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A B S T R A C T

Electric aircraft represent a major technological breakthrough with a promise of revolutionizing
aviation systems towards more sustainable and accessible services. Prominent electric aircraft
prototypes feature limited seating capacity and short ranges, which make them well-suited for
efficiently operating thin routes—particularly, regional routes serving remote regions—in the
near future. To capitalize on this opportunity, this paper proposes an original optimization
framework in support of the strategic design of subsidized air transport networks using electric
aircraft. We first develop a quadratic optimization model to disaggregate air transport demand
data based on demand generation and allocation properties, resulting in refined demand
estimates at the territorial scale (instead of at the airport level). We then develop an integrated
bi-objective optimization model for network and fleet planning, utilizing a novel time-space-
energy formulation. This model aims to balance the two primary objectives of planning
subsidized air transport networks: maximizing passenger surplus and minimizing system-wide
subsidization costs, while incorporating detailed modeling of demand accommodation and
electric aircraft operations. To address large-scale problems, we develop a solution approach
involving reformulation and a tailored binary relaxation scheme. By considering a real-world
case study of Sweden, we demonstrate the benefits of the proposed approach and highlight its
major insights—in terms of route network, fleet, number of chargers, flight schedules, fleet
assignment and environmental emissions—with a comparison of conventional, electric, and
mixed fleets. Our results demonstrate that a complete substitution of first-generation electric
aircraft may diminish consumer surplus, while a combined use of electric and conventional
aircraft yields superior solutions, resulting in higher passenger surplus and reduced emissions
for the same subsidy spending.

. Introduction

One of the major challenges faced by today’s aviation industry is achieving its ambitious climate goals—as specified in the Net
ero Resolution approved by both airlines (IATA2021) and airports (ACI 2021) worldwide, committing them to achieve net-zero
arbon emissions from their operations by 2050.

Over the past two decades, driven by escalating environmental apprehensions, the aviation industry has significantly intensified
ts efforts in researching and developing strategies to curtail its carbon footprint. The development of sustainable aircraft
echnologies, particularly in the realm of hydrogen- and electric-powered aircraft, constitutes a fundamental pillar of instruments
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and initiatives to achieve this target. Specifically, electric aircraft have promising prospects to significantly reduce both atmospheric
emissions (i.e., zero emission during operation) and noise emissions (by about 36%) (see Schäfer et al., 2019), while at the same
time fostering air connectivity and accessibility of remote regions.

At the time of this paper, there are over 300 aviation electrification projects with the pioneering aircraft models having a target
ntry-to-market year as early as 2024 (IATA, 2021). However, first-generation electric aircraft face a major challenge of low battery
ensity, leading to shorter ranges, lower seat capacities, and lower speeds than their conventional fossil-fuel counterparts, which
ltimately restrain their fast penetration in dense commercial aviation markets. Nevertheless, electric aircraft present an opportunity
o develop sustainable air services for thin markets in the near future. A specific example of these thin markets is regional routes
erving remote regions. These routes typically encompass short ranges—between 140 and 800 km (Graham, 1997; Mueller, 2021)—
nd exhibit thin demand that cannot sustain profitable scheduled air services when employing conventional small/medium-body
ircraft.

Subsidy schemes are widely implemented by governments or transportation authorities in several countries to financially support
he provision of air services serving remote regions (see Fageda et al., 2018, for a review). The Public Service Obligation (PSO)
ystem in Europe and the Essential Air Services (EAS) program in the United States account for the largest number of subsidized
outes (320), with combined annual subsidy spending exceeding US$590 million (Mueller, 2021). Subsidy schemes have been under
onstant criticism regarding the continuous increase in subsidy spending. This is partly because of the use of small/medium-body
onventional aircraft with large seating capacity compared to the thin demand, which in turn results in low load factors (typically
elow 50%) and high operating costs. In this respect, the deployment of small electric aircraft has the potential to enable a better
atch of supply and demand. Additionally, the use of electric aircraft has the potential to decrease subsidy costs through the

eduction of operating expenses—with estimates indicating a potential reduction of maintenance costs by 20 to 50% and energy
osts by 50 to 70% (Heart Aerospace, 2021; RISE, 2021) compared to conventional aircraft. Also, the combination of electric aircraft’s
ower operating cost and less stringent take-off and landing infrastructure requirements will potentially improve the connectivity of
emote regions by taking advantage of both existing and underutilized airports and airfields. Conversely, the constraining attributes
f electric aircraft, such as the low speed and range (which affect connectivity), as well as the necessity for charging (calling for
ew infrastructure and possibly resulting in extended turnaround times), introduce complexities in evaluating their impact and
etermining their optimal deployment. Thus, adequate planning tools that capture the peculiarities of electric aircraft and thin-
emand markets will be essential to suitably inform decision makers towards the set up of optimal subsidized air transport networks
sing electric aircraft.

In this paper, we propose a novel modeling framework to assist transportation planners in evaluating the benefits and facilitating
he efficient utilization of electric aircraft for operating subsidized route networks. We first develop an optimization-based approach
o redistribute airport demand among the neighboring areas defined as geographical units (e.g., municipalities, counties, or spatial
rids of arbitrary size). Leveraging demand estimates at the granular geographical units (instead of at the airport level) is crucial for
everal reasons: (i) assessing passengers’ utility across door-to-door journeys, (ii) comprehensively capturing competing interactions
etween airports with overlapping catchment areas, and (iii) evaluating the potential connectivity stemming from the utilization
f new airports/airfields for extensive electric aircraft operations. Subsequently, we formulate an optimization model that allows
nvestigation of the trade-off between subsidies and the consequent network configurations and service levels, while accounting for
he specific attributes of electric aircraft. Ultimately, we validate our approach and showcase its insights through a real-world case
tudy of Sweden.

In summary, this paper makes the following contributions:

. It develops a quadratic optimization model—referred to as Demand Disaggregation with Generation and Allocation Properties
(DDGAP)—to estimate the distribution of air transportation demand among geographical units within airports’ catchment areas.
To accomplish this, the model incorporates fundamental properties of air transportation flows, including demand generation
and allocation, symmetry of inbound and outbound flows, and correspondence with observed airport-aggregated demand values.
The model is formulated with a four-term objective function, where each term expresses the sum of squared deviations from
the implied fundamental relationships. The weighting of the different objectives is discussed and validated using real-world
data. Ultimately, the DDGAP provides reliable demand estimates at the granularity of geographical units. These estimates stand
independent of historical or observed airport choices, serving as a key input for the subsequent optimization model.

. It develops a novel bi-objective optimization model to support the design of subsidized air services using electric aircraft. From a
technical standpoint, the model is formulated as an integrated flight scheduling and fleet assignment model for electric aircraft—
referred to as Three-dimensional Flight Scheduling and Fleet Assignment (3DFSFA). To accurately account for energy consumption and
charging of electric aircraft, we propose the use of a time-space-energy multi-commodity network flow formulation in the context
of air transportation, with endogenous aircraft fleet and charging infrastructure. The 3DFSFA optimizes scheduling and fleeting
decisions and tracks the allocation of passenger demand to travel itineraries to maximize passenger surplus while minimizing
the cost of subsidization. The model outcome is a well-defined air transport network, including its commodities—i.e., the fleet
composition and size, and number and location of charging stations—and their deployment across flights or charging activities
through an average daily operation. This level of (dis)aggregation allows the accurate estimation of the system costs (including
aircraft ownership costs, operating costs, energy/fuel costs, and charger installation costs), which is essential to investigate the
trade-off between passenger surplus and subsidy levels, and ultimately guide the design of a network of subsidized routes.
2
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3. It proposes a relaxation approach to efficiently scale the model to real-world instances. The aforementioned 3DFSFA model is
a large-scale Mixed-Integer Linear Program, which is hard to solve via direct implementation of off-the-shelf Branch-and-Cut
algorithms. We thus propose a relaxation scheme and reformulation of key constraints to obtain close-to-optimal solutions to
real-world sized problems in reasonable times. Notably, the proposed approach can be generally applied to time-space-energy
multi-commodity network flow formulations with linearly additive cost functions, thus also offering a valid solution approach to
a general class of transportation problems involving electric vehicles.

4. It demonstrates the application of the proposed optimization framework using a case study of Sweden’s subsidized route
network—one of the most expensive in Europe and currently operated by conventional aircraft. We consider three fleet scenarios
and investigate different levels of subsidization. Results demonstrate that efficient services require a heterogeneous mix of aircraft.
In particular, a hybrid fleet proves capable to synergically exploit the advantages of conventional aircraft—i.e., higher speed
and capacity, which impact lower travel times and entail efficient consolidation of passenger flows—and electric aircraft—
characterized by smaller size, lower operating costs and reduced emissions, leading to higher frequencies (hence reduced schedule
delays), cost-effective services on very thin routes, and more sustainable services. This, in turn, results in incentive compatible
win-win-win—social, environmental and economic—outcomes, entailing higher passenger surplus (encompassing a higher demand
coverage and a per-capita reduction in generalized travel cost) and reduced well-to-wake Greenhouse gas (GHG) emissions
(between −22.3% and −42%) for the same subsidy spending. In practical terms, our experiments ultimately highlight the
capability of the proposed approach to offer valuable decision support to transportation authorities in the strategic planning
of subsidized air transport networks.

The remainder of this paper is organized as follows. We present the relevant literature in Section 2, and the formulations of the
DDGAP and the 3DFSFA models in Sections 3 and 4, respectively. In Section 5, we describe our real-world case study and discuss
the results and validity of the proposed modeling framework. Ultimately, in Section 6, we conclude the paper by summarizing our
contributions and indicating directions for future research.

2. Literature review

In this section, we initially review the existing body of knowledge concerning demand estimation in air transportation to motivate
the need and contributions of our proposed demand redistribution approach. Subsequently, we review relevant contributions related
to the planning and operations of electric vehicles, with a focus on electric aircraft.

2.1. Demand modeling in air transportation

The estimation of air travel demand typically involves two main tasks, i.e., the modeling of demand generation and demand
allocation. Demand generation is typically modeled using gravity-like formulations to estimate the total market size—i.e., the total
number of people traveling in an air transportation market—based on three classes of factors: (i) geo-economic factors, such as Gross
Domestic Product (GDP), population, and land use; (ii) impedance factors, which characterize the ‘‘distance’’ between the origin
and destination markets—both in physical or figurative terms (e.g., cultural or economic distance); and (iii) service-related factors,
such as the frequency and types of itineraries available in the market (e.g., connecting vs. nonstop), which characterize the quality
of air services (Adler and Hashai, 2005; Grosche et al., 2007; Boonekamp et al., 2018; Birolini et al., 2021b). Demand allocation
instead concerns the modeling of how market demand is allocated among competing alternatives at various levels of aggregation
(e.g., airlines, itineraries, and airports). It is typically modeled using discrete choice models, based on service-related attributes such
as airfare, frequency, time-of-day preferences, number of stops, flight and connecting times, and airline/airport fixed-effects (Harvey,
1987; Ashford and Benchemam, 1988; Başar and Bhat, 2004; Adler, 2005; Lieshout, 2012; Lurkin et al., 2017; Cadarso et al., 2017).
To improve the capturing of supply–demand interactions, instead of treating the demand generation and allocation tasks sequentially,
researchers (e.g., Hansen, 1990; Hsiao and Hansen, 2011; Birolini et al., 2020) have recently proposed integrated demand generation
and allocation models that simultaneously capture the impact of supply attributes to both trip generation (e.g., demand stimulation
following the increase of frequency) and allocation (e.g., demand capturing from the competition due to strengthened services).

Existing demand estimation models are primarily built upon aggregated or semi-aggregated demand data sourced from global
distribution systems (GDS) and made available by global travel data providers such as OAG and IATA’s Direct Data Solutions
(DDS) (OAG, 2020; IATA, 2023). These databases are based on tickets sold and booking transactions. Therefore, they provide detailed
information on the air-side segment of passenger journeys, considering airports as endpoints of these trips. A significant drawback is
that they lack the capability to accurately trace the actual origin/destination of passengers in terms of specific territorial geographical
units. Yet, ground accessibility is a key component of door-to-door air passenger travel (e.g., Belobaba et al., 2015), which wields
substantial influence over passengers’ overall experience and, consequently, shapes their travel behavior.

Some papers have used discrete choice models (e.g., Harvey, 1987; Windle and Dresner, 1995; Pels et al., 2003; Başar and Bhat,
2004; Hess and Polak, 2005; Loo, 2008) and machine learning (e.g., Lu et al., 2021) to understand passenger behavior when making
airport choices. By capturing the trade-offs between the ground (e.g., access time) and air related (e.g., flight time) components of
a passenger trip, these studies provide insights into comprehending the spatial distribution of air travel demand. However, these
studies rely on disaggregate (primarily individual) data, often collected from region-specific surveys that are both costly and time-
consuming to carry out. This makes these approaches costly to implement and difficult to generalize due to geographical differences
3
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transportation demand is proposed in Cattaneo et al. (2022). In this work, a grid-based spatial model is developed to estimate
passenger demand incorporating considerations such as time-of-day preferences, attributes of air services, and access expenses.
They rely on proprietary and sensitive data for a specific subset of passengers (frequent fliers) for whom the residence information
could be retrieved (or reasonably inferred). Again, this limits the generalizability and usability of their results and approach.

Noteworthy to the development of our model is the contribution by Li and Wan (2019), who first proposed a general method
o estimate the redistribution of air transportation demand for geographical units within airports’ catchment areas. Their model
stimates the geographic distribution of originating air travel demand and passengers’ airport choice by maximizing entropy, as a
unction of four attributes (airport access distance, airport size, average ticket airfare compared to personal income per capita, and
opulation). Inspired by the work of Bertsimas and Yan (2018), we augment the set of attributes and relationships considered in
his redistribution and formulate our model as a multi-objective quadratic problem.

Bertsimas and Yan (2018) proposed an optimization framework to recover original public-transit origin–destination demand
stimates from aggregated entry and exit counts, demonstrating significant improvements compared to the maximum entropy
ethod (Van Zuylen and Willumsen, 1980; Fisk, 1988). Prior works have also used similar approaches to disaggregate demand data

nd recover original demand estimates in other contexts than air transportation (e.g., Liu and Zhou, 2016; Ashok and Ben-Akiva,
002). To our knowledge, we are the first to implement these demand redistribution principles in the air transportation context,
y formulating and imposing allocation and generation properties that are consistent with the state-of-the-art of air travel demand
odeling.

.2. Planning methods using electric aircraft

In the realm of electric vehicle planning, the literature concerning the planning of electric aircraft, specifically in a regional-route
ontext, is comparatively less extensive than that for urban air mobility (see Rajendran and Srinivas, 2020, for a review) and for
round electric vehicles such as electric buses (see Perumal et al., 2021, for a review) and electric cars (e.g., Zhang et al., 2019;
antos et al., 2023).

Most of the existing papers take an engineering perspective, focusing on vehicle design (Patterson et al., 2012; Vratny and
ornung, 2018; Wheeler et al., 2021), and investment decisions related to the sizing of airport charging infrastructure—often

ocusing on a single airport (Yang et al., 2017; Salucci et al., 2020; Trainelli et al., 2021).
More pertinent to our study are a few recent works developing scheduling models for electric aircraft (e.g., Justin et al., 2020,

022; Mitici et al., 2022), capturing the interactions between flight schedules, aircraft operations, and charging. Justin et al. (2020)
eveloped a two-step job-shop-like optimization approach to assess power and investment strategies for electric aircraft. Given the
light schedule of a single airline and assuming that each airport has a swap and charge station, the proposed approach determines
he number of chargers and swap batteries and optimizes a recharge schedule. Justin et al. (2022) developed a hierarchical bi-
bjective flight scheduling and fleet assignment with a focus on electric aircraft. Their model takes the charging infrastructures as
iven and optimizes the scheduling of flights and the assignment of aircraft to flights, subject to aggregate demand and capacity
onstraints, without tracking energy consumption or aircraft charging in detail (i.e., assuming a fixed charging time as part of aircraft
urnaround). They considered a perspective of a centralized operator with two objectives: maximizing profits and minimizing carbon
missions. Mitici et al. (2022) considered operations at a single airport and developed a two-phased mission-based flight scheduling
ixed-integer linear program with battery swapping and recharge opportunities. The proposed approach first defines a schedule

or flight and battery recharge for a fleet of electric aircraft; then, it ascertains optimal times for battery charging together with an
ptimal sizing of the number of charging stations and swap batteries.

We build upon these contributions to develop a centralized network-wide passenger-centric optimization framework for designing
network of subsidized routes using electric aircraft. Notably, previous studies concerned with subsidized routes (Pita et al., 2013,
014) have developed tactical flight scheduling and fleet assignment optimization models that minimize a comprehensive metric of
ocial costs (including passenger, airline, airport, and government surpluses).

In our paper, we adopt a strategic planning perspective to assess the potential trade-offs between subsidy costs (i.e., government
pending), the resultant network configuration, and passenger surplus. More precisely, we formulate a bi-objective model maximizing
assenger surplus while minimizing subsidies subject to network operating profits, which represent key considerations guiding
he design of subsidized networks. A central challenge in planning for subsidized routes lies in the direct dependence of subsidy
xpenditures on the overall network costs. Consequently, this demands an integrated approach that internally replicates aircraft
perations, as well as passenger allocation, to precisely gauge these costs. To this aim, we propose a novel time-space-energy flight
cheduling and fleet assignment formulation that captures interactions among charging facility locations, charging requirements,
leet planning, aircraft operations spanning various airports, and passenger demand.

Previous work on ground electric vehicles first proposed the use of a time-space-energy flow-based network. Zhang et al. (2019)
ntroduced this modeling approach to optimize the routing of electric cars for car-sharing operations. Li et al. (2019, 2021) applied
t to the bus scheduling problem. Most recently, Santos et al. (2023) extended and implemented a similar modeling approach
o aid high-level planning decisions concerning the design of a system of Shared Autonomous Electric Vehicles (SAEVs) and its
orresponding charging network. In this paper, we (i) extend this modeling approach to electric aircraft and hybrid fleets and (ii)
ropose a solution approach to scale it to the design of real-world sized air transport networks of subsidized routes.

. Demand deaggregation with generation and allocation properties

We now introduce our demand distribution model (DDGAP). First, we outline the problem setting and illustrate the intended
4
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Fig. 1. A prototypical case based on real-world data. The red dots represent airports VHM and LYC with 1048 and 1009 monthly passengers, respectively, which
are redistributed among nine geographical units based on demand-generation and demand-allocation assumptions. The lines represent the presence of demand
between a geographical unit and an airport. For those geographical units in the corner, we only consider the closest airport. The set of alternative airports can
differ among units, primarily because of ground access considerations such as reachability within a given maximum time threshold (e.g., two-hour driving time).
The GTC coefficient (𝛼) is assumed equal to −0.01. More details on our empirical setup can be found in Section 5.1.

3.1. Problem setting

Consistent with our real-world application and for simplicity of exposition, we consider a unique destination.1 Let us define
the set of airports as  (indexed by 𝑎), the set of geographical units  (indexed by 𝑘 and 𝑘′), and the set of travel directions 
(i.e., inbound and outbound) indexed by 𝑟. We also define subsets 𝑘 ⊂  to indicate the set of candidate alternative airports
that can be accessed from geographical area 𝑘. Given historical passenger demand at airport 𝑎 in a given direction 𝑟, denoted as
𝑄𝑟𝑎, we aim to obtain the demand at geographical unit 𝑘 that uses airport 𝑎 in direction 𝑟, i.e., 𝑞𝑟𝑘𝑎. We implement this demand
redistribution by grounding on two fundamental properties underpinning demand modeling in aviation, i.e., demand generation
and demand-allocation.

Regarding demand generation, similar to Grosche et al. (2007) and Boonekamp et al. (2018), we assume that the total demand
from/to geographical unit 𝑘 should be proportional to a metric that is representative of its potential for generating demand,
encompassing factors such as population and/or gross domestic product. We indicate such metric as 𝜋𝑘 and, in our application,
we consider the population at unit 𝑘.

Regarding demand allocation, we define a utility function (𝑉 𝑟
𝑘𝑎) depending upon key features underpinning itinerary choice,

and assume that demand from an area to neighboring airports is proportional to the exponent of their respective utilities—that is,
following a multinomial logit (MNL) formulation (e.g., Pels et al., 2003; Garrow, 2016). Specifically, we consider a utility function
based on the generalized travel cost (GTC), denoted as 𝑉 𝑟

𝑘𝑎 = 𝛼 ∗ 𝐺𝑇𝐶𝑟𝑘𝑎 (with 𝛼 < 0), which comprehensively incorporates two
key allocation drivers, ground access and air service-related attributes—such as the access time, price, flight time, and schedule
delay (refer to Section 5.1.2 for details)—and thus accurately characterizes the attractiveness of using a given airport from/to a
geographical unit 𝑘.

Fig. 1 illustrates how the simultaneous consideration of demand generation and allocation properties influence demand
redistribution, considering a small-scale prototypical scenario with nine geographical units (𝑘𝑖 for 𝑖 ∈ [1, 9]) and two airports (VHM
and LYC). Fig. 1(a) provides the input data for each geographical unit, that is, the population and its generalized travel cost (GTC)
to the neighboring airports. Figs. 1(b) and 1(c) show the demand estimates as a result of our two desired properties under varying
population setups to underscore the importance of jointly considering both these aspects.

In Fig. 1(b), we assume equal populations for all the geographical units. Consistent with the implied MNL specification for demand
allocation, from any geographical unit 𝑘, the flows towards a specific airport are linearly proportional to their exponentiated utility
(𝑒𝑉

𝑟
𝑘𝑎 ). Taking geographical unit 𝑘4, the estimated demand to VHM and LYC is 83 and 144, respectively—consistent with their exp-

utility values (0.07, 0.12, respectively). Concerning total demand, all geographical units accessing the same airports are characterized
by nearly identical values (e.g., 𝑘1, 𝑘2, and 𝑘2 have 242 total passengers, and 𝑘4, 𝑘5, and 𝑘5 have 227 total passengers), which is
consistent with the fact that they have the same population. In Fig. 1(c), we consider different populations. For each geographical

1 In most cases, subsidized air services aim for two-way connectivity between remote regions and a specified destination, typically a major city. Note, however,
that the model can be generalized to a multi-destination context. For example, by either implementing the redistribution for each destination independently as
typically assumed in the context of airport choice models (e.g., Hess and Polak, 2005) or by defining a more complex utility function for demand allocation
that accounts for the overall level of service at an airport, accounting and weighting for the provision of different destinations (e.g., Birolini et al., 2024).
5
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t
t

unit, the flows are still proportional to the utility values. Also, the total estimated demand is now proportional to its population—
e.g., 𝑘4 with a population of 763 has a total demand of 55 passengers whereas 𝑘6 has a population of 217 and a total demand of 15
passengers—thus producing more reasonable estimates.

In addition to demand generation and allocation properties, we enforce symmetry between outbound and inbound flows, as well
as alignment with observed airport demands.

3.2. Mathematical formulation (DDGAP)

We now formulate the DDGAP approach mathematically. The key decision variables are 𝑞𝑟𝑎𝑘. In addition, auxiliary variables
𝜀𝑟𝑎, 𝜉𝑘, 𝜃

𝑟
𝑘𝑘′ , and 𝜙𝑟𝑘𝑎𝑎′ are introduced to track deviations from each desired property in order to enable the minimization of their

cumulative sum within the objective function.2

min 𝛤1
∑

𝑎∈

∑

𝑟∈

(
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)2 + 𝛤2
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𝜀𝑟𝑎 ∈ R+ ∀𝑎 ∈ ,∀𝑟 ∈  (7)

𝜉𝑘 ∈ R+ ∀𝑘 ∈  (8)

𝜃𝑟𝑘𝑘′ ∈ R+ ∀𝑘 ∈ ,∀𝑘′ ∈ 𝛬(𝑘),∀𝑟 ∈  (9)

𝜙𝑟𝑘𝑎𝑎′ ∈ R+ ∀𝑘 ∈ ,∀𝑎, 𝑎′ ∈ 𝑘,∀𝑟 ∈  (10)

Expression (1) is a four-part objective function that minimizes the squared sum of four error terms. The first error term (𝜀𝑟𝑎)
is associated with data satisfaction constraints at the airport level; the second is associated with flow symmetry, i.e., the balance
in demand estimates in both directions of travel (𝜉𝑘); the third is associated with demand-generation (𝜃𝑟𝑘𝑘′ ); and the fourth part is
associated with demand-allocation (𝜙𝑟𝑘𝑎𝑎′ ). The parameters 𝛤1, 𝛤2, 𝛤3, 𝛤4 represent the weights assigned to the different objectives.
Their setting is critical in preventing the domination of corresponding error terms in the objective function (see Section 5.1.3 for a
detailed discussion). Following Bertsimas and Yan (2018), we consider the square of the errors to penalize large deviations.

Constraints (2) ensure that the sum of estimated demand using airport 𝑎 across geographical units is as close as possible to the
known airport demand. Constraints (3) ensure bi-directional balance (symmetry) in demand estimates. For each geographical unit
𝑘, they compute the decision variable 𝜉𝑘, which represents the deviation between the estimated demand values in the two travel
directions forming the set  (i.e., inbound and outbound, denoted by 𝑟 and 𝑟′, respectively). Constraints (4) and Constraints (5)
enforce the generation and allocation properties of air transportation demand. Constraints (4) ensure that the estimated demand from
a geographical unit 𝑘 is proportional to its generation factor 𝜋𝑘. These constraints enforce the demand-generation relationship by
pairwise comparison of the demand and generation factor ratios of units 𝑘 and 𝑘′, where 𝑘′ belongs to a neighborhood of 𝑘, indicated
by 𝛬(𝑘). Through the deviation term defined by decision variables 𝜃𝑟𝑘𝑘′ , which are also minimized in the third part of the objective
function, the demand-generation constraints basically aim to enforce that geographical units with similar 𝜋𝑘 will generate similar
demand, and that units with higher/lower 𝜋𝑘 will generate higher/lower demand. Constraints (5) ensure that the estimated demand
from geographical unit 𝑘 using airport 𝑎, in direction 𝑟 is proportional to the exponent utility (𝑒𝑉

𝑟
𝑘𝑎 ). Ideally, for each geographical

unit 𝑘 and travel direction 𝑟, the constraints enforce consistent allocation of demand among airport alternatives (𝑘), by a pairwise
comparison of the demand-utility ratios. Constraints (5) calculate the residue term defined by decision variables 𝜙𝑟𝑘𝑎𝑎′ , which is also
minimized in the fourth part of the objective function, thus ensuring that any pair of airports (e.g., 𝑎 and 𝑎′) with the same utility
has similar demand from geographical unit 𝑘. Constraints (6)–(10) define the domains of the decision variables. In summary, based
on the objective function in Eq. (1), and the Constraints (3)–(10), we propose a quadratic multi-objective optimization model.

2 Note that it is highly improbable and unreasonable to satisfy all the properties precisely and simultaneously—meaning achieving errors of exactly zero—due
o the presence of unobserved determinants and the assumptions made about the functional forms of the different components. Consequently, the DDGAP seeks
6
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Notably, the DDGAP model can be flexibly augmented to incorporate supplementary features and additional information related
to air transportation demand flow. In particular, calibration constraints accounting for observed flows between airports and
geographical units. These would contribute to the validation and further improvement of the model.

The output of the DDGAP model is granular demand estimates for each geographical unit to/from a given destination. These
estimates are key inputs for our subsequent optimization model—the 3DFSFA, as presented in Section 4.

4. Three-dimensional flight scheduling and fleet assignment for subsided routes

In this section, we present the 3DFSFA optimization model. We first describe the setup of the time-space-energy network in
Section 4.1, and then we formulate the model mathematically in Section 4.2.

The 3DFSFA is formulated as a multi-commodity network flow model in which commodities are represented as fleet types to
be allocated over a time-space-energy network. We consider the perspective of a centralized operator (similar to Pita et al., 2014;
Justin et al., 2022) who endeavors to design a network of subsidized routes and make well-informed decisions regarding the extent
of subsidized air services. The model addresses critical strategic decisions related to the fleet size and composition, the location and
sizing of charging bases, and the design of the route network. To achieve this accurately, it relies on granular demand inputs from
the DDGAP. It also internally optimizes flight schedules and fleet allocation, continuously tracking aircraft energy levels throughout
flight operations and charging processes and effectively allocating passengers to itineraries subject to aircraft capacity and passenger
surplus considerations. Note that the consideration of a single operator that operates the entire system provides a theoretical lower
bound on the minimum subsidy expenditure needed to incentivize the establishment of networks of various sizes. This, in turn,
enables the exploration of efficient non-dominated solutions along the passenger surplus-subsidy Pareto frontier.

4.1. Model setup

We define a time-space-energy network using a set of time instants  indexed by 𝑡, a set of spatial nodes representing airports
 indexed by 𝑎, and a set of discrete energy levels  indexed by 𝑒.

The intersection of these three dimensions creates a three-dimensional space in which activity nodes and various types of edges
(arcs) can be established to represent different activities and aircraft operations. We describe the different components using the
illustrative example presented in Fig. 2, featuring three airports (ESNC, ESSK, and ESSA), time discretized in 30 min intervals, and
four energy levels (𝑒0, 𝑒1, 𝑒2 and 𝑒3).

Activity nodes. Activity nodes, represented by set  indexed by 𝑛, are uniquely identified by a three-element tuple (𝑎, 𝑡, 𝑒) and
represent events at a certain airport in the network, such as flight arrivals or departures as well as the initiation or completion of
aircraft charging. To exemplify, in Figs. 2(a) and 2(c), we have activity nodes (ESNC, 05:00, 𝑒3), (ESSK, 06:30, 𝑒0), (ESSK, 06:30,
𝑒0), and (ESSK, 08:00, 𝑒3) representing a flight departure, flight arrival, start of charging, and end of charging, respectively.

Activity nodes can be linked by three distinct types of directed arcs, i.e., flights arcs ( , indexed by 𝑓 ), ground arcs (, indexed
by 𝑔), and charging arcs (, indexed by ℎ), which are uniquely identified by six-element tuples.

Flight arcs. Flight arcs connect activity nodes at different airports, times, and energy levels. For example, in Fig. 2(a), flight arc
𝑓1=(ESNC, ESSK, 05:00, 06:30, 𝑒3, 𝑒0) represents an aircraft movement from origin airport ESNC to destination airport ESSK,
departing at 05:00 and arriving at 06:30, and characterized by an energy consumption of 𝑒3 − 𝑒0 units, depleting the aircraft’s
energy from an initial level of 𝑒3 to a concluding level of 𝑒0.

Ground arcs. Ground arcs connect two subsequent activity nodes at the same airport and aid in tracking the number of aircraft on
the ground at a specific location for a certain duration. For example, 𝑔6=(ESSK, ESSK, 06:30, 07:30, 𝑒0, 𝑒0) is one of the ground
arcs at ESSK (see Fig. 2(a)). In the set , we also incorporate wrap-around arcs, which are ground arcs that connect the last activity
node to the first one at any given airport, ensuring schedule repeatability.

Fig. 2. Examples of two-dimensional representations of the time-space-energy network. The dots indicate activity nodes. Fig. 2(a) represents the time-space
network with flight arcs ({𝑓𝑖 ∣ 𝑖 = 1,… , 4}) and ground arcs ({𝑔𝑖 ∣ 𝑖 = 1,… , 11}). Fig. 2(b) represents the energy consumption arcs for the four flight arcs. Fig. 2(c)
represents the charging arcs ({ℎ𝑖 ∣ 𝑖 = 1,… , 15}) of aircraft at airport ESSK.
7
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Charging arcs. Charging arcs represent an aircraft undergoing charging at an airport. For example, in Fig. 2(c), the charging arc
ℎ2 (ESSK, ESSK, 06:30, 07:00, 𝑒0, 𝑒1) represents an aircraft commencing charging at 06:30 with an initial energy level of 𝑒0 and
concluding at 07:00 with the energy level elevated to 𝑒1. In this paper, we formulate the 3DFSFA assuming a single charger type.
Nonetheless, the proposed modeling approach is very flexible and can be straightforwardly extended to account for multiple charger
types (e.g., slow vs. fast chargers) and nonlinear charging patterns (e.g., as a function of the state-of-charge (SOC)) as demonstrated
in Santos et al. (2023). Additionally, the model could be extended to incorporate alternative charging strategies, such as battery
swapping.

Aircraft fleet. The model can flexibly handle heterogeneous and hybrid fleets—that is, a mixed fleet with different aircraft types,
both conventional and electric. We denote the set of fleet types as  , indexed by 𝑝. Driven by disparities in speed, charging times, and
technical performance, it might be necessary to consider tailored time-space-energy discretizations for the different fleet types. For
conventional aircraft in particular this would not require setting up a complete time-space-energy network, but a simpler time-space
network, with savings in computational complexity and smaller size of the resulting mathematical model.

Passenger itineraries. To model passenger flows, we consider a set of population areas () as outlined in Section 3. For each area
and travel direction, we define demand parameters 𝜌𝑘𝑟𝑡, differentiated by time period according to time-of-day preferences. These
parameters are obtained from the DDGAP (𝜌𝑘𝑟 =

∑

𝑎∈𝑘
𝑞𝑟𝑘𝑎) and subsequently refined by breaking them down based on empirically

derived time-of-day preference patterns. These patterns are extracted from historical data by means of a kernel density approach,
as elaborated upon in Section 5 and Appendix B. We represent passenger air travel alternatives by defining a set of itineraries (,
indexed by 𝑖). Each itinerary is uniquely constructed as an ordered sequence of one or more flight arcs by enforcing connectivity in
time and space and applying a maximum number of stops and maximum routing factor threshold to filter out sequences that are too
fragmented or characterized by implausible detours (refer to Section 5.2 for details). For example, for a given trip between ESNC
and ESSA, passengers can be assigned to an itinerary combining two flight legs—e.g., 𝑓1 and 𝑓3 in Fig. 2(a). For each itinerary, we
calculate its corresponding generalized travel cost (GTC) parameter (𝜏𝑘𝑖𝑡), according to the same formulation used to model demand
allocation in the DDGAP. Note that parameters 𝜏𝑘𝑖𝑡 are also indexed by 𝑘 and 𝑡. Indeed, a given itinerary 𝑖, which is inherently
characterized by a departure time 𝑡(𝑖) and origin/destination airport 𝑎(𝑖), can serve passengers originating from multiple areas in the
catchment area of its origin/destination airport and characterized by different departure time preferences. Accordingly, deviations
from the preferred time of travel (i.e., schedule delays computed as |𝑡 − 𝑡(𝑖)|) and extended ground access times (depending on the
round access alternatives to travel between 𝑘 and 𝑎(𝑖)) would imply a higher GTC and thus a lower utility. In turn, the consideration
f granular demand estimates and comprehensive utility functions allows us to accurately gauge, within the model, the quality of
ravel provided to passengers accommodated on each itinerary.

The 3DFSFA takes a variety of price and cost parameters as input. These parameters are essential for evaluating potential system
evenues and costs within the model, thereby enabling the assessment of the optimal magnitude of subsidization. Notably, these
arameters include the ownership cost for an aircraft of type 𝑝 (𝑐𝑜𝑤𝑛𝑝 ), the average installment and maintenance cost of a charger
𝑐𝑐ℎ), the operating cost for an aircraft 𝑝 serving flight arcs 𝑓 (𝑐𝑜𝑝𝑓𝑝), and the charging cost for an aircraft 𝑝 using charging arc ℎ
𝑐𝑒𝑛ℎ𝑝). Additionally, we introduce a gross margin threshold (expressed as the ratio of operating profits to revenues, denoted by 𝜓)
o ensure that the operator attains a minimum level of profitability, similar to Kinene et al. (2022).

Given the aforementioned inputs, the 3DFSFA optimizes the following variables: the number of aircraft of each type (𝑤𝑝), the
umber of chargers at each airport (𝜚𝑎), the subsidization amount (𝜒), the allocation of aircraft to flight arcs (𝑥𝑓𝑝), ground arcs
𝑦𝑔𝑝), and charging arcs (𝑧ℎ𝑝), while also tracing the passenger allocation to specific itineraries through variables 𝑞𝑘𝑖𝑡.

.2. Mathematical formulation (3DFSFA)

We now introduce the complete notation for the 3DFSFA model (Table 1) and formulate it mathematically.

𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒𝑠 ∶

𝑂1 =max
∑

𝑘∈

∑

𝑡∈

∑

𝑖∈𝑘∩𝑡

𝑞𝑘𝑖𝑡(𝜈 + 𝑒𝛼𝜏𝑘𝑖𝑡 ) (11)

𝑂2 =min 𝜒 (12)
𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠 ∶

s.t.
∑

𝑓∈+
𝑛𝑝

𝑥𝑓𝑝 +
∑

𝑔∈+𝑛𝑝

𝑦𝑔𝑝 +
∑

ℎ∈+
𝑛𝑝

𝑧ℎ𝑝 =
∑

𝑓∈−
𝑛𝑝

𝑥𝑓𝑝 +
∑

𝑔∈−𝑛𝑝

𝑦𝑔𝑝 +
∑

ℎ∈−
𝑛𝑝

𝑧ℎ𝑝, ∀𝑛 ∈ 𝑝,∀𝑝 ∈  (13)

∑

𝑓∈𝑐𝑝

𝑥𝑓𝑝 +
∑

𝑔∈𝑐𝑝

𝑦𝑔𝑝 +
∑

ℎ∈𝑐
𝑝

𝑧ℎ𝑝 ≤ 𝑤𝑝, ∀𝑝 ∈  (14)

∑

𝑓∈𝑝

𝑥𝑓𝑝𝑏𝑓𝑝 ≤ 𝑤𝑝𝑢𝑝, ∀𝑝 ∈  (15)

∑ ∑ ∑

− +
𝑥𝑓𝑝 ≤ 𝑙𝑎𝑡, ∀𝑎 ∈ ,∀𝑡 ∈  (16)
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Table 1
List of notations.

Sets

 Population areas indexed by 𝑘
 Airports indexed by 𝑎
 Travel directions indexed by 𝑟
 Set of time instants/periods indexed by 𝑡
𝑝 Activity nodes for aircraft of type 𝑝 indexed by 𝑛
𝑎𝑡 Activity nodes at airport 𝑎 at time 𝑡
 Fleet types indexed by 𝑝
 Flight arcs indexed by 𝑓
 Ground arcs (including wrap-around arcs) indexed by 𝑔
 Charging arcs indexed by ℎ
 Itineraries indexed by 𝑖
𝑘 ⊂  Airports that can be used by region 𝑘
𝑓 ⊂  Fleet types that can fly flight arc 𝑓
𝑓 ⊂  Itineraries requiring flight arc 𝑓
𝑡 ⊂  Itineraries that can serve passenger willing to depart at time 𝑡
𝑘 ⊂  Itineraries that can serve region 𝑘
𝑟 ⊂  Itineraries in travel direction 𝑟
+
𝑛𝑝 ,

−
𝑛𝑝 ⊂  Inbound/outbound flight arcs to activity node 𝑛 for aircraft type 𝑝

+
𝑛𝑝 ,

−
𝑛𝑝 ⊂  Inbound/outbound ground arcs to activity node 𝑛 for aircraft type 𝑝

+
𝑛𝑝 ,

−
𝑛𝑝 ⊂  Inbound/outbound charging arcs to activity node 𝑛 for aircraft type 𝑝

 𝑐
𝑝 ⊂  ,𝑐𝑝 ⊂ ,𝑐

𝑝 ⊂  Flight, ground and energy arcs for aircraft type 𝑝 crossing the count line 𝑐
𝑐(𝑡)
𝑎𝑝 ⊂  Charging arcs for aircraft type 𝑝 at airport 𝑎 crossing count line at time 𝑡

Input parameters

𝜌𝑘𝑟𝑡 Demand at 𝑘 traveling in direction 𝑟 with desired departure time 𝑡
𝜏𝑘𝑖𝑡 Generalized travel cost of passengers at 𝑘 with desired departure time 𝑡 using itinerary 𝑖
𝛼 Utility scaling factor
𝜈 Weighting parameter for demand coverage
𝛿𝑖 Average price on itinerary 𝑖
𝜂𝑝 Seat capacity by aircraft type 𝑝
𝑏𝑓𝑝 Block hours for aircraft type 𝑝 using flight arc 𝑓
𝑢𝑝 Maximum daily utilization hours of aircraft type 𝑝
𝑙𝑎𝑡 Capacity at airport 𝑎 in departure time period 𝑡
𝑐𝑜𝑝𝑓𝑝 Operating cost for an aircraft of type 𝑝 serving flight arc 𝑓
𝑐𝑒𝑛ℎ𝑝 Charging cost for an aircraft of type 𝑝 using charging arc ℎ
𝑐𝑜𝑤𝑛𝑝 Ownership cost for an aircraft of type 𝑝
𝑐𝑐ℎ Unit installment and maintenance cost of a charger
𝜓 Target system’s minimum operating profits

Decision variables

𝑥𝑓𝑝 ∈ {0, 1} =1 if aircraft type 𝑝 is assigned to flight arc 𝑓 , = 0 otherwise
𝑦𝑔𝑝 ∈ N+ The number of aircraft of type 𝑝 through ground arc 𝑔
𝑧ℎ𝑝 ∈ N+ The number of aircraft of type 𝑝 through charging arc ℎ
𝑞𝑘𝑖𝑡 ∈ R+ The number of passengers from/to zone 𝑘 willing to travel at time 𝑡 accommodated on itinerary 𝑖
𝑤𝑝 ∈ N+ Number of aircraft of type 𝑝
𝜚𝑎 ∈ N+ Number of chargers available at airport 𝑎
𝜒 ∈ R+ Amount of subsidy

∑

𝑝∈

∑

ℎ∈𝑐(𝑡)
𝑎𝑝

𝑧ℎ𝑝 ≤ 𝜚𝑎, ∀𝑎 ∈ ,∀𝑡 ∈  (17)

∑

𝑖∈𝑘∩𝑡∩𝑟

𝑞𝑘𝑖𝑡 ≤ 𝜌𝑘𝑟𝑡, ∀𝑘 ∈ ,∀𝑡 ∈  ,∀𝑟 ∈  (18)

∑

𝑘∈

∑

𝑡∈

∑

𝑖∈𝑘∩𝑡∩𝑓

𝑞𝑘𝑖𝑡 ≤
∑

𝑝∈𝑓

𝜂𝑝𝑥𝑓𝑝, ∀𝑓 ∈  (19)

(1 − 𝜓)

(

∑

𝑘∈

∑

𝑡∈

∑

𝑖∈𝑘

𝛿𝑖𝑞𝑘𝑖𝑡 + 𝜒

)

−
∑

𝑝∈

(

∑

𝑓∈
𝑐𝑜𝑝𝑓𝑝𝑥𝑓𝑝 +

∑

ℎ∈
𝑐𝑒𝑛ℎ𝑝𝑧ℎ𝑝 + 𝑐

𝑜𝑤𝑛
𝑝 𝑤𝑝

)

−
∑

𝑎∈
𝑐𝑐ℎ𝜚𝑎 ≥ 0 (20)

𝑥𝑓𝑝 ∈ {0, 1}, ∀𝑓 ∈ 𝑝,∀𝑝 ∈  (21)

𝑦𝑔𝑝 ∈ Z+, ∀𝑔 ∈ 𝑝,∀𝑝 ∈  (22)

𝑧ℎ𝑝 ∈ Z+, ∀ℎ ∈ 𝑝,∀𝑝 ∈  (23)

𝑞𝑘𝑖𝑡 ∈ R+, ∀𝑘 ∈ ,∀𝑡 ∈  ,∀𝑖 ∈ 𝑘 ∩ 𝑡 (24)

𝑤𝑝 ∈ Z+, ∀𝑝 ∈  (25)
9
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𝑠𝑎 ∈ Z+, ∀𝑎 ∈  (26)

Expressions (11)–(12) form a bi-objective function. Expressions (11) maximizes our measure of total passenger surplus, which
s calculated as the sum product of the number of passengers accommodated on any given itinerary 𝑞𝑘𝑖𝑡 and the sum of the exp-
tility and a fixed constant (𝜈). The parameter 𝜈 handles the trade-off between maximizing of the number of passengers served
nd improving the level of services, which may be partly conflicting in a constrained resource setting. Without 𝜈 and depending

upon the magnitude of the exponentiated utility terms, the improvement of the service level for a restricted subset of passengers
could in fact dominate the objective function and prevent the servicing of additional passengers. Consistent with the planning goals
of setting up a comprehensive network of subsidies services, in this paper we set 𝜈 large enough to largely (or lexicographically)
prioritize service coverage. Additionally, we preemptively filter out strongly unattractive itineraries from the itinerary set. This, in
turn, prevents extreme solutions where some passengers might be assigned to significantly inconvenient alternatives and ultimately
ensures minimum service levels for the passengers served. Expression (12) minimizes the amount of subsidization needed to establish
the network.

Constraints (13) and (14) are basic network constraints that enforce flow balance and resource availability, respectively.
Constraints (13) ensure that the number of departures per aircraft type at each activity node is equal to the number of arrivals.
Given the inclusion of wrap-around arcs in the arcs sets, Constraints (13) also ensure schedule repeatability within the planning
period. Constraints (14) count the number of aircraft allocated to arcs crossing the count line and ensure that this value is lower than
the available number of aircraft per aircraft type. Constraints (15) formulate an aggregate utilization constraint, which limits each
aircraft type’s total utilization hours based on the expected average aircraft utilization. Constraints (16) enforce that the number
of aircraft movements (i.e., both arrival and departure flights) at an airport in any given time period does not exceed its capacity.3
Constraints (17) establishes an upper limit on the number of aircraft that can concurrently undergo charging at any station, which
is constrained to match the number of available chargers.

Constraints (18) and Constraints (19) are demand and seat capacity constraints. Constraints (18) ensure that, for each direction 𝑟
and time period 𝑡 at population area 𝑘, the total number of allocated passengers does not exceed the estimated demand. Constraints
(19) ensure that the accommodated demand on each flight leg does not exceed the allocated seat capacity.

Constraint (20) is specific to the context of subsidized routes: similar to Kinene et al. (2022), the constraint ensures that the
operator makes a minimum system gross operating margin (𝜓). Considering 𝜓 = 0 implies a solution for a break-even network,
where the total revenues plus subsidies are just enough to cover the costs considered in the model. Finally, Constraints (21)–(26)
define the domain of the variables.

4.3. Solution approach

The formulation of the 3DFSFA model in Eqs. (11)–(26) results in a large-scale Mixed-Integer Linear Problem that is very
challenging to solve. Next, we discuss two strategies to effectively reduce the mathematical size of the problem through reformulation
and the number of integer variables, which significantly enhance its tractability towards solving real-world instances in a reasonable
time.

Model reformulation. While it is essential to incorporate the energy dimension into the modeling of flight scheduling and the
assignment of electric aircraft, it is reasonable to assume that passengers typically do not prioritize or even have knowledge of
this aspect when making their travel plans. In other words, we can assume passengers are indifferent between traveling across
flight arcs characterized by the same time-space profile (i.e., differing only by the energy levels)—obviously, as long as both flight
options can be feasibly operated under safety and minimum energy reserve requirements. Building itineraries as a combination of
time-space-energy flight arcs exponentially inflates the number of itineraries. To characterize passenger travel options effectively, we
can limit our focus to enumerating potential flight combinations in terms of time and space, resulting in a significant reduction in the
mathematical size of the problem. Consequently, we propose an adjustment to the definition of itineraries. From the set of flight arcs
 , we derive a set of spatial–temporal flight profiles  (indexed by 𝑑) that are unique in time and space, which we then use to define
he set of itineraries . Let 𝑑 represent subsets of flight arcs (i.e., in ) with the same spatial–temporal components (represented

by 𝑑). Similarly, let 𝑑 denote the subset of itineraries requiring spatial–temporal flight profile 𝑑. Note that this modification has
minimal impact on the 3DFSFA mathematical formulation, requiring only the reformulation of Constraints (19) as follows:

∑

𝑘∈

∑

𝑡∈

∑

𝑖∈𝑘∩𝑑∩𝑡

𝑞𝑘𝑖𝑡 ≤
∑

𝑓∈𝑑

∑

𝑝∈𝑓

𝜂𝑝𝑥𝑓𝑝, ∀𝑑 ∈  (27)

Such reformulation enabled us to reduce the cardinality of the itinerary set by approximately half, with consequent pre-
processing, memory allocation, and computational benefits.

3 For notation convenience, here we formulate the constraint sets using the same time discretization as the underlying time-space-energy network (i.e.,  );
10

nonetheless, time intervals of different durations can also be contemplated to accurately represent flexible capacity declarations.
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Binary relaxation. Prior studies dealing with a time-space representation have demonstrated that the integrality of ground arcs can
e relaxed because it is implicitly satisfied through the inclusion of flow balance and fleet count constraints and the integrality of
light arc and fleet size variables (e.g., Yan et al., 2022).

The addition of the third dimension (energy) makes this derivation not straightforward. Nonetheless, we can demonstrate that it
s still possible to relax both 𝑦𝑔𝑝 and 𝑧ℎ𝑝 and obtain a feasible (and possibly optimal) integer solution to the original problem via the

procedure outlined in Appendix A. This relies on the decomposability of feasible flight assignment solutions (𝑥𝑓𝑝)—under wrapped-
around arcs and schedule repeatability—into elementary inbound-outbound flight pairs. Moreover, it rests on the observation that
any solution of the relaxed model and the original model with the same flight assignment variables is characterized by the same
charging operating costs.

In summary, the proposed procedure entails a sequential approach involving the following steps:

1. Solve the relaxed model, obtained by relaxing the integrality on charging and ground arc variables.
2. Fix the flight arc variables (𝑥𝑝𝑓 ), which consequently define variables 𝑞𝑖𝑘𝑡 and 𝑤𝑝.
3. Reconstruct a feasible solution for the original problem (i.e., define variables 𝑧ℎ𝑝 and 𝑦𝑔𝑝 to be integer) using Algorithm 1.

A desirable property of the proposed solution method is that it allows deriving a valid optimality gap—hence, proving the
xact optimality of the reconstructed solution to the 3DFSFA problem when the gap is 0%. Let 𝛱0 be the objective value of the
econstructed feasible solution for the original problem (resulting from Step 3). Let 𝑃1 denote the relaxed model (Step 1) and 𝛱1
ts objective value. Notice that 𝑃1 is a large-scale mixed-integer program itself. Although we relax the integrality on charging and
round arc variables, it still includes binaries 𝑥𝑓𝑝 and is thus solved via traditional branch and cut techniques. We denote �̃�1 as
he objective value of the relaxed model’s linear bound at termination. By construction, we have that �̃�1 ≥ 𝛱1 ≥ 𝛱0

4. Therefore, a
alid optimality gap for the original problem can be computed as: 𝐺𝐴𝑃3𝐷𝐹𝑆𝐹𝐴 = (�̃�1 −𝛱0)∕�̃�1.

In practical terms, we can run into three cases:

– Case 1: 𝑃1 is solved to optimality (�̃�1 = 𝛱1), and Algorithm 1 returns a solution with the same objective value as 𝑃1 (𝛱1 = 𝛱0).
The optimality gap is 0% and the solution found is optimal.

– Case 2: 𝑃1 is not solved to optimality (i.e., �̃�1 > 𝛱1), and Algorithm 1 returns a solution with the same objective value as 𝑃1
(𝛱1 = 𝛱0). In this case, the optimality gap for the 3DFSFA is greater than zero and identical to that of 𝑃1.

– Case 3: 𝑃1 is not solved to optimality (i.e., �̃�1 > 𝛱1), and Algorithm 1 returns a solution with a lower objective value as 𝑃1
(𝛱1 > 𝛱0). In this case, the optimality gap for the 3DFSFA is greater than zero and greater than that of 𝑃1.

As better discussed in Section 5.2.1, the implementation of the proposed relaxation scheme enabled us to address large-scale
nstances to close optimality in a reasonable time. On the contrary, directly applying the Branch and Cut (B&C) method to the original
odel proved highly inefficient, impacting significantly prolonged times for the proof of optimality and consequently resulting in
uch larger optimality gaps.

. Real-world application

In this section, we illustrate the application of the proposed modeling framework through a real-world case study of subsidized
outes in Sweden.

Sweden constitutes an exemplary case study for the application of electric aircraft for three major reasons. First, Sweden is
ne of the leaders in the transition towards electric aircraft. It is also the home of Heart Aerospace, a leading manufacturer of
regional battery-electric aircraft with a prototype (i.e., ES-30, formerly ES-19) that is aiming for one of the earliest entry to

ommercial market—in 2028. Second, the use of electric aircraft is a major opportunity for improving both the economic and
nvironment sustainability of subsidized air services, which are prominently used in Sweden to connect remote regions whose thin
emand does not suffice to attract commercial airline services. As mentioned in Section 1, the characteristics of the upcoming electric
ircraft could make them fit for serving this thin demand efficiently. Third, Trafikverket—the transportation authority responsible
or administering the PSO system in Sweden—has expressed interest in using electric aircraft for subsidized air services after the
023–2027 contract period (Trafikverket, 2022). Consistent with the accessibility priorities of the PSO systems, in this case study,
e focus on Stockholm City as the target location of passenger trips.

Our modeling framework implements the two optimization models, i.e., the DDGAP and 3DFSFA presented in Section 3 and
ection 4, respectively. As summarized in Fig. 3 and further discussed in the rest of this section, the framework takes inputs from
ultiple data sources and entails several pre-processing steps to be implemented.

.1. Demand estimation

The DDGAP model takes three key inputs: aggregated historical airport demand; GIS-processed data on the population (at the
pecific geographical-unit level) and the airport network; and the utility for each grid unit-airport pair. It outputs demand estimates
or each geographical unit, which combined with time-of-day kernel densities, form the demand parameters of the 3DFSFA.

4 Assuming, without loss of generality, the 3DFSFA is formulated as a maximization problem, e.g., by combining 𝑂1 and 𝑂2 into a weighted maximization
11

objective function of the form max 𝑓 (𝑂1 ,−𝑂2))
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Fig. 3. Modeling Architecture: the connections between data sources, preprocessing steps, DDGAP and 3DFSFA models, and the results.

5.1.1. Data sources
We retrieve historical monthly air transportation data on Swedish airport-pairs from the OAG Schedule Analyzer and Traffic

nalyzer modules (OAG, 2020). From the OAG Schedule Analyzer, we gather information on air service schedules and capacity,
ncluding details such as departure and arrival times, flight counts, total seat capacity, total distance traveled, air travel duration,
nd connecting times. From the OAG Traffic Analyzer, we collect itinerary-level origin–destination passenger volumes for all airports
n the sample, encompassing flights either originating from or destined to the target location.

As input to the models, we grid Sweden into a set of 281 (50 km by 50 km) geographical units (), and calculate the associated
opulation 𝜋𝑘 based on a high-resolution (30 arcsec) global spatial data set (see Tatem, 2017, for details).

We define the set of airports  consisting of 83 airports. These airports include the current 38 airports with commercial traffic and
5 underutilized regional airports with at least one 800-meter-long paved runway (TrafikAnalys, 2020) to explore the advantages
f enhancing and utilizing additional airport infrastructure. Note that, for the DDGAP model, we only consider the 29 airports with
assenger traffic to and from Stockholm-Arlanda airport (ARN) or Stockholm-Bromma airport (BMA), while in the 3DFSFA, we
onsider all the airports.5 Fig. 4 shows the distribution of the population and the airports across Sweden. The Swedish population
s concentrated around the central and southern parts of the country (see Fig. 4(a)), and the airports are reasonably located close
o more densely populated areas 4(b).

The determination of utility parameters necessitates gathering data inputs from multiple sources. It is derived through a
ombination of factors, including ground access travel time (obtained from Rome2rio (2021)), flying time (obtained from the OAG
chedule Analyzer), price (estimated using a price function based on fare data retrieved from Apex (2019)), and schedule delays—
alculated using an optimization model leveraging empirical time-of-day kernel densities estimated from historical OAG schedule
ata. A detailed explanation of the formulation and computation of utility functions is provided in the subsequent sections.

5 The demand estimates from the DDGAP model enable the allocation of demand not just to the currently used commercial airports but also to currently
12

nder- or unutilized airports, thus empowering a thorough evaluation of the potential connectivity benefits of electric aircraft and the use of alternative airports.



Transportation Research Part B 190 (2024) 103065A. Kinene and S. Birolini
Fig. 4. The population and airport distribution for Sweden. In Fig. 4(a), the hatched-shaded region represents geographical units with zero population. In
Fig. 4(b), the red circles represent an airport with commercial traffic to and from Stockholm; the size of each circle represents the total number of passengers;
the hatched-shaded region represents geographical units within Stockholm area and those with zero population. In Fig. 4(c), the contiguous gray area represents
the area under investigation for the implementation of the 3DFSFA. It includes the current remote areas in the West and North-Western part of Sweden along
with nearby areas that can either leverage air services from current PSO airports or other airports with commercial services to Stockholm. The light gray links
represent a set of illustrative pre-processed arcs to connect to Stockholm Arlanda airport.

5.1.2. Demand allocation function
Recalling Section 3, we establish our utility function as follows: 𝑉 𝑟

𝑘𝑎 = 𝛼 ∗ 𝐺𝑇𝐶𝑟𝑘𝑎, where 𝛼 is a utility scaling parameter and
𝐺𝑇𝐶𝑟𝑘𝑎 represents the generalized travel cost of passengers at area 𝑘 using airport 𝑎 in direction 𝑟. In symbols, 𝐺𝑇𝐶𝑟𝑘𝑎 is formulated
as follows:

𝐺𝑇𝐶𝑟𝑘𝑎 = 𝑝𝑎𝑟 + 𝜆1𝜌𝑘𝑎 + 𝜆2𝜏𝑎𝑟 + 𝜆3𝛿𝑎𝑟, (28)

where 𝑝𝑎𝑟 is the average airfare for passengers using airport 𝑎 in direction 𝑟, 𝜌𝑘𝑎 is the ground access/egress time of airport 𝑎
from area 𝑘, 𝜏𝑎𝑟 is the air travel time (including connecting time) for passengers using airport 𝑎 in direction 𝑟, 𝛿𝑎𝑟 is the average
schedule delay for passengers using airport 𝑎 in direction 𝑟, and 𝜆1, 𝜆2, and 𝜆3 denote the values of time, quantifying the monetary
opportunity cost associated with the distinct time components incorporated within the GTC function—ground access time, air travel
time, and schedule delay, respectively. According to the state-of-the-art, these attributes capture the fundamental factors influencing
the allocation of air traffic demand (see, e.g., Lieshout et al., 2016; Mueller, 2021; Cattaneo et al., 2022).

In the absence of explicit data to calibrate 𝛼, we set this parameter to −0.01, drawing upon prior literature that employed a similar
utility function in a similar context (Lieshout et al., 2016) and confirming its validity in producing meaningful substitution patterns.
Similarly, we derive the 𝜆 coefficients from prior work. We use an access/egress value of time of $19.9 per hour, which represents
an average for short car journeys of fewer than 100 km (under free-flow conditions). This figure was obtained from Wardman et al.
(2016) (i.e., $13.26 per hour) and further scaled by applying a multiplier of 1.5 derived from Birolini et al. (2019) to account for
the higher value of time of airport passengers compared to commuters. Regarding the air travel value of time, we adopt a value of
$49.13 per hour as derived from Wardman et al. (2016), representing the average for business and leisure air travelers in Sweden.
13
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Table 2
Effect of normalization on the sum of squares of the error terms attributed to the airport demand (𝜀𝑎𝑟), the
balance of outbound and inbound demand (𝜉𝑘), demand-generation (𝜃𝑟𝑘𝑘′ ), and demand-allocation (𝜙𝑟𝑘𝑎𝑎′ ). The
values are scaled by 106.

Normalization 𝜀𝑎𝑟 𝜉𝑘 𝜃𝑟𝑘𝑘′ 𝜙𝑟𝑘𝑎𝑎′

None 1143.620 0.486 0.174 37.680
Rows 493.889 0.874 0.311 5021.806
Value re-scaling 6786.538 0.177 0.000 0.240
Both 1829.891 1.452 0.001 32.874

Note: 𝜀𝑎𝑟, 𝜉𝑘, 𝜃𝑟𝑘𝑘′ , and 𝜙𝑟𝑘𝑎𝑎′ have 58, 225, 100,800, and 1048 variables, respectively.

Ultimately, we compute the opportunity cost of schedule delay following Pita et al. (2014), assuming that it can reasonably be
approximated as 39.75% of the passenger air travel value of time, i.e., $19.5 per hour.

To address the challenge of incomplete and irregular fare data for certain flights within Apex, we use a simple log–log linear
egression to estimate the average airfare at airport 𝑎 in direction 𝑟 as a function of the flight’s great circle distance (𝐺𝐶𝐷, in km):
𝑝𝑎𝑟 = 𝐺𝐶𝐷0.71

𝑎𝑟 . Concerning airport access times, we randomly generate 5 points within each geographical unit using a weighted-
population approach, calculate the ground travel time from each point to each airport within 200 km as the crow flies, and take the
average travel time across all 5 points for each geographical area and airport. Ultimately, schedule delays are not readily available
from historical booking data. To estimate them, we develop an optimization-based approach that first estimates the departure time
preference curves and then matches historical demand with seat capacity to minimize schedule delays (the complete procedure is
described in Appendix B). This, in turn, enables us to obtain conservative and consistent estimates of historical schedule delays at
the airports under consideration.

5.1.3. Demand estimation results
As the DDGAP entails a four-part objective function, each with distinct value ranges, a critical decision influencing our model’s

performance is the selection of appropriate normalization parameters. In this section, we test how the outcome of the DDGAP model
is affected by the use of different normalization schemes to address the selection of suitable weights for obtaining consistent demand
estimates.

We test four normalization schemes. First is the None scheme that considers no normalization. Second is the Rows normalization
scheme that takes into account the cardinality (the number of values) of each of the four parts of the objective function. In other
words, under the Rows normalization, the objective function minimizes the mean of the sum of the squared errors (instead of the
sum). Third is the Value re-scaling scheme where we re-scale the 𝜃𝑟𝑘𝑘′ and 𝜙𝑟𝑘𝑎𝑎′ errors with the aim of bringing them to the same scale
(of number-of-passengers) as the 𝜀𝑎𝑟 and 𝜉𝑘 errors. Specifically, we multiply each 𝜃𝑟𝑘𝑘′ and 𝜙𝑟𝑘𝑎𝑎′ error term by the corresponding
specific mean, that is 1

2 (𝜋𝑘 + 𝜋𝑘′ ), and 1
2 (𝑒

𝛼𝑉 𝑟𝑘𝑎 + 𝑒𝛼𝑉
𝑟
𝑘𝑎′ ), respectively. Fourth is the Both scheme, which is a combination of the Rows

and Value re-scaling schemes.
The main results are presented in Table 2 and are corroborated by Figs. 5 and 6. In Table 2, we compare the performance

of the different normalization schemes (i.e., None, Rows, Value re-scaling, and Both) using the sum of squared errors for airport
demand 𝜀𝑎𝑟, direction balance 𝜉𝑘, demand-generation 𝜃𝑟𝑘𝑘′ , and demand-allocation 𝜙𝑟𝑘𝑎𝑎′ . The reported sums of squares of the error
terms are computed without normalization in order to be comparable across different normalization schemes. Fig. 5 shows the
geographical distribution of the estimated demand for three normalization schemes: None, Value re-scaling and Both. Fig. 6 presents
validation plots of how well airport demand estimates from the model—obtained through the aggregation of values 𝑞𝑟𝑘𝑎 across 𝑎,
i.e., ∑𝑘∈𝑎 𝑞

𝑟
𝑘𝑎—match the actual airport demand.

The results in Table 2 indicate that normalizing the parts of the objective function ensures a balanced contribution of all the
error terms to the overall objective function.

Under the None normalization scheme, the airport demand (𝜀𝑎𝑟) and the demand-allocation (𝜙𝑟𝑘𝑎𝑎′ ) components dominate
the objective function, resulting in reduced demand-generation accuracy. From Fig. 5(a) it is indeed evident that the demand
distribution pattern is not very consistent with the population distribution (see Fig. 4(a)) and Fig. 5(b), depicting the value re-scaling
normalization—under which demand-generation errors are the lowest. The results for the None normalization scheme suggest the
need for normalization.

The Rows normalization scheme places a higher emphasis on airport demand errors compared to other types of errors. When
we normalize by the number of variables, it penalizes objective components with a larger number of variables. For instance, the
demand-generation part, which has the most variables, receives the highest penalty as evidenced by the increase in the sum of
squares. Conversely, the airport demand component, with the fewest variables, is penalized the least, resulting in a decrease in the
sum of squares.

In contrast, the Value re-scaling normalization scheme takes into account the magnitude of errors in each objective function
component. This approach ensures that demand estimation aligns with both the demand-generation (as observed in Fig. 5(b), where
the general demand distribution matches the population distribution in Fig. 4(a)) and demand-allocation properties. However, it
comes at the cost of larger errors between estimated airport demand and historical airport demand data (as evident from the lack
of correlation in Fig. 6).

Ultimately, the Both normalization scheme strikes a balance between the Rows and Value re-scaling methods. Specifically, it results
14

in lower airport demand errors compared to Value re-scaling and reduces errors in both demand-generation and demand-allocation
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Fig. 5. The geographical distribution of demand under three different normalizations of the objective function. The green color represents the total estimated
demand at a geographical area: the darker the green, the higher the demand. The red circles represent airports with commercial traffic to Stockholm-Arlanda
airport: the wider the circle, the higher the total number of passengers. The hatch-shaded region represents geographical areas within Stockholm area and those
with zero population.

Fig. 6. Plot of actual and estimated demand at each airport.

compared to the Rows normalization scheme. It is worth noting that symmetry is slightly penalized but not to a significant extent,
and the error remains very low.

These findings illustrate how different normalization schemes significantly impact the model’s results. They underscore the crucial
role of normalization in achieving demand estimates that align with historical data, and demand-generation and demand-allocation
patterns. Regrettably, our ability to validate these results with actual disaggregated data, such as grid-airport flows obtainable
15
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through surveys or mobile phone data, was hampered by its unavailability. It is worth noting, however, that the model can readily
be expanded to incorporate such data towards enhancing the quality of demand estimates.

Nevertheless, our analysis revealed that the Both normalization scheme yields meaningful demand estimates, both in terms of
he geographical distribution of demand (as seen in Fig. 4(a)) and through validation plots comparing actual and estimated airport
emand (depicted in Fig. 6). Consequently, we have opted to utilize the demand estimates derived from the Both normalization
cheme in the subsequent optimization model.

.2. Optimization model implementation

We now delve into the application of the 3DFSFA to the Swedish PSO network. The 3DFSFA model takes as input the demand
arameters from the DDGAP model and pre-processed details of the airport network of interest (see Fig. 3). Its output encompasses
ey strategic planning decisions such as the fleet size and composition, the number of chargers (and their locations), and the airport
etwork, as well as more granular tactical insights such as flight schedules, fleet assignment, demand accommodation, and passenger
tility.

From the DDGAP model, we obtain demand estimates at population area 𝑘 traveling in direction 𝑟 (i.e., 𝜌𝑘𝑟). Then, to obtain
the demand at 𝑘 traveling in direction 𝑟 with desired departure time 𝑡 (i.e., 𝜌𝑘𝑟𝑡), we distribute the estimated 𝜌𝑘𝑟 throughout the
day, for each desired travel time 𝑡, using weights derived from the empirical time-of-day kernel smoothing functions described in
Appendix B. We estimate 𝜏𝑘𝑖𝑡, i.e., the GTC of people at 𝑘 with desired travel time 𝑡 allocated to itinerary 𝑖, using the same formula as
in Eq. (28). Note that, for each individual itinerary 𝑖 with departure time 𝑡(𝑖), the schedule delay can be straightforwardly computed
s |𝑡 − 𝑡(𝑖)|.

To analyze how electric aircraft would impact the PSO network, we consider two categories of aircraft: a set of representative
onventional aircraft models and a prototypical small electric aircraft. For conventional aircraft, we consider three aircraft types
i.e., Beechcraft 1900D, Fokker 50, and CRJ 700) that are frequently utilized in remote regions and are typical in our application
ontext. For electric aircraft, we consider a prototypical 19-seater aircraft (referred to in the following as eAC), inspired by the
onventional Beechcraft 1900D. We consider an aircraft with a maximum range of 400 km, a cruise speed of 330 km/hr, and total
attery energy of 720 kWh (Smedberg et al., 2020, 2021)—similar specifications as Heart Aerospace’s initial ES-19 prototype.

We define a time-space-energy network by considering: (i) a single day of operations, discretizing the time from 05:00 am to
idnight into time windows of 30 min, resulting in 38 time steps; (ii) the set of airports—including both commercial and currently
nderutilized regional airports—which fall within any viable path linking the region under investigation to the target destination
see Fig. 4(c)); and (iii) four energy levels based on the electric aircraft range, cruise speed, and battery capacity.

To generate the set of flight arcs, we follow a similar approach as in Kinene et al. (2023). Given the set of airports, we first use a
imple-paths algorithm based on a modified depth-first search (Sedgewick, 2001; Hagberg et al., 2008) to generate all the potential
aths—with a maximum of three adjacent airport pairs (i.e., two stops)—from any airport that can be used to connect remote regions
ith Stockholm. Then, we remove unattractive paths by enforcing a routing factor threshold6 of 1.2 (e.g., Paleari et al., 2010). Only

he edges forming the retained paths are used to generate flight arcs, which are obtained by augmenting each airport pair with
ime and energy attributes consistent with each aircraft type’s technical specifications. When constructing passenger itineraries as
equences of one or more flight profiles, we also enforce a minimum and maximum connecting time of 30 min and 2 h, respectively,
n line with current practice.

Next, we discuss the derivation of the cost parameters.

Operating cost. We estimate the operating cost (𝑐𝑜𝑝𝑓𝑝) for an aircraft 𝑝 serving flight arc 𝑓 comprising of semi-variable and variable
crew costs, maintenance cost, airport and route charges, and passenger service and handling charges based on data from Apex
(2019). In our application, we calculate these parameters by deriving detailed aircraft type-specific cost functions of the form:
𝑐𝑜𝑝𝑓𝑝 = 𝛽1 + 𝛽2𝑏𝑓𝑝, where 𝛽1 is the per-movement operating cost, 𝛽2 is the variable operating cost per block hour, and 𝑏𝑓𝑝 is the
number of block hours for flight arc 𝑓 . For the electric aircraft under consideration, we estimate 𝑐𝑜𝑝𝑓𝑝 by applying an adjustment
factor 𝜎 = 0.8 to the operating cost of a comparable conventional aircraft—that is the Beechcraft 1900D.7 For conventional aircraft,
the flight operating cost also includes the fuel cost, calculated as the product of the fuel price ($1420 per ton), the aircraft’s fuel
per block hour (fuel/BH), and 𝑏𝑓𝑝.
Energy cost. For electric aircraft, the energy costs (𝑐𝑒𝑛ℎ𝑝) are tracked along the charging arcs in our time-space-energy network. We
estimate the energy cost along each charging arc as a product of the energy cost per kWh and the energy requested by each arc,
assuming an unit cost of $0.2 per kWh—in line with the average cost in Sweden. In practical terms, this implies that charging to
full capacity (i.e., 720 kwh) would entail an energy cost of approximately $144 to fly 400 km, which is significantly lower than
conventional aircraft. For example, the Beechcraft with a speed of 500 km/h and a fuel consumption per block hour of 0.41 tons,
would have a fuel cost of $564.12 (i.e., almost 4 times the energy cost) over the same trip.
Ownership cost. We obtain the daily ownership cost of an aircraft type 𝑝 by dividing the aircraft’s market price by the total utilization
days across its expected lifespan; we assume 240 days in a year (similar to the service days of PSO routes in Sweden) and an aircraft
lifespan of 25 years. We assume a market price for the electric aircraft of $8–8.8 million (AIN2020). For conventional aircraft, we
directly considered the monthly ownership costs provided in Apex.

6 The ratio between the path’s total edge distance and the nonstop total distance between the origin and destination airport.
7 We consider a conservative adjustment factor of −20%, which is lower than the −27% figure suggested by TheFairprojectreport2022.
16
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Table 3
Aircraft details.

Technology Fleet type Cruise
speed

Range(km) Seats 𝐶𝑜𝑤𝑛
𝑝 𝛽1 𝛽2 Fuel/BH (tons)

Electric eAC 330 400 19 1389 571.71*𝜎 352.5*𝜎 0

Conventional Beechcraft 1900D 500 707 19 1500 571.71 352.5 0.41
Fokker 50 476 2055 50 1750 1504.5 538.5 0.55
CRJ 700 796 2256 70 3750 2106.3 545.5 1.54

𝐶𝑜𝑤𝑛
𝑝 is the daily ownership cost; 𝛽1 is the fixed operating cost; 𝛽2 is the variable operating cost; 𝜎 is the cost adjustment factor.

Charger costs. Ultimately, electric aircraft will require chargers to be installed at airports. For our application, we neglect potential
grid update costs8 but explicitly consider the acquisition cost of an electric aircraft charger as $500,000 (Heart Aerospace, 2021),
which results in a daily cost of around $208.9

Table 3 presents the details of the fleet types that are considered in our case study.

5.2.1. Results
We now delve into the results and insights that can be obtained from the application of the 3DFSFA model.

Instances considered. We focus on general insights into the potential of using electric aircraft. Three different scenarios are considered
based on the mix of aircraft technology: Conv. (all-conventional)—only considers conventional aircraft; Electric (all-electric)—only
considers electric aircraft; and Hybrid (hybrid)—considers the operation of both conventional and electric aircraft. To investigate
the trade-off between the two objective functions and devise solutions along the Pareto front, we implement a similar approach
as the 𝜖-constrained method, i.e., we move the amount of subsidy to the constraints and solve the model under varying subsidy
upper bounds. For each scenario, we consider five subsidy amounts, i.e., 0, 10,000, 25,000, 50,000, and 75,000. Note that this
range of values was deemed suitable for our analysis as it is comparable to the current level of subsidization in Sweden—equal to
approximately $56,000 daily (see Kinene et al., 2022). Moreover, they enable an effective exploration of the Pareto front (where
0 represents the baseline case with no subsidies, and beyond 75,000 the benefits of increasing subsidies become minimal) while
limiting the computational burden, as adding more intermediate points did not yield significant additional information. Ultimately,
we consider two values for 𝜓—the operator’s minimal gross margin,—equal to 0% and 12.5%, respectively. The former represents a
break-even scenario where the inflows (i.e., revenues plus subsidies) just cover the considered direct costs. Nonetheless, airlines in
practice incur additional indirect costs and report higher gross margins. Therefore, we consider 12.5% as a more meaningful gross
margin threshold, which aligns with current values estimated for commercial airlines operating on PSO routes (Kinene et al., 2022).
Overall, this leads to 3 (fleet configurations) × 5 (subsidy levels) × 2 (gross margin thresholds) = 30 instances.

Computational effort. All results were obtained by implementing the 3DFSFA (with reformulation and binary relaxation) using
Python 3.8 and solving it with Gurobi (v9.0.3) on an Intel(R) Core(TM) i7-8700K CPU running at a frequency of 3.70 GHz and
equipped with 32 GB of RAM. The size of the model spans from 1.8M columns, 19.8K rows, 8.6M non-zeros, 6.7K flight arcs for
the conventional aircraft scenario; 1.5M columns, 21.5K rows, 7.6M non-zeros, 10K flight arcs for the electric aircraft scenario; up
to 3.5M columns, 28.9K rows, 17.7M non-zeros, 16.7K flight arcs for the hybrid aircraft scenario. Despite its remarkable size, the
reformulation and binary relaxation enabled us to solve the model within 10 hours—a reasonable timeframe given the strategic
nature of the problem.10 In detail, we achieved an optimality gap (computed as detailed in Section 4.3) lower than 1% for all
instances, except for two instances with no subsidy, where the gap was approximately 5%. For all instances, 𝑃1 was solved, and
then Algorithm 1 consistently returned a solution with the same number of chargers; hence, the optimality gap coincided with that
of the model relaxation (Case 2 discussed in Section 4.3).11 In contrast, solving the entire model through the direct implementation
of off-the-shelf Branch-&-Cut methods returned significantly higher gaps,12 ranging from 8% to 10%, demonstrating the benefits of
the proposed solution approach.

The main results are presented in Table 4 and further complemented by Figs. 7–10. Table 4 shows how different subsidy levels and
gross margin thresholds affect various key network indicators on a daily basis for each of the three fleet mix scenarios. Specifically,
it reports the total passenger utility (i.e., the sum of exponential utilities), number of passengers served, passenger-weighted average

8 The accurate consideration of this aspect would require refined modeling of energy consumption, power demand profiles, and charging strategies (e.g., direct
harging vs. swapping) at individual airports (e.g., Hou et al., 2021; Vehlhaber and Salazar, 2023; van Oosterom and Mitici, 2023). This could be pursued either
s a post-processing step or integrated into the current modeling framework, representing a compelling avenue for future research.

9 We assume the lifespan of an electric aircraft charger to be 10 years and 240 service days a year (similar to service days of PSO routes in Sweden).
10 Pita et al. (2014) considered 10-20 h for a similar problem.
11 Notice that this is a certifiable optimality gap as opposed to heuristic methods that cannot provide an optimality guarantee.
12 Solving the original model via direct implementation of off-the-shelf Branch-and-Cut methods involves attempting to solve it without leveraging the procedure
escribed in Section 4.3 This means we do not relax the integrality on charging and ground arcs but instead feed the entire model to the solver. Hence, the
nly gap we obtain in this case is the typical MIP gap returned by the solver. Note that this is comparable with the gaps obtained from our procedure, as both
epresent exact optimality gaps computed by comparing an incumbent feasible solution with a valid solution guarantee.
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Fig. 7. The Pareto frontier of 𝑂1 (defined by Eq. (11)), i.e., the total passenger surplus (a), and average GTC (b) as a function of subsidy levels (𝑂2 defined
by Eq. (12)).

GTC, total number of flights, number of chargers, average charger utilization (defined as the average number of charging events per
charger), fleet size and composition, total costs, and estimates of CO2-equivalent GHG emissions. In the CO2-equivalent emissions
estimates, we account for the complete ‘‘Well-to-Wake’’ (WtW) process, which includes all emissions associated with the production,
distribution, transportation, and consumption of energy and jet fuel. The complete network WtW emissions are obtained as the
sum of WtW emissions from both conventional and electric aircraft. The WtW emissions for conventional aircraft are estimated by
multiplying the fuel consumed13 by the specific energy of Jet A (43 MJ/kg) and the ICAO conventional jet fuel WtW carbon intensity
of 89 g CO2-equivalent per megajoule of energy (ICAO, 2019; Jing et al., 2022). Following (Mukhopadhaya and Graver, 2022),
we estimate the WtW emissions for electric aircraft as the sum of the WtW emissions from electricity consumption and battery
production. The WtW emissions from electricity consumed are derived by multiplying the electricity consumed during aircraft
charging by Sweden’s carbon intensity of 0.040 kg CO2-equivalent per kWh (as obtained from Scarlat et al. (2022)). However,
note that Sweden’s carbon intensity for electricity consumption is low given the high share of renewable sources of electricity14.
Therefore, we also consider a conservative carbon intensity of 0.334 kg CO2-equivalent per kWh—obtained from (Scarlat et al.,
2022) as the average across European (EU27) countries. To calculate the emissions associated with battery production, we multiply
the number of charging activities times a constant of 14.4 kg CO2-equivalent per charging activity.15

Fig. 7 presents the Pareto frontiers and the average GTC as a function of the subsidy levels. Fig. 8 presents the cumulative GTC
and the schedule delay for the intermediate subsidy levels (i.e., 10,000, 25,000, 50,000) across the different fleet mixes, while
Fig. 9 presents the number of flights flown per hour of the day by each used aircraft types. Fig. 10 provides insights into the
network solutions, related demand coverage, and charger distribution for a given subsidy level to underscore differences across the
considered fleet scenarios. These charts and the discussion that follows focus on the 12.5% gross margin threshold, as it represents
a more realistic assumption. Nonetheless, the main takeaways and insights also apply to the 𝜓 = 0 cases, although the need for
subsidies, and therefore the differences between solutions, are less pronounced.

As expected, in Table 4, it is evident that higher subsidies correspond to an increased number of passengers and better services.
The increase in subsidies enables more flights, which, in turn, allows for servicing of more passengers while reducing their
generalized travel costs. Consequently, the passenger surplus is improved. It can also be observed that the return on subsidies, i.e., the
degree of passenger surplus improvement with increasing levels of subsidies, is diminishing. Moving from $50,000 to $75,000 allows
for the service of a few additional (very) remote passengers, achieving almost total coverage of the demand.

In the all-conventional aircraft scenario, the fleet comprises a diverse mix. This diversity allows for the deployment of the
most suitable aircraft on routes, effectively matching supply with demand. As evident from Fig. 9, a significant majority of flights
are operated by the Beechcraft to collect and consolidate passengers from various locations. With the increase in the number of
flights, the total network operating cost consequently rises, comprising on average of 49.5% for flight costs, 38.5% for fuel costs,
and 12.0% for ownership costs. Ultimately, the increase in the number of flights operated by conventional aircraft also leads to

13 This is obtained using the fuel consumption per block hour rates provided in Table 3
14 In 2021, Sweden reported a share of energy from renewable sources exceeding 60%, surpassing by far both the EU average and 2030 target

(Eurostat,Renewableenergystatistics)
15 This constant was obtained by considering 43,200 kg CO2-equivalent emitted from the production of a battery with a capacity of 720 kWh; similar

to Mukhopadhaya and Graver (2022), we assumed a carbon intensity of 60 kg CO2-equivalent per kWh and distributed the battery production emissions across
a battery lifespan of 3000 duty cycles.
18
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Table 4
Impact of the gross margin threshold (𝜓), fleet mix (Scenario), and subsidies (Subs.($)) on the passenger surplus, disentangled into total passenger utility (Utility)
nd the number of passengers, the average generalized travel cost, the number of flights, the number of chargers, the average charger utilization defined as the
verage number of charging events per charger (Avg. util.), the fleet size and composition (Fleet), the total costs (Costs), and well-to-wake CO2 emissions.
𝜓 Scenario Subs.($) Pax Flights Chrg Fleeta Costs ($) CO2e (kg)b

Utility Nr. GTC ($) Nr. Nr. Avg. util. 1 2 3 4 Total WtWSE WtWEU

0% Conv. 0 241.9 1,704 200.1 80 0 0 – 9 3 0 153,746 155,091 155,091
0% Conv. 10,000 279.6 1,793 192.4 84 0 0 – 10 3 0 172,444 177,503 177,503
0% Conv. 25,000 291.6 1,821 189.9 89 0 0 – 11 3 0 190,143 196,745 196,745
0% Conv. 50,000 304.9 1,830 184.4 97 0 0 – 13 2 1 215,858 228,391 228,391
0% Conv. 75,000 313.0 1,831 180.6 104 0 0 – 14 0 2 238,626 264,191 264,191

0% Electric 0 224.4 1,754 227.1 134 11 12.2 22 – – – 156,747 5,520 31,909
0% Electric 10,000 233.3 1,813 228.6 146 13 11.2 25 – – – 171,469 5,981 34,487
0% Electric 25,000 238.2 1,816 227.2 161 15 10.7 27 – – – 186,975 6,533 37,509
0% Electric 50,000 241.5 1,818 224.8 183 20 9.1 30 – – – 210,940 7,387 42,314
0% Electric 75,000 245.0 1,818 223.1 207 22 9.4 32 – – – 235,367 8,318 47,550

0% Hybrid 0 279.4 1,819 195.1 93 5 10.4 8 6 3 0 163,601 106,988 117,431
0% Hybrid 10,000 298.5 1,822 188.7 95 5 8.0 6 7 3 0 174,064 137,068 144,830
0% Hybrid 25,000 302.9 1,828 187.3 102 5 8.0 7 9 3 0 189,745 150,830 158,592
0% Hybrid 50,000 310.4 1,830 185.0 118 5 9.2 8 10 3 0 214,461 173,983 182,732
0% Hybrid 75,000 323.0 1,832 178.0 122 8 6.8 9 9 0 2 240,398 210,593 220,472

12.5% Conv. 0 – – – – – – – – – – – – –
12.5% Conv. 10,000 169.1 1,283 208.5 58 0 0 – 6 2 0 112,587 104,754 104,754
12.5% Conv. 25,000 246.2 1,723 199.6 82 0 0 – 10 2 0 157,911 163,339 163,339
12.5% Conv. 50,000 286.7 1,821 193.6 94 0 0 – 13 2 0 188,385 194,690 194,690
12.5% Conv. 75,000 302.8 1,829 185.3 97 0 0 – 14 2 1 210,766 222,130 222,130

12.5% Electric 0 206.9 1,504 206.4 94 9 10.4 16 – – – 113,634 4,051 23,879
12.5% Electric 10,000 215.9 1,667 224.5 116 10 11.6 20 – – – 138,294 4,838 28,123
12.5% Electric 25,000 218.3 1,731 229.7 134 11 12.2 22 – – – 156,701 5,510 31,829
12.5% Electric 50,000 236.1 1,816 226.7 156 16 9.8 28 – – – 184,737 6,394 36,876
12.5% Electric 75,000 240.8 1,817 225.1 180 20 9.0 28 – – 206,031 7,306 41,951

12.5% Hybrid 0 242.5 1,769 204.2 87 13 5.8 12 1 4 0 137,564 47,470 62,922
12.5% Hybrid 10,000 253.1 1,816 203.3 93 9 8.6 12 2 3 0 150,847 60,796 76,531
12.5% Hybrid 25,000 280.2 1,818 194.1 92 8 7.0 10 4 3 0 164,669 103,627 114,917
12.5% Hybrid 50,000 304.5 1,829 186.5 100 7 6.6 8 7 3 0 186,712 142,459 151,350
12.5% Hybrid 75,000 316.4 1,830 180.7 107 8 6.4 9 8 0 2 207,883 172,716 182,453

a Fleet encoding: 1-eAC; 2-Beachcraft 1900D; 3-Fokker 50; 4-CRJ 700.
b Well-to-Wake CO2-equivalent emissions: WtWSE refers to the estimate obtained by considering Sweden’s carbon intensity, while WtWEU refers to the estimate
btained by considering the average carbon intensity for European countries (EU27).

igher emissions. With no subsidy and a realistic choice of 𝜓 , i.e., 12.5%, the model results is an empty network, confirming the
ecessity of subsidization to incentivize a commercial airline to provide services on those routes. Providing a limited amount of
ubsidies (e.g., 10,000) allows servicing the most populated areas, covering about 70% of the total demand. Further increasing the
ubsidies yields sizeable passenger surplus return: from 10,000 to 25,000, the covered demand increases by 34.2% (+24 p.p.) and
he average GTC is reduced by $8.9/pax (−4.3%); from 25,000 to 50,000, demand coverage is further increased by 5.7%, while the
TC improves by an additional $6/pax (−3.0%). Beyond 50,000 $, the benefits of increasing subsidies is marginal, leading to an
verall improvement of the passenger-related objective function (i.e., the total passenger surplus) of 1.1% (Fig. 7).

In the all-electric scenario, the total network cost consists on average of 68.9% for flight costs, 9.5% for energy costs (with zero
uel cost), 19.8% for ownership costs, and 1.7% for aircraft chargers. Compared to the use of all-conventional aircraft, electric aircraft
enerally have lower operating costs per flight. This allows establishing a network even for zero subsidy, servicing the most populated
reas closest to Stockholm. Moreover, electric aircraft are characterized by smaller seat capacity, resulting in higher frequency (see
ig. 9) and reduced schedule delays (Fig. 8(b)). For instance, under $50,000 subsidies, approximately 81.5% of passengers experience
n average schedule delay lower than 30 min in the all-electric scenario, compared to about 67.5% in the all-conventional scenario.
he number of flights ranges from 94 to 180—as compared to 58–97 and 87–107 for a conventional and hybrid fleet, respectively—,

mplying high aircraft utilization (ranging from 5.8 to 6.4 flights per day) and requiring a widespread network of charging stations
from 9 to 20), of which 2 to 3 are located in Stockholm and the rest at the activated origin airports (Fig. 10). Notably, the exclusive
se of all-electric aircraft would eliminate all direct fuel combustion emissions and lead to significantly lower WtW CO2-equivalent
missions, averaging −96.5% (for WtWSE) and −80.0% (for WtWEU) across scenarios compared to conventional aircraft, thereby
nderscoring substantial mitigation potential regarding greenhouse gas emissions and consequent global warming impacts. It is also
orth noting that at lower subsidy levels (e.g., < $10, 000), the all-electric scenario has the potential to serve more passengers than

he all-conventional scenario, suggesting potential subsidy savings. However, due to the slower speed and shorter range of electric
ircraft compared to conventional ones, they would provide more indirect routes (see, e.g., Fig. 10), resulting in significantly longer
otal travel times (15.6%, on average) and higher GTC (7.7%, on average). For instance, in Fig. 8(a), it is evident that, even with
ubstantial subsidies (e.g., $50,000), a greater percentage of passengers would incur a GTC of more than $250 in the all-electric
19



Transportation Research Part B 190 (2024) 103065A. Kinene and S. Birolini
Fig. 8. The GTC and the schedule delay for 𝜓 = 12.5%, the three subsidy levels (𝜒 = 10,000, 25,000, 50,000) and three fleet scenarios (i.e, conventional, electric,
and hybrid.).

Fig. 9. The number of flights per hour grouped by the three fleet scenarios aircraft type for subsidy level of $25,000 and 𝜓 = 12.5%.
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scenario (23.9% of passengers) than in the all-conventional scenario (15% of passengers). This is also evident in Fig. 7, where the
average GTC first increases due to the servicing of more passengers located farther away, to then decrease due to higher frequency
services, remaining, however much significantly above the values for conventional and hybrid fleets. Ultimately, despite the gains
in schedule delay and CO2-equivalent emissions, this analysis suggests that the isolated adoption of a homogeneous fleet of electric
aircraft with limited seat capacity, reduced speed, and short-range capabilities is insufficient to serve the considered remote regions
effectively.

Next, we discuss the results of the hybrid scenario in which electric aircraft are used in conjunction with conventional aircraft.
In this final setting, we observe that a hybrid fleet yields superior solutions. This is evident in Fig. 7, where the hybrid solutions
(red curve) consistently outperform the conventional and electric ones, delivering the highest passenger surplus and the lowest
GTC per capita for any subsidy amount. The advantages of a hybrid fleet are most pronounced in scenarios with low subsidies;
with 10,000$ subsidies, it achieves a +42% (+10%) increase in total passenger surplus and a −2.5% (−9.5%) reduction in GTC
compared to an all-conventional (all-electric) aircraft fleet. With 25,000 subsidies, the increase in the total passenger surplus is
+7% (+8%) and the reduction in GTC is −2.8% (−15.5%) compared to an all-conventional (all-electric) aircraft fleet. Additionally,
leveraging a hybrid fleet entails a significant reduction in WtW CO2-equivalent emissions—even if not explicitly prioritized in the
objective function—under the same subsidy budget, underscoring incentive compatible win-win-win outcomes. The estimated WtW
GHG emissions savings range from −22.3% to −42% compared to conventional aircraft, assuming Sweden’s carbon intensity levels,
and remain substantial even when considering the more conservative (i.e., higher) EU27 carbon intensity levels (i.e., −18% to
−30%). Considering that solutions characterized by lower GHG emissions could also be (and likely will be) prioritized—directly or
indirectly—this evidence highlights the promising potential of hybrid fleets to significantly mitigate the environmental footprint of
regional air transport networks without compromising passenger utility in the short run. Let us now delve into how these benefits
are achieved. The complementary use of electric and conventional aircraft can leverage the fast speeds and large seat capacities of
conventional aircraft to serve more passengers (along denser and central routes in the network) in a faster and consolidated manner
(see, e.g., Fig. 10). Simultaneously, it can take advantage of smaller electric aircraft to serve regions with very limited demand
more efficiently and cost-effectively. Fig. 9 illustrates a well-balanced and synergic utilization of electric and conventional aircraft
throughout the day, aligning with time-of-day preferences. We can also note that the electric aircraft (eAC) do not fully replace
the Beechcraft but rather complement and partially substitute them on routes where the range permits and cost considerations
play a pivotal role. Fig. 8 demonstrates that the hybrid fleet largely maintains the high service level of the conventional scenario
while achieving greater coverage—especially for low subsidies—and smaller schedule delay, akin to the all-electric scenario. As the
subsidy increases, the benefits diminishes and the optimal solutions tend to be more closely aligned to the conventional one. The
proportion of electric aircraft in the fleet decreases—from 71% to 47%—, and so does the number of chargers (−38.5%).

In summary, these experiments demonstrate the potential benefits of deploying first-generation small electric aircraft to
serve remote regions. Nevertheless, the results also highlight the limitations of complete replacement, while emphasizing how a
complementary use of electric and conventional aircraft can lead to superior solutions. Ultimately, this further emphasizes the
planning complexities involved and underscores the advantages of comprehensive planning tools—such as the proposed 3DFSFA—in
averting undesirable outcomes and fully harnessing the economic and environmental benefits of electric aircraft.

6. Conclusion

In this paper, we have proposed and validated an original optimization framework to support the design of a subsidized air
transport network using electric aircraft. We have first developed an optimization model to disaggregate historical passenger
figures—referred to as DDAGAP—to obtain granular demand estimates at the territorial scale, which allows us to consider the
utilization of new airports and better appraise passenger utilities and demand coverage. We have then developed an optimization
model—referred to as 3DFSFA—to design a network of subsidized routes optimally, addressing key strategic decisions such as the
airport and route network, fleet size and composition, and location and preliminary sizing of charging facilities, as well as more
tactical insights, including flight scheduling and fleet assignment. The model is formulated as a large-scale bi-objective MILP, which
trade-offs the maximization of passenger surplus and the minimization of subsidies. To solve it efficiently, we have proposed a
relaxation scheme that enables the attainment of close-to-optimal solutions on large-scale instances in a reasonable time.

We have implemented and assessed the overall framework in a comprehensive real-world case study of the Swedish PSO system.
The results have highlighted the benefits of utilizing a mixed fleet, consisting of both conventional and electric aircraft. This strategy
allows us to leverage the superior speed and capacity of conventional aircraft for efficiently consolidating passenger demand, while
taking advantage of the lower operating costs of electric aircraft to achieve extensive coverage. This configuration has proven
effective in achieving superior solutions, characterized by enhanced connectivity and significantly reduced 𝑊 𝑒𝑙𝑙 − 𝑡𝑜 −𝑊 𝑎𝑘𝑒 CO2-
equivalent GHG emissions within the same subsidy budget. Ultimately, these findings underscore the effectiveness of the proposed
approach and the potential of electric aircraft to enhance the economic, social, and environmental performance of regional routes
serving remote areas.

These positive results also suggest future research opportunities.
First, the DDGAP model can be expanded to account for multiple destinations. While we have briefly discussed approaches to

do so, a thoughtful investigation of this aspect is warranted, as it provides a valid foundation for enhancing demand modeling in
traditional airline planning processes.

Second, the demand estimates derived from the DDGAP are currently treated as parameters. This approach is partially justified
by the objective function’s focus on maximizing passenger surplus. However, given that the model inherently employs a utility-
21
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Fig. 10. The route network, demand coverage, and charging bases for a subsidy level of $25,000 and 𝜓 = 12.5%. Activated flight paths are depicted with lines,
each color-coded by aircraft type used. The light gray links represent the inactive flight arcs. Airports are marked as a cross if inactivated, as circles if they
are activated, and as triangles if they are both activated and also have charging facilities; the size of each triangle reflects the relative number of charging
stations compared to other airports. The regions are shaded in gray, with darker shades signifying higher airport coverage, visually representing the distribution
of airport access across geographic areas (considering a threshold of 150 min by car).

computational challenges, but it would enhance applicability in profit-maximizing contexts where the goals of decision-makers may
not completely align with those of the passengers.

Third, from a computational standpoint, the proposed solution method has demonstrated good performance in solving the
considered instances to close optimality. However, more computational testing and investigation are warranted to enhance its
generalizability and scalability to other problems and applications, such as urban mobility and intermodal transportation involving
electric vehicles.

Fourth, the proposed framework has been originally devised to support the early stages of PSO planning, providing transport
authorities with reliable insights into the necessary level of subsidies to achieve a desired level of connectivity and passenger
surplus. An interesting follow-up is to consider the subsequent stages of PSO planning and implementation (e.g., design of the
tendering process), aiming to foster and incentivize the fast adoption of electric aircraft while simultaneously achieving socially
optimal outcomes.

Fifth, from the empirical standpoint, there is room for conducting further analyses to assess various electric aircraft specifications
and better evaluate technological advancements. This will aid in devising strategic plans for the progressive roll-out of electric
aircraft over a medium to long-term timeframe.
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Appendix A. Solution methodology

In this section, we detail the proposed procedure to retrieve a feasible (and potentially optimal) solution for the 3DFSFA—the
original problem, also referred to as 𝑃0—from its relaxation 𝑃1, obtained by relaxing the integrality on the charging and ground arc
variables. Since 𝑃1 is a relaxation of 𝑃0, its optimal solution constitutes a solution guarantee for 𝑃0, hence any feasible solution for
𝑃0 with the same objective value as 𝑃1 is optimal. The proposed method entails the following steps: (i) solve 𝑃1; (ii) fix the flight arc
variables (𝑥∗𝑝𝑓 ), which consequently define variables 𝑞∗𝑖𝑘𝑡 and 𝑤∗

𝑝 ; (iii) reconstruct a feasible solution for 𝑃0 (i.e., define variables 𝑧ℎ𝑝,
𝑦𝑔𝑝 to be integer) in such a way that the objective value matches that of 𝑃1 as closely as possible. In practice, the latter condition
involves creating a feasible integer solution with (i) the same charging costs and (ii) the minimum number of chargers (potentially
equal to that of 𝑃1), which are the components of the objective function directly affected by the flow value on charging arcs.

First, we show that feasible solutions for 𝑃0 and 𝑃1 (with 𝑥𝑃0𝑓𝑝 = 𝑥∗𝑓𝑝) are characterized by the same operating charging costs.
Then, we propose an iterative heuristic to reconstruct a feasible solution for 𝑃0 targeting the minimum number of chargers.

The following derivations and methods ground on the decomposability of well-balanced flight schedules. Specifically, it can be
noted that any repeatable flight schedule solution can be broken down into elementary pairs of inbound and outbound flights. This
follows directly from the flow balance constraints incorporating wrap-around arcs, which, in turn, guarantee schedule repeatability.
Consequently, an equal number of inbound and outbound flights are assured at any given airport.16 Let us denote 𝑆𝑎𝑝 as the
set of flight pairs at airport 𝑎 operated by fleet type 𝑝. For each flight-pair 𝑠 = (𝑓 𝑠𝑖𝑛, 𝑓

𝑠
𝑜𝑢𝑡), we define the set of corresponding

activity nodes, charging and ground arcs—denoted by  𝑠, 𝑠 and 𝑠, respectively—, that occur at airport 𝑎(𝑠) between these two
flights. Let us also denote 𝑧𝑠ℎ𝑝 (𝑦𝑠𝑔𝑝) as the fraction/portion of 𝑧ℎ𝑝 (𝑦𝑔𝑝) associated with flight-pair 𝑠, such that ∑𝑠∈{𝑠∶ℎ∈𝑠} 𝑧

𝑠
ℎ𝑝 = 𝑧ℎ𝑝

(∑𝑠∈{𝑠∶𝑔∈𝑠} 𝑦
𝑠
𝑔𝑝 = 𝑦𝑔𝑝). The logic of this decomposition is illustrated in Fig. A.11.

Fig. A.11. Illustration of the decomposition of a feasible 𝑃1 ’s flight scheduling solution at a given airport for a given fleet (subscript 𝑝 omitted). The arrows
represent the set of scheduled flights (i.e. 𝑥𝑓 = 1, where 𝑓 = {𝑓1 ,… , 𝑓6}). These flights are also visually represented below by solid circles (inbound flights) and
circled with a cross (outbound flights). 𝑠1 = (𝑓1 , 𝑓2), 𝑠2 = (𝑓3 , 𝑓5), 𝑠3 = (𝑓4 , 𝑓6) form a valid partition of the solution into flight pairs. In the upper chart, the
edge labels represent the cumulative flow values on charging arcs and ground arcs at any given time. In the lower charts, the labels on the ground segments
connecting each flight pair denote the summation of 𝑧𝑠ℎ and 𝑦𝑠𝑔 across those segments.

Next, we show that, for every flight pair, any feasible solution of 𝑃1—i.e., any choice of the charging and ground arc variables
satisfying flow balance—is characterized by the same charging costs.

Let us consider a single flight pair operated by electric fleet type 𝑝 as illustrated in Fig. A.12 and consider the problem of setting
𝑧𝑠ℎ𝑝 and 𝑦𝑠𝑔𝑝 to ensure the feasibility of the flight pair while minimizing operating charging costs. The problem can be cast as a
basic shortest path problem across a time-energy network, with source node (𝑡(𝑓 𝑠𝑖𝑛), 𝑒(𝑓

𝑠
𝑖𝑛)) and sink node (𝑡(𝑓 𝑠𝑜𝑢𝑡), 𝑒(𝑓

𝑠
𝑜𝑢𝑡)), where

(𝑒(𝑓 𝑠𝑜𝑢𝑡) ≥ 𝑒(𝑓 𝑠𝑖𝑛)).
It can be shown that this problem has a particular structure such that the objective function is constant over the solution space

and the solution space admits at least an integer solution. Firstly, the strict one-way directionality of arcs in time effectively prevents
inner cycles. Secondly, we observe that 𝑒(𝑓 𝑠𝑜𝑢𝑡) is always greater than or equal to 𝑒(𝑓 𝑠𝑖𝑛), and the charging coefficients 𝑐ℎ𝑝 are non-
negative. Additionally, charging arcs exclusively contribute to energy level increments, ensuring a one-way energy flow with no
discharging. Consequently, every feasible path from 𝑛𝑠𝑖𝑛 to 𝑛𝑠𝑜𝑢𝑡 exhibits a strictly monotonically increasing charging cost profile.
Thirdly, charging costs are linearly additive, determined solely by the state-of-charge (initial energy level) and the energy variation.
Collectively, these three observations lead to the fact that any feasible solution is a combination of simple paths characterized by
the same charging costs. Ultimately, it can be shown that the problem admits at least one integer solution—to see that, note that
an integer solution can be obtained by rounding 𝑧𝑠ℎ𝑝 along any feasible path. Combined with the decomposability of the problem,
this thus implies that it is possible to derive a feasible solution for 𝑃0 from 𝑃1 with identical charging costs.

16 To efficiently generate flight pairs, a straightforward approach involves sorting flights at each airport from the earliest to the latest and then iteratively
pairing the earliest incoming flight with the closest outbound arc. Note that this practical method is widely employed in practice to extract a set of baseline
feasible aircraft-level rotations from a schedule solution obtained through a multi-commodity network flow formulation.
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Fig. A.12. Illustration of flow balance in a time-energy network for a given flight-pair (𝑓 𝑠𝑖𝑛 , 𝑓
𝑠
𝑜𝑢𝑡). Dotted lines represent ground arcs, while solid lines represent

charging arcs. The arc width and edge denote the flow on each arc.

Next, we outline the proposed approach for constructing a feasible solution for 𝑃0 that minimizes the number of required charging
stations and thus potentially align with the optimal solution value of 𝑃1.

In theory, this could be achieved through an integrated MILP under fixed flight arcs, with integer variables 𝑧ℎ𝑝 and 𝑦𝑔𝑝 satisfying
flow balance (Constraints (13)) and targeting the minimization of the number of chargers in the objective function. This problem,
however, might be long to solve via off-the-shelf branch-and-cut solvers. Instead, we address the reinstatement of integrality on the
charging and ground arcs via the heuristic formalized in Algorithm 1. For each airport 𝑎, we iteratively solve a series of restricted
flow balancing problems—one for each flight pair—to define integer variables 𝑧𝑠ℎ𝑝 and 𝑦𝑠𝑔𝑝. These variables are then used to ultimately
compute 𝑧ℎ𝑝 and 𝑦𝑔𝑝 as their sum.

Expressions (A.1)–(A.6) formulate the restricted flow balancing problem. It is essentially a feasibility problem, with objective
function (A.1) aimed at minimizing the number of chargers. Constraints (A.2) establish flow balance at each node 𝑛 ∈  𝑠.
Constraints (A.3) set the number of chargers (𝜚𝑎) is not exceeded, where 𝑧ℎ𝑝 is an iteratively updated parameter equal to the sum
of 𝑧𝑠ℎ𝑝 in the prior iterations. Constraints (A.4)– (A.6) define the domain of the variables.

min 𝜚𝑎 (A.1)

s.t
∑

𝑔∈+𝑛𝑝

𝑦𝑠𝑔𝑝 +
∑

ℎ∈+
𝑛𝑝

𝑧𝑠ℎ𝑝 −
∑

𝑔∈−𝑛𝑝

𝑦𝑔𝑝 +
∑

ℎ∈−
𝑛𝑝

𝑧ℎ𝑝 =

⎧

⎪

⎨

⎪

⎩

1, 𝑛 = 𝑛𝑠𝑖𝑛
0, 𝑛 ≠ 𝑛𝑠𝑖𝑛, 𝑛

𝑠
𝑜𝑢𝑡

−1, 𝑛 = 𝑛𝑠𝑜𝑢𝑡

∀𝑛 ∈ 𝑝 ∩ 𝑠 (A.2)

∑

𝑝∈

(

∑

ℎ∈𝑐(𝑡)
𝑎𝑝 ∩𝑠

𝑧𝑠ℎ𝑝 + 𝑧ℎ𝑝
)

≤ 𝜚𝑎 ∀𝑡 ∈  𝑠 (A.3)

𝑧𝑠ℎ𝑝 ∈ {0, 1} ∀ℎ ∈ 𝑝 ∩𝑠 (A.4)

𝑦𝑠𝑔𝑝 ∈ {0, 1} ∀ℎ ∈ 𝑝 ∩ 𝑠 (A.5)

𝜚𝑎 ∈ N+ (A.6)

Algorithm 1 Procedure to reinstate the integrality of charging and ground arc variables.
Input: Set of airports ; Set of (electric) fleet types  ; Set of activated flight-fleet type combinations {(𝑓, 𝑝) ∶ 𝑥∗𝑓𝑝 ≥ 1}

1: Initialize: 𝑧ℎ𝑝 ← 0
2: for 𝑎 in  do
3: for 𝑝 in  do
4: Create set of flight pairs 𝑎𝑝 sorted in chronologically order
5: for 𝑠 in 𝑎𝑝 do
6: Solve (A.1)–(A.6)
7: Store solution (𝑧𝑠ℎ𝑝, 𝑦

𝑠
𝑔𝑝)

8: Update 𝑧ℎ𝑝+ = 𝑧𝑠ℎ𝑝
9: end for

10: end for
11: end for
12: Compute 𝑦𝑔𝑝 =

∑

{𝑠∶𝑔∈𝑝∩𝑠} 𝑦
𝑠
𝑔𝑝

Output: 𝑧ℎ𝑝, 𝑦𝑔𝑝, 𝜚𝑎
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Fig. B.13. The estimation of passenger weights or importance for departure times for out-bound and in-bound trips.

Appendix B. Estimation of schedule delay

The schedule delay at airport 𝑎 in a given direction 𝑟 can be estimated as the cumulative schedule displacement experienced by
passengers traveling on the corresponding available itineraries (denoted by 𝑟𝑎). Assume that the total time in a day is divided into
time periods ( ), let 𝑞𝑡𝑖 be the number of passengers using itinerary 𝑖 with desired departure time 𝑡, and 𝑡(𝑖) be the actual departure
time of itinerary 𝑖. Consistent with the level of aggregation in Eq. (28), we formulate the (passenger-weighted) average schedule
delay at airport 𝑎 in direction 𝑟 as follows:

𝛿𝑎𝑟 =

∑

𝑖∈𝑟𝑎
∑

𝑡∈ 𝑞
𝑡
𝑖 |𝑡 − 𝑡(𝑖)|

∑

𝑖∈𝑟𝑎
∑

𝑖∈ 𝑞
𝑡
𝑖

(B.1)

where ∑

𝑡∈ 𝑞
𝑡
𝑖 |𝑡 − 𝑡(𝑖)| is the total schedule delay of itinerary 𝑖. In practice, we often lack information regarding the values 𝑞𝑡𝑖 , even

when utilizing data sourced from comprehensive historical booking databases such as OAG. This is due to the fact that observed
demand is intricately tied to existing flights and primarily arises from complex and confounded decision-making by passengers, as
well as the actual availability of flight seats.

In the literature (e.g., Zeid et al., 2006; Koppelman et al., 2008), it is common practice to estimate 𝑞𝑡𝑖 using weights 𝑤𝑡—indicating
the portion of people with desired travel time of time 𝑡— obtained from stated preference data. Alternatively, in the absence of such
data, studies (e.g., Birolini et al., 2021a) have borrowed time-of-day preference patterns from other studies or simply assumed them
based on common sense (e.g., Pita et al., 2014).

In this paper, we introduce an alternative approach for deriving passenger preferences towards departure times and establishing
reliable schedule delay parameters at the airport level. The proposed approach involves two sequential steps: (i) the empirical
estimation of time-of-day preference curves from historical data using a kernel density method and (ii) the development of an
optimization model that matches demand and supply at each airport.

(1) Kernel density estimation of time-of-day preferences. We estimate kernel density functions of the hourly seats (in 2019) to
approximate the weights 𝑤𝑡 that passengers attach to different departure times. This approach is grounded on the assumption
that observed airline schedules mirror passenger preferences to a significant degree. The inclusion of passenger preferences—which
essentially underpin the demand captured by air travel itineraries and, in turn, their revenue potential—is indeed a fundamental
aspect of airline planning. The capability to align schedules with passenger preferences has been shown to be a strong driver of
airline profitability. Therefore, despite deviations resulting from sub-optimal planning processes or the need to strike a balance
between revenue and cost considerations in airline scheduling, current schedules are expected to largely correlate with passenger
preferences—especially for well-established dense routes. For PSO routes in particular, this correlation is expected to be even
stronger, given that these are often designed to ensure convenient schedules, such as daily commuting as in the case of the Sweden
PSO routes.

Utilizing the data on total hourly seats for Sweden’s PSO outbound and inbound flights in 2019, as presented in Fig. B.13(a), we
derive density curves illustrated in Fig. B.13(b). The curves represent a reasonable commuting-like pattern typical of PSO routes.
Also consistent with previous literature (e.g., Koppelman et al., 2008; Pita et al., 2014), we notice a demand distribution through
the day with peaks in the morning and the evening to reflect the intuition that the passengers prefer to leave early in the morning
and return in the evening.

It is worth noting that opting for a kernel density approach instead of merely relying on historical seat proportions brings
several advantages. This approach provides a continuous representation of passenger preferences over time, thereby enhancing both
reliability and generalizability. Previous studies, like (Koppelman et al., 2008), have indeed indicated that employing a continuous
function to estimate these weights results in a more accurate portrayal of passenger behavior. Furthermore, continuous functions
offer greater flexibility when it comes to accommodating and generalizing to varying time periods compared to the limited options
presented by discrete historical time intervals.
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(2) Optimization model for airport-level schedule delay estimation. After deriving the time-of-day preferences, we aimed at estimating
he overall schedule delay at a specified airport 𝑎 in direction 𝑟. This proposed model is crafted to reconstruct the passenger mix
cross desired and accommodated time periods, with the objective of minimizing schedule delays. It takes into account historical data
egarding total seating capacity, the total number of passengers, and the kernel density distribution of demand based on time-of-day
references.

Let a set  represent the different time periods in a day, either indexed by 𝑡 for desired travel time or 𝑡′ for accommodated travel
ime. The schedule delay estimation model at airport 𝑎 in direction 𝑟 is formulated as follows.

min
∑

𝑡∈

∑

𝑡′∈
|𝑡 − 𝑡′|𝜌𝑡𝑡

′
𝑎 (B.2)

s.t.
∑

𝑡∈
𝜌𝑡𝑡

′
𝑎 ≤ 𝑁 𝑡′

𝑎 ∀𝑡′ ∈  (B.3)

∑

𝑡′∈
𝜌𝑡𝑡

′
𝑎 = 𝑞𝑡𝑎 ∀𝑡 ∈  (B.4)

𝜌𝑡𝑡
′
𝑎 ∈ R+ ∀𝑡 ∈  ,∀𝑡′ ∈  (B.5)

The objective function in Eq. (B.2) minimizes the total displacement across passengers with desired travel time 𝑡 but accommo-
ated in time 𝑡′—represented by decision variable 𝜌𝑡𝑡′𝑎 . Constraints (B.3)–(B.4) ensure a realistic redistribution of passengers with

desired travel time 𝑡 to accommodated time 𝑡′: Constraints (B.3) ensure that the number of passengers accommodated in 𝑡′ do not
exceed the available seat capacity (𝑁 𝑡′

𝑎 ), while Constraints (B.4) ensure that the sum of the passengers with the desired time 𝑡 but
accommodated in any 𝑡′ should be equal to the total number of passengers with desired time 𝑡, i.e., 𝑞𝑡𝑎. 𝑞𝑡𝑎 is calculated based on
the weights 𝑤𝑟𝑡 from the kernel distribution represented in Fig. B.13(b), and the total number of passengers 𝑄𝑟𝑎 at the airport in
travel direction 𝑟, i.e., 𝑞𝑡𝑎 = 𝑤𝑟𝑡 ⋅ 𝑄

𝑟
𝑎. Upon solving the model, the resultant 𝜌𝑡𝑡′𝑎 and 𝑞𝑡𝑎 can be input into Eq. (B.1) to calculate the

airport-level schedule delay parameters.
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