hesitancy, which became a key issue during the
controversial debate on COVID-19 pandemic in Italy. Namely, we selected a simplistic
model that still enables us to take into account the heterogeneity of opinions and capture
the spectrum of opinion regarding the propensity towards vaccines, and we introduced
the effect of influencers as pinning control strategies to replicate the effect of awareness
campaigns implemented by government bodies during the health emergency. Given this
set-up, the main goal has been tuning the parameters of this model of vaccine willing-
ness and decision-making of vaccine acceptance on real data, specifically survey data on
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vaccine willingness of a sample of Italian citizens. With a parameter identification in
the least square sense, we calibrated the model parameters, in particular the susceptibil-
ities to social pressure, to match the opinion distributions recast from the survey. This
analysis shown how smartly selecting a certain set of individuals to be directly targeted
in awareness campaign can provide a substantial increment in the vaccination accep-
tance, resulting in a practical advantage to exploit mathematically backed strategies in
decision-making processes.

The analyses presented in this thesis represent a step toward bridging the gap among
complex theory, network science and control theory in order to provide a deeper and rig-
orous understanding of opinion formation and decision-making process in social systems.
However, the framework proposed in this thesis is not free of limitations: for instance,
the problems of finding the largest controllable or observable subnetworks addressed in
Chapter 3 are NP-hard constrained optimization problem cannot be efficiently solved.
We have proposed heuristic approaches that could be solved in polynomial time, but
without any guarantee on the optimality of the solution. Hence, the suboptimality of
the results can be further investigated, and alternative heuristic approaches could be
proposed and tested against the ones illustrated in this thesis.

In Chapter 4, we dealt with a specific application, that is, complex networks of social
systems, thus the future steps are strictly linked to the intensive use of social media to
exchange opinions that is complementing, when not substituting, face-to-face interac-
tions. The use of non-conventional data, e.g., the ones originated by means of sentiment
analysis, will enable to consider a larger number of interconnected individuals with re-
spect to traditional surveys which are cost and time-consuming. These data sources will
allow accounting for transient dynamics, provided that several snapshots of the opin-
ions’ distribution of the same group of users are available, enabling the reconstruction
of the salient features of the interaction network. The availability of huge datasets of
opinion expression can potentially enable both finer calibrations of simplistic models or,
alternatively, the possibility of pinpointing the psychological phenomena that emerges
from the analysis of textual data to build more complex but realistic models of opinion
dynamics. This is still a challenge in the field of opinion dynamics due to intrinsic noisy
process of automated translating words in numerical quantities, but NLP techniques are
becoming more and more sophisticated, raising good hopes that soon online posts will
be a goldmine for the validation of opinion dynamics models.
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Partial controllability of network dynamical systems with unilateral inputs

Camilla Ancona, Francesco Lo Iudice, Antonio Coppola, Pietro De Lellis and Franco Garofalo

Abstract— Our ability to control network dynamical systems
is often hindered by constraints on the number and nature of
the available control actions, which make controlling the whole
network unfeasible. In this manuscript, we focus on the case
where unilateral inputs are exerted on a subset of the network
nodes. Leveraging the observation that, different from the case
of subsystems, unilateral node reachability and controllability
are equivalent, we provide conditions for a given node subset to
be unilaterally controllable. The theoretical findings are then
employed to develop a computationally efficient heuristic to
select the nodes where the unilateral inputs should be injected.

I. INTRODUCTION

Modeling, analyzing, and controlling network dynamical
systems is of interest for applications as diverse as formation
control [1], multicellular control in biology [2], [3], power
systems [4], and financial market dynamics [5], [6]. In the
last decades, control engineers have focused on designing
distributed protocols capable of inducing the emergence of
collective behaviors, such as e.g. consensus and synchroniza-
tion [7]–[10]. More recently, the ambition to systematically
tackle more general network control problems has brought
to specify the classical concept of controllability to the
case of network systems [11]. It has been pointed out that,
when studying network dynamical systems, (i) controllability
should be conferred through an appropriate choice of the
nodes where the inputs should be injected, thereby several
input selection algorithms have been developed [12], [13],
(ii) existing controllability tests may be misleading since,
when the number of inputs is much smaller than the number
of network nodes, controlling a network can be energetically
unfeasible [14]–[16], and (iii) achieving complete network
controllability can turn out being unnecessary or unfeasible,
and thus one should rather focus on controlling selected
subnetworks [17].

When studying controllability, a crucial difference exists
between large scale dynamical systems and network systems,
whereby subsytem controllability differs from controllability
of a node subset for a subtle, yet critical, aspect [18].
Although in general the choice of the reference frame for
the state variables of the controllable subsystem is irrelevant,
this is not true for node subsets, as we need to preserve the
association between nodes and network state variables. This
in turn has several relevant consequences, such as the fact
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that, whereas the controllable subsystem is unique, there can
be multiple controllable node subsets.

A further challenge, typically overlooked in the literature
on network control, is that in real-world systems the input
signals are constrained. A relevant case in applications is
when the inputs are constrained to be unilateral, that is, the
sign of each signal cannot change over time [19], [20]. Practi-
cal examples where such constraints arise include the optimal
power flow problem in power grids, where nodes are either
loads or generators [21], [22], the inhibition or activation
or genes in biological networks [23], control of wire-driven
parallel robots [24], [25], or marketing campaigns where
comparative advertising is forbidden [26], see [20, Table
1] for further practical instances of unilateral control. The
literature on controllability under constrained inputs can be
traced back to the Seventies [27], [28], but only recently the
problem has been tackled for network dynamical systems.
Specifically, Lindmark and Altafini have derived conditions
for finding the minimal set of inputs that render the whole
network controllable [20].

To the best of our knowledge, none of the existing work
tackled the controllability problem of a subset of the network
nodes with unilateral inputs, and this is the gap we aim
at filling in this manuscript. Different from the case of
unconstrained inputs, when the inputs are constrained to be
unilateral, the controllability of a network cannot be studied
through structural approaches, nor through the controllability
gramian. This in turn restricts the theoretical tools available
to design optimal input placement strategies, making the uni-
lateral case much more challenging than the unconstrained
case. We tackle this problem by first characterizing the
convex cone containing the unilaterally controllable states
of a linear dynamical system, which we show to differ
from the one containing the unilaterally reachable states.
Then, by means of a suitable projection, we translate these
results for network systems, and obtain the conditions for
unilateral reachability and controllability of a node subset
that, different from the general case of systems, we observe
to be equivalent. The theoretical findings are then used to
develop a greedy heuristic to decide where to inject the
unilateral inputs, which provides a suboptimal solution to the
problem of maximizing the number of controllable nodes.

II. PRELIMINARIES

Given a set H, we denote by |H| its cardinality, and given
a vector space, we denote by 0 its origin. Given a real vector
space Rn, we denote by Rn≥0 (Rn≤0) the set of vectors in Rn
with nonnegative (nonpositive) entries. Let D be a set of
|D| = k vectors d1, . . . , dk in Rn, Span(D) is the set of all



linear combinations of the vectors in D. The positive span
Span+(D) of D is the set of all linear combinations with
nonnegative coefficients, that is, Span+(D) = {

∑k
i=1 αidi :

αi ∈ R≥0}, which constitutes a polyhedral convex cone [29].
If D is a singleton then Span+(D) is called a ray. All the rays
and the singleton O = {0} are degenerate cones. Given a
convex polyhedral cone C, we define its dimension |C| as the
number of vectors required to generate it. The lineality space
of a convex cone C is defined as the largest subspace X l :=
C ∩ −C contained in C, whose dimension is the lineality of
C [30].

Next, let us denote by ei the i-th versor in Rn. Given an
index set K, we define XK as the subspace linearly spanned
by ∪i∈K{ei}. Furthermore, given a vector d ∈ Rn, we denote
by projXK

(d) =
∑
i∈K

(
dTei

)
ei the orthogonal projection

of d along XK. Given a complex vector c ∈ Cn, we denote
by <(c) and =(c) its real and imaginary parts, respectively.
The operators ∨ and ∧ denote the logical disjunction and
conjunction, respectively, whereas the symbol \ denotes a
set difference. Finally, the big-O notation O(·) describes the
order of magnitude of the algorithm execution time with
respect to the number of steps required to complete it.

III. PROBLEM FORMULATION

Let us consider a linear dynamical network on a graph
G = {V, E}, where V and E ⊆ (V × V) are the sets of
its nodes and edges, respectively. Defining the network state
x = [x1, . . . , xn]T, with xi ∈ R being the state of the i-th
node, the network dynamics are given by

ẋ(t) = Ax(t) +Bu(t), (1)

where A ∈ Rn×n is the adjacency matrix of G, whose ij-
th entry aij 6= 0 if (i, j) ∈ E and aij = 0 otherwise.
Matrix A encapsulates both the individual dynamics and the
interaction between the network nodes, which are encoded
by the diagonal and off-diagonal elements of A, respectively.
Matrix B ∈ Rn×m is the input matrix, whose ij-th element
modulates the effect the input uj has on the dynamics of
node i. Here, we consider the case of unilateral inputs.

Definition 1. The input u(t) to network (1) is called unilat-
eral if (u(t) ∈ Rm≥0,∀t) ∨ (u(t) ∈ Rm≤0,∀t).

In what follows, without loss of generality, we consider
only nonnegative inputs for the sake of clarity, whereby their
sign will be determined by the sign of the entries of B. More
formally, we make the following assumption.

Assumption 1. Inputs are nonnegative, that is u(t) ∈ Rm≥0

for all t and each column of matrix B belongs to the set
B = {ei,−ei, i = 1, . . . , n} [20].

Here, we focus on the case in which unilateral control-
lability of the whole network is not feasible, whereby the
conditions given in [20] do not hold. The problem then arises
of selecting the input so that the state of a subset of the
network nodes can be steered towards any desired value.
Before stating this problem, we need to define unilateral

controllability of a node subset Vs, whose associated state
xs is the vector stacking the states of all nodes in Vs.

Definition 2. A node subset Vs ⊆ V is unilaterally reachable
if the state of its nodes xs can be steered from 0 to any target
value in finite time through an appropriate selection of the
unilateral input u(t).

Definition 3. A node subset Vs ⊆ V is unilaterally control-
lable if, for all initial conditions xs(0), the state of its nodes
can be steered towards any target value in finite time through
an appropriate selection of the unilateral input u(t).

Given the adjacency matrix A, the controllability problem
we consider is that of designing the input matrix B fulfilling
Assumption 1 that maximizes the cardinality of the set Vs =
Vs(B) of unilaterally controllable nodes, that is,

max
B⊂B

|Vs| (2a)

subject to∑
i,j

|bij | = m (2b)

Vs unilaterally controllable (2c)

Solving (2) requires finding the conditions such that, given
a set of control inputs, a set of nodes is unilaterally con-
trollable, and then devising an input placement algorithm
that finds a unilaterally controllable node subset of maximal
dimension.

IV. UNILATERAL REACHABILITY AND
CONTROLLABILITY OF A NODE SUBSET

Let J be the Jordan normal form of matrix A and µ
the number of its blocks. We associate to each Jordan
block Ji, whose size we denote by νi, the corresponding
eigenvalue λi, for i = 1, . . . , µ. Next, let L := {li,k, i =
1, . . . , µ, k = 1, . . . , νi} be a set of µ chains of unit norm
linearly independent (generalized) left eigenvectors of A with
the maximal number of elements orthogonal to the columns
of matrix B. Finally, let us denote by T the matrix obtained
by juxtaposing row-wise the elements of L. We can now
define the set γi,k(lTi,kB) as

γi,k=



∅, if lTi,k′B= 0 + j0 ∀k′≥k (3a)

{ri,k, 9ri,k}, if ∃ k′, k′′≥k:lTi,k′B∈(Rm≥0 \ O) ∧
lTi,k′′B ∈ Rm≤0 \ O),=(li,k) = 0, (3b)

{ri,k} if ∃ k′≥k : lTi,k′B∈ (Rm≥0 \ O) ∧
@ k′′ ≥ k : lTi,k′′B ∈ (Rm≤0 \ O),=(li,k) = 0, (3c)

{9ri,k}, if ∃ k′≥k : lTi,k′B∈ (Rm≤0 \ O) ∧
@ k′′ ≥ k|lTi,k′′B ∈ (Rm≥0 \ O),=(li,k) = 0, (3d){

<(ri,k), 9<(ri,k),=(ri,k), 9=(ri,k)
}
, otherwise (3e)

for i = 1, . . . , µ. Additionally, we denote by Cr(B) the
positive span of the set of all γi,k-s, that is,

Cr(B) := Span+
( µ⋃
i=1

νi⋃
k=1

{γi,k}
)

(4)



Theorem 1. If Assumption 1 holds, then

(i) the cone Cr(B) is the set of unilaterally reachable
states of the pair (A,B);

(ii) the lineality space X l of Cr(B) is the largest unilat-
erally reachable subspace of the pair (A,B).

Proof. Statement (i): Let us consider the transformation z =
Tx. As J = TAT−1, the dynamics of network (1) become
ż(t) = Jz(t) + TBu(t). By setting z(0) = 0, we obtain its
forced dynamics as z(t) =

∫ t
0

exp(J(t− τ))TBu(τ)dτ or,
in scalar form,

zi,k(t) =
∑
k′≥k

m∑
j=1

lTi,k′bjηj(uj)dτ, (5)

for all i = 1, . . . , µ, k = 1, . . . , νi, where

ηj(uj) =

∫ t

0

(t− τ)k
′−k exp(λi(t− τ))uj(τ)dτ.

Since x = T−1z, and as the columns of T−1 are right gen-
eralized eigenvectors of A, zi,k(t) represents the dynamics
along the right eigenvector ri,k of each Jordan block Ji, for
all i = 1, . . . , µ. Let us now distinguish the case in which
ri,k is associated to a real or to a complex eigenvalue
Case (a): =(λi) = 0. From Assumption 1 (i.e., nonnegative
inputs), we have that ηj(uj) ≥ 0 for all j. Hence, from (5)
we have that

• if lTi,k′B = 0 + j0 ∀k′ ≥ k, then any x̃ ∈ Span(ri,k) is
unreachable;

• if there exist ∃ k′, k′′ ≥ k such that lTi,k′bj ≥
0, lTi,k′′bj ≤ 0, any x̃ ∈ Span(ri,k) is unilaterally
reachable;

• if ∃ k′ ≥ k : lTi,k′ ∈ (Rm≥0 \ O) and @ k′′ ≥ k : lTi,k′′B ∈
(Rm≤0 \ O), then any x̃ ∈ Span+(ri,k) is unilaterally
reachable;

• if ∃ k′ ≥ k : lTi,k′B ∈ (Rm≤0 \ O) and @ k′′ ≥ k :

lTi,k′′B ∈ (Rm≥0 \ O), then any x̃ ∈ Span+(9ri,k) is
unilaterally reachable.

Case (b): =(λi) 6= 0. As A is a real matrix, each complex
eigenvalue will have a complex conjugate. Therefore, the
modal dynamics associated to each of the νi pairs of com-
plex conjugate eigenvalues (λi,k, λ

∗
i,k), k = 1, . . . , νi occur

along the plane X̃ = Span({<(ri,k),=(ri,k)}) of Rn and,
according to Euler’s formula, can be expressed as a sum of
sinusoidal functions. Hence, all the states belonging to X̃
are unilaterally reachable if there exists an index j such that
projX̃ l

T
i,k′bj 6= 0,∀k′ ≥ k. If, instead, such an index did not

exist, then no state would be unilaterally reachable. Finally,
considering that (i) if two (or more) states are unilaterally
reachable, then any positive combination of the these states
is also unilaterally reachable, and (ii) any linear combination
involving an unreachable state defines another unreachable
state, Statement (i) follows.
Statement (ii). From Statement (i), no state outside Cr(B) is
reachable. Therefore, Statement (ii) follows.

Lemma 1. Let Assumption 2 hold, then the set of control-
lable states is Cc(B) := X l(B) ∪ {x ∈ Rn : 9 exp(At)x ∈
Cr(B)}.

Proof. The thesis follows from the consideration that a point
x̄ is controllable if and only if 9 exp(At)x̄ is reachable.

A. Node subset unilateral reachability
When studying partial unilateral controllability of network

dynamical systems, we need to preserve the association
between state variables and network nodes. Therefore, we
now provide the following theorems and corollaries char-
acterizing the unilateral reachability and controllability of a
node subset.

Theorem 2. Given network (1) and a node subset Vs ⊂ V ,
if Assumption 1 holds and projXVs

(Cr(B)) = XVs , then Vs
is unilaterally reachable.

Proof. From Definition 2, for a node subset Vs to be reach-
able, for all x̄s ∈ R|Vs| and x(0) : xs(0) = 0 there must
exists a unilateral input u(t) that steers the network towards
a state x̄ such that the projection of x̄ on the subspace
XVs spanned by the versors {ei : i ∈ Vs}, is x̄s. This is
equivalent to the existence of a point ¯̄x ∈ Cr(B) such that

projXVs
¯̄x = x̄s − projXVs

exp(At)x(0). (6)

As from Theorem 1 Cr(B) is the unilaterally reachable
cone, and projXVs

(Cr(B)) = XVs by hypothesis, a point
¯̄x fulfilling (6) exists for all x̄s and x(0) : xs(0) = 0, and
thus the thesis follows.

Interestingly, we note that the number of unilaterally
reachable nodes may be larger than the dimension of the
largest unilaterally reachable subspace.

B. Node subset unilateral controllability
Theorem 3. Given network (1), if Assumption 1 holds, then
a node subset Vs is unilaterally reachable if and only if it is
unilaterally controllable.

Proof. Unilateral controllability of a node subset trivially
implies its unilateral reachability, see Definitions 2 and 3.
Hence, let us focus on proving that unilateral reachability of
a node implies its unilateral controllability. From Definition
3, for a node subset Vs to be unilaterally controllable, for
all x̄s and x(0) there must exists a unilateral input u(t) that
steers the network towards a state x̄ such that the projection
of x̄ on the subspace XVs is x̄s. This is equivalent to the
existence of a point ¯̄x ∈ Cr(B) such that

projXVs
¯̄x = x̄s − projXVs

exp(At)x(0). (7)

As from Theorem 2 if Vs is unilaterally reachable then
projXVs

Cr(B) = XVs
, by hypothesis a point ¯̄x fulfilling

(7) exists for all x̄s and x(0). Hence, Vs is unilaterally
controllable.

The equivalence between unilateral reachability and con-
trollability of node subsets allows to derive a set of corol-
laries that characterize partial unilateral controllability of
network systems.



Corollary 1. Given network (1) and a node subset Vs ⊆ V ,
if Assumption 1 holds and projXVs

(Cr(B)) = XVs , then Vs
is unilaterally controllable.

Proof. Combining Theorems 2 and 3, the thesis follows.

Corollary 2. Let Cr(B) be the unilaterally reachable set of
the pair (A,B). There exists a controllable node subset Vs
such that |Vs| ≥ |X l(B)|.

Proof. From Theorem 1 we know that if Cr(B) is the uni-
laterally reachable set, this implies that X l(B) is its lineality
space of dimension |X l(B)|. Moreover, considering that, for
a given subspace X there always exists a set of indices K
and the associated subspace X̄ = Span(∪i∈K{ei}) such that
projX̄X = X̄ , this holds also for X = X l(B). Therefore,
from Theorem 2 there exists a unilaterally reachable node
subset Vs of dimension at least equal to |Vs| = |X l(B)|
that, from Theorem (3), is also unilaterally controllable.

The next corollary provides a sufficient condition guaran-
teeing that there exists a unilaterally controllable node subset
Vs that contains a given node i.

Corollary 3. Given a node, say i, if there exists a quadru-
plet {h, j, k,m} such that rT

j,kei > 0, rT
m,hei < 0, and

{rj,k, rm,h} ∈ Cr(B), then there exists a unilaterally con-
trollable node subset Vs such that i ∈ Vs.

Proof. Considering that projeiCr(B) = ei, the thesis follows
from Corollary 1.

Remark 1. The mathematical treatment of this section
substantially differs from the analyses that are performed
when seeking complete unilateral controllability [20]. First,
when the network is not completely unilaterally controllable,
the set of reachable states is a convex cone instead of a vector
space. Second, we needed to show and consider that, albeit
the set of reachable states differs from that of controllable
states (Lemma 1), the reachable and controllable node
subsets do coincide (Theorem 3). Finally, we had to account
for the fact that the number of unilaterally reachable nodes
can be larger than the maximal dimension of a unilaterally
reachable subspace, as remarked after Theorem 2.

V. GREEDY ALGORITHM

In what follows, we shall leverage the theoretical findings
of Section IV to design a heuristic for solving problem (2).
Before illustrating the derivation of the algorithm, we need
to introduce the spanning set W(B) of the lineality space
X l(B) ∈ Cr(B) , which can be computed as

W(B)={ri,k, i, k:{ri,k, 9ri,k}∈ Cr(B) ∧ =(ri,k)=0}
∪ {{<(ri,k),=(ri,k)}, i, k:=(ri,k)∈Cr(B)}, (8)

where i=1, . . . , µ, k=1, . . . , vi. Furthermore, let S be the set
of all subspaces of Rn such that projXCr(B)=X , ∀X∈S.
From Theorem 1, solving problem (2), that is, finding a
maximal unilaterally controllable node subset, is equivalent

to finding the matrix B? that maximizes the cardinality of
the largest subspace in S. Namely,

B?:=arg max
B

(
max
X∈S
|projXCr(B)|

)
. (9)

Unfortunately, (9) is a combinatorial problem with time
computational complexity of order O(n!) that can only be
solved through extensive search, which is unfeasible even for
a network of a handful of nodes.

Since finding an exact solution of (9) is typically unfea-
sible, we propose a two-step procedure for the selection of
matrix B whose computational complexity is determined by
that of finding the Jordan form J , that is, O(n4). In Step
1, we seek for a heuristic approach that tries to maximize
the lineality |X l(B)|, which from Corollary 2 is a lower
bound for the cardinality |Vs| of the unilaterally controllable
node subset Vs. Then, Step 2 attempts to add to Vs the
nodes fulfilling the sufficient condition for node unilateral
controllability given in Corollary 3.

Step 1. Heuristic maximizing |X l(B)|.
Here, we seek for the suboptimal solution

B̃?:=arg max
B

|X l|, Xl⊆Cr(B) (10)

to problem (9). The heuristic we propose (Step 1) takes
as inputs the matrix A and the number of available inputs
m. Denoting Bk the B̃ selected at the k-th iteration, the
algorithm starts with B0=0n×m. Then, at each iteration,
one or two columns are added to B̃. Defining ∆(β):=
|X l([Bk−1, β])| − |X l(Bk−1)|, where β∈B, we can now
distinguish two different cases:

1) If there exists β∈B such that ∆(β)>0, a single column
is added at step k, that is, Bk=[Bk−1, β

?], where

β?=


arg max
β∈B

|X l(Bk)|, if ∃! arg max
β∈B

|X l(Bk)|, (11a)

arg max
β∈B

|Cr(Bk)|, if @! arg max
β∈B

|X l(Bk)|1. (11b)

2) If, instead, a β∈B such that ∆(β)>0 does not exist,
we add two columns to Bk−1 at step k, that is, Bk=
[Bk−1, β

??,−β??], where

β??=arg max
β∈B
|X l([Bk−1, β,−β])|. (12)

Summing up, at each step k our updating rule attempts to
add the input that maximizes the lineality |X l(Bk)|. When
such an input is not unique, it selects the input that adds the
largest number of rays in Cr(Bk). If instead we cannot find a
β such that ∆(β) is positive, then we add the two inputs that
maximize |X l(Bk)|. The algorithm stops when Bk∈Rn×m.
Note that this first step has a computational complexity of
O(n4), due to the evaluation of the Jordan form of A.

Once we have computed B̃=Bm, we need to identify
one of the unilaterally controllable node subsets V1

s corre-
sponding to B̃. To this aim, we leverage Corollary 2, which

1With a slight abuse of notation, here we mean that such a β exists but
is not unique.



states that there exists a unilaterally controllable node subset
V1
s with |V1

s |=|X l(B̃)| such that projXV1
s

X l(B̃)=XV1
s
. To

identify such a node subset, we compute the set W(B̃)
according to (8). Then, we build the set V1

s so that the
elements of the sets V1

s and W(B̃) can be associated into
|V1
s | pairs (vj , wi) such that (i) no pairs share a common

element and (ii) each pair (vj , wi) is such that eTvjwi 6=0.
Finding this association can be recast as the problem of find-
ing the maximum matching [31] of an unbalanced bipartite
graph Gb=(Vb, Eb). Here, Vb:=Vw ∪Vs is the set of vertexes
and each node in Vw represents an element of W(B̃). The
set of edges Eb={(i, j)|eTi wj 6=0 ∧ wj∈W(B̃)} defines all
the possible associations, by appriopriately connecting the
nodes in Vw to those in Vs. Finding a maximum matching
is possible by means of the Hopcroft-Karp algorithm [32]
and thus the computational complexity of this sub-step is
O(
√
|Vb||Eb|)≤O(n5/2).

Step 2. Enlarging the unilaterally controllable node subset.

In the second step, we enrich the unilaterally controllable
node subset V1

s by exploiting the set Cr(B̃) \ X l(B̃). To do
so, let us define the set

Q(B̃):={ri,j , i, j:ri,j∈Cr(B̃) ∧ 9ri,j /∈Cr(B̃)}∪
{ri,j , i, j:9ri,j∈Cr(B̃) ∧ ri,j /∈Cr(B̃)},

(13)

whose positive span is Cr(B̃)\X l(B̃). Then, let us define the
matrix Q as the matrix obtained by juxtaposing the elements
of Q(B̃) column-wise. Exploiting Corollary 3, we then add
a node to V1

s whenever the i-th row of Q encompasses two

Step 1 Maximizing the lineality |X l(B)|.
Inputs: A, m
procedure INITIALIZATION(B0=∅, X l(B0)=O,
W(B0)=∅ )

while k≤m− 1 do
if ∃β∈B:|X l([Bk−1, β])|>|X l(Bk−1)| then

compute β? as in (11a), (11b)
set Bk=[Bk−1, β

?]
compute W(Bk)
k=k + 1

else
compute β?? as in (12)
set Bk=[Bk−1, β

??, −β??] and
compute W(Bk)
k=k + 2

end if
end while
if k=m then

compute β? as in (11a), (11b)
set Bk=[Bk−1, β

?]
compute W(Bk)

end if
end procedure
Outputs: B̃=Bm, W(B̃)

nonzero entries, say qij and qim, that are such that sgn(qij)=
− sgn(qim). Let us note that the computational complexity
of this step of the algorithm is O(n3).

Step 2 Enlarging the unilaterally controllable node subset
associated to B̃

Inputs: Q,V1
s

for i = 1, . . . , n do
if ∃ l,m:sgn(qi,m)=− sgn(qi,l) then

Set V1
s=V1

s ∪ {i}
Remove the l-th and m-th columns from Q

end if
end for
Output: Vs=V1

s .

Application on a sample network

To illustrate our heuristic, we consider a linear network
dynamical system on the graph G depicted in Fig. 1, whose
dynamics is described by matrix

A=



1 −4 0 0 0 0 0
4 1 0 0 0 0 0
1 0 3 0 −1 0 −1
0 0 1 4 1 0 4
0 0 0 0 2 −3 0
0 0 0 0 3 2 0
0 0 0 0 −3 0 0


,

with spectrum {4, 3, 0, 1 + 4i, 1 − 4i, 2 + 3i, 2 − 3i}. Let
us assume that we can inject m=2 unilateral controls. The
input matrix B̃ is designed following Step 1, that is, by
maximizing the lineality |X l(B̃)|. At time instant k=1, four
possible selections of β (e2, e6, −e2 and −e6) yield the
same (positive) ∆(β). Hence, β? should be selected among
these four according to (11b). However, since all choices
would yield the same |C(B1)|, the selection is performed
randomly, and we elect B1=−e6, with the set W(B1) being
[r6, r7]. At k=2, −e2 is the unique β returning ∆(β)>0.
Hence, we select node 2 as the second and last node where
a control signal is injected, i.e., we set B̃=B2=[−e6;−e2]
and W(B̃)=[r1, r4, r5, r6, r7].

Having selected the matrix B, we now turn to finding
one of the possibly multiple unilaterally controllable node
subsets V1

s such that |V1
s |=|X l(B̃)| by solving the maximum

matching problem. Among the multiple equivalent solutions
to this problem, we randomly pick V1

s={v1, v2, v4, v5, v6}.
Finally, we compute, from (13), Q(B̃)={−r2, r3}, and from
Step 2 of the proposed heuristic we can enlarge the uni-
laterally controllable node subset with node 3, that is Vs=
{v1, v2, v3, v4, v5, v6}. Interestingly, in this simple example,
we find that |Vs|>|X l|, that is, the number of unilaterally
controllable nodes is greater than the largest unilaterally
controllable subspace.

VI. CONCLUSIONS

In this letter, we have studied controllability of linear
network dynamical systems when the inputs are unilateral.



Fig. 1. Network topology: the nodes in red are the driver nodes where,
according to the proposed heuristic, the negative unilateral control inputs
are injected.

Specifically, we focused on the case where the constraint on
the number and type of inputs prevents the achievement of
complete controllability of the network system, whereby only
a node subset can be made controllable. In this setting, we
have identified conditions for unilateral reachability and con-
trollability of a node set, which we found to be equivalent,
different from the general case of subsystems, where we have
proved that reachability does not imply controllability. After
showing that maximizing the size of a controllable nodes
subset is a combinatorial problem, we have leveraged the
theoretical findings on unilateral controllability to build an
heuristic that can find a suboptimal solution to this problem
in polynomial time, as illustrated on a sample network.

Our work has laid the foundations of partial controllability
under unilateral inputs, thus paving the ways for future
studies in this area of research. First, alternative heuristic
approaches may be developed and tested against the one
proposed in this manuscript. Moreover, once partial con-
trollability has been guaranteed, the problem of evaluating
the energy associated to the control action arises, thereby
minimum energy control problems could be formulated in
this setting.
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Influencing Opinions in a Nonlinear
Pinning Control Model

Camilla Ancona , Pietro De Lellis , and Francesco Lo Iudice , Member, IEEE

Abstract—This letter studies how opinions and sub-
sequent actions of groups of individuals are shaped by
opinion leaders, nowadays denoted influencers. We model
an influencer as a pinner that exerts a control input on a
small subset of individuals, and leverages the interaction
network to affect the action of a large fraction of individuals.
We provide sufficient conditions so that a given agent takes
the same action as the pinner. Based on these conditions,
we design a heuristic for the pinned node selection that
maximizes the number of nodes taking the action elected
by the pinner. The performance of the heuristic is then
numerically tested against standard pinning strategies.

Index Terms—Control of networks, network analysis and
control, control applications.

I. INTRODUCTION

FROM understanding how to protect democracy against
foreign cyber interference [1] to the design of awareness

campaigns enhancing health literacy and trust in vaccinations
[2], several pressing societal challenges require a deeper under-
standing of how opinions can be shaped and manipulated.
While opinion dynamics models have shed light on some
essential mechanisms for the emergence of consensus, the role
of external influences on the opinion shaping process has only
been partially unravelled [3], [4].

Control theory has recently attempted to contribute in this
area, as the actions of an external entity in a social group can
be viewed as a control signal acting on select nodes of the
network that describes the interactions within the group [5],
[6], [7]. A glaring analogy has been established with pinning
control [8], [9], whereby an opinion leader (or influencer) is
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identified as the pinner and affects the state (opinion) of the
other nodes without being affected by them [10], [11], [12].

The analogy between the action of a pinner in a network
system and that of an influencer has been explored in classic
opinion dynamics models, based on averaging updating rules
that imply that the more divergent two agents’ opinions are,
the more they tend to get closer [13], [14], [15]. To overcome
this paradox, a discontinuous model, called bounded confi-
dence, considered that interactions only take place when the
opinion difference between neighboring nodes is below a given
threshold [16], [17]. An alternative model has been recently
presented in [18], [19], where the influence an agent has on
the opinion of the others is capped by a saturation.

Here, we introduce the pinning control formalism in the
modeling framework proposed in [18], [19] to describe a two-
options problem. We complement the model with an output
function describing the action (choice between the alternative
options) associated to the opinion, as typically done in contin-
uous opinion and discrete actions (CODA) models [20]. Then,
we add a virtual node, the pinner, which corresponds to (one
or more) influencers trying to steer the action of the group
towards one of the two options. The pinner will have to decide
the pinned nodes, that is, the nodes it will directly attempt to
influence. The rest of the network will be instead indirectly
affected by the pinner through the interaction topology.

Decomposing the network in layers, we are able to provide
sufficient conditions on the interaction topology, the set of
pinned nodes, and the pinning control gain guaranteeing that
a given subset of agents in the network will take the same
action as the pinner. On the basis of our theoretical findings,
we design a heuristic control strategy that aims to select the
set of pinned nodes maximizing the number of nodes that will
agree with the pinner on the action to take. We observe that
the proposed heuristic outperforms classic pinning strategies
based on centrality metrics [21], [22].

Graph notation: A weighted directed graph is the triplet
G = {V, E,W}, where V is the set of nodes, E ⊆ V ×V is the
set of edges, and W is the set weight function that associates
to every edge (i, j) ∈ E a positive weight wji. Following the
notation used, e.g., in [23], the ij-th element of the adjacency
matrix A associated to G is defined as aij = wij, if (j, i) ∈ E ,
whereas it is zero otherwise. Given a node i, its weighted in-
degree is the sum of the weights of its incoming edges, that
is, δin

i = ∑
j:(j,i)∈E aij = ∑N

j=1 = aij. An illustration of the
notation used in this letter is given in Figure 1.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/
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Fig. 1. Illustration of the graph notation used in the manuscript on a
sample 3-node graph G.

II. THE OPINION DYNAMICS MODEL

A. Uncontrolled Dynamics and Parameter Setting

We consider an ensemble of N interconnected agents dis-
cussing a topic and assume that the opinion diffusion process
occurs on a weighted directed graph G = {V, E,W}, where
nodes in V represent the N individuals, an edge (i, j) ∈ E
implies that node i influences node j, whereas the function
W associates to each edge a positive scalar modulating the
strength of the interaction. Based on their opinion on the topic
under discussion, each agent has to take a decision between
two alternative actions A−1 and A+1.

Following [24], we identify the evolution over time of the
opinion of agent i as its scalar state xi(t), and model the corre-
sponding action yi(t) that agent i would take given its opinion
at time t as a discrete variable. In the absence of external
influences, our model is described by

ẋi(t) = −dxi(t) + c tanh

(

αxi(t) +
N∑

k=1

aikxk(t)

)

, (1a)

yi(t) = sgn(xi(t)), (1b)

where aij is the ij-th entry of the adjacency matrix A associated
to G (aij �= 0 if j influences i), d > 0 captures the resistance
each agent has to changing opinion, the attention parameter
c ≥ 0 weighs the opinion exchange term, and α > 0 modulates
how much agent i reinforces its own opinion;

yi(t) = −1 (yi(t) = 1) corresponds to agent i preferring
A−1(A+1) at time t, whereas yi(t) = 0 corresponds to agent
i being undecided. We say that agent i has a stronger opinion
than j at time t if |xi(t)| > |xj(t)|. Note that the strength of an
opinion is measured by its distance from the undecided state
0, and thus it is possible to compare strengths of opinions
corresponding to discordant actions.

In this letter, we set the parameters c, d, and α in (1) so
that c > d/α. This ensures that the single-agent dynamics in
the absence of interactions (i.e., when aik = 0 for all k), has
an unstable fixed point at 0 and two stable fixed points in x̄
and −x̄, which are the two solutions of the implicit equation

x

tanh (αx)
= c

d
, (2)

and, for any finite α, have magnitude smaller than c/d [18].
Note that the agent opinion may change also in the absence of
interactions, whereby model (1) mimics the opinion formation
process, where an agent may modulate the strength of its opin-
ion based on collected information or critical thinking [24]. A
reinforcement effect is observed when, as in our study, c is
selected to be larger than d/α: the left panel of Figure 2 shows

Fig. 2. The left panel displays the opinion dynamics of N = 30 agents
coupled on an Erdös-Rényi graph with probability p = 0.6, and evolving
according to (1) with c = 3, d = α = 1, and initial conditions uniformly
randomly selected in [−3, 0]. The right panel depicts the dynamics of the
same network in the presence of a pinner (in dashed red) that is con-
nected to 3 agents according to (3) and steers the other agents towards
a positive opinion. When the agents enter the blue shaded area, they
will always take the same action as the pinner, thus belonging to the
set Q defined in (4). Also, their opinion will become stronger than that
of the pinner: as they enter the gray shaded area, that they also belong
to the set Qstr defined in (6). In both panels, black and red lines identify
the opinion dynamics of agents opting for A−1 and A+1 at the end of
the simulation, respectively.

that, when the agents at time 0 would all take the same action
A−1 (that is, xi(0) < 0 for all i), they would asymptotically
take the same action, but with a stronger opinion.

B. Pinning Control to Influence Opinions

Different from [24], here we consider the case where (one
or more) influencers, labeled with the greek letter ι, try to
steer the decision towards one of the two options. To capture
this scenario, we model the effect of the influencers through a
virtual node ι with no incoming edges that, in agreement with
the literature on consensus and synchronization in network
systems, is called pinner and is unidirectionally coupled to
a subset D1 ⊆ V of so-called pinned nodes [8], [9], [10],
[25], [26], [27]. We assume that its opinion, independent of
that of the other agents, is already formed (or formed on a
much shorter timescale), so that xι(t) = x̄ι for all t, with x̄ι

corresponding to one of the two equilibria ±x̄ of the decoupled
single-agent dynamics. The action associated to the constant
opinion of the pinner is ȳι(t) = sgn(x̄ι) for all t.

The pinner influences the decision process of the other
agents by directly affecting the opinions of the pinned nodes,
and exploiting the network structure to diffuse its effect on the
rest of the network. The presence of the control action from
the pinner to the pinned nodes modifies model (1) as

ẋi(t) = −dxi(t) + c tanh

(

αxi(t) +
N∑

k=1

aikxk(t) + hiκιx̄ι

)

,

yi(t) = sgn(xi(t)), (3)

for i = 1, . . . , N, where the control gain κι > 0 modulates the
influence that the pinner has on the dynamics of the pinned
nodes; and, ∀i = 1, . . . , N, hi = 1 if i is pinned, i.e., i ∈ D1,
whereas hi = 0 otherwise. The right panel of Figure 2 shows
the effects of a pinner on a group of interconnected agent that
at time 0 would take the opposite action of the pinner, with
the pinner able to convince a fraction of them to change their
opinion and subsequent action.
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C. Control Objectives

The aim of the control input hiκιx̄ι in (3) is to select the set
of pinned nodes D1 that maximizes the number of individuals
that, after a sufficient amount of time, will take the same action
as the pinner. To formally define this control design problem,
we introduce the set

Q = {i ∈ V : there exists t̄ such that

y(t) = ȳι for all t > t̄ }, (4)

whose composition will depend on the choice of κι and D1.
For any κι, we can state the following optimization problem:

max
D1

|Q(κι,D1)| (5a)

subject to

|D1| = M, (5b)

with M < N as the number of nodes that are directly controlled
may be limited by physical or economic constraints.

Depending on the context, one may be interested not only
in convincing agents to take the same action as the pinner,
but also to make their opinion at least as strong as that of the
pinner. In such case, we can define the set Qstr ⊆ Q as

Qstr = {i ∈ V : there exists t̄ such that

y(t) = ȳι and |x(t)| ≥ |xι| for all t > t̄ }, (6)

and state the following problem:

max
D1

|Qstr(κι,D1)| (7a)

subject to

|D1| = M. (7b)

The right panel of Figure 2 reports an instance where, for a
given choice of κι and D1, Qstr and Q coincide. If this happens
for all possible choices of κι and D1, then problems (5) and (7)
would also coincide.

III. MAIN RESULTS

We first show that the proposed opinion dynamics model is
well-posed, as the controlled dynamics (3) are bounded. Then,
we provide sufficient conditions so that an agent belongs to
Qstr (and therefore to Q as well).

Lemma 1: Under the dynamics (3), the absolute value of
the agents’ opinion is asymptotically bounded by c/d, that is,
for all i = 1, . . . , N,

lim sup
t→+∞

|xi(t)| ≤ c

d
. (8)

If, additionally, |xi(0)| ≤ c/d, then, for all t ∈ R≥0,

|xi(t)| ≤ c

d
. (9)

Proof: Let us define two auxiliary dynamical systems

˙̄xi = −dx̄i + c, x̄i(0) = xi(0). (10a)

ẋi = −dxi − c, xi(0) = xi(0). (10b)

As tanh(·) ∈ [ − 1, 1], from (3) and the Comparison Theorem
for ordinary differential equations [28], we have that

xi(t) ≤ xi(t) ≤ x̄i(t), ∀t ≥ 0. (11)

As limt→+∞ x̄i(t) = c/d and limt→+∞ xi(t) = −c/d, inequal-
ity (8) follows. Next, note that xi(t) = (xi(0) + c/d) exp (−dt)
− c/d and x̄i(t) = (xi(0) − c/d) exp (−dt) + c/d. As |xi(0)| ≤
c/d, from (11), inequality (9) follows.

Remark 1: We consider opinions that are bounded in a
set centered at the undecided opinion xi = 0. Considering
Lemma 1, from now on we will assume |xi(0)| ≤ c/d, so that
c/d will represent the maximum strength an opinion can have
at any time instant.
We define λi(t) = ∑N

k=1 aikxk(t) + hiκιx̄ι as the interaction
term in (3), which can be rewritten as

ẋi(t) = −dxi(t) + c tanh(αxi(t) + λi(t)), |xi(0)| ≤ c/d, (12a)

yi(t) = sgn(xi(t)). (12b)

In what follows, we first provide a condition on the absolute
value and sign of λi(t) so that agent i belongs to Q, that is,
in finite time, agent i will take the same action of the pinner,
and its opinion will be at least as strong as that of the pinner,
so that i also belongs to Qstr. Then, we provide conditions on
the control gain κι and on the network topology such that the
sufficient condition on λi(t) is fulfilled.

Let us define t1,i as the first instant such that yi(t) ∈ {ȳι, 0},
with t1,i = +∞ if such an instant does not exist, and

λ̃ := − tanh−1(
√

1 − d/cα) + cα

d

√
1 − d/cα. (13)

Next, we define the set Ti := {τ : ∀t > τ, yi(t) =
ȳι and |xi(t)| ≥ |x̄ι|} and the scalar

t2,i :=
{

min Ti, if Ti �= ∅,

+∞, otherwise.
(14)

In simple words, t2,i, when finite, is the smallest time instant
such that node i takes the same action as the pinner with an
at least as strong opinion, thereby guaranteeing that i ∈ Qstr.

Theorem 1: Under the dynamics described by Eqs. (12), if

∃ε > 0 : |λi(t)| ≥ |λ̃| + ε, (15)

sgn(λi(t)) = sgn(x̄ι), (16)

for all t ≥ 0, then

∃t1,i < +∞ : yi(t) = ȳι,∀t > t1,i, (17a)

∃t2,i ∈ [t1,i,+∞[ |xi(t)| ≥ |x̄ι|,∀t > t2,i. (17b)

Proof: For clarity, in the proof we consider ȳι = 1, but the
derivations hold ceteris paribus for ȳι = −1.

Existence of a finite t1,i: Let us start by showing that if
xi(0) < 0 then there exists a time instant t̃ such that xi(t̃) = 0.
Note that, as the hyperbolic tangent is strictly monotone
increasing, assumptions (15)-(16) imply that

ẋi(t) ≥ f (xi, ε) := −dxi + c tanh(αxi + λ̃ + ε), (18)

for all xi ∈ [−c/d, 0]. Function f has two stationary points,
whereby setting ∂f (xi, ε)/∂xi = 0, one obtains

x

i,1 = −cα/d

√
1 − d/cα − ε

α
,

x

i,2 = 2 tanh−1(

√
1 − d/cα) − cα/d

√
1 − d/cα − ε

α
.
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Fig. 3. Decomposition in layers of a sample graph G = {V,E}: the
pinner (in red) has 3 outgoing edges that point to the nodes in D1 =
{1, 2, 3}, whereas the set D2 is composed by nodes 4 and 5 that are
at two steps away from the pinner. Note that D = D1 ∪ D2 does not
encompass node 6, which is not influenced by the pinner, and therefore
in this case D ⊂ V .

Evaluating the function at x

i,1 and x


i,2, respectively, yields

f (x

i,1, ε) = εd/α > 0, (19)

f (x

i,2, ε) = 2φ(c) + εd/α > εd/α > 0, (20)

where we used that, for all c > d/α, φ(c) = c
√

1 − d/cα −
d/α tanh−1(

√
1 − d/cα) > 0. Noting that

1) f is continuous and differentiable;
2) f is positive at the extrema of the interval [−c/d, 0],

whereby f (0, ε) = c tanh(λ̃ + ε) > 0, and f (− c
d , ε) =

c + c tanh(−α c
d + λ̃ + ε) > 0 as tanh(·) > −1;

3) f is positive and lower bounded by εd/α at both its
stationary points;

we obtain f (xi, ε) ≥ ε, for all xi ∈ [−c/d, 0], with

ε = min{c tanh(λ̃ + ε), c + c tanh(−αc/d + λ̃ + ε), εd/α} > 0.

Therefore, from (18) we then have

ẋi(t) ≥ f (xi, ε) ≥ ε > 0, ∀t : xi(t) ∈ [−c/d, 0]. (21)

In turn, this implies that xi(t) > xi(0) + tε for all t such that
xi(t) < 0. As xi(0) ≥ −c/d, we can then conclude that t̃ ≤
c/dε. Then, from the continuity of f (·) and as f (0, ε) ≥ ε > 0
we have t1,i = t̃ (17a). Note that this also proves the existence
of t1,i when xi(0) = 0.

Finally, if xi(0) > 0, then t1,i = 0 follows from the conti-
nuity of f (·). Indeed, as f (0, ε) ≥ ε > 0, then there exists a
finite x̃i such that 0 < x̃i ≤ xi(0) and f (x̃i, ε) > 0.

Existence of a finite t2,i: Now, let us study the dynamics (12)
for t > t1,i. As xi(t) > 0 for all t > t1,i, to prove (17b),
consider that

ẋi(t) > −dxi + c tanh(αxi + λ̃)

> g(xi) := −dxi + c tanh(αxi). (22)

As ẋi = g(xi) is a bistable dynamical system with the stable
fixed points at ±x̄ι, and starting at xi(t̃) > 0, the dynamics
governed by g(xi) monotonically converge to x̄ι, thus from (22)
the existence of a finite t2,i follows.

Next, we leverage the result of Theorem 1 to guarantee
that a given agent will belong to Qstr. Namely, we define the
extended graph G̃ obtained by adding the pinner and its ingo-
ing edges to G. Let D ⊆ V be the set that includes all nodes
that are destination of a directed path originating from s in G̃,
and let q ≤ N be the maximum length of the shortest path

from s to a node in D. We focus on D as the opinion dynam-
ics of the nodes in V \D cannot be affected either directly or
indirectly by the pinner.

Next, we relabel the nodes in V so that the nodes belonging
to D are the first |D|, and partition D in q disjoint subsets
(layers) D1, . . . ,Dq, so that i ∈ Dl if the shortest path in G̃
that connects s to i has length l, for l = 1, . . . , q (the first layer
D1 coincides with the set of pinned nodes). Finally, we define
the set Bl := {j ∈ ∪l

k=1Dk : j ∈ Qstr} ⊆ ∪l
k=1Dk of nodes in

the layers 1, . . . , l that in finite time will take the same action
as the pinner with an at least as strong opinion.

Now, let us study the behavior of the nodes belonging to
D1, that is, the pinned nodes. Denoting δin

i = ∑N
k=1 aik the

weighted in-degree of node i, we can give
Corollary 1: For any i ∈ D1, if

κι >
|λ̃| + ε + c

d δin
i

|x̄ι| , (23)

then i ∈ B1.
Proof: Let us recall that λi(t) = ∑N

k=1 aikxk +κιx̄ι. Then, as
|xk| ≤ c/d from Lemma 1 and Remark 1, and as

∑N
k=1 aik =

δin
i by definition, then from (23) we have that (16) holds.

Furthermore, the same arguments imply that

|λi(t)| ≥ κι|x̄ι| −
N∑

k=1

aik|xk| ≥ κι|x̄ι| − c

d
δin

i .

Hence, also (15) holds, and therefore from Theorem 1 the
thesis follows.

We can now study the dynamics of a generic node i ∈ Dl,
l ≥ 2. Let us define bi as the sum of the weights of the
edges entering node i from every node j ∈ Bl−1, that is, bi :=∑

j∈Bl−1
aij, which implies that 0 ≤ bi ≤ δin

i . Then, we can
give the following sufficient condition for a node i to belong
to the set Bq ⊆ Qstr of nodes in D that take the same action
with an at least as strong opinion as the pinner.

Corollary 2: For any i ∈ Dl, and l ≥ 2, if Bl−1 �= ∅, and
there exists ε > 0 such that

bi >
|λ̃| + ε + c

d (δin
i − bi)

|x̄ι| , (24)

then i ∈ Bq.
Proof: Let us note that

λi(t) =
∑

j∈Bl−1

aijxj(t) +
∑

j/∈Bl−1

aijxj(t). (25)

Moreover, consider that, from Lemma 1, we have
∣
∣
∣
∣

∑

j/∈Bl−1

aijxj(t)

∣
∣
∣
∣ ≤ c

d
(δin

i − bi) (26)

and from Theorem 1 and the definition of Bl−1 we have that
∣
∣
∣
∣

∑

j∈Bl−1

aijxj(t)

∣
∣
∣
∣ ≥ |x̄ι|bi, (27)

for all t ≥ tl := maxj∈Bl−1 t2,j. Hence, combining
Eqs. (26)-(27), and from (24), λi(τ ), with τ = t − tl,
satisfies (15)-(16), and thus the thesis follows from
Theorem 1.
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TABLE I
COMPARISON OF OUR STRATEGY (HEUR) AGAINST A RANDOM SELECTION, THE MAXIMIZATION OR MINIMIZATION OF THE OUT-DEGREE δout,

IN-DEGREE δin, OR THE BETWEENNESS CENTRALITY bc FOR TWO ALTERNATIVE CHOICES OF INITIAL CONDITIONS

Note that in (24) the lower bound of bi is given in implicit
form to underline the analogy with (23).

Corollaries 1 and 2 hold for any initial opinion in the set
[−c/d, c/d]. Hence, they allow exploring layer by layer the
part of the network whose dynamics is affected by the con-
trol signals and determine which agent we can guarantee will
belong to Qstr. In particular, condition (23) of Corollary 1
guarantees that, even in the worst case where all the agents
(except for the pinner) influencing agent i have the opposite
opinion of the pinner with strength c/d, the control gain κι

is strong enough to ensure assumption (14) of Theorem 1 is
fulfilled. Condition (24) of Corollary 2 shows that, different
from layer 1, in the other layers the control gain has only an
indirect influence. Indeed, for a given level l, κι may affect the
cardinality |Bl−1| of the set of neighbors of node i that take
the same action and have an opinion at least as strong as that
of the pinner. The larger |Bl−1|, the more nodes in layer l will
belong to Qstr, since bi in (24) will be larger.

IV. PINNING SELECTION STRATEGIES

Corollaries 1 and 2 can be used in an algorithmic fashion to
identify a set of nodes B̃q that we can guarantee will belong
to Bq for any |xi(0)| ≤ c/d. More specifically, condition (23)
can be used to compute B̃1, and then condition (24) can be
iteratively applied to sequentially compute B̃2, . . . , B̃q.

Noting that Bq ⊆ Qstr, we can then use q̃(D1, κι) :=
|B̃q|, evaluated algorithmically through the two corollaries,
as a proxy for the effectiveness of the choice of the set
of pinned nodes D1 with a given cardinality M in solving
problem (7), for a given selection of the control gain κι. In
what follows, assuming we can freely select κι, we propose
a greedy heuristic that solves in polynomial time the NP-
hard problem of selecting D1 with the goal of maximizing
q̃∞(D1) := limκι→+∞ q̃(D1, κι). We compare the effective-
ness of the solution with respect to both Problems (5) and (7)
against alternative choices of the pinned nodes based on
centrality metrics, similar to what has been done in [21], [22].

A. Heuristic Strategy for Selecting D1

Starting from an empty set of pinned nodes, namely
D1 = ∅, our greedy strategy sequentially adds nodes so that, at
every iteration, q̃∞ is maximized given the current cardinality

of D1. The heuristic stops as soon as |D1| = M. Defining

κ̄ι := max
i∈V

|λ̃| + ε + c
d δin

i

|x̄ι| ,

as the control gain ensuring, from Corollary 1, that any pinned
node belongs to Qstr the steps of our algorithm are:

1) initialize D1 = ∅, and set κι > κ̄ι;
2) using Corollaries 1 and 2 compute q̃(D1 ∪{i}, κι) for all

i ∈ V \ D1;
3) randomly select i
 in the set

arg max
i∈V\D1

q̃(D1 ∪ {i}, κι), (28)

and update D1 = D1 ∪ {i
};
4) if |D1| < M, go to step 2, otherwise stop the algorithm.

B. Performance in a Sample Retweet Network
From Twitter

We compare the proposed heuristic both against chance, that
is, a random selection of the set D1, and alternative topological
strategies, which consist in encompassing in D1 the nodes with
maximum (or minimum) outdegree, indegree, and betweenness
centrality [29]. To do so, we extracted a directed unweighted
subgraph of 580 nodes of a retweet graph from [30]. Then,
we set the number of pinned nodes to M = 0.05N, and eval-
uated the following metrics to assess the performance of the
proposed heuristic:

• m1 = |Q∩D|/|D| and m2 = |Q|/|V|, that is, the fraction
of nodes in D and in V , respectively, that take the same
action of the pinner;

• m3 = |Qstr ∩ D|/|D| and m4 = |Qstr|/|V|, that is, the
fraction of nodes in D and V , respectively, that take the
same action of the pinner and have an opinion that is at
least as strong as that of the pinner;

Note that m1 and m3 focus on the nodes that, given the selec-
tion D1, are directly affected by the pinner, whereas m2 and
m4 evaluate the effectiveness of D1 for all the agents in V .
We evaluated these metrics for initial opinions

1) drawn from a uniform distribution in [−c/d, c/d],
2) furthest from that of the pinner, i.e., xi(0) = −c/d as

we set ȳι = 1.
For case 1), the results are averaged over 1000 random selec-
tions of the initial conditions. Table I shows that the proposed
heuristic outperforms the alternative strategies. Also, met-
rics m1,2 and m3,4 are equivalent when all agents start with



1950 IEEE CONTROL SYSTEMS LETTERS, VOL. 7, 2023

Fig. 4. Comparing the proposed heuristic against pinning the nodes
with maximum out-degree in terms of the fraction m2 of nodes taking the
same action of the pinner. The left and right panel refer to ER and SF
networks, respectively. The probability of ER graphs is equal to 〈δ〉/N,
the exponent of the power law of SF network is equal to 2.6. Each data
point is averaged over 100 realizations of the graph topology.

opinions that are furthest from the pinner, and the ranking
of the strategies does not change depending on the metric.
Moreover, we observe that the maximization of the out-degree
is the topological strategy that more closely matches the
performance of the proposed heuristic.

C. Performance in Synthetic Networks

As pinning the nodes with maximum out-degree leads to
performance close to the proposed heuristic strategy, we per-
formed a comprehensive numerical analysis on Erdös-Rényi
(ER) and Scale Free (SF) graphs, generated by means of the
configuration model, to assess whether the proposed heuristic
yielded a significant improvement. For both ER and SF topolo-
gies, and for each value of the average degree, varied between
1 and 5 with step 1, we generated 100 graphs of N = 500
nodes, and we computed the average values of m1, . . . , m4
setting xi(0) = −c/d for all i. As shown in Figure 4, in all
synthetic networks the proposed heuristic outperforms pinning
the nodes with maximum out-degree, and a t-test confirms that
the difference is significant, with a p-value smaller than 0.001.

V. CONCLUSION

In this letter, we used pinning control to maximize the effect
of an influencer in social groups interacting according to a
nonlinear opinion dynamics model. We derived sufficient con-
ditions on the topology and control gain so that individuals
take the same action and have an opinion at least as strong as
that of the pinner. We leveraged our results to design a heuris-
tic to select the nodes where inputs should be injected so to
maximize the influence of the pinner, given a constraint on
the number of nodes to pin. Future work should be devoted
to test our results on real world data borrowed from online
social media, and investigating the more realistic cases where
the agents’ parameters are heterogeneous or there is more than
one pinner competing for influencing the other agents.
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A model‑based opinion dynamics 
approach to tackle vaccine 
hesitancy
Camilla Ancona1,2,3, Francesco Lo Iudice1,3, Franco Garofalo1* & Pietro De Lellis1*

Uncovering the mechanisms underlying the diffusion of vaccine hesitancy is crucial in fighting 
epidemic spreading. Toward this ambitious goal, we treat vaccine hesitancy as an opinion, whose 
diffusion in a social group can be shaped over time by the influence of personal beliefs, social pressure, 
and other exogenous actions, such as pro-vaccine campaigns. We propose a simple mathematical 
model that, calibrated on survey data, can predict the modification of the pre-existing individual 
willingness to be vaccinated and estimate the fraction of a population that is expected to adhere to 
an immunization program. This work paves the way for enabling tools from network control towards 
the simulation of different intervention plans and the design of more effective targeted pro-vaccine 
campaigns. Compared to traditional mass media alternatives, these model-based campaigns can 
exploit the structural properties of social networks to provide a potentially pivotal advantage in 
epidemic mitigation.

The ongoing COVID-19 pandemic has put the phenomenon of vaccine hesitancy back under the spotlight for 
the subsequent delays in our race to stem the transmission of the virus1–3. Prior to this global emergency, the 
reluctance that a fraction of the population has in getting vaccinated already proved to be a global threat for 
human health, see the recent resurgence of measles both in Europe and the US4–6. Since the first vaccines were 
developed, a hesitant attitude in a relevant fraction of the population has been constantly observed at every lati-
tude and across all socio-economic classes7–9. Public concerns about vaccines can potentially resonate on social 
platforms, triggering skepticism towards a recommended vaccination, which in turn translates into delaying 
or refusing to take the jab. The spectrum of hesitants ranges from fierce antivax, to people who accept vaccines 
but still remain uncertain about their use. In this social environment, being the vaccination based on voluntary 
compliance, the fear is that some people might play a wait-and-see game, whereby individuals who choose to 
wait enjoy the benefits generated by those who do opt for vaccination. This triggers a collective threat that has 
been highlighted through game theory: rational vaccination decisions based on individual self-interest bring to 
vaccination levels that are below the optimum for the community10. However, rational arguments are seldom at 
the basis of vaccine hesitancy, which is typically amplified by the rumors spreading on social media11. Indeed, 
opinion formation is not only affected by the social pressure exerted through traditional media outlets such as 
newspapers or tv, but also by peer-to-peer interactions on social networks. The latter should then probably be 
the main means for effective promotion campaigns aimed at diffusing the vaccine literacy and boosting immu-
nization acceptance12.

An incisive campaign to promote vaccination over a social network requires a suitable selection of the tar-
get subjects, and should be tailored to the specific concerns they have on vaccination. Doing so demands the 
contribution of diverse scientific communities. The large literature on behavioral motivation in medical and 
social sciences is a precious source of effective communication strategies and arguments to tackle any kind of 
concern13–16. Artificial intelligence and data science may help detect misinformation flowing on social platforms 
and assess the public confidence in vaccination, see17 and references therein. In this context, the contribution of 
network control18–20 could be crucial, since model-based approach may enable the simulation of what-if scenarios 
corresponding to different promotion campaigns. Here, we show that a network model of opinion diffusion can 
(i) capture the dynamics of vaccine hesitancy in large groups of individuals and (ii) inform the design of pro-
vaccine social media campaigns targeting select individuals within these groups.
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Most of the existing models of opinion dynamics have an explanatory character and derive the basic mecha-
nisms of social influence from analogies with diffusion processes in physical systems. Different rules for updating 
the opinions in the group have been considered, which include imitation21,22, averaging over people with similar 
opinions23–25, following the majority26,27, and cooperative versus competitive interactions28–31. Feeding the huge 
amount of data that artificial intelligence and data science can mine from social networks to an opinion dynamics 
model can help unleash the predictive power of these explanatory models under external stimuli, thereby ena-
bling proactive interventions32. This paper tries to make a first step in this direction, bridging opinion dynamics 
and vaccine willingness in a scaled model, which is calibrated on a survey conducted on a sample of the Italian 
population. This enables us to hypothesize different targeted vaccine promotion campaigns and compare their 
effectiveness on the basis of the expected fraction of the population that, subject to the each different campaign, 
will decide to take the vaccine.

Results
A dynamic model of vaccine willingness Vaccine hesitant individuals are defined by WHO as “a heterogeneous 
group that are indecisive in varying degrees about specific vaccines or vaccination in general”. Hence, vaccine 
willingness is a “fluid” opinion on vaccination that can be molded by social interaction and external stimuli. 
Our modelling assumption is that the vaccine willingness of the i-th of a population of n networked individuals, 
xi(k) , is shaped in time by social interactions according to the Friedkin-Johnsen model33, i.e.,

Here, the so-called susceptibility �i ∈ [0, 1] modulates the convex combination between agent i’s innate opinion 
xi(0) and the social pressure modeled as the average of the current willingnesses xj(k) of its neighbors in the 
network (the agents in the set Ni ). The complement to 1 of �i captures the agent’s stubbornness.

Departing from the consideration that radical views generally translate into foreseeable (unsurprising) 
actions, while actions related to moderate opinions are far more uncertain, we posit that the probability of an 
individual accepting a jab at a certain time k, pi(k) , depends linearly on its willingness xi(k) . Hence, we can 
extend the model of xi(k) to pi(k) obtaining

According to our model, the binary decision of taking or refusing a jab becomes a Bernoulli random variable 
whose parameter is pi(k).

Incorporating pro-vaccine campaigns into the model Exploiting tools from network control34,35, we incorporate 
a pro-vaccine campaign in model (1)–(2) as an additional virtual node, an influencer agent, whose willingness 
is xl(k) and associated probability of accepting a jab pl(k) . The influencer agent is connected through a directed 
link to a fraction φ of targeted individuals. Hence, the dynamics of the targeted agents becomes

 where α ∈ [0, 1] quantifies the effort per target individual. Hence, we characterize the overall effort 0 ≤ η ≤ 1 of a 
campaign as the product of the two parameters α and φ . During the ongoing pandemic, health authorities of most 
countries have conducted traditional pro-vaccine campaigns through mass media to fight vaccine hesitancy36–38. 
In our modeling framework, this means that the influencer (in this case, the health authority) is connected to 
all the network agents, that is, φ = 1 . However, in the era of online social media and targeted marketing, one 
could argue that a targeted pro-vaccine campaign, where the influencer devotes a larger individual effort α to 
a small fraction φ of the agents, could outperform traditional mass campaigns given the same overall effort η.

To dispel this doubt, we exploit our scaled model to design three alternative targeted campaigns, differing for 
the selection of the targeted agents, denoted in the following as Strategies 1, 2, and 3, respectively. Strategy 1, as 
in classical network science approaches, targets the most connected agents, i.e. the agents that have the greatest 
topological advantage for spreading opinions favourable to vaccination. Strategy 2 mitigates the effect of the 
antivax by targeting their neighbors, whereas Strategy 3 directly targets the most susceptible agents. The details 
on the implementation of these campaigns are provided in the Methods.

It is worth pointing out that the three strategies we propose require different information levels, thus pos-
ing different feasibility issues. Indeed, targeting the most connected agents only requires knowledge of the 
unweighted topology of the social network. Attempting instead at neutralizing the antivax requires to comple-
ment this structural information with that on the agents’ vaccine hesitancy, which can be monitored by means 
e.g. of sentiment analysis on social media39,40. Finally, directly influencing the most susceptible agents constitutes 
a psychological targeting strategy (see41 and the references therein for alternatives methods to do so) that requires 
assessing the personality traits of each individual.

A scaled model of vaccine willingness in the Italian population We exploit our modeling framework to build 
a scaled representation of vaccine willingness in the Italian population. Since we focus on interactions taking 
place through online social media, we borrowed the graph describing social interactions among the individuals 
from a Facebook friendship network42. We associate to the individuals of our scaled model vaccine willing-
nesses whose distribution is compatible with the outcome of a survey conducted on a sample of the Italian adult 
population at the end of the first lockdown8, when the vaccine availability was long to come. From these data 

(1)xi(k + 1) = �i

∑

j∈Ni

wijxj(k)+ (1− �i)xi(0).

(2)pi(k + 1) = �i

∑

j∈Ni

wijpj(k)+ (1− �i)pi(0).

(3)pi(k + 1) =

(

(1− α)�i
∑

j∈Ni

pj(k)+ αpl(k)
)

+ (1− �i)pi(0),
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we were able to estimate the susceptibilities �i so as to preserve, at steady-state, the aforementioned association, 
see the Methods for details and the Supplementary Information, Figure S7, for a graphical representation. The 
steady-state distribution of the vaccine willingness enables the evaluation of the probability that any given frac-
tion of the population gets vaccinated (see Section S1 of the Supplementary Information), which in turn allows 
to compute the expected fraction of the population that, at the time of the survey, would have taken a jab had 
this opportunity been given.

Comparing pro-vaccine campaigns Leveraging our scaled model, we conducted a numerical analysis to com-
pare the effectiveness of targeted and mass campaigns on our synthetic population. Our simulations show that 
i) the targeted campaigns outperform a general mass-media campaign, and ii) the best strategy for targeting 
individuals depends on the overall effort η of the campaign. Indeed, for all possible selections of η , it is possible 
to find a targeted strategy that yields an advantage compared with general mass-media campaigns, with an 
increase of the expected number of vaccinated individuals that reaches a maximum 5% for η = 0.25 , see the left 
panel of Fig. 1. Interestingly, for low efforts ( η < 0.1 ), any strategy is capable of increasing the effectiveness of the 
vaccination campaign, with the merely topological approach of Strategy 1 being the most effective. When more 
resources can be devoted to the campaign, our model predicts that a finer characterization of the individuals is 
required to substantially increase the expected vaccinated population, see the right panel of Fig. 1. In particular, 
for all η ≥ 0.1 , Strategy 3, which relies on the estimation of the individual susceptibility, proves to be the best 
campaign. One could argue that the expected advantage of targeted strategies over the general alternative could 
be irrelevant, should the variance be high. However, as shown in the Supplementary Information, the variance 
of the distribution of the fraction of vaccinated individuals tends to 0 as the size of the populations increases, 
and is negligible when we consider the population of a country like Italy. These results are robust to changing 
the graph underlying our scaled model, see Section S3 of the Supplementary Information.

Impact of antivax campaigns Our model can also be used to assess the possible impact of antivax campaigns. 
Analogously to the provax case, we incorporate the role of antivax campaigns attempting to polarize the vac-
cination probabilities towards zero by setting pl(k) = 0 for all k. Moreover, we assume that the selection of the 
agents targeted by the antivax influencer is made according to the same criteria defining the provax strategies. 
As illustrated in Fig. 2, antivax campaigns can be even more impactful than their provax counterparts and thus 
can represent a serious hindrance in our quest to stem the transmission of the virus.

Discussion
In this paper, we proposed a model-based approach, grounded in opinion dynamics, which identifies the pat-
terns through which the vaccine hesitancy/willingness diffuses in a population. The availability of such a model 
offers, potentially, two major benefits. The first is the possibility of predicting the fraction of a given population 
that, with a certain confidence level, will decide to get vaccinated, thus enriching the information that can be 
drawn from the numerous surveys on vaccine willingness. The second and more crucial benefit consists in the 
possibility of simulating alternative scenarios where different pro-vaccine media campaigns over social media 
are enacted. Prior to their implementation, the campaigns can then be designed and tested on a scaled model, 
so that their effectiveness can be maximized.

Our results indicate that targeted campaigns always outperform mass campaigns, yielding the maximum 
increment in the expected vaccinated population for intermediate values of the overall effort of the campaign. 
For such values, the gain of electing smart, targeted campaigns rather than mass campaigns is to increase the 
expected vaccinated population by an additional 5% . Implementing targeted campaigns entails the use of tools 
from artificial intelligence and data science, with higher investments needed compared to traditional campaigns. 

Figure 1.   Comparison of targeted and traditional provax mass campaigns. The left panel depicts, for each 
effort η , the additional population fraction �⋆

µ and �0
µ that is expected to be vaccinated when the best 

targeted campaign (identified by circles) or the mass provax campaign (identified by triangles) are employed, 
respectively. The right panel displays for each effort η and targeted strategy s, the ratio between the fractions of 
the population µs(η) and µ0(η) that are expected to be vaccinated when strategy s and the traditional campaign 
are employed, respectively. In both panels, Strategy 1, 2, and 3 are depicted in blue, green, and magenta, 
respectively, the intensity of the vaccination campaign is set to α = 1 and for the maximum effort η = 1 , all 
points are superimposed since all strategies would be equivalent.
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It is reasonable to ask whether this additional burden is worth carrying: can a marginal increase of vaccinated 
individuals make a difference? From the perspective of protecting public health, the empirical answer lies in the 
recent data showing that avoiding saturation of healthcare sys is a matter of slight differences in the number of 
vaccinated individuals43. Modest increases in the effectiveness of a campaign can well be the difference between 
expecting or not to live with the virus without restrictions. However, from an ethical perspective one could 
argue that targeting individuals based on information obtained from its online social media might surpass the 
borders protecting the privacy of the population. Where the optimal trade-off lies between feasibility and ethics 
is subject of ongoing worldwide discussions44.

From a methodological perspective our work represents a first step toward bridging the abstract literature 
on opinion dynamics with the pressing open problem of fighting vaccine hesitancy. Although the results are 
promising, our work is not free of limitations, and there are several directions along which it can be extended. 
First, in its current incarnation, model calibration is only concerned with steady-state vaccination probabili-
ties. This is certainly sufficient when the campaigns are planned way ahead the administration of the vaccine. 
However, in the case of a new epidemic, news from media outlets may perturb the beliefs of the population, 
see e.g. the scientific and social debate on the AstraZeneca COVID-19 vaccine45,46. In such cases, the campaign 
should be immediately redesigned, and tailored on the basis of the response time of the population. Our model 
has the potential to account for these transient dynamics, provided that several snapshots of the opinions of the 
same cohort of the population are available. Having access to additional snapshots would also allow consider-
ing weighted networks. Second, alternative models of opinion dynamics could be considered. In the spectrum 
of model complexity, we decided to opt for the simplest one, so as to minimize the number of parameters to be 
tuned. Should one have more data for finer calibrations, alternative, more complex models of opinion dynamics 
could be considered to account e.g. for bounded confidence24, or for the difference between private and publicly 
expressed opinions22. Third, our assumption that vaccination decisions were grounded on steady-state willing-
ness was justified by the fact that the COVID-19 pandemic was characterized by a one year delay between the 
first prospect and mass availability of vaccines. As this could not be the case in the future, it could be interesting 
to evaluate the effectiveness of provax campaigns when removing this assumption. In this vein, the model could 
be reworked so to consider the influence of an individual’s decision on the willingness of its peers. Finally, since 
it has been observed that social networks may be characterized by the presence of communities of like-minded 
individuals47, which are socially well connected and share many interests, an open research question is to evalu-
ate how these densely connected communities may affects the effectiveness of targeted vaccination campaigns.

The reductive choice of characterizing the behavior or each individual through the Friedkin-Johnsen model 
allows for a first assessment of the effectiveness of pro-vaccine campaigns on the basis of data collected from a 
single survey. Indeed, the strength of our inherently causal model-based approach lies in the ability of teasing out 
the relationship between the choice of the targets of the campaign and its effectiveness. This ease of interpreta-
tion is a feature we believe should be retained even when more refined data on vaccine hesitancy are considered.

Methods
Opinion dynamics modeling of vaccine acceptance.  In model (1), vaccine willingness diffuses along 
an undirected connected graph G = {V , E} with self-loops at each node, where V is the set of the n individuals, 
and E = {(i, j) ⊆ V × V} is the set of edges connecting neighboring individuals. We posit that an individual’s 
probability of accepting a jab is linearly proportional to its vaccine willingess leading to Eq.  (2), that can be 
rewritten in compact matrix form as

Figure 2.   Comparison of the targeted and traditional mass antivax campaigns. The left panel depicts, for each 
effort η , the additional population fraction �⋆

µ and �0
µ that is expected to be vaccinated when the best targeted 

(identified by circles) or the mass (identified by triangles) antivax campaigns are employed, respectively. The 
right panel displays for each effort η and targeted strategy s, the ratio between the fractions of the population 
µs(η) and µ0(η) that are expected to be vaccinated when strategy s and the mass antivax campaign are 
employed, respectively. In both panels, Strategy 1, 2, and 3 are depicted in blue, green, and magenta, respectively, 
the intensity of the vaccination campaign is set to α = 1 , and, for the maximum effort η = 1 , all points are 
superimposed since all strategies would be equivalent.



5

Vol.:(0123456789)

Scientific Reports |        (2022) 12:11835  | https://doi.org/10.1038/s41598-022-15082-0

www.nature.com/scientificreports/

where � = diag{[�1, . . . , �n]
T} encodes the susceptibilities of each individual and In is the identity matrix of size 

n. Moreover, W is a row-stochastic matrix that captures the structure of the graph G , whereby its ij-th entry wij 
is wij = 1/|Ni| if (i, j) ∈ E and zero otherwise, with | · | denoting the cardinality of a set. Finally, p(0) encodes 
the initial willingness of being vaccinated. Note that �i = 0 corresponds to a zealot48,49, who never changes its 
opinion while actively trying to convince the others. Assuming that �  = In , that is, there exists at least an agent 
i such that �i < 1 , the vaccination probabilities will converge at steady-state toward50

where p = [p1, . . . , pn]
T . Knowing the distribution of all individual vaccination probabilities p(k) allows com-

puting the probability that, at time k, a given fraction of the population is willing to be vaccinated. Indeed, this 
event can be viewed as the outcome of a Poisson binomial experiment, which is a collection of n independent 
yes/no experiments with success probabilities p1(k), . . . , pn(k) . The same consideration holds for the steady-
state distribution p.

Tuning the model parameters on real data.  The parameters that need to be selected in model (4) are 
related to i) how individuals are connected, which is encapsulated by the network topology, described by matrix 
W, and ii) the inherent characteristics of each individual, captured by the susceptibilities �1, . . . , �n , and by 
the initial probabilities p1(0), . . . , pn(0) , a measure of their pre-existing attitude towards vaccines. The network 
matrix W has been borrowed from a Facebook social friendship network42, composed by n = 1446 nodes, with 
|E | = 59600 edges describing their mutual interactions. We have chosen the individual parameters so that the 
steady-state probabilities p in (5) are compatible with the outcome of a survey administered to a sample of Italian 
citizens8. Toward this goal, we first translated the survey outcome into target steady-state values p⋆ , to then tune 
the susceptibilities �i and find a set of initial attitudes pi(0) so to obtain the p that best matches p⋆ in the least 
square sense (see Figure S7 of the Supplementary Information for a visualization of p and p⋆).

Description of the dataset from8 and choice of p⋆.  The authors of8 tested the beliefs and attitudes of Italian citi-
zens towards a possible COVID-19 vaccine through the administration of surveys, based on the Likert scale, to a 
stratified sample of 1004 individuals, representative of the Italian adult population aged between 18 and 70 years 
old. The respondents filled the survey during the first days following the end of Italy’s strict lockdown begun in 
March 2020, when no vaccine was available yet. The survey contained general questions about their lives and 
health habits, as well as specific questions related to the COVID-19 pandemic. In this work, we focused on the 
5th Likert item of the survey, which reads ‘I am willing to vaccinate, if a vaccine against COVID-19 were to be 
found’, with five options, ranging from 1 = ‘not likely at all’ to 5 = ‘absolutely’, and computed the fraction fj of 
agents choosing answer j to question 5, for j = 1, . . . , 5.

Accordingly, we partitioned our social network of n = 1446 nodes into 5 classes, where the j-th class is 
populated by the cj = fjn agents expected to choose option i. As fjn is not necessarily an integer, it is rounded so 
that 

∑5
i=1 cj = n , and each agent is randomly assigned to each class. We then converted the categorical values 

of the Likert scale into continuous values in the interval [0, 1] following the approach in51, and splitting it in 5 
sub-intervals, one for each class (alternative approaches have been proposed e.g. in52,53). Namely, the jth class 
was associated to a range rj = [0.2(j − 1), 0.2j] , j = 1, . . . , 5 , where the steady-state vaccination probabilities p⋆ 
should lie, see Table 1. Given an agent i assigned to class j, the steady-state vaccination probability p⋆i  has been 
extracted from a uniform distribution in rj.

Selection of the behavioral parameters � and p(0).  Once we generated target steady-state probabilities p⋆ as 
explained above, we selected the individual parameters in our network so that the network dynamics converge 
to the steady-state vaccination probability p that is the closest possible to p⋆ in the least square sense. Namely, 

(4)p(k + 1) = �Wp(k)+ (In −�)p(0),

(5)p = (In −�W)−1(In −�)p(0),

(6a)min
�,p(0)

∥

∥p− p⋆
∥

∥

2

Table 1.   Conversion of discrete vaccine willingness Likert score to continuous probability of getting 
vaccinated.

Likert item point Probability range rj
(1) Not likely at all. 0 – 0.2

(2) A little likely. 0.2 – 0.4

(3) Not likely nor unlikely. 0.4 – 0.6

(4) Very likely. 0.6 – 0.8

(5) Absolutely. 0.8 – 1
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 where ⌊·⌋ and ⌈·⌉ map a real number to its previous or next integer, respectively, and 1n is the vector of all ones. 
Notice that the set of enforced constraints (6b)–(6e) guarantee that the outcome of the optimization is meaning-
ful. Indeed, constraint (6b) guarantees that the probabilities lie in [0, 1], (6c) that the average susceptibility to 
the neighbors’ opinion is 0 < ρ < 1 and the individual susceptibilities belong to [0, 1], whereas (6d) enforces 
that if p⋆i ∈ rj , then also p̄i ∈ rj , that is, each agents stays in the target class identified by p⋆ . Finally, constraint 
(6e) ensures that the steady-state values p̄ are compatible with the dynamics (4). In all our numerical analysis, 
we selected the largest value of ρ for which problem (6) admits a solution, that is, ρ = 0.58 . However, our main 
results would still hold for lower values of ρ , see Supplementary Information S2 for further details.

Incorporating the effect of pro‑vaccine campaigns.  Once the model has been tuned following the steps described 
above, we used it to test the effect of alternative pro-vaccine campaigns. According to the Friedkin-Johnsen 
model, the individuals can neither change their own belief nor their susceptibility, thereby in the time-scale of 
a campaign we can only act on the social interaction term �Wp(k) in (4). Specifically, we model the effect of the 
vaccination campaign on agent i as the addition of a virtual neighbor l whose probability pl of being vaccinated 
is equal to 1 for all k. Agent i will weigh the opinion of this virtual agent proportionally to the intensity of the 
vaccination campaign. In formal terms, Eq. (4) modifies as

where δ = [δ1, . . . , δn]
T , with δi being 1 if node i is targeted by the campaign, and 0 otherwise, � = diag{δ} , 

0 ≤ α ≤ 1 quantifies the intensity of the vaccination campaign, pl = 1 is the vaccination probability the campaign 
is targeting, and we set p(0) = p̄ . Namely, α = 0 corresponds to no effect, whereas α = 1 to the agents disregard-
ing the opinion of the other neighbors, and only considering the that of the virtual neighbor l. The same approach 
can be used to incorporate the effect of hoaxes and misinformation, just by setting pl to zero.

Data availability
The survey raw data on vaccine willingness are publicly accessible from the Supplementary Information of8 
available online. The network topology that we have used as reference in this work is publicly available from the 
repository42 under the name “Socfb-Haverford-76”.

Code availability
ll code for the model is publicly available on Open Science Framework (OSF) https://​osf.​io/​7ndmx/?​view_​only=​
e0afa​cbe56​7147b​0ad72​ee1fc​e416c​45.
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S1 Mean and variance of Yn as a function of n

The model presented interprets each agent’s opinion as its probability pi of
getting vaccinated. We can then associate to each agent i = 1, . . . , n indepen-
dent Bernoulli variables X1, . . . , Xn, with heterogeneous probability of success
p1, . . . , pn, respectively. As our ultimate goal is to estimate the expected fraction
of the population that will get vaccinated, we define the stochastic variable

Yn =
1

n

n∑
i=1

Xi,

whose expected value and variance can be computed as

E[Yn] =
1

n

n∑
i=1

pi, Var[Yn] =
1

n2

n∑
i=1

pi(1− pi), (S1)

respectively.

1



Note that Yi is a Poisson binomial distribution (scaled by the factor 1/n),
that is the sum of n independent Bernoulli distributions. Here, we study how its
moments scale with the population size n. Denoting n0 = 1446 the number of
participants to the survey on which the opinion dynamics model is parametrized
in the main text, we scale the population as multiples of n0, so that we can
always associate a vaccination probability pi to a fraction 1/n0 of the total
population n, for all i = 1, . . . , n0. Specifically, we introduce the parameter
βk := blk/n0e with lk = 10k, and k = 4, . . . , 7. This gimmick allows us to
inspect the behaviour of the moments of the Poisson Binomial distribution when
the size of the population is n = βkn0. In turn, from equation (S1) this reflects
into the following scaling behavior of the first and second moment of Yn

E[Yn] =
1

βkn0

n0∑
i=1

βkE(Xi) =
1

n0

n0∑
i=1

pi = E[Yn0
]. (S2a)

Var[Yn] =
1

(βkn0)2

n0∑
i=1

βkpi(1− pi) =
1

βk
Var[Yn0

]. (S2b)

Hence,

• the expected value E[Yn] of the fraction of the population that will get a
shot of vaccine does not change with the population size;

• the variance Var[Yn] decreases linearly with the population size.

Table S1 reports the mean and variance of Yn for different orders of magnitudes
for lk, whereas Figure S1 the error bar of the fraction of vaccinated population
as a function of the population size n.

lk βk E[Yn] Var[Yn]

104 7 0.6171 1.773e-05

105 69 0.6171 1.799e-06

106 692 0.6171 1.793e-07

107 6916 0.6171 1.794e-08

Table S1: First and second moment of Yn as the population size n = βkn0
varies.
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Figure S1: Error bar plot of the mean and standard deviation of Yn.

S2 Parametric analysis of ρ

In the second subsection of the Methods section of the main text, we presented
a constrained least square optimization problem aimed to realistically calibrate
the model parameters consistently with survey data. In particular, in the in the
main text we explained that constraint (4c) sets the average susceptibility to be
equal to a value ρ, and that problem (4) admits a solution only if ρ≤0.58. In the
main text, all the analysis have been performed for ρ = 0.58. Here, we perform a
parametric analysis of the results whereby we vary ρ in the interval [0.18, 0.48]
with step 0.1. Figure S2 illustrates that the results are qualitatively similar,
the only difference being the attenuated effectiveness of all the strategies, since
lower values of the λi correspond to a more stubborn population.
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Figure S2: Comparison of targeted and traditional mass campaigns for differ-
ent values of the average susceptibility ρ (set to 0.18, 0.28, 0.38, and 0.48, from
top to bottom). The left panels depict, for each effort η, the additional pop-
ulation fraction ∆?

µ and ∆0
µ that is expected to be vaccinated when the best

targeted campaign (identified by circles) or the mass campaign (identified by
triangles) are employed, respectively. The right panels display for each effort
η and targeted strategy s, the ratio between the fractions of the population
µs(η) and µ0(η) that are expected to be vaccinated when strategy s and the
traditional campaign are employed, respectively. In all panels, Strategies 1, 2, 3
are depicted in blue, green, and magenta, respectively, and the intensity of the
vaccination campaign is set to α = 1.

S3 Robustness analysis

To test the robustness of our results we have run additional simulations varying
the graph through which opinions diffuse. To do so, we repeated the same
analysis performed in the main text on a pool of real and synthetic networks,
whereby we compared the effectiveness of the targeted campaigns to that of
mass campaigns. As shown in Figures S3-S6, the results are consistent with
the case illustrated in the main text, that is, the targeted campaigns always
outperforms the traditional mass-media ones.

The pool of synthetic networks is made of 10 unweighted undirected graphs
of size N = 1500, extracted from a Scale-Free distribution with exponent γ = 2.8
and average degree kav = 80, consistently with the properties of the real online

4



social networks reported in [1], and repeated the same analysis performed in the
main text. The 3 real networks, called soc-fbHamilton46, socfb-Simmons81 and
Hamsterster, have been retrieved from the network repository [1].

Figure S3: Comparison of targeted and traditional mass campaigns effectiveness
averaged on a pool of 10 Scale-Free synthetic networks. The left panels depict,
for each effort η, the additional population fraction ∆?

µ and ∆0
µ that is expected

to be vaccinated when the best targeted campaign (identified by circles) or the
mass campaign (identified by triangles) are employed, respectively. The right
panels display for each effort η and targeted strategy s, the ratio between the
fractions of the population µs(η) and µ0(η) that are expected to be vaccinated
when strategy s and the traditional campaign are employed, respectively. In all
panels, Strategies 1, 2, 3 are depicted in blue, green, and magenta, respectively,
and the intensity of the vaccination campaign is set to α = 1.
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Figure S4: Comparison of targeted and traditional mass campaigns. The graph
deployed is an unweighted undirected network of Facebook friendships. The
number of nodes N = 2300, the number of edges |ε| = 96400, the average
degree kav = 83.

Figure S5: Comparison of targeted and traditional mass campaigns. The graph
deployed is an unweighted undirected network of the friendships and family links
between users of the website http://www.hamsterster.com.. The number of
nodes N = 2400, the number of edges |ε| = 16600, the average degree kav = 13.
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Figure S6: Comparison of targeted and traditional mass campaigns. The graph
deployed is an unweighted undirected network of Facebook friendships. The
number of nodes N = 1500, the number of edges |ε| = 33000, the average
degree kav = 43.
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S4 Supplementary Figure

In Figure S7, we report a graphical representation of the calibration procedure
described in the Methods Section of the main text.

Figure S7: Violin plots of the steady-state opinion distribution from the model
calibrated as described in the Methods (light blue), with that obtained from
the survey data (blue), respectively. On the right, the violin plots of the initial
and final opinions distribution of vaccine willingness, respectively. Data points
corresponding to agents’ opinions in the two endpoints are colored accordingly
to their Likert score on vaccine willingness survey.
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APPENDIX B
Natural Language

Processing
Natural Language Processing NLP can be defined as the application of computational
techniques to analyze natural language.

This world combines elements of both machine learning and deep learning tools to
understand textual data in a human-like way (see Figure B.1). NLP has a wide range
of applications across various domains

1. Language Translation: NLP enables the automatic translation of text or speech
from one language to another. Systems like Google Translate use NLP algorithms
to understand the meaning of sentences in one language and generate equivalent
sentences in another.

2. Sentiment Analysis: NLP can be used to determine the sentiment or emotional
tone expressed in text data, such as social media posts or product reviews. It
helps businesses understand customer feedback, track public sentiment about their
products or services, and make data-driven decisions.

Figure B.1. Collocation of NLP in the Artificial Intelligence framework
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3. Chatbots and Virtual Assistants: NLP powers chatbots and virtual assistants like
Siri and Alexa, allowing them to understand and respond to natural language
queries and commands. They can answer questions, perform tasks, or engage in
conversations, making them useful for customer support and automation.

4. Text Summarization: NLP can automatically generate concise summaries of long
texts, making it easier to grasp the key points and insights within large volumes
of information. This is useful in news aggregation, document summarization, and
content curation.

5. Named Entity Recognition (NER): NLP can identify and classify entities like
names of people, places, organizations, and dates within text data. NER is used
in information retrieval, content tagging, and data extraction for applications like
news categorization and financial analysis.

6. Speech Recognition: NLP is employed in converting spoken language into written
text. This technology is widely used in voice assistants, transcription services,
and even in healthcare for converting doctor-patient conversations into electronic
health records.

7. Language Generation: NLP models can generate human-like text, including cre-
ative writing, automated content generation, and even code generation. This is
useful in content marketing, text generation for chatbots, and assisting developers
in code completion.

8. Social Media Analysis: Businesses use NLP to monitor social media conversations,
track brand mentions, and gauge customer sentiment. This information can inform
marketing strategies and brand management.

9. Recommendation Systems: NLP is integrated into recommendation algorithms,
such as those used by streaming platforms and e-commerce websites, to provide
personalized content and product recommendations based on user preferences and
behavior.

These applications demonstrate the versatility of NLP in improving efficiency, automa-
tion, and decision-making across numerous industries and domains. NLP continues to
evolve with advancements in AI and machine learning, opening up new possibilities for
natural language understanding and communication.

Opinion mining is a subfield of NLP whose goal is extracting information on individ-
ual beliefs from unstructured texts. Sentiment Analysis (SA) focuses on the sentiment
detection by which the opinion of the examined text is assigned a positive or negative
sentiment. Traditionally, the outcome of the classification is binary, however the re-
fining of the techniques of text classification enabled also more sophisticated sentiment
analyses, the so-called fine-grained ones, in which the classes are more than two, in order
to also capture the intensity of the sentiment in a discrete scale, for e.g. from 1 to 5,
retracing Likert scale.
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B.1 Machine learning techniques
Sentiment analysis can be implemented via two main different approaches: lexicon-based
approach or machine learning approach. The first one uses pre-prepared sentiment
lexicon to score a document by aggregating the sentiment scores of all the words in the
document. The pre-prepared sentiment lexicon should contain a word and corresponding
sentiment score to it. This approach is divided into dictionary-based and corpus-based.
The former involves making use of an online dictionary to tag words, while the latter
relies on co-occurrence statistics or syntactic patterns embedded in text corpora, thus is
more suitable for large documents. VADER (Valence Aware Dictionary and Sentiment
Reasoner) and TextBlob are the most widely used NL library to analyze sentiments
expressed in social media. The machine learning approach could be implemented either
in an unsupervised or supervised way: in the first case it basically involves the usage of a
traditional clustering algorithm, whereas for the supervised case Naive Bayes classifiers or
Support Vector Machines are the most used tools. The advantage of using this approach
rather than the simpler lexicon-based relies on the fact that it is more accurate as it
can retain sequential dependencies among words. This is possible by means of Word
Embedding: text first is preprocessed and converted into vectors. Embeddings translate
large sparse vectors into a lower-dimensional space that preserves semantic relationships,
modeling it in a numeric form. Word2vec [229] is a group of related models that are
used to produce word embeddings. These models are two-layer neural networks that
are trained to reconstruct linguistic contexts of words. Word2vec takes as its input a
large corpus of text and produces a large vector space, with each unique word in the
corpus being assigned a corresponding vector in the space. Word vectors are positioned
in the vector space such that words that share common contexts in the corpus are
located close to one another in the space. GloVe [230], aka Global Vectors, is a model
for distributed word representation. The model maps words into a meaningful space,
where the distance between words is related to semantic similarity. ELMo (Embeddings
from Language Model) is a word embedding method for representing a sequence of
words as a corresponding sequence of vectors. ELMo embeddings are context-sensitive,
producing different representations for words that share the same spelling but have
different meanings.

Figure B.2. Scheme of machine learning based sentiment analysis procedure
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B.2 Deep learning techniques
Deep learning is an advanced machine learning method that outperforms the previous
approaches that we briefly presented [231]. In recent years, NLP methods in the realm
of deep learning have witnessed an unprecedented surge in advancement. These break-
throughs have not merely improved our approach to working with human language; they
have sparked a paradigm shift in the very fabric of linguistic analysis and comprehension.
At the heart of these innovations lies the power of deep neural networks, which have
emerged as the linchpin in our ability to model and process natural language text. By
effectively harnessing the capabilities of deep learning, we’ve unlocked a host of remark-
able tools and techniques that span the entire spectrum of language-related tasks, from
basic text classification to nuanced language generation.

These NLP methods represent a quantum leap in our understanding of language,
offering the means to extract intricate semantic nuances, detect sentiment, perform lan-
guage translation, and even generate human-like text with an unprecedented level of
accuracy and fluency. What’s most striking is the versatility of these deep learning mod-
els; they can be pre-trained on vast corpora of text and then fine-tuned for specific tasks,
effectively transferring linguistic knowledge from one domain to another. This capability
has not only made NLP models highly efficient but also less reliant on enormous labeled
datasets, thereby democratizing access to advanced language processing technology.

Furthermore, the advent of architectures like the Transformer has ushered in a new
era of context-aware language understanding. Transformers’ self-attention mechanisms
enable them to capture intricate relationships between words, making them exceptionally
adept at tasks that require understanding context and contextually generating text.
Models such as BERT and GPT have set benchmarks for a wide array of NLP tasks,
from question answering to text summarization, and their pre-trained embeddings have
become the cornerstone of countless NLP applications.

In summary, NLP methods in deep learning are not just a technological evolution;
they represent a fundamental shift in how we interact with and understand human
language. These methods, bolstered by the prowess of deep neural networks, have the
potential to reshape industries, improve communication, and pave the way for innovative
applications in areas like healthcare, education, and customer service. As we continue
to explore the vast capabilities of NLP in deep learning, the boundaries of what we can
achieve with language-driven technology are continually expanding, promising a future
where human-machine interaction becomes more natural and intuitive than ever before.

We will focus on a particular deep learning framework for text analysis that is BERT.
BERT represents the state-of-the-art model for a wide range of NLP tasks, including
sentiment analysis.

BERT stands for Bidirectional Encoder Representations from Transformers. Trans-
former is an architecture for transforming one sequence into another by means of En-
coder and Decoder without any Recurrent Neural Networks. BERT generates a language
model by means of an Encoder to learn contextual relations between words in a text.
It reads the entire sequence of words at once (bidirectionally) learning the context of a
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Figure B.3. Scheme of deep learning based sentiment analysis procedure

word based on all of its surroundings (left and right of the word). The contextualized
embedding is achieved thanks to the idea of self-attention. Indeed, to comprehend lan-
guage, it is not sufficient to understand the individual words that make up a sentence
but how words relate to each other in the context. BERT approach for solving NLP
tasks became a 2-step semi-supervised process:

• Train a language model on a large unlabeled text corpus (unsupervised)

• Fine-tune this large model (initialized with the pretrained parameters) to specific
tasks (supervised) with labeled data

BERT is pretrained on two tasks:Masked Language Modelling (MLM) and Next Sentence
Prediction (NSP). Masked language modeling is an example of autoencoding language
modeling (the output is reconstructed from corrupted input) in BERT 15% of words
in a sentence are typically masked and have the model predict those masked words
given the other words in the sentence. By training the model with such an objective, it
can essentially learn certain statistical properties of word sequences. As a result of the
training process, BERT learns contextual embeddings for words. In the BERT training
process, the model receives pairs of sentences as input and learns to predict if the second
sentence in the pair is the subsequent sentence in the original document. To help the
model distinguish between the two sentences in training, the input is processed in the
following way before entering the model:

• A [CLS] token is inserted at the beginning of the first sentence and a [SEP] token
is inserted at the end of each sentence.

• A sentence embedding indicating Sentence A or Sentence B is added to each token.

• A positional embedding is added to each token to indicate its position in the
sequence.

First, BERT is pre-trained on a large corpus of unlabeled text, including the entire
Wikipedia (2,500 million words) and Book Corpus (800 million words). Fine-tune BERT
regenerates all word embeddings starting from a specific domain pre-labeled text corpus
only by means of an additional feedforward layer.
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