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Abstract:
Data-driven diagnostic methods are attractive from an industrial and practical perspective due
to their limited amount of required prior knowledge about the process or component under
monitoring. However, these methods usually require a large amount of healthy and possibly
faulty labeled data. Often, gathering and manually labeling a vast dataset is not feasible in
real scenarios. Transfer learning has emerged as an answer to the labeling problem, exploiting
the idea that the diagnostic knowledge could be reused across multiple different, but related,
machines and operating conditions. In this work, we introduce several improvements to the
Feature Representation and Alignment Network (FRAN) architecture described in (Chen et al.,
2020) devised with the diagnostic transfer learning purpose. Our approach, named FRAN-X,
presents improved transfer and diagnostics performance between identical machines in different
operating conditions, and it is computationally lighter than its original counterpart. The FRAN-
X approach is evaluated on the CWRU-bearing dataset and on experimental data collected from
a Computerized Numerical Control (CNC) workcenter machine.
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1. INTRODUCTION

Data-driven diagnostic approaches include the use of ma-
chine learning algorithms for fault diagnosis (Gao et al.,
2015). While signal-based and model-based diagnostic ap-
proaches require some prior information about the ma-
chine components under diagnosis, a knowledge-based
method is expected to automatically detect and recognize
the health states of the components using its available
measurements (Mazzoleni et al., 2021). Common assump-
tions when using supervised machine learning are that:
(i) sufficient healthy and faulty labeled data are available
to train the models; (ii) the train and test data distri-
butions are the same. However, in practical engineering
scenarios, both assumptions might be violated, primarily
due to the facts that machines run in healthy conditions,
and performing experiments with faults requires time and
machine availability. It follows that: (i) lots of healthy
data are collected in operative, running scenarios; (ii) if
available at all, faulty data are most commonly collected in
ad-hoc, laboratory settings. This leads to situations where
training (laboratory) and test (actual machine usage) data
are collected under different experimental settings. If not
properly tackled, this domain shift problem makes models
developed on the first setting unusable on the second one
(Valceschini et al., 2021).

A first solution for the employment of a data-drive diag-
nostic method in these situations would be to use anomaly
detection algorithms that can be designed directly with
healthy data from running operating conditions (Hen-

drickx et al., 2020; Mazzoleni et al., 2022). Alternatively,
transfer learning methods, powered by deep neural net-
works architectures, can be leveraged to reutilize the diag-
nostic knowledge extracted from one problem domain to
another, e.g. when dealing with similar machines that work
under different operating conditions of speed, load, vibra-
tion transmission path, humidity, and so on (Yang et al.,
2019). Practical use of transfer learning approaches consist
first in the collection of a labeled dataset (source domain
dataset) under laboratory or controlled experimental con-
ditions. The model built with this source dataset is then
employed to process the unlabeled (or poorly labeled)
dataset collected under actual experimental conditions
(target domain dataset). The envisaged result is an au-
tomatic features extraction method from raw signals, less
dependent on the prior knowledge of the diagnosticians,
able to reduce signal processing times required to grasp the
measurements properties in healthy and faulty conditions
(Lei et al., 2016).

Of the various approaches to transfer learning (Lei et al.,
2020), feature-based ones learn a feature mapping to map
the source and target data into a common features space,
where distribution discrepancy of the features is measured
by a distance metric and minimized. Then, a classifier,
trained with the source-domain labeled samples, is em-
ployed to work on the target domain data based on features
with a similar distribution (Yang et al., 2019), see Fig. 1.
In the context of cross-domain fault diagnosis of rotating
components, the Feature Representation Alignment Net-
work (FRAN) has been proposed in (Chen et al., 2020)
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measurements (Mazzoleni et al., 2021). Common assump-
tions when using supervised machine learning are that:
(i) sufficient healthy and faulty labeled data are available
to train the models; (ii) the train and test data distri-
butions are the same. However, in practical engineering
scenarios, both assumptions might be violated, primarily
due to the facts that machines run in healthy conditions,
and performing experiments with faults requires time and
machine availability. It follows that: (i) lots of healthy
data are collected in operative, running scenarios; (ii) if
available at all, faulty data are most commonly collected in
ad-hoc, laboratory settings. This leads to situations where
training (laboratory) and test (actual machine usage) data
are collected under different experimental settings. If not
properly tackled, this domain shift problem makes models
developed on the first setting unusable on the second one
(Valceschini et al., 2021).

A first solution for the employment of a data-drive diag-
nostic method in these situations would be to use anomaly
detection algorithms that can be designed directly with
healthy data from running operating conditions (Hen-

drickx et al., 2020; Mazzoleni et al., 2022). Alternatively,
transfer learning methods, powered by deep neural net-
works architectures, can be leveraged to reutilize the diag-
nostic knowledge extracted from one problem domain to
another, e.g. when dealing with similar machines that work
under different operating conditions of speed, load, vibra-
tion transmission path, humidity, and so on (Yang et al.,
2019). Practical use of transfer learning approaches consist
first in the collection of a labeled dataset (source domain
dataset) under laboratory or controlled experimental con-
ditions. The model built with this source dataset is then
employed to process the unlabeled (or poorly labeled)
dataset collected under actual experimental conditions
(target domain dataset). The envisaged result is an au-
tomatic features extraction method from raw signals, less
dependent on the prior knowledge of the diagnosticians,
able to reduce signal processing times required to grasp the
measurements properties in healthy and faulty conditions
(Lei et al., 2016).

Of the various approaches to transfer learning (Lei et al.,
2020), feature-based ones learn a feature mapping to map
the source and target data into a common features space,
where distribution discrepancy of the features is measured
by a distance metric and minimized. Then, a classifier,
trained with the source-domain labeled samples, is em-
ployed to work on the target domain data based on features
with a similar distribution (Yang et al., 2019), see Fig. 1.
In the context of cross-domain fault diagnosis of rotating
components, the Feature Representation Alignment Net-
work (FRAN) has been proposed in (Chen et al., 2020)
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1. INTRODUCTION

Data-driven diagnostic approaches include the use of ma-
chine learning algorithms for fault diagnosis (Gao et al.,
2015). While signal-based and model-based diagnostic ap-
proaches require some prior information about the ma-
chine components under diagnosis, a knowledge-based
method is expected to automatically detect and recognize
the health states of the components using its available
measurements (Mazzoleni et al., 2021). Common assump-
tions when using supervised machine learning are that:
(i) sufficient healthy and faulty labeled data are available
to train the models; (ii) the train and test data distri-
butions are the same. However, in practical engineering
scenarios, both assumptions might be violated, primarily
due to the facts that machines run in healthy conditions,
and performing experiments with faults requires time and
machine availability. It follows that: (i) lots of healthy
data are collected in operative, running scenarios; (ii) if
available at all, faulty data are most commonly collected in
ad-hoc, laboratory settings. This leads to situations where
training (laboratory) and test (actual machine usage) data
are collected under different experimental settings. If not
properly tackled, this domain shift problem makes models
developed on the first setting unusable on the second one
(Valceschini et al., 2021).

A first solution for the employment of a data-drive diag-
nostic method in these situations would be to use anomaly
detection algorithms that can be designed directly with
healthy data from running operating conditions (Hen-

drickx et al., 2020; Mazzoleni et al., 2022). Alternatively,
transfer learning methods, powered by deep neural net-
works architectures, can be leveraged to reutilize the diag-
nostic knowledge extracted from one problem domain to
another, e.g. when dealing with similar machines that work
under different operating conditions of speed, load, vibra-
tion transmission path, humidity, and so on (Yang et al.,
2019). Practical use of transfer learning approaches consist
first in the collection of a labeled dataset (source domain
dataset) under laboratory or controlled experimental con-
ditions. The model built with this source dataset is then
employed to process the unlabeled (or poorly labeled)
dataset collected under actual experimental conditions
(target domain dataset). The envisaged result is an au-
tomatic features extraction method from raw signals, less
dependent on the prior knowledge of the diagnosticians,
able to reduce signal processing times required to grasp the
measurements properties in healthy and faulty conditions
(Lei et al., 2016).

Of the various approaches to transfer learning (Lei et al.,
2020), feature-based ones learn a feature mapping to map
the source and target data into a common features space,
where distribution discrepancy of the features is measured
by a distance metric and minimized. Then, a classifier,
trained with the source-domain labeled samples, is em-
ployed to work on the target domain data based on features
with a similar distribution (Yang et al., 2019), see Fig. 1.
In the context of cross-domain fault diagnosis of rotating
components, the Feature Representation Alignment Net-
work (FRAN) has been proposed in (Chen et al., 2020)

Source domain

(labeled)

Target domain

(not labeled)

Automatic

features 

extraction

Features 

alignment

(domain 

adaptation)

Classification

(fault 

diagnosis)

Domain-shared classifier

healthy faulty

Fig. 1. Steps of feature-based transfer learning approaches.

as a neural-network-based algorithm comprising automatic
features extraction, domain adaptation and classification,
comparing favorably with previous transfer approaches as
(Lu et al., 2017) on the public Case Western Reserve
University (CWRU) dataset related to bearing faults data
(Case Western Reserve University, 2012). Rolling elements
bearings are the most common part of a mechanical system
in engineering and one of the main contributors to the
machine failures. The monitoring of defective bearings has
been extensively studied, with a standard approach for
their diagnosis based on envelope analysis of vibration
data (Randall and Antoni, 2011). Envelope analysis is
a powerful method for components rotating at constant
speed, and it can be applied also to other mechanical com-
ponents that are not, but resemble, bearings (Valceschini
et al., 2022). However, the fault symptoms are related
to the magnitude of specific frequencies that depend on
the rotation speed. If another component rotates at a
different velocity, the rationale of the diagnostic algorithm
has to be redesigned. Thus, transfer learning approaches
are envisaged in this setting. In this work, we propose an
improvement over the FRAN model, called the FRAN-X
model. The improvements consist in: (i) the introduction
of recent ResNeXt blocks and skip connections in place
of standard convolutional layers in the features extraction
component (encoder); (ii) reduced dimension of the auto-
matically extracted features vectors; (iii) increasing of the
receptive field of the encoder, with consequent balancing
of the number of parameters between the encoder and
the classifier. The improvements lead to increased transfer
capability and computational speed due to lowered memory
requirements. The improved approach is evaluated on the
CWRU bearing dataset and on an experimental dataset
collected by the authors from a Computerized Numerical
Control (CNC) machine, consisting in experiments with
an inner-race faulty bearing (Mazzoleni et al., 2020).

The remainder of this paper is organized as follows.
Section 2 introduces transfer learning problems in fault
diagnosis and the proposed FRAN-X architecture. Section
3 describes the data source used for evaluation of the
diagnostic algorithms. Section 4 reports the experimental
results, while Section 5 is devoted to concluding remarks.

2. TRANSFER LEARNING FOR FAULT DIAGNOSIS
OF ROTATING COMPONENTS

For transfer learning in fault diagnosis, the diagnostic
knowledge is expected to be reused from one or multi-

ple diagnosis tasks (source domain) to other related but
different ones (target domain). The source domain Ds =

{(xs
i , y

s
i )}

Ns

i=1 is composed by n labeled measurements
where xs

i ∈ X s ⊆ Rn is the i-th measurements vector
and yi its corresponding diagnostic label (e.g. healthy,
fault 1, fault 2, etc.). The source dataset Ds is sam-
pled from the source space X s × Ys, with Ys the set of
source labels. The source input set X s is endowed with
a probability distribution function p(X s). The target do-
main Dt =

{
xt
j

}M

j=1
consists of m unlabeled measurements

xt
i ∈ X t ⊆ Rm. The target dataset Dt is sampled from the

target space X t×Yt, with Yt the set of target labels. The
target input space X t has probability distribution function
p(X t). Due to different operating conditions, the source
and target domain are different so that p(X s) ̸= p(X t).
For transfer learning in fault diagnosis, it is assumed that
Yt ⊆ Ys (Lei et al., 2020). The aim is to learn a model
able to perform well on the target domain, using Ds and
Dt as training information.

2.1 FRAN: Feature Representation Alignment Network

The FRAN architecture consists of two sub-models. The
first sub-model performs an unsupervised domain adapta-
tion task, with the aim to train a feature extractor function
g(·) (encoder) able to produce features from raw signals for
both the source and target domains. The second sub-model
is the classifier f(·) needed to perform fault classification.

The encoder g(·) produces the set of source features Zs =
g(X s) and the set of target features Zt = g(X t). The en-
coder has two objectives both towards features alignment
between source and target domains: (i) a maximization of
the mutual information −LM (Zs,Zt) between the target
features Zt and the entire features set Zs ∪ Zt; (ii) a
minimization of the Maximum Mean Discrepancy (MMD)
(Gretton et al., 2012) cost LD(Zs) applied to features com-
puted from g(·). The first objective has the aim to generate
informative features domains; the second objective has the
aim of minimizing the discrepancy of the source and target
features distributions. The classifier f(·) has the aim of
minimizing the classification error LC(X s,Ys) on source
data (for which labels are available). The models g(·) and
f(·) are trained simultaneously by minimizing the cost

L(Zs,Zt,Ys) = α · LM (Zs,Zt) + β · LD(Zs,Zt)+

+ LC(X s,Ys), (1)
where α, β ∈ R≥0 are weighting coefficients. The diagnosis
stage takes the target domain data as input. These data
are then processed by the encoder g(·) to produce features
which will be classified by f(·) to obtain the fault labels
estimate.

The encoder g(·) consists of two 1-D convolutional layers,
each followed by a batch normalization, and a Sigmoid
activation function followed by average-pooling layers.
The kernel size for both 1-D convolutional layers is 4,
and the output channels are 32 and 64, respectively.
The classifier f(·) consists of two fully connected layers
with ReLU activation, with 1000 and 3 output channels,
respectively 1 .
1 These and other configuration parameters can be de-
vised from the code made available by the authors at
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as a neural-network-based algorithm comprising automatic
features extraction, domain adaptation and classification,
comparing favorably with previous transfer approaches as
(Lu et al., 2017) on the public Case Western Reserve
University (CWRU) dataset related to bearing faults data
(Case Western Reserve University, 2012). Rolling elements
bearings are the most common part of a mechanical system
in engineering and one of the main contributors to the
machine failures. The monitoring of defective bearings has
been extensively studied, with a standard approach for
their diagnosis based on envelope analysis of vibration
data (Randall and Antoni, 2011). Envelope analysis is
a powerful method for components rotating at constant
speed, and it can be applied also to other mechanical com-
ponents that are not, but resemble, bearings (Valceschini
et al., 2022). However, the fault symptoms are related
to the magnitude of specific frequencies that depend on
the rotation speed. If another component rotates at a
different velocity, the rationale of the diagnostic algorithm
has to be redesigned. Thus, transfer learning approaches
are envisaged in this setting. In this work, we propose an
improvement over the FRAN model, called the FRAN-X
model. The improvements consist in: (i) the introduction
of recent ResNeXt blocks and skip connections in place
of standard convolutional layers in the features extraction
component (encoder); (ii) reduced dimension of the auto-
matically extracted features vectors; (iii) increasing of the
receptive field of the encoder, with consequent balancing
of the number of parameters between the encoder and
the classifier. The improvements lead to increased transfer
capability and computational speed due to lowered memory
requirements. The improved approach is evaluated on the
CWRU bearing dataset and on an experimental dataset
collected by the authors from a Computerized Numerical
Control (CNC) machine, consisting in experiments with
an inner-race faulty bearing (Mazzoleni et al., 2020).

The remainder of this paper is organized as follows.
Section 2 introduces transfer learning problems in fault
diagnosis and the proposed FRAN-X architecture. Section
3 describes the data source used for evaluation of the
diagnostic algorithms. Section 4 reports the experimental
results, while Section 5 is devoted to concluding remarks.

2. TRANSFER LEARNING FOR FAULT DIAGNOSIS
OF ROTATING COMPONENTS

For transfer learning in fault diagnosis, the diagnostic
knowledge is expected to be reused from one or multi-

ple diagnosis tasks (source domain) to other related but
different ones (target domain). The source domain Ds =

{(xs
i , y

s
i )}

Ns

i=1 is composed by n labeled measurements
where xs

i ∈ X s ⊆ Rn is the i-th measurements vector
and yi its corresponding diagnostic label (e.g. healthy,
fault 1, fault 2, etc.). The source dataset Ds is sam-
pled from the source space X s × Ys, with Ys the set of
source labels. The source input set X s is endowed with
a probability distribution function p(X s). The target do-
main Dt =

{
xt
j

}M

j=1
consists of m unlabeled measurements

xt
i ∈ X t ⊆ Rm. The target dataset Dt is sampled from the

target space X t×Yt, with Yt the set of target labels. The
target input space X t has probability distribution function
p(X t). Due to different operating conditions, the source
and target domain are different so that p(X s) ̸= p(X t).
For transfer learning in fault diagnosis, it is assumed that
Yt ⊆ Ys (Lei et al., 2020). The aim is to learn a model
able to perform well on the target domain, using Ds and
Dt as training information.

2.1 FRAN: Feature Representation Alignment Network

The FRAN architecture consists of two sub-models. The
first sub-model performs an unsupervised domain adapta-
tion task, with the aim to train a feature extractor function
g(·) (encoder) able to produce features from raw signals for
both the source and target domains. The second sub-model
is the classifier f(·) needed to perform fault classification.

The encoder g(·) produces the set of source features Zs =
g(X s) and the set of target features Zt = g(X t). The en-
coder has two objectives both towards features alignment
between source and target domains: (i) a maximization of
the mutual information −LM (Zs,Zt) between the target
features Zt and the entire features set Zs ∪ Zt; (ii) a
minimization of the Maximum Mean Discrepancy (MMD)
(Gretton et al., 2012) cost LD(Zs) applied to features com-
puted from g(·). The first objective has the aim to generate
informative features domains; the second objective has the
aim of minimizing the discrepancy of the source and target
features distributions. The classifier f(·) has the aim of
minimizing the classification error LC(X s,Ys) on source
data (for which labels are available). The models g(·) and
f(·) are trained simultaneously by minimizing the cost

L(Zs,Zt,Ys) = α · LM (Zs,Zt) + β · LD(Zs,Zt)+

+ LC(X s,Ys), (1)
where α, β ∈ R≥0 are weighting coefficients. The diagnosis
stage takes the target domain data as input. These data
are then processed by the encoder g(·) to produce features
which will be classified by f(·) to obtain the fault labels
estimate.

The encoder g(·) consists of two 1-D convolutional layers,
each followed by a batch normalization, and a Sigmoid
activation function followed by average-pooling layers.
The kernel size for both 1-D convolutional layers is 4,
and the output channels are 32 and 64, respectively.
The classifier f(·) consists of two fully connected layers
with ReLU activation, with 1000 and 3 output channels,
respectively 1 .
1 These and other configuration parameters can be de-
vised from the code made available by the authors at
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2.2 FRAN-X: an improved architecture for transfer learning

The proposed transfer learning architecture, named FRAN-
X, maintains the the original structure and cost function
of FRAN but it presents a more streamlined architecture
with modifications to improve the model transfer capacity,
diagnostic accuracy on target data and computational
requirements. The differences are as follows, see Fig. 2:

(1) the classic convolutional layers of the encoder g(·) are
replaced by a series of recently introduced ConvNeXt
blocks (Liu et al., 2022);

(2) ResNet skip connections (He et al., 2016) are intro-
duced to avoid the vanishing gradient problem, thus
allowing the stacking of more layers;

(3) the sum operation of the residual part and the skip
connections uses decrease-increase-decrease approach
in the number of ConvNeXt filters;

(4) apart from the last layer of f(·) that computes the
final classification score, the Softmax and ReLu acti-
vation functions in FRAN are replaced by the recently
introduced Gaussian Error Linear Unit (GELU), re-
moving consequently the dropout layer in f(·). GELU
units (Hendrycks and Gimpel, 2016) are mostly used
in transformers like BERT (Devlin et al., 2019);

(5) the 1-D kernel dimension of the first encoder layer is
increased from 4 to 11. As suggested in (Peng et al.,
2019), wide convolution kernels are better to extract
low frequency features, while narrow convolution ker-
nels are better at extracting high-frequency features.
Using a larger kernel results in a better performance
when dealing with high-frequency noise;

(6) in the new architecture, the number of parameters
for the encoder g(·) is increased from 8.6 k to 36.7 k,
while the number of parameters of the classifier f(·)
has been significantly reduced from 19.2M to 26.3 k.
This change leads to a massive reduction in the overall
number of parameters.

3. DATASETS DESCRIPTION AND PROCESSING

3.1 CWRU bearing dataset

The CWRU bearing dataset is an open-source dataset of
vibration signals widely used to evaluate fault diagnosis
algorithms. The bearing experiments were carried out on
a 2 hp electric motor, and the vibration data were collected
using accelerometers deployed on both the drive-end (DE)
and fan-end (FE) of the motor housing. An electrical
discharge machining was used to inject three types of faults
on the ball bearings supporting the motor shaft: (i) inner
race fault, (ii) outer race fault and (ii) ball fault, with fault
range sizes from 0.007 to 0.028 inches. Each fault class and
size combination is recorded under different loads from
to 0 hp to 3 hp while the motor RPMs are kept roughly
constant at 1750RPM. The sampling frequencies of drive-
end fault data is 12 kHz and 48 kHz, and the sampling
frequency of the normal baseline data and fan-end fault
data are both 12 kHz.

https://github.com/JiahongChen/FRAN. Last access: 8 Nov.
2022. The dimension of the last layer of f(·) depends on the number
of classes of the considered problem (which is 3 in the CWRU
dataset case).
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Fig. 2. Comparison between the architecture of the pro-
posed FRAN-X model and the original FRAN model.

We divided the CWRU dataset in two sub-datasets, shar-
ing the same sampling rate of 12 kHz:

• vibration signals in the CWRUA dataset are collected
only from the drive-end with motor load at 0 hp;

• vibration signals in the CWRUB dataset are collected
with motor load of 2 hp.

For both CWRUA and CWRUB data, only the class
Normal, Inner race fault, and Outer race fault are consid-
ered. These datasets are denoted as CWRUA3 and CWRUB3.
Here, all fault sizes are kept together. We then considered a
further subdivision based on sensor type, e.g. fan-end (FE)
and drive-end (DE), and fault size (007, 014, 021 inches),
while there isn’t any division in motor horsepower. The
resulting datasets are denoted as DExxx or FExxx, with
xxx indicating the fault size.

3.2 CNC workcenter bearing dataset

Here the focus is on the upper bearing of the vertical
shaft (Y direction) of a 5-axis CNC machine (Mazzoleni
et al., 2020), see Fig. 3. The vertical shaft is supported
by two threaded rods. Each rod has a set of four ball
bearings which allow the rod to spin. We injected a severe
pitting on one bearing, mounting an accelerometer on the
bearing cage to collect its vibrations at a sample frequency
of 12.8 kHz, during ascent and descent movements at
different constant speeds. The load is kept constant to 0N.

The workcenter dataset contains recordings for two classes:
Normal and Inner race fault. Domain transfer is evalu-
ated between different speeds considering the same CNC
machine, denoted as CNC50RPM and CNC1500RPM.

3.3 Data preparation

The preprocessing scheme that takes the raw vibration
data from the CWRU or CNC datasets and prepares

Healthy bearing

Faulty (inner race) bearing
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(covered by the envelope)

Fig. 3. CNC workcenter with healthy and faulty bearing.

these data for training and testing is as follows. Each
raw signal is split into many fixed-size subsamples, using
a rolling window approach. The window size and overlap
are set respectively to 256 samples with 80% of overlap.
The window size differs from FRAN, where 1200 samples
were considered. Next, a min-max normalization is applied
to compress the signal’s amplitude to the range [−1, 1].
Before splitting both source and target into the training
and test sets, a random shuffle of all the data is applied.
An example of CWRU data is shown in Fig. 4.
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4. EXPERIMENTAL EVALUATION

4.1 Transfer learning on CWRU dataset

The CNC dataset is used to evaluate transfer capabilities
over different bearing loads. The FRAN-X hyperparame-
ters are tuned by grid search using the training sets of
source and target data, considering the single transfer

scenario from CWRUA3 (source) to CWRUB3 (target) and eval-
uating the classification accuracy on the target dataset.
The best hyperparameters found are α = 1 and β = 0.
Interestingly, for this transfer scenario the introduced mo-
tifications make not necessary the MMD cost LD(·, ·) in
(1), suggesting that good separable and similar features
are generated by g(·) by considering only the mutual
information cost LM (·, ·) in (1).

Transfer scenario 1: CWRUA3 → CWRUB3. First, we com-
pared the transfer learning capabilities of the FRAN-X
model considering the CWRUA3 (source) and CWRUB3 (tar-
get) scenario, while comparing with FRAN in the same
setting. Both datasets contain the same number of samples
per class. When transfer learning is disabled (OFF) the
hyperparameters α, β in (1) are set to zero, so that only
the classification cost is minimized during model training.
Fig. 6 shows the faults classification accuracy of FRAN-X
on the test target set while training for 60 epochs. FRAN-
X achieves higher accuracy on the target domain when
transfer learning is enabled (ON), reaching an accuracy of
98.3%. The FRAN model reports an accuracy of 91.3%
after 100 epochs with transfer ON. The FRAN-X model
is able to achieve better accuracy than FRAN (on this
problem) also when transfer for FRAN-X is disabled.
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Fig. 6. FRAN-X transfer capabilities on the
CWRUA3(source) → CWRUB3(target) scenario.

Transfer scenario 2: CWRUB3 → CWRUA3. The same con-
figuration as the previous one applies, but with source and
target domains swapped. The FRAN-X model achieves an
accuracy of 96.6% after 60 epochs, while the FRAN model
reports an accuracy of 91.7% after 100 epochs.

Transfer scenario 3: sensors swap. In this third exper-
iment, the source and target domains differ by the sensor
used to collect the data. The source domain is composed of
data collected using the drive-end (DE) sensor, while the
target domain is composed of data collected using the fan-
end (FE) sensor. The fault size is fixed at 0.021 inches.
The results show an accuracy of 98.4% and 99.8% on
the DE021 → FE021 and FE021 → DE021 configurations,
respectively. Compared to the FRAN, this results in a
10.2% improvement in accuracy in the first configuration
and a slight decrease of -0.2% in the second configuration.
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Fig. 3. CNC workcenter with healthy and faulty bearing.

these data for training and testing is as follows. Each
raw signal is split into many fixed-size subsamples, using
a rolling window approach. The window size and overlap
are set respectively to 256 samples with 80% of overlap.
The window size differs from FRAN, where 1200 samples
were considered. Next, a min-max normalization is applied
to compress the signal’s amplitude to the range [−1, 1].
Before splitting both source and target into the training
and test sets, a random shuffle of all the data is applied.
An example of CWRU data is shown in Fig. 4.
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4. EXPERIMENTAL EVALUATION

4.1 Transfer learning on CWRU dataset

The CNC dataset is used to evaluate transfer capabilities
over different bearing loads. The FRAN-X hyperparame-
ters are tuned by grid search using the training sets of
source and target data, considering the single transfer

scenario from CWRUA3 (source) to CWRUB3 (target) and eval-
uating the classification accuracy on the target dataset.
The best hyperparameters found are α = 1 and β = 0.
Interestingly, for this transfer scenario the introduced mo-
tifications make not necessary the MMD cost LD(·, ·) in
(1), suggesting that good separable and similar features
are generated by g(·) by considering only the mutual
information cost LM (·, ·) in (1).

Transfer scenario 1: CWRUA3 → CWRUB3. First, we com-
pared the transfer learning capabilities of the FRAN-X
model considering the CWRUA3 (source) and CWRUB3 (tar-
get) scenario, while comparing with FRAN in the same
setting. Both datasets contain the same number of samples
per class. When transfer learning is disabled (OFF) the
hyperparameters α, β in (1) are set to zero, so that only
the classification cost is minimized during model training.
Fig. 6 shows the faults classification accuracy of FRAN-X
on the test target set while training for 60 epochs. FRAN-
X achieves higher accuracy on the target domain when
transfer learning is enabled (ON), reaching an accuracy of
98.3%. The FRAN model reports an accuracy of 91.3%
after 100 epochs with transfer ON. The FRAN-X model
is able to achieve better accuracy than FRAN (on this
problem) also when transfer for FRAN-X is disabled.
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Fig. 6. FRAN-X transfer capabilities on the
CWRUA3(source) → CWRUB3(target) scenario.

Transfer scenario 2: CWRUB3 → CWRUA3. The same con-
figuration as the previous one applies, but with source and
target domains swapped. The FRAN-X model achieves an
accuracy of 96.6% after 60 epochs, while the FRAN model
reports an accuracy of 91.7% after 100 epochs.

Transfer scenario 3: sensors swap. In this third exper-
iment, the source and target domains differ by the sensor
used to collect the data. The source domain is composed of
data collected using the drive-end (DE) sensor, while the
target domain is composed of data collected using the fan-
end (FE) sensor. The fault size is fixed at 0.021 inches.
The results show an accuracy of 98.4% and 99.8% on
the DE021 → FE021 and FE021 → DE021 configurations,
respectively. Compared to the FRAN, this results in a
10.2% improvement in accuracy in the first configuration
and a slight decrease of -0.2% in the second configuration.
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Transfer scenario 4: sensors and fault sizes swap. In
this experiment, both the sensor and the fault size are
different between the source and target domains. The
first data batch FE007 ↔ DE014 is performed with data
from 0.007 inches faults collected using the FE sensor and
data collected using the DE sensor with a fault size of
0.014 inches. The model achieves an accuracy of 99.9% on
the FE007 → DE014 scenario, and 99.3% on the DE014
→ FE007 case. Compared to the FRAN, this results in a
11.5% improvement in accuracy in the first scenario and a
8.2% improvement in the second scenario. The second data
batch DE007 ↔ FE014 is performed with a similar config-
uration as the previous one. Interestingly, while the DE007
→ FE014 configuration achieves an accuracy of 93.2%,
which represents a +3.7% improvement over FRAN, the
FE014 → DE007 accuracy drops during training, and the
early stopping callback interrupts the training after a few
epochs. This may be because the FE014 → DE007 con-
figuration is more challenging than the DE007 → FE014
configuration, and the model is not able to generalize well
to this target domain. Further investigation is needed to
fully understand the reason for this behavior.

Table 1 summarizes the fault classification results on the
CWRU dataset.

Source Target FRAN FRAN-X Change
CWRUA3 CWRUB3 91.3% 98.3% +7.0%
CWRUB3 CWRUA3 91.7% 96.6% +4.9%
DE021 FE021 88.2% 98.4% +10.2%
FE021 DE021 100.0% 99.8% -0.2%
FE007 DE014 88.4% 99.9% +11.5%
DE014 FE007 91.1% 99.3% +8.2%
DE007 FE014 89.5% 93.2% +3.7%
FE014 DE007 84.5% 49.2% -35.3%

Table 1. Comparison between FRAN and FRAN-X accu-
racy on multiple CWRU configurations.

4.2 Transfer learning on CNC dataset

The CNC dataset is used to evaluate transfer capabilities
over different bearing rotation speeds. Here, two classes are
present: the Normal (healthy) class and the Inner race
(faulty) one. The FRAN-X model is trained from scratch
using the same set hyperparameters as before.

Transfer scenario 1: CNC50RPM → CNC1500RPM. When
training with transfer disabled (OFF), the model reaches
an accuracy of 74.7% on the test target domain. When
domain transfer is enabled (ON), the model can achieve an
accuracy of 95.0% on the test target domain. The evolution
of the accuracies is shown in Fig. 7.

Transfer scenario 2: CNC1500RPM → CNC50RPM. As
shown in Fig. 8, without domain adaptation the model is
not able to reach an adequate performance, reaching 50.0%
accuracy on the test target set, which is equivalent to
perform a random classification guessing. With the help of
domain transfer, the FRAN-X model reaches an accuracy
of 98.3% on the test target set.

Table 2 summarizes the fault classification results on the
CNC dataset.
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Fig. 7. FRAN-X transfer capabilities on the
CNC50RPM(source) → CNC1500RPM(target) scenario.
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Fig. 8. FRAN-X transfer capabilities on the
CNC1500RPM(source) → CNC50RPM(target) scenario.

4.3 Computational aspects

The FRAN-X has been developed using the PyTorch
Lightning framework on three hardware configurations:
(i) Intel i7-6700HQ 2.60GHz CPU (ii) Nvidia Tesla T4
GPU; (iii) Nvidia GTX960M GPU. Compared with FRAN,
the FRAN-X model has a significantly lower number of
parameters (see Fig. 2), which makes it possible to train
and test FRAN-X on both high-end and low-end hardware
(such as a laptop). Table 3 reports inference times of
FRAN and FRAN-X on the considered hardware plat-
forms. The FRAN-X model performs considerably better
on CPU. The FRAN model requires a 7GB Graphics
Processor Unit to run (Chen et al., 2020). The smaller
footprint of FRAN-X removes this requirement, allowing
the model to run on smaller GPUs such as the Nvidia
GTX960M GPU, where the FRAN model could not be run.

5. CONCLUSION

Transfer learning is a fascinating approach for fault diag-
nosis in complex industrial environments, requiring very
few prior process knowledge from the diagnostician. Ex-
perimental results on two different datasets showed its
potential. However, several challenges are still open. First,
we should try to understand if the features extracted by
the encoder have physical meaning (e.g. frequencies magni-
tudes in case of rotating component and vibration data).

Source Target Transfer OFF Transfer ON Change [%]
CNC50RPM CNC1500RPM 74.7% 95.0% +20.3%

CNC1500RPM CNC50RPM 49.8% 98.3% +48.5%

Table 2. Summary of FRAN-X accuracy on the CNC dataset, with transfer learning ON and OFF.

Hw FRAN FRAN-X
Intel i7-6700HQ 2.60GHz CPU 34.3ms 0.6ms

Nvidia Tesla T4 GPU 0.63ms 0.43ms
Nvidia GTX960M GPU - 0.62ms

Table 3. Inference time for FRAN and FRAN-X on differ-
ent hardware platforms.

In this work, the approach was limited to the Transfer
to Identical Machines (TIM) scenario Lei et al. (2020).
The Transfer to Different Machine (TDM), where a model
trained on one machine is used to diagnose a different one,
is much more involved and requires further research.
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