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Abstract: This work presents a Model Predictive Control (MPC) algorithm for the artificial
pancreas able to autonomously manage basal insulin injections in type 1 diabetic patients. The
MPC goal is to maintain the blood glucose inside the safe range (70-180 mg/dL) acting on
the insulin amount, using a model to make predictions of the system behavior and satisfying
operational constraints. The complexity of diabetes complicates the identification of a general
physiological model, so a data-driven learning method is proposed, the Componentwise Hölder
Kinky Inference (CHoKI), leading to customized controllers. For the data collection phase and
also to test the proposed controller, the FDA-accepted UVA/Padova simulator is exploited.
The final results are promising since the proposed controller reduces the time in hypoglycemia
if compared to the standard constant basal insulin therapy, satisfying also the time in range
requirements.
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1. INTRODUCTION

Type 1 Diabetes (T1D) is a common chronic metabolic
disorder characterized by the body inability to correctly
balance the blood glucose (BG) level, due to a complete
deficiency of insulin production by the pancreatic cells. Its
treatment consists of daily insulin injections to restore the
physiological range of the BG values (i.e. 70-180 mg/dL).
Above this threshold, the patient is in a state of hyper-
glycemia, and below it, in a state of hypoglycemia. The
Artificial Pancreas (AP) implements such a treatment in
closed loop. AP consists of three components: the Contin-
uous Glucose Monitoring (CGM, the sensor that measures
the glucose at the interstitial level every few minutes), the
insulin pump (that delivers insulin in the subcutaneous
tissue), and the control algorithm (which computes the
insulin quantity). The APs currently on the market are
Hybrid Closed Loop systems, since the administration of
the basal insulin (injected to manage the BG in fasting
periods) is automatic, while for postprandial boluses it still
requires the manual intervention of the patients (Moon
et al., 2021).
The AP requires the presence of a control algorithm
and Model Predictive Control (MPC) is among the most
utilised. MPC is a control method that uses a dynamic
model to forecast the future behavior of a system, and to
compute the best sequence of control moves at each time as
a solution of a finite horizon optimal control problem. Only
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the first value is applied to the plant and the procedure
is then repeated at each sampling instant, in a receding
horizon fashion (Rawlings et al., 2009). The use of MPC
as a control algorithm for AP has been widely studied
and tested in the last few years (Del Favero et al., 2019;
Toffanin et al., 2013; Hovorka et al., 2004; Abuin et al.,
2020; Gondhalekar et al., 2016; González et al., 2020; Shi
et al., 2018; Hajizadeh et al., 2019), thanks to its ability to
anticipate undesired glucose variation and to compute the
amount of insulin injections, respecting all the imposed
constraints.
The BG response to meals or insulin varies significantly
according to the daily condition and from one patient
to another, thus making difficult to identify a general
model to describe this system. The aim of this work is
to exploit data-driven methods and to use current and
past data of a patient to obtain the future BG. This way,
a customized MPC algorithm for the AP is obtained, to
ease and improve the T1D management. Various types
of learning-based MPCs have been recently proposed in
literature Hewing et al. (2020). In this work, we resort
to the Componentwise Hölder Kinky Inference (CHoKI)
method, a nonparametric learning technique which favours
the design of robust MPCs that are stable by design (Man-
zano et al., 2021).
The data to learn the system are collected exploiting the
virtual adult patients of the UVA/Padova simulator (The
Epsilon Group, 2016). The same simulator will be used to
test the proposed control algorithm.
The rest of this note is structured as follows. In Sec-
tion 2 the learning method is presented and tailored to
the insulin-glucose system. In Section 3, the proposed
MPC problem is introduced. Section 4 shows the in-silico
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Kinky Inference (CHoKI), leading to customized controllers. For the data collection phase and
also to test the proposed controller, the FDA-accepted UVA/Padova simulator is exploited.
The final results are promising since the proposed controller reduces the time in hypoglycemia
if compared to the standard constant basal insulin therapy, satisfying also the time in range
requirements.

Keywords: Artificial Pancreas, MPC, learning-based control

1. INTRODUCTION

Type 1 Diabetes (T1D) is a common chronic metabolic
disorder characterized by the body inability to correctly
balance the blood glucose (BG) level, due to a complete
deficiency of insulin production by the pancreatic cells. Its
treatment consists of daily insulin injections to restore the
physiological range of the BG values (i.e. 70-180 mg/dL).
Above this threshold, the patient is in a state of hyper-
glycemia, and below it, in a state of hypoglycemia. The
Artificial Pancreas (AP) implements such a treatment in
closed loop. AP consists of three components: the Contin-
uous Glucose Monitoring (CGM, the sensor that measures
the glucose at the interstitial level every few minutes), the
insulin pump (that delivers insulin in the subcutaneous
tissue), and the control algorithm (which computes the
insulin quantity). The APs currently on the market are
Hybrid Closed Loop systems, since the administration of
the basal insulin (injected to manage the BG in fasting
periods) is automatic, while for postprandial boluses it still
requires the manual intervention of the patients (Moon
et al., 2021).
The AP requires the presence of a control algorithm
and Model Predictive Control (MPC) is among the most
utilised. MPC is a control method that uses a dynamic
model to forecast the future behavior of a system, and to
compute the best sequence of control moves at each time as
a solution of a finite horizon optimal control problem. Only

⋆ This work was funded by the National Plan for NRRP Comple-
mentary Investments in the call for the funding of research initiatives
for technologies and innovative trajectories in the health and care sec-
tors - project AdvaNced Technologies for Human-centrEd Medicine
(ANTHEM) CUP: B53C22006700001.

the first value is applied to the plant and the procedure
is then repeated at each sampling instant, in a receding
horizon fashion (Rawlings et al., 2009). The use of MPC
as a control algorithm for AP has been widely studied
and tested in the last few years (Del Favero et al., 2019;
Toffanin et al., 2013; Hovorka et al., 2004; Abuin et al.,
2020; Gondhalekar et al., 2016; González et al., 2020; Shi
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Beatrice Sonzogni ∗ José Maŕıa Manzano ∗∗ Marco Polver ∗

Fabio Previdi ∗ Antonio Ferramosca ∗

∗ Department of Management, Information and Production
Engineering, University of Bergamo, 24044 Dalmine, Bergamo, Italy
∗∗ Department of Engineering, Universidad Loyola Andalućıa, 41704
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Kinky Inference (CHoKI), leading to customized controllers. For the data collection phase and
also to test the proposed controller, the FDA-accepted UVA/Padova simulator is exploited.
The final results are promising since the proposed controller reduces the time in hypoglycemia
if compared to the standard constant basal insulin therapy, satisfying also the time in range
requirements.

Keywords: Artificial Pancreas, MPC, learning-based control

1. INTRODUCTION

Type 1 Diabetes (T1D) is a common chronic metabolic
disorder characterized by the body inability to correctly
balance the blood glucose (BG) level, due to a complete
deficiency of insulin production by the pancreatic cells. Its
treatment consists of daily insulin injections to restore the
physiological range of the BG values (i.e. 70-180 mg/dL).
Above this threshold, the patient is in a state of hyper-
glycemia, and below it, in a state of hypoglycemia. The
Artificial Pancreas (AP) implements such a treatment in
closed loop. AP consists of three components: the Contin-
uous Glucose Monitoring (CGM, the sensor that measures
the glucose at the interstitial level every few minutes), the
insulin pump (that delivers insulin in the subcutaneous
tissue), and the control algorithm (which computes the
insulin quantity). The APs currently on the market are
Hybrid Closed Loop systems, since the administration of
the basal insulin (injected to manage the BG in fasting
periods) is automatic, while for postprandial boluses it still
requires the manual intervention of the patients (Moon
et al., 2021).
The AP requires the presence of a control algorithm
and Model Predictive Control (MPC) is among the most
utilised. MPC is a control method that uses a dynamic
model to forecast the future behavior of a system, and to
compute the best sequence of control moves at each time as
a solution of a finite horizon optimal control problem. Only

⋆ This work was funded by the National Plan for NRRP Comple-
mentary Investments in the call for the funding of research initiatives
for technologies and innovative trajectories in the health and care sec-
tors - project AdvaNced Technologies for Human-centrEd Medicine
(ANTHEM) CUP: B53C22006700001.

the first value is applied to the plant and the procedure
is then repeated at each sampling instant, in a receding
horizon fashion (Rawlings et al., 2009). The use of MPC
as a control algorithm for AP has been widely studied
and tested in the last few years (Del Favero et al., 2019;
Toffanin et al., 2013; Hovorka et al., 2004; Abuin et al.,
2020; Gondhalekar et al., 2016; González et al., 2020; Shi
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Dos Hermanas, Seville, Spain

Abstract: This work presents a Model Predictive Control (MPC) algorithm for the artificial
pancreas able to autonomously manage basal insulin injections in type 1 diabetic patients. The
MPC goal is to maintain the blood glucose inside the safe range (70-180 mg/dL) acting on
the insulin amount, using a model to make predictions of the system behavior and satisfying
operational constraints. The complexity of diabetes complicates the identification of a general
physiological model, so a data-driven learning method is proposed, the Componentwise Hölder
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Kinky Inference (CHoKI), leading to customized controllers. For the data collection phase and
also to test the proposed controller, the FDA-accepted UVA/Padova simulator is exploited.
The final results are promising since the proposed controller reduces the time in hypoglycemia
if compared to the standard constant basal insulin therapy, satisfying also the time in range
requirements.

Keywords: Artificial Pancreas, MPC, learning-based control

1. INTRODUCTION

Type 1 Diabetes (T1D) is a common chronic metabolic
disorder characterized by the body inability to correctly
balance the blood glucose (BG) level, due to a complete
deficiency of insulin production by the pancreatic cells. Its
treatment consists of daily insulin injections to restore the
physiological range of the BG values (i.e. 70-180 mg/dL).
Above this threshold, the patient is in a state of hyper-
glycemia, and below it, in a state of hypoglycemia. The
Artificial Pancreas (AP) implements such a treatment in
closed loop. AP consists of three components: the Contin-
uous Glucose Monitoring (CGM, the sensor that measures
the glucose at the interstitial level every few minutes), the
insulin pump (that delivers insulin in the subcutaneous
tissue), and the control algorithm (which computes the
insulin quantity). The APs currently on the market are
Hybrid Closed Loop systems, since the administration of
the basal insulin (injected to manage the BG in fasting
periods) is automatic, while for postprandial boluses it still
requires the manual intervention of the patients (Moon
et al., 2021).
The AP requires the presence of a control algorithm
and Model Predictive Control (MPC) is among the most
utilised. MPC is a control method that uses a dynamic
model to forecast the future behavior of a system, and to
compute the best sequence of control moves at each time as
a solution of a finite horizon optimal control problem. Only

⋆ This work was funded by the National Plan for NRRP Comple-
mentary Investments in the call for the funding of research initiatives
for technologies and innovative trajectories in the health and care sec-
tors - project AdvaNced Technologies for Human-centrEd Medicine
(ANTHEM) CUP: B53C22006700001.

the first value is applied to the plant and the procedure
is then repeated at each sampling instant, in a receding
horizon fashion (Rawlings et al., 2009). The use of MPC
as a control algorithm for AP has been widely studied
and tested in the last few years (Del Favero et al., 2019;
Toffanin et al., 2013; Hovorka et al., 2004; Abuin et al.,
2020; Gondhalekar et al., 2016; González et al., 2020; Shi
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simulation results and Section 5 drawn some conlcusion.
Notation: A set of integers [a, b] is denoted Iba, Rn is the set
of real vectors of dimension n and Rn×m is the set of real
n×m matrices. Given v, w ∈ Rnv , the notation (v, w) im-
plies [vT , wT ]T and v ≤ w implies that the inequality holds
for every component. ∥v∥ stands for the Euclidean norm
of v and |v| = {w : wi = |vi|, ∀i}. Given two sets A,B,
A⊖B denotes the Pontryagin difference. Their Cartesian
product is denoted A × B = {(x, y)|x ∈ A, y ∈ B}. The
box B(v) ⊂ Rnv is defined as B(v) = {y : |y| ≤ v} and the
ball B(v) ⊂ Rnv is defined as B(v) = {y : 0 ≤ y ≤ v}. An
n,m-dimensional matrix of ones is denoted 1n×m. The ith
row of a matrix M is denoted Mi.

2. PROBLEM STATEMENT

The system under study is a sampled continuous-time
system, described by an a priori unknown discrete-time
model, where y(k) ∈ Rny is the measured output (in our
case, ny = 1: the glucose level, in mg/dL) and u(k) ∈ Rnu

is the input. In this case, there are two inputs (nu = 2): the
meal (u1, the not controllable one, in g of carbohydrates)
and the insulin (u2, the controllable one, in pmol). A
sampling time of 5 minutes is considered.
The measured output can be modelled as a NARX regres-
sion of previous inputs and outputs, with the following
state-space representation:

y(k + 1) = f(x(k), u1(k), u2(k)) + e(k), (1)

where the regression state x ∈ Rnx is

x(k) =
(
y(k), . . . , y(k − na), u1(k − 1), . . . , u1(k − nb),

u2(k − 1), . . . , u2(k − nc)
)
, (2)

for some memory horizons na, nb and nc ∈ N0 (where na

is the memory horizon for the glucose values, nb for the
meals and nc for the basal injections) and e(k) ∈ Rny is
process noise. The arguments of f are then aggregated into
w = (x, u1, u2) ∈ Rnw so that it is possible to construct
a data set of ND observations, denoted D = {(wk, yk+1)},
for k = 1, . . . , ND − 1.

2.1 Componentwise Hölder Kinky Inference (CHoKI)

The aim of this subsection is to describe the chosen learn-
ing method. Kinky Inference (KI) (Manzano et al., 2020)
is a class of learning approaches that includes Lipschitz
interpolation, a technique based on Lipschitz continuity of
the function to be learned. There exists an extension of the
Lipschitz continuity, named Hölder continuity, in which
the function has to satisfy the following more generalized
condition:

Definition 1. A function f : W → Y is Hölder continuous
if there exist two real constants L ≥ 0 and 0 < p ≤ 1 such
that for all w1, w2 ∈ W,

∥f(w1)− f(w2)∥ ≤ L∥w1 − w2∥p, (3)

where L represents the smallest Lipschitz constant and p
is called the Hölder exponent, W ⊆ Rnw is the input space
and Y ⊆ Rny is the output space. In the case of p = 1, it
means to have Lipschitz continuity (Manzano et al., 2021).

In Manzano et al. (2021), the Componentwise Hölder
Kinky Inference (CHoKI) was introduced, as a method
that considers matrices (L,P) instead of the Hölder con-
stant L and exponent p. This is done in order to find the

effect that each component of the regressor has on each
output, taking into consideration that a function may have
abrupt variations along one dimension of the input and
have smoothly changes along another one. This is based on
the componentwise Hölder continuity, defined as follows:

Definition 2. Given the matrices L and P ∈ Rny×nw ,
a function f : W → Y is componentwise L-P-Hölder
continuous if ∀w1, w2 ∈ W and ∀i ∈ Iny

1

|fi(w1)− fi(w2)| ≤
nw∑
j=1

Lij |w1,j − w2,j |Pij . (4)

This can be written in a more compact form, using:

dPL (w) := (a : ai =

nw∑
j=1

Li,jw
Pi,j

j , ∀i ∈ Iny

1 ) (5)

and thus (4) becomes:

|f(w1)− f(w2)| ≤ dPL (|w1 − w2|). (6)

Then, assuming that f is Hölder continuous and given
a data set D of inputs/outputs observations, the CHoKI
predictor is defined as follows, for a query q ∈ Rnw :

f̂(q; Θ,D) =
1

2
min

i=1,...,ND
(ỹi + dPL (|q − wi|))

+
1

2
max

i=1,...,ND
(ỹi − dPL (|q − wi|)), (7)

where Θ = {L,P}. In case matrices L and P are unknown
a priori, they must be estimated solving an optimization
problem offline, exploiting the available input-output data
(see (9)) (Manzano et al., 2021).

According to (7) it is possible to predict a new output ŷ(k+

1) = f̂(w(k); Θ,D) given Θ = {L,P}. Then, the prediction
model can be formulated in state-space as follows:

x̂(k + 1) = F̂ (x(k), u1(k), u2(k))
ŷ(k) = Mx̂(k)

(8)

where F̂ (x(k), u1(k), u2(k)) = (f̂(x(k), u1(k), u2(k)), y(k),
. . . , y(k−na+1), u1(k), . . . , u1(k−nb+1), u2(k), . . . , u2(k−
nc + 1)) and M = [Iny , 0, . . . , 0].

2.2 CHoKI implementation for T1D patient

Since the goal is to automatically manage the basal insulin,
while postprandial boluses are assumed to be delivered
manually, only the relation between BG, meals and basal
insulin will be considered.
To exploit the CHoKI strategy, an initial phase of data
collection is necessary. This is done by means of the
UVA/Padova simulator. In particular, for each of the
available virtual adult patients, several simulations were
made, varying the initial BG value, the amount of the
basal insulin and of the carbohydrates of the meals (with
the corresponding insulin boluses). These were set in or-
der to obtain an appropriate distribution of the points
in the space, looking at the input-output representation.
Also some noises were added, to make simulations more
realistic. Specifically, as sensor, the available virtual typ-
ical commercial CGM was selected, with auto-regressive
noise with inverse Johnson transform distribution. The
virtual pump’s noise follows a Gaussian distribution, with
mean 0 pmol and standard deviation of 0.1. Also a noise
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to the meal carbohydrate estimation was added, using a
normal distribution with standard deviation of 30% of the
meal amount. The data collection is a fundamental phase,
since the quality of the data set will affect the performance
of the CHoKI predictions and of the controller.
To identify the model orders (na, nb, nc) a cross validation
procedure has been performed, selecting the combination
that returned the lowest mean squared error between the
predictions and the real values, considering also a trade-
off with model complexity, to avoid the risk of overfitting.
The chosen orders were na = 5, nb = 9 and nc = 3.
To obtain the predictions employing (7), the hyperparam-
eters Θ = {L,P} must be estimated. To this aim, an
optimization problem is solved offline, splitting D of each
patient into two disjoint data sets (Dtrain for estimation
and Dtest for validation):

Θ = argmin
Θ

g(Θ,Dtrain,Dtest) (9a)

s.t. |ỹi − ỹj | ≤ dPL (|wi − wj |), (9b)

∀wi, wj ∈ WD, wi ̸= wj

0 < Pij ≤ 1,Lij > 0, (9c)

i ∈ Iny

1 , j ∈ Inw
1 ,

where WD are the input data points in D, and the cost
function to be minimized is:

g(Θ,Dtrain,Dtest) =
1

NDtest

NDtest∑
i=1

∥f̂(wi; Θ,Dtrain)− ỹi∥2,

being f̂(wi; Θ,D) the predictions made with the CHoKI (7)
and ỹi the measured values of the noisy data set Dtest.
It is assumed to have P = 1ny×nw

and thus the optimiza-
tion problem is set to obtain just the values of the matrix
L. In this case, only three values are estimated: one for
the glucose part, one for the meals and one for the insulin,
denoted La, Lb, Lc ∈ R, respectively. Hence, L contains
those 3 values repeated, i.e. L = [La1na ;Lb1nb

;Lc1nc ].
To set the constraints of the optimization problem, some
a priori knowledge has been exploited, for example estab-
lishing as initial value of the L, the one obtained with
the LACKI (Lazily Adapted Constant Kinky Inference)
method (Manzano et al., 2020), based on the Hölder con-
tinuity property (i.e. L). Thanks to previous analyses, the
upper and lower bounds are defined for La, Lb and Lc

as [10;10;10] and [0;0.9;0.09], respectively.
The fmincon MATLAB function was used to solve the
optimization problem (9) and the results are different for
every virtual patient. For each of them, once the L is
selected, the model is validated on a new data set, to verify
its ability to predict future BG values. For each patient,
the resulting L, the uref and the L are reported in Table 1.

3. CHOKI-BASED ROBUST MPC

The control objective is to steer the BG level y(k) to the
desired euglycemic zone, given by 70 ≤ y ≤ 180mg/dL,
fulfilling input and output constraints. The glucose must
not reach hyper- or hypoglycemia states, that is, y(k)
should be maintained in the set Y = {y : 55 ≤ y ≤
300mg/dL}, ∀k. The control action, that is, the available
basal insulin injection, varies such that u2(k) ∈ U = {u :
0 ≤ u ≤ 500 pmol}, ∀k.
Since we assume here that a physiological model for
T1D patients is not available, the open-loop prediction

of the MPC control problem are computed exploiting the
CHoKI predictor (7). To guarantee the MPC robustness to
possible model-plant mismatches, the employed strategy is
to restrict the output constraints according to the future
propagation of a certain error, representing the effect of
uncertainty in the predictions based on data. This way,
the system in closed loop with the proposed controller is
proved to be Input-to-State Stable (ISS) (Manzano et al.,
2021, Theorem 3).
The set of restricted output constraints is given by

Yj = Yj−1 ⊖Rj , (10)

along the prediction horizon, j = 1, ..., N . Rj are the
reachability sets that account for the possible errors in
the nominal predictions and Y0 = Y. To compute Rj ,
the starting point is to consider µ ∈ Rny , which is the
maximum absolute error obtained in the validation phase,
such that |y(k+1)− ŷ(1|k)| ≤ µ. The set Rj is defined as
Rj = {y : |y| ∈ Mj} for all j ∈ IN1 , whereMj is calculated
from the equations Mj = B(dPL (Gj−1)) and Gj = Mj ×
· · · ×Mσ(j) ×{0}× · · · × {0}, with σ(j) = max(1, j −na),
and M1 = B(µ). In Manzano et al. (2021) it is also shown
that cj ∈ Rny and dj ∈ Rnw are such that Mj = B(cj)
and Gj = B(dj). Then, the sets Mj and Gj can be
calculated using the recursion cj = dPL (dj−1) and dj =
(cj , . . . , cσ(j), 0, . . . , 0), with c1 = µ, and then, Rj = B(cj).

In our specific control problem, an a posteriori analysis
highlighted that the extreme values of the possible devia-
tion of the nominal prediction are very unlikely to occur.
Then, the value representing the 95% (or 90%) percentile
of the probability distribution is used as µ instead of the
maximum error (see Table 1). To counteract possible infea-
sibilities due to some realizations outside the 95% (or 90%)
range, some slack variables δ = {δmin, δmax} are added in
the optimization problem; thus ŷ(j|k) ∈ Yj,δ, ∀j ∈ IN1 ,
where

Yj,δ = {y : ymin(j)− δmin(j) ≤ y ≤ ymax(j) + δmax(j)},
(11)

where ymin and ymax are the extreme values of Yj from (10)
and δmin, δmax are optimization variables.

3.1 Terminal ingredients computation

The tightened values of the constraints are computed just
once and offline. Then, the control horizon is chosen as the
maximum possible value that allows to have a reasonable
and non-empty set of constraints. To increase the domain
of attraction and the predictive ability of the controller,
a prediction horizon (Np) longer than the control horizon
(Nc) is considered, i.e. Np > Nc. To employ this strategy,
we need to define a local control law for the predictions
going from Nc to Np. In this work we will use a control
law of the form

u = K(x− x) + u, (12)

where K ∈ Rnu×nx is the control gain of a linear quadratic
regulator (LQR) and (x, u) is an equilibrium point around

which the system F̂ (x, u), with u = (u1, u2), is linearized.
In particular, x is constructed as per (2), using y =
120mg/dL of glucose, and u = (0, uref). Matrices A ∈
Rnx×nx and B ∈ Rnx×nu of the linearized model x(k +
1) = Ax(k) + Bu(k), are calculated numerically from the
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off with model complexity, to avoid the risk of overfitting.
The chosen orders were na = 5, nb = 9 and nc = 3.
To obtain the predictions employing (7), the hyperparam-
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optimization problem is solved offline, splitting D of each
patient into two disjoint data sets (Dtrain for estimation
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where WD are the input data points in D, and the cost
function to be minimized is:

g(Θ,Dtrain,Dtest) =
1

NDtest
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∥f̂(wi; Θ,Dtrain)− ỹi∥2,

being f̂(wi; Θ,D) the predictions made with the CHoKI (7)
and ỹi the measured values of the noisy data set Dtest.
It is assumed to have P = 1ny×nw

and thus the optimiza-
tion problem is set to obtain just the values of the matrix
L. In this case, only three values are estimated: one for
the glucose part, one for the meals and one for the insulin,
denoted La, Lb, Lc ∈ R, respectively. Hence, L contains
those 3 values repeated, i.e. L = [La1na ;Lb1nb

;Lc1nc ].
To set the constraints of the optimization problem, some
a priori knowledge has been exploited, for example estab-
lishing as initial value of the L, the one obtained with
the LACKI (Lazily Adapted Constant Kinky Inference)
method (Manzano et al., 2020), based on the Hölder con-
tinuity property (i.e. L). Thanks to previous analyses, the
upper and lower bounds are defined for La, Lb and Lc

as [10;10;10] and [0;0.9;0.09], respectively.
The fmincon MATLAB function was used to solve the
optimization problem (9) and the results are different for
every virtual patient. For each of them, once the L is
selected, the model is validated on a new data set, to verify
its ability to predict future BG values. For each patient,
the resulting L, the uref and the L are reported in Table 1.

3. CHOKI-BASED ROBUST MPC

The control objective is to steer the BG level y(k) to the
desired euglycemic zone, given by 70 ≤ y ≤ 180mg/dL,
fulfilling input and output constraints. The glucose must
not reach hyper- or hypoglycemia states, that is, y(k)
should be maintained in the set Y = {y : 55 ≤ y ≤
300mg/dL}, ∀k. The control action, that is, the available
basal insulin injection, varies such that u2(k) ∈ U = {u :
0 ≤ u ≤ 500 pmol}, ∀k.
Since we assume here that a physiological model for
T1D patients is not available, the open-loop prediction

of the MPC control problem are computed exploiting the
CHoKI predictor (7). To guarantee the MPC robustness to
possible model-plant mismatches, the employed strategy is
to restrict the output constraints according to the future
propagation of a certain error, representing the effect of
uncertainty in the predictions based on data. This way,
the system in closed loop with the proposed controller is
proved to be Input-to-State Stable (ISS) (Manzano et al.,
2021, Theorem 3).
The set of restricted output constraints is given by

Yj = Yj−1 ⊖Rj , (10)

along the prediction horizon, j = 1, ..., N . Rj are the
reachability sets that account for the possible errors in
the nominal predictions and Y0 = Y. To compute Rj ,
the starting point is to consider µ ∈ Rny , which is the
maximum absolute error obtained in the validation phase,
such that |y(k+1)− ŷ(1|k)| ≤ µ. The set Rj is defined as
Rj = {y : |y| ∈ Mj} for all j ∈ IN1 , whereMj is calculated
from the equations Mj = B(dPL (Gj−1)) and Gj = Mj ×
· · · ×Mσ(j) ×{0}× · · · × {0}, with σ(j) = max(1, j −na),
and M1 = B(µ). In Manzano et al. (2021) it is also shown
that cj ∈ Rny and dj ∈ Rnw are such that Mj = B(cj)
and Gj = B(dj). Then, the sets Mj and Gj can be
calculated using the recursion cj = dPL (dj−1) and dj =
(cj , . . . , cσ(j), 0, . . . , 0), with c1 = µ, and then, Rj = B(cj).

In our specific control problem, an a posteriori analysis
highlighted that the extreme values of the possible devia-
tion of the nominal prediction are very unlikely to occur.
Then, the value representing the 95% (or 90%) percentile
of the probability distribution is used as µ instead of the
maximum error (see Table 1). To counteract possible infea-
sibilities due to some realizations outside the 95% (or 90%)
range, some slack variables δ = {δmin, δmax} are added in
the optimization problem; thus ŷ(j|k) ∈ Yj,δ, ∀j ∈ IN1 ,
where

Yj,δ = {y : ymin(j)− δmin(j) ≤ y ≤ ymax(j) + δmax(j)},
(11)

where ymin and ymax are the extreme values of Yj from (10)
and δmin, δmax are optimization variables.

3.1 Terminal ingredients computation

The tightened values of the constraints are computed just
once and offline. Then, the control horizon is chosen as the
maximum possible value that allows to have a reasonable
and non-empty set of constraints. To increase the domain
of attraction and the predictive ability of the controller,
a prediction horizon (Np) longer than the control horizon
(Nc) is considered, i.e. Np > Nc. To employ this strategy,
we need to define a local control law for the predictions
going from Nc to Np. In this work we will use a control
law of the form

u = K(x− x) + u, (12)

where K ∈ Rnu×nx is the control gain of a linear quadratic
regulator (LQR) and (x, u) is an equilibrium point around

which the system F̂ (x, u), with u = (u1, u2), is linearized.
In particular, x is constructed as per (2), using y =
120mg/dL of glucose, and u = (0, uref). Matrices A ∈
Rnx×nx and B ∈ Rnx×nu of the linearized model x(k +
1) = Ax(k) + Bu(k), are calculated numerically from the

Table 1. MPC settings

Subject uref (pmol) ND
L

(LACKI)
[La;Lb;Lc]
(CHoKI)

µ (95%)
(mg/dL)

µ (90%)
(mg/dL)

Nc (95%) Nc (90%) ϵ Q

Adult 1 122.379 4775 3.46 [0.736; 5.457; 0.293] 20.37 14.83 2 2 10 1
Adult 2 134.888 4950 3.277 [4.886; 3.960; 0.09] 15.5 10.19 1 2 20 1
Adult 3 149.97 4990 3.076 [0.709; 5.45; 0.09] 15.99 9.29 2 3 10 1
Adult 5 91.8273 4156 6.563 [0.837; 5.518; 0.444] 21.13 13.91 2 2 5 1
Adult 6 190.219 5339 3.405 [4.717; 3.520; 0.09] 16.8 11.27 1 1 1 1
Adult 8 105.825 4703 2.582 [1.084; 5.840; 0.096] 11.13 7.8 2 3 1 100
Adult 9 94.586 3976 3.72 [1.127; 4.089; 0.09] 16.91 11.63 2 2 1 100
Adult 10 124.855 4966 3.294 [3; 2; 0.09] 16.02 10.1 1 1 20 1

input-output data using the CHoKI model. In this way,
each element A(j, i) is given by considering that

A(j, i) =
∂F̂j

∂xi
=

F̂j(xi + ϵ)− F̂j(xi − ϵ)

2ϵ
, (13)

where ϵ is different for each subject (see Table 1). Notice

that A(1, 1) =
∂yk+1

∂yk
.

3.2 CHoKI-based MPC implementation

The MPC optimization problem is set as follows:

min
u2,ya,δhyper,δhypo,δmin,δmax

VN (x̂, u; Θ,D) (14a)

s.t. x̂(0|k) = x(k) (14b)

x̂(j+1|k)=F̂ (x̂(j|k),u1(j),u2(j)), j ∈ INc−1
0 (14c)

x̂(j+1|k)=F̂ (x̂(j|k),K(x̄−x(j))+ū), j∈INp−1
Nc

(14d)

ŷ(j|k) = Mx̂(j|k), u2(j) ∈ U , j ∈ INp−1
0 (14e)

ŷ(j|k) ∈ Yj,δ, j ∈ INc−1
0 (14f)

ŷ(j|k) ∈ YNc,δ, j∈INp−1
Nc

(14g)

u1(j) = 0, j ∈ INp−1
1 (14h)

70− δhypo ≤ ya ≤ 140 + δhyper (14i)

δhyper ≥ 0, δhypo ≥ 0 (14j)

δmin(j) ≥ 0, δmax(j) ≥ 0 (14k)

where (14h) is used since the meals are not predictable
and Yj,δ comes from (11). The tightened constraints are
computed as explained in the previous section, for all the
subjects. This tightening implicitly defines the length of
the control horizon Nc, which may be different for each
virtual patient (divided for the 95% and 90% cases, see
Table 1). As for the prediction horizon, it is set to Np = 12
for all subjects, determining 60 minutes of predictions.
The cost functional is constructed as the sum of different
cost functions,

VN (x̂, u; Θ,D) = VNc
+ VNp

+ Vs + λVP + Vδ,

which are now briefly detailed.
The first term VNc is given by the summation of the stage
cost along the control horizon Nc:

VNc
=

Nc−1∑
j=0

∥ŷ(j|k)− ya∥2Q + ∥u2(j)− uref∥2R (15)

where the insulin reference value uref is the constant
basal insulin value for the chosen virtual patient of the
UVA/Padova simulator. The set-point ya is given by an
auxiliary optimization variable, constrained to belong to

the interval [70, 140] and necessary for the implementation
of the MPC in a zone control fashion. In addition some
slack variables δhypo and δhyper are added to the previous
constraint, leading to the stationary cost given by

Vs = phyperδ
2
hyper + phypoδ

2
hypo. (16)

Such a cost is built in an asymmetric fashion taking the
constants phypo > phyper, representing the fact that hy-
poglycemia is more dangerous than hyperglycemia (Abuin
et al., 2020).
The cost from Nc to the prediction horizon Np − 1 is

VNp
=

∑Np−1
j=Nc

∥ŷ(j|k)− ya∥2Q (17)

The terminal cost VP is used to guarantee the MPC
stability and to penalize the difference between the last
state x̂(Np|k) and the reference state. It is weighted by a
factor λ > 0, since no terminal constraint is considered. It
is defined as follows:

VP = ∥x̂(Np|k)− xref∥2P (18)

where P is the solution to the Riccati equation, given the
LQR control gain K, the reference state xref contains the
set point ya, no meals and uref .
The cost Vδ is added, to penalize the slack optimization
variables δmin and δmax, added in the constraints (11):

Vδ =
∑NP

j=1

(
δmin(j)

2pmin + δmax(j)
2pmax

)
(19)

The chosen weights are: R = 10, phypo = 1·107, phyper = 1·
106, pmin = 1·107, pmax = 1·106, λ = 10 and P comes from
the solution of the LQR for the linearized system around
the reference point, to guarantee stability. Q are reported
in Table 1, in the cases of R greater than Q, it means to
have a more conservative controller.

4. SIMULATIONS

The proposal is tested on the UVA/Padova simulator.
The controller is customized for each virtual patient of
the data collection phase. Different three days simulations
were performed, with three meals a day (40 g of carbohy-
drates at 06:00am, 100 g at 12:00pm and 60 g at 07:00pm,
with 15min duration) and the relative boluses (whose
amount is computed by the simulator) given 20 minutes
after the meal starts. All the devices have the same noise
setting as in the data collection phase.
The results of the simulations of the analyzed virtual
patients are displayed in Figure 1. In particular, in the
upper and middle graphs the BG trends are represented,
for the 95% and 90% cases respectively, which are caused
by the insulin injections shown in the lower graph, that
varies according to the patients’ model and situation. The
BG values are mainly inside the euglycemic range (i.e. 70-
180 mg/dL), except for some peaks caused by the glucose
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Fig. 1. Upper plot: BG trends of all patients, in the 95% case. The green zone represents the safe range. Middle plot:
BG trends in the 90% case. Lower plot: basal insulin injections computed by the proposed MPC.
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Fig. 2. CVGA result with BG measurements. Dots: 95%
case. Squares: 90% case.

increase due to the carbohydrates ingestion. The main
goal is to reduce the hypoglycemic events, due to their
dangerousness in a short time period, and it can be seen
that such a result is achieved.
An important tool to evaluate AP performance is the
Control-Variability Grid Analysis (CVGA) (Magni et al.,
2008), which is a graphical representation that gives both
visual and numerical information about the quality of
the glucose management. In Figure 2, each dot on the
graph describes a specific subject in the 95% case, while
the squares are for the 90% case, with the minimum BG
value as x-coordinate and the maximum BG value as y-
coordinate. These worst cases are all into the safe zones
(except for the adult 6 in the 95% case, which is in the
Lower D zone).
Finally, the Time In Range (TIR), which shows the per-
centage of time a patient spends in each specific BG
range, can also be assessed. In particular, according to

adult 1 adult 2 adult 3 adult 5 adult 6 adult 8 adult 9 adult 10

Virtual patients

0

20%
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%
T
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Time In Range (95% - 90%)

<54 mg/dL 54-70 mg/dL 70-180 mg/dL 180-250 mg/dL >250 mg/dL

Fig. 3. TIR results of the analysed virtual patients. Left
columns: 95% case. Right columns: 90% case.

the American Diabetes Association requirements, the TIR
goals are: < 5% of time with BG higher than 250 mg/dL,
< 25% between 180-250 mg/dL, > 70% between 70-
180 mg/dL, < 4% between 55-70 mg/dL and < 1% for BG
lower than 55 mg/dL. With the proposed controller, the
TIR requirements are mostly satisfied, since the subjects
never enter into the hypoglycemic ranges (except for the
virtual adult 6 in the 95% case, but still satisfying the
TIR specifications) and they generally stay between 70-
180 mg/dL for more than 70% of the simulation time. A
slight exception occurs for adults number 8 and 9, who
are a bit under 70% and thus also a bit higher in the
two hyperglycemia ranges. The results are displayed in
Figure 3, where, for each subject, the column on the left
is for the 95% case, while the one on the right for the 90%
case.
The obtained results are promising, especially if compared
to the ones obtained through the standard therapy pro-
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increase due to the carbohydrates ingestion. The main
goal is to reduce the hypoglycemic events, due to their
dangerousness in a short time period, and it can be seen
that such a result is achieved.
An important tool to evaluate AP performance is the
Control-Variability Grid Analysis (CVGA) (Magni et al.,
2008), which is a graphical representation that gives both
visual and numerical information about the quality of
the glucose management. In Figure 2, each dot on the
graph describes a specific subject in the 95% case, while
the squares are for the 90% case, with the minimum BG
value as x-coordinate and the maximum BG value as y-
coordinate. These worst cases are all into the safe zones
(except for the adult 6 in the 95% case, which is in the
Lower D zone).
Finally, the Time In Range (TIR), which shows the per-
centage of time a patient spends in each specific BG
range, can also be assessed. In particular, according to
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Fig. 3. TIR results of the analysed virtual patients. Left
columns: 95% case. Right columns: 90% case.

the American Diabetes Association requirements, the TIR
goals are: < 5% of time with BG higher than 250 mg/dL,
< 25% between 180-250 mg/dL, > 70% between 70-
180 mg/dL, < 4% between 55-70 mg/dL and < 1% for BG
lower than 55 mg/dL. With the proposed controller, the
TIR requirements are mostly satisfied, since the subjects
never enter into the hypoglycemic ranges (except for the
virtual adult 6 in the 95% case, but still satisfying the
TIR specifications) and they generally stay between 70-
180 mg/dL for more than 70% of the simulation time. A
slight exception occurs for adults number 8 and 9, who
are a bit under 70% and thus also a bit higher in the
two hyperglycemia ranges. The results are displayed in
Figure 3, where, for each subject, the column on the left
is for the 95% case, while the one on the right for the 90%
case.
The obtained results are promising, especially if compared
to the ones obtained through the standard therapy pro-
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Fig. 5. TIR result of the constant basal insulin therapy
provided by the simulator, for each subjects.

vided by the simulator, with constant basal insulin injec-
tion (uref) and with the same simulation settings. This
is visible looking at the CVGA represented in Figure 4,
where, for example, adults 5 and 9 are in the Lower D
zone, while with the MPC CHoKI-based controller the
same subjects are in the Upper B zone and on the border
between Upper B and Upper C zones (Figure 2), respec-
tively. The same improvements can be seen also in the TIR
results, displayed in Figure 5. The outcomes for the 95%
and 90% cases are quite similar, but considering the less
conservative case with the 90% error percentile, it allows
to increase a bit the prediction horizon Nc.

5. CONCLUSION

A new CHoKI-based MPC algorithm has been proposed
to be used in the AP to manage the basal insulin in T1D
patients. The entire system is tested on the UVA/Padova
simulator. The main outcome is that the proposed con-
troller reduces the (more dangerous) hypoglycemic events,
maintaining the patients into the euglycemic zone most of
the time. The results seem promising.
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Manzano, J.M., Muñoz de la Peña, D., Calliess, J.P., and
Limon, D. (2021). Componentwise Hölder Inference
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