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Abstract—This article investigates classification of emotions from full-body movements by using a novel Convolutional Neural

Network-based architecture. The model is composed of two shallow networks processing in parallel when the 8-bit RGB images

obtained from time intervals of 3D-positional data are the inputs. One network performs a coarse-grained modelling in the time domain

while the other one applies a fine-grained modelling. We show that combining different temporal scales into a single architecture

improves the classification results of a dataset composed of short excerpts of the performances of professional dancers who

interpreted four affective states: anger, happiness, sadness, and insecurity. Additionally, we investigate the effect of data chunk

duration, overlapping, the size of the input images and the contribution of several data augmentation strategies for our proposed

method. Better recognition results were obtained when the duration of a data chunk was longer, and this was further improved by

applying balanced data augmentation. Moreover, we test our method on other existing motion capture datasets and compare the

results with prior art. In all experiments, our results surpassed the state-of-the-art approaches, showing that this method generalizes

across diverse settings and contexts.

Index Terms—Emotion recognition, convolutional neural network, full-body movements, kinematics, multiple temporal scales, motion capture
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1 INTRODUCTION

SEVERAL studies have acknowledged the importance of
expression dynamics for perception and automatic recogni-

tion of emotions [1], [2], [3], [4]. In particular, the expressive
qualities of full-bodymovements, i.e., how amovement is per-
formed, provide significant information about the emotional
state of a person. Among many others, Wallbott [5] showed
that emotions such as ”hot anger” and ”elated joy” are charac-
terized by high movement activity and dynamics as well as
expansive movements while emotions such as ”contempt”
and ”sadness” are characterized by low movement activity
and dynamics. Similarly, it is possible to recognize emotions
just from point-light displays of arm movements, i.e., from
movement dynamics, as shown in [1].

Extracting expressive qualities of a movement conveying an
emotion requires temporal analysis. At the same time, there is
no gold standard regarding the minimal observation time
needed to perceive an expressive quality nor to detect it

automatically. Regarding that, Camurri et al. [6] presented a
conceptual framework for the analysis of expressive qualities
of the movements. Inspired by previous research on human
movement perception and dance theories (e.g., Laban Effort
[7]), the authors postulate that computationalmodels of expres-
sive qualities should operate on different temporal scales. The
first layer of their framework [6] consists of low-level features
(e.g., velocity) computed instantaneously while middle and
high-level features (such as impulsivity and fluidity) are com-
puted on larger temporal scales, varying from 0.5 to 5-seconds.
That framework [6] finds empirical confirmation in a recent
functionalmagnetic resonance imaging (fMRI) study [8], show-
ing that low-level features are processed by a different part of
the brain than mid-level features. Other recent works (see for
example the European FET PROACTIVE Project EnTimeMent,
http://entimement.dibris.unige.it) also refer to the importance
of different temporal scales in movement analysis and predic-
tion. For example, processing the data at short time intervals is
sufficient to detect hand tremors or trembling (e.g., in anxiety
[9]) whilst longer time intervals are required to identify fluid
and large full-bodymovements (e.g., in lightness [10]).

Motivated by these findings, in this paper, we propose a
novel approach to modeling the dynamics of full-body
movement data represented on multiple temporal scales for
the emotion recognition task. A motion capture (MoCap)
system was used to collect positional data, which contained
short excerpts of the performances of professional dancers
who interpreted four affective states: anger, happiness, sad-
ness, and insecurity. We focus on dancers’ improvised
movements as they are characterized by high complexity
and versatility and involve a much larger set of movements
compared to the regular day-to-day activities. The dancers
use their physical and motor abilities to endow emotional
meaning to the movements through the modulation of
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movement dynamics. Dancers’ movements are here con-
text-free, i.e., they are not constrained or limited by the con-
text and the surrounding objects, which is a common issue
in everyday activity datasets. Dancers were asked to express
emotions without using specific actions or stereotype emo-
tion emblems, and they did not perform any specific action.

In our approach, movement dynamics at two different but
related temporal scales are processed jointly by a two-branch
neural network architecture. Our proposed method learns
simultaneously both features at a middle-level (i.e., fine-
grained such as 0.5-, 1-seconds temporal scale) and at a high-
level (i.e., coarse-grained such as 4-seconds scale). The net-
work architecture consists of two shallowConvolutional Neu-
ral Networks (CNN) processing in parallel, where inputs are
8-bit RGB images obtained from various time intervals of 3D-
positional data. We investigate the effect of data chunk dura-
tion, various data augmentation strategies for the classifica-
tion of the aforementioned four emotions as well as the
performance of the proposed method compared to the prior
art. Additionally, the proposed method was tested on two
other datasets, which a) contain more emotion classes includ-
ing non-basic emotions (from 8 to 12 emotions), b) were cap-
tured in different contexts (i.e., contemporary dance and
daily-living actions) and c) contain full-body motion per-
formed bymultiple participants (from 6 to 12 participants).

The rest of the paper is organized as follows. Related
works on automatic full-body movements classification and
particularly emotion recognition are discussed in Section 2.
Our dataset and the data representation method are intro-
duced in Sections 3 and 4, respectively. Section 5 describes
the proposed method. The details of the experimental analy-
sis is given in Section 6 while Section 7 includes an ablation
study and discusses the performance of the proposed
method within a comparative study performed on our as
well as other available datasets. Finally, in Section 8 we con-
clude the paper with a summary, list of findings and discus-
sions including future research.

2 RELATED WORK

There has been a growing interest in automatic classification
of full-body movements. Majority of the works have focused
on automatic recognition of a pre-defined set of activities or
gestures. However, in this paper, we target classification of
emotions from full-body movement data. Thus, below, we
only briefly discuss the action and gesture recognition stud-
ies and mainly focus on the prior art of emotion recognition.
Finally, we review the affective computing studies for
modeling multiple temporal scales.

2.1 Action and Gesture Recognition

Ha and Choi [11] presented a CNN-based human activity
recognition method that performs better than Hidden Mar-
kov Models (HMMs) and Support Vector Machines (SVMs)
for 12-activity classes (e.g., standing still, sitting and relax-
ing, lying down, walking) whose data was collected by
accelerometers and gyroscopes. In [12], a CNN model is
used for action recognition from MoCap data. The captured
data is represented as images such that the joint positions
constitute the x-axis and the time information constitute the
y-axis of the image. That method [12] was applied to two

standard datasets while CNN showed significantly better
results compared to hand-crafted features. In [13], a deep
encoder-decoder architecture was applied for classification
and prediction of activities in the CMU MoCap database,
which contains 2230 recordings of different physical activi-
ties such as walking, running, and punching, resulting in 78
percent accuracy for nine classes. Wan et al. [14] present a
Bidirectional Long Short-Term Memory (Bi-LSTM) network
for large-scale isolated and continuous gesture recognition,
showing a remarkable performance. There is a large number
of other studies performing action and/or gesture recogni-
tion from full-body movements. Interested readers can refer
to the survey papers in which the data is captured by RGB
cameras [15], depth sensors [16], [17], and wearable inertial
sensors [18].

2.2 Emotion Recognition

Emotions expressed through full-body can be perceived
from 1) a static full-body pose (e.g., a forward head and
chest bend expressing the sadness [19]), 2) specific gestures
being emotion emblems (e.g., raising arms and hands-on-
hips are the gestures of pride [20]), and 3) expressive quality
of the movement (e.g., performing expanse movement in
anger [3]). This work focuses on the third aspect while the
second aspect can be addressed with the methods described
in Section 2.1, and the first aspect does not rely on the tem-
poral data.

Several challenges have been mentioned in the literature
regarding emotion recognition from full-body MoCap data
[21], [22], [23]. The contextual and interpersonal differences
in expressing and perceiving affect makes emotion recogni-
tion complex [22], [23]. Consequently, it becomes harder to
obtain reliable ground-truth data, which is needed to
develop automatic recognition methods. Full-body affective
expressions may differ between individuals in both inten-
sity and quality level due to numerous factors, e.g., person-
ality, physical capacity, and personal experience. Such
differences might cause low accuracy for person-indepen-
dent automatic recognition [22]. Additionally, existing
MoCap datasets are usually rather small, due to the effort
needed to collect and most importantly annotate such data
with a high reliability. This requires not only relatively
expensive and sophisticated hardware but also a lot of post-
processing, which might even include manual data clean-
ing. Consequently, it is very important to develop shallower
machine learning methods that are able to efficiently deal
with limited data.

Indeed, the majority of the studies in this context still rely
on hand-crafted features and apply learning methods such
as SVMs and Random Forests [24], [25], [26], [27]. For exam-
ple, Castellano et al. [24] classify acted emotional states using
the movement features (motion quantity, velocity, move-
ment fluidity and so forth) extracted from visual data. A set
of temporal aggregators is applied to these low-level fea-
tures to describe their dynamics, which are later classified
in terms of four emotions. Piana et al. [27] use 3D-motion
data of full-body movements and define a number of low-
level (e.g., kinematics of a single joint) and high-level (e.g.,
contraction index, impulsiveness) features, which are mod-
elled by an SVM classifier. The contribution of temporal
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features (e.g., regularity of a motion profile, overall or single
gesture phase impulsiveness) and multi-level body cues
(e.g., based on Body Action and Posture Coding System
[28]) to automatic emotion classification were investigated
by Fourati et al. [25] on a dataset composed of 8 daily-life
actions (e.g., walking with/without objects in hands, mov-
ing books on a table) performed with 8-states (anxiety,
pride, joy, sadness, panic fear, shame, anger and neutral).

Daoudi et al. [29] represent the 3D-skeleton data in the
Riemannian manifold by integrating covariance operator
and use this representation with a Nearest Neighbour clas-
sifier to differentiate between angry, fearful, joyful, neutral
and sad walks. Kacem et al. [30] adapt the idea of using rep-
resentations parametrized in the Riemannian manifold, fol-
lowed by a temporal warping and SVM. That method was
used for action recognition from 3D-data, emotion recogni-
tion from 3D-body movements and 2D-facial expression
recognition, showing boosted performances in all these
cases. In [31], a 3-layered Recurrent Neural Network (RNN)
is used to perform emotion classification from MoCap data
of daily activities such as clapping, drinking, throwing, and
waving associated with four-emotions: happy, angry, sad,
and neutral. Creen et al. [32] present a method, which syn-
thesizing neutral motion, is used to detect body expression
from the 3D-skeleton provided by MoCap data. Neutrality
in a motion is quantized through a cost function, and then
the difference between body expression of other emotions
and synthesized neutral emotion is calculated.

2.3 Modeling Multiple Temporal Scales

The existing affective computing works integrating multiple
temporal scales, exclusively rely on analyses of facial expres-
sions in videos or by audio processing. For instance, Yun et al.
[33] present an engagement detection method processing
facial videos with a CNN architecture that includes a layer
modeling the temporal long and short-term data dynamics.
Chanti et al. [34] use the combination of 3D-CNN to model
short-term spatio-temporal features and Convolutional-
LSTM to learn global spatio-temporal features for video-
based facial expression analysis. Similarly, a combination of
CNNand LSTMmodels are recently tested for affect recogni-
tion from audio and video facial expressions data [35], [36].

In terms of architecture design, targeted problem and
dataset, the most similar work to our study is [37]. The
authors [37] compare data representation methods: coarse
position format, fine position format, logistic position for-
mat, and logistic velocity format by applying a shallow
CNN architecture for classification of affect from full-body
movements. Herein, we use an extended version of the
dataset introduced in that study [37] and rely only on the
logistic position format (described in Section 4) as it per-
formed the best out of all others analyzed in [37]. Unlike
[37], we explore the effectiveness of using multiple temporal
scales for emotion recognition.

3 OUR DATASET

Our dataset is composed of four affective states: angry,
happy, sad and insecure. The choice of labels was inspired
by previous studies such as [38] where the images displaying
bodily emotions of four basic emotions: anger, happiness,

sadness, and fear were correctly categorized at least 85 per-
cent of all the cases. The same set of four labels was also con-
sidered in other studies on perception of emotions from
static images and videos [39], [40]. We replaced “fear” with
“insecure”, which is not among basic emotions, but shares
some characteristics with the former (e.g., both are reactions
to threats). The advantage of ”insecurity” (i.e., a reaction to
abstract threat) is that it can be easier to express with dance
than fear (i.e., a reaction to immediate and concrete threat).

Two professional dancers participated in the data collec-
tion. They were asked to portray an emotion in a free move-
ment improvisation, not necessarily dance, avoiding
stereotype movements and specific actions.1 Each recording
session was 1-minute long, on average. A team of three
experts selected segments of various duration from each
recording. Segments that display 1-type of emotion as
agreed by all experts were kept, while segments that do not
display any clear emotion were discarded. The selected seg-
ments have an average duration of 17.8 seconds. The num-
ber of selected segments and their duration are summarized
in Table 1.

4 DATA REPRESENTATION

A Qualisys MoCap System was used for creating the data-
set. 30 markers were attached to the body of the dancers.
Sample rate was 100 frames per second (fps). Markers were
split into five sets: head and torso, left arm, right arm, left
leg, and right leg. The markers were re-ordered within each
group according to their position in the body (from top to
bottom of the body). These were then arranged as shown in
Table 2. Missing values were interpolated by using polyno-
mial interpolation.

4.1 Image Construction

Data consisting of the 3D-positions of 30 markers at 100 fps
was converted into RGB images, which is a common input
format for CNNs. This includes dividing the MoCap seg-
ments as identified by the experts, which have a variable
duration, into chunks of fixed duration. Then, a chunk of
data is converted into an RGB image. Various values were
tested for the duration of a single chunk while overlapping
in time was also applied. The resulting number of images

TABLE 1
The Total Number of Segments and Overall Segment Duration

in Seconds for Each Emotion Class in Our Dataset

Emotion Number of Total Duration

Segments (seconds)

Angry 16 176
Happy 17 334
Insecure 18 292
Sad 10 283

Total 61 1,085

1. A video containing sample visualizations of the MoCap data is
provided as the supplementary material, which can be found on the
Computer Society Digital Library at http://doi.ieeecomputersociety.
org/10.1109/TAFFC.2021.3095425.
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for each setting is given in Table 3. For example, for the data
chunk having a duration of 4-seconds and applying a 0.5-
seconds overlapping to the whole dataset results in 1,683
RGB images, in total.

The procedure for constructing RGB images includes
body-centered relative normalization, which can be
described as follows. The value of marker CLAV at the first
frame of each chunk is taken as a point of reference. CLAV
is situated on the lower part of the chest on the xiphoid pro-
cess. So, in the first frame, the position of CLAV is zero. The
positions of the other markers are taken with respect to this
new origin. In the second data frame, if the dancer moves,
the position of CLAV changes, i.e., it is no longer at the ori-
gin. This allows us to model not only the movement of the
joints with respect to the CLAV, but also the movement of
the whole body with respect to its initial position. Addition-
ally, by using body-centered relative positioning, the range
of the marker values is reduced, thus, it is no longer
required to map all the positions of the work-space. An
advantage of this normalization is that it allows the creation
of images with an overlap. For example, if we take a 1-sec-
ond chunk with 0.5-seconds overlap, in the first chunk the
origin corresponds to the CLAV position at frame one,
while in the second chunk, the origin corresponds to the
CLAV position at frame 51 of the whole sequence. Hence,
the overlapping portion of two consecutive images contain
different values.

Following that, an 8-bit RGB image format is used to rep-
resent the data based on the method presented in [12]. In
detail, the X, Y and Z coordinates of the markers are

associated with the R, G and B layers, respectively. Markers
are represented on the y-axis, while the consecutive frames
of the sequence are represented on the x-axis. For example,
a row of the R layer in the resulting image represents the
temporal evolution of theX coordinate of the marker associ-
ated with that row. Then, logistic position (LP) is used to fit
the information in this 8-bit image format, as this method
was shown to be the most efficient mapping in our previous
work [37].

Logistic Position Image Format. While an 8-bit image
allows 256 values in the range of 0 to 255, the marker posi-
tions are provided in millimeters for high accuracy, hence
even with relative positioning, the range of 256 values is
insufficient to fit all the data. The approach that we use is
based on human perception. In detail, humans are quite
capable of noticing differences in lower frequencies, but not
so good at identifying high frequency components. Hence,
high frequency components can be mapped to a single
quantum value and lower frequency components can be
mapped to a larger number of values. Inspired by this
observation, we use a logistic function that maps the posi-
tions into the -127 to +127 interval. The function is given as
follows:

R ¼ 255

1þ e�L Qð Þ

� �
; (1)

where R represents the new marker value, Q represents the
original value obtained from relative position extraction
and Lwas a constant selected empirically. Shortly, the input
values closer to the origin are mapped to a larger range of
output values. Some examples of the resulting images in
logistic position format for the 4-emotion classes of our
dataset are given in Fig. 1.

4.2 Data Augmentation

Given a data chunk D represented by the X, Y and Z coor-
dinates of the 30 markers, we obtain a new chunk by:

� Swapping the data associated to the left-side body
markers with the right-side body markers (L2RR2L):
The values of the left-arm markers (i.e., LSHO,
LBUPA, LELB, LIWR, LPLM, LINDX) are assigned
to the right-arm markers (i.e., RSHO, RBUPA, RELB,
RIWR, RPLM, RINDX), while the values of the right-
arm markers are assigned to the left-arm markers.
Similarly, the values of the left-leg markers (i.e.,
LFTHI, LKNI, LANK, LHEL, LMT1) are exchanged
with the values of the right-leg markers (i.e., RFTHI,
RKNI, RANK, RHEL, RMT1) as well as the values of
the LBWT marker is exchanged with the values of
the RBWT marker and vice versa.

� Applying 3D rotation around the X-axis (3D-RotX):
We obtain a new data Dx0, which results from the

TABLE 2
The Order of the Markers (1-30) and Their Correspondence

With the Body Parts

TABLE 3
The Total Number of Images Obtained From a Certain Chunk

Duration and Overlapping

Chunk Duration Overlapping Number of

(seconds) (seconds) Images

0.5 NA 2169
1 0.5 2068
2 NA 513
2 0.5 1946
4 0.5 1683

NA stands for ”not applied”.

Fig. 1. RGB images in logistic position format with their emotion labels.
These examples encode 1-second of data (x-axis), and 30 markers
(y-axis).
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rotation of the original data D around the X-axis for
90 degrees.

� Applying 3D rotation around the Y -axis (3D-RotY):
A new data Dy0, which results from the rotation of
the original data D around the Y -axis for 90 degrees,
is obtained.

� Applying 3D rotation around the Z-axis (3D-RotZ):
A Dz0, which results from the rotation of the original
dataD around the Z-axis for 90 degrees, is obtained.

L2RR2L assumes that the person can display the same
expressive quality by moving left and right part of his/her
body. Strategies similar to 3D-RotX, 3D-RotY, and 3D-RotZ
have been recently used in [41] for automatic detection of
reflective thinking. Herein, we have adapted them for emo-
tion classification, and they are based on the assumption
that emotion recognition should be invariant to 3D-rota-
tions. In other words, augmentations applied add some var-
iability to the data, which can be corresponding to the
potential real-life situations, e.g., various viewpoints that
might not be covered during data collection. The aforemen-
tioned augmentation strategies have been designed consid-
ering the content (i.e., full-body movements), instead of
applying traditional methods such as image cropping, pad-
ding, or horizontal flipping. Fig. 2 shows examples of the
original and the corresponding augmented data repre-
sented in the logistic position image format. The data
obtained as a result of the aforementioned augmentations
retain the labels of the original chunks since the expressed
affective states are unaltered.

Given one of these four strategies, we apply:

� Augmenting every training image (A_ALL): This
creates the biggest training set out of all.

� Augmenting 10 percent of the images belonging to
each emotion class (A_10%).

� Balanced Training (A_BALANCED): We calculate
the number of images belonging to each emotion
class in the original training set. The majority class
(i.e., the class having the maximum number of data)
is not augmented, but all other classes are aug-
mented, resulting in a final training set containing an
equal number of images from each emotion class.

In case of using all four augmentation strategies
(L2RR2L, 3D-RotX, 3D-RotY, 3D-RotZ) together, we ran-
domly determine the strategy to be applied for the genera-
tion of a single new image.

One reason to apply data augmentation is to increase the
size of the training set, which might result in a better per-
forming model (e.g., as applied in [42]). But it is often diffi-
cult to foresee what the quantity of the augmented data
should be. Among A_ALL, A_10%, and A_BALANCED the
highest number of augmented data is obtained by applying
A_ALL while the smallest number of augmented data is

obtained by applying A_BALANCED. Another important
issue is having class imbalanced data that causes a tendency
of the trained model to bias towards the majority class [43].
The possible negative effects of having class imbalance
are handled by applying data augmentation with the
A_BALANCED strategy where quantity of the augmented
data is not a parameter (as in A_10%), but instead it is in
terms of the quantity of the data belonging to the majority
class. Overall, by applying the aforementioned data aug-
mentations, we aim to improve the overall classification
performance while performing equally well prediction for
each emotion class.

5 PROPOSED METHOD

In this study, we have spatio-temporal data to be processed
and classify in terms of some set of emotion classes. While
CNN is best known for its application to the classification of
static images (i.e., only spatial data), it is also an appropriate
technique to process temporal data [12], [33]. There are
some benefits of using a CNN model for our task as com-
pared to other machine learning methods. For example,
similar dynamic patterns observed in different parts of the
body can be identified using the same filter. Thus, we do
not need to train separately the network to detect the same
features in different parts of the body as it could be in case
of other machine learning methods. Also, by using CNN,
the filter is able to detect a quality (i.e., emotion cue) in the
data irrespective of when the corresponding motion occurs.
CNN allows us to bypass the manual extraction of move-
ment features and let the network decide the best features
for classification. Moreover, compared to other popular
deep learning methods such as RNNs, CNNs typically
require less computation and memory and can provide bet-
ter classification results for a smaller data size [37].

Our proposed method employs a two-branch architec-
ture. It consists of two CNNs, each of them is composed of
three convolutional layers followed by fully connected
layers. It is illustrated in Fig. 3. One key feature in our archi-
tecture is the shape of the convolutional filters. Instead of
using square filters, which is more common, our filters are
extended along the time-axis to form 3�5 rectangles. The
reason for having rectangular filters is that we expect the
network to learn and extract features in the time domain
rather than among successive markers. It is also important
to highlight that the input image is always rectangular. The
first convolution is applied to the input image with 16

Fig. 2. Original image in logistic position format (top) and the corre-
sponding new images obtained by applying data augmentation: (a)
L2RR2L, (b) 3D-RotX, (c) 3D-RotY, (d) 3D-RotZ (bottom).

Fig. 3. The architecture of our proposed method. K stands for the num-
ber of markers and C represents the number of emotions.
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filters. The ”same” padding, which makes the size of out-
puts the same as that of inputs, is used. A max pooling oper-
ation with a stride of two is performed, which reduces both
x and y dimensions by half. The obtained result is given to
the next layer after applying a ReLU function.

This series of operations is repeated in the next two con-
volutional layers, but with increasing numbers of filters. In
other words, in the second layer 32 filters are used while
in the third layer 64 filters are used. Such increase in the
number of filters allows us to identify more complex fea-
tures in the deeper layers. After the third and final max
pooling and ReLU layer, the image size is reduced to
3�12, but with 64 layers. The output is then flattened out.
In this two-branch architecture, separate convolutional
layers are used before the weights are flattened out and
these weights are added together in a fully connected
layer. Finally, another fully connected layer of dimension
4�1 is used as the output layer such that each output
value corresponds to a single emotion class. A softmax
function in the output layer determines the final emotion
class for the given input image.

The input of our model at a time is a part of a data seg-
ment in the form of two RGB images in logistic position
image format (see Fig. 3). The L constant introduced in
Eq. (1) was taken as 0.0035, which was decided empirically,
for the experiments applied on our dataset. The two-
branches of the proposed architecture take images I 00 and I 0,
both having the sizeM=N �K (which is determined empir-
ically in Section 7 while K is defined by the number of
markers). Starting from an image I (having the size M �K)
corresponding to a certain data chunk duration and I 0 that
is a part of I corresponding to the last portion of I (e.g., the
last quarter), thus its size is M=N �K (e.g., M=4�K),
where N 2 Z and 1 < N < M, first, image resizing with
bi-cubic interpolation is applied to I, resulting in I 00, which
is M=N �K. Then, I 00 and I 0 are given to the network as the
inputs, simultaneously.

Our architecture as well as the way of pre-processing the
input data are inspired by the human perception and the
studies in [6], [8]. In detail, one branch learns the temporal
patterns of the longer chunks (so-called global learning)
while the other branch learns more local temporal patterns,
which are shorter (so-called local learning). In other words,
the branch that processes I 00 performs a coarse-grained
modelling in the time domain while the other branch
applies a fine-grained modelling by processing I 0. It is
important to highlight that by applying overlapping, both
branches process all the data of the given segment. We illus-
trate this in Fig. 4.

Below, we investigate whether emotion classification
from full-body movements can be performed more accu-
rately as compared to not considering multiple temporal
scales by applying our proposed two-branch architecture as
well as we compare the performance of the proposed
method with the prior art.

6 EXPERIMENTAL ANALYSIS

To train the proposed method, mini-batch gradient descent
was used with Adam optimizer. Dropout regularization
was performed on the fully connected layers. Early

stopping was applied to determine the number of epochs
such that we stopped the training where the validation error
started to increase significantly. In the end, the learning rate
was fixed to 0.0009 and increased up to 0.00135, mini-batch
size was fixed to 32 or 64, the number of epochs was fixed to
120 or 200 together with the values of filter sizes and convo-
lution operations mentioned in Section 5. The values of all
these parameters were set empirically.

A hybrid cross validation was performed. This hybrid
method involves a k-fold cross validation and a Monte
Carlo cross validation. In the inner loop, a 5-fold cross vali-
dation was applied. In the outer loop, the data was shuffled
randomly and sent to the inner loop. This enables the crea-
tion of different segments in the 5-fold and hence provides
a measure of randomness akin to the Monte-Carlo method.
This was performed for ten times bringing on 50 (10�5)
results. The results given in the next Section are the average
of the 50 results of the cross validation.

7 RESULTS

In this section, first, we discuss the effect of chunk duration
and overlapping together with the effect of the size of the
input images (Section 7.1). Then, the contribution of the
applied data augmentation strategies is investigated (Sec-
tion 7.2). All of these analyseswere performed by using a sin-
gle branch of the proposed architecture (illustrated as the top
branch in Fig. 3 with or without resizing), and the corre-
sponding results are given in Table 4 in terms of F1-score.
Following that, we report the performance of the proposed
method, which analyses the data at multiple temporal scales
with a two-branch CNN architecture (Section 7.3, Table 5)
and compare its performance with the prior art (Section 7.4,
Table 6). All these aforementioned experiments were real-
ized on our dataset (Section 3). Finally, we tested the pro-
posed method on two other datasets containing full-body
MoCap data of multiple persons performing dance and daily
actions associatedwith several emotion classes (Section 7.5).

7.1 The Effect of Chunk Duration, Overlapping, and
Input Image Resizing

The duration that is equal to 1-second and overlapping that
is equal to 0.5-seconds, resulting in images having size

Fig. 4. Illustration of data segmentation and overlapping.
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100�30 was taken as the baseline setting since this was the
best performing configuration in our earlier work [37]. It is
important to recall that choosing a chunk duration influen-
ces the size of the images (see Table 3). Consequently, direct
comparison of the classification results for different chunk
durations might be unfair when the same architecture with
the same filter sizes is used, thus we also applied image
resizing such that the input images became the same size
with the baseline dimensions (100�30).

Applying image resizing did not affect the classification
performance when the chunk duration was taken equal to 0.5.
However, when the chunk durationwas increased to 2- and 4-
seconds, 1 percent (from 80 to 81 percent F1-score) and 3 per-
cent (from 87 to 90 percent F1-score) classification improve-
mentswere obtained respectively, after image resizing.

Shorter chunks result in higher numbers of images (see
Table 3) while applying overlapping increases the number
of images as well. Typically, having more images in the
training set might result in better classification performance.
It is however important to highlight that longer chunks con-
tain more information and although the final model is
trained with the same data, it might be able to learn better.
Indeed, the model trained with longer chunks resulted in
improved performance (without image resizing: 74, 77, 80,
87 percent F1-scores for 0.5-, 1-, 2- and 4-seconds data,
respectively; with image resizing: 74, 77, 81, 90 percent F1-
scores for 0.5-, 1-, 2- and 4-seconds data, respectively).

7.2 The Effect of Augmentation

The effects of applying data augmentation according to dif-
ferent strategies were examined for 1) the baseline setting
and 2) the setting having data chunk duration equal to 4-
seconds and overlapping equal to 0.5-seconds, resulting in
images having size 400�30.

For the baseline setting, the A_BALANCED strategy per-
formed the best (the performance changing from 78 to 80
percent F1-score). Following that, not applying data aug-
mentation (shown as NO) and 10 percent data augmenta-
tion for each emotion class (shown as A_10%) performed
equally well (77 percent F1-score), whilst augmenting every
training data performed the worst (76 percent F1-score) out
of all. Balanced training with a randomly selected strategy
per data chunk (A_BALANCED w/ ALL: L2RR2L, 3D-
RotX, 3D-RotY, or 3D-RotZ) showed the best performance:
80 percent F1-score. There is no statistically significant
(p� value > 0.05) performance difference between L2RR2L,
3D-RotX, 3D-RotY, and 3D-RotZ when they are applied
individually (78-79 percent F1-scores).

For the 4-seconds duration with 0.5-seconds overlapping
and without image resizing, applying A_BALANCED w/
ALL improved the results from 87 to 89 percent F1-score.
When image resizing was applied, applying data augmenta-
tion type A_BALANCED w/ ALL showed the best perfor-
mance out of all, which improved results from 90 to 92
percent F1-score. This performance was followed by not
applying data augmentation (90 percent F1-score) and by
A_10% for each emotion class (90 percent F1-score) while
A_ALL (89 percent F1-score) performed the worst. Shortly,
the data augmentation trend observed for the baseline set-
ting was the same for the data represented as 4-seconds
chunks with 0.5-seconds overlapping.

To sum up, results (Table 4) show that data augmenta-
tion has potential to improve the emotion classification

TABLE 4
F1-Score of Each Setting

Dura Over Image Size Augmentation F1-

tion lap score

1 0.5 100x30 NO 77%

1 0.5 100x30 A_ALL 76%

1 0.5 100x30 A_10% 77%

1 0.5 100x30 A_BALANCED w/ L2RR2L 79%

1 0.5 100x30 A_BALANCED w/ 3D-RotX 79%

1 0.5 100x30 A_BALANCED w/ 3D-RotY 78%

1 0.5 100x30 A_BALANCED w/ 3D-RotZ 79%

1 0.5 100x30 A_BALANCED w/ ALL 80%

0.5 No 50x30 NO 74%

0.5 No 50x30 A_BALANCED w/ALL 76%

0.5 No 50x30 to 100x30 NA 74%

0.5 No 50x30 to 100x30 A_BALANCED w/ALL 76%

2 0.5 200x30 NO 80%

2 0.5 200x30 A_BALANCED w/ ALL 81%

2 0.5 200x30 to 100x30 NA 81%

2 0.5 200x30 to 100x30 A_BALANCED w/ALL 83%

4 0.5 400x30 NO 87%

4 0.5 400x30 A_BALANCED w/ ALL 89%

4 0.5 400x30 to 100x30 NO 90%

4 0.5 400x30 to 100x30 A_ALL 89%

4 0.5 400x30 to 100x30 A_10% 90%

4 0.5 400x30 to 100x30 A_BALANCED w/ L2RR2L 91%

4 0.5 400x30 to 100x30 A_BALANCED w/ 3D-RotX 91%

4 0.5 400x30 to 100x30 A_BALANCED w/ 3D-RotY 90%

4 0.5 400x30 to 100x30 A_BALANCED w/ 3D-RotZ 91%

4 0.5 400x30 to 100x30 A_BALANCED w/ ALL 92%

”NO” stands for not applying augmentation. ”w/ ALL” refers to randomly
applying one of the four augmentation strategies: L2RR2L, 3D-RotX, 3D-
RotY, 3D-RotZ by using a single data chunk. The best of all results is empha-
sized in bold.

TABLE 5
Performances in Terms of F1-Score

Method F1-score

Proposed Method w/out multiple temporal scales 90%
Proposed Method w/out multiple temporal scales
w/ A_BALANCED ALL 92%

Proposed Method w/out augmentation 92%
Proposed Method w/ A_BALANCED L2RR2L 94%
Proposed Method w/ A_BALANCED 3D-RotX 94%
Proposed Method w/ A_BALANCED 3D-RotY 93%
Proposed Method w/ A_BALANCED 3D-RotZ 94%
Proposed Method w/ A_BALANCED ALL 95%

NA and A_BALANCED stand for ”not applied” and ”balanced training”,
respectively. ALL refers to randomly applying one of the four augmentation
strategies: L2RR2L, 3D-RotX, 3D-RotY, and 3D-RotZ using a single data
chunk.

TABLE 6
Performance Comparisons Among Proposed Method and the

Prior Art in Terms of F1-Score

[37] Bi-LSTM [14] SVM Proposed Method

89% 82% 80% 95%

The best performance is emphasized in bold.
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performance and the key point is balancing the training
data. On the other hand, longer data chunks (implies less
training images) bring in better emotion classification
results, whilst image resizing applied to longer chunks also
contributes positively to the classification. Consequently,
for our dataset, the best recognition was observed for 4-sec-
onds chunks resized to 100�30, when balanced data aug-
mentation was applied out of all combinations tested.

7.3 The Effect of Multiple Temporal Scales

Given the setting having chunk duration equal to 4-seconds
and overlapping equal to 0.5-seconds, resized to 100�30,
performed better than any other settings of shorter chunks,
we tested our proposed two-branch architecture for that set-
ting. In detail, one branch of the proposed method was fed
with images lasting 4-seconds with 0.5-seconds overlap-
ping. Meanwhile, the other branch was fed with the last
quarter of the aforementioned images (i.e., they encode the
data occurring in the last 1-second of the 4-seconds chunk
and image size is equal to 100�30). The images in the for-
mer branch were resized to 100�30, while for both branches
the same types of data augmentation were applied. The per-
formance boost occurred by the inclusion of the multiple
temporal scales is reported in Table 5.

Our proposed method performs better than its single-
branch version (i.e., without multiple temporal scales)
when augmentation is not applied (90 versus 92 percent F1-
score) as well as when augmentation is applied (92 versus
95 percent F1-score). The performance gain which is
obtained by integrating multiple temporal scales (from 92 to
95 percent F1-score) is statistically significant (p-value <
0:05, measured with a t-test on 10 executions) compared to
processing the data at a single temporal scale. These results
clearly show that processing full-body movement data at
multiple temporal scales improves emotion classification.

7.4 Comparison With the Prior Art

In Table 6, the performance of the proposed method (with
the setting described in Section 7.3) is compared with the
best results of:

� Our earlier work [37]: A multiple input CNN-based
architecture taking the logistic position and the cor-
responding logistic velocity based image as the
simultaneous inputs when the data chunk length is
1-second and 0.5-seconds overlapping is applied.

� A Bi-LSTM Network [14] getting the raw positional
data as the input: The input data size at a time corre-
sponds to a vector of 30�3 (30 markers and 3D-posi-
tional data) and the length of the data chunk is 1-
second while 0.5-seconds overlapping is applied. As
a pre-processing step, we applied body-centered rel-
ative normalization (see Section 4.1 for its definition).
We designed two-hidden layers in the Bi-LSTM net-
work having 64 or 128 or 256 hidden units (when the
length of the input data is smaller than the number
of hidden units used, it might result in under-fitting
the training data. In that case, we also tested having
an additional fully connected layer before the LSTM
layer to augment to data, which improved the
results). These layers were followed by a dense layer

and a softmax (giving equal weights to each emotion
class) to obtain the probability for each class. We
used the Adam optimizer with the batch size 32 or
64. The model was trained for up to 100 epochs with
a learning rate of 0.001. As we noticed that this net-
work might be prone to over-fitting, we tested to
apply a 50 percent dropout in the Bi-LSTM layers
too.

� Support Vector Machine (SVM) with the flattened
images in the logistic position format as the input,
and data chunk duration is {1-, 2-, or 4-} seconds
with 0.5-seconds overlapping. We used radial basis
function (RBF) kernel when the penalty parameter C
of the error term is ranging from 0.001 to 10000, and
g kernel coefficient is ranging from 0.001 to 1000.

Bi-LSTMs and SVM-RBF have been frequently applied to
process MoCap data of nonverbal behaviors in various con-
texts including emotion classification [14], [25], [26], [41],
therefore, we included them to the comparisons.

Our method outperforms the prior art: [14], [37] and
SVM-RBF. Performing better than [37] once again shows the
benefits of processing the full-body movement data at multi-
ple temporal scales. Additionally, surpassing SVM shows that
the designed filters of the proposed method are good at cap-
turing the spatio-temporal relationship of the data. Perform-
ing better than the Bi-LSTM [14] network shows that our
image representation: logistic position format can be prefera-
ble to using raw 3D-positional data.

In Fig. 5, we also report the confusion matrix of the pro-
posed method corresponding to its performance given in
Table 6. For happy, insecure, and sad classes the Correct
Classification Rates (CCR) of the proposed method are all
above 95 percent while the lowest CCR, which is 87.06 per-
cent, was obtained for angry. Angry was mis-classified as
happy with 10 percent classification rate. The relatively
higher confusion rate for this pair can be explained by the
fact both these emotions are characterized by expansive
movements and high movement dynamics [5].

7.5 Experiments on Other Datasets

Several multimodal datasets for emotion recognition are
publicly available, e.g., [44], [45], [46], [47], but only few
contains full-body MoCap data. We evaluate the proposed
method on DMCD [48] and Emilya [49] datasets as they con-
tain relatively larger number of full-body motion data. By
using them, we aim to show generalizability of our
approach within the same (e.g., dance) and different
domains. Both dataset also include non-basic emotions (e.g.,

Fig. 5. Confusion matrix (%) of our proposed method in testing.
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satisfied, excited and miserable), allowing us to test our
method on diverse emotion classes. Below, we explain the
applied experimental analysis and then discuss the corre-
sponding results.

7.5.1 Dance Motion Capture Database [48]

DMCD consists of various dance performances recorded
with PhaseSpace Impulse X2 MoCap system. We used the
contemporary dance sequences performed by six partici-
pants (Andria, Elena, Olivia, Sophie, Theodora, and Vasso),
having different dance-related backgrounds (theatrical, bal-
let, gymnastic, and so on). They performed a choreography,
each associated to one of 12 emotions: excited, happy,
pleased, satisfied, relaxed, tired, bored, sad, miserable,
annoyed, angry, and afraid. There are in total 108 perform-
ances (12 emotions � 9 since 3 performers did two trials per
emotion) corresponding to 614898 3D-points captured with
38 markers.

It is important to note that the number of markers and
the position of the markers in the DMCD database [48] are
slightly different than our dataset (Section 3). We used 26
markers arranged as follows: 1- Head, 2- Neck1, 3- Neck, 4-
Spine1, 5- Spine, 6- Hips, Left Arm: 7- LeftShoulder, 8- Left-
Arm, 9- LeftForeArm, 10- LeftHand, 11- LeftHandIndex1,
12- RightShoulder, 13- RightArm, 14- RightForeArm, 15-
RightHand, 16- RightHandIndex1, 17- LHipJoint, 18- Left-
UpLeg, 19- LeftLeg, 20- LeftFoot, 21- LeftToeBase, 22- RHip-
Joint, 23- RightUpLeg, 24- RightLeg, 25- RightFoot, and 26-
RightToeBase. This arrangement is like the one given in
Table 2.

We segmented the continuous DMCD data with a win-
dow of 100, 200 and 400 frames. This segmentation resulted
in images having the width of 100, 200, 400 pixels, respec-
tively, while the height of the images is defined by the num-
ber of the selected markers (i.e., 26). These images were
given as the inputs to the first branch of the proposed
method, which were further resized to the dimension of the
images that were the inputs of the second branch (i.e.,
25�26, 50�26 and 100�26, respectively). Thus, the propor-
tions between the image sizes of the first (before resizing)
and second branch were kept the same as in the previous
experiments in Section 7.4 (i.e., the second branch gathers
the data which is corresponding to the last quarter of the
data given to the first branch). As these settings resulted in
training/test images having a size that is similar to the size
of the training/test images obtained from our dataset, we
were able to use the exact same architecture introduced in
Fig. 3 without changing the size of the filters. We kept all
the hyper-parameters (mini-batch, epoch, learning rate,
dropout and so forth) the same as defined in Section 6. Dur-
ing the creation of images in logistic position format, we
applied 50 frames overlapping when L (Eq. (1)) was taken
as 0.1. We only used the world coordinates data from the
DMCD dataset and applied body-centered relative normali-
zation using the Spine marker as the point of reference. We
applied the cross-validation method described in Section 6
and the balanced data augmentation method in which the
four augmentation strategies (L2RR2L, 3D-RotX, 3D-RotY,
and 3D-RotZ) were randomly applied to the minority
classes.

The proposed method tested on the DMCD database
results in the confusion matrix given in Fig. 6. It corre-
sponds to the best performance that has 74.68 percent F1-
score. The highest class CCR was obtained for afraid (79.03
percent), while the CCR obtained for tired (78.61 percent)
and sad (78.16 percent) classes are the followers. Afraid was
mis-classified as annoyed with 3.59 percent classification
rate and it was recognized as other emotion classes with
classification rate less than 2.5 percent. The lowest CCR
were obtained for pleased (70.40 percent) and annoyed
(70.39 percent) classes. Happy, which was classified with
72.71 percent CCR, was mis-classified as annoyed, excited,
pleased, and satisfied with 5.10, 3.96, 3.96, and 3.44 percent
classification rates, respectively. These findings are in line
with [50] that applied the Pearson’s Correlation coefficients
analysis to a subset of the data we used in our analysis,
showing that excited, happy, pleased and satisfied are
highly correlated and happy is correlated to annoyed and
angry as well.

The other classes that were found highly correlated in
[50] are: bored, sad and miserable, while satisfied, relaxed
and tired are mildly correlated. The proposed method clas-
sified sequences labelled as bored with 74.26 percent CCR,
while it mis-classified bored as tired class with 6.26 percent
classification rate. Sad sequences, which were classified
with 78.16 percent CCR, were mis-recognized as bored with
3.62 percent classification rate. Miserable emotion class that
was detected with 76.56 percent CCR, was recognized as
sad with 3.89 percent, as bored with 3.28 percent and as
tired with 3.38 percent classification rates. To sum up, our
results follow the previous findings [50] such that highly
correlated emotion classes were mis-classified with each
other more than they were mis-classified with other emo-
tion classes.

7.5.2 Emilya Dataset [49]

This is a 3D-MoCap dataset of emotional body expressions
during 8 daily actions: simple walking (SW), walking with
an object in hands (WH), moving books on a table (MB),
knocking (KD), sitting down (SD), being seated (BS), lifting
(Lf) and throwing (Th). In total, 12 persons were asked to
perform all these actions with 8 states: anxiety, pride, joy,
sadness, panic fear, shame, anger and neutral.

The data was captured with 28 markers. To generate
images in logistic position format, we ordered the markers
as follows: 1- EndSiteHeadX, 2- HeadX, 3- NeckX, 4- Chest4,

Fig. 6. The confusion matrix corresponding to 74.68 percent F1-score,
obtained by applying the proposed method to the DMCD database.
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5- Chest3, 6- Chest2, 7- Chest, 8- Hips, 9- LeftCollar, 10- Left-
Shoulder, 11- LeftElbow, 12- LeftWrist, 13- EndSiteLeftWrist,
14- RightCollar, 15- RightShoulder, 16- RightElbow, 17-
RightWrist, 18- EndSiteRightWrist, 19- LeftHip, 20- LeftKnee,
21- LeftAnkle, 22- LeftToe, 23- EndSiteLeftToe, 24- RightHip,
25- RightKnee, 26- RightAnkle, 27- RightToe, and 28- EndSi-
teRightToe. The body-centered relative normalization was
applied using the Chest2 marker. The training/test images
(input to first branch) have the size of either 100�28 or
200�28 while 50 frames overlapping was applied. Except L
(Eq. (1)) that was taken as 0.01, other settings (regarding archi-
tecture, hyper-parameters, augmentation, second branch
image proportions) were all kept the same as those applied on
DMCD [48] and our dataset.

We tested the proposed method on individual action
classes as well as all sequences of all actions. We compare
our results with the state-of-the-art methods: [25], [51] and
[32]. It is important to highlight that [25], [51] and [32] uti-
lized two slightly different cross-validation set-ups. We fol-
lowed the same set-ups as them in one-to-one comparisons.
The corresponding results in terms of accuracy are given in
Table 7 where we also report the Correct Classification
Rates of the proposed method for each emotion class.

When tested on individual action classes, the proposed
method (PM) surpasses [25], [51] with a considerable extent.
This refers to performance improvements with a margin of
2.29-28.59 percent accuracy. The results of the PM are above
87 percent accuracy in all actions while it performs the best

for BS action (96.59 percent accuracy). Given the CCR results,
one can observe that sadness was recognized with the high-
est rate for 6 out of 8 actions. On the other hand, the lowest
CCR results were obtained for anger, anxiety, and joy. The
PM emotion recognition performance, when all actions are
considered altogether (ALL1 and ALL2), achieves remark-
able results, which are 15.48 percent better than [25], [51] and
9.11 percent better than [32]. Joy (87.89 and 85.21 percent)
has the lowest CCR results in overall while Neutral has the
highest CCR results (95.22 and 94.78 percent).

8 CONCLUSION AND FUTURE WORK

In this paper, a novel approach for the classification of emo-
tions from MoCap data has been introduced. Inspired from
a recent conceptual model [6] and fMRI studies [8], we
introduced a two-branch neural network architecture for
learning features from the data at multiple temporal scales,
simultaneously. When we evaluated our proposed method
on our dataset to classify four emotion classes, it achieved
an average F1-score of 95 percent, presenting 3 percent
improvement as compared to processing data at a single
temporal scale. Additionally, the proposed method brings
in 6 percent improvement compared to our previous work
[37], which also relies on a multi-branch CNN architecture,
but does not investigate the effect of processing multiple
temporal scales of the data and instead examines different
ways to represent MoCap data as RGB images. The pro-
posed method outperforms Bi-LSTM [14] and SVMs with
13-15 percent improvement. Additional analysis was car-
ried out to test the effectiveness of the proposed method on
datasets having a higher number of emotion classes
expressed by several persons. The proposed method
achieved up to 91 percent average accuracy for classification
of 8 emotions expressed during various daily actions and
the classification accuracy increases up to 97 percent when
considering these actions individually. In both cases our
method surpasses remarkably the-state-of-the art. At the
same time, the proposed method achieved on average 75
percent F1-score for 12 emotion classes expressed during
contemporary dance.

The main contributions of this study can be summarized
as follows:

� A novel two-branch neural network architecture to
process full-body MoCap data at multiple temporal
scales is presented. In detail, we jointly process
movement data represented with two temporal
scales. This outperforms its single temporal scale
version as well as the state-of-the-art methods. The
proposed method is able to achieve remarkable clas-
sification performances for a high number of classes
including non-basic emotions captured in different
contexts (i.e., contemporary dance and daily-living
actions) and containing full-body motion performed
by multiple participants.

� Several data augmentation methods were compared,
showing the importance of balanced training for
emotion classification from full-body movements.

� The effect of chunkduration and overlapping aswell as
the effect of the size of the input images were

TABLE 7
Performance Comparisons (in Terms of Accuracy) Among the
Proposed Method (PM) and the State-of-the-Art Approaches

[25], [32], [51] on Single Actions: Simple Walking (SW), Walking
With an Object in Hands (WH), Moving Books on a Table (MB),
Knocking (KD), Sitting Down (SD), Being Seated (BS), Lifting
(Lf) and Throwing (Th) as Well as all Actions (shown as ALL1

and ALL2) of Emilya Dataset [49]

Correct Classification Rates (CCR) of the PM for each emotion class, corre-
sponding to the accuracy score of the PM, are also given.

?
and � stand for the

cross validation set-up applied in [25], [51] and [32], respectively. NA stands
for ”not available”. The best performance for each category is emphasized in
bold.
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investigated. Results show that longer chunks improve
the performance and image resizing applied to longer
chunks contributes to the classification positively.

Motivated by the results showing that longer time obser-
vation intervals (such as 4-seconds) are boosting automatic
emotion classification, one can speculate whether this is
also valid for human perception of affective full-body con-
tinuous movements. The code of the proposed method is
publicly available in:

https://github.com/cbeyan/AffectiveBodyMovements.
Future work includes extending our dataset with per-

formances of more dancers and with additional emotion
classes. Adding more dancers would allow us to examine
the generalization of the method across different partici-
pants, which is not covered in this study. To be able to
deploy the proposed approach to interactive systems (e.g.,
social robots), data collected from RGB-D cameras will be
used instead of MoCap systems. Last but not least, this
work is a preliminary stage of a larger research project in
which we aim to show that the proposed method trained on
one domain (e.g., dance), can be adapted to recognize emo-
tions elicited in other setups (e.g., daily actions).
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