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Abstract

Disruptions to personnel rosters caused by absenteeism often necessitate last-minute
adjustments to the employees’ working hours. A common strategy to mitigate the impact of
such changes is to assign employees to reserve shifts: special on-call duties during which an
employee can be called in to cover for an absent employee. To maximize roster robustness,
we assume a predict-then-optimize approach that uses absence predictions from a machine
learning model to schedule an adequate number of reserve shifts. In this paper we propose
a methodology to evaluate the robustness of rosters generated by the predict-then-optimize
approach, assuming the machine learning model will make predictions at a predetermined
prediction performance level. Instead of training and testing machine learning models, our
methodology simulates the predictions based on a characterization of model performance.
We show how this methodology can be applied to identify the minimum performance level
needed for the model to outperform simple non-data-driven robust rostering policies. In
a computational study on a nurse rostering problem, we demonstrate how the predict-
then-optimize approach outperforms non-data-driven policies under reasonable performance
requirements, particularly when employees possess interchangeable skills.

Keywords personnel rostering; robustness; machine learning; simulation

1 Introduction

Employee absenteeism is defined as the unplanned absence of an employee from work when
they are scheduled to be present. Statistics from 2022 report that the average short-term1

absenteeism rate in Belgium was 3.43% [16]. The same study reports that 4.67% of all working
days in January of that same year were lost to short-term absences. Employee absenteeism can
be attributed to various interrelated factors such as health problems, challenges with work-life
balance and workplace harassment [17]. Regardless of the root cause, absenteeism has important
direct and indirect effects. For example, reduced staffing levels are known to impact service
quality and productivity [9]. Studies on the effects of absenteeism have shown that the negative

1Defined in the report as an absence lasting less than one month.
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impact is especially high when absent employees have specialized task-specific knowledge, when
the work is highly interconnected (such as on assembly lines), or when companies are unable to
substitute absent employees due to organizational limitations [8].

To repair disruptions in the employees’ rosters caused by absenteeism, various rerostering
strategies have been proposed [20]. Although computational experiments have demonstrated
the positive organizational impact of these methods, repairing disruptions inevitably introduces
personal discomfort [13]. Last-minute changes to an employee’s roster may severely affect their
personal life and negatively impact their job engagement and productivity [18]. Instead of re-
acting to disruptions, this paper focuses on proactively generating robust personnel rosters that
are immune to a certain level of employee absenteeism, thereby reducing the negative effect of
last-minute changes needed to repair disruptions [21]. An intuitive way of generating robust
rosters is to forecast employee absences and include this information in the roster construction
process. This predict-then-optimize approach begins by conceptualizing, training and testing
a machine learning (ML) model to predict employee absenteeism. These predictions are sub-
sequently included as parameters in an optimization model to generate personnel rosters. The
quality of the solutions generated by the optimization model therefore depends on the predic-
tive performance of the ML model [6]. Intuitively, it is always better to have a more accurate
prediction rather than a less accurate one. Yet, there is trade-off between model performance
and model training costs [19] and, in some cases, performance itself has an upper bound. The
trade-off is context-specific, and is often impractical to determine beforehand. However, given
the immense effort required to collect data and training ML models, it is worthwhile to estimate
the potential benefit of such predictions in advance.

We investigate a methodology to determine the robustness of rosters generated using the
aforementioned predict-then-optimize approach, assuming the employed ML model can make
predictions at a predetermined performance level. Rather than actually training and testing
ML models, our proposed methodology involves simulating the predictions an ML model would
make at a given performance level. By varying the prediction performance level, simulating the
ML model’s predictions and evaluating robustness of the resulting rosters, we can determine the
prediction performance level needed to reach a given quality threshold. As our methodology
does not involve training and testing ML models, we do not require access to data to determine
these minimum performance requirements.

Farrington et al. [7] introduced an interesting methodology for managing perishable inven-
tory. They simulated outcomes of a predictive ML model at various accuracy levels to determine
when an ML model would lead to more efficient inventory management compared to a basic
inventory allocation policy. We adapt their approach of simulating predictions to the context
of robust personnel rostering, highlighting the importance of this methodology in the predict-
then-optimize paradigm.

The remainder of this paper is organized as follows. Section 2 reviews the literature related
to robustness in personnel rostering. Section 3 describes the considered rostering problem and
introduces how robustness can be included in rosters. Section 4 introduces the methodology to
simulate predictions and applies it to robust rostering. Sections 5 and 6 provide information
concerning the computational study and a discussion of the results, respectively. Finally, Section
7 concludes the paper and identifies promising directions for future research.

2 Related work on robust rostering

There are two general strategies in the literature for generating rosters that are robust with re-
spect to employee absenteeism. Horizontal strategies introduce robustness by allowing overtime
or by enabling shifts to partially overlap in order to ensure a degree of redundancy [11]. On the
other hand, vertical strategies enforce robustness through resource buffers that store additional
employees. Generally, two types of buffer can be distinguished. Capacity buffers are created
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by assigning more employees than necessary to cover a nominal demand [12]. The second type
of buffer is created by assigning employees to reserve shifts [10]. These are special non-working
shifts during which employees are on-call and can be relied upon to work a regular shift if the
need arises. Clearly, this type of buffer is much more flexible than a capacity buffer, as reserve
shifts can be converted into any other shift [15]. Moreover, they are usually less expensive for
organizations, as the compensation employees receive for being on-call is typically far less than
working a regular shift or overtime. However, while it may be less costly for the organization,
the unpredictability of being called in to work has been shown to have negative consequences,
regardless of whether or not employees are actually called in [1].

Various optimization models exist to optimize the allocation of reserve shifts to employees.
Ingels and Maenhout [10] conduct a computational study to investigate how reserve shifts affect
roster robustness when both demand and capacity are uncertain. They analyze five strategies for
scheduling reserve shifts using a combination of specific demand requirements and time-related
constraints. They evaluate the robustness of the resulting rosters by means of a discrete-event
simulation. Their experiments identify a trade-off between the wage costs associated with
scheduling reserve shifts and staff shortages.

Dillon and Kontogiorgis [4] investigate the use of reserve shifts in airline crew scheduling.
Reserve pilots and flight attendants are on standby to substitute for crews who cannot operate
their assigned flights due to either illness or the delay/cancellation of connecting flights. An
automated decision support system is presented to outsource the work to external personnel
whose wages are many times higher than those of regular employees.

Potthoff et al. [15] developed a column generation algorithm to reassign Dutch railway
personnel to cope with large disruptions. Their algorithm reassigns duties and defines any
additional task needed (i.e. deadheading) to minimize the cost to restore the functioning of the
network.

Becker et al. [2] propose an algorithm to generate cyclic rosters with reserve shifts. To
ensure fairness, the reserve shift assignments rotate after each cycle of the regular shifts. The
algorithm was applied to a German emergency medical services provider and was shown to be
able to take into account employee preferences related to weekend work, recovery times, and
fairness.

El-Rifai et al. [5] investigate how scheduling reserve shifts can address issues related to over-
crowding in emergency departments. They propose a scheduling policy that balances demand
coverage and labor cost. The problem is modeled as a two-stage stochastic programming prob-
lem where the first stage rosters employees based on estimations of demand, while the second
stage involves the day-to-day decisions. In a series of computational experiments, they analyze
the advantages and disadvantages of reserve shifts for emergency departments under different
demand scenarios.

Wickert et al. [21] introduce two metrics of roster robustness based on the characteristics of
the roster itself. By including these metrics in an optimization model, they generated rosters of
varying degrees of robustness. A computational study demonstrates how reserve shift buffers
are generally preferred over capacity buffers because they are less expensive and more flexible
when used to repair disruptions.

3 Personnel rostering problem description

Several weeks before a scheduling period begins, the rostering problem is solved so that employ-
ees are aware of their working hours well in advance. A new roster is generated by assigning
shifts to employees. The rostering problem we consider is based on the general problem defini-
tion proposed by Ceschia et al. [3]. Let N denote the set of employees, K the set of employee
skills, S the set of shifts and D the set of days in the scheduling period. For each day d ∈ D,
shift s ∈ S and skill k ∈ K, the minimum number of employees that is required to be present
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mdsk is given. This demand is treated as a soft constraint: if it cannot be met, we assume it
is possible to call in external personnel whose wages are many times higher than the wages of
regular employees.

An employee can be assigned at most one shift per day. Each employee n ∈ N is qualified
for a subset of skills Kn ⊆ K. A shift that requires a specific skill can only be assigned to an
employee who is qualified for that skill. To ensure sufficient resting time between two working
days, the set S̃ contains pairs of shifts (s1, s2) that cannot be assigned to the same employee
on two consecutive days. The remaining constraints are related to the employees’ contracts
and personal preferences. Each employee n ∈ N has to work between β3

n and β5
n days in the

scheduling period. Overtime incurred by assigning more shifts than the maximum number β5
n

is allowed. However, undertime (assigning fewer than β3
n shifts) is forbidden. The number of

consecutive working days must not exceed β1
n, while the number of consecutive nights shifts is

limited to β2
n. Finally, a set U of tuples (n, d, s) specifies that employee n has requested not to

work shift s on day d. The assignments made in the previous scheduling period are taken into
account to prevent violations of constraints concerning consecutive assignments at the beginning
of the current period.

The objective function is a weighted sum of the employees’ wage costs (including overtime)
and the wages of external employees needed to cover understaffing. The wage cost of employee
n for working a single day is denoted by ω1

n. For each day worked in excess of the maximum
number β5

n, an overtime cost ω5
n is incurred. The daily wage cost of an external employee is

denoted by ω6.
To ensure an unambiguous understanding of the problem, Appendix A provides a formal

definition of it as a mixed integer programming (MIP) formulation.

3.1 Robust rostering

When an employee becomes absent during the scheduling period, a rerostering problem must be
solved. In contrast to the rostering problem, which involves generating a new roster from scratch,
the rerostering problem modifies an existing roster to repair disruptions caused by absences. To
reduce the impact of such disruptions, we generate robust rosters by using reserve shift buffers.
Appendix B provides details concerning the specific rerostering problem we consider in this
work and describes how we employ the reserve shift buffers when rerostering.

Let c∗d be the number of reserve shifts that must be included in the roster on day d. The
required number of reserve shifts per day is treated as a soft constraint, whose violation is
penalized in the objective function with a penalty ωr. The wage cost associated with assigning
a reserve shift to employee n is denoted by ω7

n. Each employee n ∈ N can be assigned to at
most β6

n reserve shifts during the scheduling period. The employees’ contractual constraints are
defined in such a way that generated rosters remain feasible for any possible conversion of the
reserve shifts. Regardless of whether the reserve shift is converted into a working shift during
rerostering or whether it ultimately remains unused, no contractual constraint will be violated.

Formulated as a MIP problem, the objective function of the rostering MIP formulation (4)-
(18) is replaced with Equation (1). Let s′ ∈ S be the index of the reserve shift in S. The binary
decision variable xndsk equals one if employee n is assigned to shift s on day d using skill k,
and zero otherwise. The non-negative, continuous variable vrd counts the shortfall in assigned
reserve shifts on day d.

min (4) +
∑
n∈N

∑
n∈D

∑
k∈K

xnds′kω
7
n +

∑
d∈D

vrdω
r (1)

Additionally, two new constraints are included in the MIP formulation. Constraints (2) limit
the maximum number of assignments to the reserve shift for each employee, while Constraints
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(3) ensure that at least c∗d reserve shifts are included in the roster on day d.∑
d∈D

∑
k∈K

xnds′k ≤ β6
n ∀n ∈ N (2)∑

n∈N

∑
k∈K

xnds′k + vrd ≥ c∗d ∀d ∈ D (3)

The number of reserve shifts required on each day can be determined in various ways. For
example, by consulting a human expert or by analyzing the outcome of a series of simulations
[21]. A third approach involves using an ML model to make predictions, which then feature as
parameters in the optimization model. This predict-then-optimize approach to robust rostering
begins by conceptualizing, training and testing an ML model to predict employee absences.
Based on these predictions, the number of reserve shifts on each day is determined. The resulting
c∗d parameter values are then included the rostering model.

A critical characteristic of the predict-then-optimize approach is that the generated roster’s
robustness may depend heavily on the ML model’s prediction performance. The highest reach-
able performance level of an ML model may be limited by the availability of data or the costs
related to data collection and model training. However, this performance level may be insuffi-
cient to benefit the system. Conversely, the ML model may have been needlessly over-trained
to attain extremely high performance levels, resulting in excessive model training costs.

In the following section we propose a methodology to compute the robustness of a roster
generated by a predict-then-optimize approach, assuming the ML model can make predictions
at a predetermined performance level. We then show how we can employ this methodology to
determine the minimum performance requirements needed to obtain sufficiently robust rosters.
The key advantage of our methodology is that it does not involve training ML models or require
extensive data on the phenomenon. Instead, we propose a way of simulating the predictions a
model would make at a given prediction performance level. We call this methodology simulated
ML in order to distinguish it from traditional ML.

4 Simulated ML for robust rostering

The ML model in the predict-then-optimize approach described in Section 3.1 is a binary clas-
sifier: its output is either equal to 1 or to 0, predicting whether or not an absence will occur
for each day and employee. A confusion matrix [14] enables a comparison of observed and
predicted values for binary classification problems, as shown in Figure 1. We use the following
two metrics derived from the confusion matrix to characterize prediction performance of the
binary classifier:

• Sensitivity (α), or True Positive Rate (TPR): the probability of a positive classification
in positive observations. Calculated as TP/(TP + FN).

• Specificity (β), or True Negative Rate (TNR): the probability of a negative classification
in negative observations. Calculated as TN/(TN + FP ). 1 − β is called False Positive
Rate (FPR).

In the context of predicting absences, we are interested in the prediction of a binary event
with strong class imbalance, meaning that the frequency of the event of interest is relatively
low. A priori, we do not know whether a single prediction made by the ML model is right or
wrong. We only know the frequency ρ with which the uncertain rare event occurs. Hence, we
expect the frequency of predictions of the positive class to be around ρ, regardless of how poor
the performance of the ML model is. Therefore, we scale the FPR by the event frequency ρ,
referred to as the rescaled FPR (rFPR).

5



Observed

Positive Negative

Predicted
Positive True positive (TP) False positive (FP)

Negative False negative (FN) True negative (TN)

Figure 1: Confusion matrix standard notation.

By considering different values for α and β, it is possible to characterize binary classifiers
with different performances. Figure 2 provides a schematic overview of how a simulated binary
classifier determines the integer value of c∗d in Constraints (3) for a given α and β. For each
employee e on each day d, we simulate their absence with probability ρ. An absence will be
correctly predicted by the classifier with probability α, resulting in an increase of the number
of required reserve shifts c∗d by one. With probability 1− α, the model will incorrectly predict
an absence, resulting in a False Negative. In this case, no action is taken and the value of c∗d
is unaffected. Similarly, with probability β, the model will correctly predict the negative class,
resulting in a True Negative and no additional reserve shifts. With probability 1−β, the model
incorrectly predicts the negative class, resulting in a so-called potential False Positive. Given
that we know an absence will occur with probability ρ, we use this value to determine whether
a potential False Positive becomes an actual False Positive or not. This way, the overall number
of predicted absences will be reasonable even when β assumes very small values.

With probability α With probability 1-α

Absence

With probability β With probability 1-β

No absence

True Positive False Negative True Negative

False Positive

With probability ρ

With probability 1-ρ Potential False
Positive

Do not update cd

Increase cd by one

With probability ρ With probability 1-ρFor each employee
e and day d

*

*

Figure 2: Schematic overview of how a simulated binary classifier determines the number of
reserve shifts c∗d for each day d ∈ D for a given α and β. Steps located within the red dashed
rectangle form the fundamental components of the simulated ML methodology.

After completing these steps, a robust roster can be generated by solving the MIP problem
provided in Appendix B using the obtained c∗d values. Note that the identities of the employees
that are absent are not known by the optimization model. The only parameter that is passed to
the model is the number c∗d of predicted absences for a given day d. To compute the rerostering
cost for the roster obtained for given α and β values, we include the real absences in the
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generated roster and solve the resulting rerostering problem. By comparing this value against
a predefined threshold cost, we can adjust α and β and repeat the process until we obtain a
satisfactory rerostering cost.

5 Computational study

This section introduces the experimental setup used in the computation study on the conditions
in which ML predictions can improve robust rostering for a problem involving rostering nurses
in a hospital ward. Section 5.1 describes the data used in the computational study. Section 5.2
introduces the evaluation metrics that were used.

5.1 Data

We conduct our computational experiments using the problem instances introduced by Wickert
et al. [21]. These two instances were derived from the second International Nurse Rostering
Competition [3], thus including a set of constraints and problem characteristics that are often
encountered in practice. The problem instances consist of 35 nurses and a planning horizon of
four weeks. There are four shift types (early, late, day and night) in addition to the reserve
shift. Table 1 provides the values of the different weights of the robust rostering and rerostering
objective functions used in the experiments. Unexpected last-minute calls to nurses with a day
off or changing their assigned working shift typically have a strong negative impact on their
personal lives. These weights therefore reflect the preference of converting a reserve shift into a
working shift over converting a day off into a working shift or changing the shift of an already
scheduled nurse.

The first problem instance considers employees with uniform skills. This instance considers
only a single skill and all employees are qualified for this skill. By contrast, the second instance
has different employee types representing a hierarchical skill structure: head nurse, nurse, trainee
and caretaker. These types are organized in such a way that substitutions based on their skills
can occur: head nurses can substitute for nurses and caretakers, while nurses can substitute
for caretakers. Caretakers and trainees cannot substitute for any other employee type. When
there are no skills, the degree of substitutability between employees is maximized: any employee
can substitute for any other. However, when considering hierarchical skills, substitutability is
decreased and the rerostering process typically has less decision flexibility.

Robust rostering costs and weights

ω1
n {100, 70, 50, 30} 2

ω5
n 1.5 · ω1

n

ω6 5 ·maxω1
n

ω7
n 0.1 · ω1

n

ωr 1e+3

Rerostering costs and weights

ω2
n ω1

n

ω3
n 0.1 · ω1

n

ω4
n 1.5 · ω1

n

Table 1: Robust rostering and rerostering costs used in the computational study.

To evaluate the binary classifier at various performance levels, we consider the following
values for TPR and rFPR: 0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0. A prediction model
with TPR = 0 and rFPR = 0 is equivalent to never enforcing any reserve shift, because no True

2For head nurses, nurses, caretakers and trainees, respectively.
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or False Positives are ever predicted. Conversely, if TPR = 1 and rFPR = 0 then the model is
always able to correctly classify each absence or non-absence.

5.2 Evaluation

Two cost metrics are employed to evaluate the rosters generated in the computational study.
The rostering cost refers to the value of the objective function of the robust rostering model
detailed in Equation (1). Meanwhile, the rerostering cost refers to the objective function value
of the rerostering model detailed in Equation (19). Note that this consists of the rostering costs
plus the costs incurred by any changes made to that roster. To compute the rerostering cost,
the problem described in Appendix B was solved. Employee absences were generated using a
Bernoulli distribution with p = ρ for each nurse. Similar to Wickert et al. [21], we use an average
absenteeism rate of ρ = 2.64%. In total, 100 absenteeism scenarios for each problem instance
were generated. The reported rerostering costs are the averages over these 100 scenarios.

The threshold value used to determine whether or not the rerostering cost obtained is sat-
isfactory is computed using a non-data-driven robust rostering policy that is defined based on
the results of Wickert et al. [21]. This baseline policy does not make use of predictions on the
values of uncertain parameters, and instead assigns one, two, three or four reserve shifts on each
day of the scheduling period.

We ran all experiments on an AMD Ryzen 9 5950X 16-core processor at 3.40 GHz with
64 GB of RAM. The integer programming problems were solved using Gurobi 10.0.3 with the
default optimality gap 1e-4 and a maximum computation time of 100 seconds.

6 Results

All rostering and rerostering problems with uniform skills were solved to optimality. The average
computation time required for solving one rostering problem instance was 0.20 seconds, while
the average computation time for solving one rerostering problem was 0.27 seconds. For the
problem instances with hierarchical skills, all but one were solved to optimality within the time
limit. The one non-optimal solution had an optimality gap of 1.35e-3%. Excluding this single
non-optimal instance, the average computation time for solving the rostering problem was 0.5
seconds, while the average computation time for rerostering was 2.35 seconds.

6.1 Uniform skills

Figure 3a plots the obtained rostering costs for different values of the TPR and rFPR. The
lowest rostering costs are observed when the TPR and rFPR are both small. Under these
conditions, the ML model predicts few absences and thus the solution includes few reserve
shifts, resulting in an overall low rostering cost. This trend is also evident in Figure 3b, which
shows the average number of scheduled reserve shifts on each day. When the TPR or rFPR
increases, the rostering cost also increases as more (true or false) absences are predicted and
therefore more reserve shifts are included in the roster. The highest rostering costs are obtained
when both the TPR and rFPR are large.

Figure 4 provides insights into how the additional costs incurred during rerostering are
affected by the TPR and rFPR. Figure 4a shows the rerostering cost for different values of TPR
and rFPR, while Figures 4b, 4c and 4d show how many reserve shifts, working shifts and days
off were changed during rerostering, respectively. The highest rerostering costs are obtained
when both the TPR and rFPR are low. Under these conditions, many False Negatives and
True Negatives are predicted, resulting in few reserve shifts in the roster. Consequently, in
order to repair the roster, the rerostering method has to resort to changing working shifts or
days off, as confirmed by the results in Figures 4c and 4d. As the TPR increases, more True
Positives are predicted and the rerostering cost decreases. However, the rerostering cost also
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Figure 3: Rostering costs and number of scheduled reserve shifts at various performance levels
of the prediction model for the problem instance with uniform skills.

decreases for increasing values of rFPR. Even for low TPR values, low rerostering costs are
observed when the rFPR is high. This demonstrates how the rerostering model can make good
use of the reserve shifts to cover for absences, even if they were not initially assigned based on
correct predictions.

Figure 4b shows how the number of changes to reserve shifts is primarily driven by the
rFPR: as the rFPR increases, fewer reserve shifts are converted. The TPR has no identifiable
impact on the number of reserve shifts converted during rerostering. However, Figures 4c and
4d do clearly demonstrate how the number of changes to working shifts and days off are affected
by both the rFPR and TPR. The more reserve shifts that are included in a roster, the fewer
working shifts and days off must be changed. Even without properly positioning the reserve
shifts on the day where absences will ultimately occur, the rerostering model can still benefit
from them to avoid making other changes.

The observed decrease in rerostering cost for larger values of rFPR, in particular when the
value of the TPR is low (α ≤ 0.3), can be explained as follows. Given the cost structure in
these experiments, scheduling a reserve shift is relatively inexpensive. However, given that
there are no skills that limit the substitutions that can take place, reserve shifts are capable of
covering any nurse absence for a certain shift. This implies that, in some cases, a theoretically
improperly-placed reserve shift can be used to cover for absent nurses that were not correctly
identified by the ML model. For example, assume the classifier was unable to correctly predict
the absence of nurse n who was assigned to shift s of day d. At the same time, the ML model
had mistakenly predicted the absence of nurse n′. The reserve shift originally planned to cover
for nurse n can still be used to cover for nurse n′ at no additional cost.

Figure 5 compares the ML-informed robust rostering approach against the four aforemen-
tioned baseline reserve shift scheduling policies that involve scheduling 1, 2, 3 and 4 reserve
shifts per day. The reported values are the ratio of the rerostering cost obtained by the ML-
informed approach over the rerostering cost obtained by one of the baseline policies. In these
plots, a value equal to one represents conditions under which both the ML-informed approach
and the baseline policy result in equal rerostering costs. To better illustrate the performance
comparison between the different approaches, a red dashed line also indicates when the ratio is
equal to one. If the ratio is greater than one then the baseline approach generates less costly
solutions, and vice versa.

When comparing against the policy that assigns one nurse to a reserve shift per day (Figure
5a), we observe that even for relatively small TPR values, the ML-informed approach results
in lower rerostering costs. When two or three reserve shifts are assigned each day (Figures
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Figure 4: Rerostering costs and the number of changes made during rerostering at various
performance levels of the prediction model for the problem instance with uniform skills.
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5b and 5c), higher values of TPR are required for the ML model to outperform the baseline
policies. However, when four nurses are assigned on each day, the TPR requirement again
becomes slightly less strong. The reason for this is that the four-nurse baseline policy already
has a very high rostering cost to begin with, given that it schedules more reserve shifts than
required during rerostering. The assumed cost for reserve shifts is relatively low, but still not
negligible.
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(c) Three reserve shifts per day
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(d) Four reserve shifts per day

Figure 5: Rerostering cost of the ML-informed approach compared to the rerostering cost of
the baseline policies for the problem instance with uniform skills.

6.2 Hierarchical skills

While there is typically a lot of flexibility during rerostering when there are no skills to consider,
rerostering with hierarchical skills is generally much more constrained. The results discussed
in Section 6.1 demonstrate how even when absences are predicted to occur for the wrong nurse
or day, the scheduled reserve shifts can still be beneficial when rerostering. However, this
does not hold in a setting with hierarchical skills, as nurses are no longer identical and always
substitutable.

Figure 6 shows how the rostering cost and the number of scheduled reserve shifts changes for
different values of the TPR and rFPR. Similar to the scenario with uniform skills, more reserve
shifts are scheduled when more absences are predicted (when the TPR or rFPR increase). Due
to the way the objective function is defined, reserve shifts will be assigned to the least costly
nurses (caretaker of trainee) whenever possible. However, the least costly nurses are also those
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who are unable to cover for more qualified personnel. The sudden increase in rostering cost,
which can be seen in Figure 6a, occurs when the least expensive nurses have all been assigned
to reserve shifts and the rostering model is forced to assign more qualified (and thus costly)
nurses. The number of scheduled reserve shifts on each day is comparable to the setting with
uniform skills (Figure 6b), given that this value does not depend on the nurses’ skills but only
on the TPR and rFPR.
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Figure 6: Rostering costs and number of scheduled reserve shifts at various prediction model
performance levels for the problem instance with hierarchical skills.

Figure 7a shows how the rerostering cost increases as the TPR and rFPR decrease. Without
accurate predictions concerning which nurses will be absent, and thus which skills will need to
be covered, reserve shifts become less effective during rerostering. Nevertheless, it is possible
to observe the same phenomenon observed in the setting with uniform skills: in addition to the
TPR, a higher rFPR also contributes to an overall reduction of the rerostering cost. Due to the
cost structure considered, an excessive number of nurses in reserve shifts makes it less costly to
repair the roster without disrupting other nurses’ schedules.

Figures 7b, 7c and 7d show the number of changes to reserve shifts, working shifts and days
off for different values of the TPR and rFPR. In general, fewer reserve shifts can be converted
compared to the scenario with uniform skills. The roster contains a comparable number of
reserve shifts, but due to the additional restrictions imposed by skills, the rerostering method
makes less effective use of the available reserve shifts. This is also reflected in the higher
number of changes to working shifts and days off compared to the scenario with uniform skills.
In general, it is much more important to accurately predict precisely which nurses will become
absent when considering hierarchical skills compared to the scenario with uniform skills, where
it was almost always beneficial to schedule more reserve shifts.

Figure 8 compares the performance of the ML-informed robust rostering approach to the
four baseline policies. The reported value is the ratio of the rostering cost obtained by the ML-
informed approach over the rerostering cost obtained by the baseline policy. The red dashed
line denotes when the ratio is equal to one: the level at which the rerostering cost of both
methods is the same. Better results are obtained by the ML-informed approach compared to
the policy that assigns one nurse per day to a reserve shift for relatively low TPR and rFPR
levels. However, as the fixed number of reserve shifts per day increases, it becomes increasingly
difficult for the ML-informed approach to generate comparable solutions, to the point that the
ML-informed approach never manages to outperform the four-shift policy, even when it is able to
make perfect predictions concerning the absences. This result indicates that, when considering
hierarchical skills, the ML model should not only predict the number of reserve shifts per day,
but also to which employee types these reserve shifts must be assigned.
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Figure 7: Number of scheduled reserve shifts and the number of changes made when rerostering
for various prediction model performance levels for the problem instance with hierarchical skills.
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Figure 8: Rerostering cost of the ML-informed approach over the rerostering cost of the baseline
policies for the problem instance with hierarchical skills.
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7 Conclusions

Reserve shift buffers are commonly used to increase the robustness of a roster. While assigning
reserve shifts to employees is typically less costly than overtime or employing external employees,
the number of reserve shifts required on each day must still be carefully determined. Rather
than relying on a human expert or extensive computer simulations, we consider the use of a
predict-then-optimize approach to determine an appropriate number. By predicting employee
absences, we derive a suitable number of reserve shifts that must be scheduled on each day.

The core contribution of this paper is methodological in nature and centers around com-
puting the robustness of a roster generated by the predict-then-optimize approach, assuming
the ML model can make predictions at a predetermined performance level. The ML model is
characterized by its True Positive Rate and False Positive Rate. By carefully interpreting these
performance metrics, we were able to simulate the model’s predictions concerning employee ab-
senteeism. The key advantage of simulating predictions, instead of actually training and testing
ML models, is that we do not rely on the availability of data concerning the employees.

Building upon this new methodology, we proposed an approach to determine minimum
performance requirements necessary to obtain rosters that are more robust than those generated
by simple non-data-driven policies. We evaluate the predict-then-optimize approach on a well-
known nurse rostering problem data set. When all nurses have identical skills, and thus exhibit
a large degree of substitutability, the predict-then-optimize approach outperforms the non-data-
driven policies with reasonably low performance requirements. The results demonstrate how ML
models with a high False Positive Rate can compensate for a low True Positive Rate due to the
flexibility the reserve shifts induce during rerostering. For problem instances with a hierarchical
skill structure, the minimum performance requirements increase. Our results demonstrate how
predicting absences of individual employees results in more robust rosters compared to simply
predicting the total number of absent nurses. However, to do so may require additional data
for training and testing a suitable ML model.

The emphasis in our work is on the use of reserve shift buffers to increase roster robust-
ness. The computational experiments resulted in new insights concerning where best to include
reserve shifts in the rosters. Future research may build upon these insights to define new non-
data-driven robust rostering policies that do not require dedicated ML models or sophisticated
optimization models to generate robust rosters. Finally, we focused on how predictions of a
binary classifier can be simulated. By generalizing our methodology and applying it to other
prediction tasks, it may be possible to derive similar minimum performance requirements for
predict-then-optimize approaches to other assignment, sequencing or scheduling problems.
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A Rostering problem MIP formulation

Table A.1 provides the notation used in the MIP formulation of the robust rostering problem.
For each employee n ∈ N , day d ∈ D, shift s ∈ S and employee skill k ∈ Kn, let xndsk be a
binary variable which equals 1 if employee n is assigned to shift s on day d in skill k, and 0
otherwise. Overtime of employee n ∈ N is penalized using variable v5n ∈ N≥0, which equals the
number of days worked over the maximum allowed for employee n. Violations of the minimum
demand requirement for shift s ∈ Sw and skill k ∈ K on day d ∈ D are penalized using variable
v6dsk ∈ N≥0, which equals the number of employees below the minimum required for day d, shift
s and skill k. The MIP formulation of the rostering problem is given by Equations (4)-(18).

Sets

N Set of employees, indexed by n
D Set of days in the scheduling period, indexed by d
H Set of days in the preceding scheduling period, indexed by h
S Set of shifts, indexed by s
Sw ⊆ S Subset of working shifts in S, excluding the reserve shift

S̃ Set of forbidden shift successions (s1, s2)
K Set of employee skills, indexed by k
Kn ⊂ K Subset of skills for which employee n is qualified
Nk ⊆ N Subset of employees who are qualified for skill k
U Set of tuples (n, d, s) that define forbidden assignments of employee n to shift s on day d

Parameters

sn Index of the night shift in S
mdsk Minimum number of employees required on day d for shift s with skill k
β1
n Maximum number of consecutive working days for employee n

β2
n Maximum number of consecutive night shifts for employee n

β3
n Minimum number of working days in the scheduling period for employee n

β5
n Maximum number of working days in the scheduling period for employee n

β6
n Maximum number of reserve shifts in the scheduling period for employee n

x̂nhs Binary parameter that equals 1 is employee n was assigned to shift s on day h in the preceding
scheduling period

Costs and penalties

ω1
n Wage cost for assigning any working shift to employee n

ω5
n Overtime wage cost for employee n for any additional shift worked over their maximum

ω6 Cost of understaffing a shift

Table A.1: Notation used in the robust rostering MIP formulation.

min
∑
n∈N

∑
d∈D

∑
s∈Sw

∑
k∈Kn

xndskω
1
n +

∑
n∈N

v5nω
5
n +

∑
d∈D

∑
s∈Sw

∑
k∈K

v6dskω
6 (4)

s.t.
∑
s∈S

∑
k∈Kn

xndsk ≤ 1 ∀n ∈ N, d ∈ D (5)

∑
n∈Nk

xndsk + v6dsk ≥ mdsk ∀d ∈ D, s ∈ Sw, k ∈ K (6)

∑
k∈Kn

(xnds1k + xn(d+1)s2k) ≤ 1 ∀n ∈ N, d ∈ D \ {|D|} ,
(s1, s2) ∈ S̃ (7)∑

k∈Kn

(x̂n(−1)s1 + xn0s2k) ≤ 1 ∀n ∈ N, (s1, s2) ∈ S̃ (8)

β1
n+d∑
d′=d

∑
s∈S

∑
k∈Kn

xnd′sk ≤ β1
n ∀n ∈ N, d ∈ 1, ..., |D| − β1

n (9)
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0∑
h=∆−β1

n

∑
s∈S

x̂nhs +

∆∑
d=0

∑
s∈S

∑
k∈Kn

xndsk ≤ β1
n ∀n ∈ N,∆ ∈

{
0, β1

n

}
(10)

β2
n+d∑
d′=d

∑
k∈Kn

xnd′snk ≤ β2
n ∀n ∈ N, d ∈ 1, ..., |D| − β2

n (11)

0∑
h=∆−β2

n

x̂nhsn +
∆∑

d=0

∑
k∈Kn

xndsnk ≤ β2
n ∀n ∈ N,∆ ∈

{
0, β2

n

}
(12)

∑
k∈Kn

xndsk = 0 ∀(n, d, s) ∈ U (13)

∑
d∈D

∑
s∈Sw

∑
k∈Kn

xndsk ≥ β3
n ∀n ∈ N (14)

∑
d∈D

∑
s∈Sw

∑
k∈Kn

xndsk − v5n ≤ β5
n ∀n ∈ N (15)

xndsk ∈ {0, 1} ∀n ∈ N, d ∈ D, s ∈ S, k ∈ Kn (16)

v5n ≥ 0 ∀n ∈ N (17)

v6dsk ≥ 0 ∀d ∈ D, s ∈ S, k ∈ Kn (18)

Objective function (4) minimizes a weighted sum of three components: (i) employees’ reg-
ular wages, (ii) overtime costs and (iii) understaffing costs. Constraints (5) ensure that each
employee is assigned to at most one shift per day. Constraints (6) ensure the minimum required
number of employees with certain skills on each day and shift as a soft constraint whose viola-
tion is penalized by the v6dks variables. Constraints (7) and (8) ensure that no forbidden shift
successions occur, taking into account the end of the previous scheduling period. Similarly,
Constraints (9) and (10) limit the maximum number of consecutive working days. Constraints
(11) and (12) ensure the maximum number of consecutive night shifts is never exceeded. Con-
straints (13) prevent the assignment of shifts in which employees cannot work. Constraints (14)
and (15) limit the minimum and the maximum number of assignments in the scheduling period
for each employee. Finally, Constraints (16)-(18) define bounds on the decision variables.

B Rerostering problem MIP formulation

The rerostering problem takes into account the realization of the absences per day and forcibly
prevents the assignment of absent employees to any shift. The same contractual constraints as
in the rostering problem must be respected. The most preferable way of repairing a roster is by
transforming a reserve shift into an actual shift. However, if this is not possible, then the roster
can also be repaired by changing other working shifts. The least preferable option is to call in
personnel that have the day off. While utilizing reserve shifts is always preferred, these other
two methods of repairing a roster can be used if a feasible solution is otherwise unattainable.
If an absent employee was originally assigned to a reserve shift, and that reserve shift has not
yet been converted into a working shift, their assignment to the reserve shift is maintained.
The rerostering objective function includes the same cost minimization terms from the robust
rostering model, in addition to a weighted term that minimizes the number of changes with
respect to the original roster.

Table B.1 provides an overview of the notation used in the rerostering MIP formulation.
Three decision variables count the number of changes made to the original roster. For each
employee n ∈ N and day d ∈ D, v3nd ∈ N≥0 counts the number of shift changes compared to the
original roster excluding the reserve shift for employee n on day d. Similarly, v2nd ∈ N≥0 counts
the number of reserve shifts that have been converted into working shifts, while v4nd ∈ N≥0
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counts the number of times a day off is replaced with a working shift or vice versa. For each
employee n ∈ N , day d ∈ D and shift s ∈ S, binary variable y

′
nds equals 1 if employee n is

assigned to shift s on day d in either the original or new roster, and 0 otherwise. Two auxiliary
variables y

′′
nds and y

′′′
nd keep track of the number of changes compared to the original roster,

for a given nurse n day d and shift s combination, and for a given nurse n and day d pair,
respectively. The MIP formulation of the rerostering problem is given by Equations (19)-(31).

Sets

N̂ Set of absent employees

Parameters

ĉnd ∈ {0, 1} Binary parameter equal to 1 if employee n is absent on day d, 0 otherwise
cndsk ∈ {0, 1} Binary parameter equal to 1 if employee n has been assigned to shift s on day d with skill

k in the original roster, 0 otherwise

Costs and penalties

ω2
n Cost incurred when converting the shift assigned to employee n into another working shift

ω3
n Cost incurred when converting the reserve shift assigned to employee n into a working shift

ω4
n Cost incurred when converting the working shift assigned to employee n into a day off, or

vice versa

Table B.1: Sets and parameters used in the rerostering MIP formulation.

min (1) +
∑
n∈N

∑
d∈D

∑
i∈{2,3,4}

vindω
i
n (19)

s.t. ĉnd +
∑
s∈S

∑
k∈Kn

xndsk ≤ 1 ∀n ∈ N, d ∈ D (20)

∑
k∈Kn

(cndsk + xndsk) ≤ 2y
′
nds ∀n ∈ N \ N̂ , d ∈ D,

s ∈ S (21)∑
k∈Kn

(cndsk + xndsk) + y
′′
nds ≥ 2y

′
nds ∀n ∈ N \ N̂ , d ∈ D,

s ∈ S (22)∑
s∈S

y
′′
nds − 2y

′′′
nd ≤ 0 ∀n ∈ N \ N̂ , d ∈ D (23)∑

s∈Sw

∑
k∈Kn

(cndsk + xndsk)− 1− v2nd ≤ 1− y
′′′
nd ∀n ∈ N \ N̂ , d ∈ D (24)

∑
s∈S

∑
k∈Kn

xndsk +
∑
k∈Kn

cnds′k − 1− v3nd ≤ 1− y
′′′
nd ∀n ∈ N \ N̂ , d ∈ D (25)

∑
s∈S

∑
k∈Kn

cndsk +
∑

s′′∈Sw

∑
k∈Kn

xnds′′k+

v4nd ≥ 2(y
′′′
nd −

∑
k∈Kn

cnds′k) ∀n ∈ N \ N̂ , d ∈ D (26)

∑
s∈S

∑
k∈Kn

xndsk ≥
∑
k∈Kn

cnds′k ∀n ∈ N \ N̂ , d ∈ D (27)

xndsk ∈ {0, 1} ∀n ∈ N, d ∈ D, s ∈ S, k ∈ Kn (28)

v2nd, v
3
nd, v

4
nd ≥ 0 ∀n ∈ N, d ∈ D (29)

y′nds, y
′′
nds ∈ {0, 1} ∀n ∈ N, d ∈ D, s ∈ S (30)

y′′′nd ∈ {0, 1} ∀n ∈ N, d ∈ D (31)

Objective function (19) adds three additional components to the objective function (4) of

20



the robust rostering problem: the cost of changes made to the roster with respect to the original
schedule (before the realization of the absent shifts), the cost of converting a reserve shift into a
working shift and the cost of converting a day off into a working shift. Constraints (20) prevent
employees that are absent on day d to be assigned to a working shift on that day. Constraints
(21)-(23) calculate the number of changes compared to the original roster, storing them in
auxiliary variables. Constraints (24) calculate working shift changes, while Constraints (25)
compute the number of reserve shifts converted into working shifts. Constraints (26) count how
many times a day off is converted into a working day (or vice versa). Constraints (27) prevent
transforming any reserve shift into a day off. Finally, Constraints (28)-(31) define bounds on
the decision variables.
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