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Chapter 1. Introduction

1.1 Motivation

Extrusion Blow Moulding (EBM) and Stretch Blow Moulding (SBM) are two of the main manu-

facturing processes involved in the production of rigid plastic packages for the home care, personal

hygiene, food&beverage and automotive markets. EBM and SBM consist in deforming and blowing

a hot plastic material of standardized shape until contact with a mould is reached, hence providing the

final desired shape. As shown in Fig. 1, EBM and SBM can be distinguished according to the type

and the shape of the polymers introduced in the blowing machine.

Figure 1: The sequence of steps involved in EBM and SBM manufacturing processes.

In EBM, the polymeric raw material (usually HDPE or PP), additives and pigments are mixed, melted

and extruded through a die in the shape of a parison (a tube-like piece of plastic). On the other hand,

SBM normally employs PET preforms, intermediate injection-moulded products with a fully formed

bottle/jar neck and a thick tube attached. Preforms are heated in an oven and then stretched with a rod

while the pressurized air is insufflated.
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Before starting the mass production of new plastic containers, several process parameters have to be

adjusted: e.g. polymer temperature, parison thickness, blowing time, cooling time, mould features.

Since also polymer properties and weather conditions might influence the final result, no general

recipes exist. The task of finding the optimal setting requires experienced operators and a trial and

error approach. The process parameters have a crucial influence on the quality of packages which

is asserted by means of extensive testing having the goal to evaluate the tightness (“leak test”), the

resistance to axial load (“top load”) and impacts (“drop test”). Clearly, package sturdiness is also

affected by the material distribution and walls thickness: a uniform material distribution may avoid

defects and weaker areas while uneven material distribution may increases weight and cost without

benefits in terms of resistance.

Computational modelling is one of the possible approaches for investigating EBM and SBM with the

goal to improve efficiency of the overall process. Improvements in terms of machine design and setting

and cycle time are expected and reduction of wastes as well as decrease in the number of laboratory

samples are envisaged. We mention three use-case scenarios:

• R&D decision-making process: once the final shape of a bottle-like product is identified, the

R&D team has to set up the production process. The common approach, currently in use, consists

of engineering the machinery components (e.g. the mould) according to past experience. This

leads to a trial and error procedure made of mould prototypes and continuous adjustments. On

the other hand, blow moulding simulation may help engineers to test different setups by means

of a virtual reality approach.

• Search for parameters setting: an accurate simulation of blow moulding may be a tool that

accelerates the definition of those process parameters that are essential to obtain a final product

featuring all the desired mechanical properties. For example, technicians may investigate the

final material distribution and bottle thickness by varying the input parameters of numerical

simulations.

• Mechanical simulations: the outputs of blow moulding simulations may be employed to verify

the quality of the final product without implementing the entire process. By means of the

numerical counterpart of the aforementioned tests, engineers may investigate the mechanical

properties in order to examine the feasibility of the entire project.

This work aims to evaluate if nonconforming Finite Element Methods are able to handle the crucial

challenges involved in blow moulding simulations such as nonlinear constitutive laws in the finite
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deformation regime, incompressibility of materials and contact boundary conditions. Further devel-

opments are required to validate the accuracy of the results in real-life computations and to make

the simulation tools usable in the engineering practice. The present work is to be considered as a

promising starting point towards this ambitious goal.

1.2 Structure of the work

The work is organized as follows:

• Chapter 6 introduces some basic notions of continuum mechanics that will serve as foundations

of the computational modelling approaches devised in the following chapters. The kinematical

description of all admissible body motions as well as volume and area transformations are

presented for introducing the Lagrangian formulation of the basic mechanical principles of

mass and linear momentum conservation. A constitutive relation between the stress and the

strain has to be provided in order to close the elasticity problem. Thus, restricting our attention

to hyperelasticity, constitutive laws are deduced from the definition of a strain energy function

such that the expressions for the Piola stress tensors and the fourth-order elasticity tensors are

derived for Saint Venant-Kirchhoff and neo-Hookean material models.

• Chapter 3 reviews the methodological steps leading to the discretized versions of the continuous

elasticity problem for hyperelastic materials. The problem of finding the numerical solution

is formulated as the minimization of an energy functional encompassing both the internal

energy contribution and the work of external forces. As a result, the static equilibrium of

hyperelastic bodies undergoing large deformation is found by seeking the solution that zeros

the directional derivatives of the energy functional. Optionally, the energy functional might be

constrained by enforcing the incompressibility of the material, thereby enabling the description

of isochoric motions. Lagrange multipliers are introduced in the formulation with the aim

of imposing Dirichlet and contact boundary conditions. Three state-of-the-art nonconforming

finite element formulations are considered as discrete counterparts of the weak forms: a new

BR2 dG formulation, the HDG formulation proposed by Kabaria [1] and the HHO scheme

devised by Abbas et al. [2]. The schemes are obtained by inserting in the local residuals of

the Lagrangian equation of motion the reconstructed gradient operator for the discretization at

hand, and possibly coupling with the incompressibility and Lagrange multipliers constraints.

The resulting nonlinear system of equations is solved by means of an incremental load method,

and each substep is equipped with the classical Newton method. Accordingly, the final deformed

3
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solution is reached through a sequence of intermediate equilibrium configurations. To complete

the schemes formulation, Jacobian operators are derived.

• Chapter 4 presents the numerical validation of the BR2 dG formulation for finite hyperelastic

deformations. First of all, the numerical convergence rates is verified for each hyperelastic con-

stitutive law challenging 3D manufactured solutions either in the compressible or incompressible

regime. Then, 2D and 3D test cases are performed in order to analyse the behaviour of the

formulation in presence of severe mesh distortions. Moreover, we investigate how the adaptive

stabilization strategy influences the number of iterations of an agglomeration based ℎ-multigrid

preconditioned GMRES solver. The use of Lagrange Multiplier for applying Dirichlet boundary

conditions allows to strongly reduce the number of steps required by the incremental method to

reach the final solution.

• Chapter 5 reports a brief numerical validation of HDG and HHO implementations for finite

hyperelastic deformation in the compressible regime. 2D and 3D manufactured solutions are

tested and the convergence rates are evaluated and tabulated.

• Chapter 6 aims to provide the basic concepts for the description of the contact between bodies

undergoing large deformations. In particular, we concentrate on the simulation of the frictionless

contact between a rigid obstacle and a deformable body. The previously introduced energy

functionals are modified by adding the work of Lagrange multipliers on the contact surfaces

identified by means of an active set strategy. Once the weak form of the static equilibrium is

obtained, the HDG formulation of the elasticity problems with frictionless contact is proposed.

To conclude, the active set strategy for finding and following the contact areas between a

deformable hyperelastic body and a obstacle boundary surface is presented in details.

• Chapter 7 reports the numerical validation of the HDG formulation for hyperelastic defor-

mations and frictionless contact. The analytical descriptions of some obstacle surfaces are

introduced such that all geometrical functions, required by the linearization procedure, are

derived. Consequently, two and three dimensional nonlinear elasticity problems featuring fric-

tionless contact with the rigid obstacles are solved demonstrating the effectiveness of the active

set strategy proposed in the previous chapter.

• Chapter 8 collects the final remarks and proposes some future developments.
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1.3 Progress beyond the state of the art

The dG framework for finite deformations of elastic solids based on a Bassi-Rebay (BR2) formu-

lation is the main novelty of the present work. The framework relies on the following ingredients:

1. BR2 dG discretization of the Lagrangian equation of motion for hyperelastic materials; 2. BR2

dG discretization of the incompressibility constraint in Lagrangian formulation; 3. implementation

of the Lagrange multipliers method for the imposition of Dirichlet boundary conditions; 4. adaptive

stabilization strategy based on the spectrum of the fourth-order elasticity tensor; 5. agglomeration

based ℎ-multigrid solution strategy for the fully coupled formulation. We remark that the first, third

and fifth aforementioned ingredients are novel contributions.

The attractive features of the proposed dG framework are: 1. ability of dealing with compressible and

incompressible hyperelastic materials; 2. comparing with BR1 formulations, BR2 dG discretizations

reduce the computational cost thanks to a more compact stencil; 3. higher-order lifting operators for

the BR2 stabilization term allow to get rid of non-local stabilization parameters based on the number

of faces; 4. Lagrange multipliers method for imposing Dirichlet boundary conditions reduces the

number of incremental steps required by the globalization strategy by orders of magnitude, moreover

the number of incremental steps is insensitive to mesh density and polynomial degree; 5. thanks to the

adaptive stabilization strategy, stability is guaranteed in a broad range of test case configurations; 6. the

performance of the state-of-the-art agglomeration based ℎ-multigrid solution strategy is insensitive to

the user-dependent stabilization parameters appearing in the adaptive stabilization technique.

Among the aforementioned features the imposition of Dirichlet boundary conditions by means of

Lagrange multipliers deserves additional remarks. In this work we show that additional stabilization

terms based on the jumps of the Lagrange multipliers on the edges of the boundary mesh are required

to achieve stability. The stabilization needs to be carefully introduced avoiding the sharp corners

of the boundary mesh, that is the edges where the surface normal happens to be discontinuous, see

Chap. 3 for additional details. This observation is also the main motivation for relying on a HDG

framework for dealing with computational contact mechanics. Indeed, since the sharp corners evolve

during the computation, a formulation which does not require Lagrange multipliers stabilization is

highly beneficial in practice.

The HDG framework for finite deformations of elastic solids featuring contact constraints is the

second main novelty of the present work. The attractive features of the proposed HDG framework

are: 1. ability of dealing with compressible and quasi-incompressible Saint Venant-Kirchhoff and

neo-Hookean hyperelastic materials; 2. implementation of the Lagrange multipliers method for the

imposition of Dirichlet boundary conditions; 3. ability of dealing with non-penetration frictionless

5
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contact constraints by means of Lagrange multipliers method; 4. as opposite to dG discretization,

imposition of boundary conditions by means of Lagrange multipliers does not require additional

stabilization.
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Chapter 2. Fundamentals of Continuum Mechanics

This chapter introduces basic concepts of continuum mechanics that are the foundations of the com-

putational modelling approaches devised in this work. Many authors inspired this brief introduction:

among them, we appreciate the manuscripts of Odgen [3], Ciarlet [4] and Gurtin et al. [5] and Tadmor

et al. [6].

Kinematics plays a crucial role in the Lagrangian formulation of the elasticity problem. The math-

ematical tools that allow to describe all geometrically admissible body motions are presented in

Sec. 2.1: the mapping between a reference and a deformed configuration is delineated in Sec. 2.1.1,

how volume and area transform during the deformation in Sec. 2.1.2 and the measures of strain in

Sec. 2.1.3. The basic mechanical principles governing body motions, at the reference and at the

deformed configuration, are derived in Sec. 2.2: the continuity equation is stated in Sec. 2.2.1 while

the conservation of linear momentum in Sec. 2.2.2. The relation between the stress and the strain

represents a key point in the description of the behavior of a body undergoing deformation. In this

work, we consider only the hyperelastic materials described in Sec. 2.3. Hyperelastic constitutive laws

are deduced from the definition of a strain energy function, see Sec. 2.3.1, from which the expressions

for the Piola-Kirchhoff stress tensor are derived, see Sec. 2.3.2. Finally, in Sec. 2.3.3, the concept of

the fourth-order elasticity tensor is introduced and it will be useful in the context of the linearization

of the nonlinear elasticity problem in Chap. 3.

2.1 Kinematics

Kinematics is one of the branch of physics that describes body motion (or system of bodies) forgetting

the causes and effects induced by external forces. The description of a body undergoing finite

deformations may rely on two alternative ways of representing the relevant physical properties leading

to the so called Eulerian (or spatial) and Lagrangian (or material) descriptions. The former one

renders the system behavior at a spatial position, whereas the latter follows the behavior of a material

particle. Differently from fluid mechanics that is almost exclusively based on spatial descriptions,

solid mechanics relies often on the material description in order to develop constitutive laws and

describe physical properties of material particles. For this reason, hereinafter, we will introduce the

mathematical tools and transformations useful to formulate the elasticity problem from a Lagrangian

point of view.

7



Luca Verzeroli

2.1.1 Body Motions

A body may be identified as the closed region Ω ∈ R𝑑 of the Euclidean space of dimension 𝑑 ∈ 2, 3.

When it occupies a fixed arbitrary reference configuration, we may refers to Ω as the reference body.

b
b
xX

u

Ω Ω+

χ(X)

Figure 2: The mapping of the reference body Ω into its deformed configuration Ω+.

Relying on the Fig. 2, the body Ω consists of a set of material points (or particles) labelled with the

coordinates X = {𝑋𝑖, 𝑖 ∈ 1, . . . , 𝑑}. The motion of the body relocates each material point in a new

place in the space, namely the spatial point x = {𝑥𝑖, 𝑖 ∈ 1, . . . , 𝑑}. The motion can be mathematically

described with a sufficiently smooth function 𝝌 : Ω × R≥0 → R𝑑 dependent on X and the time 𝑡

x = 𝝌(X , 𝑡).

Restricting the attention to a certain instant of time 𝑡, the function 𝝌(X , 𝑡) indicates the deformation

of the body. Obviously, the reference configuration is recovered setting 𝑡 = 0, so, 𝝌(X , 0) = X , other-

wise, the deformed (or current) configuration at time 𝑡 is retrieve asΩ+ := {𝝌(X , 𝑡),X ∈ Ω, 𝑡 ∈ R>0}.

A basic assumption in continuum mechanics is that 𝝌 has to be an injective function, namely a one-

to-one mapping. The consequence is that two distinct material points never collapse into one or, in

other words, they can not occupy the same position in the space, so, the body does not penetrate itself.

This also implies that 𝝌 is invertible so that

X = 𝝌−1(x, 𝑡)

is a mapping of the deformed body Ω+ onto the reference body Ω.

REMARK. We try to use capital letters only for the quantities defined on the reference configuration.

If it is not possible, we distinguish quantities of the deformed configuration adding the apex “+”.
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Introducing the gradient operator in the reference configuration

∇X (•) = 𝜕 (•)
𝜕X

, ∇X (•) 𝑗 =
𝜕 (•)
𝜕𝑋 𝑗

,

the tensor field F : Ω × R≥0 → R𝑑×𝑑

F := F (X , 𝑡) = ∇X 𝝌 = ∇Xx, 𝐹𝑖 𝑗 =
𝜕𝜒𝑖

𝜕𝑋 𝑗

=
𝜕𝑥𝑖

𝜕𝑋 𝑗

is referred to as the deformation gradient. In order to explain the meaning of F , we consider two

distinct points X ,Y ∈ Ω that are mapped in x, y ∈ Ω+. The difference y − x may be expressed

through a first-order Taylor expansion as

y − x = 𝝌(Y , 𝑡) − 𝝌(X , 𝑡) = 𝜕𝝌(X)
𝜕X

(Y −X) + O( |Y −X |) (2.1)

Taking (Y −X) → 0, we obtain the expression

𝑑x = F (X , 𝑡)𝑑X (2.2)

which gives an asymptotic meaning to the previous Eq. (2.1). So, as shown in Eq. (2.2), F depicts

how the neighbourhood of a material point is changing during the deformation; consequently, it plays

a crucial role in the formulation of the strain tensors (see Sec. 2.1.3).

The basic hypothesis of continuum mechanics is stated requiring that

𝐽 (X , 𝑡) := det
(
∇X 𝝌

)
= detF > 0

where 𝐽 : Ω × R≥0 → R>0 is the volumetric Jacobian of the mapping 𝝌 at the material point X

and time 𝑡. Accordingly, if 𝐽 = 0, 𝝌 maps a volume into a surface or into a point and if 𝐽 < 0,
𝝌 represents a body with negative volume. As previously stated, the latter configurations are not

physically acceptable.

An alternative way to describe the motion of a body is reported in Fig. 2: it consists of using the

displacement, namely the mapping function u : Ω × R≥0 → R𝑑

u = u(X , 𝑡) = x −X = 𝝌 −X .

Accordingly, the deformation gradient can be re-written as

F = F (u) = ∇X 𝝌 = ∇X (u +X) = ∇Xu + 1

where 1 is the identity second-order tensor (i.e. 1𝑖 𝑗 = 𝛿𝑖 𝑗 , where 𝛿𝑖 𝑗 is the Kronecker delta and 1v = v

). The two different mapping functions, 𝝌 and u, have the same role in the sense that both unknowns

can be employed to formulate the elasticity problem.

9
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2.1.2 Transformation of volume and area

Expressions (2.1) and (2.2) suggest the introduction of the linear transformation

v(x, 𝑡) = F (X , 𝑡) V (X) (2.3)

where V denotes a temporally constant material vector field and v a spatial vector field, see also [5].

Eq. (2.3) states that the quantity v (i.e. the infinitesimal fiber, curves, tangents, planes, bases) is

embedded in the deforming body Ω+. Consequently, v is said to convect with the body and Eq. (2.3)

is also mentioned as the covariant transformation.

Bearing in mind that the tensor F does not conserve the length and angles between vectors, an

orthonormal basis in the reference configuration may not be orthonormal in the deformed configuration.

In fact, in a 3D space, while each couple of vectors of a basis lies on a plane that convects with the

body, the vector out of the couple is, usually, not perpendicular to that plane. This is the typical

behaviour of a normal vector N in a reference configuration (see [5]). Its counterpart n in a deformed

configuration is computed introducing the contravariant transformation

n(x, 𝑡) = F −⊺ (X , 𝑡)N (X).

We remark that the vectors N and n are assumed to be also versors when N ·N = 1 and n · n = 1.

For the purpose of introducing the transformation of volume, an infinitesimal volume element 𝑑𝑉 in

the material configuration Ω is considered. As depicted in Fig. 3a, 𝑑𝑉 may be computed as

𝑑𝑉 = (ℓE1 × ℓE2) · ℓE3 = ℓ3

where ℓ is the infinitesimal length of an edge and E𝑖 is an orthonormal basis defined in Ω.

b

E3

E2E1

dV

ℓ

b

e3

e2

e1

dv

n

(a) Deformation of volume

b

E3 = N

E2E1

dA

ℓ

b

e3

e2

e1

da

n

(b) Deformation of area

Figure 3: Deformation of volume and area.

Now, using Eq. (2.3), 𝑑𝑉 is mapped into the infinitesimal deformed volume element 𝑑𝑣

𝑑𝑣 = ℓ3(e1 × e2) · e3 = ℓ3(FE1 × FE2) · FE3

10
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in which e𝑖 is an (generally non-orthonormal) basis defined in Ω+. Using the definition of determinant

of a second-order tensor field, we obtain

𝑑𝑣

𝑑𝑉
=

��ℓ
3

��ℓ
3
(FE1 × FE2) · FE3

(E1 ×E2) ·E3
= detF = 𝐽

from which we derive the formula for volume transformation

𝑑𝑣 = 𝐽𝑑𝑉. (2.4)

Mimicking the steps followed for the volume transformation, consider the basis {E1,E2,E3 = N }

(with |N | = 1) in Ω, as reported in Fig. 3b. The infinitesimal area element 𝑑𝐴 in Ω is

𝑑𝐴 = |ℓE1 × ℓE2 | = ℓ2 |N | = ℓ2.

On the other hand, the infinitesimal deformed area element

𝑑𝑎 = |ℓe1 × ℓe2 | = ℓ2 |FE1 × FE2 |

may be re-written1

𝑑𝑎 = ℓ2𝐽 |F −⊺N |.

Therefore, from the ratio 𝑑𝑎
𝑑𝐴

, we also obtain the so-called Nanson’s formula for the area transformation

𝑑𝑎 = 𝐽 |F −⊺N |𝑑𝐴. (2.5)

The ratio

𝑗 =
𝑑𝑎

𝑑𝐴

is also referred to as the areal Jacobian.

2.1.3 Measures of strain

The measure of the deformation of a body with respect to a arbitrarily chosen reference configuration

is outlined as strain. In general, the strain quantifies the change in form and size of a body.

One of the possible description of the strain is given by the right Cauchy-Green tensor defined as

C = F ⊺F .

1. From tensor algebra, the identity Sv × Sw = detS S−⊺ (v ×w) = Cof (S) (v ×w) is given for an invertible tensor
S and two vector v and w. The quantity Cof (S) is also known as the cofactor of the tensor S. Using S = F ,
𝐽 = det(F ) and E1 ×E2 = N , we obtain the expression for 𝑑𝑎.

11
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Let be {E1,E2,E3} and {e1, e2, e3} two basis, respectively, in the reference and deformed configu-

rations, such as e𝑖 = FE𝑖. Focusing on the scalar product

e𝑖 · e 𝑗 = FE𝑖 · FE 𝑗 = E𝑖 (F ⊺F )E 𝑗 = 𝐶𝑖 𝑗 ,

the physical meaning of the tensor C may be recovered. In fact, the diagonal terms 𝐶𝑖𝑖 provides

information about the stretch2 in the direction of e𝑖 while the out of diagonal terms 𝐶𝑖 𝑗 describes the

changes in angle between e𝑖 and e 𝑗 (if 𝐶𝑖 𝑗 = 0∀𝑖, 𝑗 = 1, . . . , 3, 𝑖 ≠ 𝑗 orthogonality is preserved).

In the case of null displacement,C = 1. Thereby, it is often preferable to introduce the Green-Lagrange

tensor

E =
1
2
(C − 1)

so that the strain is zero when u = 0. Moreover, from the latter expression, the small deformation

strain definition may be recovered cancelling out the second-order term (∇Xu (∇Xu)⊺).

2.2 Basic mechanical principles

The balance laws for mass and linear momentum will be derived in local and integral forms for the

purpose of describing the motion of a body undergoing finite deformation. The conservation equations

will be firstly stated in the deformed configuration and then cast in the reference configuration so that

the problem can be analysed from a Lagrangian point of view. Moreover, the concept of stress is

firstly defined using the well-known Cauchy stress tensor and then, introducing suitable push-back

operators, using the Piola-Kirchhoff stress tensors.

2.2.1 Continuity equation

Let be 𝜌(X) : Ω → R>0 and 𝜌+(x, 𝑡) : Ω+ × R>0 → R>0 the density of the material of the body,

respectively, in the reference and deformed configurations. The continuity equation in the current

configuration is obtained imposing

𝑑

𝑑𝑡

∫
Ω+

𝜌+(x, 𝑡) 𝑑𝑣 = 0. (2.6)

Requiring that the time derivative in Eq. (2.6) is null corresponds to set that the integral of the density

𝜌+ in Ω+ is equal to the integral of the reference density 𝜌 in Ω, i.e.∫
Ω+

𝜌+(x, 𝑡) 𝑑𝑣 =

∫
Ω

𝜌(X) 𝑑𝑉. (2.7)

2. Remember that the tensor F does not preserve length and angle between vectors. If L is a vector of length |L| and
l = FL its counterpart in the deformed configuration, the quantity λ = l

|L | define the stretch in direction of l.

12
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Now, the integral presented at the left-hand side of Eq. (2.7) may be computed in the current configu-

ration changing the integration variable with the transformation of volume (2.4) obtaining∫
Ω+

𝜌+(x, 𝑡) 𝑑𝑣 =

∫
Ω

𝜌+(𝝌(X , 𝑡), 𝑡) 𝐽 (𝝌(X , 𝑡), 𝑡)𝑑𝑉

=

∫
Ω

𝜌+(X , 𝑡) 𝐽 (X , 𝑡)𝑑𝑉.
(2.8)

So, combining Eqs. (2.7) and (2.8), we obtain the continuity equation in the reference configuration∫
Ω

(
𝜌+(X , 𝑡) 𝐽 (X , 𝑡) − 𝜌(X)

)
𝑑𝑉 = 0

or, alternatively, using the localization theorem (see [5])

𝜌+(X , 𝑡) = 𝜌(X)
𝐽 (X , 𝑡) . (2.9)

The basic hypothesis of continuum mechanics that no two material points of the same neighbourhood

may occupy the same spatial point at a given time can be stated as follows

𝐽 =
𝜌(X)

𝜌+(X , 𝑡) > 0. (2.10)

2.2.2 Conservation of linear momentum

Ω+
1

Ω+
2

∆a

n

b x

∆R
n

−n

b

t

−t
S2

S1

dax

Figure 4: Traction vector.

A general deformable body is considered at its current configuration Ω+. In order to develop the

concept of stress, it is necessary to study the forces exchanged through the surface S between the

regions Ω+
1 and Ω+

2 obtained splitting the body Ω+, see Fig. 4. We identify with Δ𝑎 the element of
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area in the neighbourhood of x, a spatial point at time 𝑡 in which the vector n = n(x, 𝑡) is the normal

pointing outward the surface S. According to the Cauchy’s hypothesis (see [5]), if ΔR is the resultant

force on this area, the traction vector t at x with normal vector n is defined as

t = t(n(x, 𝑡),x, 𝑡) = lim
Δ𝑎→0

ΔR

Δ𝑎
.

The relationship between t and n must be such that it satisfies Newton’s third law of action and

reaction, namely t(−n(x, 𝑡),x, 𝑡) = −t(n(x, 𝑡),x, 𝑡), see Fig. 4 on the right.

The static equilibrium equation of the deformed body Ω+ subjected to the body force f+ = f+(x, 𝑡)

(i.e. the gravity force field) per unit volume and the traction forces t (i.e. contact and friction forces)

per unit area action on the boundary surface 𝜕Ω+ is derived. Note that f+ = 𝜌+f̃ , where f̃ is the

force per unit mass. Ignoring, for simplicity, inertia forces, the translational equilibrium is obtained

satisfying the Newton’s law, namely, the sum of all forces acting on the body vanishes such that∫
𝜕Ω+

t 𝑑𝑎 +
∫
Ω+

f+𝑑𝑣 = 0. (2.11)

As stated by the Cauchy’s theorem for the existence of stress (see [5]), a consequence of the balance

of forces (2.11) is that there exists a spatial tensor field σ : Ω+ × R>0 → R𝑑×𝑑 , called the Cauchy

stress tensor, such that

t(n(x, 𝑡),x, 𝑡) = σ(x, 𝑡)n(x, 𝑡). (2.12)

Introducing the definition (2.12) and using the divergence (or Gauss) theorem, the first term of

Eq. (2.11) can be transformed into a volume integral∫
𝜕Ω+

t 𝑑𝑎 =

∫
𝜕Ω+

σn 𝑑𝑎 =

∫
Ω+

∇x · σ 𝑑𝑣,

where ∇x is the gradient operator in the deformed configuration

∇x(•) =
𝜕 (•)
𝜕x

, ∇x(•) 𝑗 =
𝜕 (•)
𝜕𝑥 𝑗

.

Thus, local force balance in the deformed configuration is obtained

∇x · σ + f+ = 0.

The Lagrangian approach requires the reformulation of (2.11) in the reference configuration. First of

all, we work on the term
∫
𝜕Ω+ t𝑑𝑎. Using the Nanson’s formula (2.5), we cast the integral over 𝜕Ω+

into an integral over 𝜕Ω (the boundary surface in the reference configuration) such that∫
𝜕Ω+

σn 𝑑𝑎 =

∫
𝜕Ω

𝐽σF −⊺N 𝑑𝐴
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from which we define the first Piola-Kirchhoff stress tensor

P := 𝐽σF −⊺ . (2.13)

Secondly, employing Eq. (2.4), the integral of the body forces over the deformed volume is transformed

in ∫
Ω+

f+𝑑𝑣 =

∫
Ω

f+𝐽𝑑𝑉 =

∫
Ω

𝐽𝜌+f̃𝑑𝑉 =

∫
Ω

𝜌f̃ 𝑑𝑉 =

∫
Ω

f 𝑑𝑉

where f (X , 𝑡) : Ω × R>0 → R𝑑 is the Lagrangian description of body forces per unit volume in the

reference configuration. Collecting the results,∫
𝜕Ω

PN 𝑑𝐴 +
∫
Ω

f 𝑑𝑉 = 0

and applying once again the divergence theorem, we get the local force balance in the reference

configuration

∇X · P + f = 0. (2.14)

At the end of this section, we introduce the second Piola-Kirchhoff stress tensor3 defined as follows

S = F −1P (2.15)

As opposite to P , the tensor S is objective (independent from the frame of reference, see [5]) and it

will be used in the next section as basic ingredient to formulate the constitutive laws of hyperelastic

materials.

2.3 Hyperelasticity

The equilibrium equations derived in Sec. 2.2.2 are written in terms of the Piola-Kirchhoff stress that

measures the internal response of a deforming body subjected to external forces. Now, in order to

close the problem, it is necessary to express P (or equivalently, S) in terms of some measure of

deformation such as, for instance, the strain tensors described in Sec. 2.1.3. The relationships between

the stress and the strain are known as constitutive equations that, obviously, are dependent on the type

of material under consideration. In this section, the constitutive equations will be established in the

context of hyperelastic materials. We will restrict our investigation to the Saint Venant-Kirchhoff and

the neo-Hookean materials.

In general, hyperelastic models find application in modelling polymeric or rubbery elastic response.

Despite of the existence of several alternative material descriptions, the theory of hyperelastic material

3. The introduction of the second Piola-Kirchhoff stress tensor S is also explained in the context of the power-conjugate
pairing. See [5] for further details.
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provides simple constitutive equations that may represent the basis for more complex material models

such as elastoplasticity, viscoplasticity, and viscoelasticity.

2.3.1 Strain energy function

As accurately described by Hackett (2018) [7], hyperelasticity is the finite strain constitutive theory

which describes the mechanical behavior of elastic solids with the use of only one material function.

The hyperelastic response is said to be fully path independent and reversible. In fact, the stress depends

only on the current level of the strain because it is independent from the history of the material point.

Moreover, the original shape is recovered upon unloading the body. This also implies the absence of

energy dissipation in the process of deformation, so, all energy expended during the deformation is

stored in the body and it is completely released unloading the system.

Introduced by George Green (1793–1841), the unique material function describing hyperelastic ma-

terial is known as the strain-energy (or stored-energy) function 𝑤(F ) : R𝑑×𝑑 → R. A more general

expression, suitable also for incompressible material, is 𝑤(F , 𝑞) : R𝑑×𝑑 × R → R, defined as follows

𝑤 = 𝑤(F , 𝑞) := 𝑤(F ) + 𝑞(𝐽 − 1) (2.16)

where 𝑞 is an arbitrary Lagrange multiplier which differs from zero only in case of fully incompressible

material. In fact, the additional terms are used in the description of isochoric deformations in order to

satisfy, simultaneously, Eq. (2.14) and the incompressibility constraint

𝐽 = 1 (2.17)

which directly follows from Eq. (2.9).

The Saint Venant-Kirchhoff (SVK) constitutive law is employed in those engineering applications

involving small strains and large rotations. SVK provides the natural extension of linear elasticity to

finite deformations (see e.g. [4]). Introducing the Lamé material parameters 𝜇 and 𝜆 and remembering

the strain definition (2.1.3), the SVK strain-energy function is

(SVK) : 𝑤(F ) = 𝜇E : E + 1
2
𝜆(tr (E))2. (2.18)

For future use, remember that 𝜇 and 𝜆 can be written in terms of the Poisson’s coefficient 𝜈 and the

Young’s modulus 𝐸 through the following relations

𝜇 =
𝐸

2(1 + 𝜈) , 𝜆 =
𝜈𝐸

(1 + 𝜈) (1 − 2𝜈) . (2.19)
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Some values of 𝜇 and 𝜆 for realistic materials are tabulated in [4].

A neo-Hookean (NHK) constitutive law is a particular case of the Mooney-Rivlin material description4

that is typically used to characterize isotropic rubber-like materials undergoing large strains. The

stored-energy function of a fully incompressible neo-Hookean material is defined using only the first

invariant5 of the strain tensor C, such that

(NHK-I) : 𝑤(F ) = 𝜇

2
(tr (C) − 𝑑). (2.20)

where 𝑑 is the geometrical dimension of the problem.

Removing the restriction (2.17) on the incompressibility and adding to (2.20) a suitable function of 𝐽

(for further information see Brink and Stein (1996) [8] and Pence and Gou (2015) [9]), the extension

to the compressible regime of the NHK-I model reads

(NHK-C) : 𝑤(F ) = 𝜇

2
(tr (C) − 𝑑) − 𝜇 ln 𝐽 + 𝜆

2
Θ2(𝐽), (2.21)

where, for example,

Θ(𝐽) =


𝐽 − 1, [8, Eq. 4.10], see also [10]

ln(𝐽) [8, Eq. 4.11].

In order to investigate the robustness of the numerical methods respect to mesh distortion, the standard

NHK-C law (2.21) may be modified to reduce the rate of the strain-energy growth with respect to the

deformation gradient. This permits to investigate, for example, the cavitation phenomena. In solid

mechanics, the term cavitation refers to the formation and rapid expansion of voids that occurs when a

solid is subjected to sufficiently large tensile stresses that produce significant deformation near cavities.

Some experiments on the cavitation are reported by e.g. Gent and Lindley [11] where unusual internal

flaws appear in vulcanized rubber cylinders under a well-defined relatively small tensile load. So, as

proposed by [2] and [1], we define

(NHK-CAV) : 𝑤(F ) = 2𝜇
35/4 (tr (C)) 3

4 − 𝜇 ln 𝐽 + 𝜆

2
(ln 𝐽)2. (2.22)

2.3.2 Piola-Kirchhoff stress tensors

As explained in [3], the stress state of hyperelastic materials in the reference configuration may be

formulated using the strain-energy function (2.16) such that

P =
𝜕𝑤

𝜕F
. (2.23)

4. See [7].
5. The invariants of C are: 𝐼1 = tr (C), 𝐼2 = 1

2 [(tr (C))2 − tr
(
C2)] and 𝐼3 = detC. In general, the isotropic elastic

properties of a hyperelastic material models may be described in terms of a strain-energy function 𝑤 = 𝑤(𝐼1, 𝐼2, 𝐼3).
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A convenient definition of the first Piola-Kirchhoff stress tensor, equivalent to the one given in (2.23),

reads

P = P (F , 𝑝) = FS − 𝑝 𝐽 F −⊺, (2.24)

where the second Piola-Kirchhoff stress (2.15) tensor may be obtained, from the strain-energy function,

as follows

S =
𝜕𝑤(F )
𝜕E

= 2
𝜕𝑤(F )
𝜕C

, (2.25)

and 𝑝 = −𝑞 is the hydrostatic pressure. The use of the strain tensorsE andC in Eq. (2.25) is motivated

by the fact that they are suitable for expressing the stress-deformation relation. For those materials

introduced in Sec. 2.3.1, the expressions of S can be derived introducing the definitions (2.18), (2.20),

(2.21) and (2.22) into (2.25) to get

(SVK) : S = 2𝜇E + 𝜆(tr (E))1; (2.26)

(NHK-I) : S = 𝜇1; (2.27)

(NHK-C) : S = 𝜇(1 −C−1) + 𝜆𝐽Θ(𝐽)Θ′(𝐽)C−1; (2.28)

(NHK-CAV) : S =
𝜇

31/4 tr (C)−
1
4 1 − 𝜇C−1 + 𝜆 ln(𝐽)C−1. (2.29)

Plugging (2.26)-(2.29) into (2.24), the final expression of P is obtained.

For future use, we define SVK-C and SVK-I in order to distinguish the Saint Venant-Kirchhoff (SVK)

law used in the compressible or in the fully incompressible regime (requiring Eq. (2.17) to be satisfied).

2.3.3 Fourth-order elasticity tensor

The linearization, typically obtained with the use of the Newton’s method (see Sec. 3.6), of the system

of nonlinear equations deriving from the elasticity problem requires the definition of the so-called

fourth-order elasticity tensor A : R𝑑×𝑑 × R → R𝑑×𝑑×𝑑×𝑑 . It may be related to the strain-energy

function and computed as follows

A = A(F , 𝑝) :=
𝜕

𝜕F

𝜕𝑤

𝜕F
=
𝜕P

𝜕F
. (2.30)

Employing the definition (2.24), the tensor coefficients A𝑖 𝑗 𝑘𝑙 , such that

A = A𝑖 𝑗 𝑘𝑙 E𝑖 ⊗ E 𝑗 ⊗ E𝑘 ⊗ E𝑙 ,
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reads

A𝑖 𝑗 𝑘𝑙 =
𝜕

𝜕𝐹𝑘𝑙

(FS)𝑖 𝑗 − 𝑝
𝜕

𝜕𝐹𝑘𝑙

(
𝐽 𝐹

−⊺
𝑖 𝑗

)
=

= 𝛿𝑖𝑘𝑆𝑙 𝑗 + 𝐹𝑖𝑚
𝜕𝑆𝑚 𝑗

𝜕𝐹𝑘𝑙

− 𝑝 𝐽

(
𝐹
−⊺
𝑘𝑙

𝐹
−⊺
𝑖 𝑗

− 𝐹
−⊺
𝑖𝑙

𝐹−1
𝑗 𝑘

)
,

where S depends on the material model (see Eqs. (2.26)-(2.29)). To complete the definition of A, the

following relations are helpful

𝜕𝐸𝑞𝑟

𝜕𝐹𝑘𝑙

=
1
2
𝜕𝐶𝑞𝑟

𝜕𝐹𝑘𝑙

=
1
2

(
𝛿𝑞𝑙𝐹𝑘𝑟 + 𝛿𝑟𝑙𝐹𝑘𝑞

)
,

and
𝜕𝑆𝑚 𝑗

𝜕𝐹𝑘𝑙

=
𝜕𝑆𝑚 𝑗

𝜕𝐸𝑞𝑟

𝜕𝐸𝑞𝑟

𝜕𝐹𝑘𝑙

or
𝜕𝑆𝑚 𝑗

𝜕𝐹𝑘𝑙

=
𝜕𝑆𝑚 𝑗

𝜕𝐶𝑞𝑟

𝜕𝐶𝑞𝑟

𝜕𝐹𝑘𝑙

where

SVK :
𝜕𝑆𝑚 𝑗

𝜕𝐸𝑞𝑟

= 2𝜇𝛿𝑚𝑞𝛿 𝑗𝑟 + 𝜆𝛿𝑚 𝑗𝛿𝑞𝑟 ;

NHK-I :
𝜕𝑆𝑚 𝑗

𝜕𝐶𝑞𝑟

= 0;

NHK-C :
𝜕𝑆𝑚 𝑗

𝜕𝐶𝑞𝑟

= 𝜇𝐶−1
𝑚𝑞𝐶

−1
𝑟 𝑗 +

+ 𝜆𝐽

(
− ΘΘ′𝐶−1

𝑚𝑞𝐶
−1
𝑟 𝑗 + 1

2

(
ΘΘ′ + 𝐽Θ′2 + 𝐽ΘΘ′′

)
𝐶−1
𝑞𝑟 𝐶

−1
𝑚 𝑗

)
;

NHK-CAV :
𝜕𝑆𝑚 𝑗

𝜕𝐶𝑞𝑟

= −1
4

𝜇

31/4 tr (C)−
5
4 𝛿𝑚 𝑗𝛿𝑞𝑟 + 𝜇𝐶−1

𝑚𝑞𝐶
−1
𝑟 𝑗 +

+ 𝜆

(
− ln(𝐽) 𝐶−1

𝑚𝑞𝐶
−1
𝑟 𝑗 + 1

2
𝐶−1
𝑞𝑟 𝐶

−1
𝑚 𝑗

)
.
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Chapter 3. Nonconforming Numerical Methods for Nonlinear

Elasticity

Discontinuous Galerkin (dG) methods are widely employed in the field of Computational Fluid Dy-

namics (CFD) where they are appreciated for their turbulence modelling capabilities. In the last

few decades, the interest in dG formulations for Computational Solid Mechanics (CSM) has been

growing due to the following attractive features: robustness with respect to mesh distortion, ability

to deal with arbitrarily unstructured polytopal elements meshes, possibility to locally increase the

accuracy by raising the polynomial degree in those regions where the solution is expected to be

smooth, availability of locking-free formulations in the incompressible and nearly-incompressible

limits. Despite those appealing properties the success of dG methods among CSM practitioners has

been rather scarce, possibly because of the increased memory footprint and the lack of efficient so-

lution strategies. An obvious downturn is related to the lack of dG modules in CSM commercial codes.

Several dG discretizations of linear elasticity problems have been proposed and analysed in literature.

The ℎ𝑝-error analysis was first considered by Riviere et al. [12] and Hansbo et al. [13] analysed the

nearly and fully incompressible limits introducing a locking-free mixed formulation. A Bassi-Rebay

(BR2) dG method was proposed by Lew et al. [14] and Cockburn et al. [15] introduced a Local

Discontinuous Galerkin (LDG) method. Other locking-free implementations have been proposed by

Wihler [16, 17] and ℎ𝑝-adaptivity was considered by Houston et al. [18]. Beam and plate modelling

was tackled by Celiker [19, 20] while Kirchhoff-Love linear shells were investigated by Guzey et

al. [21] and Noels [22]. Kaufmann et al. [23] exploited dG flexibility to simulate deformable bodies

based on arbitrarily shaped polyhedral elements meshes. Plasticity problems in the small deformation

regime were studied by Djoko et al. [24, 25].

Concerning the use of dG formulations in the context of nonlinear elasticity problems, the following

research efforts deserve to be mentioned. In 2006 Noels and Radovitzky [26] tackled large strains

of hyperelastic bodies and Eyck and Lew [27] proposed a dG formulation based on the Bassi-Rebay

(BR1) [28] gradient reconstruction. A novel adaptive stabilization approach for the latter formulation

was proposed in Eyck et al. [29, 30]. Whiteley [31] investigated locking phenomena in nonlinear

elasticity showing the advantage of dG methods in the incompressible limit. Baroli et al. [32] devised

a total Lagrangian Interior Penalty (IP) dG formulation for incompressible and anisotropic soft living
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materials. Challenging application oriented contributions are collected in what follows. Becker

and Noel [33] modelled cracks initiation and propagation by means of Kirchhoff-Love shell elements.

McBride and Reddy [34] introduced a logarithmic hyper-elastoplastic model for the finite-deformation

regime. Liu et al. [35] tackled hypo- and hyper-elastoplastic problems through an updated Lagrangian

formulation. Feistauer et al. [36] employed a spatial dG discretization for an elasto-dynamic system. To

conclude, Kosis et al. [37] considered a space-time dG formulations of the Fluid-Structure-Interaction

(FSI) problem involving a compressible Newtonian fluid and a Saint Venant-Kirchhoff material.

More recently, the introduction of Hybridizable Discontinuous Galerkin methods (HDG) has further

increased the popularity of discontinuous Finite Element methods among CSM practitioners. HDG

was first presented in Cockburn et al. [38] for the solution of second order elliptic problems. Soon

et al. [39] describe the application HDG to linear elasticity problems and provide numerical evi-

dence suggesting that the method is free of volumetric locking. Nguyen et al. [40] investigate the

attractive feature of the method for the numerical simulation of wave phenomena in acoustics and

elastodynamics. Nguyen and Peraire [41] proposed an HDG framework for continuum mechanics. A

superconvergent HDG methods for linear elasticity based on weak stress symmetry formulations is

proposed in Cockburn et al. [42]. Kabaria et al. [1] proposed an HDG method for nonlinear elasticity

and a suitable stabilization strategy was later proposed by Cockburn and Shen [43]. Terrana et al. [44]

applied HDG methods to thin structures presenting buckling phenomena.

Hybrid High-Order (HHO) methods have been developed in the last decade alongside the HDG

methods. The interested reader may find a collection of possible application in the manuscript of Di

Pietro and Droniou [45]. The method was firstly presented in Di Pietro and Ern [46] which proposes

an arbitrary-order locking-free method for linear elasticity. Botti et al. [47] analysed a HHO for

nonlinear elasticity with small deformations. The HHO method is employed in Bonaldi et al. [48]

to solve the fourth-order elliptic problems arising from the mechanical modelling of Kirchhoff-Love

plates. Abbas et al. [2] presented a stabilized and an unstabilized HHO method for finite deformations

of hyperelastic materials. HHO methods has been applied to incremental associative plasticity and

elastoplastic deformations in Abbas et al. [49, 50] while Chouly et al. [51] applied HHO methods to

contact mechanics. In Botti et al. [52], the nonlinear elasticity operator is discretized with the HHO

method for the solution of poroelasticity problems.
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Based on a Lagrangian formulation of the equation of motion, three nonconforming discretizations of

the nonlinear elasticity problem are introduced in this chapter.

In Sec. 3.2, we describe the mesh settings, namely the formal description of all sets of elements or

faces used to properly define the local and global residuals of the discretized Lagrangian equation of

motion, possibly coupled with incompressibility and Lagrange multipliers constraints.

The discrete problem is tackled considering a dG, a HDG and a HHO formulation. The dG formulation

is derived in Sec. 3.3 where the BR2 gradient reconstruction is employed to discretize the elasticity

problem for either compressible or incompressible hyperelastic materials. The proper amount of

stabilization is ensured with the adaptive strategy presented in Sec. 3.3.1 and based on the spectrum

of the fourth-order elasticity tensor.

The HDG and the HHO formulations for nonlinear elasticity problems involving only compressible

materials are reported, respectively, in Sec. 3.4 and Sec. 3.5.

Globalisation of Newton’s method is achieved by means of an incremental load method, described in

Sec. 3.6. As a result, a sequence of intermediate linearized equilibrium configurations converging to

the final solution is obtained. The derivation of the Jacobian operators is described in Sec. 3.6.1 for

the dG, in Sec. 3.6.2 for the HDG and in Sec. 3.6.3 for the HHO formulation.

3.1 Nonlinear elasticity problem

Referring to Fig. 5, an elastic continuum body in the reference configuration occupies the bounded

connected domain Ω ∈ R𝑑 , 𝑑 ∈ 2, 3, with Lipschitz continuous boundary 𝜕Ω. The material points

X ∈ Ω are mapped into spatial pointsx = X+u(X), whereu : Ω → R𝑑 is the displacement mapping.

The body in deformed configuration occupies Ω+ := {X + u(X),X ∈ Ω}. We consider the surface

𝜕Ω divided into the Neumann boundary 𝜕ΩN and the Dirichlet boundary 𝜕ΩD. It is assumed that both

𝜕ΩD and 𝜕ΩN have non-zero (𝑑 − 1)-dimensional Hausdorff measure and 𝜕Ω = 𝜕ΩD
⋃

𝜕ΩN with

𝜕ΩD
⋂

𝜕ΩN = ∅.

The elasticity problem can be obtained supplementing the force balance (2.14) with suitable boundary

conditions. Accordingly, the elasticity problem consists of finding the displacement mapping u such
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∂ΩN
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f

Figure 5: The mapping of the reference body Ω into its deformed configuration Ω+ and the external loads
applied on the boundary surface 𝜕Ω and in the volume.

that

−∇X · P = f in Ω, (3.1a)

u = uD on 𝜕ΩD, (3.1b)

PN = TN on 𝜕ΩN, (3.1c)

where N is the unit normal vector pointing out of 𝜕Ω, f : Ω → R𝑑 is the known body force, TN

is the traction force imposed on 𝜕ΩN, uD is the displacement vector imposed on 𝜕ΩD and P , from

Eq. (2.13), is the first Piola-Kirchhoff stress tensor: a stress measure that describes the response of

the body to the external solicitations f ,TN, and uD. The unknown of the problem u is hidden in the

definition of P . Restricting the attention on the hyperelastic materials introduced in Sec. 2.3, the stress

tensor P (F , 𝑝) in Eq. (2.24) is given as a function of the deformation gradient F (u), see Eq. (2.1.1).

The hydrostatic pressure 𝑝 is introduced in order to cope with the incompressibility constraint (2.17).

In this work, we focus on the the static equilibrium of hyperelastic bodies undergoing isochoric large

deformation. The compressible regime will be recovered as a particular case of isochoric motion.

Let V be the set of all kinematically admissible displacements which satisfy the Dirichlet condition

(3.1b) and 𝑄 be the set of admissible Lagrange multipliers. Summing up the contributions to the

system energy, namely, the stored energy from Eq. (2.16) and the work of body and surface forces, we

define the energy functional W : V ×𝑄 → R such that

W(v, 𝑞) =
∫
Ω

𝑤(F (v), 𝑞) −
∫
Ω

f · v −
∫
𝜕ΩN

TN · v. (3.2)
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The static equilibrium of problem (3.1) constrained by 𝐽 = 1 consists in finding (u, 𝑝) ∈ V × 𝑄

which satisfy the following weak form of the Euler-Lagrange equations

0 =
𝑑

𝑑𝜖
W(u + 𝜖𝛿v, 𝑝)

����
𝜖=0

=

∫
Ω

P (F (u), 𝑝) : ∇X (𝛿v)+

−
∫
Ω

f · 𝛿v −
∫
𝜕ΩN

TN · 𝛿v, (3.3a)

0 =
𝑑

𝑑𝜖
W(u, 𝑝 + 𝜖𝛿𝑞)

����
𝜖=0

=

∫
Ω

(𝐽 − 1) 𝛿𝑞, (3.3b)

for all virtual displacements 𝛿v that satisfy a Dirichlet condition on 𝜕ΩD and for all 𝛿𝑞. In the

left-hand terms of (3.3), we have introduced the notation for the directional derivative, see Bonet et

al. [53]. According to (3.3), (u, 𝑝) is a stationary point of W(v, 𝑞) in Eq. (3.2).

In case of compressible-material models, the strain-energy function (2.16) reads 𝑤 : R𝑑×𝑑 → R with

𝑤 = 𝑤(F ), similarly, the energy functional (3.2) is W : V → R with W = W(v). The static

equilibrium of the unconstrained problem (3.1) consists in finding u ∈ V which satisfy the following

weak form of the Euler-Lagrange equations

0 =
𝑑

𝑑𝜖
W(u + 𝜖𝛿v)

����
𝜖=0

=

∫
Ω

P (F (u)) : ∇X (𝛿v)+

−
∫
Ω

f · 𝛿v −
∫
𝜕ΩN

TN · 𝛿v.

In the following, we consider the possibility to impose the Dirichlet boundary condition using the

Lagrange Multipliers method. Let 𝜕ΩD be divided in some non-overlapping partitions (see Sec. 3.2.1

and Sec. 3.2.2 for further details). Among them, we identify with 𝜕ΩDL the partition on which the

boundary conditions are imposed by the means of the Lagrange multipliers method (see Babuška [54]).

LetS be an additional set of admissible Lagrange multipliers. Adding the work of Lagrange multipliers

to the energy functional (3.2), we define another energy functional W𝜆 : V ×𝑄 × S → R such that

W𝜆 (v, 𝑞,λ) =
∫
Ω

𝑤(F (v), 𝑞) −
∫
Ω

f · v+

−
∫
𝜕ΩN

TN · v +
∫
𝜕ΩDL

λ · (v − uD).
(3.4)

Thus, the static equilibrium of problem (3.1) constrained by 𝐽 = 1 and using the Lagrange multiplier

method for the imposition of the Dirichlet boundary conditions consists in finding (u, 𝑝,λ) ∈ V ×𝑄×S
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which satisfy the following weak form of the Euler-Lagrange equations

0 =
𝑑

𝑑𝜖
W𝜆 (u + 𝜖𝛿v, 𝑝,λ)

����
𝜖=0

=

∫
Ω

P (F (u), 𝑝) : ∇X (𝛿v)+

−
∫
Ω

f · 𝛿v −
∫
𝜕ΩN

TN · 𝛿v+

+
∫
𝜕ΩDL

λ · 𝛿v,

0 =
𝑑

𝑑𝜖
W𝜆 (u, 𝑝 + 𝜖𝛿𝑞,λ)

����
𝜖=0

=

∫
Ω

(𝐽 − 1) 𝛿𝑞,

0 =
𝑑

𝑑𝜖
W𝜆 (u, 𝑝,λ + 𝜖𝛿λ)

����
𝜖=0

=

∫
𝜕ΩDL

𝛿λ · (u − uD).

Similarly for compressible-material models, the energy functional (3.4) becomes W𝜆 : V × S → R

with W𝜆 = W𝜆 (v,λ). In this case, the static equilibrium of the unconstrained problem (3.1) consists

in finding (u × λ) ∈ V × S which satisfy the following weak form of the Euler-Lagrange equations

0 =
𝑑

𝑑𝜖
W𝜆 (u + 𝜖𝛿v, 𝜆)

����
𝜖=0

=

∫
Ω

P (F (u)) : ∇X (𝛿v)+

−
∫
Ω

f · 𝛿v −
∫
𝜕ΩN

TN · 𝛿v+

+
∫
𝜕ΩDL

λ · 𝛿v,

0 =
𝑑

𝑑𝜖
W𝜆 (u,λ + 𝜖𝛿λ)

����
𝜖=0

=

∫
𝜕ΩDL

𝛿λ · (u − uD).

3.2 Mesh settings

3.2.1 Mesh setting for dG methods

For the dG method in Sec. 3.3, we define a spatial mesh Tℎ as a finite collection of disjoint mesh

elements where T ∈ Tℎ is a mesh element of diameter ℎT and meshstep size ℎ := maxT∈Tℎ ℎT > 0. The

set Tℎ is such that
⋃

T∈Tℎ 𝑇 = Ωℎ, and either one of the following two conditions is satisfied

Ωℎ ≡ Ω,

Ωℎ is a suitable approximation of Ω, meaning that limℎ→0 Ωℎ = Ω.
(3.6)

The mesh skeleton
⋃

T∈Tℎ 𝜕T is partitioned into a finite collection of mesh faces Fℎ such that, for each

F ∈ Fℎ, one of the following two conditions is satisfied:

(i) There exist T,T′ ∈ Tℎ, with T ≠ T′, such that F = 𝜕T ∩ 𝜕T′, meaning that F is an internal face.

(ii) There is T ∈ Tℎ such that F = 𝜕T ∩ 𝜕Ωℎ, meaning that F is a boundary face.
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For each mesh element T ∈ Tℎ, the set FT = {F ∈ Fℎ : F ⊂ 𝜕T} denotes the faces composing the

element boundary 𝜕T.

We will consider two strategies for imposing Dirichlet boundary conditions, namely the Nitsche

method and the Lagrange multipliers method. Thus, let 𝜕Ωℎ,D = 𝜕Ωℎ,DN

⋃
𝜕Ωℎ,DL , where 𝜕Ωℎ,DN

and 𝜕Ωℎ,DL are, respectively, the Nitsche and the Lagrange multipliers partitions of the Dirichlet

boundary. Consequently, we define four disjoint subsets of the set FT:

1. F DN
T = {F ∈ FT : F ⊂ 𝜕Ωℎ,DN}: the set of Dirichlet faces where boundary conditions are weakly

enforced using Nitsche method;

2. F DL
T = {F ∈ FT : F ⊂ 𝜕Ωℎ,DL}: the set of Dirichlet faces where boundary conditions are

enforced using Lagrange multipliers;

3. F N
T = {F ∈ FT : F ⊂ 𝜕Ωℎ,N}: the set of Neumann boundary faces;

4. F i
T := FT \

(
F D

T ∪ F N
T

)
: the set of internal faces.

For future use, we also set F i,DN
T := F i

T ∪ F DN
T .

For all 𝑇 ∈ Tℎ and all 𝐹 ∈ FT, nTF denotes the normal vector to F pointing out of T. We remark that

is case of boundary faces nTF can be equal to N or an approximation of N , see (3.6).

Settings for Dirichlet BCs imposed by means of the Lagrange multipliers method

The Lagrange multipliers method requires further settings. 𝜕Ωℎ,DL is partitioned into smooth patches

Πℎ,𝑛, 𝑛 = 1, ..., 𝑁 , such that

1.
⋃

Πℎ,𝑛∈𝜕Ωℎ,DL
Πℎ,𝑛 = 𝜕Ωℎ,DL;

2. the normal vector N varies continuously over Π𝑛 = limℎ→0 Πℎ,𝑛.

We define the sharp corners of 𝜕Ωℎ,DL as Γ𝑖
ℎ

:= 𝜕Πℎ,𝑛 ∩ 𝜕Πℎ,𝑙 , with 𝑛, 𝑙 = 1, ..., 𝑁, 𝑛 ≠ 𝑙. The

boundary of 𝜕Ωℎ,DL is defined as follows

Γ𝑏
ℎ :=

(
𝜕Ωℎ,DL ∩ 𝜕Ωℎ,DN

) ⋃ (
𝜕Ωℎ,DL ∩ 𝜕Ωℎ,N

)
.

To conclude we let Γℎ = Γ𝑖
ℎ

⋃
Γ𝑏
ℎ

be the set collecting all the sharp corners and the boundary of 𝜕Ωℎ,DL .

Let F DL
ℎ

be the set collecting all Dirichlet boundary faces where the Lagrange multipliers method is

employed. The edges composing the face boundary are collected in the set EF for each mesh face

F ∈ F DL
ℎ

such that
⋃

E∈EF E = 𝜕F. We define two disjoint subsets of the set EF:
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1. E𝑏
F = {E ∈ EF : E ⊂ Γℎ}: the set of boundary edges;

2. Ei
F := EF \ E𝑏

F : the set of internal edges.

3.2.2 Mesh setting for HDG and HHO methods

For the HDG method in Sec. 3.4 and the HHO methods in Sec. 3.5, we define the spatial mesh

Mℎ := (Tℎ, Fℎ) where Tℎ is finite collection of polygonal (if 𝑑 = 2) or polyhedral (if 𝑑 = 3) elements

such that ℎ := maxT∈Tℎ ℎT > 0 denotes the meshstep size, while Fℎ is a finite collection of line segments

(if 𝑑 = 2) or polygonal faces (if 𝑑 = 3). For the sake of brevity, in what follows the term “face” will

be used in both two and three space dimensions.

We remark that, while in the dG setting faces are possibly non-planar and even non-connected, HDG

and HHO methods are more restrictive with respect to mesh faces definition. In particular, a face F

is a non-empty open connected subset of a hyperplane of R𝑑 and the (𝑑 − 1)-dimensional Hausdorff

measure of its relative boundary F \ F is zero (see [45, Definition 1.4]).

For each mesh element T ∈ Tℎ, the faces contained in the element boundary 𝜕T are collected in the set

FT. We will impose Dirichlet boundary conditions strongly or using again the Lagrange multipliers

method, so, let 𝜕Ωℎ,D = 𝜕Ωℎ,DS

⋃
𝜕Ωℎ,DL , where 𝜕Ωℎ,DS and 𝜕Ωℎ,DL are, respectively, the “strong”

and the Lagrange multipliers partitions of the Dirichlet boundary. Subsequently, we define four disjoint

subsets of the set FT :

1. F DS
T = {F ∈ FT : F ⊂ 𝜕Ωℎ,DS}: the set of Dirichlet faces where boundary conditions are

strongly enforced;

2. F DL
T = {F ∈ FT : F ⊂ 𝜕Ωℎ,DL}: the set of Dirichlet faces where boundary conditions are

enforced using Lagrange multipliers;

3. F N
T = {F ∈ FT : F ⊂ 𝜕Ωℎ,N}: the set of Neumann boundary faces;

4. F i
T := FT \

(
F D

T ∪ F N
T

)
: the set of internal faces.

For all 𝑇 ∈ Tℎ and all 𝐹 ∈ FT, nTF denotes the normal vector to F pointing out of T. We remark that

is case of boundary faces nTF can be equal to N or an approximation of N , see (3.6).

3.2.3 Numerical integration over reference mesh entities

In order to be able to numerically integrate over mesh elements, mesh faces and mesh edges, we

require that, for any 𝑌 element or face:
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1. there exists a reference entity 𝑌 of standardized shape and a polynomial mapping Ψ𝑌 : 𝑌 → 𝑌

such that 𝑌 = Ψ𝑌 (𝑌 );

2. quadrature rules of arbitrary order are available on the reference entity 𝑌 .

From the geometrical viewpoint reference entities read as follows

𝑌 =


point, if 𝑌 ∈ Eℎ,

line segment, if 𝑌 ∈ Fℎ,

polygon, if 𝑌 ∈ Tℎ,

if 𝑑 = 2;

𝑌 =


line segment, if 𝑌 ∈ Eℎ,

polygon, if 𝑌 ∈ Fℎ,

polyhedron, if 𝑌 ∈ Tℎ,

if 𝑑 = 3.

3.3 Discontinuous Galerkin formulation

We are going to formulate a dG framework that relies on a BR2 discretization of the Lagrangian

equation of motion for compressible and incompressible hyperelastic materials. We also account

for the implementation of the Lagrange multipliers method for the imposition of Dirichlet boundary

conditions (BCs).

Let Pℓ
𝑑

be the space of 𝑑-variate polynomials of total degree ≤ ℓ. For each T ∈ Tℎ, we denote by Pℓ (T)

the space spanned by the restriction of Pℓ
𝑑

to 𝑇 and by Pℓ (F) the space spanned by the restriction

of Pℓ
𝑑−1 to F. Fix a polynomial degree 𝑘 ≥ 1 and let T ∈ Tℎ. We define the local discrete gradient

𝕲𝑘
T : 𝐻1(Tℎ)𝑑 → P𝑘 (T)𝑑×𝑑 such that, for all v ∈ 𝐻1(Tℎ)𝑑 ,∫

T
𝕲𝑘

T(v) : τ :=
∫

T
∇Xv|T : τ+

−
∑︁

F∈F i,DN
T

1
2

∫
F
(nTF ⊗ ⟦v⟧TF) : τ ∀τ ∈ P𝑘 (T)𝑑×𝑑 ,

where, for each F ∈ F i,DN
T , the jump of v across F is defined as

⟦v⟧TF :=


v|T − v|T′ if F ∈ F i

T ∩ Fi
T′ with T,T′ ∈ Tℎ, T ≠ T′,

2(v|T − gD) if F ∈ F DN
T .

(3.7)

Introducing, for any F ∈ F i,DN
T and any integer ℓ ≥ 0, the jump lifting operator 𝕽ℓ

FT : 𝐿2(F)𝑑 →

Pℓ (T)𝑑×𝑑 such that, for all φ ∈ 𝐿2(F)𝑑 and all τ ∈ Pℓ (T)𝑑×𝑑 ,∫
T
𝕽ℓ

FT(φ) : τ =
1
2

∫
F
(nTF ⊗ φ) : τ ,
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it holds, for all v ∈ 𝐻1(Tℎ)𝑑 ,

𝕲𝑘
𝑇 (v) = ∇Xv|𝑇 −

∑︁
F∈F i,DN

T

𝕽𝑘
FT (⟦v⟧TF) .

Based on definition (2.1.1), we introduce two discrete dG versions of the deformation gradient

for any T ∈ Tℎ : 𝕱𝑘
T(v) := 𝕲𝑘

T(v) + 1;

for any T ∈ Tℎ, F ∈ F i,DN
T : 𝕱𝑘+1

TF (v) := ∇Xv|T −𝕽𝑘+1
FT (⟦v⟧TF) + 1.

We remark that 𝕱𝑘
T relies on jump contributions over 𝜕T and jump lifting operator of degree 𝑘 , while

𝕱𝑘+1
TF relies solely on the jump lifting operator of degree 𝑘+1 over F. The idea to employ 𝑘+1 lifting

operators to get rid of stabilization parameters was first proposed by John et al. [55] in the context

of LDG discretizations of the Laplace operator with rigorous analysis covering the case of simplicial

meshes.

We introduce the scalar- and vector-valued broken polynomial spaces

P𝑘 (Tℎ) :=
{
𝑞ℎ = (𝑞T)T∈Tℎ : 𝑞𝑇 ∈ P𝑘 (T) for all T ∈ Tℎ

}
,

P𝑘 (Tℎ)𝑑 :=
{
vℎ = (vT)T∈Tℎ : vT ∈ P𝑘 (T)𝑑 for all T ∈ Tℎ

}
.

and the vector-valued polynomial space for Lagrange multipliers over Dirichlet boundaries

P𝑘 (F DL
ℎ

)𝑑 :=
{
ŝℎ = (ŝF)F∈F DL

ℎ

: ŝF ∈ P𝑘 (F)𝑑 for all F ∈ F DL
ℎ

}
.

Let the 𝑘 ≥ 1 denote the polynomial degree, let a mesh element T ∈ Tℎ and a mesh face F ∈ F DL
ℎ

be

fixed. Given (uℎ, 𝑝ℎ, λ̂ℎ) ∈ P𝑘 (Tℎ)𝑑 × P𝑘 (Tℎ) × P𝑘 (F DL
ℎ

)𝑑 , we define the local residuals

• 𝑟
dG,Lem
T

(
(uℎ, 𝑝ℎ, λ̂ℎ); •

)
: P𝑘 (T)𝑑 → R of the discrete Lagrangian equation of motion,

• 𝑟
dG,ic
T ((uℎ, 𝑝ℎ); •) : P𝑘 (T) → R of the discrete incompressibility constraint,

• 𝑟
dG,DL
F

(
(uℎ, 𝜆ℎ); •

)
: P𝑘 (F)𝑑 → R of the constraints on Dirichlet boundary,
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such that: for all vT ∈ P𝑘 (T)𝑑 , all 𝑞T ∈ P𝑘 (T) and all ŝF ∈ P𝑘 (F)

𝑟
dG,Lem
T

(
(uℎ, 𝑝ℎ, λ̂ℎ);vT

)
:=

∫
T
P (𝕱𝑘

T(uℎ), 𝑝ℎ) : ∇XvT+

−
∑︁

F∈F 𝑖,DN
T

∫
F

[{{
P (𝕱𝑘+1

TF (uℎ), 𝑝ℎ)
}}

F nTF
]
· vT+

+
∑︁

F∈F 𝑖,DN
T

∫
F
𝜂F

[{{
𝕽𝑘

FT(⟦u⟧TF)
}}

F nTF
]
· vT+

−
∫

T
f · vT −

∑︁
F∈F N

T

∫
F
TN · vT −

∑︁
F∈F DL

T

∫
F
λ̂ℎ · vT, (3.8)

𝑟
dG,ic
T ((uℎ, 𝑝ℎ); 𝑞T) :=

∫
T
(det(𝕱𝑘

T(uℎ)) − 1) 𝑞T+

+
∑︁
𝐹∈F i

T

∫
F
𝜂LBB ℎF ⟦𝑝ℎ⟧TF 𝑞T, (3.9)

𝑟
dG,DL
F

(
(uℎ, λ̂ℎ); ŝF

)
:=

∫
F
(uℎ − uD) · ŝF +

∑︁
E∈E𝑖

F

∫
E
𝜂
λ̂
ℎE ⟦λ̂ℎ⟧FE · ŝF. (3.10)

The average operator in Eq. (3.8) is such that, for all 𝜑 ∈ 𝐻1(Tℎ) and all 𝐹 ∈ Fℎ,

{{𝜑}}𝐹 :=


1
2
(
𝜑 |T + 𝜑 |T′

)
if F ∈ F i

T ∩ Fi
T′ with T,T′ ∈ Tℎ, T ≠ T′,

𝜑 |F otherwise.

with the understanding that {{•}}F acts component-wise when applied to vector and tensor functions.

Furthermore, for any E ∈ Ei
F, the edge jump operator in Eq. (3.10) reads

⟦v⟧FE := v|F − v|F′ if E ∈ EF ∩ EF′ with F, F′ ∈ F DL
ℎ

, F ≠ F′.

With ℎF and ℎE, we denote the diameter of a face or an edge, respectively. Note that ℎE = 1 if 𝑑 = 2.

The local residuals in (3.8)-(3.10) contain several stabilization terms and user-dependent stabilization

parameters 𝜂(•) > 0 dictated by stability requirements. The first term in the second line of (3.8) is a

stabilization term inspired by [56], where it was introduced to ensure coercivity of the BR1 formulation

proposed by Bassi and Rebay [28], see also [57]. The adaptive stabilization parameter 𝜂𝐹 is computed

as proposed by Eyck and co-workers [27,30], who first introduced the idea of adaptive stabilization in

the context of BR1 dG discretizations of nonlinear elasticity problems. A comprehensive description

of the procedure involved in the computation of 𝜂𝐹 will be given in Sec. 3.3.1. The last term in

(3.9), endowed with stabilization parameter 𝜂LBB, ensures LBB stability by penalizing the pressure

jumps across internal faces, see [58] and [32]. The second term in (3.10), endowed with stabilization
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parameter 𝜂
λ̂

, penalizes the Lagrange multipliers jumps across internal edges of Dirichlet boundaries.

We remark that, for the sake of consistency of the dG formulation, we do not penalize the jumps over

the sharp corners Γ𝑖
ℎ
. Indeed, since λ̂ℎ approximates the stress vector PN and the normal vector N is

discontinuous at the sharp corners Γ𝑖
ℎ
, Lagrange multipliers are discontinuous over each E ∈ E𝑏

F ∩ Γ𝑖
ℎ
.

Definitions of Ei
F, E𝑏

F and Γ𝑖
ℎ

are given in Sec. 3.2.1.

Assembling element-by-element the local residuals (3.8) and (3.9), the two global residuals

𝑟
dG,Lem
ℎ

(
(uℎ, 𝑝ℎ, λ̂ℎ); •

)
: P𝑘 (Tℎ)𝑑 → R and 𝑟

dG,ic
ℎ

((uℎ, 𝑝ℎ); •) : P𝑘 (Tℎ) → R are obtained i.e.

𝑟
dG,Lem
ℎ

(
(uℎ, 𝑝ℎ, λ̂ℎ);vℎ

)
:=

∑︁
T∈Tℎ

𝑟
dG,Lem
T

(
(uℎ, 𝑝ℎ, λ̂ℎ);vℎ |T

)
,

𝑟
dG,ic
ℎ

((uℎ, 𝑝ℎ); 𝑞ℎ) :=
∑︁
T∈Tℎ

𝑟
dG,ic
T

(
(uℎ, 𝑝ℎ); 𝑞ℎ |T

)
.

Similarly, the global residual 𝑟dG,DL
ℎ

(
(uℎ, λ̂ℎ); •

)
: P𝑘 (F DL

ℎ
)𝑑 → R is obtained assembling face-by-

face the local residual (3.10), i.e.

𝑟
dG,DL
ℎ

(
(uℎ, λ̂ℎ); ŝℎ

)
:=

∑︁
F∈F DL

ℎ

𝑟
dG,DL
F

(
(uℎ, λ̂ℎ); ŝℎ |F

)
.

Define, for the sake of brevity

W dG,𝑘

ie,ℎ = P𝑘 (Tℎ)𝑑 × P𝑘 (Tℎ) × P𝑘 (F DL
ℎ

)𝑑 ,

W dG,𝑘

ce,ℎ = P𝑘 (Tℎ)𝑑 × P𝑘 (F DL
ℎ

)𝑑 .

The discrete nonlinear elasticity problems reads as follows:

• Incompressible material: find (uℎ, 𝑝ℎ, λ̂ℎ) ∈ W dG,𝑘

𝑖𝑒,ℎ
such that

𝑟dG
ie,ℎ

(
(uℎ, 𝑝ℎ, λ̂ℎ); (vℎ, 𝑞ℎ, ŝℎ)

)
= 0 ∀(vℎ, 𝑞ℎ, ŝℎ) ∈ W dG,𝑘

𝑖𝑒,ℎ
, (3.11)

where, given (uℎ, 𝑝ℎ, ŝℎ) ∈ W dG,𝑘

𝑖𝑒,ℎ
, 𝑟dG

ie,ℎ

(
(uℎ, 𝑝ℎ, λ̂ℎ); •

)
: W dG,𝑘

𝑖𝑒,ℎ
→ R is such that

∀(vℎ, 𝑞ℎ, ŝℎ) ∈ W dG,𝑘

𝑖𝑒,ℎ

𝑟dG
ie,ℎ

(
(uℎ, 𝑝ℎ, λ̂ℎ); (vℎ, 𝑞ℎ, ŝℎ)

)
= 𝑟

dG,Lem
ℎ

(
(uℎ, 𝑝ℎ, λ̂ℎ);vℎ

)
+

+ 𝑟
dG,ic
ℎ

((uℎ, 𝑝ℎ); 𝑞ℎ) +

+ 𝑟
dG,DL
ℎ

(
(uℎ, λ̂ℎ); ŝℎ

)
;

(3.12)
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• Compressible material: find (uℎ, λ̂ℎ) ∈ W dG,𝑘

𝑐𝑒,ℎ
such that

𝑟dG
ce,ℎ

(
(uℎ, λ̂ℎ); (vℎ, ŝℎ)

)
= 0 ∀(vℎ, ŝℎ) ∈ W dG,𝑘

𝑐𝑒,ℎ
, (3.13)

where, given (uℎ, λ̂ℎ) ∈ W dG,𝑘

𝑐𝑒,ℎ
, 𝑟dG

ce,ℎ

(
(uℎ, λ̂ℎ); •

)
: W dG,𝑘

𝑐𝑒,ℎ
→ R is such that ∀(vℎ, ŝℎ) ∈

W dG,𝑘

𝑐𝑒,ℎ

𝑟dG
ce,ℎ (uℎ;vℎ) = 𝑟

dG,Lem
ℎ

(
(uℎ, λ̂ℎ); (vℎ, ŝℎ)

)
+ 𝑟

dG,DL
ℎ

(
(uℎ, λ̂ℎ); ŝℎ

)
. (3.14)

3.3.1 Adaptive stabilization for dG methods

If, on the one hand, the amount of stabilization required to ensure the coercivity of dG formulations

can be precisely estimated in the context of linear elasticity problems, see [14] and [16], on the other

hand, penalty parameters are not known a priori in the case of finite deformations of hyperelastic

materials, see [29] and [43]. This is an uncomfortable situation as excessive stabilization worsen the

condition number of system matrices and insufficient stabilization severely affects the robustness of

numerical schemes. As a result, a tedious trial and error approach would often be required in practice.

The adaptive stabilization strategies proposed and analysed by Eyck and co-workers [27]- [30] in the

context of BR1 dG formulations are a crucial tool for mitigating this drawback.

The adaptive stabilization introduced in (3.8), can be considered the natural extension of the approach

proposed in [30] to the BR2 dG discretization. The stabilization parameter 𝜂F is defined as follows

𝜂F = 𝜖 + 𝛽 𝜆F

where 𝜖, 𝛽 ≥ 0 are user-dependent parameters. Let a mesh element T ∈ Tℎ and a mesh face F ∈ F i,DN
T

be fixed, for each point X ∈ F

𝜆TF(X) = max

{
0,− min

0≠G∈R𝑑×𝑑

G : A(𝕱𝑘+1
TF (uℎ (X)), 𝑝ℎ) : G

G : G

}
and

𝜆F =


𝜆TF+𝜆T′F

2 if F ∈ F i
T ∩ Fi

T′ with T,T′ ∈ Tℎ, T ≠ T′,

𝜆TF if F ∈ F DN
T .

where A is the fourth-order elasticity tensor described in Sec. 2.3.3 and 𝜆TF is the mean value of

𝜆TF(X) over F.

As detailed in Itskov [59, 60], the nine (in 3D, six in 2D) eigenvalues 𝜆𝑖 of A can be obtained solving

the characteristic equation

det
(
A − 𝜆I

)
= 0 (3.15)
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where I = 𝛿𝑖𝑘𝛿 𝑗 𝑙 E𝑖 ⊗ E 𝑗 ⊗ E𝑘 ⊗ E𝑙 is the fourth-order identity tensor and the underline • indicates

one of the possible matrix form of a fourth-order tensor such that

A =



A0000 A0001 A0002 A0010 A0011 A0012 A0020 A0021 A0022

A0100 A0101 A0102 A0110 A0111 A0112 A0120 A0121 A0122

A0200 A0201 A0202 A0210 A0211 A0212 A0220 A0221 A0222

A1000 A1001 A1002 A1010 A1011 A1012 A1020 A1021 A1022

A1100 A1101 A1102 A1110 A1111 A1112 A1120 A1121 A1122

A1200 A1201 A1202 A1210 A1211 A1212 A1220 A1221 A1222

A2000 A2001 A2002 A2010 A2011 A2012 A2020 A2021 A2022

A2100 A2101 A2102 A2110 A2111 A2112 A2120 A2121 A2122

A2200 A2201 A2202 A2210 A2211 A2212 A2220 A2221 A2222


and

I =



1 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 1



.

Problem (3.15) is solved for each quadrature point of each mesh face at the first step of each Newton

iteration involved in the globalisation strategy presented in Sec. 3.6.

3.4 Hybridizable Discontinuous Galerkin formulation

Hybridizable Discontinuous Galerkin (HDG) methods are based on the following key features:

• discrete unknowns that are broken polynomials over mesh elements and mesh faces;

• local gradient reconstruction solving local problems involving element and element faces

unknowns;

• stabilization operators that rely on the jump between the trace of element unknowns and face

unknowns.
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In the following, we present the HDG method for nonlinear elasticity problems originally introduced

by Kabaria et al. [1]. We also consider the possibility to enforce Dirichlet boundary conditions using

the Lagrange Multiplier method.

Let Pℓ
𝑑

be the space of 𝑑-variate polynomials of total degree ≤ ℓ. We denote by Pℓ (T) the space

spanned by the restriction to T of functions in Pℓ
𝑑

and by Pℓ (F) the space spanned by the restriction to

F of functions in Pℓ
𝑑−1.

Let 𝑘 ≥ 1 be a fixed polynomial degree. In addition to element-based unknowns vT ∈ P𝑘 (T)𝑑 ,

the HDG methods also introduces, over the element boundary 𝜕T, the unknowns v𝜕T ∈ P𝑘 (FT)𝑑 =>
F∈FT P𝑘 (F) such that v𝜕T = (vF)F∈FT and vF ∈ P𝑘 (F)𝑑 . For future use, we define v𝜕TL = (vF)F∈F DL

T

with v𝜕TL ∈ P𝑘 (F DL
T )𝑑 =

>
F∈F DL

T
P𝑘 (F).

So, (vT, v𝜕T) identifies the pair of HDG local degrees of freedom that lives in

U 𝑘
T := P𝑘 (T)𝑑 × P𝑘 (FT)𝑑 .

For future use, we also define the global HDG space as

U 𝑘
ℎ

:= P𝑘 (Tℎ)𝑑 × P𝑘 (Fℎ)𝑑 (3.16)

where
P𝑘 (Tℎ)𝑑 :=

?
T∈Tℎ

P𝑘 (T)𝑑 ,

P𝑘 (Fℎ)𝑑 :=
?
F∈Fℎ

P𝑘 (F)𝑑 ,

so that an element of U 𝑘
ℎ

will be denoted as (vTℎ , vFℎ
).

The value of discrete face unknowns vF ∈ F DS
ℎ

on the Dirichlet boundary may be enforced strongly

relying on the modified space

U 𝑘,DS
ℎ

:=
{
(vTℎ , vFℎ

) ∈ U 𝑘
ℎ : vF = 𝚷𝑘

F(uD),∀F ∈ F DS
ℎ

}
where 𝚷𝑘

F is the 𝐿2-orthogonal projector on P𝑘 (F)𝑑 .

In each mesh cell T ∈ Tℎ, the local gradient reconstruction is enabled by an operator G 𝑘
T : U 𝑘

T →

P𝑘 (T)𝑑×𝑑 . The local reconstructed gradient G 𝑘
T (vT, v𝜕T) ∈ P𝑘 (T)𝑑×𝑑 is obtained solving the

problem ∫
T
GT(vT, v𝜕T) : τ =

∫
T
∇XvT : τ +

∑︁
F∈FT

∫
F
(vF − vT) · τ nTF (3.17)
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for all τ ∈ P𝑘 (T)𝑑×𝑑 . This problem requires to solve a small linear system involving the inversion of

a mass matrix associated with the basis of polynomial space P𝑘 (T)𝑑×𝑑 . Being G 𝑘
T a local operator,

the reconstruction of the gradient on each cell is a task suitable for parallel computation.

Being the gradient locally reconstructed in the polynomial space P𝑘 (T)𝑑×𝑑 , the semi-norm

| (vT, v𝜕T) |𝑇 for all (vT, v𝜕T) ∈ U 𝑘
T is not controlled by the norm ∥G 𝑘

T (vT, v𝜕T)∥𝐿2 (T) and a sta-

bilization term is required (see [2]).

The HDG stabilization term is based on the operator˜𝖘𝑘𝜕T : U 𝑘
T → P𝑘 (FT)𝑑 where

˜𝖘𝑘𝜕T(vT, v𝜕T) = vT − v𝜕T

when the same polynomial order 𝑘 is used for both element and face unknowns1. The reader can find

the alternative HHO version of this stabilization term in Sec. 3.5.2.

Before introducing the local residual used to solve the nonlinear elasticity problem, we define the

discrete HDG version of the local deformation gradient

F 𝑘
T (vT, v𝜕T) := G 𝑘

T (vT, v𝜕T) + 1

where G 𝑘
T from Eq. (3.17).

Now, given (uT, u𝜕T, λ̂𝜕TL) ∈ U 𝑘
T × P𝑘 (F DL

T )𝑑 , we are ready to introduce the local residual

𝑟
HDG,Lem
T ((uT, u𝜕T, λ̂𝜕TL); •) : U 𝑘

T → R of the discrete Lagrangian equation of motion

𝑟
HDG,Lem
T ((uT, u𝜕T, λ̂𝜕TL); (vT, v𝜕T)) =

=

∫
T
P (F 𝑘

T (uT, u𝜕T)) · G 𝑘
T (vT, v𝜕T)+

+
∫
𝜕T

𝜉˜𝖘𝑘𝜕T(uT, u𝜕T) : ˜𝖘𝑘𝜕T(vT, v𝜕T)+

−
∫

T
f · vT −

∑︁
F∈F N

T

∫
F
TN · vF+

−
∑︁

F∈F DL
T

∫
F
λ̂F · vF (3.18)

where, in the second line, 𝜉 is a user-dependent parameter that should be tweaked to ensure coercivity

of the method.

1. The stabilization operator becomes S̃𝑘
𝜕T = 𝚷𝑘

𝜕T (v𝜕T − vT) when cell unknowns are of order 𝑘 + 1.
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Enforcing the Dirichlet boundary conditions with the Lagrange multiplier method requires the defini-

tion of the local residual 𝑟HDG,DL
F (uF; •) : P𝑘 (F)𝑑 → R of the constraint, such that

𝑟
HDG,DL
F (uF; ŝF) :=

∫
F
(uF − uD) · ŝF. (3.19)

Define, for the sake of brevity,

W HDG,𝑘

ce,ℎ = U 𝑘,DS
ℎ

× P𝑘 (F DL
ℎ

)𝑑

and let be (uTℎ , uFℎ
, λ̂F DL

ℎ

) ∈ W HDG,𝑘

ce,ℎ .

The global residuals 𝑟
HDG,Lem
ℎ

((uTℎ , uFℎ
, λ̂F DL

ℎ

); •) : U 𝑘
ℎ
→ R is obtained assembling element-by-

element the local residual (3.18), such that

𝑟
HDG,Lem
ℎ

(
(uTℎ , uFℎ

, λ̂F DL
ℎ

); (vTℎ , vFℎ
)
)

:=

:=
∑︁
T∈Tℎ

𝑟
HDG,Lem
T

(
(uTℎ |T, uFℎ |𝜕T, λ̂F DL

ℎ
|𝜕TL); (vTℎ |T, vFℎ |𝜕T)

)
.

(3.20)

Analogously, assembling face-by-face the local residual (3.19), the global residual 𝑟HDG,DL
ℎ

(uℎ; •) :

P𝑘 (F DL
ℎ

)𝑑 → R is i.e.

𝑟
HDG,DL
ℎ

(
uFℎ

; ŝF DL
ℎ

)
:=

∑︁
F∈F DL

ℎ

𝑟
HDG,DL
F

(
uFℎ |F; ŝF DL

ℎ
|F
)
. (3.21)

Adding the global residual (3.21) of the Lagrange multipliers constraint to Eq. (3.20), the HDG

discretization of the nonlinear elasticity problem with compressible constitutive law reads as find

(uTℎ , uFℎ
, λ̂F DL

ℎ

) ∈ W HDG,𝑘

ce,ℎ such that

𝑟HDG
ce,ℎ

(
(uTℎ , uFℎ

, λ̂F DL
ℎ

); (vTℎ , vFℎ
, ŝF DL

ℎ

)
)
= 0 (3.22)

for all (vTℎ , vFℎ
, ŝF DL

ℎ

) ∈ W HDG,𝑘

ce,ℎ and where 𝑟HDG
ce,ℎ

(
(uTℎ , uFℎ

, λ̂F DL
ℎ

); •
)

: W HDG,𝑘

ce,ℎ → R is such

that for all (vTℎ , vFℎ
, ŝF DL

ℎ

) ∈ W HDG,𝑘

ce,ℎ

𝑟HDG
ce,ℎ

(
(uTℎ , uFℎ

, λ̂F DL
ℎ

); (vTℎ , vFℎ
, ŝF DL

ℎ

)
)
=

= 𝑟
HDG,Lem
ℎ

(
(uTℎ , uFℎ

, λ̂F DL
ℎ

); (vTℎ , vFℎ
)
)
+

+ 𝑟
HDG,DL
ℎ

(
uFℎ

; ŝF DL
ℎ

)
.

(3.23)

3.5 Hybrid High-Order formulations

Similarly to HDG methods, Hybrid High-Order (HHO) methods rely on discrete unknowns over mesh

element and mesh faces, local gradient reconstruction and stabilization terms. Two HHO methods,
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based on the original formulation introduced in [2], are here presented accounting for the possibility

to enforce Dirichlet boundary conditions using the Lagrange Multiplier method.

HHO and HDG formulations differ for the space in which the gradient is reconstructed (uHHO in

Sec. 3.5.1) or for the stabilization term (sHHO in Sec. 3.5.2). As reported in [2], in each mesh cell

T ∈ Tℎ, the discrete deformation gradient F 𝑘
T (vT, v𝜕T) := G 𝑘

T (vT, v𝜕T) + 1 is based on the local

gradient reconstruction enabled by the operator G 𝑘
T : U 𝑘

T → R(T)𝑑×𝑑 from Eq. (3.17). R(T)𝑑×𝑑

may coincides with one of the following spaces: P𝑘+1(T)𝑑×𝑑 or (RTN𝑘
𝑑
(T))𝑑×𝑑 in the context of the

unstabilized methods and P𝑘 (T)𝑑×𝑑 in the context of stabilized methods.

3.5.1 Unstabilized HHO method

Set R(T)𝑑×𝑑 = P𝑘+1(T)𝑑×𝑑 such that the local discrete gradient G 𝑘
T (vT, v𝜕T) is reconstructed in

P𝑘+1(T)𝑑×𝑑 (the use of the RTN space is not investigated in this work, see e.g. [2] for further details).

Given (uT, u𝜕T, λ̂𝜕TL) ∈ U 𝑘
T × P𝑘 (F DL

T )𝑑 , the local residual of the discrete Lagrangian equation of

motion 𝑟
uHHO,Lem
T ((uT, u𝜕T, λ̂𝜕TL), •) : U 𝑘

T → R reads

𝑟
uHHO,Lem
T ((uT, u𝜕T, λ̂𝜕TL); (vT, v𝜕T)) =

=

∫
T
P (F 𝑘

T (uT, u𝜕T), 0) : G 𝑘
T (vT, v𝜕T)+

−
∫

T
f · vT −

∑︁
F∈F N

T

∫
F
TN · vF+

−
∑︁

F∈F DL
T

∫
F
λ̂F · vF. (3.24)

Enforcing the Dirichlet boundary conditions with the Lagrange multiplier method requires the defini-

tion of the local residual 𝑟HHO,DL
F (uF; •) : P𝑘 (F)𝑑 → R of the constraint, such that

𝑟
HHO,DL
F (uF; ŝF) :=

∫
F
(uF − uD) · ŝF. (3.25)

where uF ∈ P𝑘 (F DL
T )𝑑 .

Define, for the sake of brevity,

W HHO,𝑘

ce,ℎ = U 𝑘,DS
ℎ

× P𝑘 (F DL
ℎ

)𝑑

and let be (uTℎ , uFℎ
, λ̂F DL

ℎ

) ∈ W HHO,𝑘

ce,ℎ .

The global residuals 𝑟uHHO,Lem
ℎ

((uTℎ , uFℎ
, λ̂F DL

ℎ

); •) : U 𝑘
ℎ
→ R is obtained assembling element-by-

element the local residual (3.24) i.e.

𝑟
uHHO,Lem
ℎ

(
(uTℎ , uFℎ

, λ̂F DL
ℎ

); (vTℎ , vFℎ
)
)

:=

:=
∑︁
T∈Tℎ

𝑟
uHHO,Lem
T

(
(uTℎ |T, uFℎ |𝜕T, λ̂F DL

ℎ
|𝜕TL); (vTℎ |T, vFℎ |𝜕T)

)
.

(3.26)
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Analogously, the global residual 𝑟HHO,DL
ℎ

(uFℎ
; •) : P𝑘 (F DL

ℎ
)𝑑 → R is retrieved assembling face-by-

face the local residual (3.25), i.e.

𝑟
HHO,DL
ℎ

(
uFℎ

; ŝF DL
ℎ

)
:=

∑︁
F∈F DL

ℎ

𝑟
HHO,DL
F

(
uFℎ |F; ŝF DL

ℎ
|F
)
. (3.27)

Given (uTℎ , uFℎ
, λ̂F DL

ℎ

) ∈ W HHO,𝑘

ce,ℎ , the uHHO discretization of the nonlinear compressible elasticity

problem reads as find (uTℎ , uFℎ
, λ̂F DL

ℎ

) ∈ W HHO,𝑘

ce,ℎ such that

𝑟uHHO
ce,ℎ

(
(uTℎ , uFℎ

, λ̂F DL
ℎ

); (vTℎ , vFℎ
, ŝF DL

ℎ

)
)
= 0 (3.28)

for all (vTℎ , vFℎ
, ŝF DL

ℎ

) ∈ W HHO,𝑘

ce,ℎ and where 𝑟uHHO
ce,ℎ

(
(uTℎ , uFℎ

, λ̂F DL
ℎ

); •
)

: W HHO,𝑘

ce,ℎ → R is such

that for all (vTℎ , vFℎ
, ŝF DL

ℎ

) ∈ W HHO,𝑘

ce,ℎ

𝑟uHHO
ce,ℎ

(
(uTℎ , uFℎ

, λ̂F DL
ℎ

); (vTℎ , vFℎ
, ŝF DL

ℎ

)
)
=

= 𝑟
uHHO,Lem
ℎ

(
(uTℎ , uFℎ

, λ̂F DL
ℎ

); (vTℎ , vFℎ
)
)
+

+ 𝑟
HHO,DL
ℎ

(
uFℎ

; ŝF DL
ℎ

)
.

3.5.2 Stabilized HHO method

The gradient is reconstructed locally in the polynomial space R(T)𝑑×𝑑 = P𝑘 (T)𝑑×𝑑 for all T ∈ Tℎ.

The HHO stabilization term is based on the definition of the local displacement reconstruction operator

D𝑘+1
T : U 𝑘

T → P𝑘+1(T)𝑑 . The reconstructed displacements D𝑘+1
T (vT, v𝜕T) ∈ P𝑘+1(T)𝑑 is obtained

solving a Neumann problem in T such than, for all w ∈ P𝑘+1(T)𝑑∫
T
∇XD𝑘+1

T (vT, v𝜕T) : ∇Xw =

∫
T
∇XvT : ∇Xw

+
∑︁
F∈FT

∫
F
(vF − vT) · ∇XwnTF

and additionally enforcing that ∫
T
D𝑘+1

T (vT, v𝜕T) 𝑑T =

∫
T
vT 𝑑T.

The stabilization term is based on the usual operator for HHO methods 𝖘𝑘
𝜕T : U 𝑘

T → P𝑘 (FT)𝑑 such

that, for all (vT, v𝜕T) ∈ U 𝑘
T ,

𝖘𝑘
𝜕T(vT, v𝜕T) = 𝚷𝑘

𝜕T

(
v𝜕T −D𝑘+1

T (vT, v𝜕T) |𝜕T+

−
(
vT −𝚷𝑘

T(D
𝑘+1
T (vT, v𝜕T) )

)
|𝜕T

)
. (3.29)
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Now, given (uT, u𝜕T, λ̂𝜕TL) ∈ U 𝑘
T × P𝑘 (F DL

T )𝑑 , we are ready to introduce the local residual

𝑟
sHHO,Lem
T ((uT, u𝜕T, λ̂𝜕TL), •) : U 𝑘

T → R of the discrete Lagrangian equation of motion

𝑟
sHHO,Lem
T ((uT, u𝜕T, λ̂𝜕TL); (vT, v𝜕T)) =

=

∫
T
P (F 𝑘

T (uT, u𝜕T)) : G 𝑘
T (vT, v𝜕T)+

+
∫
𝜕T

𝜅

ℎ𝜕T
𝖘𝑘
𝜕T(uT, u𝜕T) · 𝖘𝑘𝜕T(vT, v𝜕T)+

−
∫

T
f · vT −

∑︁
F∈F N

T

∫
F
TN · vF+

−
∑︁

F∈F DL
T

∫
F
λ̂F · vF (3.30)

where ℎ𝜕T is such that ℎ𝜕T |F = ℎF with ℎF the face diameter of F and 𝜅 = 𝜅0 𝜇 with 𝜅0 a user-dependent

parameter for scaling the stabilization.

As in previous paragraphs, let be (uTℎ , uFℎ
, λ̂F DL

ℎ

) ∈ W HHO,𝑘

ce,ℎ , assembling element-by-element the

local residual (3.30), the global residuals 𝑟sHHO,Lem
ℎ

((uTℎ , uFℎ
, λ̂F DL

ℎ

); •) : U 𝑘
ℎ
→ R is i.e.

𝑟
sHHO,Lem
ℎ

(
(uTℎ , uFℎ

, λ̂F DL
ℎ

); (vTℎ , vFℎ
)
)

:=

:=
∑︁
T∈Tℎ

𝑟
sHHO,Lem
T

(
(uTℎ |T, uFℎ |𝜕T, λ̂F DL

ℎ
|𝜕TL); (vTℎ |T, vFℎ |𝜕T)

)
.

(3.31)

Adding the global residual (3.27) of the Lagrange multipliers constraint, the sHHO discretization of

the nonlinear elasticity problem with compressible constitutive law reads as find (uTℎ , uFℎ
, λ̂F DL

ℎ

) ∈

W HHO,𝑘

ce,ℎ such that

𝑟sHHO
ce,ℎ

(
(uTℎ , uFℎ

, λ̂F DL
ℎ

); (vTℎ , vFℎ
, ŝF DL

ℎ

)
)
= 0 (3.32)

for all (vTℎ , vFℎ
, ŝF DL

ℎ

) ∈ W HHO,𝑘

ce,ℎ and where 𝑟sHHO
ce,ℎ

(
(uTℎ , uFℎ

, λ̂F DL
ℎ

); •
)

: W HHO,𝑘

ce,ℎ → R is such

that for all (vTℎ , vFℎ
, ŝF DL

ℎ

) ∈ W HHO,𝑘

ce,ℎ

𝑟sHHO
ce,ℎ

(
(uTℎ , uFℎ

, λ̂F DL
ℎ

); (vTℎ , vFℎ
, ŝF DL

ℎ

)
)
=

= 𝑟
sHHO,Lem
ℎ

(
(uTℎ , uFℎ

, λ̂F DL
ℎ

); (vTℎ , vFℎ
)
)
+

+ 𝑟
HHO,DL
ℎ

(
uFℎ

; ŝF DL
ℎ

)
.
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3.6 Incremental load method

Problems (3.11), (3.13), (3.22), (3.28) and (3.32) are solved by means of Newton’s method. The same

procedure is employed for dG, HDG and HHO methods, so, we neglect the apices (dG, HDG, uHHO

and sHHO) for sake of simplicity.

In order to globalize the convergence of the Newton iteration towards the equilibrium configuration,

we adopt the incremental method, see e.g. [4]. The idea is to define a quasi-static loading path that

allows to reach the final configuration by passing through a sequence of intermediate equilibrium states.

To this end, an incremental percentage of the external solicitation is imposed at each intermediate

step 𝑖 = 1, ...𝑁−1, where 𝑁 is the step corresponding to the final configuration. In particular, for

𝑖 = 1, 2..., 𝑁 , we apply Newton’s method to solve the following problem: find w𝑖
ℎ
∈ W 𝑘

•,ℎ such that

𝑟𝑖•,ℎ (w
𝑖
ℎ; zℎ) = 0, ∀zℎ ∈ W 𝑘

•,ℎ (3.33)

where 𝑟𝑖•,ℎ (∗; ∗) is one of the residuals defined in (3.12)-(3.14)-(3.23), i.e. • ∈ {ce,ie}, but the external

solicitations in (3.8), see also (3.7), and (3.18) are replaced by

f̃ =
𝑖

𝑁
f , t̃N =

𝑖

𝑁
tN, ũD =

𝑖

𝑁
uD.

Clearly, w𝑁
ℎ

is the solution of one of the problems in (3.11)-(3.13)-(3.22). Nevertheless, since each

state of the sequence is incremental with respect to the previous configuration, convergence of New-

ton’s method is guaranteed providing 𝑁 big enough.

As described in Alg. 3.1, Newton’s method applied to problem (3.33) reads:

Set the initial guess w𝑖
ℎ
= w𝑖−1

ℎ
;

while 𝛿wℎ is too large do
find 𝛿wℎ ∈ W 𝑘

•,ℎ such that:(
J•,ℎ (w𝑖

ℎ)𝛿wℎ, zℎ
)
𝐿2 (Ω) = −𝑟𝑖•,ℎ (w

𝑖
ℎ; zℎ), ∀zℎ ∈ W 𝑘

•,ℎ; (3.34)

set w𝑖
ℎ
+= 𝛿wℎ;

end
Algorithm 3.1: Newton method’s procedure.

where, for each wℎ ∈ W 𝑘
•,ℎ, the Jacobian operator J•,ℎ : W 𝑘

•,ℎ → W 𝑘
•,ℎ is defined such that

(
J•,ℎ (wℎ)yℎ, zℎ

)
𝐿2 (Ω) =

𝑑

𝑑𝜖
𝑟•,ℎ (wℎ + 𝜖yℎ; zℎ)

����
𝜖=0

, ∀yℎ, zℎ ∈ W 𝑘
•,ℎ.
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In what follows, we present the Jacobian operators for all the nonconforming methods introduced in

this work. In particular, the entire derivation is proposed only for the dG formulation. However, this

procedure is valid for all the other discretizations.

3.6.1 Derivation of Jacobian operators for dG formulations

In the incompressible regime, the Jacobian operator is stated as(
JdG

ie,ℎ (wℎ)𝛿wℎ, zℎ

)
𝐿2 (Ω)

=
∑︁
T∈Tℎ

𝜕

𝜕𝜖

(
𝑟

dG,Lem
T

(
(uℎ + 𝜖𝛿uℎ, 𝑝ℎ, λ̂ℎ);vT

)
+

+ 𝑟
dG,Lem
T

(
(uℎ, 𝑝ℎ + 𝜖𝛿𝑝ℎ, λ̂ℎ);vT

)
+

+ 𝑟
dG,Lem
T

(
(uℎ, 𝑝ℎ, λ̂ℎ + 𝜖𝛿λ̂ℎ);vT

)
+

+ 𝑟
dG,ic
T

(
(uℎ + 𝜖𝛿uℎ, 𝑝ℎ); 𝑞ℎ |T

)
+

+ 𝑟
dG,ic
T

(
(uℎ, 𝑝ℎ + 𝜖𝛿𝑝ℎ); 𝑞ℎ |T

)
+

+ 𝑟
dG,DL
ℎ

(
(uℎ + 𝜖𝛿uℎ, λ̂ℎ); ŝℎ

)
+

+ 𝑟
dG,DL
ℎ

(
(uℎ, λ̂ℎ + 𝜖𝛿λ̂ℎ); ŝℎ

) )����
𝜖=0

.

(3.35)

On the other hand, in the compressible regime,(
JdG

ce,ℎ (uℎ)𝛿uℎ, vℎ

)
𝐿2 (Ω)

=
∑︁
T∈Tℎ

𝜕

𝜕𝜖

(
𝑟

dG,Lem
T

(
(uℎ + 𝜖𝛿uℎ, 0, λ̂ℎ);vT

)
+

+ 𝑟
dG,Lem
T

(
(uℎ, 0, λ̂ℎ + 𝜖𝛿λ̂ℎ);vT

)
+

+ 𝑟
dG,DL
ℎ

(
(uℎ + 𝜖𝛿uℎ, λ̂ℎ); ŝℎ

)
+

+ 𝑟
dG,DL
ℎ

(
(uℎ, λ̂ℎ + 𝜖𝛿λ̂ℎ); ŝℎ

) )����
𝜖=0

.

(3.36)

The computation of directional derivatives of local residuals in Eqs. (3.35) and (3.36) are presented.

Firstly, we consider the residual of the discrete Lagrangian equation of motion. The directional

derivative respect to uℎ reads

𝜕

𝜕𝜖
𝑟

dG,Lem
T

(
(uℎ + 𝜖𝛿uℎ, 𝑝ℎ, λ̂ℎ);vT

) ����
𝜖=0

=

=

∫
T

(
𝜕𝕱𝑘

T(uℎ + 𝜖𝛿uℎ)
𝜕𝜖

:
𝜕P (𝕱𝑘

T(uℎ + 𝜖𝛿uℎ), 𝑝ℎ)
𝜕𝕱𝑘

T(uℎ + 𝜖𝛿uℎ)

) ����
𝜖=0

: ∇XvT+

−
∑︁

F∈F 𝑖,DN
T

∫
F

[{{
𝜕𝕱𝑘+1

TF (uℎ + 𝜖𝛿uℎ)
𝜕𝜖

:
𝜕P (𝕱𝑘+1

TF (uℎ + 𝜖𝛿uℎ), 𝑝ℎ)
𝜕𝕱𝑘+1

TF (uℎ + 𝜖𝛿uℎ)

}}
F

nTF

]
𝜖=0

· vT+

+
∑︁

F∈F 𝑖,DN
T

∫
F
𝜂F

{{
𝜕𝕽𝑘

FT(⟦uℎ + 𝜖𝛿uℎ⟧TF)
𝜕𝜖

����
𝜖=0

nTF

}}
F

· vT.
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We first compute the directional derivatives of the discrete deformation gradient

𝜕𝕱𝑘
T(uℎ + 𝜖𝛿uℎ)

𝜕𝜖

����
𝜖=0

= 𝕲𝑘
𝑇 (𝛿uℎ),

𝜕𝕱𝑘+1
TF (uℎ + 𝜖𝛿uℎ)

𝜕𝜖

����
𝜖=0

= ∇X𝛿u|T −𝕽𝑘+1
FT (⟦𝛿uℎ⟧TF).

From the definition of A, the fourth-order elasticity tensor (see Sec. 2.3.3 for further information), we

are able to infer
𝜕P (𝕱𝑘

T(uℎ + 𝜖𝛿uℎ), 𝑝ℎ)
𝜕𝕱𝑘

T(uℎ + 𝜖𝛿uℎ)

����
𝜖=0

= A(𝕱𝑘
T(uℎ), 𝑝ℎ),

𝜕P (𝕱𝑘+1
TF (uℎ + 𝜖𝛿uℎ), 𝑝ℎ)

𝜕𝕱𝑘+1
TF (uℎ + 𝜖𝛿uℎ)

����
𝜖=0

= A(𝕱𝑘+1
TF (uℎ), 𝑝ℎ).

Moreover, being 𝕽𝑘
FT a linear operator, we get

𝜕

𝜕𝜖
𝕽𝑘

FT(⟦uℎ + 𝜖𝛿uℎ⟧TF)
����
𝜖=0

=
𝜕

𝜕𝜖

(
𝕽𝑘

FT(⟦uℎ⟧TF) +𝕽𝑘
FT(⟦𝜖𝛿uℎ⟧TF)

)����
𝜖=0

=
𝜕

𝜕𝜖

(
𝜖 𝕽𝑘

FT(⟦𝛿uℎ⟧TF)
) ����

𝜖=0

= 𝕽𝑘
FT(⟦𝛿uℎ⟧TF).

Using the previous results, we finally obtain

𝜕

𝜕𝜖
𝑟

dG,Lem
T ((uℎ + 𝜖𝛿uℎ, 𝑝ℎ);vT)

����
𝜖=0

=

=
∑︁
T∈Tℎ

( ∫
T

[
𝕲𝑘

𝑇 (𝛿uℎ) : A(𝕱𝑘
T(uℎ), 𝑝ℎ)

]
: ∇XvT+

−
∑︁

F∈F 𝑖,DN
T

∫
F

[{{(
∇X𝛿u|T−𝕽𝑘+1

FT (⟦𝛿uℎ⟧TF)
)

: A(𝕱𝑘+1
TF (uℎ), 𝑝ℎ)

}}
F
nTF

]
· vT+

+
∑︁

F∈F 𝑖,DN
T

∫
F
𝜂F

[{{
𝕽𝑘

FT(⟦𝛿uℎ⟧TF)
}}

F nTF
]
· vT. (3.37)

The directional derivative respect to 𝑝ℎ reads

𝜕

𝜕𝜖
𝑟

dG,Lem
T

(
(uℎ, 𝑝ℎ + 𝜖𝛿𝑝ℎ, λ̂ℎ);vT

) ����
𝜖=0

=

=

∫
T

𝜕P (𝕱𝑘
T(uℎ), 𝑝ℎ + 𝜖𝛿𝑝ℎ)

𝜕𝜖

����
𝜖=0

: ∇XvT+

−
∑︁

F∈F 𝑖,DN
T

∫
F

[{{
𝜕P (𝕱𝑘+1

TF (uℎ), 𝑝ℎ + 𝜖𝛿𝑝ℎ)
𝜕𝜖

����
𝜖=0

}}
F

nTF

]
· vT,

where
𝜕P (𝕱𝑘

T(uℎ), 𝑝ℎ + 𝜖𝛿𝑝ℎ)
𝜕𝜖

����
𝜖=0

= −𝛿𝑝ℎ det(𝕱𝑘
T(uℎ)) [𝕱𝑘

T(uℎ)]−⊺,
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𝜕P (𝕱𝑘+1
TF (uℎ), 𝑝ℎ + 𝜖𝛿𝑝ℎ)

𝜕𝜖

����
𝜖=0

= −𝛿𝑝ℎ det(𝕱𝑘+1
TF (uℎ)) [𝕱𝑘+1

TF (uℎ)]−⊺ .

This leads to the following result

𝜕

𝜕𝜖
𝑟

dG,Lem
T

(
(uℎ, 𝑝ℎ + 𝜖𝛿𝑝ℎ, λ̂ℎ);vT

) ����
𝜖=0

=

= −
∫

T
𝛿𝑝ℎ det(𝕱𝑘

T(uℎ)) [𝕱𝑘
T(uℎ)]−⊺ : ∇XvT+

−
∑︁

F∈F 𝑖,DN
T

∫
F

[{{
𝛿𝑝ℎ det(𝕱𝑘+1

TF (uℎ)) [𝕱𝑘+1
TF (uℎ)]−⊺

}}
F nTF

]
· vT.

(3.38)

The directional derivative respect to λ̂ℎ reads

𝜕

𝜕𝜖
𝑟

dG,Lem
T

(
(uℎ, 𝑝ℎ, λ̂ℎ + 𝜖𝛿λ̂ℎ);vT

) ����
𝜖=0

=

= −
∑︁

F∈F DL
T

∫
F

𝜕

𝜕𝜖
(λ̂ℎ + 𝜖𝛿λ̂ℎ)

����
𝜖=0

· vT =

= −
∑︁

F∈F DL
T

∫
F
𝛿λ̂ℎ · vT.

(3.39)

Let’s now compute the directional derivatives of the residual of the incompressibility constraint. The

directional derivative respect to uℎ reads

𝜕

𝜕𝜖
𝑟

dG,ic
T

(
(uℎ + 𝜖𝛿uℎ, 𝑝ℎ); 𝑞ℎ |T

) ����
𝜖=0

=

=

∫
T

(
𝜕 det(𝕱𝑘

T(uℎ + 𝜖𝛿uℎ))
𝜕𝕱𝑘

T(uℎ + 𝜖𝛿uℎ)
:
𝜕𝕱𝑘

T(uℎ + 𝜖𝛿uℎ)
𝜕𝜖

) ����
𝜖=0

𝑞T

with
𝜕 det(𝕱𝑘

T(uℎ + 𝜖𝛿uℎ))
𝜕𝕱𝑘

T(uℎ + 𝜖𝛿uℎ)

����
𝜖=0

= det(𝕱𝑘
T(uℎ)) [𝕱𝑘

T(uℎ)]−⊺

such that

𝜕

𝜕𝜖
𝑟

dG,ic
T

(
(uℎ + 𝜖𝛿uℎ, 𝑝ℎ); 𝑞ℎ |T

) ����
𝜖=0

=

=

∫
T

(
det(𝕱𝑘

T(uℎ)) [𝕱𝑘
T(uℎ)]−⊺ : 𝕲𝑘

𝑇 (𝛿uℎ)
)
𝑞T.

(3.40)
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Similarly, the directional derivative respect to 𝑝ℎ reads

𝜕

𝜕𝜖
𝑟

dG,ic
T ((uℎ, 𝑝ℎ + 𝜖𝛿𝑝ℎ); 𝑞ℎ |T)

����
𝜖=0

=

=
∑︁
𝐹∈F i

T

∫
F
𝜂LBB ℎF

�
𝜕𝑝ℎ + 𝜖𝛿𝑝ℎ

𝜕𝜖

����
𝜖=0

�
TF

𝑞T =

=
∑︁
𝐹∈F i

T

∫
F
𝜂LBB ℎF ⟦𝛿𝑝ℎ⟧TF 𝑞T. (3.41)

Finally, we compute the directional derivatives of the residual of the Lagrange multiplier constraint

with its stabilizing term. The directional derivative respect to uℎ reads

𝜕

𝜕𝜖
𝑟

dG,DL
ℎ

(
(uℎ + 𝜖𝛿uℎ, λ̂ℎ); ŝℎ

) ����
𝜖=0

=

∫
F

𝜕

𝜕𝜖
(uℎ + 𝜖𝛿uℎ − gD)

����
𝜖=0

· ŝF =

=

∫
F
𝛿uℎ · ŝF

(3.42)

while, the directional derivative respect to λ̂ℎ reads

𝜕

𝜕𝜖
𝑟

dG,DL
ℎ

(
(uℎ, λ̂ℎ + 𝜖𝛿λ̂ℎ); ŝℎ

) ����
𝜖=0

=

=
∑︁

E∈E𝑖
F

∫
E
𝜂
λ̂
ℎE

�
𝜕λ̂ℎ + 𝜖𝛿λ̂ℎ

𝜕𝜖

����
𝜖=0

�
FE

· ŝF =

=
∑︁

E∈E𝑖
F

∫
E
𝜂
λ̂
ℎE ⟦𝛿λ̂ℎ⟧FE · ŝF.

(3.43)
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According to the definitions in Sec. 2.3.3, the dG formulation in Sec. 3.3 and gathering the information

from Eqs. (3.37)-(3.43), the dG version of the Jacobian operator for the incompressible regime reads

(
JdG

ie,ℎ (wℎ)𝛿wℎ, zℎ

)
𝐿2 (Ω)

=

=
∑︁
T∈Tℎ

( ∫
T

[
𝕲𝑘

𝑇 (𝛿uℎ) : A(𝕱𝑘
T(uℎ), 𝑝ℎ)

]
: ∇XvT+

−
∑︁

F∈F 𝑖,DN
T

∫
F

[{{(
∇X𝛿uℎ |T−𝕽𝑘+1

FT (⟦𝛿uℎ⟧TF)
)

: A(𝕱𝑘+1
TF (uℎ), 𝑝ℎ)

}}
F
nTF

]
· vT+

+
∑︁

F∈F 𝑖,DN
T

∫
F
𝜂F

[{{
𝕽𝑘

FT(⟦𝛿uℎ⟧TF)
}}

F nTF
]
· vT+

−
∫

T
𝛿𝑝ℎ det(𝕱𝑘

T(uℎ)) [𝕱𝑘
T(uℎ)]−⊺ : ∇XvT+

−
∑︁

F∈F 𝑖,DN
T

∫
F

[{{
𝛿𝑝ℎ det(𝕱𝑘+1

TF (uℎ)) [𝕱𝑘+1
TF (uℎ)]−⊺

}}
F nTF

]
· vT+

+
∫

T

(
det(𝕱𝑘

T(uℎ)) [𝕱𝑘
T(uℎ)]−⊺ : 𝕲𝑘

𝑇 (𝛿uℎ)
)
𝑞T+

∑︁
𝐹∈F i

T

∫
F
𝜂LBB ℎF ⟦𝛿𝑝ℎ⟧TF 𝑞T

)
+

+
∑︁

F∈F DL
ℎ

(
−

∫
F
𝛿λ̂ℎ · vT +

∫
F
𝛿uℎ · ŝF +

∑︁
E∈E𝑖

F

∫
E
𝜂
λ̂
ℎE ⟦𝛿λ̂ℎ⟧FE · ŝF

)
.

We remark that the compressible regime can be retrieved setting 𝑝ℎ = 0 such that

(
JdG

ce,ℎ (wℎ)𝛿wℎ, zℎ

)
𝐿2 (Ω)

=

=
∑︁
T∈Tℎ

( ∫
T

[
𝕲𝑘

𝑇 (𝛿uℎ) : A(𝕱𝑘
T(uℎ))

]
: ∇XvT+

−
∑︁

F∈F 𝑖,DN
T

∫
F

[{{(
∇X𝛿uℎ |T −𝕽𝑘+1

FT (⟦𝛿uℎ⟧TF)
)

: A(𝕱𝑘+1
TF (uℎ))

}}
F
nTF

]
· vT+

+
∑︁

F∈F 𝑖,DN
T

∫
F
𝜂F

{{
𝕽𝑘

FT(⟦𝛿uℎ⟧TF) nTF
}}

F · vT

)
+

+
∑︁

F∈F DL
ℎ

(
−

∫
F
𝛿λ̂ℎ · vT +

∫
F
𝛿uℎ · ŝF +

∑︁
E∈E𝑖

F

∫
E
𝜂
λ̂
ℎE ⟦𝛿λ̂ℎ⟧FE · ŝF

)
.
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3.6.2 Jacobian operator for HDG formulations

Coherently with the definitions in Sec. 3.4, the procedure described in Sec. 3.6.1 for the derivation of

the Jacobian operator of dG formulations can be also applied to HDG obtaining(
JHDG

ce,ℎ (wℎ)𝛿wℎ, zℎ

)
𝐿2 (Ω)

=

=
∑︁
T∈Tℎ

( ∫
T

[
G 𝑘
𝑇 (𝛿uTℎ |T, 𝛿uFℎ |𝜕T) : A(F 𝑘

T (uTℎ |T))
]

: G 𝑘
𝑇 (vTℎ |T, vFℎ |𝜕T)+

+
∫
𝜕T

𝜉˜𝖘𝑘𝜕T(𝛿uTℎ |T, 𝛿uFℎ |𝜕T) ·˜𝖘𝑘𝜕T(vTℎ |T, vFℎ |𝜕T)
)
+

+
∑︁

F∈F DL
ℎ

(
−

∫
F
𝛿λ̂F DL

ℎ
|F · vFℎ |F +

∫
F
𝛿uFℎ |F · ŝF DL

ℎ
|F

)
.

Being a hybrid approximation method, the problem (3.34) can be solved using the static condensation

(or Schur complement) technique. The latter consists of expressing the local cell unknowns uT in

terms of local face unknowns u𝜕T. As a result, eliminating the cell unknowns, the static condensation

technique allows to reduce (3.34) to a linear system in term of face unknowns only. Further information

on the topic are presented in the HHO literature e.g. the manuscript [45] and in [2].

3.6.3 Jacobian operator for HHO formulations

Computing the directional derivatives of the global residuals (3.28) and (3.32) following the procedure

described in Sec. 3.6.1 for dG methods, the Jacobian operator for the uHHO formulation reads(
JuHHO

ce,ℎ (wℎ)𝛿wℎ, zℎ

)
𝐿2 (Ω)

=

=
∑︁
T∈Tℎ

∫
T

[
G 𝑘
𝑇 (𝛿uTℎ |T, 𝛿uFℎ |𝜕T) : A(F 𝑘

T (uTℎ |T))
]

: G 𝑘
𝑇 (vTℎ |T, vFℎ |𝜕T)+

+
∑︁

F∈F DL
ℎ

(
−

∫
F
𝛿λ̂F DL

ℎ
|F · vFℎ |F +

∫
F
𝛿uFℎ |F · ŝF DL

ℎ
|F

)
,

and for the sHHO formulation reads(
J sHHO

ce,ℎ (wℎ)𝛿wℎ, zℎ

)
𝐿2 (Ω)

=

=
∑︁
T∈Tℎ

( ∫
T

[
G 𝑘
𝑇 (𝛿uTℎ |T, 𝛿uFℎ |𝜕T) : A(F 𝑘

T (uTℎ |T))
]

: G 𝑘
𝑇 (vTℎ |T, vFℎ |𝜕T)+

+
∫
𝜕T

𝜅

ℎ𝜕T
𝖘𝑘
𝜕T(𝛿uTℎ |T, 𝛿uFℎ |𝜕T) · 𝖘𝑘𝜕T(vTℎ |T, vFℎ |𝜕T)

)
+

+
∑︁

F∈F DL
ℎ

(
−

∫
F
𝛿λ̂F DL

ℎ
|F · vFℎ |F +

∫
F
𝛿uFℎ |F · ŝF DL

ℎ
|F

)
.
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3.7 Conclusions

In this chapter, we presented state-of-the-art nonconforming finite element schemes for nonlinear

elasticity problems. Numerical validation of dG formulations and evaluation of the efficiency of the

incremental load method will be considered in Chap. 4. Numerical validation of HDG and HHO

formulations will be considered in Chap. 5.

The possibility to enforce Dirichlet boundary conditions by means of Lagrange multipliers has been

discussed for all the numerical schemes. Interestingly HHO and HDG formulations do not require

additional penalty terms for the jumps of Lagrange multipliers over boundary edges in order to achieve

stability. This basic observation has important practical consequences in the field of computational

contact mechanics. Indeed, stabilization terms require to track and identify the sharp corners of the

computational domain boundary whose evolution along the deformation path is also influenced by the

geometry of obstacles the body comes into contact with. Based on this observation HDG formulations

will be the preferred choice in Chap. 6, where a framework for nonlinear elasticity problems featuring

frictionless contact constraints will be introduced.
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Chapter 4. Numerical Validation of BR2 Discontinuous

Galerkin Formulations for Finite Hyperelastic Deformations

The BR2 dG framework for finite deformations of elastic solids presented in Chap. 3 is, herein, val-

idated and tested. The numerical investigation performed on challenging 2D and 3D test cases will

focus on the effectiveness of the dG framework in practice.

At each loading step of the incremental method, we have to solve a sequence of linear systems as

expected from Newton’s method. The linear solver efficiency is crucial for the performance of the

solution strategy, especially for isochoric deformation. An agglomeration based ℎ-multigrid precon-

ditioned GMRES solver is employed to compute the solution of the linear systems. We demonstrate

that, thanks to the combination of adaptive stabilisation and multigrid solution strategy, the efficacy

of the solver is maintained over a wide range of stabilization parameters values. Accordingly, the

burden of choosing the stabilization coefficients is streamlined. Moreover, we show that imposing

Dirichlet boundary conditions by means of Lagrange multipliers significantly improves the robustness

of Newton’s method globalisation strategy and reduces the computational cost.

As a first point, we verify the numerical convergence rates for each of the constitutive laws in (2.18)-

(2.20) based on manufactured 3D solutions. To this end, the 𝐿2 error norms of the displacement and the

displacement gradient are tabulated varying the mesh size ℎ and the polynomial degree 𝑘 . Afterwords,

we challenge the stabilization strategy performing three specifically conceived 2D computations: the

parabolic indentation problem, see Sec. 4.3.1, the beam deformation, see Sec. 4.3.2 and the cavitating

voids, see Sec. 4.3.3. Notice that the constitutive law in Eq. (2.22) is not included in numerical

convergence tests cases and is employed solely for the cavitating voids test case of Sec. 4.3.3. More-

over, we investigate volumetric locking in the nearly incompressible regime performing the Cook’s

membrane test, see Sec. 4.3.4. To conclude, we tackle 3D computations and analyse the robustness of

the ℎ-multigrid solution strategy with respect to the stabilization parameter. Sec. 4.4.1 and Sec. 4.4.2

consider the torsion of a square-section bar and the deformation of a hollow cylinder subjected to the

rotation of its top surface, respectively.

All numerical test cases require the setup of the incremental strategy presented in Sec. 3.6 whose

crucial parameter is the number of loading steps. On the one hand, an underestimated number of
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increments leads to Newton’s method convergence failure and breakdown of the solution strategy,

on the other hand, an overestimated number of increments causes an excessive computational cost.

Converge failure is often associated with det(𝕱𝑘
T(u)) ≤ 0 or det(𝕱𝑘+1

TF (u)) ≤ 0, meaning that the

fundamental hypothesis stated in Eq. (2.10) is violated. While the number of increments can be

adaptively chosen by splitting the problematic step until Eq. (2.10) is satisfied (almost) everywhere in

the domain, we rely on equispaced increments in all the numerical test cases presented hereafter. The

goal is to show how different test cases are handled in terms of number of increments and to stress the

crucial role of the strategy employed for imposing Dirichlet boundary conditions, see Sec. 4.1.

At each successful loading path step, Newton iteration achieves a relative residual decrease of ten

orders of magnitude in less than eight iterations (usually between four and six). The sequence of

linearised equation systems can be solved with either a direct or an iterative solver. In the latter case,

due to poor performance of standard Incomplete Lower Upper (ILU) factorization preconditioners,

we adopt the ℎ-multigrid agglomeration based solution strategy proposed in Botti et al. [61]. As a

distinctive feature, ℎ-coarsened mesh sequences are generated on the fly by recursive agglomeration

of the fine grid and, accordingly, arbitrarily unstructured grids can be handled as an input of the

agglomeration strategy. The cost of numerical integration over agglomerated elements is mitigated

by using element-by-element 𝐿2 projections to build coarse grid operators, with projection operators

computed and stored once-and-for-all in a preprocessing phase. The performance of the ℎ-multigrid

preconditioned iterative solver will be evaluated in terms of number of iterations required to reach a

eight orders of magnitude drop of the relative residual norm. We remark that the ℎ-multigrid solution

strategy has not been implemented and tested in combination with boundary conditions enforced by

means of Lagrange multipliers, accordingly a direct solver is employed instead.

4.1 Influence of Dirichlet boundary conditions on the incremental load method

The BR2 formulations of Sec. 3.3 admit the imposition of Dirichlet Boundary Conditions (BCs)

by means of Nitsche method and Lagrange multipliers method. Interestingly, the strategy based on

Lagrange multipliers is the most effective, leading to increased robustness of the incremental load

method. The following reasoning provides an intuitive explanation for the aforementioned behavior.

When using Nitsche method for Dirichlet BCs the occurrence of null or negative Jacobian values,

namely det(𝕱𝑘+1
TF (u)) ≤ 0, is often triggered by the action of lifting operators on Dirichlet boundaries,

see Eq. (3.3) and definition (3.7). On internal faces, the jumps magnitude is controlled mainly by the

discretization parameters: in particular we expect the jumps to shrink while increasing the polynomial

degree 𝑘 and decreasing the mesh step size ℎ. As opposite, on Dirichlet boundary faces, since
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Newton’s method initial guess is the solution of the previous incremental step, jumps magnitude is

dictated primarily by the number of increments of the incremental load method, see also (3.6).

The number of incremental steps for BR2 formulations with Nitsche method and Lagrange multipliers

method Dirichlet BCS are reported in Tab. 1, where manufactured solutions are considered, and

Tab. 2, where we tabulate data for realistic test cases. In Tab. 1, it is possible to appreciate that, in

case of Nitsche method, increasingly higher step counts are required as the mesh is refined and the

polynomial degree increases. As opposite, in case of Lagrange multipliers method, three loading steps

are employed irrespectively of discretization parameters. The results of Tab. 2 confirm that Lagrange

multipliers method leads to an astonishing decrease of the number of steps in all test cases. We

remark that the Lagrange multiplier method has not been tested in the incompressible regime, further

investigation will be carried in future works.

Finally, in Tab. 3, we provide an overview of the stabilization parameters settings for each of the test

cases presented in Sec. 4.3 and Sec. 4.4.

4.2 Evaluation of convergence rates

Convergence tests consider the neo-Hookean (NHK) and Saint Venant-Kirchhoff (SVK) constitutive

models in both the compressible (-C) and the incompressible (-I) regime. Numerical solutions are

obtained over a four grids ℎ-refined mesh sequence of the unit cube Ω : [0, 1]3. The uniform

hexahedral elements have diameter ℎ ranging from 0.25 (coarse mesh) to 0.03125 (fine mesh), halving

ℎ at each refinement step, as shown in Fig. 6.

We apply first, second and third degree BR2 dG discretizations and enforce boundary conditions

based on smooth analytical displacement fields, see Sec. 4.2.1 and Sec. 4.2.2. Dirichlet boundary

conditions based on the exact displacement are imposed with Nitsche method or Lagrange multipliers

method on five of the six surfaces composing 𝜕Ω. A Neumann boundary condition based on the exact

deformation gradient is imposed on the unaccounted surface. Convergence is evaluated based on the

𝐿2-norm of the error on the displacement, the displacement gradient and, eventually, the pressure.

Forcing terms are computed based on analytical solutions by means of SageMath [62], an open-source

library featuring symbolic calculus.

4.2.1 Compressible materials

Let’s denote by X = (𝑋,𝑌, 𝑍) the Cartesian coordinates in the reference configuration and by 𝑢, 𝑣, 𝑤

the three components of the displacement vector u.
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Number of increments in the loading path
BCs enforced by
Nitsche method

BCs enforced by
Lagrange multipliers

Model Mesh 𝑘 = 1 𝑘 = 2 𝑘 = 3 𝑘 = 1, 2, 3

NHK-C coarse 100 400 400 3fine 400 800 800

NHK-I coarse 400 400 400 -fine 800 1000 1500

SVK-C coarse 400 800 800 3fine 800 2000 2500

SVK-I coarse 400 400 800 -fine 1500 2000 2000

Table 1: Number of increments in the loading path for the manufactured solutions of Sec. 4.2. We consider
any combination of neo-Hookean and Saint Venant-Kirchhoff constitutive models with compressible
and incompressible materials. Results are given considering the coarsest and the finest grid of the
Cartesian grids sequence (43 and 323 hexahedral elements, respectively) for different polynomial degrees
𝑘 = {1, 2, 3}.

Number of increments
in the loading path

Test case Material
model

BCs enforced
by Nitsche
method

BCs enforced
by Lagrange
multipliers

Parabolic indentation NHK-C 60 2
NHK-I / SVK-I 40 -

Cook’s membrane NHK-C / NHK-I 30 30
Beam deformation NHK-C 600 15
Cavitating voids NHK-CAV - 100

Bar torsion NHK-C / SVK-C 15 – 60 10
NHK-I / SVK-I 15 – 80 -

Cylinder top face rotation NHK-C 1000 30
NHK-I 650 -

Table 2: Number of increments in the loading path for all 2D and 3D test cases considered in Sec. 4.3
and Sec. 4.4. In case of Bar torsion the number of incremental steps was fine tuned according to the
polynomial degree, see Sec. 4.4.1 for additional details.

Test case 𝛽 𝜖 𝜂LBB 𝜂
λ̂

Convergence tests 1 0 1 1
Parabolic indentation 0 0 1 1
Cook’s membrane 0–10 0 1 1
Beam deformation 1 1 - 1
Cavitating voids 1 1 - 1
Bar torsion 0–5 0 1 1
Cylinder top face rotation 4 1 1 1

Table 3: Stabilization parameters for all 2D and 3D test cases considered in Sec. 4.3 and Sec. 4.4. In case
of Bar torsion 𝛽 was fine tuned according to the polynomial degree, see Sec. 4.4.1 for additional details.
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(a) (b)

(c) (d)

Figure 6: Four grids ℎ-refined mesh sequence of a unit cube Ω : [0, 1]3 used in 3D convergence tests.
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In the compressible regime, we consider the following displacement field proposed by Abbas et al. [2]

𝑢(X) =
(

1
𝜆
+ 𝛼

)
𝑋 + 𝜓(𝑌 )

𝑣(X) = −
(

1
𝜆
+ 𝛼 + 𝛾 + 𝛼𝛾

1 + 𝛼 + 𝛾 + 𝛼𝛾

)
𝑌

𝑤(X) =
(

1
𝜆
+ 𝛾

)
𝑍 + 𝜔(𝑋) + 𝜉 (𝑌 )

where 𝛼 = 𝛾 = 0.1, 𝜓(𝑌 ) = 𝛼 sin(𝜋𝑌 ), 𝜔(𝑋) = 𝛾 sin(𝜋𝑋) and 𝜉 (𝑌 ) = 0. Relevant parameters of the

NHK-C and SVK-C constitutive laws are defined setting 𝜇 = 1 and 𝜆 = 10, which corresponds to a

Poisson’s ration of 𝜈 ≃ 0.455. The adaptive stabilization parameters are taken as 𝛽 = 1 and 𝜖 = 0,

respectively. In case of Dirichlet boundary conditions enforced by means of Lagrange multipliers,

we set 𝜂
λ̂
= 1. Asymptotic convergence rates of order 𝑘 + 1 and 𝑘 for the displacement and the

displacement gradient can be appreciated in Tab. 4 and Tab. 5 for the NHK-C and the SVK-C model,

respectively.

4.2.2 Incompressible nonlinear elasticity

The fully incompressible nonlinear elasticity problem is defined according to the following isochoric

displacement field 

𝑢(X) = (𝑎2 − 1)𝑋 + 𝑏

2
sin2(𝑌 ) + 𝑐

2
sin2(𝑍)

𝑣(X) =
(

1
𝑎
− 1

)
𝑌

𝑤(X) =
(

1
𝑎
− 1

)
𝑍

where 𝑎 = 1.1, 𝑏 = 1 and 𝑐 = 1. The pressure field reads 𝑝 =
1
3

tr (σ), where σ =
1
𝐽
FSF ⊺ is the

Cauchy stress tensor. Based on the NHK-I model, the exact pressure reads

𝑝NHK-I =
𝑐2 cos2 (𝑍) sin2 (𝑍)𝜇 + 𝑏2 cos2 (𝑌 ) sin2 (𝑌 )𝜇 + 𝑎4𝜇 + 2𝜇

𝑎2

3
.

Based on the SVK-I model, the exact pressure reads

𝑝SVK =
1
6
𝜇

(
2cos4 (𝑍) sin4 (𝑍) +

(
4cos2 (𝑌 ) sin2 (𝑌 ) + 6

)
cos2 (𝑍) sin2 (𝑍)+

+ 2cos4 (𝑌 ) sin4 (𝑌 ) + 6cos2 (𝑌 ) sin2 (𝑌 )
)
+

+1
6
𝜆

(
cos4 (𝑍) sin4 (𝑍) +

(
2cos2 (𝑌 ) sin2 (𝑌 ) + 3

)
cos2 (𝑍) sin2 (𝑍)+

+ cos4 (𝑌 ) sin4 (𝑌 ) + 3cos2 (𝑌 ) sin2 (𝑌 )
)
.
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card(Tℎ) ∥u−uℎ∥𝐿2 (Ω) rate ∥∇X (u−uℎ)∥𝐿2 (Ω) rate ∥u−uℎ∥𝐿2 (Ω) rate ∥∇X (u−uℎ)∥𝐿2 (Ω) rate
𝑘 = 1, BCs by Nitsche method 𝑘 = 1, BCs by Lagrange multipliers method

64 2.457e-03 - 7.116e-02 - 2.622e-03 - 7.250e-02 -
512 6.104e-04 2.00 3.561e-02 0.99 6.126e-04 2.10 3.565e-02 1.02
4096 1.536e-04 1.99 1.781e-02 0.99 1.538e-04 1.99 1.780e-02 1.00

32768 3.853e-05 1.99 8.903e-03 1.00 3.858e-05 1.99 8.904e-03 1.00
𝑘 = 2, BCs by Nitsche method 𝑘 = 2, BCs by Lagrange multipliers method

64 2.241e-04 - 7.374e-03 - 6.589e-04 - 1.295e-02 -
512 2.859e-05 2.97 1.838e-03 2.00 4.982e-05 3.73 2.323e-03 2.48
4096 3.568e-06 3.00 4.580e-04 2.00 4.484e-06 3.47 4.944e-04 2.23

32768 4.421e-07 3.01 1.141e-04 2.00 4.765e-07 3.23 1.165e-04 2.09
𝑘 = 3, BCs by Nitsche method 𝑘 = 3, BCs by Lagrange multipliers method

64 1.130e-05 - 4.926e-04 - 1.257e-05 - 5.400e-04 -
512 7.462e-07 3.92 6.110e-05 3.01 7.480e-07 4.07 6.183e-05 3.13
4096 4.796e-08 3.96 7.579e-06 3.00 4.794e-08 3.96 7.598e-06 3.02

32768 3.043e-09 3.98 9.420e-07 3.00 ★ - ★ -

Table 4: Errors and convergence rates for BR2 dG discretizations of degree 𝑘 = {1, 2, 3} over a ℎ-refined mesh sequence of the unit cube, NHK-C constitutive
model. ★ indicates unavailable data due to excessive memory consumption of the LU solver.
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card(Tℎ) ∥u−uℎ∥𝐿2 (Ω) rate ∥∇X (u−uℎ)∥𝐿2 (Ω) rate ∥u−uℎ∥𝐿2 (Ω) rate ∥∇X (u−uℎ)∥𝐿2 (Ω) rate
𝑘 = 1, BCs by Nitsche method 𝑘 = 1, BCs by Lagrange multipliers method

64 2.486e-03 - 7.117e-02 - 2.648e-03 - 7.248e-02 -
512 6.211e-04 2.00 3.562e-02 0.99 6.259e-04 2.08 3.567e-02 1.02
4096 1.558e-04 1.99 1.781e-02 1.00 1.562e-04 1.99 1.781e-02 1.00

32768 3.901e-05 1.99 8.904e-03 1.00 3.906e-05 1.99 8.904e-03 1.00
𝑘 = 2, BCs by Nitsche method 𝑘 = 2, BCs by Lagrange multipliers method

64 2.170e-04 - 7.345e-03 - 6.217e-04 - 1.262e-02 -
512 2.789e-05 2.99 1.831e-03 2.00 4.810e-05 3.69 2.283e-03 2.47
4096 3.504e-06 2.99 4.566e-04 2.00 4.401e-06 3.45 4.909e-04 2.22

32768 4.383e-07 2.99 1.140e-04 2.00 4.731e-07 3.22 1.162e-04 2.08
𝑘 = 3, BCs by Nitsche method 𝑘 = 3, BCs by Lagrange multipliers method

64 1.138e-05 - 4.894e-04 - 1.261e-05 - 5.385e-04 -
512 7.513e-07 3.92 6.069e-05 3.01 7.516e-07 4.07 6.186e-05 3.12
4096 4.818e-08 3.96 7.542e-06 3.00 4.804e-08 3.97 7.600e-06 3.03

32768 3.049e-09 3.98 9.396e-07 3.00 ★ - ★ -

Table 5: Errors and convergence rates for BR2 dG discretizations of degree 𝑘 = {1, 2, 3} over a ℎ-refined mesh sequence of the unit cube, SVK-C constitutive
model. ★ indicates unavailable data due to excessive memory consumption of the LU solver.
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As in the previous section, the adaptive stabilization parameters are set as 𝛽 = 1 and 𝜖 = 0, while

pressure jumps stabilization coefficient is taken as 𝜂LBB = 1. Similarly to the compressible regime,

asymptotic convergence rates of order 𝑘 + 1 and 𝑘 are observed for the displacement and the displace-

ment gradient over ℎ-refined meshes. The pressure error in 𝐿2-norm exhibits a rate of convergence

between 𝑘 and 𝑘 + 1. Convergence results are reported in Tab. 6 and Tab. 7 for the NHK-I and SVK-I

models, respectively.

4.3 2D simulations

4.3.1 Parabolic indentation problem

The 2D parabolic indentation problem imposes a severe deformation of parabolic shape to the top

surface of a unit-length square computational domain Ω : [0, 1]2. As proposed by Eyck and coworkers

[29], the parabolic profile reads 𝑣(X) = 3(𝑋 − 0.5)2 and the bottom surface is clamped. The

computational mesh consist of 512 triangular elements and we consider a first degree BR2 dG

discretization. Dirichlet boundary conditions are imposed on the top and bottom surfaces while

homogeneous Neumann boundary conditions are enforced on the rest of the boundary. We set 𝛽 = 0

and 𝜖 = 0, meaning that the adaptive stabilization strategy is switched-off, and, in the incompressible

regime, we also set 𝜂LBB = 1.

The deformed states obtained with all constitutive models relevant for this configuration are depicted

in Fig. 7, material parameters reads 𝜇 = 𝜆 = 0.4. When using the SVK-C model, Newton’s method

fails to converge when reaching 50% of the loading path, irrespectively of the amount of stabilization

introduced. Accordingly, the final configuration is not attained. This behavior can be explained by

noticing that, as opposite to the NHK-C model, the SVK strain-energy function (2.18) lacks of any

term preventing the onset of negative Jacobian values, see also [4]. We remark that the SVK-I model is

successful, because det(F )=1 is weakly enforced in accordance with the incompressibility constraint.

4.3.2 2D beam deformation

As proposed by Eyck and co-workers [30], we challenge the adaptive stabilisation strategy considering

the deformation of a 2D beam: the bottom surface is clamped while the upper surface of the beam is

first rotated by 𝜋/2 and, then, translated in the direction orthogonal to the beam axis. We consider

a NHK-C constitutive law and we set 𝜈 = 0.3 and 𝐸 = 1. The computational mesh consists of 110

triangular elements and we employ a 𝑘 = 1 BR2 dG discretization. Dirichlet boundary conditions
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card(Tℎ) ∥u−uℎ∥𝐿2 (Ω) rate ∥𝑝−𝑝ℎ∥𝐿2 (Ω) rate ∥∇X (u−uℎ)∥𝐿2 (Ω) rate
𝑘 = 1, BCs by Nitsche method

64 2.665e-03 - 3.137e-02 - 6.589e-02 -
512 6.531e-04 2.02 1.002e-02 1.64 3.270e-02 1.01
4096 1.638e-04 1.99 2.764e-03 1.85 1.628e-02 1.01
32768 4.122e-05 1.99 7.464e-04 1.88 8.129e-03 1.00

𝑘 = 2, BCs by Nitsche method
64 1.801e-04 - 2.612e-03 - 5.165e-03 -
512 2.246e-05 3.00 2.882e-04 3.18 1.279e-03 2.01
4096 2.808e-06 2.99 3.338e-05 3.11 3.187e-04 2.01
32768 3.514e-07 2.99 4.405e-06 2.92 7.958e-05 2.00

𝑘 = 3, BCs by Nitsche method
64 4.257e-06 - 5.952e-05 - 1.817e-04 -
512 2.782e-07 3.94 4.538e-06 3.73 2.252e-05 3.01
4096 1.780e-08 3.97 3.392e-07 3.74 2.794e-06 3.01
32768 1.126e-09 3.98 2.709e-08 3.65 3.478e-07 3.00

Table 6: Errors and convergence rates for BR2 dG discretizations of degree 𝑘 = {1, 2, 3} over a ℎ-refined
mesh sequence of the unit cube, NHK-I constitutive model.

card(Tℎ) ∥u−uℎ∥𝐿2 (Ω) rate ∥𝑝−𝑝ℎ∥𝐿2 (Ω) rate ∥∇X (u−uℎ)∥𝐿2 (Ω) rate
𝑘 = 1, BCs by Nitsche method

64 2.596e-03 - 3.691e-02 - 6.555e-02 -
512 6.522e-04 1.99 1.437e-02 1.36 3.265e-02 1.01
4096 1.653e-04 1.98 4.348e-03 1.72 1.628e-02 1.00
32768 4.181e-05 1.98 1.180e-03 1.88 8.128e-03 1.00

𝑘 = 2, BCs by Nitsche method
64 1.707e-04 - 4.901e-03 - 5.175e-03 -
512 2.127e-05 3.01 6.606e-04 2.89 1.282e-03 2.01
4096 2.660e-06 2.99 1.339e-04 2.30 3.195e-04 2.00
32768 3.328e-07 2.99 3.227e-05 2.05 7.977e-05 2.00

𝑘 = 3, BCs by Nitsche method
64 4.248e-06 - 1.020e-04 - 1.814e-04 -
512 2.779e-07 3.93 6.755e-06 3.92 2.248e-05 3.01
4096 1.779e-08 3.97 4.701e-07 3.85 2.792e-06 3.01
32768 1.126e-09 3.98 3.463e-08 3.76 3.477e-07 3.00

Table 7: Errors and convergence rates for BR2 dG discretizations of degree 𝑘 = {1, 2, 3} over a ℎ-refined
mesh sequence of the unit cube, SVK-I constitutive model.
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(a) NHK-C (b) NHK-I

(c) SVK-C (d) SVK-I

Figure 7: Deformed configurations of the parabolic indentation problem using NHK and the SVK
constitutive models. Images are colour coded based on the minimum negative eigenvalue of the fourth
order elasticity tensor A.
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are imposed on the top and bottom surfaces while homogeneous Neumann boundary conditions are

enforced on the rest of the boundary.

Fig. 8 depicts the beam deformation by showing a sequence of deformed states consistent with the

loading path. Deformed states are colour-coded with minimum negative eigenvalues of the elasticity

tensor allowing to appreciate that compression of the beam material triggers the adaptive stabilization

strategy.

In order to study the influence of the stabilization parameter on the performance of the ℎ-multigrid

solution strategy, we run a series of test varying 𝛽 in the interval [0, 200] for each 𝜖 in {0, 1, 10, 20}.

For each combination of 𝛽 and 𝜖 , the history of total linear solver iterations recorded along the loading

path, counting of 600 incremental steps, is depicted in Fig. ??. Furthermore, the average and maximum

number of Newton iteration as well as the average and maximum number of linear solver iterations

are tabulated in Tab. 8.

We remark that, in the range 0 ≤ 𝛽 ≤ 200, the number of linear solver iterations is pretty stable, and

setting 𝜖 = 1 reduces the number of Newton iteration resulting in a decrease of the total number of the

linear solver iterations per incremental step.

4.3.3 Cavitating voids

In solid mechanics, the term cavitation refers to the formation and rapid expansion of voids that

occurs when a solid is subjected to sufficiently large tensile stresses. Some experiments on the

cavitation are reported by Gent and Lindley e.g. [11] where unusual internal flaws appear in vulcanized

rubber cylinders under a well-defined relatively small tensile load. Since, during the growth of

voids, significant deformation occurs near the cavities, the numerical simulation of cavitation requires

numerical methods that are robust respect to mesh distortion. A Crouzeix-Raviart nonconforming

finite element method was presented in Xu and Henao [63] while, more recently, the cavitation problem

has been studied using HDG [1] and HHO [2] discretizations. The interested reader may refer to the

review by Xu et al. [63].

We consider a unit radius disk centered at the origin with two holes: the first centered at 𝐶1 =

(−0.3, 0, 0) with radius 0.25 and the second centered at 𝐶2 = (0.3, 0, 0) with radius 0.2. The disc is

expanded by imposing Dirichlet boundary conditions gD = (𝛼−1)X , with 𝛼 ≥ 1, on the outer surface

(|X | = 1 in reference configuration), while imposing traction-free Neumann boundary conditions on

the inner walls of the holes. For cavitation to occur, we rely on the strain energy function in (2.22).

Note that, with respect to the standard NHK-C law (2.21), NHK-CAV has been modified to reduce

60



Numerical Validation of BR2 dG Formulations

Figure 8: Deformation of a 2D NHK-C beam. Images are colour-coded based on the minimum negative
eigenvalue of the fourth-order elasticity tensor A.

𝜖
𝛽

0 1 2 4 8 16 30 50 100 150 200

0

Newton
iterations

mean 6 6 6 6 6 6 6 6 6 6 6
max 7 7 7 8 8 8 9 9 10 10 10

Linear Solver
iterations

mean 4 4 4 4 4 4 4 4 5 5 5
max 6 6 7 7 7 7 7 7 8 8 9

1

Newton
iterations

mean 5 5 6 6 6 5 5 5 5 5 5
max 6 7 7 7 7 7 7 7 8 8 8

Linear Solver
iterations

mean 4 4 4 4 4 4 4 4 5 5 5
max 6 7 7 7 7 7 7 7 8 8 8

10

Newton
iterations

mean 5 5 5 5 5 5 5 5 5 5 5
max 5 5 5 5 5 5 5 6 6 6 5

Linear Solver
iterations

mean 5 5 5 5 5 5 5 5 6 6 6
max 8 8 8 8 8 8 8 8 8 9 9

20

Newton
iterations

mean 5 5 5 5 5 5 4 4 4 4 4
max 5 5 5 5 5 5 5 5 5 5 5

Linear Solver
iterations

mean 6 6 6 6 6 6 6 6 7 7 7
max 9 9 9 9 9 9 9 9 9 10 10

Table 8: 2D NHK-C beam: average and maximum number of Newton and linear solver iterations
recorded along the loading path. Results are obtained varying the stabilization parameters 𝛽 and 𝜖 in
order to show their influence on the performance of the solution strategy.
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the rate of the strain-energy growth with respect to the deformation gradient. In order to enable direct

comparison with [1], we use the same material configuration setting 𝜇 = 0.1 and 𝜆 = 1 and 𝛼 = 4.7.

Fig. 10 reports the results obtained choosing 𝑘 = {1, 2, 3}. It is interesting to remark that only

higher-order 𝑘 = 2, 3 dG discretizations are able to reach the final configuration while the first degree

𝑘 = 1 discretization fails at 64% of the loading path due to the onset of negative Jacobian values, see

Fig. 10a.

The adaptive stabilization parameters are set as 𝛽 = 1 and 𝜖 = 1, the latter helping Newton’s method

convergence rates. This test case requires 100 incremental steps with Dirichlet boundary conditions

imposed by means of the Lagrange multipliers method, as opposite, we were unable to succeed with

Dirichlet BCs imposed by means of Nitsche method. As reported in Tab. 2, 100 steps is the highest

number of increments required among all test cases employing Lagrange multipliers. This confirms

that the test case challenges the robustness of the numerical strategy. The final highly distorted

computational mesh, consisting of 8982 triangular elements, is depicted in Fig. 11.

4.3.4 Cook’s membrane

We consider the problem sketched in Fig. 12 where a tapered panel is clamped on the the left side and

subjected to a shearing dead load TN = 0, 0625N/mm2 on the opposite end. This bending-dominated

test case is known as Cook’s membrane. Many authors (i.e. Simo and Armero (1992) [64] or Brink and

Stein (1996) [8]) consider this problem as a benchmark to investigate the phenomenon of volumetric-

locking.

In order to investigate possible locking phenomena in our dG formulation, we propose a comparison

between the nearly (NHK-C) and the fully (NHK-I) incompressible models. For the nearly incom-

pressible regime, a material with the volumetric function Θ(𝐽) = 𝐽 − 1 is chosen for the purpose

of comparing our results with those presented in [8]. The material parameters are assumed to be

𝜇 = 0.8 N/mm2 and 𝜆 = 8000 N/mm2 so as the Poisson’s ratio results 𝜈 = 0.49995. Instead, for the

fully incompressible regime, we consider a NHK-I material with 𝜇 = 0.8N/mm2.

The stabilization parameter is increased while raising the polynomial degree, in particular we set

𝛽 = 3, 7, 10 at 𝑘 = 1, 2, 3, respectively. We remark the need for adaptive stabilization triggered by

the stress singularity at the top left corner. Since increasing the polynomial degree the numerical

solution approaches the singular solution, more stabilization is required. On the other hand, the fully

incompressible material regime does not require to activate the adaptive stabilization strategy. In all

test cases, we set 𝜖 = 0 and, for the incompressible tests, 𝜂LBB = 1.
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(a) 𝜖 = 0 (b) 𝜖 = 1

(c) 𝜖 = 10 (d) 𝜖 = 20

Figure 9: 2D NHK-C beam: total number of linear solver iterations recorded along the loading path (600
increments). Results are obtained varying the stabilization parameters 𝛽 and 𝜖 in order to show their
influence on the performance of the solution strategy.

(a) 𝑘 = 1 (b) 𝑘 = 2 (c) 𝑘 = 3

Figure 10: NHK-CAV disk with two holes subjected to tensile stresses. For each polynomial degree
𝑘 = {1, 2, 3} the reference configuration (small disk with circular holes) and deformed configurations (big
disk with stretched holes) are shown.
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(a) 𝑘 = 1 (b) 𝑘 = 2 (c) 𝑘 = 3

Figure 11: NHK-CAV disk with two holes subjected to tensile stresses. Details of the strip separating the
two holes at different polynomial degrees 𝑘 = {1, 2, 3}.

(a) (b)

Figure 12: (a) Geometry of the Cook’s membrane test: a clamped tapered panel subjected to a shearing
load. (b) Third-order solution of the Cook’s membrane (nearly incompressible neo-Hookean model (NHK-
C, 𝜇 = 0.8, 𝜆 = 8000 and Θ(𝐽) = 𝐽 − 1)). Colours represent the von Mises stress distribution.
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We consider triangular and quadrilateral mesh sequences of the computational domain identified

according to the number of elements along each side of 𝜕Ω. Triangular meshes are obtained splitting

each quadrilateral element in two triangles. As an example, two 16×16 meshes are depicted in Fig. 13.

The maximum vertical displacements detected at the point 𝑃 (see Fig. 12) are tabulated in Tab. 9

considering NHK models in the nearly compressible limit and a sequence of four meshes (from 4 to

32 element per side).

It’s worth noting that the locking phenomenon occurs only with quadrilateral elements (𝑘 = 1). Note

that, the maximum displacement is underestimated with respect to the reference value of ≃ 7mm

reported in the literature. Locking is not visible for triangular elements with 𝑘 = {1, 2, 3} and square

elements with 𝑘 = {2, 3}. Further information on the topic can be found in [65] where a low-order

locking-free hybrid dG element is presented.

An interesting result is reported in Tab. 10 in which we compare the values of the maximum vertical

displacement obtained on a 16×16 mesh with the nearly and the fully incompressible models. The

imposition of the incompressibility constraint (2.17) avoids the locking phenomenon (see the results

obtained with first-order quadrilateral element). The discrepancy between the nearly and the fully

incompressible models using quadrilateral meshes at 𝑘 = 1 are plotted in Fig. 14.

4.4 3D simulations

4.4.1 Torsion of a square section bar

We consider a square section bar such that 𝐻/𝐿 = 5, where 𝐿 is the edge length of the square

cross-section and H is the extension of the bar in the axial direction. The mesh, consisting of

400 uniform hexahedral elements, is shown in Fig. 15. The bottom surface is clamped while the

top surface is subjected to a 360 degrees plane rotation around its centroid. We employ the fully

incompressible SVK-I model with material parameters 𝜇 = 1 and 𝜆 = 1. We remark that this test case

was successfully completed also based on the SVK-C, NHK-C and NHK-I constitutive laws but the

results are not presented for the sake of conciseness. Dirichlet boundary conditions are imposed on

the top and bottom surfaces while homogeneous Neumann boundary conditions are enforced on the

rest of the boundary. Regarding the stabilization parameters, adaptive stabilization is mandatory only

in the NHK-C case: we set 𝛽 = 1 for 𝑘 = 1, 𝛽 = 2 for 𝑘 = 2 and 𝛽 = 5 for 𝑘 = 3. Other relevant

parameters are 𝜖 = 0 and 𝜂LBB = 1 in the incompressible regime.

The results for the SVK-I model are displayed in Fig. 15 considering first, second and third degree

BR2 dG discretizations. Increasing the polynomial degree reduces the amplitude of discontinuities
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in the displacement field resulting in a more precise representation of the geometry of the deformed

bar. Furthermore, the regions where the stresses intensify are more accurately captured: note that, for

𝑘 = 1, the stress is constant inside each mesh element.

4.4.2 Cylinder deformation

We consider a hollow cylinder such that 𝐻/𝑅 = 4 and 𝑟 = 0.7𝑅, where 𝑅 and 𝑟 are, respectively,

the external and internal radius of the annulus cross-section and 𝐻 is the extension of the cylinder in

the axial direction. As proposed in [29], the top surface of the cylinder is rotated while keeping the

bottom surface clamped. We consider both NHK-C and NHK-I constitutive laws with 𝜈 = 0.25 and

𝐸 = 1. Dirichlet boundary conditions are imposed on the top and bottom surfaces while homogeneous

Neumann boundary conditions are enforced on the rest of the boundary.

Fig. 16 reports the computational mesh, consisting of 8906 tetrahedral elements, and the deformed

configurations at different rotation angles 𝛼, with 0 ≤ 𝛼 ≤ 𝜋
2 , obtained for the compressible case with

a first degree BR2 dG formulation. It is worth mentioning that for 𝛼 ≥ 𝜋
4 the cylinder penetrates itself

due to the lack of contact boundary conditions. Despite the lack of meaningfulness from the physical

viewpoint, this result emphasises the capability of dealing with large deformations.

The stabilization parameters reads 𝛽 = 4 and 𝜖 = 1 and 𝜂LBB = 1 for the incompressible model.

In Fig. 17, deformed states are colour-coded with minimum negative eigenvalues of the fourth-order

elasticity tensor allowing to appreciate that compression of the beam material triggers the adaptive

stabilization strategy. Fig. 17b also depicts the deformed state reached at 65% of the entire rotation

by the NHK-I cylinder. After approaching this configuration Newton’s method struggles to converge

irrespectively of the amount of stabilization introduced.

As we did for the beam deformation of Sec. 4.3.2, we analyse the influence of the stabilization

parameter on the performance of the ℎ-multigrid solution strategy. We consider a 1000 increments

loading path and choose 𝛽 ∈ [0, 200] and 𝜖 ∈ {0, 1, 10, 20}. In Fig. ??, for each incremental step

solved by Newton’s method, we report the total number of linear solver iterations obtained varying 𝛽

and 𝜖 . The average and maximum number of Newton iteration as well as the average and maximum

number of linear solver iterations are tabulated in Tab. 11.

The iteration spike observed at around one fifth of the loading path is due to buckling of the cylinder.

We remark that for 𝛽 < 4 and 𝜖 = 0 the computation fails due to an insufficient amount of stabilisation.

In the range 4 ≤ 𝛽 ≤ 50, the runs are successful and we observe a mild increase of the number of

linear solver iterations. An excessive amount of stabilization (𝛽 > 50) deteriorates the solver efficiency

leading to a significant increase of the computational time.
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4.5 Conclusions

We numerically validated the dG framework developed in Sec. 3.3 for the simulation of finite deforma-

tion based on compressible and incompressible hyperelastic material models. The framework relies

on BR2 dG discretizations and allows to impose Dirichlet boundary conditions by means of Nitsche

method and Lagrange multipliers. State of the art agglomeration based ℎ-multigrid solution strategies

have been successfully employed to improve efficiency of the solution strategy.

The proposed BR2 formulation provides the same attractive features of BR1 dG discretizations for

a reduced computational cost thanks to a more compact stencil: each cell is coupled solely with

its neighbouring elements instead of neighbours plus neighbours of neighbours. In order to better

control the amount of stabilization the BR2 stabilization term relies on lifting operators defined in

a polynomial space that is one degree higher than the polynomial space employed for test and trial

functions. The approach has demonstrated effective over computational meshes composed of elements

of standardized shape (triangles and quadrilaterals in 2D, tetrahedra and hexahedra in 3D) and allows

to get rid of non-local stabilization parameters based on the number of faces.

We demonstrated that the Lagrange multiplier method for imposing Dirichlet boundary conditions is

more effective than Nitsche method in the sense that the number of incremental step can be reduced

by orders of magnitude. Moreover the number of increments is insensitive to mesh density and poly-

nomial degree.

In order to achieve stability in a broader range of test case configurations, in particular is case of

compression solicitations, the proposed BR2 implementation requires an adaptive stabilization strat-

egy featuring user dependent stabilisation parameters. Nevertheless, since the performance of the

multigrid solution strategy is pretty insensitive to those stabilization parameters, the computational

expense is not affected by tuning the stabilization, as might be required when dealing with challenging

applications.

Future research efforts will consider the possibility to utilize the proposed implementation within an

unified high-order accurate framework for fluid-structure interaction where dG methods are employed

both for computational fluid-dynamics and computational solid mechanics.
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(a) (b)

Figure 13: Examples of meshes used in the Cook’s membrane test: two 16×16 meshes with triangular (a)
and quadrilateral (b) elements.

TRI
𝑘 = 1

TRI
𝑘 = 2

TRI
𝑘 = 3

QUAD
𝑘 = 1

QUAD
𝑘 = 2

QUAD
𝑘 = 3

4×4 6.015 6.850 6.929 2.459 5.770 6.692
8×8 6.583 6.945 6.952 2.522 6.628 6.865
16×16 6.829 6.959 6.962 2.624 6.850 6.918
32×32 6.922 6.964 6.968 2.882 6.915 6.941

Table 9: Vertical maximum displacement at point 𝑃 obtained solving the Cook’s problem with different
meshes (TRI, QUAD) and polynomial orders (𝑘 = {1, 2, 3}) considering the nearly incompressible consti-
tutive law (NHK-C: 𝜇 = 0.8, 𝜆 = 8000 and Θ(𝐽) = 𝐽 − 1).
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Nearly
Incompressible

(NHK-C)

Fully
incompressible

(NHK-I)
TRI
𝑘 = 1 6.829 6.938

TRI
𝑘 = 2 6.959 6.983

TRI
𝑘 = 3 6.962 6.983

QUAD
𝑘 = 1 2.624 6.891

QUAD
𝑘 = 2 6.850 6.985

QUAD
𝑘 = 3 6.918 6.987

Table 10: Maximum vertical displacements at
point 𝑃 obtained solving the Cook’s problem with
different types of elements and polynomial orders.
Results captured on 16×16 meshes.

Figure 14: Deformed configurations of the Cook’s
membrane problem obtained with first-order
square elements. In green, the nearly compress-
ible and, in grey, the fully incompressible case.

(a) 3D Mesh (b) 𝛼 = 𝜋
2

𝑘 = 1
(c) 𝛼 = 3𝜋

2
𝑘 = 1

(d) 𝛼 = 2 𝜋

𝑘 = 1
(e) 𝛼 = 2 𝜋

𝑘 = 2
(f) 𝛼 = 2 𝜋

𝑘 = 3

Figure 15: Torsion of a SVK-I square section bar. (a) Computational mesh; (b-f) Von Mises stress
distribution for 𝑘 = 1, 2, 3 when the top surface is rotated by an angle 𝛼.
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(a) 𝛼 = 0 (b) 𝛼 = 0.15𝜋 (c) 𝛼 = 0.30𝜋 (d) 𝛼 = 0.5𝜋

Figure 16: Rotation of the top surface of a NHK-C hollow cylinder: sequence of equilibrium states
obtained by the incremental load method while increasing the rotation angle 𝛼, 𝑘 = 1.

(a) NHK-C (b) NHK-I

Figure 17: Deformation of a hollow cylinder. Left and right: NHK-C and NHK-I constitutive laws,
respectively. Images are colour-coded based on the minimum negative eigenvalue of the fourth-order
elasticity tensor A.
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𝜖
𝛽

0 1 2 4 8 16 30 50 100 150 200

0

Newton
iterations

mean - - - 5 5 5 4 4 4 4 4
max - - - 5 5 5 4 4 4 4 4

Linear Solver
iterations

mean - - - 11 11 11 12 13 16 22 26
max - - - 20 20 22 25 28 46 58 64

1

Newton
iterations

mean - 5 5 5 5 5 4 4 4 4 4
max - 5 5 5 5 5 4 4 4 4 4

Linear Solver
iterations

mean - 10 11 12 11 11 12 13 17 22 26
max - 19 20 20 21 22 25 29 41 54 65

10

Newton
iterations

mean 5 5 5 5 5 4 4 4 4 4 4
max 5 5 5 5 5 5 4 4 4 4 4

Linear Solver
iterations

mean 16 16 16 15 16 16 16 17 21 26 30
max 26 26 26 26 27 28 30 35 49 60 72

20

Newton
iterations

mean 5 5 5 5 4 4 4 4 4 4 4
max 5 5 5 5 5 4 4 4 4 4 4

Linear Solver
iterations

mean 19 19 19 19 19 19 20 21 26 30 33
max 33 33 33 33 34 36 40 47 58 68 73

Table 11: NHK-C cylinder: average and maximum number of Newton and linear solver iterations
recorded along the loading path. Results are obtained varying the stabilization parameters 𝛽 and 𝜖 in
order to show their influence on the performance of the solution strategy.
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(a) 𝜖 = 0 (b) 𝜖 = 1

(c) 𝜖 = 10 (d) 𝜖 = 20

Figure 18: NHK-C cylinder: total number of linear solver iterations recorded along the loading path
(1000 incremental steps). Results are obtained varying the stabilization parameters 𝛽 and 𝜖 in order to
show their influence on the performance of the solution strategy.
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Chapter 5. Numerical Validation of Hybridizable Discontinuous

Galerkin and Hybrid High-Order Formulations for Finite

Hyperelastic Deformations

The HDG and the HHO implementations are verified computing the numerical convergence rates

based on two and three dimensional analytical solutions. Errors in 𝐿2 norm are tabulated in Sec. 5.1

over ℎ-refined mesh sequences and varying the polynomial degree.

5.1 Evaluation of convergence rates

Convergence tests consider the neo-Hookean (NHK) constitutive model in the compressible (-C)

regime. Numerical solutions are obtained over a five grids ℎ-refined mesh sequence of a unit square

Ω : [0, 1]2 in 2D and four grids of a unit cube Ω : [0, 1]3 in 3D.

In 2D, the uniform triangular elements have diameter ℎ ranging from 0.113 (coarse mesh) to 0.00705

(fine mesh), dividing each triangle in four finer elements at each refinement step, as depicted in Fig. 19.

On the other hand, in 3D, the uniform tetrahedral elements have diameter ℎ ranging from 0.14 (coarse

mesh) to 0.0174 (fine mesh), dividing each tetrahedron in eight finer elements at each refinement step,

as shown in Fig. 20.

We apply first, second and third degree HDG and HHO discretizations and enforce boundary conditions

based on smooth analytical displacement fields, as presented in Sec. 5.1.1 and Sec. 5.1.2. Dirichlet

boundary conditions based on the exact displacement are imposed by means of the Lagrange multipliers

method on three of four and five of the six surfaces composing 𝜕Ω, in 2D and 3D, respectively. A

Neumann boundary condition based on the exact deformation gradient is imposed on the unaccounted

surface. Convergence is evaluated based on the 𝐿2-norm of the error on the displacement and

the displacement gradient. Forcing terms are computed based on analytical solutions by means of

SageMath [62], an open-source library featuring symbolic calculus.

5.1.1 2D convergence tests

Let’s denote by X = (𝑋,𝑌 ) the Cartesian coordinates in the reference configuration and by (𝑢, 𝑣) the

three components of the displacement vector u.

73



Luca Verzeroli

(a) (b) (c)

(d) (e)

Figure 19: Five grids ℎ-refined mesh sequence of a unit square Ω : [0, 1]2 used in 2D convergence tests.

(a) (b)

(c) (d)

Figure 20: Four grids ℎ-refined mesh sequence of a unit cube Ω : [0, 1]3 used in 3D convergence tests.
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We consider the following displacement field
𝑢(X) = −𝑎 cos(𝑥) + 𝑏 sin(𝑦)

𝑣(X) = −𝑐 cos(𝑦)

with 𝑎 = 𝑏 = 𝑐 = 0.5. Relevant parameters of the NHK-C constitutive law are defined setting 𝜇 = 1

and 𝜆 = 1, which corresponds to a Poisson’s ration of 𝜈 ≃ 0.25. Regarding the stabilization parameter,

we set 𝜉 = 1 and 𝜅0 = 2, respectively, for the HDG and the sHHO formulation.

Let’s first consider the displacement error in 𝐿2 norm. Both HDG and uHHO show an asymptotic

convergence rate of order 𝑘 + 1, see Tabs. 12 and 13. Whereas, sHHO convergence rate is 𝑘 + 2, see

Tab. 14. Let’s now consider the displacement gradient error in 𝐿2 norm. uHHO and sHHO show an

asymptotic convergence rate of order 𝑘 and 𝑘 + 1 respectively, see Tabs. 13 and 14. HDG error on

the displacement gradient shows the tendency to superconverge with order 𝑘 + 1, see Tab. 12, thereby

overcoming by one order the expected convergence rate. Similar results were reported in [1].

5.1.2 3D convergence tests

Let’s denote byX = (𝑋,𝑌, 𝑍) the Cartesian coordinates in the reference configuration and by (𝑢, 𝑣, 𝑤)

the three components of the displacement vector u.

We consider the following displacement field proposed by Abbas et al. [2]

𝑢(X) =
(

1
𝜆
+ 𝛼

)
𝑋 + 𝜓(𝑌 )

𝑣(X) = −
(

1
𝜆
+ 𝛼 + 𝛾 + 𝛼𝛾

1 + 𝛼 + 𝛾 + 𝛼𝛾

)
𝑌

𝑤(X) =
(

1
𝜆
+ 𝛾

)
𝑍 + 𝜔(𝑋) + 𝜉 (𝑌 )

where 𝛼 = 𝛾 = 0.1, 𝜓(𝑌 ) = 𝛼 sin(𝜋𝑌 ), 𝜔(𝑋) = 𝛾 sin(𝜋𝑋) and 𝜉 (𝑌 ) = 0. Relevant parameters of the

NHK-C constitutive law are defined setting 𝜇 = 1 and 𝜆 = 10, which corresponds to a Poisson’s ratio

of 𝜈 ≃ 0.455. Concerning the stabilization parameter, we set 𝜉 = 10 and 𝜅0 = 1, respectively, for the

HDG and the sHHO formulation.

The convergence rates observed in 2D are confirmed for 3D test cases. HDG convergence rates are of

order 𝑘 + 1, both for the displacement and the displacement gradient, see Tab. 15. uHHO convergence

rates are of order 𝑘 + 1 and 𝑘 for the displacement and the displacement gradient, respectively, see

Tab. 16. sHHO convergence rate are one order higher than uHHO, see Tab. 17.
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card(Tℎ) ∥u−uℎ∥𝐿2 (Ω) rate ∥∇X (u−uℎ)∥𝐿2 (Ω) rate
𝑘 = 1

32 1.954e-03 - 3.424e-03 -
128 4.875e-04 2.00 1.021e-03 1.74
512 1.217e-04 2.00 2.889e-04 1.82

2048 3.040e-05 2.00 7.939e-05 1.86
8192 7.598e-06 2.00 2.142e-05 1.88

𝑘 = 2
32 2.959e-05 - 5.500e-05 -

128 3.694e-06 3.00 7.587e-06 2.85
512 4.611e-07 3.00 1.019e-06 2.89

2048 5.760e-08 3.00 1.343e-07 2.92
8192 7.197e-09 3.00 1.749e-08 2.94

𝑘 = 3
32 5.229e-07 - 9.306e-07 -

128 3.256e-08 4.00 6.720e-08 3.79
512 2.032e-09 4.00 4.676e-09 3.84

2048 1.269e-10 4.00 3.146e-10 3.89
8192 7.927e-12 4.00 2.063e-11 3.93

Table 12: Errors and convergence rates for HDG discretizations of degree 𝑘 = {1, 2, 3} over a ℎ-refined
2D mesh sequence of triangles, NHK-C constitutive model.

card(Tℎ) ∥u−uℎ∥𝐿2 (Ω) rate ∥∇X (u−uℎ)∥𝐿2 (Ω) rate
𝑘 = 1

32 1.234e-03 - 2.372e-02 -
128 3.087e-04 1.99 1.187e-02 0.99
512 7.717e-05 1.99 5.935e-03 0.99

2048 1.929e-05 2.00 2.968e-03 0.99
8192 4.823e-06 2.00 1.484e-03 0.99

𝑘 = 2
32 2.582e-05 - 6.930e-04 -

128 3.226e-06 3.00 1.740e-04 1.99
512 4.033e-07 2.99 4.357e-05 1.99

2048 5.042e-08 2.99 1.090e-05 1.99
8192 6.304e-09 2.99 2.727e-06 1.99

𝑘 = 3
32 3.791e-07 - 1.096e-05 -

128 2.365e-08 4.00 1.369e-06 3.00
512 1.477e-09 4.00 1.711e-07 3.00

2048 9.226e-11 4.00 2.138e-08 3.00
8192 5.765e-12 4.00 2.673e-09 3.00

Table 13: Errors and convergence rates for uHHO discretizations of degree 𝑘 = {1, 2, 3} over a ℎ-refined
2D mesh sequence of triangles, NHK-C constitutive model.
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card(Tℎ) ∥u−uℎ∥𝐿2 (Ω) rate ∥∇X (u−uℎ)∥𝐿2 (Ω) rate
𝑘 = 1

32 1.642e-04 - 3.501e-03 -
128 2.462e-05 2.73 1.025e-03 1.77
512 3.455e-06 2.83 2.849e-04 1.84

2048 4.667e-07 2.88 7.671e-05 1.89
8192 6.150e-08 2.92 2.020e-05 1.92

𝑘 = 2
32 1.319e-06 - 4.888e-05 -

128 9.061e-08 3.86 6.647e-06 2.87
512 6.011e-09 3.91 8.769e-07 2.92

2048 3.897e-10 3.94 1.134e-07 2.95
8192 2.490e-11 3.96 1.447e-08 2.97

𝑘 = 3
32 1.514e-08 - 8.060e-07 -

128 5.053e-10 4.90 5.674e-08 3.82
512 1.661e-11 4.92 3.837e-09 3.88

2048 5.375e-13 4.94 2.516e-10 3.93
8192 1.722e-14 4.96 1.617e-11 3.95

Table 14: Errors and convergence rates for sHHO discretizations of degree 𝑘 = {1, 2, 3} over a ℎ-refined
2D mesh sequence of triangles, NHK-C constitutive model.

card(Tℎ) ∥u−uℎ∥𝐿2 (Ω) rate ∥∇X (u−uℎ)∥𝐿2 (Ω) rate
𝑘 = 1

48 6.347e-03 - 4.479e-02 -
384 1.566e-03 2.01 1.505e-02 1.57

3072 3.824e-04 2.03 4.475e-03 1.75
24576 9.423e-05 2.02 1.243e-03 1.84

𝑘 = 2
48 8.070e-04 - 6.675e-03 -

384 9.903e-05 3.02 1.042e-03 2.67
3072 1.207e-05 3.03 1.506e-04 2.79

24576 1.490e-06 3.01 2.055e-05 2.87
𝑘 = 3

48 7.636e-05 - 7.278e-04 -
384 4.674e-06 4.02 5.588e-05 3.70

3072 2.879e-07 4.02 3.942e-06 3.82
24576 1.787e-08 4.01 2.641e-07 3.89

Table 15: Errors and convergence rates for HDG discretizations of degree 𝑘 = {1, 2, 3} over a ℎ-refined
3D mesh sequence of tetrahedra, NHK-C constitutive model.
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card(Tℎ) ∥u−uℎ∥𝐿2 (Ω) rate ∥∇X (u−uℎ)∥𝐿2 (Ω) rate
𝑘 = 1

48 6.788e-03 - 8.605e-02 -
384 1.742e-03 1.96 4.286e-02 1.00

3072 4.381e-04 1.99 2.138e-02 1.00
24576 1.098e-04 1.99 1.067e-02 1.00

𝑘 = 2
48 8.644e-04 - 1.386e-02 -

384 1.133e-04 2.93 3.525e-03 1.97
3072 1.438e-05 2.97 8.833e-04 1.99

24576 1.809e-06 2.99 2.207e-04 2.00
𝑘 = 3

48 8.091e-05 - 1.571e-03 -
384 5.118e-06 3.98 1.861e-04 2.98

3072 3.206e-07 3.99 2.488e-05 2.99
24576 2.004e-08 3.99 3.110e-06 2.99

Table 16: Errors and convergence rates for uHHO discretizations of degree 𝑘 = {1, 2, 3} over a ℎ-refined
3D mesh sequence of tetrahedra, NHK-C constitutive model.

card(Tℎ) ∥u−uℎ∥𝐿2 (Ω) rate ∥∇X (u−uℎ)∥𝐿2 (Ω) rate
𝑘 = 1

48 1.331e-03 - 2.160e-02 -
384 1.931e-04 2.78 5.947e-03 1.86

3072 2.629e-05 2.87 1.563e-03 1.92
24576 3.426e-06 2.93 4.001e-04 1.96

𝑘 = 2
48 1.185e-04 - 2.761e-03 -

384 8.028e-06 3.88 3.733e-04 2.88
3072 5.180e-07 3.95 4.816e-05 2.95

24576 3.280e-08 3.98 6.098e-06 2.98
𝑘 = 3

48 8.683e-06 - 2.645e-04 -
384 2.820e-07 4.94 1.764e-05 3.90

3072 8.952e-09 4.97 1.131e-06 3.96
24576 2.817e-10 4.99 7.148e-08 3.98

Table 17: Errors and convergence rates for sHHO discretizations of degree 𝑘 = {1, 2, 3} over a ℎ-refined
3D mesh sequence of tetrahedra, NHK-C constitutive model.
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5.2 Conclusions

In this chapter, we numerically validate the HDG and HHO methods of Sec. 3.4, Sec. 3.5.1 and

Sec. 3.5.2 for the simulation of finite deformations based on compressible hyperelastic material

models. In particular, the method of manufactured solutions has been successfully employed to verify

and replicate the expected convergence rates on ℎ-refined mesh sequences.

We do not consider HDG and HHO formulations for the computation of the challenging test cases

performed by means of dG discretizations in Chap. 4. We remark that the development of efficient

solution strategies and adaptive stabilisation strategies for HDG and HHO formulations is still an open

field of research. Accordingly, a comparison based on efficiency of the solution strategy would be

impractical and unfair.

In Chap. 6, the HDG formulation will be employed to extend the framework introduced in Chap. 3 to

computational contact mechanics. In Chap. 7, challenging 2D and 3D computations involving contact

with rigid obstacles will be proposed.
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Chapter 6. Hybridizable Discontinuous Galerkin formulations

for Computational Contact Mechanics

Many mechanical applications involve the contact between bodies undergoing large deformation: for

instance, the blow moulding of polymers for the food&beverage or home care markets, the sheet metal

forming and the crash test simulation for the automotive industry, the analysis of rolling contact of

tyres for the transport industry, the drilling studies for the mining industry and so forth. Thus, the

last decades have seen increasing interest in Computational Contact Mechanics (CCM). The latter is

an interdisciplinary area that covers topics such as tribology (friction, lubrification, adhesion, wear),

maths, computer science and physics. We refer to Laursen [66] and Wriggers [67] as introductory

literature on CCM.

In this chapter, we aim to simulate the frictionless contact between a rigid obstacle and a deformable

body through the imposition of the so-called non-penetration boundary condition. In order to track the

portion of 𝜕Ω that comes into contact with the obstacle, we introduce the so called active set strategy.

Moreover, the non-penetration condition for the entities belonging to the active set is enforced by the

means of the Lagrange Multiplier method.

This chapter is organized as follows. Different numerical techniques used in CCM are illustrated in

Sec. 6.1. The normal and the tangential contact constraints are introduce in Sec. 6.2. The weak form

of the nonlinear elasticity problem with the normal contact constraint of non-penetration is derived in

Sec. 6.3. Then, the weak form is discretized using the HDG method defining, in Sec. 6.4, the local

and global residual and the Jacobian operator to solve the minimization problem. To conclude, the

active set strategy employed in the numerical test cases is explained in Sec. 6.5.

6.1 Introduction

From a mathematical viewpoint,we deal with a nonlinear boundary value problem which incorporates

the geometrical constraint of non-penetration and the frictional effects arising from the relative body

motion. Interestingly, the contact constraint requires the solution of a variational inequality, introduc-

ing additional complexity to the nonlinear elasticity problem of Chap. 3.

Several numerical techniques have been developing since the ’70s:
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• Lagrange Multipliers method: introduces additional unknowns, namely the Lagrange mul-

tipliers (LMs), for the constraint enforcement. LMs act in the formulation as the normal and

tangential unknown reaction forces exchanged between the bodies during the contact. The

values assumed by LMs are retrieved from the solution of a saddle-point problem, so, the

method introduces some numerical difficulties mitigated by the fact that the contact boundary

constraint are exactly imposed and satisfied. Some examples are illustrated in Haslinger et

al. [68], Wohlmuth [69] and Poop [70].

• Penalty method: replaces the set of inequalities associated to the contact problem with a non-

linear system of equation introducing penalization parameters. The penalization adds contact

rigidity associating large energies to those displacement solutions violating the contact con-

straint. Despite of its simplicity, the effectiveness of the method is strongly influenced by the

choice of the penalty parameter. If the latter tends to infinity, the contact constraint are exactly

satisfied but, obviously, the resulting linear system of equation is ill-conditioned. On the other

hand, underestimated value of the penalty parameters lead to unacceptably violation of contact

constraint. The interested reader may find some application in Kikuchi and Oden [71, 72].

• Augmented Lagrangian method: uses the concepts introduced in the two previous techniques

obtaining a Lagrange formulation regularized with penalty terms. See Glowinski and Tallec [73],

Zavarise and De Lorenzis [74] and Hild and Renard [75] for further information on the topic.

• Nitsche method: is a technique used to impose Dirichlet boundary conditions without increas-

ing the number of unknowns as with the LM method (see Nitsche [76] and Sec. 3.3 where

this method is employed in the context of dG formulation). With the Nitsche method, the

contact boundary condition are imposed weakly on the body surface through a consistent term,

eventually, regularized with a real parameters. In Chouly et al. [77] and Mlika [78] we find an

interesting overview of recent result on Nitsche’s method for contact problems.

We also mention direct elimination method, the barrier method, the formulation of constitutive

equations and the perturbed Lagrange method, see [67] for additional details.

Most of the aforementioned methods need to be coupled with numerical strategies aiming to identify

and follow the evolution in time of the contact portion of the boundary. These algorithms are often

named active set strategies. We refer to De Lorenzis et al. [79] and Sec. 6.5 for further information.
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6.2 Contact constraints

Bearing in mind the concepts illustrated in Chap. 2, the contact kinematical constraints will be derived

hereinafter. Consider two (or more) bodies Ω𝛼 approaching each other during a finite deformation

process. Referring to Fig. 21, we observe that, for 𝛼 = {1, 2}, the bodies Ω1 and Ω2 come in contact

on the boundary surface 𝜕Ω+
C = 𝜕Ω+

1,C = 𝜕Ω+
2,C in the deformed configuration.

The contact surface is defined as the place where two distinct material points, X1 and X2, occupy the

same place of the space, namely the spatial points x1 = 𝝌1(X1) and x2 = 𝝌2(X2) coincides.

When the contact occurs, the two bodies exchange forces on the contact surface. These reaction forces

produce on 𝜕Ω+
C an unknown stress tC that may be decomposed as

tC = 𝑝𝑛n + t𝑇 (6.1)

where 𝑝𝑛 is a pressure value, n is the normal vector defined on 𝜕Ω+
C and t𝑇 is the tangential part of t.

CCM formulates kinematical contact relations in order to define the components of tC.

The normal contact kinematics provides the geometrical constraint of non-penetration (see Sec. 6.2.1)

or constitutive laws to assign a value to the pressure 𝑝𝑛. In several contact problem, the knowledge of

micromechanical characteristics of the contact surface is essential for the proper treatment of physical

phenomena. Based on experimental studies regarding materials microstructures several constitutive

equations can be developed (see [67]).

The tangential contact kinematics completes the description of the contact reaction forces defining

t𝑇 . Generally, two different situations has to be distinguished: the stick state and the sliding state, see

Sec. 6.2.2.

6.2.1 Normal contact constraint

Assume that two bodies come in contact. For all spatial points x1 ∈ Ω+
1 and x2 ∈ Ω+

2 such that

the segment −−−−→x2x1 does not intersect Ω+
2 , the non-penetration condition occurring in normal contact

kinematics reads

(x2 − x1) · n1 ≥ 0,

where n1 is the normal vector at x1 pointing out of Ω+
1 . Under the assumption that the contact

boundaries are convex surfaces, we may relate every point x2 on Ω+
2 to its closest-point projection x1

on 𝜕Ω+
1 .

Let 𝑑 be the scalar that identifies the distance between two points, x𝑎 and x𝑏, such that

𝑑 = ∥x𝑏 − x𝑎∥.
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Referring to Fig. 22, the closest-point projection x1 on Ω+
1 of the point x2 on Ω+

2 is defined via the

minimum distance problem:

𝑑min (x2) = ∥x2 − x1∥ = min
x1⊆𝜕Ω+

1

∥x2 − x1∥. (6.2)

Once the point x1 is known for each point x2 ∈ 𝜕Ω+
2 by solving problem (6.2), the scalar function

𝑔𝑛 : 𝜕Ω+
2 → R, representing the normal gap between Ω+

1 and Ω+
2 , is defined as

𝑔𝑛 (x2) = (x2 − x1) · n1,

where n1 is the normal vector at x1 pointing outward Ω+
1 , see Fig. 22. We remark that, according

to (6.2), x2 − x1 has the same direction of n1. We refer to Wriggers [67, Sec. 4.1] for further details

regarding the well-posedness of problem (6.2) and differentiability of the distance function.

Thereby, the inequality constraint of the non-penetration condition may be reformulated as

𝑔𝑛 (x2) ≥ 0. (6.3)

Eq. (6.3) represents a geometrical constraint that precludes Ω+
2 to occupy the region of the space owned

by Ω+
1 . When 𝑔𝑛 = 0, namely Ω1 and Ω2 are in contact, the bodies exchange forces such that, for the

action-reaction law, t1C = −t2C at each contact point on 𝜕Ω+
C.

In this situation, the pressure 𝑝𝑛 assumes the meaning of contact pressure such that 𝑝𝑛 = 𝑝1𝑛 = 𝑝2𝑛,

where 𝑝•𝑛 is the contact pressure on 𝜕Ω+
• . Under the hypothesis of non-adhesive contact, the contact

pressure must be lower than zero, 𝑝𝑛 < 0 (non-attractive, repulsive), when the normal gap is null

𝑔𝑛 = 0. On the other hand, if there is a gap between the bodies, 𝑔𝑛 > 0, the contact pressure vanishes,

𝑝𝑛 = 0. These arguments are collected in the well-known Hertz-Signorini-Moreau condition that

reads

𝑔𝑛 ≥ 0, 𝑝𝑛 ≤ 0, 𝑔𝑛 𝑝𝑛 = 0. (6.4)

In the context of optimization theory, the conditions in (6.4) are also known as the Kuhn-Tucker-Karush

condition, see [67].

Differently from TN on the Neumann boundary 𝜕ΩN, the stress tC on Ω+
C is not known a priori. Thus,

we have to choose, from the list presented in Sec. 6.1, a method that renders the contact boundary

condition.

The Lagrange multiplier method reveals to be a valuable technique for the imposition of the contact

constraints. Regarding the frictionless contact, where t𝑇 = 0, only the normal component of the
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Figure 21: Contact between bodies undergoing finite deformation.
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contact stress has to be identified, so that tC = 𝑝𝑛n. Thereby, we will introduce 𝜆𝑛 ∈ 𝑆𝑛 where 𝑆𝑛 is

the set of LMs constrained with the boundary condition 𝑔𝑛 = 0. The aim of 𝜆𝑛 is to retrieve the value

of the contact pressure 𝑝𝑛 that avoids the penetration between the contacting bodies.

6.2.2 Tangential contact constraint

A simple tangential contact constraint is the stick condition in which no tangential relative displace-

ments occurs in the contact zone. Usually, when the tangential forces are above a certain limit, the

contacting surfaces no longer stick, but move relative to each other: this is called sliding. In order

to deal with sliding, several constitutive laws relating tangential stress to contact pressure have been

developed. In particular, we mention the Coulomb’s law, requiring the introduction of proportionality

coefficients for each material couple.

Stick and sliding are only two of the several tangential behaviours presented in literature (see e.g. [67]

and [79]). Up to now, we disregard the tangential behaviour considering only the frictionless contact

where the value of the tangential stress is known a priori because constant to zero (t𝑇 = 0). Further

investigations are planned for future works.

6.3 Nonlinear elasticity problem with normal contact constraint

In this section, we derive the weak form of the contact boundary value problem including in the formu-

lation the geometrical constrain of non-penetration (Sec. 6.2.1). The tangential contact is considered

frictionless.

Even if the extension to multi body system is straightforward, we consider two bodies: Ω1 and Ω2. By

hypotheses, Ω1 is rigid, namely not deformable, and fixed, while Ω2 undergoes finite deformation.

During the deformation, Ω1 and Ω2 come in contact on the surface 𝜕Ω+
C, see Fig. 21.

In the context of finite elastic deformations, unilateral frictionless contact problems consist in seeking

the displacement mapping u such that

−∇X · P = f in Ω2, (6.5a)

u = uD on 𝜕Ω2,D, (6.5b)

PN = TN on 𝜕Ω2,N, (6.5c)

P (1 −N ⊗ N )N = 0 on 𝜕ΩC̃, (6.5d)

𝑔𝑛 ≥ 0, (PN ) ·N ≤ 0, 𝑔𝑛 [(PN ) ·N ] = 0 on 𝜕ΩC̃, (6.5e)
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where 𝜕ΩC̃ is the contact boundary that can be divided in two non-overlapping partitions:

• 𝜕ΩC: the contact interface, namely the portion of 𝜕ΩC̃ where the gap function is zero;

• 𝜕Ω!C: the portion of 𝜕ΩC̃ where the gap function is strictly positive.

According to the hypothesis of frictionless contact, condition (6.5d) enforces a null tangential solici-

tation on 𝜕Ω+
C̃

. The unilateral contact Signorini conditions in (6.5e) enforce non-penetration between

the body and the obstacle providing compression or null normal solicitation on 𝜕ΩC̃ when the gap

function is zero or strictly positive, respectively.

Based on Signorini conditions, it is possible to obtain a variational inequality which the solution of

problem (6.5) has to fulfill, see e.g. [67, Sec. 6.2]. Nevertheless, reformulating the problem as a vari-

ational equality is computationally more convenient. Among several approaches, a reliable solution

consists of combining the Lagrange Multipliers methods with an active set strategy providing a way to

find the contact reaction forces and to track the contact interface along the deformation history. In the

context of hyperelastic materials, the weak form is obtained as the minimization of a suitable energy

functional, as described in what follows.

Mimicking the approach presented in Sec. 3.1 and assuming that 𝜕Ω+
C is known, we have to add to

the energy functional of the system the contribution of the work of a Lagrange Multiplier satisfying

𝑔𝑛 (x2) = 0 on 𝜕Ω+
C. Thus, we introduce the energy functional W+

C : V × 𝑆+𝑛 → R defined as

W+
C (v, 𝜆

+
𝑛) =

∫
𝜕Ω+

C

𝜆+𝑛

(
𝑔𝑛 (x2(v)) − 0

)
(6.6)

where 𝜆+𝑛 is a Lagrange Multiplier such that 𝜆+𝑛 = 𝑝𝑛. For the purpose of applying the Lagrangian

formulation developed in Sec. 3.1, the integral in Eq. (6.6) on the contact boundary surface has to be

defined on the reference configuration. Thus, we introduce the energy functional WC : V × 𝑆𝑛 → R

such that

WC(v, 𝜆𝑛) =
∫
𝜕ΩC

𝜆𝑛 𝑔𝑛 (X2 + v) (6.7)

where 𝜆𝑛 = 𝐽 |F −⊺N |𝜆+𝑛 is the counterpart of 𝜆+𝑛 in the reference configuration obtained using the

Nanson’s formula (2.5) (see also [67]).

Let W2𝜆 (v,λ) = W𝜆 (v, 0,λ) : V × S → R be the energy functional defined over the deforming

body Ω2, with W𝜆 from Eq. (3.4), and hydrostatic pressure set to zero since we do not enforce the

incompressibility constraint. The contribution WC of the work of 𝜆𝑛 may be added to W2𝜆 such that

the total energy function WTOT
C : V × S × 𝑆𝑛 → R is stated as

WTOT
C (v,λ, 𝜆𝑛) = W2𝜆 (v,λ) +WC(v, 𝜆𝑛) (6.8)
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where V is now the set of all admissible displacements fields that satisfy Dirichlet condition on 𝜕Ω2,D

and non-penetration constraints on 𝜕Ω+
C. It is interesting to remark that, since the contact surface

𝜕ΩC is known by assumption, the solution of (6.5) through the minimization of the energy functional

(6.8) does not involve directly the inequality constraint (6.3). Instead, the inequality plays a role in the

definition of 𝜕ΩC, see Sec. 6.5.

In order to define the minimization problem, two directional derivatives of (6.7) have to be defined.

The first term associated with the virtual work of 𝜆𝑛 along the variation of the gap function in the

normal direction is i.e.
𝜕

𝜕𝜖
WC(v + 𝜖𝛿v, 𝜆𝑛)

����
𝜖=0

=

∫
𝜕ΩC

𝜆𝑛 n1 · 𝛿v (6.9)

where

n1 = n1(x2) = n1(X2 + u) = 𝜕𝑔𝑛 (x2)
𝜕x2

. (6.10)

The normal gap 𝑔𝑛 is a scalar function that describes the distance from a surface (in our case 𝜕Ω+
1).

The gradient of this function points to the direction with the maximum rate of change of the normal

gap. This happens perpendicularly to the surface which may be also described as the set of points

where the distance is equal to zero, or 𝑔𝑛 = 0.

The second term is used to enforce the constraint of non-penetration in the normal direction

𝜕

𝜕𝜖
WC(v, 𝜆𝑛 + 𝜖𝛿𝜆𝑛)

����
𝜖=0

=

∫
𝜕ΩC

𝛿𝜆𝑛 𝑔𝑛 (X + v). (6.11)

Introducing the Lagrange multiplier method for the imposition of the Dirichlet boundary condition

(6.5b) and for the normal contact constraint 𝑔𝑛 (x2) = 0 and using the definitions in Eqs. (6.9)-(6.11),

the static equilibrium of problem (6.5) is stated as finding (u,λ, 𝜆𝑛) ∈ V × S × 𝑆𝑛 which satisfy the

following weak form of the Euler-Lagrange equations

0 =
𝑑

𝑑𝜖
WTOT

C (u + 𝜖𝛿v,λ, 𝜆𝑛)
����
𝜖=0

=

∫
Ω

P (F (u)) : ∇X (𝛿v) +

−
∫
Ω

f · 𝛿v −
∫
𝜕ΩN

TN · 𝛿v +

+
∫
𝜕ΩDL

λ · 𝛿v +

+
∫
𝜕ΩC

𝜆𝑛 n1(X2 + u) · 𝛿v, (6.12a)

0 =
𝑑

𝑑𝜖
WTOT

C (u,λ + 𝜖𝛿λ, 𝜆𝑛)
����
𝜖=0

=

∫
𝜕ΩDL

𝛿λ · (u − uD), (6.12b)

0 =
𝑑

𝑑𝜖
WTOT

C (u,λ, 𝜆𝑛 + 𝜖𝛿𝜆𝑛)
����
𝜖=0

=

∫
𝜕ΩC

𝛿𝜆𝑛 𝑔𝑛 (X2 + u), (6.12c)

for all virtual displacements 𝛿v that satisfy a homogeneous Dirichlet condition on 𝜕ΩD and the

non-penetration condition on Ω+
C and for all 𝛿λ and 𝛿𝜆𝑛.
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6.4 HDG method for contact mechanics

This section is dedicated to the use of the HDG method to discretize the contact problem introduced

in the previous section. In what follows, starting from the system of equations (6.12), the residual and

the Jacobian operator of the Lagrangian equation of motion are derived.

Keeping in mind the the mesh setting of the HDG method introduced in Sec. 3.2.2, an additional subset

of the set of element faces FT is required to specialize the formulations including the surface integral

terms on the contact interface 𝜕Ωℎ,C. Accordingly, we define F C
T = {F ∈ FT : F ⊂ 𝜕Ωℎ,C} as the set

of active faces. For future use, we also define 𝑣𝜕TC = (𝑣F)F∈F C
T

with 𝑣𝜕TC ∈ P𝑘 (F C
T ) = >

F∈F C
T
P𝑘 (F).

Firstly, we introduce the local residual 𝑟HDG,Lem
T ((uT, u𝜕T, λ̂𝜕TL , (𝜆𝑛)𝜕TC), •) : U 𝑘

T → R of the

Lagrangian equation of motion:

𝑟
HDG,Lem
T

(
(uT, u𝜕T, λ̂𝜕TL , (𝜆𝑛)𝜕TC); (vT, v𝜕T)

)
=

=

∫
T
P (F 𝑘

T (uT, u𝜕T)) : G 𝑘
T (vT, v𝜕T) +

+
∫
𝜕T

𝜉˜𝖘𝑘𝜕T(uT, u𝜕T) ·˜𝖘𝑘𝜕T(vT, v𝜕T) +

−
∫

T
f · vT −

∑︁
F∈F N

T

∫
F
TN · vF +

−
∑︁

F∈F DL
T

∫
F
λ̂F · vF +

∑︁
F∈F C

T

∫
F
𝜆𝑛 n1(X2 + uF) · vF (6.13)

so that a comparison with (3.18) shows the addition of the last term in order to take into account the

non-penetration boundary condition.

Secondly, we define the local residual 𝑟HDG,C
F (uF; •) : P𝑘 (F) → R of Lagrange Multiplier constraint

as follows

𝑟
HDG,C
F (uF; 𝑠̂F) :=

∫
F
𝑠̂F 𝑔𝑛 (X2 + uF). (6.14)

The global residuals 𝑟HDG,Lem
ℎ

((uTℎ , uFℎ
, λ̂F DL

ℎ

, (𝜆𝑛)F C
ℎ
); •) : U 𝑘

ℎ
→ R obtained assembling element-

by-element the local residual (6.13) is

𝑟
HDG,Lem
ℎ

(
(uTℎ , uFℎ

, λ̂F DL
ℎ

, (𝜆𝑛)F C
ℎ
); (vTℎ , vFℎ

)
)

:= (6.15)

:=
∑︁
T∈Tℎ

𝑟
HDG,Lem
T

(
(uTℎ |T, uFℎ |𝜕T, λ̂F DL

ℎ
|𝜕TL , (𝜆𝑛)F C

ℎ
|𝜕TC); (vTℎ |T, vFℎ |𝜕T)

)
.
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Then, the global residual 𝑟HDG,C
ℎ

(
uFℎ

; •
)

: P𝑘 (F C
ℎ
) → R is obtained assembling face-by-face the

local residual (6.14), i.e.

𝑟
HDG,C
ℎ

(
uFℎ

; 𝑠̂F C
ℎ

)
:=

∑︁
F∈F C

ℎ

𝑟
HDG,C
F

(
uFℎ |F; 𝑠̂F HDG,C

ℎ
|F
)
. (6.16)

Defining, for the sake of brevity, the global HDG space

W HDG,𝑘

ce,ℎ = U 𝑘,DS
ℎ

× P𝑘 (F DL
ℎ

)𝑑 × P𝑘 (F C
ℎ ),

the HDG discretization of the nonlinear elasticity problem with compressible constitutive laws and the

non-penetration condition on the contact surface is obtained summing up the global residuals (6.15)

and (6.16), and reads as find the unknowns (uTℎ , uFℎ
, λ̂F DL

ℎ

, (𝜆𝑛)F C
ℎ
) ∈ W HDG,𝑘

ce,ℎ such that for all

(vTℎ , vFℎ
, ŝF DL

ℎ

, 𝑠̂F C
ℎ
) ∈ W HDG,𝑘

ce,ℎ

𝑟
HDG,C
ce,ℎ

(
(uTℎ , uFℎ

, λ̂F DL
ℎ

, (𝜆𝑛)F C
ℎ
); (vTℎ , vFℎ

, ŝF DL
ℎ

, 𝑠̂F C
ℎ
)
)
= 0 (6.17)

where the residual 𝑟
HDG,C
ce,ℎ

(
(uTℎ , uFℎ

, λ̂F DL
ℎ

, (𝜆𝑛)F C
ℎ
); •

)
: W HDG,𝑘

ce,ℎ → R is such that for all

(vTℎ , vFℎ
, ŝF DL

ℎ

, 𝑠̂F C
ℎ
) ∈ W HDG,𝑘

ce,ℎ ,

𝑟
HDG,C
ce,ℎ

(
(uTℎ , uFℎ

, λ̂F DL
ℎ

, (𝜆𝑛)F C
ℎ
); (vTℎ , vFℎ

, ŝF DL
ℎ

, 𝑠̂F C
ℎ
)
)
=

= 𝑟
HDG,Lem
ℎ

(
(uTℎ , uFℎ

, λ̂F DL
ℎ

, (𝜆𝑛)F C
ℎ
); (vTℎ , vFℎ

)
)
+

+ 𝑟
HDG,DL
ℎ

(
uFℎ

; ŝF DL
ℎ

)
+ 𝑟

HDG,C
ℎ

(
uFℎ

; 𝑠̂F C
ℎ

)
.

(6.18)

Eq. (6.17) can be rewritten in the form 𝑟ℎ (wℎ; zℎ) = 0 (see Eq. (3.33)) introducing, for the sake of

notation, wℎ = (uTℎ , uFℎ
, λ̂F DL

ℎ

, (𝜆𝑛)F C
ℎ
) ∈ W HDG,𝑘

ce,ℎ and zℎ = (vTℎ , vFℎ
, ŝF DL

ℎ

, 𝑠̂F C
ℎ
) ∈ W HDG,𝑘

ce,ℎ .

Thus, the solution of the nonlinear elasticity problem may be retrieved using the incremental method

developed in Sec. 3.6. The latter requires the computation of the Jacobian operator for the linearization

of the nonlinear elastic problem. So, first of all, we need to compute the directional derivatives of

the local residuals (6.13) and (6.14) with the same procedure presented for dG methods in Sec. 3.6.1.
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Accordingly, we get the Jacobian operator(
JHDG,C

ce,ℎ (wℎ)𝛿wℎ, zℎ

)
𝐿2 (Ω)

=

=
∑︁
T∈Tℎ

( ∫
T

[
G 𝑘
𝑇 (𝛿uTℎ |T, 𝛿uFℎ |𝜕T) : A(F 𝑘

T (uTℎ |T), 0)
]

: G 𝑘
𝑇 (vTℎ |T, vFℎ |𝜕T)+

+
∫
𝜕T

𝜉˜𝖘𝑘𝜕T(𝛿uTℎ |T, 𝛿uFℎ |𝜕T) ·˜𝖘𝑘𝜕T(vTℎ |T, vFℎ |𝜕T)
)
+

+
∑︁

F∈F DL
ℎ

(
−

∫
F
𝛿λ̂F DL

ℎ
|F · vFℎ |F +

∫
F
𝛿uFℎ |F · ŝF DL

ℎ
|F

)
+ (6.19)

+
∑︁

F∈F C
ℎ

( ∫
F
(𝜆𝑛)F C

ℎ
|F

(
H𝑔𝑛 (X + uFℎ |F) 𝛿uFℎ |F)

)
· vFℎ |F+

+
∫

F
𝑠̂F C

ℎ
|F n1(X + uFℎ |F) · 𝛿uFℎ |F +

∫
F
𝛿𝜆F C

ℎ
|F n1(X2 + uFℎ |F) · vFℎ |F

)
.

where H𝑔𝑛 is the Hessian matrix of the normal gap 𝑔𝑛 related to the curvature of the boundary surface

𝜕Ω1 which is defined as

H•(x) =



𝜕2•
𝜕𝑥2

𝜕2•
𝜕𝑥𝜕𝑦

𝜕2•
𝜕𝑥𝜕𝑧

𝜕2•
𝜕𝑦𝜕𝑥

𝜕2•
𝜕𝑦2

𝜕2•
𝜕𝑦𝜕𝑧

𝜕2•
𝜕𝑧𝜕𝑥

𝜕2•
𝜕𝑧𝜕𝑦

𝜕2•
𝜕𝑧2


. (6.20)

6.5 Active set strategy

In this section, we present the strategy aimed at identifying and following the evolution of the contact

surface 𝜕ΩC all along the body deformation. A brief overview of the main available contact discretiza-

tion methods within the Finite Element Method is presented in [79].

The incremental method introduced in Sec. 3.6 for computing the equilibrium of elastic bodies

undergoing finite deformations has to be modified, in fact, only after the surface 𝜕ΩC has been

identified, we are able to apply the Newton’s method for the solution of (6.5). To this end, the

incremental method is currently equipped with an active set strategy encompassing contact with a

rigid body. The active set is the region of the boundary surfaces, namely a sub-set of boundary faces,

where the contact boundary conditions are “active”. A suitable search strategy is required to identify

the active set.

Initialized at the beginning of the computation (possibly as the empty set), the active set F C
ℎ

is

repeatedly updated along the deformation history as described in what follows:
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1. defining F 𝑏
ℎ

the the set collecting all boundary faces, a face F ∈ F 𝑏
ℎ
\ F C

ℎ
is included in the

active set if the average value of the gap functions over it is zero or negative;

2. a face F ∈ F C
ℎ

is excluded from the active set if the average pressure over it is zero or positive.

Clearly, the first active set update condition ensures non-penetration while the second avoids the onset

of adhesion forces.

The modified incremental method with the active set strategy is summarized in the Alg. 6.1 which is

used in the numerical results presented in Sec. 7.1 and Sec. 7.2.

for 𝑖 = 1 → 𝑁 do // Incremental method

Set the initial guess w𝑖
ℎ
= w𝑖−1

ℎ
;

do // Active set strategy

while 𝛿wℎ is too large do // Newton method

find 𝛿wℎ ∈ W HDG,𝑘

ce,ℎ such that:(
JHDG,C

ce,ℎ (w𝑖
ℎ)𝛿wℎ, zℎ

)
𝐿2 (Ω)

= −𝑟HDG,C,𝑖
ce,ℎ (w𝑖

ℎ; zℎ), ∀zℎ ∈ W HDG,𝑘

ce,ℎ ;

set w𝑖
ℎ
+= 𝛿wℎ;

end
Compute F̂ C

ℎ
=

{
F ∈ F 𝑏

ℎ
\ F C

ℎ
:
∫

F 𝑔𝑛 ≤ 0
}
;

Compute F̃ C
ℎ

=
{
F ∈ F C

ℎ
:
∫

F 𝜆𝑛 ≥ 0
}
;

Set F C
ℎ

= F C
ℎ
∪ F̂ C

ℎ
;

Set F C
ℎ

= F C
ℎ
\ F̃ C

ℎ
;

while F̂ C
ℎ

= F̃ C
ℎ

= ∅;
end
Algorithm 6.1: The incremental method of Sec. 3.6 equipped with an active set strategy to solve
nonlinear elasticity problems at large deformation and with the normal contact constraints of non-
penetration.

In the inner loop, Newton’s method (see Alg. 3.1) is employed to solve an incremental step where

the active set is kept fixed despite the gap function may change due to deformation. Upon Newton

convergence, the active set is updated. If any boundary face has been added or removed from the

active set, the inner loop is repeated, as opposite, if the contact interface is unchanged, the solu-

tion is accepted and the iteration may proceed to the next incremental step. Due to the intrinsically

dynamic nature of the active set cardinality along the deformation history, the problem size (that

is the number of degrees of freedom) and, accordingly, the data structures holding the Jacobian and
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residual operators of the HDG formulation, need to be updated concurrently with the contact interface.

In order to identify the active set, for each face F ∈ 𝜕Ω2,ℎ, the distance from the obstacle Ω1 has to be

computed. If the normal gap function 𝑔𝑛 is smaller or equal to zero along the face, the latter is inserted

in the active set. In particular, 𝑔𝑛 < 0 indicates that the bodies penetrate. From the computational

viewpoint, we rely on the following procedure: if the integral
∫

F 𝑔𝑛 of the normal gap on the face F is

equal or lower than a certain tolerance (we set 10−10), that face belongs to F C
ℎ

. Clearly, this requires

to solve the minimum distance problem (6.2) at each quadrature point of the face. Since we consider

obstacles whose surface admits an analytical description, also 𝑔𝑛 is an analytical function.
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Chapter 7. Numerical Validation of Hybridizable Discontinuous

Galerkin Formulations for Hyperelastic Deformations and

Frictionless Contact Constraints

This chapter deals with numerical validation of HDG method introduced in Sec. 3.4 are investigated

in this chapter and its application to real life computations in the hypothesis of frictionless contact

constraints.

Two and three dimensional nonlinear elasticity problems featuring frictionless contact with rigid

obstacles are solved demonstrating the effectiveness of the active set strategy introduced in Sec. 6.5.

As described in the previous chapter, contact with rigid obstacles is modelled by introducing a

non-penetration boundary condition enforced with Lagrange Multipliers. Thanks to the analytical

description of the obstacle surface (see Sec. 7.1.1, Sec. 7.1.2, Sec. 7.2.1 and Sec. 7.2.2), the expressions

of the normal gap function 𝑔𝑛, of the normal vectorn1 and of the Hessian matrixH𝑔𝑛 are easily derived.

The material is organized as follows. Two dimensional computations are collected in Sec. 7.1: the

impact of a square body against a horizontal obstacle is presented in Sec. 7.1.3 while a semicircle that

comes in contact with a horizontal and a circular obstacles is depicted in Sec. 7.1.4. Three dimensional

computations are considered in Sec. 7.2: the relative motion between a thin square membrane and a

spherical obstacle is portrayed in Sec. 7.2.3 and the blowing of a preform constrained in a cylindrical

mould is the topic of Sec. 7.2.4.

7.1 2D computational contact mechanics computations

We first consider a horizontal planar obstacle and a circular obstacle. Expressions for the normal

gap, the normal vector and the Hessian matrix are provided in Sec. 7.1.1 and Sec. 7.1.2, respectively,

according to equation Eqs. (6.10) and (6.20). In the following examples, let x2 = {𝑥2, 𝑦2} be a point

of the 2D Euclidean space located on the boundary surface of a deforming body Ω2.

7.1.1 Horizontal planar obstacle

Consider a planar two dimensional obstacle whose top surface is modelled as the horizontal line

𝑦 = 𝑦0. The normal gap function is given as

𝑔𝑛 (x2) = 𝑦2 − 𝑦0.
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This obstacle splits the 2D space in two parts. If the obstacle occupies the region of the space below

the horizontal line 𝑦 = 𝑦0, the normal vector is

n1 = (0, 1),

namely a vector pointing upwards. Being the normal constant in the space, the Hessian matrix is the

null matrix.

7.1.2 Circular obstacle

We assume that the curved surface of the obstacle is modelled by the equation of a circumference

with radius 𝑅 and centre at x0 = (𝑥0, 𝑦0). The circumference divides the space in two regions and the

obstacle occupies the circle.

The distance between the point x2 and x0 reads

𝑑2D(x2) =
√︃
(𝑥2 − 𝑥0)2 + (𝑦2 − 𝑦0)2.

Accordingly, the normal gap function is defined as

𝑔𝑛 (x2) = 𝑑2D(x2) − 𝑅.

Computing the gradient of 𝑔𝑛 respect to x2, we obtain the normal vector

n1(x2) =
(
𝑥2 − 𝑥0
𝑑2D

,
𝑦2 − 𝑦0
𝑑2D

)
. (7.1)

Finally, the Hessian matrix is computed according to Eq. (7.1), yielding

H𝑔𝑛 (x2) =


− (𝑥2−𝑥0)2

𝑑3
2D

+ 1
𝑑2D

− (𝑥2−𝑥0) (𝑦2−𝑦0)
𝑑3

2D

− (𝑥2−𝑥0) (𝑦2−𝑦0)
𝑑3

2D
− (𝑦2−𝑦0)2

𝑑3
2D

+ 1
𝑑2D


.

7.1.3 Square body against a horizontal planar obstacle

Consider a unit-length square computational domainΩ2 : [0, 1]2 consisting of 512 triangular elements.

A NHK-C material model with 𝜇 = 0.4, 𝜆 = 0.4 and Θ = ln(𝐽) describes the behaviour of the body.

The horizontal planar obstacle of Sec. 7.1.1 is put in place at 𝑦0 = −1.

Dirichlet boundary conditions are enforced on the top surface of the domain so that, in the final

configuration, the top surface of the body is modelled by the horizontal line 𝑦 = −0.3. The lateral

surfaces are stress free while the bottom surface is stress free until contact occurs. The square translates

undeformed until the bottom surface gets in touch with the obstacle. Thus, the computational domain
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squeezes in the vertical direction. The evolution of von Mises stress distribution is depicted in Fig. 23.

Results are obtained employing a first degree HDG discretization. This simulation is performed

considering 100 incremental steps and setting the stabilization parameter as 𝜉 = 30.

The aim of this test case is to check the active set strategy implementation. After contact, and all

along the loading path, all the bottom boundary faces are stably identified as part of the active set. The

normal contact reaction forces avoid the body to penetrate the obstacle while the tangential motion are

frictionless.

7.1.4 Semicircular body against a planar and a circular obstacle

We consider a semicircular body of radius 𝑟 = 1, centred at point (0, 0) and discretized using 782

triangular elements. 𝜇 = 0.4, 𝜆 = 0.4 and Θ = ln(𝐽) are the material parameters for the NHK-C model

employed in these test cases. Two different obstacles are considered: a horizontal planar obstacle (see

Sec. 7.1.1) with 𝑦0 = −2 and a circular obstacle (see Sec. 7.1.2) with x0 = (0,−3) and 𝑅 = 1.

Dirichlet boundary conditions are enforced on the planar surface of the domain so that, in the final

configuration, the top surface is modelled by the horizontal line 𝑦 = −1.5, while the curved surface

of the body is stress-free until contact. Figs. 24 and 25 depict two sequences of frames captured

during the loading path. Simulation are performed with 60 and 100 incremental steps and with the

stabilization parameters 𝜉 = 80 and 𝜉 = 60, respectively, for the planar and the curved obstacle.

These two test cases demonstrate that our active set strategy is able to deal with evolving contact

surfaces. In fact, the number of faces included in the active set grows as the deforming body adapts

to the obstacle shape. Furthermore, the normal vector associated to a point sliding over the circular

obstacle changes due to the curvature of the geometry.

7.2 3D computational contact mechanics computations

We consider a spherical obstacle and a cylindrical contact surface. Expressions for the normal

gap function, the normal vector and the Hessian matrix are provided in Sec. 7.2.1 and Sec. 7.2.2,

respectively, according to equations Eqs. (6.10) and (6.20). In the following, let x2 = {𝑥2, 𝑦2, 𝑧2} be

a point of the 3D Euclidean space located on the boundary surface of a deforming body Ω2.

7.2.1 Spherical obstacle

We assumed that the obstacle is described by the equation of a sphere with the radius 𝑅 and centre at

point x0 = (𝑥0, 𝑦0, 𝑧0). As for the circumference, the sphere divides the space in two regions. In this

work, the obstacle occupies the sphere.
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Figure 23: A square NHK-C body impacts against a horizontal planar obstacle. On the top surface, a vertical displacement is imposed while the normal
contact conditions are simulated using the Lagrange Multiplier method. Colours represent the von Mises stress distribution obtained with a first degree
HDG discretization.
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Figure 24: A semi-circle NHK-C body impacts against a horizontal planar obstacle. On the top surface, a vertical displacement is imposed while the normal
contact conditions are simulated using the Lagrange Multiplier method. Colours represent the von Mises stress distribution obtained with a first degree
HDG discretization.
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Figure 25: A semi-circle NHK-C body impacts against a circular obstacle.On the top surface, a vertical displacement is imposed while the normal contact
conditions are simulated using the Lagrange Multiplier method. Colours represent the von Mises stress distribution obtained with a first degree HDG
discretization.
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The distance between x2 and x0 reads

𝑑3D(x2) =
√︃
(𝑥2 − 𝑥0)2 + (𝑦2 − 𝑦0)2 + (𝑧2 − 𝑧0)2.

Accordingly, the normal gap function is such that

𝑔𝑛 (x2) = 𝑑3D(x2) − 𝑅.

Computing the gradient of 𝑔𝑛 respect to x2, we obtain the normal vector

n1(x2) =
(
𝑥2 − 𝑥0
𝑑3D

,
𝑦2 − 𝑦0
𝑑3D

,
𝑧2 − 𝑧0
𝑑3D

)
. (7.2)

Finally, the Hessian matrix is computed according to Eq. (7.2), yielding

H𝑔𝑛 (x2) =



− (𝑥2−𝑥0)2

𝑑3
3D

+ 1
𝑑3D

− (𝑥2−𝑥0) (𝑦2−𝑦0)
𝑑3

3D
− (𝑥2−𝑥0) (𝑧2−𝑧0)

𝑑3
3D

− (𝑥2−𝑥0) (𝑦2−𝑦0)
𝑑3

3D
− (𝑦2−𝑦0)2

𝑑3
3D

+ 1
𝑑3D

− (𝑦2−𝑦0) (𝑧2−𝑧0)
𝑑3

3D

− (𝑥2−𝑥0) (𝑧2−𝑧0)
𝑑3

3D
− (𝑦2−𝑦0) (𝑧2−𝑧0)

𝑑3
3D

− (𝑧2−𝑧0)2

𝑑3
3D

+ 1
𝑑3D


.

7.2.2 Cylindrical cavity

Let 𝑅 and 𝐻 be, respectively, the radius and the axial extension of a cylinder. We assume that the

cylinder represents a closed cavity acting as a mould. Sharp corners forms where the top and bottom

circular surfaces cap the lateral curved surface of the cylinder. Accordingly, we need a strategy to

define uniquely the normal gap function at each point of the cavity.

We assume that axis of the cylinder is the vertical line 𝑥 = 𝑥0 and the point x0 is located at the

intersection between the axis and the bottom surface.

The radial distance between the point x2 and the axis of the cylinder is

𝑑𝑅 (x2) =
��𝑅 −

√︁
(𝑥2 − 𝑥0)2 + (𝑧2 − 𝑧0)2

��.
The distances between the point x2 and the two planar surfaces of the cylinder are

𝑑−𝐴 (x2) = 𝑦2 − 𝑦0, 𝑑+𝐴 (x2) = 𝑦2 − (𝑦0 + 𝐻).

Moreover, the minimum axial distance is defined as follows

𝑑𝐴 (x2) = min
(
|𝑑−𝐴 (x2) |, |𝑑+𝐴 (x2) |

)
.
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The normal gap function is defined as

𝑔𝑛 (x2) = 𝑠 min
(
𝑑𝑅 (x2), 𝑑𝐴 (x2)

)
where 𝑠 = 1 if the point x2 is inside the cylinder and 𝑠 = −1 otherwise. The normal vector reads:

n1(x2) =



(
− 𝑥2−𝑥0

𝑑𝑅
, 0,− 𝑧2−𝑧0

𝑑𝑅

)
if 𝑑𝑅 ≤ 𝑑𝐴,

(0,−1, 0) if 𝑑𝑅 > 𝑑𝐴 and 𝑑−
𝐴
> 𝑑+

𝐴
,

(0, 1, 0) if 𝑑𝑅 > 𝑑𝐴 and 𝑑−
𝐴
< 𝑑+

𝐴
.

Finally, the Hessian matrix is

H𝑔𝑛 (x2) =



(𝑥2−𝑥0)2

𝑑3
𝑅

− 1
𝑑2D

0 (𝑥2−𝑥0) (𝑧2−𝑧0)
𝑑3
𝑅

0 0 0

(𝑥2−𝑥0) (𝑧2−𝑧0)
𝑑3
𝑅

0 (𝑧2−𝑧0)2

𝑑3
𝑅

− 1
𝑑𝑅


if 𝑑𝑅 ≤ 𝑑𝐴, or the null matrix if 𝑑𝑅 > 𝑑𝐴.

7.2.3 Spherical obstacle against a thin membrane

This test case considers a spherical obstacle of radius 𝑅 = 0.3 centered at point x0 = (0.5,−0.5, 0.5)

impacting on a thin hyperelastic membrane Ω2 : [0, 1] × [0, 1 · 10−2] × [0, 1]. The computational

domain Ω2,ℎ consists of 30 × 3 × 30 = 2700 uniform hexahedral elements. The behaviour of the

deforming membrane is described by the means of a NHK-C constitutive law with the material

parameters 𝜇 = 0.4, 𝜆 = 0.4 and Θ = ln(𝐽).

The relative motion between the hyperelastic membrane and the spherical obstacle is obtained imposing

Dirichlet boundary conditions on the four thin lateral surfaces of the membrane while the two top and

bottom square surfaces are stress-free. The displacements is prescribed setting uD = (0,−1, 0).

The incremental method counts 200 loading steps and the stabilization parameter is 𝜉 = 10. Some

frames captured along the loading path are depicted in Fig. 28.

The simulation is performed using first, second and third order HDG discretizations: the comparison

among the final solutions with increasing polynomial order is reported in Fig. 26. The improved

quality of the solution in terms of geometry approximation and von Mises stress distribution is clearly

noticeable.

Fig. 27 reports the evolution of the active set along the loading path after that the contact occurs. Faces
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(a) 𝑘 = 1 (b) 𝑘 = 2 (c) 𝑘 = 3

Figure 26: Final solutions, for different polynomial orders (𝑘 = {1, 2, 3}), of a NHK-C thin membrane
deformed by a spherical obstacle. Colours represent the von Mises stress distribution obtained with
increasing the polynomial order of the HDG discretization.

(a) (b)

(c) (d)

Figure 27: Evolution of the active set during the deformation of a NHK-C thin membrane impacting on
a spherical obstacle. The active set consists of those faces highlighted in red.
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Figure 28: A spherical obstacle impacts on a NHK-C thin membrane. Relative motion is obtained through Dirichlet boundary condition while the the
non-penetration constraint is rendered using the Lagrange Multiplier method. Colours represent the von Mises stress distribution obtained with a third
degree HDG discretization.
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highlighted in red are part of the active set, namely, the region that is considered to be in contact with

the spherical obstacle. It is worth mentioning that the boundary of the active set is not a regular curve

because it follows the sharp edges of square mesh faces.

An adaptive mesh refinement strategy may help to better approximate the contact surface. In particular,

by splitting a face in sub-faces, the algorithm may be able to identify those sub-faces that are in contact

with the obstacle. Nonconforming methods may handle this situation in a very efficient way without

strongly affecting the condition number of the global matrix. Specifically, the elements whose faces

have been refined can be simply be considered as general polytopes with increasingly high number of

sub-faces.

7.2.4 Blowing preform in a cylindrical cavity

We consider the three dimensional preform whose geometry is described in Fig. 29.
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Figure 29: Preform geometry.

The computational domain is discretized with 16441 tetrahedral elements and we employ NHK-

C constitutive law with the material parameters 𝜇 = 0.4, 𝜆 = 0.4 and Θ = ln(𝐽). The preform is

constrained with null displacement Dirichlet boundary condition on the top circular surface of the

computational domain boundary. In order to emulate the effects of pressurized air that pushes

the polymer against the internal cavity of the mould, we used a simplified Neumann boundary

condition such that TN = 𝑝N where 𝑝 = 0.54 and N is the normal in the reference configuration.

Implementation of the so-called live load (see [4]), namely a load that depends on the current

deformation of the body will be subject of future works.

Focusing on the contact detection strategy, Fig. 30 shows a simplified blow moulding simulation

realized with a second-order HDG discretization, 270 incremental steps and the stabilization parameter

𝜉 = 50.
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The preform comes in contact with a cylindrical cavity, (see Sec. 7.2.4) where the parameters

x0 = (0, 0, 0), 𝑅 = 38.5 and 𝐻 = 201 are used to described the geometry. Fig. 31 depicts some

details of the final results compared with the reference configuration while Fig. 32 reports the evolu-

tion of the active set during the contact simulation. Results similar to those in Fig. 31 may reveal to

be attractive in the analysis of blow moulding manufacturing processes.

7.3 Conclusions

The HDG framework has been extended to encompass CCM problems. In particular, non-penetration

contact constraints are imposed by means of the CCM. The analytical description of obstacles surfaces

is rendered through the normal gap functions, the normal vectors and the Hessian matrices, here

reported for simple test cases. The contact detection procedure, presented in Chap. 6, proves to be

effective not only in the case of simple two dimensional contact surfaces (e.g. horizontal obstacles) but

also in the case of three dimensional curved surfaces (e.g. spherical obstacles). Further investigation

are planned to develop a more generic active set strategy, distance computation techniques and surface

description.

As demonstrated, in Sec. 7.2.4, the HDG method combined with the active set strategy have the

potential of tackling real-life application. In fact, the simplified blow moulding simulation retains

some of the critical challenges such as thin walls and highly stretched mesh elements in contact with

the mould. It is interesting to remark that the HDG framework here proposed manages to deal with

blow moulding computation without requiring further simplifying assumptions (e.g. shell elements,

typically employed in this context).
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Figure 30: Sequence of frames captured during the deformation of a NHK-C preform modelled in a cylindrical cavity.

107



Luca Verzeroli

Figure 31: Section of the reference and the deformed configurations of the blowing preform modelled in
a cylindrical cavity.

Figure 32: Evolution of the active set during the deformation of a NHK-C preform modelled in a
cylindrical cavity. The active set consists of those faces highlighted in red.
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Chapter 8. Final Remarks and Future Developments

In this brief chapter, we collect the final remarks and propose some future developments.

8.1 Conclusions

Based on the Lagrangian formulation of the equations of motion, three nonconforming discretizations

of the nonlinear elasticity problem were implemented and tested. Neumann traction and Dirichlet dis-

placement boundary conditions can be imposed and, in particular, the latter can be enforced by means

of the Lagrange multipliers method. The BR2 dG formulation relies on broken polynomial spaces

defined over mesh elements, while HDG and HHO formulations rely on broken polynomial spaces

defined over mesh elements and mesh faces. Nonconforming space discretizations are introduced by

defining suitable local gradient reconstruction operators and using the discrete gradient in place of the

continuous gradient in the expression of the Piola-Kirchhoff stress tensor for Saint Venant-Kirchhoff

and neo-Hookean materials. Stabilization terms are thus introduced in order to ensure coercivity of

the formulations.

For the dG formulation, thanks to the introduction of higher-order lifting operators in the gradient

reconstruction, two stabilization parameters are required: 1. coercivity is ensured by adaptively

changing the amount of inter-element displacement jump penalization according to the spectrum of

the fourth-order elasticity tensor; 2. inf-sup stability is provided by penalizing the jump of Lagrange

multipliers on the internal edges of Dirichlet boundary surfaces. HDG and HHO formulations do not

require additional penalty terms for the jumps of Lagrange multipliers on Dirichlet boundaries. For

HDG and sHHO coercivity is achieved by penalizing the jumps between the trace of the elements

displacements and the elements face displacements. Penalty coefficients are considered as user-defined

parameters even though the scientific literature provides some guidelines for an adaptive stabilization

strategy in case of HDG. The uHHO formulation is stabilization parameters free in case on small

deformations thanks to a higher polynomial degree gradient reconstruction.

Extensive numerical validation of the three nonconforming formulations implementations is provided

by verifying that theoretical convergence rates are achieved when considering 2D and 3D manufactured

solutions in the compressible and, possibly, in the incompressible material regime. The 𝐿2-norm of the

errors on the displacement, the displacement gradient and the pressure are computed over ℎ-refined

mesh sequence and the resulting ℎ-convergence rates are tabulated. Thanks to higher-order jump
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stabilization residuals, sHHO achieves one order higher convergence rates for the displacement error

in 𝐿2-norm with respect to dG, HDG, and uHHO when considering smooth analytical solutions.

Further investigations were performed applying the nonconforming formulations to 2D and 3D real-

life test cases featuring finite deformations. In this context, the elasticity problem in Lagrangian

formulation presents two different sources of nonlinearity: one is related to the material constitutive

law and the other one is related to the geometrical transformation that maps the unloaded reference

body configuration into the deformed body configuration. The static equilibrium is reached by means

of an incremental load method, which is required to globalise Newton’s method convergence in

case of large deformations. Accordingly, the final deformed state is achieved through a sequence of

intermediate equilibrium states obtained by gradually increasing the external solicitations up to the

desired loading.

Thanks to the availability of efficient and flexible agglomeration-based multigrid solution strategies,

a dG framework for compressible and incompressible hyperelastic materials is introduced based on

the BR2 dG formulation. A fully implicit formulation for the Lagrangian equation of motion coupled

with the incompressibility constraint is devised. The possibility to impose Dirichlet displacement

boundary conditions by means of Lagrange multipliers is investigated and significant improvements

in terms of robustness of the incremental load method are achieved using Lagrange multipliers BCs in

place of Nitsche method BCs. In particular, the number of incremental steps can be reduced by orders

of magnitude keeping the solution accuracy unaltered. The parabolic indentation, the cavitating voids

and the torsion of a square-section bar showed the robustness of the method with respect to severe

mesh distortion. The adaptive stabilization strategy proved to be effective in challenging 2D beam

and hollow cylinder deformations, without requiring fine tuning of the user-dependent stabilization

coefficient. In fact, the number of iterations of the agglomeration based ℎ-multigrid preconditioned

GMRES solver strategy are marginally affected by changing the stabilization coefficient.

Thanks to the increased flexibility of imposing BCs by means of the Lagrange multipliers method,

an HDG framework for compressible and quasi-incompressible hyperelastic materials featuring non-

penetration contact constraints is investigated. Despite the worst convergence properties, HDG is

preferred to HHO because of the increased robustness demonstrated in real-life computations featuring

large deformations. In particular, HDG ensures stability for wider ranges of stabilization parameter

values, thereby avoiding the cumbersome trial-and-error approach. Moreover, the implementation of

the adaptive stabilization strategy proposed in literature will be the subject of future work. Mimicking

the Dirichlet boundary conditions approach, the Lagrange multiplier method is employed for enforcing

non-penetration contact boundary conditions and an active set strategy is implemented to identify and
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follow the contact area all along the deformation history. The HDG framework is validated through

2D and 3D test cases tackling the impact of deformable bodies (such as a square, a semi circle and

a membrane) against different rigid obstacles admitting an analytical geometrical description. The

HDG framework is also applied to perform simplified blow-moulding computations: in particular, a

preform is blown against a cylindrical surface emulating the mould. Those results demonstrated that

the HDG method is able to handle domains with thin walls and highly stretched mesh elements in

contact with the mould.

8.2 Future Developments

The robustness with respect to mesh distortion, the possibility to work with arbitrarily unstructured

polytopal meshes, the ability to locally increase the solution accuracy by adjusting the polynomial

degree and the availability of locking-free formulations encouraged us to use nonconforming numerical

methods for Computational Solid Mechanics. Started from scratch in the context of the SpaFEDTe

library, a templated C++ library for creating Discontinuous Finite Element Spaces developed by Lorenzo

Botti for academic purposes, our present implementations require some further developments.

In order to apply the dG framework to nonlinear elasticity problems featuring contact constraints,

implementation of suitable active set strategy for contact detection is mandatory. In fact, the strategy

has to be able to identify and track the sharp corners of the domain boundary coming in contact with

an obstacle in order to suitably penalize the Lagrange multipliers jumps.

Concerning the HDG and the HHO methods, adaptive stabilization strategies ought to be investigated.

Up to now, the penalization parameter is is kept constant over the entire computational domain and

manually adjusted with a trial and error approach in order to provide stability. In view of using an

iterative solver for the solution of the linearised equations systems, it is fundamental to set the right

amount of stabilization because unnecessarily high values may significantly increase the number of

iterations.

Both the dG and HDG framework require improvements from the solution strategy viewpoint. As

mentioned in Chap. 4, the solution of the saddle-point problem resulting from the imposition of BCs

by means of Lagrange multipliers is performed with a direct solver. The latter resulted to be computa-

tionally inefficient when considering finer meshes and higher polynomial degree discretizations. The

introduction of an agglomeration based ℎ-multigrid preconditioner showed impressive improvements

in terms of solution strategy efficiency when using the dG framework in combination with Nitsche

method to impose Dirichlet boundary conditions. Our goal is to extend this methodology to cope with

Lagrange multiplier BCs bearing in mind that the agglomeration strategy can not be easily applied
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to agglomerate boundary faces where the Lagrange multipliers live. Accordingly, a 𝑝-multigrid pre-

conditioner may be applied on face unknowns and combined with the ℎ-multigrid solution strategy

for element unknowns. Similarly, the implementation of ℎ-multigrid solution strategies for HDG and

HHO discretizations is an open field of research.

In this work we considered only hyperelastic materials, nevertheless viscosity and plasticity are two

of the main aspects that need to be taken into account in order to describe real material behaviours.

Motivated by the results on the simplified blow moulding simulations of Chap. 7, we claim that the

nonconforming dG and HDG frameworks are capable of dealing with elasto-visco-plastic computa-

tions. Indeed, the current results present more severe stress distributions with respect to those expected

in realistic applications.

In order to tackle realistic blow moulding computations additional developments are required. In

addition to frinctionless contact, tangential contact kinematics needs to be introduced. Analytical

descriptions of obstacle surfaces is not possible when dealing with complex mould shapes, accordingly,

a strategy able to manage the obstacle geometries based on their CAD representations is required.

No thermal effects were considered during this work, the thermal distributions and heat exchanges

will help to enhance the simulation accuracy rendering the changes of the material properties due to

temperature variations.

Further research efforts will consider the possibility to utilize the proposed nonconforming imple-

mentations within an unified high-order accurate framework for fluid-structure interaction where

nonconforming methods are employed either for computational fluid-dynamics or solid mechanics.
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