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Abstract

We estimate the dynamics of unobserved strategic judgment in macroe-
conomic forecasts via state-space methods. This is possible by using a new,
micro-founded framework named Dynamic Scoring Structure (DSS), in which
judgment arises as a deformation of the Log-Likelihood function of the esti-
mated forecasting model and extrapolated via robust signal extraction. The
properties of the new methodology are investigated via MonteCarlo simulation.
An application to the survey forecasts of Real GDP of U.S. economy suggests
that judgment has a dynamics related but not coincident with Business Cycle
phases. The impact of this finding is also discussed.
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«It’s easier to invent than to observe.» (Gioacchino Rossini)

«If you torture data long enough, it will confess to anything.» (Ronald H. Coase).

1 Introduction

The difficulty in observing and correctly interpreting a phenomenon is a non-trivial

aspect of human science in any historical time. When the Italian composer formu-

lated his statement, the Scientific Knowledge was a privilege for a restricted élite

and the circulation of informations dramatically slower than today. Thus, despite

its humor, the statement should be considered as a (partial) truth. On a different

hand, when the Nobel Laureate was in activity, the technological progress was al-

ready pervasive and the development of statistical tools for data processing had a

so rapid acceleration that the incentive for exploiting the capability of data mining

was – for the first time – superior to the incentive to think new approaches to the

Economic Science, hence explaining his paroxysmal statement.

These epiphenomena – costly understanding and the information excess/over-

easy-manipulation – are antithetic only apparently. In fact, both of them may induce

the investigator to a bias, which nature varies if these are considered singularly.

This paper aims to enlighten the differences among these two aspects of the modern

economic research. The most recent tendencies in economic literature (Varian, 2014)

suggest that the increased availability of ultra-high-dimensional datasets makes the

need of an empirical strategy for the second aspect (that is, a correct and efficient

selection of the available amount of information) prevails on the need of dealing

further with the first aspect, like investigating theoretical issues – albeit there is

not consensus on the best methodology to use for data-rich environments.1 Not

strangely, the use of private information channels by the economic agents and their

role in belief formation is still under debate by theorists, and, a fortiori, its correct
1Only recently some important arguments in favor of ‘dense’-families of models has been proved

by Giannone et al. (2021).
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assessment is a primary objective in econometric forecasting. We contribute to this

issue by assuming a forecasting scenario in which an economic agent that makes

forecasts (or forecast producer – FP henceforth) co-exists and interacts with an

other agent that uses and evaluates it (forecast user – FU, henceforth); not secondly,

we assume that this interaction produces effects over time. One of them is the

rise of estimation obtained by extra-sample information (or judgment, henceforth),

arising as consequence of a mis-evaluation by both the agents, Thus, judgment is

a subjective variable that justifies the (non infrequent) situations in which FPs do

not behave according to the Bayes rule without invoking behavioral arguments.

This paper proves that this scenario can be formalized by state-space modelling,

and that the amount of forecast error due to judgment introduced by agents with a

strategic perspective (or strategic judgmental bias – SBJ, henceforth) can be esti-

mated via signal extraction techniques. Thus, we introduces the Dynamic Scoring

Structure (DSS, henceforth), a peculiar state-space representation of an autoregres-

sive model with exogenous covariate that enable us to incorporate judgment in FP’s

and FU’s outputs, where the (aggregate) amount of strategic judgment in the sys-

tem is parametrized by a functional of the likelihood – named “Lq-Likelihood”, or

“Deformed Likelihood” – of the model to be estimated. This last is governed by a

parameter that defines the degree of deformation of Likelihood due to the presence

of additive outliers, hence providing a direct, robust measure of the quote of judg-

ment in the FP/FU’s model. Specularly, the FP may consider the same deformation

parameter as a sort of a priori for the possible mis-evaluation of her forecast by FU.

Thus, the DSS allows econometricians to measure the SJB as an endogenous equilib-

rium of a repeated game of two agents and the reality and to estimate its dynamics

via a peculiar version of the Kalman (1960)’s classical recursive algorithm, named

“Deformed Kalman Filter” or “Judgment Filter” (JF, henceforth).

Our simulation exercise demonstrates that the DSS-JF has good general proper-

ties in terms of accuracy in small samples and that the distribution of the deforma-
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tion parameter is very well approximated by a Gaussian distribution. Finally, we

apply our methodology to the Survey of Professional Forecaster of Federal Reserve

Bank (FED-SPF) with focus on forecast of Real GDP. Our results make us conclude

that the SJB has a dynamics that varies considerably according to the ownership

of the dataset and is not perfectly coinciding with recession dating. These findings

open a new perspective in macroeconomic forecasting and related economic theory

on the belief formation.

The rest of the paper is organized as follows: the next Section 2 allocates our

paper in the scientific debate; Section 3 describes the DSS-JF; the results of the

application on real U.S. data are illustrated in Section 4; finally Section 5 concludes.

A separate Supplement provides preliminary theory and MonteCarlo simulation re-

sults.

2 Literature

Since the Seventies of the past Century a consensus among economic scientists, in-

spired by contributions by R. Lucas, T. Sargent and C. Sims, has grown around

econometric models for general equilibrium based on rational expectation hypoth-

esis (REH), according to which all economic agents uses perfectly their available

information no meaning about exogenous shocks. These models has been proved

sufficiently general and flexible to measure and explain many economic issues; see,

among others, Canova (2011) for survey.

Due to the increasing criticism,2 the mainstream macroeconomic literature has

relaxed the axioms of REH since a couple of decades; see, among others, Mankiw

and Reis (2002); Woodford (2003); Sims (2003). Contemporaneously, the research

effort in econometric methodology has allowed the development of models that ac-

counts for several sources of complexity, so leading to important improvements in the

measurement of uncertainty and rationality; see Jo and Sekkel (2019) and therein
2See Conlisk (1996) for a survey.
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literature.

This paper contributes to this last strand of literature by investigating the use

of judgment by economic agents asked to produce and evaluate forecasts. In par-

ticular, we are inspired from two ideas originally formalized by Townsend (1978,

1983): (i) macroeconomic forecasting is a complex activity that requires to comple-

ment the classical econometric modelling of general equilibrium systems with the

opinions of experts, collected in form of survey; (ii) as a consequence, it acts as

sort of clearing-market condition that, under REH, corresponds to a Bayes-Nash-

equilibrium. Secondly, we are stimulated by the theoretical finding by Ottaviani

and Sørensen (2006) that forecast competitions, if not properly set, lead to a strate-

gic behavior of the same FP, who has an improper incentive to announce a forecast

different from the ‘true’ one – that is, the output of an optimization on sample data.

The literature on professional forecasters’ disagreement, its links to uncertainty,

as well the learning mechanisms of the same FPs that complicate the definition of

suitable measures of uncertainty, is large.3 However, the effective measurement of

the judgment dynamics on survey data and its econometric treatment are still open

issues: the literature that focus on FPs is represented only by Manganelli (2009)

in a non-bayesian, and Kocięcki et al. (2012) in bayesian framework, respectively,

while the only reference focused on FU is Monti (2010). To our best knowledge, no

literature is available if considering strategic interaction among FUs and FPs.

We mind this gap by providing a new statistical framework that englobes the

prequential approach to forecast evaluation introduced by Dawid (1984)4 and the

literature on optimal and signal extraction and robust filtering: in the case of no SJB,

the JF coincides with the filter derived by Marczak et al. (2018), who modify the

diffuse Kalman Filter (De Jong, 1991) allowing for a rescaling via influence function
3See Boero et al. (2008); Capistrán and Timmermann (2009); Patton and Timmermann (2010);

Lahiri and Sheng (2010); Dovern et al. (2012); Andrade and Le Bihan (2013); Clements (2014);
Rossi and Sekhposyan (2015); Andrade et al. (2016); Abel et al. (2016).

4Namely, our JF is the empirical counterpart that has never developed to our best knowledge
despite the Author’s wish; see Ibidem, p. 289
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as suggested by Masreliez and Martin (1977). Namely, we use the influence function

to estimate the deformation parameter that characterize the Deformed Likelihood

estimator introduced by Ferrari and Yang (2010) for any observation in the sample.

The new filter is able to describe the output of a repeated game. Moreover, this

paper is a development of Zanetti Chini (2019), who use a static regression approach.

Our research applies (parts of) the theory by Ilut and Valchev (2020) that con-

sider (inattention-driven) bias an effect of a costly deliberation; secondly, it can

be considered an empirical counterpart of (i) the literature that studies how the

utility functions that allow FUs to assess the credibility of FP can be tested via

non-bayesian methods (Dekel and Feinberg, 2006; Al-Najjar and Sandroni, 2014;

Pomatto et al., 2014) and (ii) the theoretical literature (Vovk and Shafer, 2005)

that considers the forecasting process as an output of a game among several eco-

nomic agents;5 finally, it offers an alternative explanation to the evidence of failure of

bayesian approach to belief-updating explained by Manzan (2011); Giacomini et al.

(2020); Manzan (2021), among others.

3 Theoretical framework

3.1 Notation

We are interested in the stochastic process Z .
= {Zt : Ω → Rk+1, k ∈ N, t =

1, . . . , T}. This process is partitioned as Zt ≡ [Yt, Xt], where Yt = {y1, . . . , yT}

is the vector of observed data, and Xt = {x1, . . . , xT}′ is a vector of exogenous

predictors and the set of all possible values taken by Zt is Zt ≡ [Yt,Xt]. Moreover,

it is defined on a complete probability space {Ω,F ,P}, where Ω is the sample space;

the event space Ft is partitioned as Ft ≡ [Π,Ψ] ∈ Rk to denote the sub-spaces of FU

and FP, respectively; P .
= {p ∈ A :

∑
x px = 1} defines the set of all distributions

on Z that are absolutely continuous respect to a σ−finite measure µ, A an algebraic
5See also Olszewski (2015) for a survey.
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subset of Z representing the set of FP/FU judgmental actions, in turn denoted as

π ∈ R.

The Log-likelihood of FU and FP are denoted, respectively, L(Π) and L(Ψ),

while the density of Z (or each of its partitions) is denoted P (Z)
.
=
∫
pY (z)dz,

where p(·) is a continuous density function defined on L(Ω) and t is omitted to ease

the notation. The (one-step-ahead) distributional and density forecasts of Zt are

denoted as P (Zt+1) and p(Zt+1), respectively. Then, there exists an utility function

U ∈ R corresponding to the true assessment of event Z in t+1; this utility function

is known in Statistics as Scoring Rule (SR). Let R = [−∞,+∞] denote the extended

real line and the functions H(Z) : P → R and D(X, Y ) : P × P → R be associated

with any U(Z).

At time t, we denote H(X) = U(X,X) ≡ supX∈X U(Y,X) the maximum utility

(or Entropy function) that a forecaster gains when when X (truly) realizes and

D(X, Y ) = H(X)−S(X, Y ) the Divergence Function between the predictive density

functions of X and Y. Notice that Entropy and Divergence coincide in case of perfect

evaluation of both X and Y. Finally, a hat denotes estimates while a tilde the SJB-

spurred objects.

3.2 The Dynamic Scoring Structure

The object that nests all the parts of the forecasting process according to the Re-

peated Game reported in Supplement is defined as follows:

Definition 1 (Dynamic scoring structure). We define Dynamic Judgmental (or

Scoring) Generating Structure – or, more simply, Dynamic Scoring Structure (DSS,

henceforth) – the 6-ple SS :=
{
Zt,Ft,P , S(·, ·), H(·), D(·, ·)

}
where Z is measured

by a T-dimentional dynamic system.

Example 1. (i) A p-order autoregression with exogenous variables, ARX(p), pro-

ducing density forecasts p̂(z)t+1 and and p̃(z)t+1 using a T-dimensional dynamic
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system and where FP and FU’ utility corresponds, respectively to Ũ(L, π̃; z) and

Ũ(L, ψ̃; z), where π̃ ∈ Π and ψ̃ ∈ Ψ, is a DSS.

(ii) A p-order autoregression with exogenous variables, ARX(p), producing den-

sity forecasts p̂(z)t+1 and p̃(z)t+1 using a static regression framework is a SS but not

a DSS.

Assumption 1. P is a strictly convex probability measure.

Strictly convexity of P implies to assume that U is strictly proper. In turn,

strictly proper SRs require the use of a more general space than the one generally

assumed in forecast evaluation exercises, see, among others Gneiting and Raftery

(2007).

The next assumption characterizes the statistical treatment of this paper:

Assumption 2. U(·, ·, ·) and π are unobserved.

Assumption 2 is challenging from a methodological point of view, because it

implies that there are at least two sources of uncertainty: the utility function and

judgment. Whereas the latter is known, it would still possible to recover Û via

state-space representation of the ARX(p) and assuming a quadratic loss function,

so that OLS machinery and Kalman filtering works. When also the judgment term

is unknown, the classical state-space modelling is still possible, but the Kalman filter

is no more the minimizer of the mean square criterion. In turn, this is due to the

fact that π is treated as a non-stochastic process that can only be inferred by the

repeated game assumed in the Forecasting Protocol. The next Subsection deals with

this issue.
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3.3 The Deformed Likelihood and q-Entropy

Consider any x ∈ [−∞, 0)∪ (0,+∞]; then its Lq-transform (or Box-Cox transform)

is

Lq(x) =





log(x) if q = 1;

x1−q/(1− q) otherwise.
(1)

The behavior of (1) is displayed in Figure 1.

Consider the probability space previously defined and a continuous densify func-

tion f with parameter θ. Then, assuming a normal distribution, the Deformed

Likelihood of f is:

Lq(θ;x) = −0.5 ∗ [q0T log(2π) + (log f + u2
t )
q], (2)

where: θ = [µ, σ2]; ut = (yt− µ)/σ2; the estimated version has q̂ and ût instead of q

and ut.

Definition 2. Let z1, . . . , zT be an i.i.d. sample from f(zi, θ0), θ0 ∈ Θ. Then the

maximum Lq-estimator (MLqE) of θ0 is

θ̂T
.
= max

θ̃∈Θ

T∑

t=1

Lq[f(zt; θ)], q > 0. (3)

Equation 3 is the result of the maximization of the Lq-likelihood equation, that,

at the t-observation takes the form:

∑

t

wtUθ = 0 (4)

which is a weighted version of the likelihood equation with Uθ = f(zt; θ)
′/f(zt; θ)

and weights wt = ft(zt; θ)
1−q. When q < 1, data points with high likelihoods are

assigned large weights. As q tends to 1, the MLqE coincides to standard MLE.

Typically, outliers have very small weights. The estimation of (4) in a time series

framework is the ultimate aim of this paper. A synopsis of the behavior of deformed
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logarithm in statistical functionals is reported in Figure 2.

A considerable simplification of our treatment comes by the following:

Remark 1. If f(·, ·) is Gaussian, then the estimated mean of θ̂ does not depends of

q.

The parameter q is a point measure of judgmental bias in the estimated model

due to FP (or FU) singularly. That is, equation (3) measures only a non-strategic

judgment. Analyzing the strategic effects of this deformation parameter requires to

consider the discrepancy between U obtained (a) when event realizes (using the same

f(·, ·) or one of its moments); and (b) the maximal utility obtained when no bias

is assumed by both FU and FP. When this discrepancy is computable, in principle,

it is possible to do comparison and hypothesis testing to verify the effectiveness

of the bias, hence do claim validation on the predictive density ft+1(·) using the

empirical equivalent of (a) and (b). By Remark 1, these are the matrices of optimal

(non-biased) variance and the matrices of observed, potentially biased variance. We

suggest the use of the Brègman distance:

D(V̂t, Vt) = Λ̃(V̂ )− Λ̃(V ) + Λ̃′(V̂ )vech(V̂t − Vt), (5)

where Λ̃ : RN×N → R, with RN×N being the space of positive semi-definite matrices,

is a scalar function three times continuously differentiable with Λ̃(Vt) = ∇Λ̃(Vt) and

Ũ ′(Vt) = ∇2Λ̃(Vt), denoting the gradient and the Hessian of Λ̃ with respect to

the K = N(N + 1)/2 unique elements of Vt and Λ′(V ) is negative semidefinite.6

The goodness of this family of distances is confirmed by the coherence test set by

Zanetti Chini (2019).

Then, the resulting Entropy function is defined as follows:

Definition 3. Let f and g be the probability density function of Y and X, respec-
6See Laurent et al. (2013) for theoretical properties of this general family of distance and its

use in multivariate forecasting evaluation exercise.
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tively. Then, the q-entropy of g with respect to f is

Hq(f, g)
.
= −EfLq[g(X)], q > 0 (6)

where Lq is defined above.

Remark 2. (i) if q approaches to 1, then Hq(·, ·) nests the Shannon Entropy and

Dq(·, ·) the Shannon Entropy.

(ii) The minimizer over θ of Dr(θ, θ0), where "r" denotes an alternative (biased)

distribution and θ0 is the true parameter, is the same as the minimizerHr(θ0, θ)

where q = 1/r.7

3.4 The State-Space Representation

We consider a univariate time series yt observed in 1, . . . , t,. . . , n. Then the state-

space form for yt is the following system of equations




yt = Ztα +Xtβ +Gtεt εt ∼ iid(0, σ2

ε );

αt+1 = Ttαt +Wβ +Htηt, ηt ∼ iid(0, σ2
η),

Z = [1, 0m−1]; X = [1, 0k−1]; H = φ′

G =



Im−1

0m−1


 ; T =



φ′

G


 ; W = [φ′, G]′

(7)

where φ is a (p+1)-dimensional vector of AR parameters, Zt is an m vector of fixed

effects, and αt is an m vector of states, T is an m×m matrix of fixed coefficients G

are m× g matrix and ηt is a g vector of disturbances and the initial conditions are:

α0 = [0m]; β0 = [0k]; Im2 = I ⊗ [T, T ];

H2 = HH ′; vec(P ) = I−1
m H2.

(8)

7See Ferrari and Yang (2010), p 755.
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Then, we invoke the following assumptions:

Assumption 3. (i) E(εt, εs) = 0 for all t 6= s;

(ii) E(ηt, ηs) = 0 for all t 6= s;

(iii) E(εt, ηt) = 0;

(iv) E(α0, εt) = 0 for all t = 1 . . . n..

A3 (i)-(iv) are standard in the literature and has set to simplify the notation and

treatment. The next result links the state-space representation to the DSS:

Lemma 1. (i) The DSS is never isomorphic to SS.

(ii) The DSS is isomorphic to (7).

Intuitively, the DSS and SS do not differs by the nature of the observations

enclosed in the 6-ple
{
Zt,Ft,P , S(·, ·), H(·), D(·, ·)

}
, but in the way in which the

collection of Zt is estimated – by dynamic system the former and by static regression

the latter. On the contrary, the DSS and (7) may differs at most by the nature of

the observations in Zt.

3.5 The Judgment Filter

Proposition 1. Consider the system (7). Under A1 (i)-(iv), the Judgment-filter

recursive equations are:

(i) For 1,. . . , t, . . . , n,

v = yt − Zαt −Xβ; F = ZPZ ′ +GG′; (9)

C = PZ ′/F ; t = v/
√
q0F (q0−1); (10)

vt = α + C
√
Fh; Pt = αt + Cq0FC

′(h/t); Q = HG′/F ; (11)

Pt+1|t = TVtT
′ +HH ′ − (QFQ′ +QFC ′T ′ + TCFQ′)(h/t); (12)

αt+1|t = Tvt +Wβ +Q
√

(q0F )(h/t); (13)
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where, for an arbitrary small number of time periods t∗,

h =




t if (t < t∗)

h(t, a, b) otherwise,
(14)

and

h(t, a, b) =





t; if |t| ≤ a

a
b−a(b− t) if a < t ≤ b,

a
b−a(b+ t) if − b < t ≤ t− a,

0 if |t| ≥ b

(15)

being the two-piecewise Hampel function.

(ii) Then, by setting I = v and σ2
I = F , we get

L = log(F ) + log(q0); S = v2/F ; (16)

yf = Zvt +GG′
√
q0Fh/(q0F ); ht = h/t; (17)

αt+1 = a; Σt+1 = diag(P ) (18)

Proof. See Appendix

Corollary 1. From the above recursions we get the estimated weights:

wt = 1/(L)q0Gt (19)

and the averaged measures:

L = −0.5[T log(2π) + L+ S]; Lc = −0.5[T (log(2πS) + 1] + L; (20)

Lq = 0.5((q0T log(2π) + (L+ S)q0); L̂q = 0.5((q̂T log(2π) + (L+ S)q̂). (21)

Proof. Trivial if defining S = S/T and q̂ =
∑T

1=1 ht

/
T and Gt = −0.5((q0T log(S2)S).
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Equation (19) is the core result of this paper. In facts, it defines the weight of

deformation parameter q associated to each period via the gradient vector Gt.

Finally, the following result ensures that JF and KF are strictly related:

Corollary 2. The JF is isomorphic with (R)KF.

Proof. Let DSS1 the DSS under Lq-transform and DSS2 an equivalent without Lq-

transformation and the operator T denotes the state-space system (7). It suffices

to note that T is the same in either DSS1 and DSS2, since DSS2 is a DSS1 with

q=1. See Remark 1.

4 Application

This section applies the DSS-JF to real macroeconomic data. Subsection 4.1 de-

scribes the data; subsection 4.2 reports the results and 4.3 provides a discussion on

them.

4.1 Data

The SPF-FED is the oldest dataset on the professional forecasting activity on a

macroeconomic dataset, being the survey observations started in 1968. The survey

was originally administrated jointly by NBER and the American Statistical Associ-

ation and, since the second quarter of 1990, these two institution has been replaced

by the Real Time Data Research Center of the Federal Reserve of Philadelphia. In

more that 50 years, the SPF-FED has changed considerably, increasing its ampli-

tude (from 10 variables to forecast in the first survey in 1968, to several dozens in

the current release)8 and its complexity (with increasing number and technicality of

therein items); see the SPF website9 and Croushore et al. (2019).
8We refer to the Release 2020 Q3.
9https://www.philadelphiafed.org/surveys-and-data/real-time-data-research/

survey-of-professional-forecasters.
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In particular, our research effort is stimulated by the fact that SPF-FED respon-

dents are given a considerably short time to answer to the survey.10 Albeit assuming

that survey has been conducted by the best human and computational capital in the

market, so that either publicity-seeking behavior (Laster et al., 1999) either noise-

information (Orphanides, 2003) among the most popular arguments for criticism of

the survey may be annihilated, the use of non-sample estimates in forecasters output

cannot be neglected completely. This, in addition to the change of ownership and

constant engineering of the surveys make us to suspect a change in the amount of

judgment in the sample span.

This paper focus on Real GDP growth as case study variable due to its universal

use for monitoring and addressing the economic policy by deputed institutions. A

set of 4 additional variables are also included to verify the behavior of the DSS-JF

with exogenous variables. These, representative of different economic sectors, are:

production, consumption, money velocity and house prices; see Table 1. We remark

that there is not an assessment of the monetary policy rather other issue, while this

is only an experiment of a new methodology. We apply our JF over 10 systems

of variables where all the combinations are considered. All the real data apart the

SPF forecasts has been downloaded by FRED in quarterly frequency and, whenever

possible, seasonally adjusted.

4.2 Results

The estimates of the aggregated quote of unobserved SJB and the main (deformed)

functionals and variance parameters are reported in Tables 2 and 3. When the DSS-

JF is applied on ‘one-side’ real data of RGDP (that is, the data without FU’s outputs

as exogenous variable) the estimated aggregate judgment is zero, and thus, q = 1

(Table 2 first column of top panel), so that the DSS-JF coincides with a standard

State-Space form of an AR model where the JF coincides with Marczak et al. (2018)
10“Currently, the forecasters are given just over a week to send in their forecasts” (Croushore

et al., 2019, p. 1).
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filter. Figure 3 plots the estimates of the corresponding dynamic system. In this

peculiar case we did two trials, each one corresponding to a different initial value

of q. In both the cases the estimated parameter is always 1 (that is, zero effect in

judgment), thus ensuring a high credibility to our method.

On the opposite side, when real data are substituted by nowcasts and forecasts

(from second to last column of the upper panel) things change radically, being

q̂ = 0.32 (that is more than two third of the estimates are due to judgment) for

nowcasts and arriving to zero for long-run horizon forecasts, meaning that these last

are purely judgmental.

Such an extreme variation among the estimates based on historical data and

forecasts may be easy explained by an omitted variable bias. Thus, we replicate

our estimation exercise with all the systems defined in last panel of Table 1. The

results are reported in the second panel of the same Table: noticeably, the estimated

quote of judgment is always minimal being the q̂ always upper than 0.99 and, in one

case – M4, a system with house prices as only exogenous covariate – zero, since the

estimated Log-likelihood coincides with the deformed Likelihood of the estimated

model. This is a quite more realistic scenario, albeit the ARX-DSS of this peculiar

case is based only on historical data and not on forecasts. This means that whenever

q̂ 6= 1 the DSS is characterized by (minimal) standard misspecification. Interestingly,

the same scenario holds for results in the third panel, corresponding to Nowcasts.

Thus, nowcasting is not affected by judgmental bias.

The estimates resulting from the ARX-DSS based on one-quarter-ahead forecasts

(fourth panel) are instead characterized by a non negligible amount of SJB, being

estimated q never less more than 0.80, this time without differences among the

different models. Similar results, with possibly stronger evidence of judgmental

bias holds in higher horizons, reported in Table 3. In general, Models M5 and M9

seem the most judgmental-biased for two-quarter-ahead forecasts, while M5, M7 and

M10 are in three-quarter ahead, being the estimated q̂ lower than 0.80. The results
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for the one-year-ahead forecasts are similar apart the fact that all the deformation

parameters are above the same thresholds.

The previously stated results demonstrate that the forecasts of U.S. RGDP are

characterized by, approximately, 20% of bias due to strategic judgment. When this

bias is more evident? Figures 4 – 6 answer to this question. The outputs of the

application of DSS-JF on univariate time series, plotted in Figure 4, panel a, is

coincident with Figure 3, panels (c) and (d) if considering only historical data, while

other univariate time series corresponding to SPF nowcasts and forecasts varies

considerably in a similar fashion of Table 2. Things change when looking nowcasts

(Figure 4, panel b), where several negative peaks can be noticed at regular intervals

in the first half of the sample, while in the second half, they tends to appear only in

correspondence of crisis. The one-quarter-ahead forecasts are instead characterized

by a weight function generally near-zero with important jumps, the frequency of

which varies considerably according to the model.

On a different side, the two/three/four-quarters-ahead forecasts – reported in

Figures 5 and 6 – are characterized by weighting function lying in 1 with a small

number of negative peaks, generally in the first half of the sample with the only

exceptions of the Pandemics, where the evidence is in favor of the judgment is

considerable. However, the timing of these big changes in weighting function is not

the one that an agnostic analyst may expect: in most of the models, the evidence in

support of judgment begins with a small deviation from 1 in 2001, to arrive to zero

in 2005-2006 and (only in a few models for one quarter-ahead forecasts) in 2012-13.

Interestingly, the official NBER recessions date for the Great Recession are never

involved.

4.3 Discussion

Several considerations can be made from the above empirical investigation: first,

there is a dynamics in the aggregate quote of SJB during the span of the sample,
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and it varies considerably if considering the two subsamples 1968-1990 and 1991-

2020. Namely, the first half of the sample is characterized by an unclear prevalence

of the data on non-data estimation. We interpret this finding as a consequence of

three main factors: (a) the poor quality of the first decades of observations, due to

the experimental state of the forecasting science and survey administration; (b) the

evolution of the econometric and computing techniques, that gradually made the

use of statistical tools more affordable for the economists asked to monitor the U.S.

economy; (c) the changes in forecast making and in data collection occurred during

the two sub-samples (like, for example, the change in the GDP deflator).

Second, the non coinciding dynamics of the switches, in the weighting function, of

the majority of models with NBER recession dates implies that SPF does not changes

their attitudes mechanically or according to a simple algorithm like “use-judgment-

when-recession-arrives”, but several different, more complex reasoning schemes are

beyond their output. This seems consistent with the Coibion et al. (2018)’s claim

for a novel rethinking of the expectation formation. In this sense, the mechanics

of endogenous formation of mis-judgment that can be inferred by Ilut and Valchev

(2020) is confirmed by our evidence.

This finding opens a question on the effectiveness of data revisions that FED

makes periodically. In facts, if a certain amount of judgment bias is proved, the role

of this bias in a forecast revision is not. One may argue that neutralizing the pro-

fessional forecasters’ judgment is exactly one of the roles of forecast revision. This

implies that these last should coincide, or be in a neighborhood, with the degree of

judgment found in our analysis. Instead, the revisions certified by Bureau of Eco-

nomic Analysis (BEA) in the period 1993–2019 seems to reject this hypothesis: the

role of revisions has been considerably small, only of among 0.5 and 1.2 percentage

points of the estimates (in average), while a simple graphical inspection of Figure

3 and Tables 1 – 2 suggests the bias is higher11. A future development of our DSS
11See the BEA website: https://www.bea.gov/gdp-revision-information.
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methodology that takes into accounts also the effect of FED’s staff revisions is highly

recommendable.

We remark that the our result that the SJB is not negligible – in general, and, in

particular, in some periods – should not be interpreted necessarily as a claim that

FED staff does not uses efficiently all the available amount of information. The effi-

ciency of the FED administration has been empirically tested, among many others,

by Messina et al. (2015), who support the noise-information hypothesis. Instead, we

interpret this finding as the survey respondents diversify their efforts among com-

putational econometric mechanics and human deliberation. This interpretation is

coherent with the finding by Casey (2020) that three main surveys of professional

forecasts are strongly driven by macroeconomic theoretical relations, so that the

judgment may be seen as a link among theory and final forecasts. However, this in-

terpretation should by combined with the further recent results by the same author

(Casey, 2021) suggesting a general over-confidence of professional forecasters. This

make us to question the nature of the link among overconfidence, uncertainty and

judgment. Further theoretical research is necessary to this aim.

Finally, we aware about the limits of our methodology. Despite the DSS is a

very general framework that applies a (time series) regression framework on data

coming from two different agents with (possibly) different utility functions. In this

application we assumed only a single, representative forecaster that materializes as

average of multiple forecasts. The current DSS form does not allow to discriminate

the contribution of each single individual, unless repeating the same DSS on indi-

vidual data. Moreover, the Deformed Likelihood estimator, due to its logarithmic

structure, may be not the best option in case of repeated large outliers and some

extreme-value method may be preferable; see, among others, Burridge and Taylor

(2006). Finally, a recent strand of literature that studies the predictive power of

ultra-high-dimensional micro-data owned by web firms finds that SPF-FED fore-

casts are not superior to the ones computed by using the former; see, among other,
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D’Amuri and Marcucci (2017). Our DSS approach is still unset for this kind of

analysis. A better integration of the econometric methods for large data and our

DSS framework may be useful to better explain the forecaster disagreement and, in

prospective, the different predictive power difference among these two approaches.

5 Conclusions

The macroeconomic forecasts for the U.S. economy are characterized by a mixture

of data and non-data-driven (or judgmental) estimates. The exact partition of these

elements has been estimated for the first time in econometric literature. This has

been possible by combining several statistical methods, and namely, the Deformed

Likelihood estimation, (robust) signal extraction and linking the resulting statistical

model to a repeated game and and a set of decision-based rules. The correspond-

ing DSS-JF allows econometricians to extrapolate the SJB from a time series of

forecaster’s output using a set of exogenous variables. It corresponds to classical

Autoregressive State-Space Model to be estimated via Robust Kalman Filter if fore-

casters agents are considered as an homogeneous aggregate.

Our simulation experiments reveal that the DSS does not tend to over-evaluate the

judgmental quote in forecasting activity. We then applied the new method to U.S.

forecasts of Real GDP. The evidence supports the hypothesis that FED-SPF has

a non negligible amount of judgment and this is distributed non-uniformly during

the span of the sample. This confirms the recent claims by several authors that the

rational-expectation mainstream framework, despite the recent refinements, should

be severely modified or substituted by a more realistic hypothesis.

The methodology here proposed is at the beginning step of development. More

research is required to understand the motivations of such a judgmental dynamics

and the potential capability of DSS analysis in ultra-high-dimensional forecasting

environments.
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A Appendix

Proof of Proposition 1

(i) CASE 1: q=1. In this case, the Lq-Likelihood function coincides with the stan-

dard Likelihood and the Judgment Filter coincides with the classical Kalman Filter

(or its robust version). Thus, the proof is delegated to Kalman (1960); Duncan and

Horn (1972); Harvey and Phillips (1979); Marczak et al. (2018).

CASE 2: 0 < q < 1. Since q 6= 1 implies a bias to α̂ and β̂, these are no more

the MMSLE of α and β. Thus, we need only to justify the introduction of (a)

t = v/
√
q0F q0−1 in eq. (10) and (13); (b) q0 in the second addend of (11).

Let start from (b) According to the Ferrari and Yang (2010), the surrogate pa-

rameter for the normal equation in a Gaussian regression is θt = (µ′,
√
qvech(Σ))′.

We have to notice that, in the Harvey and Phillips (1979) notation here adopted,

the variance is parametrized by F via Pt, and that F is a scalar. Thus, it suffices

to notice that there is no need of half-vecotrizing P. The same argument holds for

equation (13).

To prove (b), let remark that, in exponential family, θ∗ = θ0/q, where θ = [µ, σ2].

Since µ is not influenced by q, it suffices to consider σ2/q, where σ2 is known.

Thus, the only unknown variable is 1/q. According to the Ferrari and Yang (2010)

definition of normal equation, the optimal solution is the first derivative of
√
F q

(ii) Direct consequence from (i).
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Tables and Graphs

Table 1: Definitions

Variables

Label Definition FED code

yt Real GDP A191RL1Q225SBEA
ipt Index of Industrial Production IPB50001SQ-PCH
ct Real Personal Consumption Expenditure DPCERO1Q156NBEA
mt Velocity of M2 aggregate M2V-PCH
ht Average Sales Price of Houses Sold, ASPUS-PC1

(in percent change from 1 year ago)

Systems of variables

Label Endogenous Variable Exogenous variables

M1 {yt, yNt , yt+1, yt+2, yt+3, yt+4} ipt
M2 {yt, yNt , yt+1, yt+2, yt+3, yt+4} ct
M3 {yt, yNt , yt+1, yt+2, yt+3, yt+4} mt

M4 {yt, yNt , yt+1, yt+2, yt+3, yt+4} ht
M5 {yt, yNt , yt+1, yt+2, yt+3, yt+4} [ipt, ct]
M6 {yt, yNt , yt+1, yt+2, yt+3, yt+4} [ipt, mt]
M7 {yt, yNt , yt+1, yt+2, yt+3, yt+4} [ipt, ht]
M8 {yt, yNt , yt+1, yt+2, yt+3, yt+4} [ipt, ct, mt]
M9 {yt, yNt , yt+1, yt+2, yt+3, yt+4} [ipt, ct, ht]
M10 {yt, yNt , yt+1, yt+2, yt+3, yt+4} [ipt, ct, mt , ht]

NOTE: This table reports the definitions of the models adopted in Section 4.
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Figure 1: The deformed logarithm function
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NOTE: This figure displays the Lq-function applied to the numerical sequence a = [−4; 4]
for different values of q and compares it with the natural logarithm function.
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Figure 2: Functional analysis of the Deformed Logarithm
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NOTE: This figure displays the behavior of several functionals of the Deformed Logarithm.
Left Panel shows the Lq-function of a standard normal probability density function f over
the sequence [−4; 4] given a set of values of q. Right Panel plots (i) the Lq-function over
the gradient vector of a for q = 1 and q = 0 (high-left sub-panel); (ii) the inner product
among X−Y and the gradient of the probability density function of y, either in the case of
X = Lq(f), with q=0 and Y = Lq(f) with q=1 (blue), either in the case that X = Lq(f),
q=1 and Y = log(f) (red-circles), in high-right sub-panel; (iii) several Divergence functions
(namely, the Generalized Brègman, Euclidean and Kullback-Liebler obtained for different
combinations of Lq(f) for the same couple q = {0, 1} and their comparisons with log(f)
(bottom sub-panel).
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Figure 3: Estimation of unobserved judgment on U.S. Real GDP historical data

(a) q0 = 1 (b) q0 = 0.1

(c) q0 = 1 (d) q0 = 0.1

NOTE: This figures plots the results of the application of the Deformed Kalman Filter on
the data of U.S. Real GDP by Federal Reserve Bank of St. Louis. Left panels deal with
q0 = 1 assumed in the DSS, while right panels display the results of a DSS with q = 0.1.
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Figure 4: Estimation of unobserved judgment on U.S. Real GDP forecasts using several
DSS specifications

(a) Historical data

(b) Nowcasts

NOTE: This figures plots the results of the application of the DSS on U.S. Real GDP
forecast by SPF using several data and model specifications.
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Figure 5: Estimation of unobserved judgment on U.S. Real GDP forecasts using several
DSS specifications

(a) 1-quarter-ahead

(b) 2-quarter-ahead

NOTE: This figures plots the results of the application of the DSS on U.S. Real GDP
forecast by SPF using several data and model specifications.
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Figure 6: Estimation of unobserved judgment on U.S. Real GDP forecasts using several
DSS specifications

(a) 3-quarter-ahead

(b) 1-year-ahead

NOTE: This figures plots the results of the application of the DSS on U.S. Real GDP
forecast by SPF using several data and model specifications.
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1 Introduction

This Supplement includes further results that corroborate the treatment of Main

Document. Namely, Section 2 defines the Repeated Game that is assumed in the

Forecasting Process; Section 3 includes some basic results which knowledge is as-

sumed in Main Text; finally, Section 4 reports the Monte-Carlo simulation of the

DSS.

2 The Repeated Forecasting Game

We assume that the probabilistic forecast of an economic event is the output of a

repeated game with three players: the FP; the FU who has capitalK to preserve; and

Reality. The FU suspects the FP’s quotations are biased and, eventually, cooperates

with Reality; however, no matter how the FU plays, Reality acts as though the FU

does not win the game. This rule, called “Cournot’s Principle” , is necessary to

1



avoid that the game is unbalanced in favor of FU. These players act according to

the Forecasting Protocol here defined:

Definition 1 (Forecasting Protocol). For i = 1, . . . , n,

1. K0 := 1;

2. FU announces a bounded function Si : R→ R;

3. FP announces her (potentially biased) quotation p̃i(Z) ∈ R where p̃i(Z) =

p̂i(Z) + πi

4. Reality announces a draw from Pi(Z) ∈ R;

5. Ki = K0 + D
(
Yi, Xi

)
,

FU must choose Si so his capital remains non-negative (Ki ≥ 0) no matter what

values the FP and Reality announce for p̂i(X) and P (Y ). The winner is the FU if

K1 >> K0. Otherwise, the FP wins.

The game illustrated here is a re-proposition of the “Forecasting sub-game”

by Vovk and Shafer (2005, p. 754) and a generalized version of the one used in

Zanetti Chini (2019).

The Step 2 of the Protocol can be interpreted as one of Patton (2019)’s main

conclusion: utility-based objects like the forecast rankings are generally sensitive to

the choice of a proper SR, and, as a consequence, the FPs should be told ex-ante

what utility functions will be used to evaluate their quotations1.

The Step 5 of the Protocol is a test for the null hypothesis of forecasting coherence

in terms of the FU’s utility. The form in which the test is written implies that

the FP’s reward cannot be augmented after his quotation. This coherence test is

essentially based on theD−function defined in previous Subsection. In principle, the

assumption that Reality can cooperate with the FU implies that, when the game is

repeated n times, the sequences of outcomes Sn Yn, Xn do not necessarily coincide

with realizations of a stochastic process. As a consequence, classical hypothesis

2



testing and inference is ineffective and should be substituted by another type of

inference who explicitly accounts for strategic behavior, see Olszewski (2015) for a

theoretical discussion of this problem. Nevertheless, Shafer and Vovk (2005, Chapter

8.1) ensures that the Cournot’s Principle allows both of them to be used. However,

in this paper we assume that π exists (so that data are affected by SJB), coherently

with the evidence by Zanetti Chini (2019), so that the test is not discussed nor

applied for economy of space.

3 Preliminary Theory

Proposition 1. If U(X) = A log(P (X; θ))B(θ) - where A and B are an arbitrary

constant and function of θ, respectively, then

(i) the maximal utility reduces to a Shannon’s Entropy, that is:

H(X) = −E [log p(X)], (1)

which is also called expected score and

(ii)

D(p(X), p(Y )) = −E
[
log
(p(X)

p(Y )

)]

= −
∫

Ω

log

(
p(X)

p(Y )

)
,

(2)

that is the Kullback-Liebler divergence

Proof. (i) is a result of the geometric interpretation of a decision problem by Schervish

(1989).

(ii) is a well-known result.

The gaussianity is a requirement to use KL as information criterion. Any contam-

ination leads to misspecification, hence to an inconsistency of the utility function.
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In statistics, this is equivalent to say that the SR is not proper, see Gneiting and

Raftery (2007).

4 Simulation

This section investigates the empirical properties of the DSS-JF in a MonteCarlo

simulation exercise. Namely, Sub-section 4.1 describes the Data Generating Pro-

cess (DGP) adopted; Sub-section 4.2 reports the results; finally their relevance is

discussed in Sub-section 4.3.

4.1 The Data Generating Process

We consider two different DGPs:

y
(i)
1,t = 1.24y

(i)
1,t−1 − 0.68y

(i)
1,t−2 + ε

(i
1,t +Ot, ε

(i)
1,t ∼ N(0, 1) (3)

and

y
(i)
2,t = 1.24y

(i)
2,t−1 − 0.68y

(i)
2,t−2 − 1.4x

(i)
t,1 − 0.88x

(i)
t,2 + ε

(i)
2,t +Ot, ε

(i)
2,t ∼ N(0, 1), (4)

where, in both (3) and (4),

Ot = (It=45)85σεt + (It=130)30σεt (5)

defines two innovation outliers taking value 1 at the 45th and 130th observation and

zero otherwise, i = {1, . . . , I} denoting the i-th draw of the process {yt}Tt=1 with a

total number of draws I = 5, 000 and the length of the of the two outliers (of different

strength) has been set only for exposition issue. Eventually, Ot will be deleted in for

illustrative reasons, so that the y(i)
1,t (henceforth “DGP 1”) and y(i)

2,t (henceforth “DGP

2”) become a pure autoregression and an autoregression with exogenous variables,
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respectively.

We recommend a special attention to the role played by who look at the analy-

sis: in this case, (3) represents what FP observes and analyses (the autoregressive

model is her subjective choice). More in detail, y(i)
1,t is a linear autoregressive model

with highly stationary behavior, which allows us to focus on the effects of outliers

and the initial value of the deformation parameter q0. This may be represented by

a macroeconomic indicator that is affected by an unexpected shock that pervades

the time series dynamics. On the other hand, y(i)
2,t describes a mixed scenario: in

addition to the initial judgment q0, the autoregression is spurred by an exogenous

variable xt. If yt is assumed a time series of FU’s final announcement, the whole

DSS may be interpreted as a full dynamic system where the FP’s output (in this

case, xt) is an input that co-exists with reality, and their discrepancies is the basis

for an ex-post assessment of forecast user via utility function. This last is incorpo-

rated in estimation step via the Lq-Likelihood (see previous Sub-section). Hence,

q0 represents also a sort of a-priori of FU with respect to which FP adjusts her

forecasts.

In our exercise, we consider three cases q0 = {0.1, 0.9.1.0}, corresponding to

high, low, and no initial judgment; and three sample sizes T = {50, 100, 200, 500}

corresponding to a very small, small, medium and large-sized samples, respectively.

Clearly, when the size of the sample is short, the second innovation outlier is not

considered.

4.2 Results

A draw of the simulated AR(2) process in equation (3) without outlier is displayed

in Figure 1, while the same process with additive outliers can be verified in Figure

2. In the former, when q0 = 1, we can notice a sort of initialization effect both in

effects (yf−y) and in the weighting function wt, being the only deviation (from zero

for the effects, from 1 for the weights) in the first three observations. In the latter,
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the weighting function is always one apart the observations coinciding with outliers.

The weighting function is also an indicator of the strength of the innovation outliers.

Differently, there is not a large difference among processes with and without outliers

when high judgment is assumed initially, but oscillations among the two extremes

are more frequent in the case with outliers.

The simulated distribution of the deformation parameter q is shown in Figure

3. In general, the q-parameter is almost normally distributed, according to the

assumptions on errors in the DGP. When q << 1, the mean is upward biased

of a decimal, approximately and, when assuming exogenous regressors, there is a

small increase in right tail. When no judgment is assumed, the parameter is almost

completely concentrated around 1.

The average measures described in equations (20) and (21) of Main Text and the

estimated distortion parameter computed from the complete MonteCarlo exercise

are reported in Tables 1 – 2. Several facts can be noticed: first, the distortion

parameter is near to the unit when the initial value q0 is high; in this case, there is

no significant difference among the two DGPs, no matter of the presence of outliers.

When q0 is low, the estimated q is instead almost uniformly near 0.20; few exceptions

are due to low sample sizes. Innovation outliers tend to increase this estimate of

50%, approximately.

Second, the presence of innovation outliers blows up the difference among the

estimated Lq-Likelihood and the Lq-Likelihood under q0; for example, consider the

case of pure AR process with T = 100 in table 2, where Lq0 = 3, 875 and Lq̂ = 9, 357

(more than the double). Such an inflation effect is generally more pronounced in

the case of high initial q0 and lower for low initial value of the same parameter.

Third, the predicted error variance (PEV) as well the standard error of regression

tends to increase as q0 diminishes. However, the proportionality of this error variance

inflation is not linear if innovation outliers spur the process. For example, consider

the case of T=50: without outliers, the PEV goes, approximately, from 1.4 to 2.6;

6



with one outlier, it rises from 320 to 1,460 (that is, a completely different order of

magnitude).

4.3 Discussion

Despite the simplicity of the DGP assumed in our simulation exercise we can do

some important conclusions about the introduction of a SJB in a time series pro-

cess: first, any judgmental contamination does not modify the mean significantly.

This observational result complements the theoretical analogue in Ferrari and Yang

(2010)1. However, it should not be confused with the simulated effects of the judg-

ment, which are evident since the resulting time series is another autoregression with

different variance.

Second, and consequently, a large judgmental bias has long-run effects in the

variance, and specially if the process is characterized by outliers. This is perfectly in

the line with the theoretical fundaments by Ilut and Valchev (2020) on the dynamics

of the cost of the deliberation. In facts, according to these authors, the true policy

function corresponding used by FU in her evaluation is unknown. This reflects in

uncertainty on the true SR, which can only be inferred by FP by bayesian methods to

update her beliefs. Thus, FP gradually accumulates information about the optimal

quotation as function of the underlining state. Such an accumulation is responsible

of the propagation of the judgment in all the forecasting process.

Third, fixing an initial amount of q0 does not guarantee that the distribution

of that parameter has a mean coinciding with that initial value, apart an almost

coincidence in the case of no judgment assumption (q = 1). This seems desirable

because it avoids any automatic determinism when applying the filter, allowing a

possibility to have an estimate of the amount of SJB that may diverge from q0 in

any new recursion.

Finally, this simulation exercise enlightens on the connections among our DSS
1See, in particular, ibidem, page 759 and 769.
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approach and the classical assessment methods like the probability integral trans-

form introduced in Economics by Diebold et al. (1998), which can be re-interpreted

as follows: if the (true) DGP is associated to a true initial assessment of the quote

of judgment (q0), the FP does not use learning so that her beliefs (corresponding to

the weighting function) do not need to change.

A similar scenario holds in case of outliers (that is, Figure 2), where the only

discrepancies from 1 in the weighting function coincide with the timing of outliers.

Thus, under normality and perfect specification, the FU and FP learn and update

their beliefs immediately. On the other side, when the FU misjudges the FP’s

initial amount of judgment, the resulting signal generates a noise that adds to the

forecasting process forcing the FU to deliberate frequently about her forecasts. In

turn, this reflects in frequent changes in weighting function; in this last case, the

outliers do not modify the general logic apart an increase in the magnitude of the

change in forecast due to subjective judgment. According to Tables 1 and 2, the

inclusion of exogenous regressors – which represents information by other agents in

the system or economic indicators – does not allow us to modify this interpretation

of the graphical ‘one-sided’ results.
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Figure 1: Application of the Deformed Kalman Filter on simulated data.

(a) The simulated process with q0 = 1
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(b) The simulated process with q0 = 0.1
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(c) Filter components when q0 = 1
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(d) Filter components when q0 = 0.1
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NOTE: This figure plots the result of an judgment filtering exercise using simulated AR(2)
process described in (3) without innovation outliers. The upper panels display the original
data, the "clean" process and the innovations. The lower panels display the output of the
spread clean process vs the same data and the estimated weights of the LqLikelihood. Left
panels deal with q0 = 0.1, while the right panels report the results for a process assumed
having q = 1.
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Figure 2: Application of the Deformed Kalman Filter on simulated data with innovation
outlier.

(a) The simulated process with q0 = 1
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(b) The simulated process with q0 = 0.1

(c) Filter components when q0 = 1
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(d) Filter components when q0 = 0.1
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NOTE: This figure plots the result of an judgment filtering exercise using simulated AR(2)
process with innovation outlier described in (3) – (4). The upper panels displays the original
data, the "clean" process and the innovations. The lower panels display the output of the
spread clean process vs the same data and the estimated weights of the LqLikelihood. Left
panels deal with q0 = 0.1, while the right panels report the results for a process assumed
having q = 1.
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Figure 3: The simulated distribution of the judgmental bias parameter q

(a) AR(2), q=0.1
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(b) ARX(2), q=0.1
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(c) AR(2), q=1
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(d) ARX(2), q=1
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NOTE: This figure displays the histograms of the estimated p resulting from the Monte-
Carlo exercise in Section 4. Namely, the higher panels concern the results for q = 0.1 and
the lower ones the results for q = 1; left panels deal with pure autoregressive case, while
the right ones include exogenous regressors.
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