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Abstract
Blood donations are crucial for the health system. We consider the problem of plan-
ning blood donation services, where the donors are reached at home. The scope is 
to minimize the penalty for the unserved donors, while guaranteeing that the avail-
able resources for implementing the service are not exceeded and that the appoint-
ment preferences of the donors are met. We present an offline model for this setting, 
where the produced solution must be robust with respect to the availability of the 
donors, which is not known in advance and is managed in a stochastic way using 
scenarios. A Benders decomposition approach to solve this model is developed. The 
proposed algorithm is tested on real-life instances coming from the Milan depart-
ment of the Associazione Volontari Italiani Sangue (AVIS).

Keywords Home blood donations · Donors preferences · Benders decomposition · 
Data uncertainty · Scenarios

1 Introduction

The availability of a sufficient blood supply is crucial for ensuring high-quality and 
fully-functional health services. Unfortunately, blood and its components are highly 
perishable: this forbids long term conservation and requires continuous donations by 
unpaid volunteers, as no successful artificial blood substitutes have been developed 
so far. Therefore, the policies used to implement and manage the so-called Blood 
Donation Supply Chain (BDSC) deeply affect the whole healthcare system. BDSC 
includes four main stages: collection, transportation, storage and final utilization 
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(Pierskalla 2004). Collection consists of finding donors, checking them for eligibil-
ity, collecting donations and controlling the produced blood units (Lanzarone and 
Yalçındağ 2019). Transportation faces the problem of moving blood from where 
donations are made to the storage place. Storage deals with the blood conservation, 
considering that the shelf life of blood products is very limited. Final utilization 
consists of distributing blood units to end-users, but also of predicting the amounts 
needed from the different health facilities.

Collection is the most critical stage of the whole process and, relying on volun-
tary donors, it structurally suffers from data uncertainty (Rahmani 2019). Moreo-
ver, it is particularly vulnerable to pandemics. In fact, it was calculated that, due 
to the SARS-CoV-2 pandemic, the production of red blood cells in Italy in April 
2020 was reduced by 36.4% with respect to April 2019 (Centro Nazionale Sangue 
2020). There were several concurrent reasons that caused this contraction: many 
donors became unavailable because they were infected; most places used as loca-
tions to perform blood donations (schools, churches, offices, clubs, … ) were shut 
down because of the pandemic; many donors were scared of reaching hospitals or 
donation centers, where they could potentially meet SARS-CoV-2 positive individu-
als (Gupta et al. 2020; Pagano et al. 2020). This supports the policy of relocating 
health services on the territory instead of concentrating them into hospitals or cent-
ers (Lanzarone and Matta 2012; Carello et al. 2018; Govindan et al. 2020; Regis-
Hernández et al. 2020), which includes home blood donations (Doneda et al. 2023). 
The possibility to donate at home can be seen as an incentive: if donating becomes 
easier for the donors, more donors can be convinced to start (or re-start) donating 
and to become regular donors

For this reason, this paper is devoted to the presentation of models and algorithms 
for a home blood donation problem that arises in an urban context. We show that 
the problem exhibits an underlying network structure that can be exploited to effi-
ciently solve it by a branch-and-cut algorithm based on Benders decomposition. The 
approach is tested on instances derived from real-life data. In the rest of this section, 
after a brief review of the existing literature on the blood supply chain and on blood 
donations, we describe our contribution and provide information and references on 
data and techniques we use.

1.1  Literature review

While the medical aspects of blood donation are very well-studied, the logistics 
of the blood supply chain has received less attention in the literature, if compared 
to other supply chains (Baş Güre et al. 2016, 2018b). Recent surveys can be found 
in (Beliën and Forcé 2012; Osorio et al. 2015; Pirabán et al. 2019). Starting from 
Millard (1959), where industrial inventory models were applied to blood collec-
tion, several papers considered the blood supply chain, also including vehicles and 
mobile donations. Gunpinar and Centeno (2016) use vehicles to create temporary 
blood collection sites in regions that may be far from a collection center. The prob-
lem of managing a fleet of vehicles to transport blood from temporary locations to 
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the centers has been considered by Alfonso et  al. (2015a), Gülizahinyazan et  al. 
(2015), and Şahinyazan et al. (2015).

Scheduling problems arising in blood donations have also been investigated. 
Michaels et  al. (1993) use simulation to compare donors scheduling strategies. 
Alfonso et al. (2012) analyze how different donor schedules and workforce planning 
strategies affect the efficiency of the system. A simulation-optimization approach 
for capacity planning and appointment scheduling is considered by Alfonso et  al. 
(2015b). Baş Güre et al. (2018a) present a framework for scheduling appointments 
over a few weeks, considering both booked and non-booked donors, with the aim of 
balancing the production and reduce the queuing time. The approach was extended 
to stochastic arrivals by Yalçındağ et al. (2020). Finally, the problem of dimension-
ing a collection center based on the expected donors arrival patterns is studied by 
Testik et al. (2010).

However, the assumption that has been made so far in the blood collection lit-
erature is that the donors must come to the place of donation (either temporary or 
permanent) and not the other way around. Although the problem of collecting blood 
donations at home shares some aspects with the collection of biological samples 
from patients, which is a common practice in home care (Anaya-Arenas et al. 2021), 
home donations have been considered for the first time in the literature only recently 
(Doneda et  al. 2023). The authors develop an appointment scheduling system for 
home donation, with a planning horizon of several weeks, taking into account 
donors preferences and balanced production. The problem is decomposed into three 
stages, that are sequentially solved: an offline procedure for selecting the appoint-
ments to be opened; an online phase for booking the appointments; an offline rout-
ing planner, where the routes are arranged. The online phase is required to obtain 
information on donors preferences, for which reliable statistical predictions are not 
available.

1.2  Our contribution

In this paper we consider a short time horizon (e.g., one week) and some statistical 
knowledge on donors availability and preferences can be exploited. This allows us 
to model the uncertainty using a set of scenarios that represents the availability of 
donors over the time horizon, thus deriving a fully offline mathematical model to 
handle home blood donation in an urban context. Using scenarios in order to man-
age data uncertainty, is a common approach, that has been already used in many 
contexts, including healthcare (Lanzarone et  al. 2012; Guo et  al. 2020). The pro-
posed formulation represents the complex situation that a donation center faces, 
which includes: the assignment of appointments to donors; the presence of limited 
resources; the need to ensure some amounts of each blood type; the preferences of 
the donors and the uncertainty in the availability of the donors. To solve the pro-
posed model, we develop an ad-hoc branch-and-cut (Padberg and Rinaldi 1991) 
algorithm, based on a Benders decomposition approach (Benders 1962). In particu-
lar, we show that an underlying network structure can be exploited to efficiently find 
violated Benders inequalities, if any.
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Benders decomposition has been already proved to be effective in many fields, 
such as scheduling problems (Mattia et al. 2017), prevention of blackouts in power 
grids (Bienstock and Mattia 2007) and network design (Avella et  al. 2007; Mat-
tia 2012a, b, 2013; Mattia and Poss 2018). There also exist generalizations of this 
method (Hooker 2019), with application in operating room scheduling (Guo et al. 
2020). Discovering and exploiting underlying structures in the solution of mixed 
integer programming problems, is also a well-known and successful technique. One 
possibility is to identify submatrices of the original constraint matrix that exhibit a 
combinatorial structure, that can be used to generate valid inequalities to strengthen 
the problem formulation. Inequalities from combinatorial structures include, among 
the others, clique, (lifted) cover, network flows-based (Achterberg and Raack 2010; 
Avella et  al. 2013, 2021) and mod-2 inequalities (Avella et  al. 2007; Arbib et  al. 
2017). Another possibility is to show that a given problem can be transformed into 
another one, for which efficient algorithms and theoretical results are available. 
Many applied problems have an underlying network structure that can be exploited, 
e.g., personnel scheduling (Mattia et al. 2017), pick-up and delivery (Bonomo et al. 
2011), wireless network planning (Mannino et al. 2011), assignment and matching 
(Ahuja et al. 1993). Here we show that we can obtain Benders feasibility and opti-
mality cuts by solving a min cost flow problem on a suitable graph. To our knowl-
edge, this is the first time that this strategy has been used to tackle the home blood 
donation problem.

Data for the experiments come of the Milan department of the Associazione 
Volontari Italiani Sangue (AVIS), referred to as AVIS Milan. AVIS is the largest 
blood donors association in Italy, being responsible for the collection stage of a very 
large portion of the Italian blood supply chain (about 70% of the national blood 
demand). AVIS Milan manages about 50 whole blood donations per day and other 
few units produced by apheresis (AVIS 2020) and serves one of the largest hospi-
tals in Milan, the Niguarda Hospital. This hospital must be replenished with a given 
amount of units for each blood type, which allows to set target levels for each plan-
ning period. It is worth remarking that this situation is common to several blood col-
lection centers, thus making AVIS Milan and its setting of general validity in blood 
collection.

The rest of the paper is organized as follows. In Sect. 2 we describe the consid-
ered problem and present a first mathematical model. In Sect. 3 we provide theo-
retical results that allow to obtain a second model, based on Benders decomposition. 
The proposed solution approach is described in Sect. 4. In Sect. 5 we present the 
computational experience and discuss the results. Conclusions are given in Sect. 6.

2  The problem and the model

We address the problem of planning a home blood donation service over a given ter-
ritory assigned to a single blood collection center, considering a fixed time horizon. 
Its main scope is to serve as many donors as possible, provided that some constraints 
on production and available resources are satisfied. We assume that the blood center 
is provided with blood storage facilities and vehicles, which are used to reach the 



1 3

A Benders decomposition approach for planning home blood…

donors at home. It collects the blood from regular blood donors, according to given 
appointments. Below we detail the considered setting, while an Integer Program-
ming (IP) formulation for the problem is given in Sect. 2.2.

2.1  The considered setting

The territory corresponding to the donation center is partitioned into cells of similar 
size and population. Each cell is assigned to one vehicle. Each vehicle can make at 
most two tours in the cell (one in the morning and one in the afternoon), starting 
from the center and coming back to the center at the end of the route. Each tour is, 
then, associated with a cell, a vehicle, a day, a part of the day (morning or after-
noon) and a set of service stops (donation slots) that can be assigned to the donors 
(one donor per slot). Therefore, each donation slot has a pre-assigned cell, vehicle, 
tour, part of the day and time window for the donation. The locations within the cell 
where the stops must occur (i.e., the actual route that the tour must follow), instead, 
are not pre-set and depend on the actual location of the donors assigned to the slots, 
if any.

Each donor can be assigned only to the slots that he/she likes, among those availa-
ble for his/her cell. The routes are automatically determined given the appointments: 
each tour starts from the collection center, visits the donors in the appointment order 
for that tour and then goes back to the collection center. To go from location i to 
location j, the vehicle will follow an ij shortest path according to the current traffic 
conditions. The underlying assumption is that the visiting order has no critical effect 
on the total duration of the tours. This is true if the cells are small enough to guaran-
tee that the travel time from any location i to any location j in the cell plus the dona-
tion time at j (which is a fixed time) does not exceed the duration slot.

As an example, consider the case of a cell that has at its disposal a single vehi-
cle and consider a time horizon of one day. The vehicle can make at most one tour 
( tour1 ) in the morning and at most one tour ( tour2 ) in the afternoon. Each tour con-
tains three available stops, namely slot1

1
, slot1

2
 and slot1

3
 for tour1 and slot2

1
, slot2

2
 and 

slot2
3
 for tour2 . Then, the total number of available slots is six, partitioned into two 

tours served by the same vehicle (tours are not time-overlapping as tour1 is in the 
morning and tour2 in the afternoon), that is, up to six donors living in the cell can 
potentially be served. Assume that there are four donors ( donor1,… , donor4 ) in 
the cell. Suppose that donor1 likes only slot1

1
 , donor2 and donor3 like all the avail-

able slots, while donor4 likes slot1
1
 and slot2

1
 . Consider the assignment ass1 : donor1 

assigned to slot1
1
 ; donor2 assigned to slot2

2
 , donor3 assigned to slot1

2
 , donor4 assigned 

to slot2
1
 . Assignment ass1 corresponds to the activation of both tour1 and tour2 . 

The route of tour1 visits first donor1 (assigned to slot1
1
 ) and then donor3 (assigned 

to slot1
2
 ), before coming back to the center. The route of tour2 visits first donor4 

and then donor2 . Consider now assignment ass2 : donor4 assigned to slot1
1
 ; donor2 

assigned to slot1
2
 , donor3 assigned to slot1

3
 , donor1 not served, as no remaining slot 

matches the donor’s preferences. Assignment ass2 corresponds to the activation of 
tour1 only, whose route visits first donor4 , then donor2 and finally donor3 . Hence, a 
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tour can be seen as a set of slots (input), while the route that each tour must follow 
(possibly none) depends on the assignment of donors to slots (output).

Each tour needs some resources, the most important of which is the medical per-
sonnel, that is, a nurse and a physician are required to be on board of each vehicle. 
Therefore, at most a given percentage of the available tours can be activated. In our 
setting, it is enough to have one single constraint to limit the total number of acti-
vated tours over the considered time horizon. However, it is possible to impose fur-
ther limits and side constraints on the tours (e.g., limiting the maximum number of 
vehicles that can simultaneously be routed), without affecting the theoretical results 
we present in Sect.  3. Since each tour is related to a very small portion of terri-
tory (cell), we assume that the working time of the onboard medical personnel, the 
fuel and the conservation time of the collected samples are never exceeded, indepen-
dently of the actual assignment of the slots to the donors. We also suppose that the 
considered time windows always allow the vehicle to perform the donation and to 
reach the next donor or come back to the depot.

The center has a target level for each blood type that must be produced in the 
considered time horizon. Since the donors are unpaid, not serving a donor may dis-
courage the donor from donating again. For this reason, when a donor is not served, 
a penalty cost must be paid and the corresponding penalty can be increased in the 
next round of assignments, so that the probability to serve that donor increases, as 
well. In principle, not all the donors may be available in the considered time hori-
zon. Therefore, a set of scenarios is defined: in each scenario a given subset of the 
donors is supposed to be available and each scenario has an associated probability to 
happen. The problem consists of minimizing the mean penalty costs over the set of 
the considered scenarios, ensuring that the service does not exceeded the available 
resources and that, in each scenario, the prescribed amounts of blood are produced. 
Since the planning horizon (1 week) is much shorter than the shelf life of collected 
whole blood units (6 weeks), the blood amounts to be produced refer to the whole 
time horizon and there is no need to add production constraints for sub-periods as in 
Doneda et al. (2023).

2.2  The complete formulation

We consider a discrete time horizon T, where each t ∈ T  refers to a day of the week. 
Set B contains the blood types that must be produced (namely: A+, A−, B+, B−, 
AB+, AB-, 0+, 0−), while the set of all possible donors is denoted by J. Let R be 
the set of the tours and let I be the set of donation slots. For a slot i, we denote by 
v(i) the tour to which i belongs. Let 0 ≤ � ≤ 1 be the percentage of tours that can be 
activated, that is, due to limited resources, we can use only up to � ∣ R ∣ tours.

We denote by Ij ⊆ I the slots that are suitable for donor j ∈ J , based on his/
her preferences and cell. A donor j ∈ J is associated with a unique blood type, 
denoted by bj . Let Jb ⊆ J be the donors corresponding to blood type b ∈ B and 
denote by LBb and UBb , respectively, the minimum and maximum number of 
blood units of type b ∈ B to be produced in the considered time horizon T, that 
is, the number of donors of type b to be served. A set S of possible scenarios is 
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considered, each one with an associated probability ps to occur. In a scenario, 
a donor may or may not be willing to donate. The set of the donors willing to 
donate in scenario s ∈ S are denoted by Js ⊆ J . Let wj be the penalty to be paid if 
donor j is willing to donate, but not served.

Let zv be a variable taking value 1 if tour v ∈ R has been selected and 0 other-
wise. Since i belongs to v(i), if zv(i) = 1 , all slots j belonging to v(i) became avail-
able. Let ys

ij
 be a binary variable taking value 1 if donor j ∈ J is assigned to slot 

i ∈ I under scenario s ∈ S and 0 otherwise. The problem can be modeled as in the 
complete formulation (CF) below.

The objective function to be minimized measures the expected penalty to be paid for 
not serving donors. In fact, if donor j ∈ Js is not served, then 

∑
i∈Ij

ys
ij
= 0 and cost 

wj is paid. Otherwise, there exists a unique slot i assigned to j, 
∑

i∈Ij
ys
ij
= 1 and no 

penalty for not serving j is considered in the objective function. Constraints (1) 
ensure that we activate at most � ∣ R ∣ tours. Constraints (2) guarantee that each 
donor j is assigned to at most one time slot in Ij . Constraints (3) force a slot to be 
unassigned (if the corresponding tour has not been selected) or to be assigned to at 
most one donor per scenario (if the corresponding tour has been activated). Con-
straints (4) ensure that the number of donations for each blood type is between the 
prescribed minimum and maximum values. We assume that ∣ Js ∩ Jb ∣≥ LBb for any 
b ∈ B and s ∈ S , otherwise the problem is trivially infeasible.

As common in scenario based approaches (Lanzarone et al. 2012; Bacci et al. 
2023) the models usually become very difficult to solve when the number of sce-
narios and, then, the number of constraints and variables of the model, increases. 
This is true also for model CF. To overcome this issue, we present a second for-
mulation (BF, that we call projected model), where a large part of the variables 

(1)

CF min
∑
s∈S

ps

∑
j∈Js

wj(1 −
∑
i∈Ij

ys
ij
)

∑
v∈R

zv ≤ � ∣ R ∣

(2)
∑
i∈Ij

ys
ij
≤ 1 j ∈ Js, s ∈ S

(3)
∑

j∈Js∶i∈Ij

ys
ij
≤ zv(i) i ∈ I, s ∈ S

(4)

LBb ≤

∑
j∈Jb

∑
i∈Ij

ys
ij
≤ UBb b ∈ B, s ∈ S

z ∈ {0, 1}∣R∣

ys
ij
∈ {0, 1} i ∈ Ij, j ∈ Js, s ∈ S
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and the related constraints are projected out according to a Benders decomposi-
tion scheme (Benders 1962).

3  The projected formulation

We reformulate the problem by projecting out the y variables and the related con-
straints, so that the remaining problem only includes the z variables, which do not 
depend on the scenarios. CF can be restated in a bilevel fashion as follows, where 
each inner min refers to a single scenario.

We now prove that, for a given z , each inner min, that we call the lower level prob-
lem for s and z , can be solved as a linear programming problem.

3.1  Solving the lower level problem as a network flow problem

Minimizing the original objective function of the lower level problem is equivalent 
to optimize �s =

∑
j∈Js

wj −max
∑

j∈Js
wj

∑
i∈Ij

ys
ij
.

Theorem 1 The lower level problem can be solved as a max-cost flow problem on an 
acyclic graph for any s ∈ S and z.

Proof Consider the following direct acyclic graph G(s, z) (see Fig. 1). The node set 
V(s) has a source node � , a destination node � , an auxiliary node � , a node for any 
donor j ∈ Js , a node for any slot i ∈ I and a node for any blood type b ∈ B . The 
arc set E(z) includes: for any i ∈ I , an arc (�, i) of cost 0 and capacity zv(i) ; an arc 

min
∑
s∈S

ps�s

∑
v∈R

zv ≤ � ∣ R ∣

z ∈ {0, 1}∣R∣

for any s ∈ S, �s = min
�
j∈Js

wj

⎛
⎜⎜⎝
1 −

�
i∈Ij

ys
ij

⎞
⎟⎟⎠�

i∈Ij

ys
ij
≤ 1 j ∈ Js

�
j∈Js∶i∈Ij

ys
ij
≤ zv(i) i ∈ I

LBb ≤

�
j∈Jb

�
i∈Ij

ys
ij
≤ UBb b ∈ B

ys
ij
∈ {0, 1} i ∈ Ij, j ∈ Js
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(�, �) of cost 0 and capacity ∣ Js ∣ −
∑

b∈B LBb ; an arc (� , �) of cost 0 and capacity 
∣ Js ∣ −

∑
b∈B LBb ; for any b ∈ B , an arc (b, �) of cost 0 and capacity LBb and an arc 

(b, �) of cost 0 and capacity UBb − LBb ; for any j ∈ Js , an arc (j, bj) with capacity 1 
and cost wj ; for any i ∈ Ij and j ∈ Js , an arc (i, j) of cost 0 and capacity 1. Suppose 
that flow ∣ Js ∣ must be sent from � to � and that one wants to compute the max-
cost flow. If all costs and capacities are integer, the flow will be integer. Since each 
j ∈ Js has only one outgoing arc of capacity 1, at most flow 1 can cross it and the 
flow will be 1 if j is served (i.e., a slot is assigned to it) and 0 otherwise. A flow 1 
on arc (i, j) means that slot i is assigned to donor j. The capacities on the (�, i) arcs 
guarantee that slot i is crossed by some flow (i.e., i is assigned to some j) only if the 
corresponding tour has been activated and the flow that can cross i is at most 1. This 
means that either i is unassigned or it is assigned to at most one donor. The flow 
can follow three paths in the graph from � to � : {(�, �), (� , �)} ; from � to some b 
and then to � using arcs (b, �) ; from � to some b and then to � via the auxiliary node 
� . Node � must receive flow ∣ Js ∣ and it has to come either from nodes for b ∈ B 
or from node � . Since the sum of the capacities on the arcs entering � is exactly 
∣ Js ∣ , they will be saturated by any feasible solution. Having flow LBb on arc (b, �) 
means that LBb donors of type b have been assigned to some slots. Having a positive 
flow on edge (b, �) means that more than LBb donors (but less than UBb ) have been 
served. If there is some flow on arc (�, �) , it means that there are some unassigned 
donors. Since we must maximize the cost of the flow, it would be preferable to fol-
low the second or the third path, since the only arcs with a positive cost are the ones 
in {(j, bj), j ∈ Js} . If a feasible solution exists, then we can obtain a solution for the 
lower level problem by assigning slot i to donor j if the flow on arc (i, j) is 1. If the 
problem is infeasible, that is, it is not possible to send a flow from � to � respecting 

Fig. 1  Picture of the graph defined in Theorem 1. For some representative arcs, we added into brackets 
the corresponding cost and capacity values, respectively
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the given upper and lower bounds on the capacities, this means that it is not possible 
to obtain the prescribed blood amounts and the lower level problem for the consid-
ered s and z is infeasible.   ◻

The reformulation of the lower level problem as a max-cost flow problem and 
its dual are reported below. The primal problem for s and z is denoted by low(s, z) 
and the dual by dual(s, z) . We use the convention that a negative supply/demand 
value for a node denotes a demand, while a positive one a supply. Variable fuv 
represents the flow on arc (u, v) ∈ E(z) , being E(z) the arc set defined in the proof 
of Theorem 1. Symbols on the left in low(s, z) ( dual(s, z) ) are dual (primal) vari-
ables associated with the primal (dual) constraints.

The constraints corresponding to the dual variable � are flow conservation con-
straints, ensuring that the required amount goes from � to � . The constraints corre-
sponding to dual variables � are capacity constraints that guarantee that the capaci-
ties on the arcs are not exceeded.

Let Ds be the dual feasible region and let r(Ds) and e(Ds) be its extreme rays and 
vertices, respectively. Note that Ds does not depend on z , which appears only in 
the objective function of the dual problem. Then, both its rays and its vertices are 

low(s, z) max
�
j∈Js

wjfjbj

(�u)
�

v∶(u,v)∈E(z)

fuv −
�

v∶(v,u)∈E(z)

fvu =

⎧
⎪⎨⎪⎩

∣ Js ∣ u = �

− ∣ Js ∣ u = �

0 u ∈ V(s) ⧵ {�, �}

(�uv) fuv ≤

⎧⎪⎪⎨⎪⎪⎩

LBb (u, v) ∈ {(b, �), b ∈ B}

UBb − LBb (u, v) ∈ {(b, �), b ∈ B}

∣ Js ∣ −
∑

b∈B LBb (u, v) ∈ {(�, �), (� , �)}

zv(i) (u, v) ∈ {(�, i), i ∈ I}

1 otherwise

f ≥ 0

dual(s, z) min ∣ Js ∣ (�� − ��) +
∑
b∈B

(LBb�b� + (UBb − LBb)�b� )

+ (∣ Js ∣ −
∑
b∈B

LBb)(��� + ���) +
∑
j∈Js

∑
i∈Ij

�ij

+
∑
i∈I

zv(i)��i +
∑
j∈Js

�jbj

(fjbj ) �j − �bj + �jbj
≥ wj j ∈ Js

(fuv) �u − �v + �uv ≥ 0 (u, v) ∈ E(z) ⧵ {(j, bj), j ∈ Js}

� ≥ 0
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independent of the current z . We can now reformulate CF using a Benders decom-
position scheme as follows.

Theorem 2 Problem CF can be reformulated as BF.

Proof Problem low(s, z) cannot be unbounded: it may admit a feasible solution or it 
may be infeasible. On the other hand, problem dual(s, z) always admits the feasible 
solution where all the variables are set to 0, apart from �jbj

 , which are set to wj . 
Hence, it can be unbounded or it may admit an optimal solution, but it is never infea-
sible. If there exists at least a scenario s ∈ S whose corresponding low(s, z) is infea-
sible, then z is infeasible and must be cut off. Requiring that low(s, z) is not infeasi-
ble for any s for the given z , corresponds to requiring that dual(s, z) is not 
unbounded. Hence, the dual objective function must assume a positive value for any 
extreme ray in r(Ds) . This is obtained by the Benders feasibility cuts (5). On the 
other hand, we must also ensure that the computed �s values correspond to optimal 
values for the lower level problem low(s, z) . The weak duality theory ensures that, 
for any feasible solution of the primal problem and any feasible solution of the dual 
problem, the primal objective value is lower than or equal to the dual objective 
value. This condition is implemented by the Benders optimality cuts (6). The strong 
duality theory ensures that there is at least one vertex (which may be different for 
any z and s) for which the constraint is satisfied with equality, guaranteeing that the 
corresponding primal and dual objective values are optimal.   ◻

(5)

BF min
∑
s∈S

ps�s

∑
v∈R

zv ≤ K

∣ Js ∣ (�� − ��) +
∑
b∈B

(LBb�b� + (UBb − LBb)�b� )

+ (∣ Js ∣ −
∑
b∈B

LBb)(��� + ���) +
∑
j∈Js

∑
i∈Ij

�ij

+
∑
i∈I

��izv(i) +
∑
j∈Js

�jbj
≥ 0 (�,�) ∈ r(Ds)

(6)

�s ≥
∑
j∈Js

ws − (∣ Js ∣ (�� − ��)

∑
b∈B

(LBb�b� + (UBb − LBb)�b� )

+ (∣ Js ∣ −
∑
b∈B

LBb)(��� + ���)

+
∑
i∈I

��izv(i) +
∑
j∈Js

�jbj
) (�,�) ∈ e(Ds)

z ∈ {0, 1}∣R∣,� ≥ 0
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Formulation BF has less variables than CF, but an exponential number of con-
straints. However, the problem can be solved via branch-and-cut, by generating 
Benders feasibility cuts (5) and Benders optimality cuts (6) dynamically. Usually, 
the optimization process terminates when only a very limited number of inequalities 
has been added, without the need to consider each vertex and ray of the dual polyhe-
dron. In problem dual(s, z) , variables z are parameters, as they are fixed to given val-
ues, while � and � are the variables whose value must be computed. On the contrary, 
in constraints (5) and (6), z are variables, while � and � are fixed to given values 
and, hence, they are coefficients. Also note that, if we replace the single inequality 
(1) by any set of constraints Qz ≤ q that may limit the available tours and/or add 
objective costs for the z variables, these modifications do not affect the subproblems 
and, hence, the results used to derive reformulation BF.

3.2  Benders feasibility cuts

Feasibility has a natural interpretation by network flow arguments. Let a �� cut 
{W ∶ V(s) ⧵W} be a partition of the nodes V(s) of graph G(s, z) , such that � ∈ W and 
� ∈ V(s)⧵W . The arcs (u, v) of the cut are the ones having u ∈ W and v ∈ V(s)⧵W . 
The capacity of the cut is the sum of the capacities on the arcs of the cut.

Theorem 3 The problem of checking if low(s, z) is feasible, amounts to test if there is 
a �� cut in G(s, z) whose capacity is strictly less than ∣ Js ∣.

Proof By the max-flow min-cut theorem (Ford and Fulkerson 1956), each flow from 
the source to the destination must cross each cut that separates the source from the 
destination. If there exists one of such cuts whose capacity is less than the demand 
that must cross the cut, then the problem is infeasible. Since the costs play no 
role, as far as feasibility is concerned, suppose that wj = 0 for all j ∈ J . Consider 
dual(s, z) . Assume that there exists a �� cut {W ∶ V(s) ⧵W} whose capacity is less 
than the demand. Consider the solution having �uv = 1 for the arcs of this cut and 
0 otherwise. Let �u = 1 for u ∈ V(s) and �u = 0 otherwise. This solution is feasible 
for dual(s, z) and, since the capacity of the considered cut is less than the demand, 
the corresponding objective function is negative. Moreover, it can be scaled by an 
arbitrary factor, leading to unboundedness. Hence, each unbounded ray corresponds 
to a �� cut with capacity less than the demand in G(s, z) . On the other hand, if each 
�� cut has a capacity greater than or equal to the demand, then the primal problem 
admits an optimal solution and so it is for the dual by linear duality. It follows that 
there is no unbounded ray.   ◻

Then, each Benders feasibility cut corresponds to a �� cut of graph G(s, z) . We 
describe below some Benders feasibility cuts that can be added to the initial model 
to avoid separating trivially infeasible z vectors.

Theorem 4 The source inequalities (7) are Benders feasibility cuts.
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Proof Constraints (7) are valid for BF. In fact, if one does not have the slots to 
accommodate the minimum number of donors needed to reach the required blood 
mix, then low(s, z) is infeasible. They correspond to the �� cuts {{�} ∶ V(s)⧵{�}} , 
for s ∈ S . This cut prescribes that the edges going from � to any node i ∈ I , plus 
edge (�, �) have enough capacity to support an amount of flow corresponding to the 
number of donors of scenario s, that is, ∣ Js ∣ . Since edge (�, �) can accommodate at 
most flow ∣ Js ∣ −

∑
b∈B LBb , then the edges from � to i ∈ I must have capacity at 

least 
∑

b∈B LBb , leading to inequality (7). The cut is illustrated in Fig. 2.   ◻

According to the blood type, we can derive the inequalities below.

Theorem 5 The blood type inequalities (8) are Benders feasibility cuts.

Proof Constraints (8) are valid for BF. If one does not have enough slots to accom-
modate the minimum number of donors needed to reach the required minimum 
amount for blood type b, then low(s, z) is infeasible. For a given b and s, inequal-
ity (8) corresponds to the �� cut {V(s) ⧵ {�, b, J(b), I(b)} ∶ {�, b, J(b), I(b)}} , where 
J(b) = Jb ∩ Js are the donors of blood type b and I(b) = ∪j∈J(b)Ij are the slots that 
can be assigned to these donors. This cut has capacity 

∑
i∈I(b) zv(i) (edges from � to 

(7)
∑

i∈∪j∈Js
Ij

zv(i) ≥
∑
b∈B

LBb s ∈ S

(8)
∑

i∈∪Jb∩Js
Ij

zv(i) ≥ LBb b ∈ B, s ∈ S

Fig. 2  In the picture, the dotted lines represents the cuts associated with an inequality of type (7) (in 
gray) and with an inequality of type (8) (in black)
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i ∈ I(b) ) +∑

w∈B⧵{b} LBw (edges from w ∈ B⧵{b} to � ) + ∣ Js ∣ −
∑

w∈B LBw (edge (� , �) ). 
This capacity can support a total flow of amount ∣ Js ∣ only if 

∑
i∈I(b) zv(i) ≥ LBb , lead-

ing to inequalities (8). The cut is illustrated in Fig. 2.   ◻

Algorithm 1  Processing a node of the branch-and-bound tree

let bestSol be the value of the best solution found so far
1: solve the linear relaxation of the problem at the node

let (z,λ) and currentSol be the current solution and the corresponding
value

2: if currentSol > bestSol then
3: prune the node and exit
4: else
5: if z is integer or we are at the root node then
6: R = S
7: repeat
8: choose s ∈ R
9: R = R \ {s}

10: if low(s, z) is infeasible then
11: add inequality (5) for the unbounded dual ray
12: else
13: if low(s, z) admits optimal solution f∗ then
14: if λs < j∈Js

ws − j∈Js
wjf

∗
jbj

then
15: add inequality (6) for the dual vertex for f∗

16: end if
17: end if
18: end if
19: until R = ∅ or an inequality of type (5) is separated
20: if no inequalities (5) or (6) are separated then
21: if (z,λ) is integer then
22: (z,λ) is a feasible solution of BF
23: exit
24: else
25: branch and exit
26: end if
27: else
28: go to step 1
29: end if
30: else
31: branch and exit
32: end if
33: end if
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4  The algorithm

Since formulation BF has an exponential number of constraints, the problem is 
solved by branch-and-cut, generating inequalities (5) and (6) dynamically. A branch-
and-cut approach (Padberg and Rinaldi 1991) is a branch-and-bound (see, e.g., Wol-
sey (1998)) that starts from a suitable reduced formulation of the problem and where 
each node of the tree is processed by applying a user defined policy, which generates 
additional inequalities to be added to the model on the fly. In our case, the initial for-
mulation that is used to solve BF does not include inequalities (5) and (6) and it only 
contains the constraint that limits the number of tours that can be activated (1) and 
inequalities (8), that are polynomially many in the input size.

Indeed, it is well-known that Benders decomposition approaches can be very 
ineffective in the first iterations, when few constraints are present in the formulation 
and, hence, the generated solutions are often infeasible or far from the optimum. 
This effect can be mitigated by adding to the initial formulation a set of cuts, like 
constraints (8), that allows to generate more reasonable initial solutions, thus reduc-
ing the overall time and speeding up convergence. In Sect. 5.3 we discuss how effec-
tive these inequalities are, by showing what happens if we remove them from the ini-
tial formulation. The user defined policy (separation) is described below, where we 
discuss further strategies that have been adopted to improve the overall algorithm.

4.1  Separation

Consider a node of the branch-and-bound tree. If it is not the root node and the 
optimal solution of the linear relaxation (z,�) is fractional, we just branch, as in a 
standard branch-and-bound. Instead, if we are at the root node or (z,�) is integer, 
we check if (z,�) violates some inequalities (5) or (6). Therefore, for each scenario 
s ∈ S , we solve low(s, z) . If low(s, z) is infeasible, the dual is unbounded and a con-
straint (5) must be generated and added to the current formulation. If low(s, z) is fea-
sible, but �s does not correspond to the optimal value, a constraint (6) must be added 
to the current model. We add a single inequality (5) at a time but, possibly, multiple 
inequalities (6).

In fact, if a feasibility cut is violated by a solution z for a scenario s, then 
there is a high probability that it will be violated for other scenarios r. Indeed, 
if we cannot satisfy some lower bounds LBb with ∣ Js ∩ Jb ∣ potential donors for 
type b, it is unlikely to satisfy them with ∣ Jr ∩ Jb ∣≤∣ Js ∩ Jb ∣ donors, despite the 
preferences of those donors could better match the activated tours. This obser-
vation was confirmed in the experiments, where, for a given current solution 
(z,�) , most of the times the different scenarios produced very similar (if not the 
same) feasibility cuts. Hence, at each iteration, we decided to add only the first 
violated feasibility cut that we generate among all scenarios. Moreover, frac-
tional solutions are tested only at the root node. This avoids generating many 
inequalities that: although globally valid, are possibly violated only for one sin-
gle node, whereas in the others are not needed and just increase the problem 
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size; are possibly violated by small amounts, leading to small changes between 
one fractional solution and the next, while branching would be more effective. 
All integer solutions are tested at each node to guarantee the correctness of the 
algorithm.

If (z,�) is integer and it does not violate any inequality (5) or (6), then it is, 
indeed, a feasible solution that can be used to possibly update the incumbent 
solution, that is, the best solution computed so far. The node procedure is illus-
trated in detail in Algorithm 1, where we denote by bestSol the value of the best 
solution found so far and by currentSol the value of the current solution (z,�) . 
Step 10 of Algorithm 1 requires checking if low(s, z) is feasible and, if the case, 
producing a violated inequality corresponding to an unbounded ray. As already 
discussed in Sect. 3, low(s, z) can be modeled as a network flow problem, leading 
to the following result.

Theorem 6 Checking if low(s, z) is feasible or generating a violated inequality (5) if 
not, can be done in polynomial time.

Proof Checking if low(s, z) is feasible amounts to verify if there is a cut whose 
capacity is less than ∣ Js ∣ . This can be done by applying a max-flow algorithm to the 
graph G(s, z) corresponding to the current solution. The maximum flow in a graph 
can be computed in polynomial time (Ahuja et al. 1993). If the maximum flow is 
less than ∣ Js ∣ , the corresponding minimum cut has capacity less than ∣ Js ∣ and it 
corresponds to an unbounded ray by Theorem 3.   ◻

If low(s, z) is not infeasible, step 13 requires producing an optimal solution of 
the problem. Again, by the network flow argument illustrated in Sect. 3, the fol-
lowing result holds.

Theorem 7 Computing an optimal solution for low(s, z) or generating a violated ine-
quality (6) if any, can be done in polynomial time.

Proof Problem low(s, z) is a max cost flow problem on an acyclic graph. Max cost 
flows on acyclic graphs and corresponding dual variables can be computed in poly-
nomial time Ahuja et al. (1993).   ◻

4.2  The implementation

We implemented the code in Python and used the Gurobi (gurobipy) librar-
ies 9.1.1 for solving the linear (integer) programming problems. Model BF is 
solved using Algorithm  1 at each node of the branch-and-bound tree. Model 
CF is solved using Gurobi with default settings. We ran the code on a 3 GHz 
Intel Xeon Gold 6136 machine, with 258 GB of RAM. For the solution of each 
instance, we set a time limit of 3600 s.
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5  The computational experiments

Below we present and discuss the computational experiments that have been carried 
out using the models presented in Sects. 2.2 and 3.

5.1  The test bed

Since home blood donation has not been treated in practice and it was addressed 
only marginally in the literature, there are no reference instances that can be used as 
a benchmark. We started from data provided by AVIS Milan, which is not currently 
offering the possibility of home blood donations, and derived some instances for the 
home blood donation problem. These same data have been already used by Doneda 
et al. (2021) and Baş Güre et al. (2018a). According to AVIS Milan, we assume that 
the 60% of its donors are served by the home donation service, while the others con-
tinue to make the donations at the blood collection centers. Therefore, 60% of dona-
tion requests have been randomly extracted from the historical data and included in 
the simulations. In this way, the considered dataset includes a set J of 3865 donors 
who booked an appointment during a period of 120 days, starting from January 
1st 2014. Therefore, in our experiments, we have on average � = 3865∕120 ≈ 32 
donors to be served every day (equal to 60% of the about 50 daily donors of AVIS 
Milan).

AVIS Milan is located in the Eastern part of the city and collects blood from 
donors living or working in Milan. The city of Milan has an extension of 181.8 km2 
and an almost circular shape. The geodesic positions of the donors are uniformly 
generated in a circle with radius 7.6 km, where the uniform distribution is in agree-
ment with the characteristics of Milan and the experience of AVIS Milan. The area 
is divided into 9 zones (cells): the city center, with a radius of 2.5 km and 8 subur-
ban sectors of 45° each. We assume that each cell is visited twice a day by a tour, 
once in the morning and once in the afternoon. Each tour can serve 3 donors and, 
therefore, we can serve up to 54 donors per day. The geodesic position of each donor 
is used to place the donor in the corresponding cell. For the 9 cells we consider, the 
set R is made by 9 × 2 = 18 tours for each day and set I contains 18 × 3 = 54 slots 
per day. We set a penalty wj = 1 for each slot j ∈ J.

The preferences of the donors for the slots (sets Ij ) are randomly generated by 
adding to Ij any slot i ∈ I belonging to a tour that visits the cell of donor j with an 
independent probability � . There are ∣ B ∣= 8 blood types, whose distribution among 
the donors is illustrated in Table 1. For each b ∈ B , we let LBb and UBb be 15% and 
150%, respectively, of the values reported in Table 1. For each scenario s ∈ S , we 
set a uniform probability ps = 1∕ ∣ S ∣ to occur and we construct the set Js of donors 
in s by randomly picking each donor in J with probability 7�∕ ∣ J ∣.

Each group of instances is represented by the triple {∣ S ∣, �, �} and contains 
10 instances with the same value of the parameters. Parameter ∣ S ∣ represents the 
number of considered scenarios: it takes values in {200, 400, 600, 800, 1000} and 
gives an indication of the size of the instances. Parameter � is the percentage of 



 T. Bacci et al.

1 3

the tours that can be activated: it takes values in {50%, 70%, 90%} and corresponds 
to the available resources. Parameter � is the probability that donor j likes slot i: it 
takes values in {25%, 50%, 75%} and represents a measure of the difficulty of satis-
fying the donors preferences. Hence, the considered test bed contains a total number 
of 450 instances. Observe that, as already mentioned, if we activate all available 
tours, we can serve up to 54 donors per day. On the other hand, the average number 
of daily donors of each scenario is � ≈ 32 . Therefore, any donor has, on average, 
almost two alternative dedicated slots for donating blood, when all tours are acti-
vated, and it is possible to serve a large portion of the donors, even with difficult 
donors preferences (small values of parameter �).

5.2  Comparing CF and BF

In Table 2 we present the computational results obtained by solving CF and BF on 
the instances with 200 scenarios described in Sect. 5.1. We limit to 200 scenarios 
because CF suffers when ∣ S ∣ increases and cannot solve any instance with more 
than 200 scenarios and with a percentage of available tours less than 90%. Each 
row of the table is associated with the group of 10 instances corresponding to the 

Table 1  Distribution among the 
blood types of the donors in the 
dataset

Blood type Percentage

AB + 3.6
AB – 0.5
A + 34.1
A – 5.8
B + 9.6
B – 1.6
0 + 38.0
0 – 6.8

Table 2  Comparison between 
model CF and model BF on 
instances with 200 scenarios

∣ S ∣ � (%)  �    (%) CF BF

Solved Time Solved Time

200 50 25 0 5 671.7
50 0 10 344.7
75 0 10 525.9

70 25 2 2753.6 5 234.5
50 0 9 460.4
75 0 9 451.7

90 25 10 149.0 10 75.3
50 10 190.3 10 141.4
75 10 375.9 10 210.8
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indicated parameter values ∣ S ∣ , � , and � . For each model, column solved denotes the 
number of instances of the group that are solved to optimality within the time limit, 
while column time reports the average computing time (in seconds) on the solved 
instances. The results show that model BF outperforms CF, both in terms of com-
puting times and of solved instances. Also note that � = 90% means that the avail-
able slots are about 1.5 times the average number of donors in the scenarios. It fol-
lows that most z choices do not exceed the available resources and are sufficient to 
serve almost all the donors, reducing the importance and the effect of such variables 
in the model. As we discussed in Theorem 1, the z variables are the only true inte-
ger variables of the model, while the y ones can be treated as continuous variables. 
Therefore, it is to be expected that instances with � = 90% are much easier than the 
others for both approaches. In fact, both CF and BF can solve all the instances with 
� = 90% , independently of the values of the other parameters.

We also observe that, when neither CF nor BF can solve an instance to optimal-
ity, the best solution produced by CF at the time limit serves, on average, about 4% 
less donors than the corresponding BF solution in the instances with ∣ S ∣= 200 . The 
difference increases to about 17% on the instances with ∣ S ∣= 400.

5.3  Statistics on solving BF

In Tables 3, 4, we focus on the model BF and present in detail the computational 
results for it, using instances up to 1000 scenarios. The former refers to the instances 
solved to optimality, the latter to the ones not solved to optimality within the time 
limit.

In Table 3, for each group of instances, the number of solved instances is reported 
in column solved. For such instances, columns time, nodes, F-cuts and O-cuts 
give, respectively, the average computing time (in seconds), the average number 
of explored nodes, the average number of generated feasibility cuts (5), the aver-
age number of generated optimality cuts (6). Observe that BF can solve most of the 
instances even when the number of scenarios ∣ S ∣ goes up to 1000. Because of the 
cut generation procedure we adopted, the number of feasibility cuts is very limited 
with respect to the number of optimality cuts.

In Table 4, we analyze the performances of BF over the instances that it could not 
solve to optimality within the time limit of 3600 s. Here, column unsolved reports 
the number of the unsolved instances of each group. Column gap (%) is the aver-
age percentage optimality gap when the procedure stops and column nodes is the 
average number of branch-and-bound nodes. These values show that, even when the 
solution provided within the time limit is not proved to be optimal, it is, neverthe-
less, definitively a good solution. In fact, with only one exception on an instance 
with 1000 scenarios, the optimality gap values are always below 0.5%.

Table 5 measures the effect of inequalities (8) in solving BF. It reports a com-
parison on the instances with 200 scenarios between two settings of the algo-
rithm: inequalities (8) added in the initial formulation (column BF with (8)); ine-
qualities (8) separated as feasibility cuts (column BF without (8)). We report the 
number of instances that are solved to optimality within the 1 h time limit in both 
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Table 3  Results on the solved 
instances for BF

∣ S ∣ �  (%) � (%) BF

Solved Time Nodes F–cut O–cut

200 50 25 5 671.7 98388.6 0.8 2486.4
50 10 344.7 365.3 1.7 2728.2
75 10 525.9 121513.9 2.2 2961.8

70 25 5 234.5 32437.0 0.4 2080.8
50 9 460.4 35047.7 1.4 1877.8
75 9 451.7 777.1 1.8 2057.4

90 25 10 75.3 26.8 0.6 913.0
50 10 141.4 128.7 1.3 761.0
75 10 210.8 52.3 1.8 1112.9

400 50 25 7 942.9 14823.1 0.6 5405.6
50 9 757.5 412.4 1.6 6459.4
75 10 1172.2 581.6 1.8 6882.7

70 25 7 697.1 29819.3 0.4 4287.4
50 8 777.9 1377.8 1.1 3855.4
75 10 1038.6 583.6 1.4 4043.4

90 25 10 200.0 174.2 0.5 1869.4
50 10 365.9 52.2 1.2 2031.9
75 10 531.1 84.7 1.4 2634.9

600 50 25 6 1472.5 2404.3 0.5 8226.7
50 9 1591.6 584.3 1.8 10997.2
75 10 2060.9 591.4 2.0 10571.1

70 25 4 847.2 539.3 0.0 6983.8
50 6 1284.4 525.5 1.0 7468.7
75 10 1463.1 596.6 1.5 6508.6

90 25 10 275.0 1.0 0.3 3008.5
50 10 647.2 124.1 1.0 3660.7
75 10 805.6 52.6 1.5 3950.3

800 50 25 5 1751.4 1397.6 0.0 11186.2
50 8 1621.8 860.5 1.3 12018.9
75 8 2060.9 989.0 1.4 11630.6

70 25 7 1394.0 1956.7 0.6 9546.9
50 6 2190.2 3803.0 0.8 10058.2
75 10 2196.1 955.9 1.4 9443.2

90 25 10 442.3 158.5 0.4 4363.7
50 10 752.3 52.6 0.8 5071.6
75 10 1086.5 155.2 1.4 6287.6
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Table 3  (continued)
∣ S ∣ �  (%) � (%) BF

Solved Time Nodes F–cut O–cut

1000 50 25 4 2423.4 1595.3 0.0 17212.8

50 8 2137.6 591.3 0.9 17335.1

75 7 2775.8 1216.3 2.0 15654.6

70 25 8 1795.7 4625.4 0.4 12319.4

50 7 2356.7 834.0 0.9 12259.0

75 8 2500.3 560.9 1.1 11161.5

90 25 10 482.3 56.7 0.2 5687.9

50 10 1049.3 565.1 0.6 6212.5

75 10 1383.3 256.8 1.3 6245.1

Table 4  Results on the unsolved instances for BF

∣ S ∣ � (%) �  (%) BF

Unsolved Nodes Gap (%) F–cut O–cut

200 50 25 5 491162.2 0.04 0.4 2838.6
70 25 5 1585928.6 0.06 0.6 2187.0

50 1 1358491.0 0.08 2.0 1783.0
75 1 1285237.0 0.06 3.0 1889.0

400 50 25 3 63924.7 0.04 0.3 6184.0
50 1 128545.0 0.01 1.0 5456.0

70 25 3 361729.3 0.07 0.7 4208.7
50 2 312602.0 0.14 1.5 3426.5

600 50 25 4 19890.3 0.03 0.5 13664.3
50 1 165788.0 0.45 1.0 7393.0

70 25 6 206902.5 0.12 0.3 6329.8
50 4 133572.0 0.11 1.3 5682.3

800 50 25 5 6193.6 0.06 1.2 14790.8
50 2 52366.5 0.34 1.0 28490.0
75 2 258.5 0.10 4.5 26329.0

70 25 3 131134.3 0.06 0.0 9674.0
50 4 55173.0 0.09 0.8 10150.0

1000 50 25 6 6890.5 0.03 0.8 18883.8
50 2 11041.0 0.01 3.0 22743.0
75 3 180.3 18.51 1.7 28111.0

70 25 2 69308.5 0.07 0.5 11795.5
50 3 38541.3 0.14 0.3 11717.3
75 2 37043.0 0.23 2.0 10389.0
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settings. If the second setting is used for BF, the number of instances solved to 
optimality dramatically decreases, even in the easy case where � = 90%.

In Figs.  3,  4 and  5 we show how the average number of solved instances 
changes when, respectively, the number of considered scenarios, the value of 
parameter � and the value of parameter � change. The difficulty of the problem 
grows with the number of scenarios and decreases with the increasing of param-
eters � and � . Indeed, the greater is the value of these two parameters, the easier 
is to assign donors to slots.
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Fig. 3  Percentage of solved instances depending on the number ∣ S ∣ of scenarios for BF
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Fig. 4  Percentage of solved instances depending on parameter � for BF
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5.4  Served donors

The main objective of the blood donation planning described in the present paper 
is to serve as many donors as possible, provided that some constraints are satisfied. 
In Tables 6 and 7 we report the average number of served donors (column percent-
age of served donors), respectively, for the solved instances and for the unsolved 
ones (served donors in the best solution found). The results show that the number 
of served donors is always very large, also for the instances not solved to optimality. 
The only instance where the served donors are less than 81% is the unique unsolved 
instance with 1000 scenarios with gap around 18% that was discussed before.

In Figs. 6, 7 and 8 we summarize how the percentage of served donors change, 
depending on the number of scenarios, the donors preferences ( � ) and the percentage 
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Fig. 5  Percentage of solved instances depending on parameter � for BF

Table 5  The role of constraints 
(8) for BF

∣ S ∣ �  (%) � (%) BF with (8) BF without (8)
Solved Solved

200 50 25 5 0
50 10 3
75 10 1

70 25 5 0
50 9 0
75 9 1

90 25 10 10
50 10 4
75 10 10
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Table 6  Served donors on the 
solved instances for BF (optimal 
solution)

∣ S ∣ � (%) � (%) BF
Percentage of 
served donors

200 50 25 82.0
50 81.9
75 81.9

70 25 97.8
50 97.8
75 97.8

90 25 99.8
50 99.8
75 99.8

400 50 25 81.8
50 81.8
75 81.8

70 25 97.8
50 97.7
75 97.7

90 25 99.8
50 99.8
75 99.8

600 50 25 81.7
50 81.8
75 81.8

70 25 97.7
50 97.7
75 97.7

90 25 99.8
50 99.8
75 99.8

800 50 25 81.7
50 81.7
75 81.8

70 25 97.7
50 97.7
75 97.7

90 25 99.8
50 99.8
75 99.8
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Table 6  (continued)
∣ S ∣ � (%) � (%) BF

Percentage of 
served donors

1000 50 25 81.8

50 81.7

75 81.8

70 25 97.7

50 97.7

75 97.7

90 25 99.8

50 99.8

75 99.8

Table 7  Served donors on the 
unsolved instances for BF (best 
available solution)

∣ S ∣ � (%) � (%) BF
Percentage of 
served donors

200 50 25 81.9
70 25 97.7

50 97.6
75 97.7

400 50 25 81.9
50 81.9

70 25 97.6
50 97.6

600 50 25 81.9
50 81.7

70 25 97.7
50 97.7

800 50 25 81.8
50 81.8
75 81.7

70 25 97.7
50 97.7

1000 50 25 81.7
50 81.8
75 74.9

70 25 97.7
50 97.7
75 97.7
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of tours that can be activated, given the available resources ( � ). Although the prefer-
ences of the donors cannot be controlled, it is easy to see that they are not crucial 
and that it is possible to serve a large number of donors even when each of them 
only likes 25% of the proposed slots. On the other hand, as expected, the value of 
parameter � largely affects the number of served donors. However, even with a small 
percentage of available tours ( � = 50% ) it is possible to serve more than 80% of 
the considered donors. Observe that, when � = 50% , the number of available slots 
is about 84% of the average number of donors in each scenario. An increase in the 
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Fig. 6  Percentage of served donors depending on the number ∣ S ∣ of scenarios for BF
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percentage of available tours from 50 to 70% allows to serve almost all the donors 
(about 98%). Observe that, further increasing the resources dedicated to the service, 
that is, increasing � from 70 to 90% allows to increase the number of served donors 
by a maximum of 2%. Also note that, in principle, it may not be possible to serve all 
the donors, due to the upper bounds on the blood production, independently of the 
available resources.

6  Conclusions

We considered the problem of planning home blood donations, which has received 
only a very limited attention in the literature so far. The uncertain availability of the 
donors is modeled in a stochastic way, by scenarios. The aim was to serve as many 
donors as possible, while respecting a bound on the available resources, that lim-
its the number of tours that can be activated, and ensuring that prescribed amounts 
of each blood type are produced in each scenario. For this problem, we proposed 
an integer programming formulation that is solved using a Benders decomposition 
approach, via a network flow argument. The results show that the proposed frame-
work can produce good solutions, where a large portion of the donors are served. 
They also show how to control the resources that are needed to produce the desired 
level of service. In particular, activating about 50% of the tours already ensures to 
serve more than 80% of the donors.
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