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Abstract: We examined the compositional associations between the intensity spectrum derived from
incremental acceleration intensity bands and the body mass index (BMI) z-score in youth, and investi-
gated the estimated differences in BMI z-score following time reallocations between intensity bands.
School-aged youth from 63 schools wore wrist accelerometers, and data of 1453 participants (57.5% girls)
were analysed. Nine acceleration intensity bands (range: 0–50 mg to ≥700 mg) were used to generate
time-use compositions. Multivariate regression assessed the associations between intensity band com-
positions and BMI z-scores. Compositional isotemporal substitution estimated the differences in BMI
z-score following time reallocations between intensity bands. The ≥700 mg intensity bandwas strongly
and inversely associated with BMI z-score (p < 0.001). The estimated differences in BMI z-score when
5 min were reallocated to and from the ≥700 mg band and reallocated equally among the remaining
bands were −0.28 and 0.44, respectively (boys), and −0.39 and 1.06, respectively (girls). The time in the
≥700 mg intensity band was significantly associated with BMI z-score, irrespective of sex. When even
modest durations of time in this band were reallocated, the asymmetrical estimated differences in BMI
z-score were clinically meaningful. The findings highlight the utility of the full physical activity intensity
spectrum over a priori-determined absolute intensity cut-point approaches.
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1. Introduction

Overweight and obesity in children and adolescents (hereafter referred to as youth)
continue to increase in prevalence [1] and are significant risk factors for health and wellbe-
ing [2–4]. Consequently, there has long been a research focus on the relationships between
youth physical behaviours and adiposity [5]. This research demonstrates a favourable
relationship between physical activity and adiposity, with the most consistent associations
observed for moderate-to-vigorous physical activity (MVPA) and vigorous physical activity
(VPA) [6,7]. Conversely, unfavourable associations between adiposity and sedentary screen
time (television viewing in particular) are commonly reported [8].

Accelerometers are used in health research to estimate the duration and mode of
different physical behaviours [9]. The focus of epidemiological and intervention studies
has typically been on the total volume or bouted time spent in specific physical behaviours
and intensities. Traditional accelerometer data reduction methods rely heavily on cut-
points whereby the same absolute intensity thresholds are applied to all participants’ data
to generate estimates of time spent above these thresholds. These resultant free-living
physical activity estimates are prone to intensity misclassification and bias because the
cut-points used are specific to the original calibration protocols and sample populations [10].
In addition, the condensing of continuous data into only a small number of pre-specified
intensity categories (e.g., sedentary time, light physical activity (LPA), MVPA) causes
an important loss of information from the captured accelerometer data because a very
limited portion of the data is used [11]. In recognition of these factors, emerging analytical
approaches for assessing the associations between accelerometer-determined physical
behaviours and health outcomes were recently advocated in the GRANADA consensus [9].

One such approach is to use a wide range of incremental acceleration intensity bands
to describe daily physical behaviour patterns across the full intensity spectrum [9]. This
gives high-resolution descriptions of the full physical activity intensity pattern and allows
for an examination of the relationships between health outcomes and a wider range of
intensities [11]. The small number of intensity spectrum studies conducted to date in school-
aged youth have observed higher intensity activity to be most beneficially associated with
health outcomes [11–14]. The inverse relationship between physical activity intensity and
duration dictates that levels of higher intensity physical activity are typically low (e.g., 0.6%
to 3.9% of waking hours [15,16]). Arguably, this is one reason why higher intensity physical
activity has been less emphasised in physical activity promotion messaging, which focuses
more on physical activity of at least a moderate intensity [17], which is considered more
accessible and attainable for population health. However, even small amounts of higher
intensity physical activity are beneficial for cardiorespiratory fitness in youth [18], and it
has been shown in adults that similarly low doses may be favourably associated with other
outcomes related to cardiometabolic health [19], such as adiposity [7]. Moreover, a range
of structured and unstructured opportunities exist for youth to accumulate time in higher
intensity physical activity, including sports participation, physical education classes, and
time-efficient exercise modalities such as high intensity interval training (HIIT) [18].

Compositional data analysis with isotemporal substitution accommodates the com-
plexity of analysing the intensity spectrum and allows the theoretical effects of displacing
fixed durations of time between mutually exclusive incremental intensity bands to be
investigated [9]. Almost all of the previous accelerometer-derived compositional analysis
studies in school-aged youth have used three- or four-part compositions as the physical
behaviour exposure and have relied on the traditional cut-points approach [20–27]. These
studies described waking-hours physical behaviours as sedentary time, LPA, and MVPA
and applied various accelerometer metrics and data reduction methods to produce time-use
estimates of activity. An ActiGraph count cut-point for an MVPA of 2296 counts·min−1

was applied to describe the compositional associations between physical behaviours and
adiposity across 24 h [25] and the school day [20]. Other studies used a much lower
MVPA count cut-point of 1499 counts·min−1 [24,27], while raw acceleration cut-points (e.g.,
200 mg; [21]) have also been applied to describe the compositional associations between
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physical behaviours and adiposity. Each of these studies reported significant associations
between activity compositions and the adiposity outcomes, which included BMI z-score,
percent and absolute body fat, and waist circumference. Moreover, a common finding in
each study was that the greatest predicted differences in adiposity were when the time was
reallocated to and from MVPA relative to the other intensities.

In contrast, only one dataset, using a sample of 10-year-old children with ActiGraph
counts data, has examined the full intensity spectrum in school-aged youth [11,14]. Focus-
ing on 5-to-16-year-olds, our novel study extends this work by employing compositional
data analysis across the physical activity intensity spectrum, using raw acceleration data
obtained from different accelerometer brands. The aims of this study were to (i) examine
the compositional associations between the intensity spectrum derived from multiple in-
cremental raw acceleration intensity bands and body mass index (BMI) z-score in youth
and (ii) investigate the estimated differences in BMI z-score when durations of time were
reallocated between incremental intensity spectrum bands.

2. Materials and Methods
2.1. Data Acquisition and Study Eligibility

Ethically approved wrist accelerometry studies led or supervised by the first or last
authors were identified for inclusion within this pooled individual participant data anal-
ysis. Eligible studies involved school-aged youth who participated in observational or
interventional physical activity research studies during school term time. Inclusion in
the analysis studies required non-intervention assessments of wrist accelerometer-derived
physical behaviours; thus, baseline data were used for contributing intervention studies.
In addition, studies needed to provide anthropometric and demographic data including
age, sex, and area-level socioeconomic status. Where published, details of these studies
can be found elsewhere [22,28–33]. Investigators with a major involvement in the eligible
studies (e.g., past PhD students, co-supervisors) were approached by email and invited
to contribute individual participant data to allow for data harmonisation and subsequent
pooled analysis. On receipt of the signed data transfer agreements, all the contributing
investigators transferred their de-identified data via a secure file sharing system. Ethical
approval for this pooled analysis study was granted by Edge Hill University’s Science
Research Ethics Committee (#ETH2021-0034). The data were available from ten studies
conducted in 63 schools between 2015 and 2019 in the Merseyside, Lancashire, and Greater
Manchester regions of northwest England.

2.2. Outcomes
2.2.1. Outcome Variable and Covariates

BMI was calculated from stature and body mass measured using standard procedures,
with participants wearing light clothing and no shoes [34]. BMI z-scores were assigned
using British 1990 growth reference data [35], and International Obesity Task Force BMI
cut-points were applied to classify participants by weight status [36]. Socioeconomic
status (SES) was measured at the neighbourhood level using the English Indices of Multiple
Deprivation (EIMD) [37,38] based on home postcodes. EIMD deciles were generated, where
smaller values indicated a lower SES. Group (school) mean centering was applied to the
participants’ ages to aid the model interpretation and to reduce the risk of multicollinearity.

2.2.2. Physical Behaviour Acceleration Exposure Variables

In the contributing studies, ActiGraph GT9X (ActiGraph, Pensacola, FL, USA; seven
studies), GENEActiv Original (Activinsights, Cambs, UK; two studies), and Axivity AX3
(Axivity Ltd., Newcastle-Upon-Tyne, UK; one study) triaxial accelerometers were used. The
devices have a dynamic range of ±8 g and were requested to be worn for up to seven con-
secutive days on the non-dominant wrist using either 24 h (seven studies) or waking hours
wear protocols (two studies), with the sampling frequency set at 100 Hz (seven studies)
or 30 Hz (two studies). The devices were initialised and data were downloaded using the
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latest releases of the respective ActiLife (versions 6.13.1 to 6.13.4), GENEActiv (versions 2.2
to 3.1), and OMGUI software (version 43) available at the time of data collection. Physical
behaviour metrics were generated from the raw accelerometer data files (ActiGraph: gt3x
followed by conversion to .csv format; GENEActiv: .bin format; Axivity: .wav format) and
were processed in R using the package GGIR version 1.11-0 [39].

The data were harmonised by re-processing the raw accelerometer files using a stan-
dardised waking hours ‘day’ of 07:00 to 23:00 h (16 h or 960 min) to enable the inclusion of
those studies that did not use a 24 h wear protocol. Signal processing included autocali-
bration, using local gravity as a reference [40], the detection of implausible values, and the
detection of non-wear. Non-wear was imputed by default in GGIR, whereby invalid data
were imputed by the average at similar time points on other days of the week [41]. The par-
ticipants’ accelerometer data were excluded from the analyses if the post-calibration error
was >10 milligravitational units (mg) and/or if <3 days of valid wear (i.e., ≥600 min·day−1)
were available. We calculated the average magnitude of dynamic acceleration (i.e., average
acceleration) as the Euclidean norm of the three accelerometer axes, with 1 g subtracted and
negative values truncated to zero (ENMO) [42] averaged over 1-s epochs and expressed
in mg. The average acceleration from the three devices worn on the non-dominant wrist
has demonstrated equivalence in adults [43]. We generated nine acceleration bands using
50 mg increments for the first seven bands and wider bands for the remaining two (0–50 mg,
50–100 mg, 100–150 mg, 150–200 mg, 200–250 mg, 250–300 mg, 300–350 mg, 350–700 mg,
and ≥700 mg). Based on the empirical evidence, the acceleration bands that are 350–700 mg
and ≥700 mg reflect the upper range of MVPA [44] and higher intensity activities such
as jogging and running [45], respectively. They were combined to reflect the anticipated
very short duration (or absence) of accumulated accelerations within 50 mg bands above
350 mg [10]. The average minutes per day spent in each intensity band were calculated to
create a nine-part composition per participant. The time in the nine bands was summed to
960 min.

2.3. Data Analysis

In these analyses, the outcome variable was the BMI z-score, and the exposure variables
were the proportions of time spent in each of the nine acceleration intensity bands. Data
were available for 1803 participants. Of these, 67 cases with missing BMI z-scores were
removed because under a missing at a random assumption, there is no advantage in
multiple imputation for missing data on the outcome variable [46]. Of the remaining
1736 participants, 233 did not achieve the accelerometer minimum wear criteria. These
cases were also removed because the imputation of these summary activity estimates
would rely on too many unknown assumptions about the pattern of missingness and
would thus introduce random variation. No significant differences were observed between
the included and excluded participants for centred age (p = 0.89), BMI z-score (p = 0.89),
school type (p = 0.28), and sex (p = 0.15). A higher proportion of participants who did
not achieve the accelerometer wear criteria were low SES (i.e., EIMD deciles 1–3, 66.5%
vs. 55.1% who met the criteria), while fewer were high SES (EIMD deciles 7–10, 9.3% vs.
23.3%). Home postcodes were missing for 50 of the remaining 1503 participants (3.3% of
the data), which prevented the calculation of EIMD deciles; these cases were also removed,
leaving an analytical sample of N = 1453.

Compositional analyses were conducted using the R package compositions (v. 1.40-5,
Mathsoft, Cambridge, MA, USA) [47]. Nine-part time-use compositions were expressed as
nine specific sets of eight isometric log-ratios (ILRs) [48], which were used in multivariate
linear regression models. BMI z-score was the dependent variable, and the intensity band
composition ILRs were the explanatory variables. Each set of ILRs contained one ILR1 (i.e.,
the first pivot coordinate), which captured the time in one specific intensity band relative to all
the remaining bands (i.e., the geometric mean of the remaining intensity bands), ensuring that
each of the nine intensity bands were considered against all the remaining bands. The models
were adjusted for sex, centred age, SES, accelerometer model, and accelerometer recording
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frequency. The influence of school on the models was trivial (ICC = 0.03), and the model
parameter VIF values ranged from 1.01 to 1.96, indicating no multicollinearity. Where sex was
significantly associated with BMI z-score, follow-up sex-stratified analyses were performed to
assess the moderating influence of sex. The sex-specific models included the same covariates
as the full sample models, with sex removed.

If the ANOVA table of the model fit showed that the set of intensity band ILRs was
significantly associated with BMI z-score (p < 0.05), follow-up analyses were performed. In
these, nine subsequent models were computed, examining the associations between BMI
z-score and each of the ILR sets, including adjustment for the covariates. The co-efficient of
the ILR1 was extracted from each of the nine models (and therefore each of the intensity
bands) to examine the relationship of each intensity band (relative to all other intensity
bands) with the BMI z-score [49]. Regression analyses were performed with the lmtest
(version 0.9-40) [50] and car (version 3.0-12) [51] R packages, and model diagnostics were
undertaken using the performance package (version 0.9.0) [52].

Where an intensity band (relative to the remaining bands) was significantly associated
with BMI z-score (p < 0.05), this intensity band was then the focus of ‘one-for-remaining’
compositional isotemporal substitution analyses. These used predicted BMI z-scores for the
initial ‘baseline’ average intensity band composition and compared them to the new BMI
z-score predicted for subsequent compositions created using hypothetical time reallocations
(1 to 20 min) between that intensity band and all the others. The estimated differences in
BMI z-score for the reallocations of time to and from the selected average composition inten-
sity band, and equally between the remaining intensity bands, were calculated by finding
the difference between the two predicted BMI z-scores [53]. Adjustment for covariates was
included in all the time reallocation analyses. Ninety-five percent confidence intervals (CIs)
for the estimated differences in predicted BMI z-score were generated using the deltacomp
R package (version 0.2.2, Mathsoft, Cambridge, MA, USA) [54]. The estimated difference in
BMI z-score was considered significant when the 95% CI did not cover zero.

3. Results
3.1. Descriptive Results

Of the 1453 participants in the analytical sample, 57.5% were girls, 26.6% were over-
weight or obese, and two-thirds attended primary school (Table 1). Among boys, 71.3%
lived in lower SES neighbourhoods (EIMD deciles 1–5) compared to 64.5% of girls. The
participants were highly compliant in wearing the accelerometers, averaging 5.3 days of
valid wear for 15.3 ± 1.0 h·day−1.

Table 1. Participants’ descriptive characteristics (M (SD) or %).

All (n= 1453) Boys (n = 624) Girls (n = 829)

Age (years) 10.5 (2.6) 10.0 (2.6) 10.8 (2.5)
Height (cm) 142.1 (16.2) 139.8 (16.8) 143.7 (15.6)
Weight (kg) 39.6 (14.8) 37.3 (14.4) 41.3 (15.0)
BMI (kg·m−2) 19.0 (3.9) 18.4 (3.6) 19.4 (4.1)
BMI z-score 0.51 (1.24) 0.53 (1.29) 0.49 (1.21)
Weight status

Normal weight (%) 73.4 74.2 72.9
Overweight/obese (%) 26.6 25.8 27.1

EIMD decile
Deciles 1–5 (%) 67.4 71.3 64.5
Decile 6–10 (%) 32.6 28.7 35.5

School type
Primary (%) 66.3 72.4 61.8
Secondary (%) 33.7 27.6 38.2

Note: BMI = body mass index; EIMD = English Indices of Multiple Deprivation.
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The geometric means of the intensity bands (linearly adjusted to collectively sum to
960 min) are presented in Table 2. Around 75% of waking hours were spent in the ‘inactive’
acceleration band of 0–50 mg. A linearly decreasing pattern of accumulated time in the
intensity bands was observed, with fewer minutes spent in the higher intensity bands. The
exceptions to this were the 350–700 mg and ≥700 mg bands, which were the sum of the
combined 50 mg bands. The variation matrices of the time-use compositions representing the
variability of the compositional dataset are included in Supplementary File S1 in Tables S1–S3.

Table 2. Geometric means of the time spent in the intensity spectrum bands.

All (n = 1453) Boys (n = 641) Girls (n = 862)
Intensity Band min·day−1 % min·day−1 % min·day−1 %

0–50 mg 722.9 75.3 719.9 74.9 724 75.5
50–100 mg 105.7 11 102.6 10.7 108 11.2
100–150 mg 51.1 5.3 49.6 5.2 52 5.4
150–200 mg 27.8 2.9 27.8 2.9 28 2.9
200–250 mg 15.4 1.6 16.1 1.7 15 1.5
250–300 mg 9.1 0.9 9.8 1 9 0.9
300–350 mg 5.8 0.6 6.4 0.7 5 0.6
350–700 mg 14.3 1.5 16.7 1.7 13 1.3
≥700 mg 8.0 0.8 11.1 1.1 6 0.6

Note: mg = milligravitational units.

3.2. Compositional Regression Analyses

BMI z-score was significantly associated with the intensity spectrum composition
ILR1 coordinates (F(8,1430) = 11.9, p < 0.001) and sex (F(1,1430) = 10.6, p < 0.001) after the
adjustment for covariates. Subsequent sex-stratified adjusted analyses revealed that BMI
z-score was significantly associated with the intensity spectrum compositions for boys
(F(8,1430) = 5.0, p < 0.001) and girls (F(8,1430) = 9.6, p < 0.001) (Supplementary File S2,
Tables S4–S6). The unstandardised beta coefficients for each intensity band ILR1 deter-
mined which bands were the most dominant in the relationship with BMI z-score relative
to time in all the remaining intensity bands. The ≥700 mg intensity band ILR1 was most
strongly and inversely associated with BMI z-score (boys: βILR1 = −0.77, p < 0.001; girls:
βILR1 = −0.71, p < 0.001) relative to the other ILRs in the composition (Table 3). Fur-
ther, for girls, there were significant associations between BMI z-score and the 50–100 mg
(βILR1 = 1.39, p = 0.002) and 100–150 mg (βILR1 = −2.55, p = 0.002) intensity band ILR1s
relative to the remaining ones.

Table 3. Regression model results for boys and girls in assessing the compositional association
between each intensity spectrum band ILR1 and BMI z-score, relative to the remaining intensity bands,
with adjustment for SES, centred age, accelerometer model, and accelerometer sampling frequency.

Boys Girls
Intensity Band ILR1 (mg) βILR1 95% CI p βILR1 95% CI p

0–50 mg vs. remaining −0.20 −0.61, 0.21 0.34 0.03 −0.28, 0.34 0.87
50–100 mg vs. remaining −0.74 −1.92, 0.44 0.22 1.39 0.53, 2.25 0.002
100–150 mg vs. remaining −0.34 −2.65, 1.97 0.76 −2.55 −4.18, −0.92 0.002
150–200 mg vs. remaining 0.88 −1.96, 3.72 0.55 1.87 −0.05, 3.79 0.06
200–250 mg vs. remaining −0.50 −3.24, 2.24 0.72 −1.64 −3.56, 0.28 0.11
250–300 mg vs. remaining −1.75 −4.14, 0.64 0.15 1.04 −0.51, 2.59 0.19
300–350 mg vs. remaining 1.39 −0.61, 3.39 0.17 −0.09 −1.38, 1.20 0.89
350–700 vs. remaining 0.57 −0.41, 1.55 0.26 0.39 −0.39, 0.99 0.26
≥700 mg vs. remaining −0.77 −1.08, −0.46 <0.001 −0.71 −0.91, −0.51 <0.001

Note: BMI = body mass index; CI = confidence interval; ILR = isometric log-ratio; mg = milligravitational units.

3.3. Compositional Isotemporal Substitution Analyses: One-to-Remaining Reallocations

The BMI z-scores for the baseline intensity band compositions (Table 2) were 0.72 units
(boys) and 0.56 units (girls). Figure 1a shows the estimated differences in the boys’ BMI
z-scores when 1 to 20 min were added to, and when 1 to 10 min (10 min was the maximum
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duration that could be reallocated from the ≥700 mg intensity band ILR1 because its
geometric mean in the average composition was 11.1 min) were subtracted from—the
baseline composition duration of the ≥700 mg intensity band (i.e., the most influential
intensity band in Table 3) and redistributed equally among the remaining intensity bands
(Supplementary File S3, Tables S7–S10). Reallocating time from the ≥700 mg intensity band
was reflected by unfavourable estimated differences in BMI z-score that were greater than
when the time was reallocated to this intensity band. For example, the estimated differences
in BMI z-score when 10 min were reallocated to and from the ≥700 mg intensity band were
−0.48 units (95% CI = −0.67, −0.29) and 1.71 units (95% CI = 1.03, 2.39), respectively.
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(boys); (b) 50–100 mg (girls); (c) 100–150 mg (girls); (d) ≥700 mg (girls). Note: coloured lines represent
the lower and upper boundaries of the 95% confidence intervals.

Figure 1b–d present the estimated differences in the girls’ BMI z-scores following time
reallocations involving the most influential intensity bands (50–100 mg, 100–150 mg, and
≥700 mg, respectively) and the remaining intensity bands. The reallocated time durations
were 1 to 20 min, except for the ≥700 mg intensity band, where 1 to 5 min (5 min was
the maximum duration that could be reallocated from the ≥700 mg intensity band ILR1
because its geometric mean in the average composition was 6.3 min) were subtracted
from the baseline composition duration (Supplementary File S3). Adding 20 min to the
50–100 mg band (Figure 1b) reflected an estimated difference of 0.26 BMI z-score units (95%
CI = 0.10, 0.32) compared to –0.30 (95% CI = −0.49, −0.12) when 20 min were substituted
from this band. The estimated differences in BMI z-score when 20 min were reallocated
to and from the 100–150 mg intensity band (Figure 1c) were –0.81 (95% CI = −1.34, −0.28)
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and 1.18 (95% CI = 0.41, 1.96), respectively. Reallocating 5 min to the ≥700 mg intensity
band yielded a predicted difference in BMI z-score of −0.39 units (95% CI = −0.51, −0.28)
compared to 1.06 (95% CI = 0.76, 1.36) when 5 min were substituted from the ≥700 mg
band and reallocated equally among the remaining bands (Figure 1d).

4. Discussion

In this study we examined the associations between the physical behaviour intensity
spectrum composition and BMI z-score across a wide age range of English youth. This is the
first pooled individual participant data analysis in which harmonised raw acceleration data
derived from different accelerometer models have been analysed in this way. For boys and
girls, the highest intensity band (≥700 mg) was the most dominant in the relationship with
BMI z-score (relative to the time spent in the remaining intensity bands). Respectively, time
spent by girls in the 50–100 mg and 100–150 mg intensity bands was also positively and
inversely associated with BMI z-score. Reallocating time between these dominant intensity
bands and equally among the remaining bands resulted in predicted increases in BMI
z-score when minutes were taken from the 100–150 mg and ≥700 mg intensity bands and
decreases in BMI z-score when minutes were substituted from the 50–100 mg band. The pre-
dicted BMI z-score increases were larger than the predicted decreases when corresponding
time reallocations were made to the 100–150 mg and ≥700 mg intensity bands.

Our main finding that the strongest associations with BMI z-score were from the
highest intensity band concurs to some extent with the previous compositional analysis
of the intensity spectrum in school-aged children, although it should be noted that this
study did not focus on BMI z-score as the health outcome. Aadland et al.’s analysis in
Norwegian 10-year-olds used hip-worn ActiGraph counts data and reported that the time in
the 7500–7999 counts·min−1 intensity band was significantly and negatively associated with
cardiometabolic risk [11]. The lack of direct comparability between proprietary ActiGraph
hip counts data and ActiGraph, GENEActiv, and Axivity raw acceleration wrist data makes
it difficult to translate Aadland et al.’s findings to ours. Although not specific to BMI
z-score or other adiposity outcomes, these authors have also examined the accelerometer
data intensity spectrum using multivariate pattern analysis [9]. They found that time spent
in the 5000–7000 counts·min−1 intensity bands (ActiGraph hip counts data) was most
strongly associated with children’s metabolic health [55,56]. Similar conclusions about
the higher intensity bands (4000–5000 counts·min−1) were made in a more recent pooled
analysis of data from over 11,000 children [12]. Although we also applied an intensity
spectrum approach, it is difficult to make direct comparisons with the findings from these
multivariate pattern analysis studies because of the different health outcomes studied and
the aforementioned methodological and analytical differences between them. However,
notwithstanding these differences, the common conclusion is that, when using the full
range of available acceleration data to examine the relationships with indicators of adiposity
or metabolic risk in youth (of which adiposity is a contributory factor), the magnitude of
associations is stronger for time spent in the highest, rather than lower, intensity ranges.

In contrast to our analysis of the physical behaviour intensity spectrum, almost all
previous compositional analyses of youth physical behaviours have used three or four
component compositions defined by published cut-points. These have consistently reported
MVPA to be most strongly and negatively associated with adiposity indicators relative
to other physical behaviours [20,21,24,25,27,53]. However, when using MVPA as the
highest intensity component in physical behaviour compositions, important parts of the
accelerometer data are lost between the lower MPA threshold and the upper levels of
VPA. This might lead to a loss of information that may be a hallmark of childhood obesity,
making it unclear which specific intensities are most strongly related to adiposity. Some
light has been shed on this question by compositional analyses of waking hours sedentary
time, LPA, MPA, and VPA among Czech [57,58] and American youth [59], which observed
VPA to be negatively and significantly associated with adiposity indicators relative to the
other behaviours. These results support ours and demonstrate how the commonly reported
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finding that MVPA has the strongest influence on adiposity-related indicators relative to
other physical behaviours actually masks the potentially more important contribution of
higher intensity activities, while simultaneously amplifying the influence of lower intensity
activities that fall within the MVPA range, as determined by the chosen absolute intensity
cut-points. The use of absolute intensity cut-points derived from specific calibration study
samples and protocols increases the likelihood of misclassifying time estimates in each
physical behaviour [60], which can result in the over- and under-estimation of intensity-
specific activity patterns [61]. By using multiple smaller incremental intensity bands rather
than three-to-four broad cut-point categories, we allowed for a more nuanced description
and analysis of participants’ activity patterns. Moreover, our analysis demonstrates the
utility of compositional analysis for raw accelerometer data presented as an intensity
spectrum, which further supports the integration of multiple physical behaviours and
intensities to promote health and wellbeing among youth [59].

Among girls, BMI z-score was positively associated with time in the 50–100 mg in-
tensity band, which may reflect a combination of low energy expenditure seated postures
with arm movements and/or standing stationary postures [62]. In contrast, time spent in
the hypothesised ‘sedentary’ 0–50 mg intensity band [62], relative to the other bands, was
not significantly associated with BMI z-score. We used a standardised waking hours ‘day’
(i.e., 07.00 to 23.00); thus, it was not possible to differentiate between sedentary time and
sleep within the 0–50 mg intensity band. As a consequence, some participants may have
been asleep after 07:00 or before 23:00, and, as sleep is favourably associated with obesity
risk [63], this may have confounded the strength of any positive associations between
BMI z-score and sedentary time captured in the 0–50 mg band. It may also partly explain
why accumulated very low intensity time in the 50–100 mg band had a significant and
stronger positive association with girls’ BMI z-scores. Significant negative associations were
observed between girls’ BMI z-scores and time in the 100–150 mg intensity band. Based on
the available published raw acceleration data from wrist-worn devices, this lower intensity
band may reflect slow-medium paced walking, akin to LPA [10]. Compositional analysis
studies using count cut-points have reported both positive associations [24,27] and negative
associations between LPA and BMI z-scores [57]. Moreover, an earlier non-compositional
study observed negative relationships between LPA and children’s fat mass [64]. In most
free-living studies, LPA represents the longest accumulated duration of waking hours phys-
ical activity and typically encompasses ActiGraph counts in the 100 to 2000+ counts·min−1

range. This likely includes some misclassification of sedentary time and MPA, which, in
addition to differences in analytical approaches (i.e., non-compositional vs. compositional),
provides insight into why the findings from previous cut-points studies lack agreement.
Applying compositional analysis, which accounts for the mutually exclusive relationships
between activity intensities, with higher-resolution intensity bands rather than a limited
number of cut-points can advance this area of research by allowing for a more detailed
examination of activity intensity associations with health outcomes.

The significant associations between lower intensity bands and BMI z-scores were only
apparent in girls, who are typically less active and less fit than boys [21]. For our pooled
sample, the 100–150 mg intensity band, in which girls accrued more time than boys, may
have represented a higher relative intensity for some girls that was favourably associated
with BMI z-score. This is consistent with previous research showing volume of physical
activity to be more strongly associated with health outcomes in lower active and less fit
groups, while among higher active and more fit groups, associations were strongest with
increasing physical activity intensity [65]. Furthermore, the associations may have been
influenced by the environmental contexts in which the physical behaviours occurred. For
example, significant negative associations were recently reported between out-of-school
LPA and adiposity in girls but not boys, while associations with school time LPA were
positive and non-significant irrespective of sex [66].

We found that when hypothetical time reallocations were modelled between one
intensity band and equally among the remaining bands, the most favourable predicted



Int. J. Environ. Res. Public Health 2022, 19, 8778 10 of 15

differences in boys’ and girls’ BMI z-scores were when time was added to the ≥700 mg
intensity bands. Consistent with previous compositional analyses, the predicted changes in
BMI z-score were asymmetrical [20,21,24,25,27,53]. This demonstrates that the potential
detrimental health effects of taking time away from activity above the 700 mg intensity
band and redistributing it equally to the remaining bands were greater than the beneficial
effects of adding time at this higher intensity. The relative contributions of each intensity
band to the waking hours day provide some insight into these asymmetrical relationships.
Taking time away from the ≥700 mg intensity band, which contributed to 1.2% (boys) and
0.7% (girls) of the 16 h waking day, is a substantially larger relative change than taking time
from the 50–100 mg intensity band, for example, which contributed to 10.7% (boys) and
11.2% (girls) of the day [21]. The observed predicted differences in BMI z-score were also
not linearly related to the durations of reallocated time in the ≥700 mg and 100–150 mg
bands (girls only). This has been consistently observed in previous compositional analysis
studies [21,25,53] and reflects findings from experimental research whereby diminishing
health benefits are predicted by marginal increases in physical activity [67]. Moreover, the
wider 95% confidence intervals corresponding to the girls’ 100–150 mg time reallocations
indicate greater variability and relatively less precision in the predicted BMI z-score dif-
ferences compared to those from the ≥700 mg band reallocations. This complements the
consistent relationship between the higher intensity activity and health outcomes reported
in compositional analysis studies [20,21,24,25,27,53,57,59] and underscores the importance
of promoting, providing, and not withholding developmentally appropriate and enjoyable
opportunities for youth to be active at these intensities, even for short accumulated dura-
tions (e.g., through active play, sports, physical education, HIIT, etc.). In our sample, as
little as 3 min (girls) and 5 min (boys) of additional time spent in the ≥700 mg intensity
band relative to the remaining bands were associated with predicted decreases in BMI
z-score of 0.26 and 0.28 units, respectively. These values are greater than the BMI z-score
mean differences between the intervention and control groups for adolescents reported in a
recent Cochrane review of obesity prevention interventions [5] and those observed in an
effective school-based healthy weight intervention for children [68]. Hence, accumulating
time spent being active at these higher intensities is advocated as being beneficial for health
in youth.

This study employed a large pooled individual participant dataset comprising primary
and secondary school youth. Assessments of the physical behaviours from different de-
vices were used to generate raw acceleration data that enabled the analysis of the physical
behaviour intensity spectrum rather than a small number of activity intensities derived
from absolute intensity cut-points. Compositional data analysis with ‘one-for-remaining’
isotemporal substitutions enabled the associations with BMI z-score and predicted changes
to be presented. There were, however, limitations that should be considered when inter-
preting the results. The contributing studies were cross-sectional, so causality between
the intensity spectrum compositions and BMI z-score associations cannot be inferred, and
the possibility of bi-directional associations is acknowledged. Further, the use of a cross-
sectional analysis meant that the estimated differences in BMI z-score reflected more of a
sample shift in intensity spectrum time allocations than actual differences for individual
participants [69]. As the resolution of intensity spectrum bands can result in different
interpretations of the relationship between activity intensity and health [14], our choice of
nine intensity spectrum bands may have influenced the associations with BMI z-score. In
future, using a higher resolution intensity spectrum with emerging analytical techniques
such as functional data analysis may help improve our understanding of the relationships
between specific acceleration ranges and health outcomes [9]. Although the analyses were
adjusted for sociodemographic and methodological variables, it is possible that residual
confounding from other non-measured variables such as sleep may have influenced the
results. Lastly, the regional sample limits the generalisation of the findings to the wider UK
and beyond.
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5. Conclusions

This innovative compositional data analysis of the physical activity intensity spectrum
in 5-to-16-year-olds is the first to use pooled raw acceleration data from different devices.
Time in the highest intensity band (≥700 mg), relative to the remaining intensity bands,
was significantly and negatively associated with BMI z-score, irrespective of sex. ‘One-
for-remaining’ time reallocations involving the ≥700 mg intensity band indicated that
the asymmetrical estimated differences in BMI z-score were meaningful at even modest
volumes of reallocated time. The consistency of the results with previous findings suggests
that pooling raw acceleration data from different devices was appropriate, which highlights
the utility of this approach. Our novel results highlight the utility of the full physical activity
intensity spectrum over a priori-determined absolute intensity cut-point approaches and
further emphasise the benefits of promoting higher intensity physical activity for health in
youth. Furthermore, they can provide researchers, public health professionals, and physical
activity deliverers with important insights to inform obesity prevention intervention design
and physical activity programming.
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Supplementary file 1, Table S1. Compositional variation matrix of time spent by all participants in each intensity band. 
 

 

 

 

 

 
Note. Lower values reflect higher co-dependence between paired intensity bands; mg = milligravitational units. 
 
 
 
Supplementary file 1, Table S2. Compositional variation matrix of time spent by boys in each intensity band. 
Intensity 
bands (mg) 

50-100 100-150 150-200 200-250 250-300 300-350 350-700 ≥700 

0-50 .09 .10 .13 .17 .21 .24 .33 .57 
50-100   .02 .05 .08 .10 .12 .19 .40 
100-150    .01 .04 .06 .09 .16 .36 
150-200    .01 .03 .06 .14 .34 
200-250     .01 .04 .11 .31 
250-300      .01 .07 .25 
300-350       .03 .21 
350-700        .14 

Note. Lower values reflect higher co-dependence between paired intensity bands; mg = milligravitational units. 

 

Intensity 
bands (mg) 

50-100  100-150 150-200  200-250 250-300  300-350  350-700  ≥700  

0-50 .08 .10 .13 .17 .23 .29 .43 .91 
50-100   .02 .05 .10 .14 .19 .32 .78 
100-150    .02 .05 .10 .15 .28 .75 
150-200    .02 .06 .11 .24 .69 
200-250     .02 .05 .17 .57 
250-300      .02 .10 .46 
300-350       .04 .37 
350-700        .23 



Supplementary file 1, Table S3. Compositional variation matrix of time spent by girls in each intensity band. 
 
Intensity 
bands (mg) 

50-100 100-150 150-200 200-250 250-300 300-350 350-700 ≥700 

0-50 .08 .10 .12 .18 .24 .31 .47 1.03 
50-100   .02 .05 .10 .15 .22 .37 .90 
100-150    .02 .06 .11 .17 .33 .88 
150-200    .02 .07 .13 .28 .81 
200-250     .02 .06 .19 .67 
250-300      .02 .12 .53 
300-350       .05 .42 
350-700        .26 

Note. Lower values reflect higher co-dependence between paired intensity bands; mg = milligravitational units. 

 

 

 

 



Supplementary file 2, Table S4. ANOVA results of adjusted association analysis 
between the overall activity spectrum composition and BMI z-score in all 
participants. 
            Sum of Squares df F  p 
Overall activity spectrum 
composition 

138.04    8  11.85  < 0.001 

SES      14.10     9 1.08  0.38  
Sex 15.46     1 10.62  0.001  
Age-centred         0.04     1 0.03 0.86  
Accelerometer model       2.72     2 0.94 0.30 
Recording frequency    0.58     1 0.40 0.53  
Residuals  2081.80  1430                   

Notes. SES = socioeconomic status. 
 

Supplementary file 2, Table S5. ANOVA results of adjusted association analysis 
between the overall activity spectrum composition and BMI z-score in boys. 
            Sum of Squares df F  p 
Overall activity spectrum 
composition 

63.07 8 4.97 <0.001 

SES      7.28 9 0.51 0.87 
Age-centred         0.03 1 0.02 0.89 
Accelerometer model       7.81 2 2.46 0.09 
Recording frequency    4.48 1 2.82 0.09 
Residuals  955.37 602   

Notes. SES = socioeconomic status. 
 

 

 

Supplementary file 2, Table S6. ANOVA results of adjusted association analysis 
between the overall activity spectrum composition and BMI z-score in girls. 
            Sum of Squares df F p 
Overall activity spectrum 
composition 

103.15 8 9.59 <0.001 

SES      13.83 9 1.14 0.33 
Age-centred         0.05 1 0.03 0.85 
Accelerometer model       0.21 1 0.15 0.69 
Recording frequency    0.49 1 0.37 0.54 
Residuals  1086.15 808   

Notes. SES = socioeconomic status. 
 
 



Supplementary file 3, Table S7. One-for-remaining compositional isotemporal substitutions 
to predict change in girls’ BMI z-scores resulting from hypothetical time reallocations 
involving the 50-100 mg intensity band.  
One-for-remaining time 

reallocation (min) 
Predicted change 

in BMI z-score 
Lower 95% CI Upper 95% CI 

+20 0.26 0.10 0.32 
+15 0.20 0.08 0.15 
+10 0.13 0.05 0.22 
+5 0.07 0.03 0.11 
+4 0.05 0.02 0.09 
+3 0.04 0.02 0.07 
+2 0.03 0.01 0.04 
+1 0.01 0.01 0.02 
-1 -0.01 -0.02 -0.005 
-2 -0.03 -0.05 -0.01 
-3 -0.04 -0.07 -0.02 
-4 -0.06 -0.09 -0.02 
-5 -0.07 -0.11 -0.02 

-10 -0.14 -0.23 -0.06 
-15 -0.22 -0.36 -0.09 
-20 -0.30 -0.49 -0.12 

Note. For the baseline composition, BMI z-score = 0.56. BMI = body mass index; CI = 
confidence interval. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Supplementary file 3, Table S8. One-for-remaining compositional isotemporal substitutions 
to predict change in girls’ BMI z-scores resulting from hypothetical time reallocations 
involving the 100-150 mg intensity band. 
 
One-for-remaining time 

reallocation (min) 
Predicted change 

in BMI z-score 
Lower 95% CI Upper 95% CI 

+20 -0.81 -1.34 -0.28 
+15 -0.63 -1.04 -0.22 
+10 -0.44 -0.72 -0.15 
+5 -0.23 -0.38 -0.08 
+4 -0.18 -0.30 -0.06 
+3 -0.14 -0.23 -0.05 
+2 -0.09 -0.15 -0.03 
+1 -0.05 -0.08 -0.02 
-1 0.05 0.02 0.08 
-2 0.10 0.03 0.16 
-3 0.15 0.05 0.24 
-4 0.20 0.70 0.33 
-5 0.25 0.09 0.41 

-10 0.52 0.19 0.87 
-15 0.83 0.29 1.38 
-20 1.18 0.41 1.96 

Note. For the baseline composition, BMI z-score = 0.56. BMI = body mass index; CI = 
confidence interval. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Supplementary file 3, Table S9. One-for-remaining compositional isotemporal substitutions 
to predict change in girls’ BMI z-scores resulting from hypothetical time reallocations 
involving the ≥700 mg intensity band. 
 
One-for-remaining time 

reallocation (min) 
Predicted change 

in BMI z-score 
Lower 95% CI Upper 95% CI 

+20 -0.97 -1.25 -0.69 
+15 -0.82 -1.06 -0.59 
+10 -0.64 -0.83 -0.46 
+5 -0.39 -0.51 -0.28 
+4 -0.33 -0.43 -0.24 
+3 -0.26 -0.34 -0.19 
+2 -0.19 -0.24 -0.13 
+1 -0.10 -0.08 -0.15 
-1 0.07 0.04 0.10 
-2 0.26 0.18 0.33 
-3 0.43 0.31 0.56 
-4 0.68 0.48 0.87 
-5 1.06 0.76 1.36 

Note. For the baseline composition, BMI z-score = 0.56. BMI = body mass index; CI = 
confidence interval. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Supplementary file 3, Table S10. One-for-remaining compositional isotemporal 
substitutions to predict change in boys’ BMI z-scores resulting from hypothetical time 
reallocations involving the ≥700 mg intensity band. 
 
One-for-remaining time 

reallocation (min) 
Predicted change 

in BMI z-score 
Lower 
95% CI 

Upper 95% CI 

+20 -0.77 -1.08 -0.46 
+15 -0.64 -0.90 -0.38 
+10 -0.48 -0.67 -0.29 
+5 -0.28 -0.39 -0.17 
+4 -0.23 -0.32 -0.14 
+3 -0.18 -0.25 -0.11 
+2 -0.12 -0.17 -0.07 
+1 -0.06 -0.09 -0.04 
-1 0.07 0.04 0.10 
-2 0.15 0.09 0.21 
-3 0.23 0.14 0.33 
-4 0.33 0.20 0.46 
-5 0.44 0.27 0.62 

-10 1.71 1.02 2.39 
Note. For the baseline composition, BMI z-score = 0.72. BMI = body mass index; CI = 
confidence interval. 
 


	Introduction 
	Materials and Methods 
	Data Acquisition and Study Eligibility 
	Outcomes 
	Outcome Variable and Covariates 
	Physical Behaviour Acceleration Exposure Variables 

	Data Analysis 

	Results 
	Descriptive Results 
	Compositional Regression Analyses 
	Compositional Isotemporal Substitution Analyses: One-to-Remaining Reallocations 

	Discussion 
	Conclusions 
	References

