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Given an irrational vector α in Rd, a continuous function f(x) on the torus Td and 
suitable weights Φ(N, n) such that 

∑+∞
n=−∞ Φ(N, n) = 1, we estimate the speed of 

convergence to the integral 
∫
Td f(y)dy of the weighted sum 

∑+∞
n=−∞ Φ(N, n)f(x +

nα) as N → +∞. Whereas for the arithmetic means N−1 ∑N
n=1 f(x + nα) the 

speed of convergence is never faster than cN−1, for other means such speed can be 
accelerated. We estimate the speed of convergence in two theorems with different 
flavor. The first result is a metric one, and it provides an estimate of the speed 
of convergence in terms of the Fourier transform of the weights Φ(N, n) and the 
smoothness of the function f(x) which holds for almost every α. The second result 
is a deterministic one, and the speed of convergence is estimated also in terms of 
the Diophantine properties of the given irrational vector α ∈ Rd.

© 2024 The Author(s). Published by Elsevier Inc. This is an open access article 
under the CC BY license (http://creativecommons .org /licenses /by /4 .0/).

1. Introduction

The motivation for this work comes from an attempt to estimate the speed of convergence in a classical 
ergodic theorem which we now describe. There are several results in the literature concerning this problem 
and here we only cite a few.

A classical result of L. Kronecker states that if α = (α1, . . . , αd) ∈ Rd is an irrational vector, that is, if 
1, α1, . . . , αd are linearly independent over the rationals, then the sequence {nα}+∞

n=1 is dense in the torus 
Td = Rd/Zd. This implies that for every continuous nonconstant function f(x) on the torus the sequence 
{f(x + nα)}+∞

n=1 does not have a limit as n → +∞. Another classical result obtained independently by 
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P. Bohl, W. Sierpinski and H. Weyl states that the sequence {nα}+∞
n=1 is uniformly distributed in the torus, 

and the arithmetic means of the sequence {f(x + nα)}+∞
n=1 converge to the integral of the function,

lim
N→+∞

⎧⎨⎩ 1
N

N∑
n=1

f(x + nα) −
∫
Td

f(y)dy

⎫⎬⎭ = 0.

For such classical facts we refer the reader, for instance, to [18] and [25, Chapter 6]. The map x �→ x +α is 
a measure preserving ergodic transformation whenever α ∈ Rd is an irrational vector and the above results 
are particular cases of classical ergodic theorems. It is known that no general statement can be made about 
the rate of convergence in these theorems. In [15] and [17] it is proved that if T is a measure preserving 
ergodic transformation of the interval [0, 1] and if {εn}+∞

n=1 is a positive sequence converging to 0, then there 
exists a continuous function f(x) such that, for almost every x, one has

lim sup
N→+∞

⎧⎨⎩ε−1
N

⎛⎝ 1
N

N∑
n=1

f(Tn(x)) −
1∫

0

f(y)dy

⎞⎠⎫⎬⎭ = +∞.

Confirming a conjecture of Erdös and Szüs, in [16] and in [20] it is proved that if f(x) is the characteristic 
function of an interval {a ≤ x ≤ b}, with 0 < b − a < 1, then the quantity

N∑
n=1

f(x + nα) −N

1∫
0

f(y)dy

is bounded in N if and only if b − a = hα − k for some integers h and k. Therefore, for a characteristic 
function the speed of convergence cN−1 is the exception, not the rule. For multidimensional analogues of 
such results see [11,12].

In [13] it is proved that if f(x) is a continuously differentiable function on {0 ≤ x ≤ 1} with df(x)/dx
Lipschitz continuous and with f(0) �= f(1), then, for every α, one has

lim sup
N→+∞

⎧⎨⎩
∣∣∣∣∣∣

N∑
n=1

f(nα) −N

1∫
0

f(y)dy

∣∣∣∣∣∣
⎫⎬⎭ = +∞.

It is also proved that if f(0) = f(1), hence f(x) is continuous as a function on the torus T , but the 
derivative may have a jump discontinuity, then, for almost every α, one has

lim sup
N→+∞

⎧⎨⎩ sup
0≤x≤1

⎧⎨⎩
∣∣∣∣∣∣

N∑
n=1

f(x + nα) −N

1∫
0

f(y)dy

∣∣∣∣∣∣
⎫⎬⎭
⎫⎬⎭ < +∞.

Observe that a discontinuous function cannot have an absolutely convergent Fourier expansion. On the 
other hand, the assumptions f(0) = f(1) and df(x)/dx Lipschitz continuous in {0 ≤ x ≤ 1} imply that 
|f̂(m)| ≤ cm−2. More generally, if df(x)/dx is Hölder continuous with exponent ε > 0, then |f̂(m)| ≤
cm−1−ε. In [7] it is proved that if {αn}+∞

n=0 is a van der Corput sequence on the interval {0 ≤ x ≤ 1} and if 
the Fourier coefficients of the function f(x) have decay |f̂(m)| ≤ c|m|−1−ε for some ε > 0, then

sup
N≥1

⎧⎨⎩
∣∣∣∣∣∣

N∑
n=1

f(αn) −N

1∫
f(x)dx

∣∣∣∣∣∣
⎫⎬⎭ < +∞.
0
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In [1] it is proved that the expected speed of convergence of Weyl sums of continuous, or, more generally, 
square integrable functions, is slightly less than N−1/2. More precisely, they proved that if f(x) is square 
integrable and if ν < 1/2 then, for almost every (α, x) ∈ Td × Td, one has

lim sup
N→+∞

⎧⎨⎩Nν

∣∣∣∣∣∣ 1
N

N∑
n=1

f(x + nα) −
∫
Td

f(y)dy

∣∣∣∣∣∣
⎫⎬⎭ = 0.

They also proved that the exponent −1/2 is best possible and that there exist continuous functions f(x)
such that, for almost every (α, x) ∈ Td × Td, one has

lim sup
N→+∞

⎧⎨⎩N
1
2

∣∣∣∣∣∣ 1
N

N∑
n=1

f(x + nα) −
∫
Td

f(y)dy

∣∣∣∣∣∣
⎫⎬⎭ = +∞.

In conclusion, the rate of convergence of the means N−1∑N
n=1 f(x + nα) to the integral 

∫
Td f(y)dy can 

be arbitrarily slow and it is also quite easy to see that this rate of convergence cannot be faster than cN−1; 
see the proof of Corollary 1.7. The goal in this paper is to show that, with suitable smoothness assumptions 
on the function f(x), the speed of summability of the divergent sequence {f(x + nα)}+∞

n=1 can be improved 
if instead of the arithmetic means one considers smoother means such as, for instance,

1
N

N−1∑
n=1−N

(
1 − |n|

N

)
f(x + nα).

See [8] and [26] for references about summation methods. We want also to remark that the paper [6] by 
S. Das and J. A. York is particularly relevant for the subject of our paper.

Let us now fix some notations for what follows. Denote by ‖t‖ the distance of a real number t to the 
nearest integer, that is, ‖t‖ = infn∈Z {|t− n|}. Functions on the torus Td = Rd/Zd are identified with 
periodic functions on Rd with period Zd. The Fourier transform and the Fourier expansion of an integrable 
function on the torus are defined respectively by

f̂(m) =
∫
Td

f(x)e−2πim·xdx, Sf(x) =
∑

m∈Td

f̂(m)e2πim·x.

The Sobolev space W δ,2(Td), δ > 0, is the space of distributions on Td defined by the norm

‖f‖δ,2 =

⎛⎝ ∑
m∈Zd

(
1 + |m|2

)δ |f̂(m)|2
⎞⎠

1
2

.

In what follows Φ(N, n) denotes a complex valued function of the positive integer variable N ≥ 1 and the 
integer variable n ∈ Z, with the property that for every N the function n → Φ(N, n) has bounded support, 
and that

+∞∑
n=−∞

Φ(N,n) = 1. (1)

The weighted discrepancy associated to the weights {Φ(N,n)}+∞
n=−∞ and to the Kronecker sequence 

{nα}+∞
n=−∞, with α ∈ Rd, or equivalently with α ∈ Td, is defined by
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DΦ,α
N f(x) =

+∞∑
n=−∞

Φ(N,n)f(x + nα) −
∫
Td

f(y)dy.

An example to keep in mind is

Φ(N,n) =
( +∞∑

n=−∞
Ψ(N−1n)

)−1

Ψ(N−1n)

where Ψ(t) is a suitable bounded function with compact support. In this case N is roughly the size of the 
support of the function n → Φ(N, n). The assumption of compact support could be weakened assuming a 
suitably fast decay at infinity.

Our first main result is related to the results in [4,5] and it reads as follows.

Theorem 1.1. Let DΦ,α
N be the operator defined as above, with Φ(N, n) satisfying (1). Assume the following.

(i) There exist constants K > 0 and ϑ > 0 such that for every N ≥ 1 and every t ∈ R one has

∣∣∣∣∣
+∞∑

n=−∞
Φ(N,n)e2πint

∣∣∣∣∣ ≤ K(1 + N‖t‖)−ϑ.

(ii) The function f(x) is in the Sobolev class W δ,2(Td), with δ > d/2 if 0 < ϑ < 1, and δ > dϑ − d/2 if 
ϑ ≥ 1.

Then, for almost every α there exists a positive constant c(f, α) such that for every positive integer N
one has

sup
x∈Td

{∣∣∣DΦ,α
N f(x)

∣∣∣} ≤ c(f, α)N−ϑ.

Observe that if the assumption (i) holds true with an exponent ϑ0, then it also holds true for every 
ϑ1 ≤ ϑ0. If the function f(x) has a degree of smoothness d/2 < δ ≤ dϑ0 − d/2 with ϑ0 > 1, then one 
cannot guarantee a speed of convergence cN−ϑ0 , but at least one can guarantee a speed cN−ϑ1 for every 
1 < ϑ1 < ϑ0 with δ > dϑ1 − d/2.

The above result is a metric one and it holds true for almost every α. Our second main result is a 
deterministic one and it holds for a specific α.

Theorem 1.2. Let DΦ,α
N be the operator defined as above with Φ(N, n) satisfying (1). Assume the following.

(i) There exist constants K > 0 and ϑ > 0 such that for every positive integer N and every t ∈ R one has

∣∣∣∣∣
+∞∑

n=−∞
Φ(N,n)e2πint

∣∣∣∣∣ ≤ K(1 + N‖t‖)−ϑ.

(ii) The vector α ∈ Rd is irrational and there exist constants H > 0 and σ ≥ d such that ‖α ·m‖ ≥ H|m|−σ

for every m ∈ Zd \ {0}.
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(iii) Finally assume that δ > d/2 and set

X(d, δ, ϑ, σ,N) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

N
−δ+ϑσ−dϑ+d/2

σ−d if ϑ < 1/2 and δ < ϑσ − d(ϑ− 1/2),
log

1
2 (1 + N) if ϑ < 1/2 and δ = ϑσ − d(ϑ− 1/2),

1 if ϑ < 1/2 and δ > ϑσ − d(ϑ− 1/2),
N

σ/2−δ
σ−d log

1
2 (1 + N) if ϑ = 1/2 and δ < σ/2,

log(1 + N) if ϑ = 1/2 and δ = σ/2,
1 if ϑ = 1/2 and δ > σ/2,
N

ϑ(ϑσ−δ)
ϑσ−d/2 if ϑ > 1/2 and δ < ϑσ,

log
1
2 (1 + N) if ϑ > 1/2 and δ = ϑσ,

1 if ϑ > 1/2 and δ > ϑσ.

Then there exists a positive constant c = c(H, K, d, δ, ϑ, σ) such that for every function f(x) in the Sobolev 
space W δ,2(Td) and every positive integer N one has

sup
x∈Td

{∣∣∣DΦ,α
N f(x)

∣∣∣} ≤ cN−ϑX(d, δ, ϑ, σ,N)‖f‖δ,2.

It should be remarked that the above Theorem 1.2 and its proof are in principle similar to Theorem 3.1 
in [6]. Observe that both Theorem 1.1 and Theorem 1.2 guarantee a speed of convergence cN−ϑ, up to some 
possible logarithmic transgressions, but the smoothness assumptions on the functions in these theorems 
are different. The index of smoothness δ > dϑ − d/2 in Theorem 1.1 is allowed to be smaller than the 
index δ > ϑσ ≥ dϑ in Theorem 1.2. On the other hand the conclusion in Theorem 1.1 holds for almost 
every α, with α depending on the given function one is considering, whereas in Theorem 1.2 the vector 
α is independent of the function. Anyhow, both theorems are essentially sharp. The following theorem 
shows that in Theorem 1.1 and in Theorem 1.2 the speed of convergence cN−ϑ cannot be accelerated for 
every nonconstant function, provided that the assumption 

∣∣∣∑+∞
n=−∞ Φ(N,n)e2πint

∣∣∣ ≤ K(1 + N‖t‖)−ϑ can 
be reversed.

Theorem 1.3. Set

C(t) = lim sup
N→+∞

{
Nϑ

∣∣∣∣∣
+∞∑

n=−∞
Φ(N,n)e2πint

∣∣∣∣∣
}
.

Then, for every function f(x), every m ∈ Zd \ {0} and every α ∈ Td one has

lim sup
N→+∞

{
Nϑ sup

x∈Td

{∣∣∣DΦ,α
N f(x)

∣∣∣}} ≥ C(m · α)|f̂(m)|.

In particular, if C(t) > 0 for a set of t ∈ T of measure 0 < η ≤ 1, then C(m · α) > 0 for a set of α ∈ Td

of measure η; see Lemma 2.1.
Notice that in this theorem the smoothness index of the function plays no role. Nonetheless, some 

smoothness is necessary. Indeed, since the Sobolev space W
d
2 ,2(Td) contains unbounded functions, it easily 

follows that the smoothness assumption δ > d/2 in Theorem 1.1 and Theorem 1.2 is necessary.

Theorem 1.4. There exists a function f(x) in the Sobolev space W
d
2 ,2(Td) such that for every irrational 

vector α and every N one has
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sup
x∈Td

{∣∣∣DΦ,α
N f(x)

∣∣∣} = +∞.

Moreover, if the sequence {Φ(N,n)}+∞
n=−∞ is non-negative, then the above discrepancy is infinite for every 

α.

The following theorem shows that the index δ > dϑ − d/2 in Theorem 1.1 is sharp, provided that the 
assumption (i) in the theorem can be reversed.

Theorem 1.5. Assume that for an infinite sequence of N ’s there exists H > 0 such that

+∞∑
n=−∞

Φ(N,n)e2πint ≥ H(1 + N‖t‖)−ϑ.

(i) If δ < dϑ − d/2 then there exists a function f(x) in the Sobolev space W δ,2(Td) such that, for every α, 
one has

lim sup
N→+∞

{
Nϑ sup

x∈Td

{∣∣∣DΦ,α
N f(x)

∣∣∣}} = +∞.

(ii) There exists a function f(x) in the Sobolev space W dϑ− d
2 ,2(Td) such that, for almost every α, one has

lim sup
N→+∞

{
Nϑ sup

x∈Td

{∣∣∣DΦ,α
N f(x)

∣∣∣}} = +∞.

The following theorem shows that the smoothness index δ > ϑσ in Theorem 1.2 is sharp, provided that 
the assumptions (i) and (ii) in the theorem can be reversed.

Theorem 1.6. Assume that for an infinite sequence of N ’s there exists H > 0 such that

+∞∑
n=−∞

Φ(N,n)e2πint ≥ H(1 + N‖t‖)−ϑ.

Assume also that for a given α there exist L > 0 and an infinite subset Ω of Zd\{0} with ‖α·m‖ ≤ L|m|−σ

for every m ∈ Ω. Then there exists a function f(x) ∈ Wϑσ,2(Td) such that

lim sup
N→+∞

{
Nϑ sup

x∈Td

{∣∣∣DΦ,α
N f(x)

∣∣∣}} = +∞.

A crucial assumption in Theorem 1.2 is the behavior of the sequence {‖α · m‖}m∈Zd . We recall some 
results in Diophantine approximation.

(	) A classical result of Dirichlet states that for every vector α ∈ Rd and every positive integer M there 
exists m = (m1, m2, . . . , md) in Zd with |mj | ≤ M for every j = 1, . . . , d, and with ‖α ·m‖ ≤ M−d. 
In particular, if there exists H > 0 such that ‖α ·m‖ ≥ H|m|−σ for every m ∈ Zd \ {0}, then σ ≥ d. 
See e.g. [21, Chapter II, Theorem 1E].

(		) If {1, α1, α2, . . . , αd} is a basis of a real algebraic number field of degree d + 1, and if α =
(α1, α2, . . . , αd), then there exists H > 0 such that ‖α · m‖ ≥ H|m|−d for every m ∈ Zd \ {0}. 
See e.g. [21, Chapter 2, Theorem 4A].
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(	 	 	) For every σ > d the set of vectors α in Rd with ‖α ·m‖ < |m|−σ for infinitely many m ∈ Zd \ {0}
has measure zero. This result is due to Khintchine. See e.g. [21, Chapter 3, Theorem 3A], [2] and 
the references therein.

It follows from these results that the assumption (ii) in Theorem 1.2 is not empty and σ ≥ d is necessary. 
The following corollaries show that also the assumption (i) in Theorem 1.1 and Theorem 1.2 is nonempty.

Corollary 1.7. Let Φ(N, n) =
(∑+∞

n=−∞ Ψ(N−1n)
)−1

Ψ(N−1n), with

Ψ(t) =
{

1 if |t| ≤ 1,
0 if |t| > 1.

Then Theorem 1.1, Theorem 1.2 and Theorem 1.3 apply with every ϑ ≤ 1.

Corollary 1.8. Let Φ(N, n) =
(∑+∞

n=−∞ Ψ(N−1n)
)−1

Ψ(N−1n), with

Ψ(t) =
{

1 − |t| if |t| ≤ 1,
0 if |t| > 1.

Then Theorem 1.1, Theorem 1.2 and Theorem 1.3 apply with every ϑ ≤ 2.

Corollary 1.9. Let γ > 0 and let Φ(N, n) =
(∑+∞

n=−∞ Ψ(N−1n)
)−1

Ψ(N−1n), with

Ψ(t) =
{

(1 − |t|2)γ if |t| ≤ 1,
0 if |t| > 1.

Then Theorem 1.1, Theorem 1.2 and Theorem 1.3 apply with every ϑ ≤ γ + 1.

Corollary 1.10. Let

Φ(N,n) =

⎧⎨⎩
(2N)!

22N (N − n)! (N + n)! if |n| ≤ N !,

0 if |n| > N !.

Then Theorem 1.1 and Theorem 1.2 can be applied with every ϑ, but with [
√
N ] instead of N , that is the 

relations between the indexes d, δ, ϑ and σ are the ones in the theorems, but the speed of convergence is 
cN−ϑ

2 instead of cN−ϑ.

The next corollary shows that, up to a small logarithmic transgression, Kronecker sequences associated 
to vectors α which satisfy the hypothesis (ii) in Theorem 1.2 with σ = d give optimal quadrature rules for 
Sobolev functions. See [3] for results about quadrature rules for Sobolev functions. See also [9] and [10] for 
results about existence of optimal quadrature rules.

Corollary 1.11. Let Φ(N, n) =
(∑+∞

n=−∞ Ψ(N−1n)
)−1

Ψ(N−1n), with Ψ(t) a smooth compactly supported 

bounded function satisfying cN ≤
∣∣∣∑+∞

n=−∞ Ψ(N−1n)
∣∣∣ ≤ CN . Let α be an irrational vector in Rd and 

assume also that there exist constants H > 0 and σ ≥ d such that ‖α ·m‖ ≥ H|m|−σ for every m ∈ Zd \{0}. 
Finally assume that δ > d/2 and set
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Y (d, δ, σ,N) =

⎧⎪⎪⎨⎪⎪⎩
N

d
σ−d ( 1

2− δ
σ ) if δ/σ < 1/2,

log(1 + N) if δ/σ = 1/2,
log

1
2 (1 + N) if δ/σ > 1/2.

Then there exists a positive constant c such that

sup
x∈Td

{∣∣∣DΦ,α
N f(x)

∣∣∣} ≤ c‖f‖δ,2N− δ
σ Y (d, δ, σ,N).

When σ = d the speed of convergence cN− δ
d cannot be improved in the sense that there exists c > 0 such 

that for every distribution of points {z(n)}Nn=1 and weights {ω(n)}Nn=1 there exist nonconstant functions in 
W δ,2(Td) with ∣∣∣∣∣∣

N∑
n=1

ω(n)f(z(n)) −
∫
Td

f(y)dy

∣∣∣∣∣∣ ≥ cN− δ
d ‖f‖δ,2.

The above corollaries show that it is quite easy to exhibit examples of weights Φ(N, n) that satisfy the 
assumptions in Theorem 1.1 and Theorem 1.2. It is less immediate to construct weights Φ(N, n) that satisfy 
the reverse assumption, in particular the ones in Theorem 1.5 and Theorem 1.6. However, such weights 
exist; see Remark 3.1. We include in the paper an appendix where we shall consider the logarithmic means 
defined by the weights

Φ(N,n) =

⎧⎪⎪⎨⎪⎪⎩
(

N∑
m=1

1
m

)−1
1
n

if 1 ≤ n ≤ N

0 otherwise.

Although these logarithmic means do not satisfy exactly the assumptions in Theorem 1.1 and Theorem 1.2, 
the proofs of these theorems can be adapted.

To conclude, the above results may have continuous analogues where the discrete means are replaced by 
continuous means,

CΦ,α
T f(x) =

+∞∫
−∞

Φ(T, t)f(x + tα)dt−
∫
Td

f(y)dy.

We plan to investigate such operator in future works.
In the next section we provide the proofs of our main theorems, whereas in Section 3 we conclude with 

some final remarks.

2. Proofs of the main results

We need an elementary lemma.

Lemma 2.1. If g(t) is a periodic locally integrable function on T , then, for every m ∈ Zd\{0}, one has∫
g(m · α) dα =

∫
g(t) dt.
Td T
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More precisely, if g(t) is a measurable function on T , then, for every m ∈ Zd\{0}, the functions g(t), 
t ∈ T , and g(m · α), α ∈ Td, have the same distribution function. Namely, for every −∞ < s < +∞,

|{t ∈ T , g(t) > s}| =
∣∣{α ∈ Td, g(m · α) > s

}∣∣ .
Proof. It immediately follows from the measure preserving property of the transformation α �→ m · α. �

We now prove our first main result.

Proof of Theorem 1.1. Observe that for every 0 < p < 2 one has

∑
m∈Zd

|f̂(m)|p ≤

⎛⎝ ∑
m∈Zd

|f̂(m)|2
(
1 + |m|2

)δ⎞⎠
p
2
⎛⎝ ∑

m∈Zd

(
1 + |m|2

)−pδ/(2−p)

⎞⎠
2−p
2

.

The first factor is the Sobolev norm of f(x), whereas the second series converges provided that 2pδ/(2 −
p) > d. In particular, for p = 1 and δ > d/2 one sees that the Fourier expansion of f(x) converges absolutely. 
This fact and the compact support of n → Φ(N, n) assure the pointwise identity

DΦ,α
N f(x) =

+∞∑
n=−∞

Φ(N,n)f(x + nα) −
∫
Td

f(y)dy

=
∑

m∈Zd\{0}

( +∞∑
n=−∞

Φ(N,n)e2πinm·α

)
f̂(m)e2πim·x.

Hence, thanks to (i), one has∣∣∣DΦ,α
N f(x)

∣∣∣ ≤ KN−ϑ
∑

m∈Zd\{0}
|f̂(m)|‖m · α‖−ϑ = c(f, α)N−ϑ.

In order to show that the constants c(f, α) are finite for almost every α it suffices to show that the series 
defining these constants converges absolutely for almost every α. By the previous lemma the functions 
α �→ ‖m · α‖−ϑ are in Lp(Td) for every p < 1/ϑ with norm independent of m,

∫
Td

(
‖m · α‖−ϑ

)p
dα =

∫
T

‖t‖−ϑpdt =

1
2∫

0

t−ϑpdt = 2ϑp−1

1 − ϑp
.

If 0 < ϑ < 1, then the functions α �→ ‖m · α‖−ϑ are integrable and the series∑
m∈Zd\{0}

|f̂(m)|‖m · α‖−ϑ

converges provided that ∑
m∈Zd

|f̂(m)| < ∞.

As observed before, this holds true if δ > d/2.
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If ϑ ≥ 1, then 0 < p < 1/ϑ ≤ 1, and, by the inequality |a + b|p ≤ |a|p + |b|p, the series∑
m∈Zd\{0}

|f̂(m)|‖m · α‖−ϑ

converges for almost every α and in the Lp(Td) quasinorm provided that∑
m∈Zd

|f̂(m)|p < ∞.

As observed at the beginning of the proof this happens for every 0 < p < 2 whenever 2pδ/(2 − p) > d, 
from which one obtains δ > d(1/p − 1/2) > dϑ − d/2. �

A key ingredient in the proof of Theorem 1.2 is a classical result in Diophantine approximation. Let γ be 
an irrational number. If the sequence {‖γn‖}Nn=1 is well-distributed in 0 ≤ t ≤ 1/2 as it is distributed the 
sequence {n/(2N)}Nn=1, then one can guess that

N∑
n=1

‖γn‖−ϑ ≈
N∑

n=1

( n

2N

)−ϑ

≤

⎧⎪⎪⎨⎪⎪⎩
cN if 0 < ϑ < 1,
cN log(N) if ϑ = 1,
cNϑ if 1 < ϑ < +∞.

Under suitable Diophantine assumptions on γ the above conjectured estimate is correct. The following 
lemma is a variant of known results (see the work of M. Herman [14] and also, e.g., [19, Chapter 3]). 
Nonetheless, for the reader’s convenience, we include a self-contained short proof which follows from standard 
arguments.

Lemma 2.2. Assume that α = (α1, . . . , αd) ∈ Rd is an irrational vector, that is, 1, α1, . . . , αd are linearly 
independent over the rationals, and assume that there exist constants H > 0 and σ ≥ d such that ‖α ·m‖ ≥
H|m|−σ for every m ∈ Zd \ {0}. Then there exists a positive constant c such that, for every R ≥ 1,

∑
0<|m|<R

‖α ·m‖−ϑ ≤

⎧⎪⎪⎨⎪⎪⎩
cRϑσ+d(1−ϑ) if 0 < ϑ < 1,
cRσ log(R) if ϑ = 1,
cRϑσ if 1 < ϑ < +∞.

Proof. By the assumptions ‖α ·m‖ ≥ H|m|−σ and |m| < R, the interval [0, H/(2R)σ) does not contain any 
term of the sequence {‖α ·m‖}0<|m|<R. Moreover, for every integer n such that 0 < n < 2σ−1H−1Rσ the 
interval Iσn,R = [nH/(2R)σ, (n + 1)H/(2R)σ) contains at most one term of such sequence. Indeed, if there 
are two terms in the interval, then there are integer points p �= q with |p|, |q| < R, and integers u and v such 
that

|(α · p− u) ± (α · q − v)| < H

(2R)σ .

The signum is minus if α · p and α · q approximate the nearest integers u and v both from above or both 
from below, the signum is plus if one approximation is from above and the other from below. Hence,

‖α · (p± q)‖ <
H

(2R)σ .

But |p ± q| < 2R, and this contradicts the assumption ‖α · m‖ ≥ H|m|−σ. Notice that the number 
of intervals Iσn,R’s is of the order of cRσ, whereas the number of integer points in the punctured ball 
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{0 < |m| < R} is about cRd, and recall also that σ ≥ d. Observe that one has the worst estimate when the 
terms of the sequence {‖α ·m‖}0<|m|<R are concentrated in the first 0 < n ≤ cRd intervals. In conclusion,

∑
0<|m|<R

‖α ·m‖−ϑ ≤
∑

0<n≤cRd

(
nH

(2R)σ

)−ϑ

≤

⎧⎪⎪⎨⎪⎪⎩
cRϑσ+d(1−ϑ) if 0 < ϑ < 1,
cRσ log(1 + R) if ϑ = 1,
cRϑσ if 1 < ϑ < +∞. �

Proof of Theorem 1.2. As in the proof of Theorem 1.1 one has the pointwise identity

DΦ,α
N f(x) =

+∞∑
n=−∞

Φ(N,n)f(x + nα) −
∫
Td

f(y)dy

=
∑

m∈Zd\{0}

( +∞∑
n=−∞

Φ(N,n)e2πinm·α

)
f̂(m)e2πim·x.

Hence, by Cauchy’s inequality and assumption (i), one has the estimate

∣∣∣DΦ,α
N f(x)

∣∣∣ ≤
⎛⎝ ∑

m∈Zd\{0}
|m|−2δ

∣∣∣∣∣
+∞∑

n=−∞
Φ(N,n)e2πinm·α

∣∣∣∣∣
2⎞⎠

1
2

‖f‖δ,2

≤ K

⎛⎝ ∑
m∈Zd\{0}

|m|−2δ(1 + N‖m · α‖)−2ϑ

⎞⎠
1
2

‖f‖δ,2.

By Lemma 2.2, for every positive integer M one has∑
m∈Zd\{0}

|m|−2δ(1 + N‖m · α‖)−2ϑ

≤ cN−2ϑ
M−1∑
k=0

2−2δk

⎛⎝ ∑
2k≤|m|<2k+1

‖m · α‖−2ϑ

⎞⎠+
∑

|m|≥2M

|m|−2δ

≤

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

cN−2ϑ
M−1∑
k=0

2(2ϑσ+d−2dϑ−2δ)k + 2(d−2δ)M if 0 < ϑ < 1/2,

cN−1
M−1∑
k=0

(1 + k)2(σ−2δ)k + 2(d−2δ)M if ϑ = 1/2,

cN−2ϑ
M−1∑
k=0

2(2ϑσ−2δ)k + 2(d−2δ)M if 1/2 < ϑ < +∞.

For ϑ < 1/2, the choice M = log2(N)/(σ − d) if δ < ϑσ + d/2 − dϑ or M = 2ϑ log2(N)/(2δ − d) if 
δ ≥ ϑσ + d/2 − dϑ gives

N−2ϑ
M−1∑
k=0

2(2ϑσ+d−2dϑ−2δ)k + 2(d−2δ)M ≤

⎧⎪⎪⎨⎪⎪⎩
cN− 2δ−d

σ−d if δ < ϑσ + d/2 − dϑ,

cN−2ϑ log(N) if δ = ϑσ + d/2 − dϑ,

cN−2ϑ if δ > ϑσ + d/2 − dϑ.

Observe that if σ = d, then δ > ϑσ + d/2 − dϑ. If ϑ = 1/2, the choice M = log2(N)/(σ − d) if δ ≤ σ/2
or M = log2(N)/(2δ − d) if δ ≥ σ/2 gives
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N−1
M−1∑
k=0

(1 + k)2(σ−2δ)k + 2(d−2δ)M ≤

⎧⎪⎪⎨⎪⎪⎩
cN− 2δ−d

σ−d log(N) if δ < σ/2,
cN−1 log2(N) if δ = σ/2,
cN−1 if δ > σ/2.

Observe that if σ = d, then δ > σ/2. For the last case ϑ > 1/2, the choice M = 2ϑ log2(N)/(2ϑσ − d) if 
δ ≤ σϑ or M = 2ϑ log2(N)/(2δ − d) if δ ≥ ϑσ gives

N−2ϑ
M−1∑
k=0

2(2ϑσ−2δ)k + 2(d−2δ)M ≤

⎧⎪⎪⎨⎪⎪⎩
cN− 2ϑ(2δ−d)

2ϑσ−d if δ < ϑσ,

cN−2ϑ log(N) if δ = ϑσ,

cN−2ϑ if δ > ϑσ.

Collecting the above estimates one obtains that

⎛⎝ ∑
m∈Zd\{0}

|m|−2δ(N‖m · α‖)−2ϑ

⎞⎠
1
2

≤ cN−ϑX(d, δ, ϑ, σ,N). �

Proof Theorem 1.3. Recall that the Fourier coefficients are bounded by the L1(Td) norm of the function, 
so that

sup
x∈Td

{∣∣∣DΦ,α
N f(x)

∣∣∣} ≥
∫
Td

∣∣∣DΦ,α
N f(x)

∣∣∣ dx
≥
∣∣∣∣∣

+∞∑
n=−∞

Φ(N,n)e2πinm·α

∣∣∣∣∣ |f̂(m)|.

Therefore,

lim sup
N→+∞

{
Nϑ sup

x∈Td

{∣∣∣DΦ,α
N f(x)

∣∣∣}} ≥ lim sup
N→+∞

⎧⎨⎩Nϑ

∫
Td

∣∣∣DΦ,α
N f(x)

∣∣∣ dx
⎫⎬⎭

≥ lim sup
N→+∞

{
Nϑ

∣∣∣∣∣
+∞∑

n=−∞
Φ(N,n)e2πinm·α

∣∣∣∣∣
}
|f̂(m)| = C(m · α)|f̂(m)|. �

The proof of Theorem 1.4 is straightforward. We include a proof for the sake of completeness.

Proof of Theorem 1.4. It suffices to recall that the Sobolev space W
d
2 ,2(Td) contains unbounded functions. 

If f(x) is unbounded in just one point and if α is an irrational vector, or if the weights Φ(N, n) are non-
negative and α is arbitrary, then in the sum 

∑+∞
n=−∞ Φ(N, n)f(x + nα) the possible infinite terms do not 

cancel. Hence

sup
x∈Td

{∣∣∣DΦ,α
N f(x)

∣∣∣} = +∞.

An explicit example of function in W
d
2 ,2(Td) unbounded in a neighborhood of the origin and bounded 

elsewhere is given by the series

f(x) =
∑ (

1 + |m|2
)− d

2 log−1 (2 + |m|) e2πim·x. �

m∈Zd



L. Colzani et al. / J. Math. Anal. Appl. 536 (2024) 128190 13
The following lemma is a main ingredient in the proof of Theorem 1.5. The results are well-known. For 
the reader’s convenience, we include a short proof referring to the literature.

Lemma 2.3.

(i) If ϑ > 0, then, for every α ∈ Rd, one has∑
m∈Zd\{0}

|m|−dϑ‖m · α‖−ϑ = +∞.

(ii) If ϑ > 0, then, for almost every α ∈ Rd, one has∑
m∈Zd\{0}

|m|−dϑ log−ϑ (1 + |m|) ‖m · α‖−ϑ = +∞.

Proof. (i) It is a classical result of Dirichlet in Diophantine approximation that for every vector α ∈ Rd and 
every positive integer M there exists m = (m1,m2, . . . ,md) in Zd with |mj | ≤ M for every j = 1, . . . , d, 
and with ‖α ·m‖ ≤ M−d. See e.g. [21, Chapter II, Theorem 1E]. Since |m| ≤

√
dM , it follows that in the 

series we are interested in there are infinitely many terms larger than d
dϑ
2 , and the series diverges.

(ii) It is a classical result of Khintchine in dimension one, and of Groshev in dimension d ≥ 1, that for al-
most every vector α ∈ Rd there exists infinitely many m ∈ Zd\{0} such that ‖m ·α‖ ≤ |m|−d log−1 (1 + |m|). 
See e.g. [21, Chapter III, Theorem 3A] and [2,22]. Hence, for almost every α there are infinitely many terms 
larger than 1 in the given series, so that such series diverges. �
Proof of Theorem 1.5. Observe that if ϑ ≤ 1 then dϑ − d/2 ≤ d/2, and this case is already covered by 
Theorem 1.4. In order to prove (i), define

f(x) =
∑

m∈Zd\{0}
|m|−dϑe2πim·x.

The norm of this function in the Sobolev space W δ,2(Td) is

‖f‖δ,2 =

⎛⎝ ∑
m∈Zd\{0}

(
1 + |m|2

)δ |m|−2dϑ

⎞⎠
1
2

Hence, this function is in W δ,2(Td) if and only if 2δ − 2dϑ < −d, that is, if and only if δ < dϑ − d/2.
Let us estimate DΦ,α

N f(x) with x = 0,

DΦ,α
N f(0) =

∑
m∈Zd\{0}

( +∞∑
n=−∞

Φ(N,n)e2πim·α

)
|m|−dϑ

≥ H
∑

m∈Zd\{0}
|m|−dϑ (1 + N‖m · α‖)−ϑ

≥ H2−ϑN−ϑ
∑

‖m·α‖> 1
N

|m|−dϑ‖m · α‖−ϑ.

Then, by part (i) of Lemma 2.3, it follows that, for every α, one has
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lim sup
N→+∞

{
Nϑ sup

x∈Td

{∣∣∣DΦ,α
N f(x)

∣∣∣}} ≥ H lim sup
N→+∞

⎧⎨⎩ ∑
‖m·α‖> 1

N

|m|−dϑ‖m · α‖−ϑ

⎫⎬⎭ = +∞.

The proof of (ii) is similar. Define

f(x) =
∑

m∈Zd\{0}
|m|−dϑ log−ϑ (1 + |m|) e2πim·x.

If ϑ > 1/2 this function is in the Sobolev space W dϑ− d
2 ,2(Td), and

DΦ,α
N f(0) =

∑
m∈Zd\{0}

( +∞∑
n=−∞

Φ(N,n)e2πim·α

)
|m|−dϑ log−1 (1 + |m|)

≥ H
∑

m∈Zd\{0}
(1 + N‖m · α‖)−ϑ |m|−dϑ log−1 (1 + |m|)

≥ H2−ϑN−ϑ
∑

‖m·α‖>1/N

|m|−dϑ log−1 (1 + |m|) ‖m · α‖−ϑ.

Then, by part (ii) of Lemma 2.3, it follows that, for almost every α, one has

lim sup
N→+∞

{
Nϑ sup

x∈Td

{∣∣∣DΦ,α
N f(x)

∣∣∣}}

≥ H2−ϑ lim sup
N→+∞

⎧⎨⎩ ∑
‖m·α‖> 1

N

|m|−dϑ log−1(1 + |m|)‖m · α‖−ϑ

⎫⎬⎭ = +∞. �

At last, we prove Theorem 1.6.

Proof of Theorem 1.6. Let A be a subset of Ω of cardinality |A| < +∞, and let

f(x) =
∑
m∈A

(
1 + |m|2

)− δ
2 e2πim·x.

Then ‖f‖δ,2 = |A| 12 . Moreover, for the N ’s in the theorem and under the assumption that ‖α · m‖ ≤
L|m|−σ for every m ∈ A,

DΦ,α
N f(0) =

∑
m∈A

(
1 + |m|2

)− δ
2

( +∞∑
n=−∞

Φ(N,n)e2πinm·α

)

≥ H
∑
m∈A

(
1 + |m|2

)− δ
2 (1 + N‖m · α‖)−ϑ

≥ H
∑
m∈A

(
1 + |m|2

)− δ
2
(
1 + NL|m|−σ

)−ϑ

≥ 2−ϑ− δ
2HL−ϑN−ϑ

∑
m∈A, |m|≤(NL)

1
σ

|m|−δ−ϑσ.
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Hence, if δ ≤ ϑσ one has

lim sup
N→+∞

{
Nϑ sup

x∈Td

{∣∣∣DΦ,α
N f(x)

∣∣∣}} ≥ 2−ϑ− δ
2HL−ϑ

∑
m∈A

|m|−δ−ϑσ

≥ 2−ϑ− δ
2HL−ϑ|A| = 2−ϑ− δ

2HL−ϑ|A| 12 ‖f‖δ,2.

Letting |A| → +∞, it follows that the family of operators {DΦ,α
N }+∞

N=1 is not uniformly bounded from 
Wϑσ,2(T 2) into L∞(Td). Therefore, by the resonance theorem of Banach and Steinhaus, there exists a 
function f ∈ Wϑσ,2(Td) such that

lim sup
N→+∞

{
Nϑ sup

x∈Td

{∣∣DΦ,αf(x)
∣∣}} = +∞. �

We conclude the section proving the corollaries.

Proof of Corollary 1.7. Recall that, as observed in the introduction, if the theorems apply with an exponent 
ϑ0, then they also apply with every ϑ1 ≤ ϑ0. The choice of Ψ(t) = χ{−1≤t≤1}(t) gives

1
2N + 1

N∑
n=−N

e2πint =
sin

(
(2N + 1)πt

)
(2N + 1) sin(πt) .

Up to a factor 1/(2N + 1) one recognizes the Dirichlet kernel and easily verifies that∣∣∣∣∣ sin
(
(2N + 1)πt

)
(2N + 1) sin(πt)

∣∣∣∣∣ ≤ K

1 + N‖t‖ .

Hence Theorem 1.1 and Theorem 1.2 apply with ϑ = 1. In order to prove that the speed of convergence 
cN−1 cannot be accelerated one can apply Theorem 1.3. However, there is also a more elementary and general 
argument that applies to every nonconstant function f(x). Assume that there exists a pair {N, N +1} such 
that

∫
Td

∣∣∣∣∣∣ 1
N

N∑
n=1

f(x + nα) −
∫
Td

f(y)dy

∣∣∣∣∣∣ dx <
1

2N

∫
Td

∣∣∣∣∣∣f(x) −
∫
Td

f(y)dy

∣∣∣∣∣∣ dx,
∫
Td

∣∣∣∣∣∣ 1
N + 1

N+1∑
n=1

f(x + nα) −
∫
Td

f(y)dy

∣∣∣∣∣∣ dx <
1

2(N + 1)

∫
Td

∣∣∣∣∣∣f(x) −
∫
Td

f(y)dy

∣∣∣∣∣∣ dx.
Then the triangle inequality gives a contradiction,

∫
Td

∣∣∣∣∣∣f(x) −
∫
Td

f(y)dy

∣∣∣∣∣∣ dx =
∫
Td

∣∣∣∣∣∣f(x + (N + 1)α) −
∫
Td

f(y)dy

∣∣∣∣∣∣ dx ≥

∫
Td

⎛⎝∣∣∣∣∣∣
N∑

n=1
f(x + nα) −N

∫
Td

f(y)dy

∣∣∣∣∣∣+
∣∣∣∣∣∣
N+1∑
n=1

f(x + nα) − (N + 1)
∫
Td

f(y)dy

∣∣∣∣∣∣
⎞⎠ dx

>

∫ ∣∣∣∣∣∣f(x) −
∫

f(y)dy

∣∣∣∣∣∣ dx. �

Td Td
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Proof of Corollary 1.8. In this case we have

1
N

N−1∑
n=1−N

(
1 − |n|

N

)
e2πint = 1

N

(
sin(πNt)√
N sin(πt)

)2

.

Up to a factor 1/N one recognizes the Fejér kernel, and checks that Theorem 1.1 and Theorem 1.2 apply 
with ϑ = 2. To prove that the speed of convergence cN−2 cannot be accelerated observe that

C(t) = lim sup
N→+∞

{
N2

∣∣∣∣∣ 1
N

(
sin(πNt)√
N sin(πt)

)2
∣∣∣∣∣
}

=
lim sup
N→+∞

{
sin2(πNt)

}
sin2(πt)

.

If t = 0, then C(0) = +∞. If t �= 0 is rational, then sin2(πNt) takes a finite number of values for N → +∞, 
hence lim sup

N→+∞
{sin2(πNt)} > 0. If t is irrational then, by Kronecker’s theorem, lim sup

N→+∞

{
sin2(πNt)

}
= 1. The 

conclusion follows from Theorem 1.3. �
Proof of Corollary 1.9. The function Ψ(t) is related to the Bochner–Riesz kernel. Recall the integral repre-
sentation of Bessel functions,

+N∫
−N

(
1 − |t|2

N2

)γ

e2πistdt = π−γΓ(γ + 1)N−γ+ 1
2 |s|−γ− 1

2 Jγ+ 1
2
(2πN |s|).

The Poisson summation formula gives the series expansion

N−1∑
n=1−N

(
1 − |n|2

N2

)γ

e2πint = π−γΓ(γ + 1)N−γ+ 1
2

+∞∑
k=−∞

|t + k|−γ− 1
2 Jγ+ 1

2
(2πN |t + k|).

See [24, Chapter 4, Theorem 4.15 and Chapter 7, Theorem 2.4]. Observe that the use of the Poisson 
summation formula is legitimate since both above series are absolutely and uniformly convergent (see [23, 
Lemmas 4 and 5]). Also recall that the Bessel function Jγ+ 1

2
(z) has the asymptotic expansions

Jγ+ 1
2
(z) =

⎧⎪⎪⎨⎪⎪⎩
zα

2αΓ(α + 1) + O
(
zα+1) if z → 0+,√

2
πz

sin (z − πγ/2) + O(z− 3
2 ) if z → +∞.

Assume for simplicity that 0 < t < 1/2. Then the above sum has a main term of the form

N−γ+ 1
2 ‖t‖−γ− 1

2 Jγ+ 1
2
(2πN‖t‖).

The remainder is the sum over all k’s with |t + k| ≥ 1/2 and it can be estimated as

∣∣∣∣N−γ+ 1
2

∑
|t+k|≥ 1

2

|t + k|−γ− 1
2 Jγ+ 1

2
(2πN |t + k|)

∣∣∣∣ ≤ cN−γ+ 1
2

∑
|t+k|≥ 1

2

|t + k|−γ− 1
2 (N |t + k|)− 1

2

≤ cN−γ .
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The main term can be estimated from above by

N−γ+ 1
2 ‖t‖−γ− 1

2 Jγ+ 1
2
(2πN‖t‖) ≤

{
cN−γ+ 1

2 ‖t‖−γ− 1
2 (N‖t‖)γ+ 1

2 if N‖t‖ ≤ 1,
cN−γ+ 1

2 ‖t‖−γ− 1
2 (N‖t‖)−

1
2 if N‖t‖ > 1,

≤
{
cN if N‖t‖ ≤ 1,
cN−γ‖t‖−γ−1 if N‖t‖ > 1.

Observe that the estimates of the main term dominate the remainder. Also notice that

cN ≤
∑

|n|≤N
2

(
1 − 1

4

)γ

≤
N−1∑

n=1−N

(
1 − |n|2

N2

)γ

≤
∑

|n|≤N

1 ≤ CN.

In conclusion,∣∣∣∣∣∣
(

N−1∑
n=1−N

(
1 − |n|2

N2

)γ
)−1 N−1∑

n=1−N

(
1 − |n|2

N2

)γ

e2πint

∣∣∣∣∣∣ ≤ c(1 + N‖t‖)−γ−1.

Hence, Theorem 1.1 and Theorem 1.2 apply with ϑ = γ+1. To apply Theorem 1.3 let us show that there 
exist ε > 0 and η > 0 such that for every t in a set of measure η one has C(t) > ε. Observe that

C(t) ≈ lim sup
N→+∞

{
N

1
2

∣∣∣∣∣
+∞∑

k=−∞
|t + k|−γ− 1

2 Jγ+ 1
2
(2πN |t + k|)

∣∣∣∣∣
}
.

Again assume that t +k is not an integer for every k. The asymptotic expansion of Bessel functions gives

N
1
2

∣∣∣∣∣
+∞∑

k=−∞
|t + k|−γ− 1

2 Jγ+ 1
2
(2πN |t + k|)

∣∣∣∣∣
≥ N

1
2 ‖t‖−γ− 1

2

∣∣∣Jγ+ 1
2
(2πN‖t‖)

∣∣∣−N
1
2

∑
|t+k|≥ 1

2

|t + k|−γ− 1
2

∣∣∣Jγ+ 1
2
(2πN |t + k|)

∣∣∣
≥ π−1‖t‖−γ−1

∣∣∣sin(2πN‖t‖ − πγ

2

)∣∣∣− cN
1
2 ‖t‖−γ− 1

2 (N‖t‖)− 3
2

− cN
1
2

∑
|t+k|≥ 1

2

|t + k|−γ− 1
2 (N |t + k|)− 1

2

≥ π−1‖t‖−γ−1
∣∣∣sin(2πN‖t‖ − πγ

2

)∣∣∣− cN−1‖t‖−γ−2 − c

= π−1‖t‖−γ−1
(∣∣∣sin(2πN‖t‖ − πγ

2

)∣∣∣− cN−1‖t‖−1 − c‖t‖γ+1
)
.

Let 0 < λ < 1/2. Then for every t such that λ/2 ≤ ‖t‖ ≤ λ one has∣∣∣sin(2πN‖t‖ − πγ

2

)∣∣∣− cN−1‖t‖−1 − c‖t‖γ+1

≥
∣∣∣sin(2πN‖t‖ − πγ

2

)∣∣∣− 2cλ−1N−1 − cλγ+1.

In conclusion, if λ is suitably small, for every N suitable large one has

2cλ−1N−1 + cλγ+1 <
1
.
2
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Moreover, if t is irrational, by Kronecker’s theorem,

lim sup
N→+∞

{|sin (2πN‖t‖ − πγ/2)|} = 1.

Hence C(t) > c > 0 for every t. �
Proof of Corollary 1.10. One has

N∑
n=−N

(2N)!
22N (N − n)! (N + n)!e

2πint =
2N∑
m=0

(2N)!
m! (2N −m)!

(
eπit

2

)m(
e−πit

2

)2N−m

=
(
eπit + e−πit

2

)2N

= cos2N (πt).

Up to a normalizing factor one recognizes the de la Vallée Poussin kernel, which is similar to the heat 
kernel. Indeed, when t → 0,

cos2N (πt) = e2N log(cos(πt)) = e
2N log

(
1−π2t2

2 +...
)
≈ e−π2Nt2 .

It follows that, for every ϑ > 0, there exists c > 0 such that

cos2N (πt) ≤ ce−π2Nt2 ≤ c(1 +
√
N‖t‖)−2ϑ.

Hence, Theorem 1.1 and Theorem 1.2 apply with N replaced by [
√
N ]. �

Proof of Corollary 1.11. The fact that the speed of convergence cN− δ
d is the best possible in the Sobolev 

space W δ,2(Td) is proved in [3]. The fact that one can actually obtain such speed of convergence, up 
to some small transgression, follows from Theorem 1.2 with suitable combinations of δ, ϑ and σ. Let 
Φ(N, n) =

(∑+∞
n=−∞ Ψ(N−1n)

)−1
Ψ(N−1n), with Ψ(t) a smooth compactly supported bounded function 

satisfying cN ≤
∣∣∣∑+∞

n=−∞ Ψ(N−1n)
∣∣∣ ≤ CN . Then, for every ϑ there exists c such that

∣∣∣∣∣
+∞∑

n=−∞
Φ(N,n)e2πint

∣∣∣∣∣ ≤ c(1 + N‖t‖)−ϑ

for every positive integer N . To see this set

Λ(s) =
+∞∫

−∞

Ψ(t)e2πistdt.

Since Ψ(t) is smooth with compact support, by iterated integration by parts, one has∣∣∣∣∣∣
+∞∫

−∞

Ψ(t)e2πistdt

∣∣∣∣∣∣ ≤ (2π|s|)−j

+∞∫
−∞

∣∣∣∣ djdtj Ψ(t)
∣∣∣∣ dt.

Hence, for every ϑ there exists c such that

|Λ(s)| ≤ c(1 + |s|)−ϑ.
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By the Poisson summation formula,

+∞∑
n=−∞

Ψ(N−1n)e2πint = N

+∞∑
n=−∞

Λ(N(n + t)).

It follows that, for every t �= 0,∣∣∣∣∣
+∞∑

n=−∞
Ψ(N−1n)e2πint

∣∣∣∣∣ ≤ N

+∞∑
n=−∞

|Λ(N(n + t))|

≤ cN(1 + N‖t‖)−ϑ + cN
∑
n �=0

(1 + N |n|)−ϑ

≤ cN(1 + N‖t‖)−ϑ + cN1−ϑ ≤ cN(1 + N‖t‖)−ϑ.

Hence, for this Φ(N, n) assumption (i) in Theorem 1.2 holds with arbitrary ϑ, and for fixed σ and δ one 
can choose a ϑ that optimizes the estimates in Theorem 1.2. In particular, if δ/σ ≥ 1/2 one can choose 
ϑ = δ/σ, whereas if δ/σ < 1/2 one can choose (δ − d/2)/(σ − d) < ϑ < 1/2. �
3. Concluding remarks

Remark 3.1. The above corollaries show that the assumptions in Theorem 1.1 and Theorem 1.2 are not 
void. We now show that the assumptions in Theorem 1.5 and Theorem 1.6 are not void as well. Let us 
prove that for every ϑ > 0 there exists a positive weight Φ(N, n) which satisfies (1), with the property that 
n → Φ(N, n) has compact support for every N , and with the property that there exist constants H > 0
and K > 0 such that for every t one has

H(1 + N‖t‖)−ϑ ≤
+∞∑

n=−∞
Φ(N,n)e2πint ≤ K(1 + N‖t‖)−ϑ.

Let j be a positive integer, and let

FN (t) = (1 + N‖t‖)−ϑ, GN (t) = N1−2j
(

sin(πNt)
sin(πt)

)2j

,

FN ∗GN (t) =
∫
T

FN (t− s)GN (s)ds.

It is easily verified that GN (t) is a trigonometric polynomial of degree (N − 1)j. Hence, the convolution 
FN ∗GN (t) is a trigonometric polynomial as well. From the inequalities 2‖t‖ ≤ | sin(πt)| ≤ π‖t‖ one deduces 
that {

22jπ−2jN ≤ GN (t) ≤ 2−2jπ2jN if ‖t‖ ≤ 1/(2N),
0 ≤ GN (t) ≤ 2−2jN1−2j‖t‖−2j if ‖t‖ ≥ 1/(2N).

It follows that there exist constants C > c > 0 such that for every N one has

c ≤
∫

GN (t)dt ≤ C.
T
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In order to estimate FN ∗GN (t) from below, observe that for every t,∫
T

FN (t− s)GN (s)ds ≥ 22jπ−2jN

∫
{
‖s‖< 1

2N
} (1 + N‖t− s‖)−ϑds ≥ c(1 + N‖t‖)−ϑ.

In order to estimate FN ∗GN (t) from above, observe that for every t,∫
T

FN (t− s)GN (s)ds ≤ sup
s∈T

{FN (t− s)}
∫
T

GN (t)dt ≤ c.

Moreover, if ‖t‖ ≥ 1/N then

∫
T

FN (t− s)GN (s)ds ≤ 2−2jπ2jN

(
1 + N

(
‖t‖ − 1

2N

))−ϑ ∫
{
‖s‖< 1

2N
} ds

+ 2−2jN1−2j
(

1 + N‖t‖
2

)−ϑ ∫
{

1
2N ≤‖s‖< ‖t‖

2

} ‖s‖−2jds

+ 2−2jN1−2j
∫

{
‖t‖
2 ≤‖s‖≤ 1

2

} ‖s‖−2jds

≤ c(N‖t‖)−ϑ + c(N‖t‖)−ϑ + c(N‖t‖)1−2j .

Hence, if 2j − 1 ≥ ϑ then for some positive constants c and C independent of N and for every t one has

c(1 + N‖t‖)−ϑ ≤
∫
T

FN (t− s)GN (s)ds ≤ C(1 + N‖t‖)−ϑ.

Finally, define Φ(N, n) as the Fourier transform of (FN ∗GN (0))−1
FN ∗GN (t),

Φ(N,n) = (FN ∗GN (0))−1
∫
T

FN ∗GN (t)e−2πintdt.

Remark 3.2. Observe that we cannot apply Theorem 1.5 and Theorem 1.6 to Corollary 1.7 and Corollary 1.8, 
since in these corollaries 

∑+∞
n=−∞ Φ(N, n)e2πint vanishes in many points. However, the ranges of indexes δ

of the Sobolev class W δ,2(Td) in Corollary 1.7, and in Corollary 1.8 at least in dimension one, seem to be 
essentially sharp as well. In Corollary 1.7 with ϑ = 1 the assumption δ > dϑ − d/2 in Theorem 1.1 becomes 
δ > d/2. As already observed, this assumption is necessary since the Sobolev spaces W δ,2(Td) with δ ≤ d/2
contain unbounded functions. In Corollary 1.8 with ϑ = 2 the assumption δ > dϑ − d/2 becomes δ > 3d/2. 
At least, in dimension d = 1 one can prove that this range is essentially sharp, in the sense that it cannot 
be replaced by any index δ < 3/2. Indeed, for every δ < 3/2 there exists a function f(x) ∈ W δ,2(T ) such 
that

lim sup
N→+∞

{
N2 sup

x∈T

{∣∣∣DΦ,α
N f(x)

∣∣∣}} = +∞

for almost every α. In order to show that this is true, observe that
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N2 sup
x∈T

{∣∣∣DΦ,α
N f(x)

∣∣∣} ≥
∣∣∣DΦ,α

N f(0)
∣∣∣ =

∣∣∣∣∣∣
∑
m�=0

sin2(πNmα)
sin2(πmα)

f̂(m)

∣∣∣∣∣∣ . (2)

In Petersen [20] it is proved that if 0 < α, β < 1 the following are equivalent:

(i) β ∈ Zα (mod 1);

(ii) sup
N≥1

{+∞∑
m=1

‖mβ‖2

m2
‖Nmα‖
‖mα‖2

}
< +∞.

It is easy to verify that (ii) is also equivalent to

(iii) sup
N≥1

{+∞∑
m=1

‖mβ‖2

m2
sin2(πNmα)
sin2(πmα)

}
< +∞.

Let β ∈ (0, 1) be an algebraic number and set

f(x) =
∑
m�=0

‖mβ‖2

m2 e2πimx.

Such a function f(x) belongs to W δ,2(T ) for every δ < 3/2. Since for every transcendental number 
α ∈ (0, 1) condition (i) does not hold, then (iii) does not hold as well. This is exactly what we wanted to 
prove thanks to (2) and the fact that almost every α ∈ (0, 1) is a transcendental number.

Remark 3.3. It is curious to compare the above results on the speed of convergence in ergodic theorems 
with the approximation properties of Fourier series. Whereas our results suggest that stronger summation 
methods guarantee faster convergence, the approximation properties of partial sums and Féjer means of 
Fourier series seem to go in the opposite direction. Assume d = 1 and denote by SNf(x) and FNf(x) the 
partial sums and the arithmetic means of the partial sums of the Fourier expansion of a function f(x),

SNf(x) =
+N∑

m=−N

f̂(m)e2πim·x, FNf(x) =
+N∑

m=−N

(
1 − |m|

N + 1

)
f̂(m)e2πim·x.

The partial sums SNf(x) may not converge, but the approximation is close to optimal. Indeed, if ‖SN‖
denotes the operator norm of the partial sums, the Lebesgue constant, if EN(f) denotes the best approxi-
mation in the supremum norm of f(x) with trigonometric polynomials of degree at most N , and if PN(x)
is the trigonometric polynomial of best approximation, then

sup
x∈T

{|SNf(x) − f(x)|} = sup
x∈T

{|SN (f − PN )(x) − (f(x) − PN (x))|}

≤ (‖SN‖ + 1) sup
x∈T

{|f(x) − PN (x)|} ≤ cEN (f) log(1 + N).

Finally, the means FNf(x) always converge, but the approximation is never better than c/N ,

sup
x∈T

{|FNf(x) − f(x)|} ≥
∫
T

|FNf(x) − f(x)|dx ≥ |m|
N + 1 |f̂(m)|.

In particular, the partial sums may converge faster than the Féjer means.
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4. Appendix

In this appendix we deal with logarithmic means. Such means are defined by the weights

Φ(N,n) =

⎧⎪⎪⎨⎪⎪⎩
(

N∑
m=1

1
m

)−1
1
n

if 1 ≤ n ≤ N,

0 otherwise,

and the associated logarithmic discrepancy is

DΦ,α
N f(x) =

(
N∑

n=1

1
n

)−1 N∑
n=1

f(x + nα)
n

−
∫
Td

f(y)dy.

See [8, Section 2.2] for references about these means and discrepancy. Although Theorem 1.1 and The-
orem 1.2 do not immediately apply in this setting, due to the fact that the assumption (i) on the kernels ∑+∞

n=−∞ Φ(N, n)e2πint is not satisfied, the proofs can be adapted to obtain some analogues of the above 
results.

Theorem 4.1. If the function f(x) has an absolutely convergent Fourier expansion, 
∑

m∈Z |f̂(m)| < +∞, 
then, for almost every α, there exists a positive constant c(f, α) such that, for every positive integer N , one 
has

sup
x∈Td

{∣∣∣DΦ,α
N f(x)

∣∣∣} ≤ c(f, α) log−1(1 + N).

Theorem 4.2. If α is not a Liouville vector, that is, if there exist positive constants H and σ such that 
‖α ·m‖ ≥ H|m|−σ for every m ∈ Zd \ {0}, then there exists a positive constant c = c(d, H, σ), such that for 
every positive integer N ,

sup
x∈Td

{∣∣∣DΦ,α
N f(x)

∣∣∣} ≤ c log−1(1 + N)
∑
m∈Z

|f̂(m)| log (1 + |m|) .

In particular, the above theorems apply to functions in Sobolev classes W δ,2(Td) with δ > d/2. The main 
ingredient in the proofs of both theorems is an estimate for the kernels 

∑+∞
n=−∞ Φ(N, n)e2πint.

Lemma 4.3. For every t ∈ T ,∣∣∣∣∣∣
(

N∑
n=1

1
n

)−1 N∑
n=1

e2πint

n

∣∣∣∣∣∣ ≤ min
{

1, c
log

(
1 + ‖t‖−1)

log (1 + N)

}
.

Moreover, if N is large enough and if ‖t‖ ≥ c/N , the reverse inequality holds true as well.

Proof. A direct and explicit proof goes as follows. The inequality ≤ 1 is obvious. In order to prove the other 
inequality it suffices to assume that N > 1 and |t| ≤ 1/2. An integration by parts gives

N∑ e2πint

n
= 1

N

N∑
e2πint +

N−1∑ (
1
n
− 1

n + 1

) n∑
e2πimt
n=1 n=1 n=1 m=1



L. Colzani et al. / J. Math. Anal. Appl. 536 (2024) 128190 23
= sin (πNt)
N sin (πt)e

iπ(N+1)t +
N−1∑
n=1

1
n + 1

sin (πnt)
n sin (πt)e

iπ(n+1)t

= sin (πNt)
N sin (πt)e

iπ(N+1)t +
N−1∑
n=1

1
n + 1

sin (πnt)
n sin (πt)

(
eiπ(n+1)t − 1

)
+

N−1∑
n=1

1
n + 1

sin (πnt)
n sin (πt)

= I + II + III.

The inequalities 2‖t‖ ≤ |sin (πt)| ≤ π‖t‖ imply that∣∣∣∣ sin (πnt)
n sin (πt)

∣∣∣∣ ≤ min
{
π

2 ,
1

2n‖t‖

}
,

from which an estimate for the term I is immediately obtained. In order to estimate II one can separately 
consider the sum where the index n varies in the set {1 ≤ n ≤ N − 1, n ≤ 1/|t|} and the sum where the 
index varies in the set {1 ≤ n ≤ N − 1, n > 1/|t|}. The latter set is empty if |t| < 1/(N − 1). Otherwise, 
there is a uniform bound. Indeed,∣∣∣∣∣∣

∑
1≤n≤N−1, n>1/|t|

1
n + 1

sin (πnt)
n sin (πt)

(
eiπ(n+1)t − 1

)∣∣∣∣∣∣ ≤ 1
|t|

∑
n>1/|t|

1
n(n + 1) ≤ c.

The inequality 
∣∣eiπ(n+1)t − 1

∣∣ ≤ π(n +1)|t| implies that also the sum over the {1 ≤ n ≤ N − 1, n ≤ 1/|t|}
is uniformly bounded. Indeed,∣∣∣∣∣∣

∑
1≤n≤N−1, n≤1/|t|

1
n + 1

sin (πnt)
n sin (πt)

(
eiπ(n+1)t − 1

)∣∣∣∣∣∣ ≤ π2

2 |t|
∑

n≤1/|t|
1 ≤ c.

In order to estimate the last term III, one considers separately the sum over the set of indexes 
{1 ≤ n ≤ N − 1, n ≤ 1/(2|t|)} and the sum over the set of indexes {1 ≤ n ≤ N − 1, n > 1/(2|t|)}. The 
sum over this latter set is uniformly bounded,∣∣∣∣∣∣

∑
1≤n≤N−1, n>1/(2|t|)

1
n + 1

sin (πnt)
n sin (πt)

∣∣∣∣∣∣ ≤ 1
2|t|

∑
n>1/(2|t|)

1
n(n + 1) ≤ c.

The sum over the indexes {1 ≤ n ≤ N − 1, n ≤ 1/(2|t|)} is bounded by∣∣∣∣∣∣
∑

1≤n≤N−1, n≤1/(2|t|)

1
n + 1

sin (πnt)
n sin (πt)

∣∣∣∣∣∣ ≤ π

2
∑

n≤1/(2|t|)

1
n + 1 ≤ C log

(
1 + |t|−1) .

Notice that if |t| ≥ 1/(2N − 2), then the reverse inequality holds true,∣∣∣∣∣∣
∑

1≤n≤N−1, n≤1/(2|t|)

1
n + 1

sin (πnt)
n sin (πt)

∣∣∣∣∣∣ ≥ 2
π

∑
n≤1/(2|t|)

1
n + 1 ≥ c log

(
1 + |t|−1) . �

Proof of Theorem 4.1. As in the proof of Theorem 1.1,

DΦ,α
N f(x) =

(
N∑

n=1

1
n

)−1 N∑
n=1

f(x + nα)
n

−
∫

f(y)dy

Td
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=
(

N∑
n=1

1
n

)−1 ∑
m∈Zd\{0}

(
N∑

n=1

e2πinm·α

n

)
f̂(m)e2πim·x.

Hence, by Lemma 4.3,∣∣∣DΦ,α
N f(x)

∣∣∣ ≤ c log−1(1 + N)
∑

m∈Zd\{0}
|f̂(m)| log

(
1 + ‖m · α‖−1) .

And, by Lemma 2.1,

∫
Td

⎛⎝ ∑
m∈Zd\{0}

|f̂(m)| log
(
1 + ‖m · α‖−1)⎞⎠ dα

=

⎛⎝∫
T

log(1 + ‖t‖−1)dt

⎞⎠ ∑
m∈Zd\{0}

|f̂(m)|.

Finally, 
∫
T

log
(
1 + ‖t‖−1) dt < +∞. �

Proof of Theorem 4.2. As in the proof of Theorem 4.1, under the Diophantine assumption ‖α · m‖ ≥
H|m|−σ, ∣∣∣DΦ,α

N f(x)
∣∣∣ ≤ c log−1(1 + N)

∑
m∈Zd\{0}

|f̂(m)| log
(
1 + ‖m · α‖−1)

≤ c log−1(1 + N)
∑

m∈Zd\{0}
|f̂(m)| log

(
1 + H−1|m|σ

)
≤ c log−1(1 + N)

∑
m∈Zd\{0}

|f̂(m)| log (1 + |m|) . �
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