
André Platzer
Kristin Yvonne Rozier
Matteo Pradella
Matteo Rossi (Eds.)

26th International Symposium, FM 2024
Milan, Italy, September 9–13, 2024
Proceedings, Part II

Formal MethodsLN
CS

 1
49

34
Fo

rm
al

 M
et

ho
ds

Lecture Notes in Computer Science 14934

Formal Methods
Subline of Lecture Notes in Computer Science

Subline Series Editors

Ana Cavalcanti, University of York, UK

Marie-Claude Gaudel, Université de Paris-Sud, France

Subline Advisory Board

Manfred Broy, TU Munich, Germany

Annabelle McIver, Macquarie University, Sydney, NSW, Australia

Peter Müller, ETH Zurich, Switzerland

Erik de Vink, Eindhoven University of Technology, The Netherlands

Pamela Zave, AT&T Laboratories Research, Bedminster, NJ, USA

Founding Editors

Gerhard Goos
Juris Hartmanis

Editorial Board Members

Elisa Bertino, USA
Wen Gao, China

Bernhard Steffen , Germany
Moti Yung , USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0003-0848-0873

More information about this series at https://link.springer.com/bookseries/558

https://link.springer.com/bookseries/558

Andre Platzer • Kristin Yvonne Rozier •

Matteo Pradella • Matteo Rossi
Editors

Formal Methods
26th International Symposium, FM 2024
Milan, Italy, September 9–13, 2024
Proceedings, Part II

123

Editors
Andre Platzer
Karlsruhe Institute of Technology
Karlsruhe, Germany

Kristin Yvonne Rozier
Iowa State University
Ames, IA, USA

Matteo Pradella
Politecnico di Milano
Milan, Italy

Matteo Rossi
Politecnico di Milano
Milan, Italy

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-031-71176-3 ISBN 978-3-031-71177-0 (eBook)
https://doi.org/10.1007/978-3-031-71177-0

© The Editor(s) (if applicable) and The Author(s) 2025. This book is an open access publication.

Open Access This book is licensed under the terms of the Creative Commons Attribution 4.0 International
License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution
and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and
the source, provide a link to the Creative Commons license and indicate if changes were made.
The images or other third party material in this book are included in the book’s Creative Commons license,
unless indicated otherwise in a credit line to the material. If material is not included in the book’s Creative
Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use,
you will need to obtain permission directly from the copyright holder.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

If disposing of this product, please recycle the paper.

https://orcid.org/0000-0001-7238-5710
https://orcid.org/0000-0002-6718-2828
https://orcid.org/0000-0003-3039-1084
https://orcid.org/0000-0002-9193-9560
https://doi.org/10.1007/978-3-031-71177-0
http://creativecommons.org/licenses/by/4.0/

Contents – Part II

Tools and Case Studies

Extending Isabelle/HOL’s Code Generator with Support for the Go
Programming Language . 3

Terru Stübinger and Lars Hupel

Rigorous Floating-Point Round-Off Error Analysis in PRECiSA 4.0 20
Laura Titolo, Mariano Moscato, Marco A. Feliu, Paolo Masci,
and César A. Muñoz

FM-Weck: Containerized Execution of Formal-Methods Tools 39
Dirk Beyer and Henrik Wachowitz

DFAMiner: Mining Minimal Separating DFAs from Labelled Samples 48
Daniele Dell’Erba, Yong Li, and Sven Schewe

Visualizing Game-Based Certificates for Hyperproperty Verification 67
Raven Beutner, Bernd Finkbeiner, and Angelina Göbl

Chamelon : A Delta-Debugger for OCaml . 76
Milla Valnet, Nathanaëlle Courant, Guillaume Bury, Pierre Chambart,
and Vincent Laviron

Automated Static Analysis of Quality of Service Properties
of Communicating Systems . 84

Carlos G. Lopez Pombo, Agustín Eloy Martinez Suñé, and Emilio Tuosto

Alloy Repair Hint Generation Based on Historical Data 104
Ana Barros, Henrique Neto, Alcino Cunha, Nuno Macedo,
and Ana C. R. Paiva

B2SAT: A Bare-Metal Reduction of B to SAT . 122
Michael Leuschel

PyBDR: Set-Boundary Based Reachability Analysis Toolkit in Python 140
Jianqiang Ding, Taoran Wu, Zhen Liang, and Bai Xue

Discourje: Run-Time Verification of Communication Protocols in Clojure
— Live at Last . 158

Sung-Shik Jongmans

Stochastic Games for User Journeys . 167
Paul Kobialka, Andrea Pferscher, Gunnar R. Bergersen,
Einar Broch Johnsen, and Silvia Lizeth Tapia Tarifa

Embedded Systems Track

Compositional Verification of Cryptographic Circuits Against Fault
Injection Attacks . 189

Huiyu Tan, Xi Yang, Fu Song, Taolue Chen, and Zhilin Wu

Reusable Specification Patterns for Verification of Resilience
in Autonomous Hybrid Systems . 208

Julius Adelt, Robert Mensing, and Paula Herber

Switching Controller Synthesis for Hybrid Systems Against STL Formulas . . . 229
Han Su, Shenghua Feng, Sinong Zhan, and Naijun Zhan

On Completeness of SDP-Based Barrier Certificate Synthesis
over Unbounded Domains . 248

Hao Wu, Shenghua Feng, Ting Gan, Jie Wang, Bican Xia,
and Naijun Zhan

Tolerance of Reinforcement Learning Controllers Against Deviations
in Cyber Physical Systems . 267

Changjian Zhang, Parv Kapoor, Rômulo Meira-Góes, David Garlan,
Eunsuk Kang, Akila Ganlath, Shatadal Mishra, and Nejib Ammar

CauMon: An Informative Online Monitor for Signal Temporal Logic 286
Zhenya Zhang, Jie An, Paolo Arcaini, and Ichiro Hasuo

Industry Day Track

UnsafeCop: Towards Memory Safety for Real-World Unsafe Rust Code
with Practical Bounded Model Checking . 307

Minghua Wang, Jingling Xue, Lin Huang, Yuan Zi, and Tao Wei

Beyond the Bottleneck: Enhancing High-Concurrency Systems with Lock
Tuning. 325

Juntao Ji, Yinyou Gu, Yubao Fu, and Qingshan Lin

AGVTS: Automated Generation and Verification of Temporal
Specifications for Aeronautics SCADE Models . 338

Hanfeng Wang, Zhibin Yang, Yong Zhou, Xilong Wang, Weilin Deng,
and Wei Li

xvi Contents – Part II

Code-Level Safety Verification for Automated Driving: A Case Study. 356
Vladislav Nenchev, Calum Imrie, Simos Gerasimou, and Radu Calinescu

A Case Study on Formal Equivalence Verification Between a C/C++
Model and Its RTL Design. 373

Gaetano Raia, Gianluca Rigano, David Vincenzoni,
and Maurizio Martina

Tutorial Papers

A Pyramid Of (Formal) Software Verification. 393
Martin Brain and Elizabeth Polgreen

Advancing Quantum Computing with Formal Methods 420
Arend-Jan Quist, Jingyi Mei, Tim Coopmans, and Alfons Laarman

No Risk, No Fun: A Tutorial on Risk Management. 447
Mariëlle Stoelinga

Runtime Verification in Real-Time with the Copilot Language: A Tutorial 469
Ivan Perez, Alwyn E. Goodloe, and Frank Dedden

ASMETA Tool Set for Rigorous System Design. 492
Andrea Bombarda, Silvia Bonfanti, Angelo Gargantini,
Elvinia Riccobene, and Patrizia Scandurra

Practical Deductive Verification of OCaml Programs 518
Mário Pereira

Software Verification with CPACHECKER 3.0: Tutorial and User Guide 543
Daniel Baier, Dirk Beyer, Po-Chun Chien, Marie-Christine Jakobs,
Marek Jankola, Matthias Kettl, Nian-Ze Lee, Thomas Lemberger,
Marian Lingsch-Rosenfeld, Henrik Wachowitz, and Philipp Wendler

Satisfiability Modulo Theories: A Beginner’s Tutorial 571
Clark Barrett, Cesare Tinelli, Haniel Barbosa, Aina Niemetz,
Mathias Preiner, Andrew Reynolds, and Yoni Zohar

The Java Verification Tool KeY:A Tutorial . 597
Bernhard Beckert, Richard Bubel, Daniel Drodt, Reiner Hähnle,
Florian Lanzinger, Wolfram Pfeifer, Mattias Ulbrich,
and Alexander Weigl

Contents – Part II xvii

A Tutorial on Stream-Based Monitoring. 624
Jan Baumeister, Bernd Finkbeiner, Florian Kohn, and Frederik
Scheerer

Author Index . 649

xviii Contents – Part II

http://dx.doi.org/10.1007/978-3-031-71162-6_34

ASMETA Tool Set for Rigorous System
Design

Andrea Bombarda1(B) , Silvia Bonfanti1 , Angelo Gargantini1 ,
Elvinia Riccobene2 , and Patrizia Scandurra1

1 University of Bergamo, Bergamo, Italy
{andrea.bombarda,silvia.bonfanti,

angelo.gargantini,patrizia.scandurra}@unibg.it
2 Università degli Studi di Milano, Milan, Italy

elvinia.riccobene@unimi.it

Abstract. This tutorial paper introduces ASMETA, a comprehensive
suite of integrated tools around the formal method Abstract State
Machines to specify and analyze the executable behavior of discrete event
systems. ASMETA supports the entire system development life-cycle,
from the specification of the functional requirements to the implemen-
tation of the code, in a systematic and incremental way. This tutorial
provides an overview of ASMETA through an illustrative case study, the
Pill-Box, related to the design of a smart pillbox device. It illustrates the
practical use of the range of modeling and V&V techniques available in
ASMETA and C++ code generation from models, to increase the quality
and reliability of behavioral system models and source code.

1 Introduction

It is widely recognized that formal methods need to be supported by auto-
mated tools to be of practical use and promote their adoption, especially when
they are required by critical application areas (such as security and safety) and
standards for software certification and accreditation [6,7,22,23]. This tutorial
presents ASMETA1, an open-source framework defining modeling notations and
tools inspired by the well-known formal method of the Abstract State Machines
(ASMs) [14,15]. ASMETA supports model editing, visualization, simulation, ani-
mation, validation, verification, as well as code generation from formal models.

In the wide range of existing formal methods [17,21], and more specifically
of state-based formal methods2, the ASM-based formal method supported by

1 https://asmeta.github.io/.
2 https://abz-conf.org/methods/.

The work of Andrea Bombarda is supported by PNRR - ANTHEM (AdvaNced Technologies for
Human-centrEd Medicine) - Grant PNC0000003 - CUP: B53C22006700001 - Spoke 1 - Pilot 1.4. The
work of Silvia Bonfanti, Angelo Gargantini, Elvinia Riccobene, and Patrizia Scandurra was partially
supported by project SERICS (PE00000014) under the MUR National Recovery and Resilience Plan
funded by the European Union - NextGenerationEU.

c© The Author(s) 2025
A. Platzer et al. (Eds.): FM 2024, LNCS 14934, pp. 492–517, 2025.
https://doi.org/10.1007/978-3-031-71177-0_28

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-71177-0_28&domain=pdf
http://orcid.org/0000-0003-4244-9319
http://orcid.org/0000-0001-9679-4551
http://orcid.org/0000-0002-4035-0131
http://orcid.org/0000-0002-1400-1026
http://orcid.org/0000-0002-9209-3624
https://asmeta.github.io/
https://abz-conf.org/methods/
https://doi.org/10.1007/978-3-031-71177-0_28

ASMETA Tool Set for Rigorous System Design 493

ASMETA offers several advantages: (1) models have a pseudo-code format, so
practitioners can easily understand them as high-level programs; (2) systems can
be specified at any desired level of abstraction, depending on the level of details
one wants to achieve; (3) models are executable, so they are suitable also for
lighter forms of model analysis such as simple simulation to check model con-
sistency w.r.t. system requirements; (4) techniques for mapping models to code
(e.g., to C++ or Java) are supported, so correct-by-construction development
is possible; (5) multi-agents modeling is supported, making possible the specifi-
cation of distributed systems. Moreover, the ASMETA framework allows for the
integrated use of tools for different forms of model analysis, it is maintained and
under continuous features improvement.

Through an illustrative case study from the healthcare domain, the Pill-Box
system, this tutorial shows how to model in ASMETA the executable behavior
of a system with a discrete state space. Then, the tutorial guides the readers
through the use of the ASMETA tools to apply several model validation and
verification (V&V) techniques, such as simulation, scenario-based validation,
and formal verification of user-defined properties and meta-properties. A model
refinement process supported by ASMETA is also presented by means of the
running case study and by explaining how in formalizing the system behavior it
is possible to evolve a partial specification (ground model) into a more complete
model. Finally, the tutorial showcases the automatic generation of executable
C++ code from the Pill-Box model, developed and verified in ASMETA.

This tutorial is intended to be a resource for software engineers and
researchers that want to leverage lightweight formal methods in their projects.
The hands-on approach, adopting the Pill-Box system as running example,
endows the readers with the necessary skills to start adopting ASMETA for a
more rigorous system design that increases the quality and reliability of behav-
ioral system models and source code. ASMETA is distributed as an open-source
solution so that other researchers can contribute to its extension.

The remainder of this tutorial is organized as follows. Section 2 introduces the
ASMs, while Sect. 3 introduces the ASMETA framework together with a model-
ing process, and provides all useful references. Section 4 presents the running case
study. Section 5 describes the user-facing modeling language AsmetaL to define
ASM models. Sections from 6 to 9 explain the ASMETA tooling supporting all
model analysis techniques for a rigorous system design. Section 10 presents model
refinement applied to the running case study. Section 11 explains how to generate
C++ code from the verified Pill-Box model. Finally, Sect. 12 concludes.

2 Abstract State Machines

Before introducing ASMETA, here we provide a basic introduction of the state-
based formal method of ASMs [14,15]. States are mathematical algebras speci-
fying a system configuration by means of arbitrarily complex data, i.e., domains
of elements with functions defined on them. State transitions are expressed by
named and parameterized transition rules describing how the data (function
values saved into locations) change from one state to the next one.

494 A. Bombarda et al.

Fig. 1. An ASM run with a sequence of states and state-transitions (steps)

The functions of the algebra are classified into dynamic and static depending
on whether they are updated or not by transition rules. The dynamic functions
are further distinguished in monitored (read by the machine and modified by the
environment), controlled (read and written by the machine), out (only written
by the machine and read by the environment), and shared (read and written
by the machine and its environment). In addition, functions that are defined in
terms of other (dynamic) functions are called derived.

Dynamic functions are updated by firing transition rules. The basic transition
rule is the update rule for function update; it has form f (t1 , . . . , tn) := v, where
f is an n-ary function, ti with i = 1..n are terms, and v the new value to be
associated with the location f (t1 , . . . , tn) in the next state. As in structured pro-
gramming, constructs for structured control flow can be used to form transition
rules depending on the type of update structure they express. The main rule con-
structors include: guarded updates (if-then, switch-case), simultaneous parallel
updates (par), non-determinism (choose), unrestricted synchronous parallelism
(for-all), abbreviation on terms of rules (let), etc.

ASMs can be read as pseudocode over abstract data with a well-defined
execution semantics. An ASM run (see Fig. 1) is a (finite or infinite) sequence
S0, S1, . . . , Sn, . . . of states. Starting from the initial state S0, in a computation
step (run step) from Sn to Sn+1, all enabled transition rules are executed in
parallel, leading to simultaneous updates of a number of locations. In case of an
inconsistent update (i.e., the same location is updated to two different values)
or invariant violations (i.e., some property that must be true in every state is
violated), the model execution stops with error.

3 Overview of the ASMETA Toolset

The ASMETA project started in 2004 with the aim of addressing the deficiency
in tools that support ASMs. Although the formal approach had demonstrated
widespread application in specifying and verifying various software systems
across diverse domains (as evidenced by the ASM research summary in [15]),
the absence of supportive tools for the ASM method was deemed a limitation,
leading to skepticism regarding its practical utility.

To address this issue, ASMETA has been developed by exploiting the Model-
Driven Engineering (MDE) approach [5] for software development starting from
the definition of a meta-model for an abstract notation able to capture the
working definition (see [15, pag. 32]) of an ASM. From the metamodel, a textual
notation for encoding ASM models has been derived, and has been enriched,
during the years, to support many V&V activities in the rigorous design of soft-
ware systems. These analysis techniques have been proven to be beneficial for

ASMETA Tool Set for Rigorous System Design 495

the safety assurance of safety-critical systems with event-based behavior and dis-
crete state spaces. See [1] for further details on the case studies and application
domains (including medical software, software control systems, and service-based
systems, to name a few) to which ASMETA has been applied.

AsmM

AsmetaVis

AsmRefProver

Asm2C++

ATGT

AsmetaSMV

AsmetaMA AsmetaS

AsmetaA

AsmetaV

AsmetaBDD

Ecore

Java API
AsmetaS@run.time

CoMA

Avalla

AsmetaCAsmetaL AsmetaXt

Fig. 2. ASMETA-based development process

3.1 Getting and Using ASMETA

Most ASMETA tools are integrated with the Eclipse IDE3. An Eclipse package
containing the ASMETA toolset is available and released periodically at https://
github.com/asmeta/asmeta. In the same location, the source code of all the
ASMETA tools, together with examples of ASMETA specifications, is available.

Tooling. ASMETA tools support the main activities of the software develop-
ment process from formal requirement specification to code generation. Figure 2
shows the tools usage in the various stages [1]. At design time, ASMETA pro-
vides tools for model editing and visualization (the modeling language AsmetaL4

and its editor and compiler, plus the model visualizer AsmetaVis for graphical
visualization of ASMETA models), model validation (e.g., interactive or random
simulation by the simulator AsmetaS5, animation by the animator AsmetaA, sce-
nario construction and validation by the validator AsmetaV, and static analysis
3 An Eclipse package including all tools and models useful for this tutorial is available
at https://doi.org/10.5281/zenodo.12770854.

4 It is a concrete notation for the abstract one defined by the metamodel reflecting
the working definition of an ASM.

5 The ASMETA model simulator implements the computational paradigm (concepts
and semantics) of an ASM run as defined in the previous section.

https://github.com/asmeta/asmeta
https://github.com/asmeta/asmeta
https://doi.org/10.5281/zenodo.12770854

496 A. Bombarda et al.

by the model reviewer AsmetaMA), and verification (proof of temporal properties
by the model checker AsmetaSMV, and proof of correct model refinement by Asm-
RefProver). During software development, ASMETA supports automatic code
and test case generation from models (the code generator Asmeta2C++, the unit
test generator ATGT, and the acceptance test generator AsmetaBDD for complex
system scenarios). If the system is available, during its operation, ASMETA can
be used for runtime monitoring (by the tool CoMA) and runtime simulation (by
AsmetaS@run.time).

Remark. Due to lack of space and to keep this tutorial simple and understand-
able to new and unfamiliar users, in the following sections we explain and show
the application of a selected number of tools, those supporting the initial and
fundamental steps of system modeling, analysis (V&V) and encoding. Focusing
more on pedagogical rather than technical aspects of our modeling approach, we
also skip advanced modeling features (e.g., the concepts of multi-agent ASMs or
I/O ASMs, suitable to model distributed and composable systems) which require
understanding the basic and preliminary concepts around ASMETA; this is what
this tutorial intends to cover.

Modeling Process. ASMETA derives its foundation from the ASM theory,
thus, akin to ASMs, its modeling methodology follows an iterative approach
with a focus on model refinement. Concretely, ASMETA employs stuttering
refinement [4], a specialized variant of the broader ASM refinement [13]. This
refinement-based process allows users to tackle the complexity of the require-
ments and to bridge, in a seamless manner, specification to code. Requirements
modeling begins with the creation of a high-level ASMETA model, akin to the
ASM ground model [15]. This model is delineated through the analysis of infor-
mal requirements typically presented in natural language. Model signature and
rule naming are set by using terms of the application domain and derived from
textual requirements, thereby simplifying the process of connecting requirements
to the model. This high-level model (see model ASM0 in Fig. 2) should be correct
and consistent, i.e., it should represent the intended requirements (at the desired
abstraction level) and no ambiguities of initial requirements should be left. It
is not necessary for ASM0 to be complete, i.e., it may not specify some given
requirements that are later captured during the refinement process. Indeed, the
modeling process supported by ASMETA is a refinement-based one: starting
from the model ASM0, through a sequence of refined models ASM1, ASM2,. . . ,
other functional requirements are specified and modeled, till the desired level of
completeness is reached. At the end of this process, ASMfinal captures all intended
requirements at the desired level of abstraction. When performing refinements,
it is important to prove that each refined model is a correct (stuttering) refine-
ment of the previous one. The ASMETA framework includes the AsmRefProver
tool [4] which supports the user in this activity and automatically performs the
correctness check of refinement steps.

Starting from the very first model, the ASM0, during the modeling process
the user should perform validation and verification (V&V) activities to assure
requirements satisfaction and property validity.

ASMETA Tool Set for Rigorous System Design 497

4 The Pill-Box Case Study

In this section, we introduce the Pill-Box case study [8] with its informal require-
ments, which will be used throughout the paper as a running example to describe
the modeling and analysis activities supported by the ASMETA tools.

The Pill-Box device is a medicine/pill dispenser that has a certain number
of drawers (e.g., three drawers). Each drawer contains multiple slots (one for
each pill) that are emptied in sequence. In each drawer, only one specific type
of medicine can be placed. So, each drawer can contain multiple pills (one per
slot) but all pills must be of the same drug type.

Each Pill-Box drawer has a switch and a LED. The former is used to notify
whether the pill in the drawer has been taken, and the latter is used to signal
relevant information to the user. When the LED is OFF, it is not time to take
the corresponding pill, while when the LED is ON, it means that the patient
should assume that pill. When it is time to take a pill, the LED stays ON for
10 minutes after the scheduled time of the pill.

For each pill type, it is possible to set several deadlines throughout the day,
meaning that the same drawer might be opened multiple times. However, if two
or more pills have to be taken at the same time, the Pill-Box turns on only a
single LED per time, by randomly choosing the order in which to assume them.
Here we introduce three models for the ASMETA specification of the Pill-Box,
where each one introduces new elements for refining time and pill management:

– Ground model (pillbox ground): here we abstract the requirement that a
drawer contains multiple slots and consider only a single pill per drawer.
Moreover, time is not explicitly modeled, and information on the time passed
is given by an external event (a monitored Boolean-valued function).

– Model with time (pillbox time): this specification models time passing by a
timer. We still keep the abstraction of having a single pill per drawer.

– Final model (pillbox final): it captures all requirements of the Pill-Box system,
and it thus specifies multiple pills (and multiple deadlines) per drawer.

These ASMETA models and all the other related artifacts are presented in part
in this paper; their complete version can be found in Models.zip file at https://
doi.org/10.5281/zenodo.12770854.

5 AsmetaL: The ASMETA Language

This section introduces the textual language AsmetaL, the user-facing language
to define ASMETA models. The main modeling constructs of AsmetaL are here
illustrated using the ground model pillbox ground introduced in Sect. 4.

An ASMETA specification is described in a text file with extension .asm and
structured as shown in Listing 1. It has five main sections:

https://doi.org/10.5281/zenodo.12770854
https://doi.org/10.5281/zenodo.12770854

498 A. Bombarda et al.

asm pillbox ground

import ../STDL/StandardLibrary
...
signature:
// DOMAINS
abstract domain Drawer
enum domain LedLights = {OFF | ON}
...

// FUNCTIONS
dynamic monitored isPillTaken: Drawer −> Boolean
...
dynamic controlled drawerLed: Drawer −> LedLights
...
derived isOn: Drawer −> Boolean
...
static drawer1: Drawer

definitions:
// FUNCTIONS DEFINITIONS
function isOn($d in Drawer) =

(drawerLed($d) = ON)
...
// RULE DEFINITIONS
rule r reset($drawer in Drawer) = ...
...
// INVARIANTS AND PROPERTIES
invariant inv drawer1 over Drawer = ...
...
// MAIN Rule
main rule r Main = ...

// INITIAL STATE
default init s0:
// Turn−off all the LEDs for the Drawers
function drawerLed($drawer in Drawer) = OFF
...

Listing 1. Structure of an ASMETA specification

– The section import allows us to include all or some of the declarations and
definitions given in another ASMETA model.

– The section signature is where domains and functions are declared.
– The section definitions contains the definition of static concrete domains, static

or derived functions, all transition rules, and possible state invariants, i.e.,
first-order formulas that must be true in all states.

– The section main rule defines the rule that is the starting point of the com-
putation at each state; it may, in turn, call the other transition rules (defined
as macro call rules6). A run step of an ASMETA model is the execution of
all transition rules, which are directly or indirectly called from the main rule
and are enabled to fire.

– The section default init introduces the initial values for dynamic concrete
domains and dynamic functions declared in the signature.

Here we provide a more detailed look at each part of an ASMETA specification.

Specification Name. The first line of the specification contains the keyword
asm followed by the name of the specification, which must be the same as the
file. For instance:

asm pillbox ground

indicates that the specification name is pillbox ground and it must be defined in
the file pillbox ground.asm.

A model without the main rule is called a module7. It consists of declarations
and definitions of domains, functions, invariants, macro call rules, and it can be
imported by other ASMETA models. Note that an ASMETA model (the model
that starts with the keyword asm) can be imported as well, except for the initial
state and the main rule.
6 Note that to define a macro call rule in the definitions section we use the syntax macro
r rule(params), while the macro rule is invoked from another rule as r rule[params].

7 A module name corresponds to the first word used in the .asm file.

ASMETA Tool Set for Rigorous System Design 499

Import. An AsmetaL specification can import modules, by using the file name
with its relative or absolute path. For instance, the following line imports the
StandardLibrary:

import ../STDL/StandardLibrary

The StandardLibrary is a user-ready module that defines names for basic
domains and functions. This library is mandatory to import since it includes
predefined names for primitive domains (like Boolean, Natural, Integer, etc.) and
functions for the main operations over these domains and structured domains
(for tuples, sequences, sets, bags, and maps). Other libraries are available8 as
explained in the following sections.

Signature Domains. The AsmetaL language allows the user to specify domains
of different type:

– Basic domains: represent primitive data values and are denoted by ready-to-
use domain symbols of the standard library (Boolean, Natural, Integer, Com-
plex, Char, and String).

– Enum domains: finite enumeration of elements defined by the user.
– Abstract domains: (non-enumerable) user-defined domain to describe abstract

entities of the real word.
– Concrete domains: user-named domain defined as sub-domain of another

domain.
– Structured domains: representing structured data (like finite sets, tuples,

maps) over other domains; examples are the Cartesian Product of two or
more domains, and the mathematical Powerset of a domain.

Examples of user-defined domains from the ground model of the Pill-Box are:

abstract domain Drawer
enum domain LedLights = {OFF | ON }
enum domain Drugs = {TYLENOL | ASPIRINE | MOMENT}

Drawer is an abstract domain representing the drawer objects; such objects
typically do not have a precise structure and the user further characterizes them
by introducing functions over them (see next paragraph). LedLights is the enu-
meration for the light status of the LEDs; Drugs is the enumeration of three
different types of drugs (Tylenol, Aspirine, and Moment).

Signature Functions. Basic functions form the basic signature of the machine
and are classified into static, which never change during any run of the machine,
and dynamic, that may be changed by the environment or by the machine
updates. Dynamic functions are further divided into monitored, controlled, shared,

8 https://github.com/asmeta/asmeta/blob/master/asm examples/STDL/.

https://github.com/asmeta/asmeta/blob/master/asm_examples/STDL/

500 A. Bombarda et al.

and out. AsmetaL adopts appropriate keywords for declaring all these kinds of
functions. Examples of declarations of static functions are the constants9 repre-
senting the three drawers (elements of the abstract domain Drawer):

static drawer1: Drawer
static drawer2: Drawer
static drawer3: Drawer

Examples of dynamic functions declaration in the ground model are10:

dynamic monitored isPillTaken: Drawer −> Boolean
dynamic monitored pillDeadlineHit: Drawer −> Boolean
dynamic controlled drawerLed: Drawer −> LedLights
dynamic controlled drug: Drawer −> Drugs
dynamic controlled isPillTobeTaken: Drawer −> Boolean

The function isPillTaken is a monitored function, and it is true when the user
confirms he/she has taken the pill. Similarly, the monitored function pillDead-
lineHit signals that the deadline for the pill contained in a specific drawer has
come. A drawer contains a drug and has a drawerLed which is ON when it is time
to take the pill. In addition, the Pill-Box uses the characteristic or indicator
function isPillTobeTaken to store the drawers for which the deadline has been
hit. These functions are controlled since their value is set by the machine.

In addition to basic functions, the modeler can introduce derived functions,
i.e., those coming with a specification or computation mechanism defined in
terms of other basic functions. Examples of declarations of derived functions are
as follows:

derived isOn: Drawer −> Boolean
derived isOff: Drawer −> Boolean
derived areOthersOn: Drawer −> Boolean

These functions are used as guards in the transition rules and are defined
(see below) in terms of the drawerLed controlled function.

Definitions Functions. Once declared, static and derived functions must also
be defined explicitly in the definitions section. The notation to define functions
is as in the following examples:

function isOn($d in Drawer) = (drawerLed($d) = ON)
function isOff($d in Drawer) = (drawerLed($d) = OFF)
function areOthersOn($d in Drawer) = switch($d)

case drawer1 : isOn(drawer2) or isOn(drawer3)
case drawer2 : isOn(drawer1) or isOn(drawer3)
case drawer3 : isOn(drawer2) or isOn(drawer1)

endswitch

9 The domain is optional. Functions of arity 0 are common variables of programming;
0-ary static functions are constants.

10 The keyword dynamic is optional.

ASMETA Tool Set for Rigorous System Design 501

The right-hand term specifies the function law. In the case of the derived
function areOthersOn, the right-end term is a logical map that associates domain
elements to codomain elements. The target domains of the formal parameters
are to be the same as those specified in the function declaration, and the domain
type of the right-end term must be compatible with the function codomain. Note
that, as exception to this explanation, static 0-ary functions (constants) over an
abstract domain (such as drawer1) do not need to be defined.

Definitions Rules. An update rule is the basic form of a transition rule. Typ-
ically, an ASM transition system appears as a set of guarded updates or condi-
tional rules of form if cond then updates, where function updates are simultane-
ously executed when the condition cond (also called “guard”) evaluates to true.
An example of a conditional rule is as follows:

if pillDeadlineHit($drawer) then isPillTobeTaken($drawer) := true endif

It sets to true the value of the function isPillTobeTaken for a given drawer
$drawer11 when it is time to take the drug of that drawer (denoted by the mon-
itored function pillDeadlineHit).

In AsmetaL, the transition rules can be defined after the definition of concrete
domains (if any) and functions. A rule definition starts with the keywords macro
(it is optional) and rule, followed by the name of the rule with the fixed prefix r ,
the list of free variables and their typing domains, and the rule body (containing
occurrences of the free variables). As an example of rule definition, consider the
rule r reset that uses a par rule to reset the status of a given drawer (in parallel
it sets the led to OFF and isPillTobeTaken to false):

rule r reset($drawer in Drawer) = par
drawerLed($drawer) := OFF
isPillTobeTaken($drawer):= false endpar

Once defined, a named rule can be invoked (like in structured program-
ming) within the rule body of another rule by using the rule name followed by
the list of actual arguments (if any)12 surrounded within square brackets (e.g.,
r reset[$drawer]). When the rule is invoked, it is expanded by replacing every
variable freely occurring within the rule body with the actual argument of the
invocation (the association is positional).

The par rule and the forall rule are rule constructors realizing synchronous
parallelism since both allow the synchronous parallel execution of multiple tran-
sition rules. The only difference is that the par rule expresses bounded parallelism,
while the forall rule expresses potentially unbounded parallelism. An example of
a forall rule in the Pill-Box ground model is in the rule definition:
11 In AsmetaL the name of a variable freely occurring in a rule starts with the prefix $.
12 The number of actual parameters must be equal to the number of the formal param-

eters of the rule to invoke and be domain-compatible with them. Invocations of rules
of arity 0 is also allowed; in this case the list of parameters is empty.

502 A. Bombarda et al.

rule r setOtherDrawers = forall $drawer in Drawer do par
if pillDeadlineHit($drawer) and isOff($drawer) then isPillTobeTaken($drawer) := true endif
if isOn($drawer) and isPillTaken($drawer) then r reset[$drawer] endif endpar

Such a rule, in parallel for all potential drawers, sets the status of a drawer
if it is time to take the drawer’s pill (pillDeadlineHit is true), or resets it in case
the drawer’s LED is on and the drawer’s pill has already been taken. ASMETA
supports non-deterministic operations, which are implemented by selecting a
domain and picking a random element from it. This concept is realized by means
of the choose rule. An example of rule definition that uses the choose rule is for
the non-deterministic choice of one pill to take when there are more to take at
a certain time.

rule r choosePillToTake = choose $drawer in Drawer with
isPillTobeTaken($drawer) and isOff($drawer) and not areOthersOn($drawer) do drawerLed($drawer) := ON

Since only a single red LED is to be on at a time, at each step the Pill-Box
chooses randomly one still off among those of the drawers containing a pill to be
taken, but only if all the other drawers’ LEDs are off, and turns it (if any) on.

Definitions Invariants. Invariants allow users to specify first-order logic for-
mulas that must be true in each computational state during model execution. In
AsmetaL, invariants are defined after rule definitions but precede the main rule
definition (see Sect. 6 for further details).

Definitions Properties. After the invariants, Computation Tree Logic (CTL)
and Linear Temporal Logic (LTL) properties can be defined in an ASMETA
model (see Sect. 9 for further details).

Main Rule. The main rule designates the initial transition rule to execute (the
entry point of the machine’s program) at each computational step. Its definition
follows those of invariants and properties, and has no formal parameters (its
arity is 0). The main rule for the Pill-Box ground model is:

main rule r Main = par
r choosePillToTake[]
r setOtherDrawers[] endpar

It is in charge of simultaneously (i) choosing one drawer with a pill to take
(if any) and (ii) managing the state of the other drawers.

Initial State. An ASMETA specification may contain the initialization of con-
trolled functions to the value that they must assume when the execution of the
model starts. The syntax and rules to assign an initial value to a controlled

ASMETA Tool Set for Rigorous System Design 503

function is the same for defining static/derived functions. For instance, in the
following model fragment, the drawerLed function, for all drawers, is set to OFF,
as well as the isPillTobeTaken function, which is set to false. Finally, the drug
function associates a different type of drug to each drawer.

function drawerLed($drawer in Drawer) = OFF
function isPillTobeTaken($drawer in Drawer) = false
function drug($drawer in Drawer) = switch($drawer)

case drawer1 : TYLENOL
case drawer2 : ASPIRINE
case drawer3 : MOMENT

endswitch

If a function is not initialized, all its locations take the special value undef13.

6 Model Simulation

Simulation is the first validation activity usually performed to check an ASMETA
model’s behavior during its development, and it is supported by the AsmetaS
tool [5]. Given a model, at every step, the simulator builds the update set accord-
ing to the theoretical definitions given in [15] to construct the model run. The
simulator supports two types of simulation: random and interactive. In random
mode, the simulator automatically assigns values to monitored functions, choos-
ing them from their codomains. In interactive mode, instead, the user inserts
the value of monitored functions and, in case of input errors, a message is shown
inviting the user to insert again the function value. AsmetaS can be executed
from the command line14 and from the Eclipse interface. By using the Eclipse
UI, the AsmetaS toolbar has three buttons (see Fig. 3) with three actions:

Fig. 3. AsmetaS commands and options panel

Parse the model and type check it
Execute the model in interactive mode
Execute the model with random inputs

13 Although the parser does not force you to initialize all the controlled functions, it is
strongly suggested to avoid run-time errors due to a missing initialization.

14 More details are available in the Appendices file at https://doi.org/10.5281/zenodo.
12770854.

https://doi.org/10.5281/zenodo.12770854
https://doi.org/10.5281/zenodo.12770854

504 A. Bombarda et al.

1 Running interactively pillbox ground.asm

2 INITIAL STATE:Drawer={drawer1,drawer2,drawer3}
3 Insert a boolean constant for pillDeadlineHit(drawer1):

4 true

5 Insert a boolean constant for pillDeadlineHit(drawer2):

6 false

7 Insert a boolean constant for pillDeadlineHit(drawer3):

8 false

9 <State 0 (monitored)>

10 pillDeadlineHit(drawer1)=true

11 pillDeadlineHit(drawer2)=false

12 pillDeadlineHit(drawer3)=false

13 </State 0 (monitored)>

14 <UpdateSet − 0>

15 isPillTobeTaken(drawer1)=true

16 </UpdateSet>

17 <State 1 (controlled)>

18 drawerLed(drawer1)=OFF

19 drawerLed(drawer2)=OFF

20 drawerLed(drawer3)=OFF

21 isPillTobeTaken(drawer1)=true

22 isPillTobeTaken(drawer2)=false

23 isPillTobeTaken(drawer3)=false

24 </State 1 (controlled)>

25 Insert a boolean constant for isPillTaken(drawer1): false

26 <State 1 (monitored)>

27 isPillTaken(drawer1)=false

28 </State 1 (monitored)>

29<UpdateSet − 1>

30drawerLed(drawer1)=ON

31</UpdateSet>

32<State 2 (controlled)>

33drawerLed(drawer1)=ON

34drawerLed(drawer2)=OFF

35drawerLed(drawer3)=OFF

36isPillTobeTaken(drawer1)=true

37isPillTobeTaken(drawer2)=false

38isPillTobeTaken(drawer3)=false

39</State 2 (controlled)>

40Insert a boolean constant for isPillTaken(drawer1):

41true

42<State 2 (monitored)>

43isPillTaken(drawer1)=true

44</State 2 (monitored)>

45<UpdateSet − 2>

46drawerLed(drawer1)=OFF

47isPillTobeTaken(drawer1)=false

48</UpdateSet>

49<State 3 (controlled)>

50drawerLed(drawer1)=OFF

51drawerLed(drawer2)=OFF

52drawerLed(drawer3)=OFF

53isPillTobeTaken(drawer1)=false

54isPillTobeTaken(drawer2)=false

55isPillTobeTaken(drawer3)=false

56</State 3 (controlled)>

Fig. 4. Output of the interactive Simulation of the Pill-Box using AsmetaS

In the simulator option panel (see Fig. 3), the user can set the preferences
regarding the choose rule, when to stop the random simulation (until the update
set becomes empty or trivial), and how to handle invariants and axioms.

In Fig. 4, we show the result of the interactive simulation for the Pill-Box
when the pill in drawer 1 hits the deadline (in State 0 - line 10), so the pill
becomes to be taken (State 1 - line 21), the led becomes ON (State 2 - line 33),
the user takes the pill, and the led becomes OFF (State 3 - line 50). Note that
the update set is computed in the current state and is applied only in the next
one. For instance, when the monitored location pillDeadlineHit(drawer1) is set
true by the user in the initial state:

State 0 (monitored): pillDeadlineHit(drawer1)=true

the following rule:

if pillDeadlineHit($d) and isOff($d) then isPillTobeTaken($d) := true endif

checks the current state (State 0) and since the deadline is hit and the LED is off,
the update set will contain the update of the location isPillTobeTaken(drawer1),
which is updated only in the next state (State 1):

ASMETA Tool Set for Rigorous System Design 505

<UpdateSet − 0>
isPillTobeTaken(drawer1)=true
</UpdateSet>
<State 1 (controlled)>
isPillTobeTaken(drawer1)=true
...
</State 1 (controlled)>

Invariant Checking. AsmetaS implements an invariant checker, which (option-
ally) checks in every state reached during the computation if the invariants (if
any) declared in the specification are satisfied or not. If an invariant is not sat-
isfied, AsmetaS throws an InvalidInvariantException, which keeps track of
the violated invariants and of the update set which has caused such violation.
The invariant checker is particularly useful during the first phase of the model
development to validate the specification. The designer adds model invariants,
activates the invariant checker from the simulator options, and runs the model
with some critical inputs. For example, with the following invariant:

invariant inv drawer1 over Drawer: (forall $d in Drawer with isOff($d))

As soon as a led becomes ON, the computation stops:

<State 2 (controlled)>
drawerLed(drawer2)=ON
...
</State 2 (controlled)>
INVARIANT violations
FINAL STATE:
run terminated

Consistent Updates Checking. AsmetaS is able to reveal inconsistent
updates by throwing an UpdateClashException. The UpdateClashException
records the location being inconsistently updated and the two different values
assigned to it. The user, analyzing this error, can detect the fault in the specifi-
cation. As the invariant checker, this feature is useful for model validation. For
example, suppose to modify the r setOtherDrawers rule by removing the strike-
through condition in the first conditional term as shown in the following code:

rule r setOtherDrawers = forall $drawer in Drawer do par
if pillDeadlineHit($drawer) and isOff($drawer) then isPillTobeTaken($drawer) := true endif
if isOn($drawer) and isPillTaken($drawer) then r reset[$drawer] endif endpar

The simulator signals an inconsistent update on the isPillTobeTaken(drawer1)
location with the following message:

INCONSISTENT UPDATE FOUND !!! : location isPillTobeTaken(drawer1) updated to true != false

506 A. Bombarda et al.

Fig. 5. AsmetaA Animation of the Pill-Box

Indeed, if the isOff($drawer) condition is removed and the deadline of the
pill in the first drawer has passed, the first conditional rule sets isPillTobe-
Taken(drawer1) to true for all the following execution steps. However, if the LED
for the drawer is ON and the user signals that the pill has been taken, the rule
r reset is executed and the location isPillTobeTaken(drawer1) is set to false. Thus,
in the same step, the location is updated to two different values, leading to an
inconsistent update.

6.1 Model Animation

The main disadvantage of the simulator is that it is textual, and this some-
times makes it difficult to follow the computation of the model. For this reason,
ASMETA has a model animator, AsmetaA [11], which provides the user with
complete information about all state locations, and uses colors, tables, and fig-
ures over simple text to convey information about states and their evolution. The
animator helps the user follow the model computation and understand how the
model state changes at every step. A screenshot of AsmetaA is shown in Fig. 5.
To execute the animator, the user clicks on the icon in Eclipse.

Similarly to the simulator, the animator supports random and interactive ani-
mation. In the interactive animation, the insertion of input functions is achieved
through different dialog boxes depending on the type of function to be inserted
(e.g., in the case of a Boolean function, the box has two buttons: one if the value
is true and one if the value is false). If the function value is not in its codomain,
the animator keeps asking until an accepted value is inserted. In random anima-
tion, the monitored function values are automatically assigned. With complex
models, running one random step each time is tedious; for this reason, the user
can also specify the number of steps to be performed and the tool performs the
random simulation accordingly. In the case of invariant violation, a message is
shown in a dedicated text box and the animation is interrupted (as it also hap-
pens in case of inconsistent updates). Once the user has animated the model,
the tool allows exporting the model run as a scenario (see Sect. 7), so that it can
be re-executed whenever desired. Figure 5 shows the animation of the Pill-Box

ASMETA Tool Set for Rigorous System Design 507

Fig. 6. AsmetaV commands

model using the same input sequence of the simulator. The result is the same,
but the tabular view makes it easier to follow the state evolution.

7 Scenario-Based Validation

The AsmetaS and AsmetaA tools presented in the previous section require that
the user executes the ASMETA model step by step or, at least, inserts some
value to start the model simulation. In this section, we present the AsmetaV
tool, which allows for performing scenario-based validation. Each scenario is a
description of external actor actions and reactions of the system [18], which can
be used to check the correct behavior of the model. Scenarios can be launched
by using the button V shown in Fig. 6. Additionally, if the button VC is pressed,
AsmetaV keeps track of the rules covered by the scenario.

Scenarios are written in the Avalla language, and saved as .avalla files,
as for the example reported in Listing 2 for the ASMETA ground model of the
Pill-Box reported in Listing 1. The scenario models a simple assumption cycle
for the pill in the first drawer. Initially, the Pill-Box has all the LEDs OFF, so no
pill has to be taken (line 8-10). In the second step, we set the deadline for the pill
in the first drawer as hit (line 17) and, after the execution of a step, the scenario
checks whether the pill has been marked as one of those to be taken (line 20).
Then, after a new execution step, we check that the LED corresponding to the
first drawer is ON (line 25). Finally, after the patient has taken the pill, the
scenario verifies whether all the LEDs have been turned OFF (line 35-37).

1 scenario scenario ground
2 load pillbox ground.asm
3
4 // Initially all deadlines are not hit
5 set pillDeadlineHit(drawer1) := false;
6 set pillDeadlineHit(drawer2) := false;
7 set pillDeadlineHit(drawer3) := false;
8 set isPillTaken(drawer3) := false;
9 set isPillTaken(drawer1) := false;

10 set isPillTaken(drawer2) := false;
11 step
12 // Check that all leds are off
13 check drawerLed(drawer1) = OFF;
14 check drawerLed(drawer2) = OFF;
15 check drawerLed(drawer3) = OFF;
16 // Now, the time for the pill in the drawer 1 comes
17 set pillDeadlineHit(drawer1) := true;
18 step
19 // Check that pill is ready to be taken
20 check isPillTobeTaken(drawer1) = true;

21check isPillTobeTaken(drawer2) = false;
22check isPillTobeTaken(drawer3) = false;
23step
24// Check that the led for the drawer 1 is on
25check drawerLed(drawer1) = ON;
26check drawerLed(drawer2) = OFF;
27check drawerLed(drawer3) = OFF;
28check isPillTobeTaken(drawer1) = true;
29check isPillTobeTaken(drawer2) = false;
30check isPillTobeTaken(drawer3) = false;
31// Now, take the pill
32set isPillTaken(drawer1) := true;
33step
34// Check that the led is reset
35check drawerLed(drawer1) = OFF;
36check drawerLed(drawer2) = OFF;
37check drawerLed(drawer3) = OFF;
38check isPillTobeTaken(drawer1) = false;
39check isPillTobeTaken(drawer2) = false;
40check isPillTobeTaken(drawer3) = false;

Listing 2. Example of Avalla scenario

508 A. Bombarda et al.

Scenario Name. The first line of the scenario defines its name. For instance:

scenario scenario ground

Unlike the ASMETA specification, the scenario name is not required to match
the file name.

Loading AsmetaL Specifications. Each Avalla scenario is executed against
an ASMETA spec. Thus, after having defined the scenario name it is essential to
specify which ASMETA model to load. This is done by using the load command,
followed by the relative or absolute path of the .asm file (including its extension):

load pillbox ground.asm

Setting Monitored Functions. Monitored functions are read by the machine
from the environment. When performing scenario-based validation, the user may
supply the values for monitored or shared functions through the set command.
These functions are then used as input signals to the system. For instance:

set pillDeadlineHit(drawer1) := false;

is used to set the monitored function pillDeadlineHit for the drawer1 to false.

Step Execution. After having set the value for the monitored functions of
interest, an ASMETA computation step (i.e., the reaction of the system) can be
launched by using the step command. Additionally, Avalla supports the exe-
cution of multiple steps using the stepUntil command, until a specified Boolean
condition becomes true.

Checking Controlled Functions. Executing an ASMETA specification step
will lead to the update of the internal state of the ASMETA model. The check
command is used to inspect property values in the current state of the underlying
model. For instance:

check drawerLed(drawer1) = OFF;

checks that the controlled function drawerLed for the drawer1 is OFF. When exe-
cuting an Avalla scenario, the AsmetaV validator captures any check violation,
and, if none occurs, it finishes with a “PASS” verdict (“FAIL” otherwise).

ASMETA Tool Set for Rigorous System Design 509

AsmetaL Code in Avalla Scenarios. Avalla scenarios support basic set com-
mands. However, users may want to set ASMETA functions by using a more
complex set of instructions, e.g., rules previously defined in the ASMETA specifi-
cation or by parallelizing the update. Thus, scenarios allow for including AsmetaL
commands with the exec keyword. For instance, the following Avalla code

set pillDeadlineHit(drawer1) := false;
set pillDeadlineHit(drawer2) := false;
set pillDeadlineHit(drawer3) := false;

can be replaced by

exec forall $drawer in Drawer do pillDeadlineHit($drawer) := false;

Note that this command would have been wrong if written in an AsmetaL
specification, as pillDeadlineHit is a monitored function and it should not be set
by the system. However, when AsmetaV simulates the scenario, a new ASMETA
spec is created, and the monitored functions are converted to controlled ones,
whose value is set to that specified in the Avalla scenario (either with a set
command or with the exec command).

Scenario Modularization. The user can exploit modularization also during
scenario building. Indeed, it is possible to define blocks, i.e., sequences of set,
step, and check, that can be recalled using the execblock command when writing
other scenarios that foresee the same sequence of Avalla commands.

Exporting and Animating Scenarios. Avalla scenarios can be exported
from the AsmetaA tool, so that an animation session can automatically be
repeated multiple times (see the “export to Avalla” button in Fig. 5). Simi-
larly, AsmetaV supports the execution of scenarios through animation, by using
the button VA shown in Fig. 6. This allows users to control execution, enabling
step-by-step scenario execution.

Fig. 7. AsmetaMA command

8 Model Review

ASMETA supports a form of static analysis of a model to automatically capture
typical modeling errors such as inconsistent updates or dead specification parts

510 A. Bombarda et al.

Fig. 8. AsmetaMA usage

Fig. 9. AsmetaSMV command

(transition rules that are never triggered) due to overspecification. We called
such a kind of static analysis about model quality automatic model review and
it is carried out by the AsmetaMA tool [3], which can be executed by clicking on
the button shown in Fig. 7. This tool checks the presence of seven types of errors
by using suitable meta-properties specified in CTL and verified using the model
checker AsmetaSMV (see Sect. 9). Figure 8a shows the selection of the seven meta-
properties in AsmetaMA. An example of meta-property is MP1, which checks the
presence of inconsistent updates. Figure 8b reports an example of inconsistent
update revealed by AsmetaMA on the same example reported in Sect. 6.

9 Formal Verification Through Model Checking

Besides validation, the ASMETA toolset supports the user in the properties’
verification activity by the tool AsmetaSMV [2]. Properties are written in terms
of propositional formulas over the machine’s signature, preceded by the key-
word ctlspec or ltlspec. For this purpose the libraries CTLLibrary.asm and LTL-
Library.asm must be imported, so for each CTL/LTL operator an equivalent
AsmetaL Boolean-valued function is defined. The following example shows a CTL
property (with the temporal operator AG Φ - globally Φ) for the Pill-Box ground
model, i.e. a propositional formula that must hold in all reachable states:

ctlspec ag((forall $d in Drawer with isOn($d) implies (not areOthersOn($d))))

These properties are then automatically translated into a model of the
symbolic model checker NuSMV [20], used to perform the verification. If the
ASMETA model contains infinite or time domains, the NuXmv [19] model
checker is preferred. The choice of the model checker is performed in Eclipse
from the ASMETA → AsmetaSMV preferences. The buttons shown in Fig. 9 are

ASMETA Tool Set for Rigorous System Design 511

used to verify the specification: the first button translates the specification into
a model for the model checker without executing it, and the second translates
and executes the specification using the selected model checker. The output of
the model checker is pretty printed in terms of elements of the ASMETA signa-
ture. If the property is positively verified, the AsmetaSMV tool prints out on the
Eclipse console that the property is true:

−− specification AG (((drawerLed(DRAWER1) = ON −> !areOthersOn(DRAWER1)) &
(drawerLed(DRAWER2) = ON −> !areOthersOn(DRAWER2))) & (drawerLed(DRAWER3) = ON
−> !areOthersOn(DRAWER3))) is true

Otherwise, assuming the property is false, it returns a counterexample. If we
want to verify that a pill in drawer1 is always taken when the pill deadline hits,
we can write the following property:

ctlspec ag(pillDeadlineHit(drawer1) implies af(isOn(drawer1)))

When running the model checker, the property is false because it can happen
that the pill in drawer1 will never be taken (the function isPillTaken(drawer1) is
never set to true), and the counterexample in Listings 3 is printed.

−− specification AG (pillDeadlineHit(DRAWER1) −>
AF drawerLed(DRAWER1) = ON) is false
−− as demonstrated by the following execution sequence
Trace Description: CTL Counterexample
Trace Type: Counterexample

−> State: 1.1 <−
pillDeadlineHit(DRAWER1) = false
drawerLed(DRAWER1) = OFF
drawerLed(DRAWER2) = OFF
isPillTobeTaken(DRAWER2) = false
drawerLed(DRAWER3) = OFF
isPillTobeTaken(DRAWER3) = false
...

−> State: 1.2 <−
pillDeadlineHit(DRAWER1) = true
pillDeadlineHit(DRAWER2) = true

−> State: 1.3 <−
pillDeadlineHit(DRAWER1) = false
isPillTobeTaken(DRAWER2) = true
isPillTobeTaken(DRAWER1) = true
pillDeadlineHit(DRAWER2) = false

−> State: 1.4 <−
...
pillDeadlineHit(DRAWER2) = true
areOthersOn(DRAWER3) = true
areOthersOn(DRAWER1) = true

−> State: 1.5 <−
drawerLed(DRAWER2) = OFF
isPillTaken(DRAWER2) = false
pillDeadlineHit(DRAWER2) = false
areOthersOn(DRAWER3) = false
areOthersOn(DRAWER1) = false

Listing 3. Counterexample generated by AsmetaSMV

10 Model Refinement

After having performed the activities presented in the previous sections, the
model can be refined and the desired level of detail can be achieved. Here we
report details of the two model refinements introduced in Sect. 4, and we high-
light the differences between the ground model and the refined models.

10.1 Time Handling: pillbox time

Modeling. The first model refinement we propose consists in explicitly mod-
eling time passing, which is left abstract in the pillbox ground model, by intro-
ducing the timer tenMinutes to capture the requirement stating that the LED

512 A. Bombarda et al.

stays on for 10min after the scheduled time to take the pill. Dealing with timers
requires importing the predefined time library and setting a suitable timer as an
element of the abstract domain Timer:

import ../STDL/TimeLibrarySimple
static tenMinutes: Timer

The time library provides the user with several features to check whether a
timer is expired (see the use of the predicate expired(tenMinutes) in rule r take
in the pillbox time model to control the expiration of timer tenMinutes) and to
reset a timer (see the use of the predefined rule r reset timer[tenMinutes] in rule
r pillToBeTaken of pillbox time model). Using a timer always requires initializing
the timer’s duration and its starting time; in the pillbox time model, the duration
of the timer tenMinutes is set to 600 time unit (seconds, in this case) and its
starting time is equal to the current time (e.g., taken as monitored value from
the Java virtual machine).

function duration($t in Timer) = 600 // Timer initialization
function start($t in Timer) = currentTime($t)
// From the Time library
function currentTime($t in Timer) = mCurrTimeSecs

This model is an example of vertical model refinement, where concepts or
behaviors previously left abstract are modeled in detail. Here the monitored func-
tion pillDeadlineHit is refined by the homonymous derived function that relates
the time of a pill consumption with the current time. The value of the function
time consumption is set, for each pill/drawer, in the initialization section of the
pillbox time model, as follows:

function time consumption($drawer in Drawer) = switch($drawer) // Initialization of the time consumption
case drawer1 : 60
case drawer2 : 2400
case drawer3 : 180
endswitch

The behavior of the rule r choosePillToTake is refined by adding the new rule
r pillToBeTaken to turn on the led and reset the timer tenMinutes if the led is
off. The behavior of rule r setOtherDrawers is also refined by marking a pill to
be taken if its time of consumption is reached and by resetting the timer (of
a drawer with red led) if the pill has been taken or the timer of ten minutes
waiting has expired.

Validation and Verification. As explained in the previous sections, V&V
activities can be performed on this refinement level. Since this refinement step
considers also the time during the simulation, the simulator (as well as the anima-
tor) handles the time using three different approaches for setting the monitored
mCurrTimeSecs [10] (see Fig. 10): 1. time is read from the machine using the Java
TimeAPI; 2. the user enters the value for time (like for monitored functions); 3.

ASMETA Tool Set for Rigorous System Design 513

Fig. 10. AsmetaS time simulation preferences

time is automatically increased at each step by a predefined value. Additionally,
ASMETA allows the user to set the preferred time unit.

Regarding property verification, the NuSMV model checker does not support
infinite domains (such as in the case of times), so the NuXmv [19] model checker
must be used. However, its integration with ASMETA is still under development
and not stable, thus, here we do not discuss its use.

10.2 Managing Multiple Pills: pillbox final

Modeling. A further (and the last that we propose) vertical model refinement
specifies the complete Pill-Box functionalities, allowing modeling the require-
ment that Each drawer contains multiple slots (one for each pill) that are emp-
tied in sequence. To model this requirement we introduce the following controlled
functions time consumption and drugIndex:

dynamic controlled time consumption: Drawer −> Seq(Integer)
dynamic controlled drugIndex: Drawer −> Natural

The former maps each drawer into a sequence of integers, containing the
time deadlines expressed in seconds. The latter associates with each drawer an
integer indicating the next slot to be emptied in the corresponding drawer. The
two functions are initialized accordingly:

function time consumption($drawer in Drawer) = switch($drawer) // Initialization of the time consumption
case drawer1 : [60, 1200, 1800]
case drawer2 : [2400, 3000, 3600]
case drawer3 : [180, 1200, 1800]
endswitch
function drugIndex($drawer in Drawer) = 0n // Every drawer has an index starting from 0

The derived function pillDeadlineHit is refined to check the pill’s deadline in
the drawer’s current slot to be emptied15. The newly derived function isThere-
AnyOtherDeadline indicates if there is any other pill in the drawer to be taken.
This information is used to refine the rule r setOtherDrawers, which leads to
suitably updating the drawer state (led status and drug index) by invoking the
(nested and refined) macro call rule r reset.

15 The function at(sequence,i) yield the value of the ith element of the sequence.

514 A. Bombarda et al.

Listing 4. Header file

#define ANY String
#include <string.h>
#include <iostream>
#include <vector>
#include <set>
#include <map>
#include <list>
#include <chrono>
#include ”../../STDL/TimeLibrarySimple.h”
using namespace std;
/∗ DOMAIN DEFINITIONS ∗/
namespace pillbox finalnamespace{

class Drawer;
enum LedLights {OFF, ON};
enum Drugs {TYLENOL, ASPIRINE, MOMENT};

}
using namespace pillbox finalnamespace;
class pillbox finalnamespace::Drawer{
public:

static set<Drawer∗> elems;
Drawer(){elems.insert(this);}

};
class pillbox final : public virtual TimeLibrarySimple{

/∗ DOMAIN CONTAINERS ∗/
const set<LedLights> LedLights elems;
const set<Drugs> Drugs elems;

public:
/∗ FUNCTIONS ∗/
map<Drawer∗, bool> isPillTaken;
map<Drawer∗, LedLights> drawerLed[2];
map<Drawer∗, vector<int>> time consumption[2];
...
static Timer∗ tenMinutes;
bool isOn (Drawer∗ param0 isOn);
bool isOff (Drawer∗ param0 isOff);
...
static Drawer∗ drawer1;
...
/∗ RULE DEFINITION ∗/
void r reset (Drawer∗ drawer);
void r pillToBeTaken (Drawer∗ drawer);
...
void r Main();
pillbox final();
void initControlledWithMonitored();
void getInputs();
void setOutputs();
void fireUpdateSet();

};

Listing 5. Cpp file

#include ”pillbox final.h”
using namespace pillbox finalnamespace;
/∗ Conversion of ASM rules in C++ methods ∗/
void pillbox final::r reset (Drawer∗ drawer){

drawerLed[1][drawer] = OFF;
drugIndex[1][drawer] = (drugIndex[0][drawer] + 1);
isPillTobeTaken[1][drawer] = false;

}
void pillbox final::r pillToBeTaken (Drawer∗ drawer){ ... }
void pillbox final::r ON (Drawer∗ drawer){ ... }
void pillbox final::r choosePillToTake(){ ... }
void pillbox final::r setOtherDrawers(){ ... }
void pillbox final::r Main(){

r choosePillToTake();
r setOtherDrawers();

}
/∗ Static function definition ∗/
bool pillbox final::isOn(Drawer∗ d){

return (drawerLed[0][d] == ON);
}
bool pillbox final::isOff(Drawer∗ d){ ... }
bool pillbox final::areOthersOn(Drawer∗ d){ ... }
bool pillbox final::pillDeadlineHit(Drawer∗ d){ ... }
bool pillbox final::isThereAnyOtherDeadline(Drawer∗ d){ ... }
/∗ Function and domain initialization ∗/
pillbox final::pillbox final(): LedLights elems({OFF,ON}),

Drugs elems({TYLENOL,ASPIRINE,MOMENT}) {
/∗ Init static functions Abstract domain ∗/
tenMinutes = new Timer;
...
/∗ Function initialization ∗/
for(const auto& drawer : Drawer::elems){

drawerLed[0].insert({ drawer,OFF});
drawerLed[1].insert({ drawer,OFF});

} ...
}
/∗ Apply the update set ∗/
void pillbox final::fireUpdateSet(){

drawerLed[0] = drawerLed[1];
time consumption[0] = time consumption[1];
drug[0] = drug[1];
drugIndex[0] = drugIndex[1];
...

}
/∗ init static functions and elements of abstract domains ∗/
set< Drawer∗> Drawer::elems;
Timer∗ pillbox final::tenMinutes;
Drawer∗ pillbox final::drawer1;
...

Remark. Model refinement must be proved to be correct, i.e., at each refinement
step, a refined model must be proved to be a correct refinement of the abstract
one. Due to lack of space and to keep this presentation easy to follow, here we
skip the proof of correct refinement of models and the application of the Asm-
RefProver supporting automatic proof of a particular form of model refinement.

11 From an ASMETA Model to Code

As requested by the best practices of model-driven engineering [16], the imple-
mentation of a system should be obtained from its model through a systematic
model-to-code transformation. ASMETA features a set of tools allowing the
automatic generation of C++ code [12] and C++ unit tests, and Java code [9].

In the following, we focus on using the Asmeta2C++ tool. It generates C++
code (which is meant to be integrated with other artifacts or directly embedded
in the final device) starting from an ASMETA model and, in particular, it pro-
duces two files: header (.h) and source (.cpp). The former contains the interface

ASMETA Tool Set for Rigorous System Design 515

of the source file and the translation of model domain declarations and defini-
tions, function and rule declarations. The latter includes rules implementation,
the functions and domain initialization, and the definitions of the functions.
Asmeta2C++ is only available as a command line tool and can be executed, in the
case of the last refinement, with the following command:

j a va − j a r Asmeta2Cpp . j a r p i l l b o x f i n a l . asm

Additional options for the previous command are available in the Appendices
file at https://doi.org/10.5281/zenodo.12770854.

An excerpt of the translation of the Pill-Box case study in C++ is shown in
Listings 4 and 5, while the complete version of the source code is available in
the replication package. An ASM run step involves executing the main rule and
updating the locations. In C++, this is realized through two methods: mainRule()
for translating the ASMETA main rule and fireUpdateSet() for updating loca-
tions to their next state values. Asmeta2C++ can generate two additional files
allowing to embedding the generated class into an Arduino program. Further
insights into the translation of ASMETA rules and constructs into correspond-
ing C++ instructions are given in [12].

12 Conclusion

This tutorial provides an overview of ASMETA, an integrated set of tools to
describe the behavior of discrete event systems using the ASM formalism. The
hands-on approach adopted in this tutorial shows how to combine all the model
analysis techniques offered by ASMETA in order to start from a ground or partial
specification of the system behavior, and then refine it incrementally into more
complete models till leading to transformation to other external analysis models
or code. Thanks to the adoption of a set of integrated and easy-to-use tools, like
ASMETA, the effort for modeling and analysis with a formal method, like ASM,
may be reduced and more software engineers may be convinced of applying the
formal method for richer system design and more reliable systems.

Data Availability Statement. The artifacts for the tutorial paper are available
at https://doi.org/10.5281/zenodo.12770854.

References

1. Arcaini, P., Bombarda, A., Bonfanti, S., Gargantini, A., Riccobene, E., Scandurra,
P.: The ASMETA Approach to Safety Assurance of Software Systems, pp. 215–238.
Springer International Publishing, Cham (2021). https://doi.org/10.1007/978-3-
030-76020-5 13

2. Arcaini, P., Gargantini, A., Riccobene, E.: AsmetaSMV: a way to link high-level
ASM models to low-level NuSMV specifications. In: Frappier, M., Glässer, U.,
Khurshid, S., Laleau, R., Reeves, S. (eds.) Abstract State Machines, Alloy, B and
Z, pp. 61–74. Springer, Berlin, Heidelberg (2010). https://doi.org/10.1007/978-3-
642-11811-1 6

https://doi.org/10.5281/zenodo.12770854
https://doi.org/10.5281/zenodo.12770854
https://doi.org/10.1007/978-3-030-76020-5_13
https://doi.org/10.1007/978-3-030-76020-5_13
https://doi.org/10.1007/978-3-642-11811-1_6
https://doi.org/10.1007/978-3-642-11811-1_6

516 A. Bombarda et al.

3. Arcaini, P., Gargantini, A., Riccobene, E.: Automatic review of Abstract State
Machines by meta property verification. In: Muñoz, C. (ed.) Proceedings of the
Second NASA Formal Methods Symposium (NFM 2010), NASA/CP-2010-216215,
pp. 4–13. NASA, Langley Research Center, Hampton VA 23681–2199, USA (2010)

4. Arcaini, P., Gargantini, A., Riccobene, E.: SMT-based automatic proof of ASM
model refinement. In: De Nicola, R., Kühn, E. (eds.) Software Engineering and
Formal Methods, pp. 253–269. Springer International Publishing, Cham (2016).
https://doi.org/10.1007/978-3-319-41591-8 17

5. Arcaini, P., Gargantini, A., Riccobene, E., Scandurra, P.: A model-driven process
for engineering a toolset for a formal method. Softw. Pract. Exper. 41, 155–166
(2011). https://doi.org/10.1002/spe.1019

6. ter Beek, M.H.: Formal methods and tools applied in the railway domain. In: Bon-
fanti, S., Gargantini, A., Leuschel, M., Riccobene, E., Scandurra, P. (eds.) Rigorous
State-Based Methods - 10th International Conference, ABZ 2024, Bergamo, Italy,
June 25-28, 2024, Proceedings. Lecture Notes in Computer Science, vol. 14759, pp.
3–21. Springer (2024). https://doi.org/10.1007/978-3-031-63790-2 1

7. ter Beek, M.H., et al.: Formal methods in industry. Form. Asp. Comput. (2024)
8. Bombarda, A., Bonfanti, S., Gargantini, A.: Developing medical devices from

abstract state machines to embedded systems: a smart pill box case study. In:
Mazzara, M., Bruel, J.M., Meyer, B., Petrenko, A. (eds.) Software Technology:
Methods and Tools, pp. 89–103. Springer International Publishing, Cham (2019).
https://doi.org/10.1007/978-3-030-29852-4 7

9. Bombarda, A., Bonfanti, S., Gargantini, A.: From concept to code: unveiling a
tool for translating abstract state machines into java code. In: Rigorous State-
Based Methods 10th International Conference, ABZ 2024, Bergamo, Italy, June
25-28, 2024, Proceedings, Lecture Notes in Computer Science, vol. 14759. Springer
(2024). https://doi.org/10.1007/978-3-031-63790-2 10

10. Bombarda, A., Bonfanti, S., Gargantini, A., Riccobene, E.: Extending ASMETA
with time features. In: Raschke, A., Méry, D. (eds.) Rigorous State-Based Methods,
pp. 105–111. Springer International Publishing, Cham (2021). https://doi.org/10.
1007/978-3-030-77543-8 8

11. Bonfanti, S., Gargantini, A., Mashkoor, A.: ASMETAA: animator for abstract
state machines. In: Butler, M., Raschke, A., Hoang, T.S., Reichl, K. (eds.) Abstract
State Machines, Alloy, B, TLA, VDM, and Z, pp. 369–373. Springer International
Publishing, Cham (2018). https://doi.org/10.1007/978-3-319-91271-4 25

12. Bonfanti, S., Gargantini, A., Mashkoor, A.: Design and validation of a C++ code
generator from abstract state machines specifications. J. Softw.: Evol. Process
32(2), e2205 (2020). https://doi.org/10.1002/smr.2205

13. Börger, E.: The ASM refinement method. Form. Asp. Comput. 15, 237–257 (2003)
14. Börger, E., Raschke, A.: Modeling Companion for Software Practitioners. Springer,

Berlin, Heidelberg (2018). https://doi.org/10.1007/978-3-662-56641-1
15. Börger, E., Stärk, R.: Abstract State Machines. Springer, Berlin, Heidelberg (2003).

https://doi.org/10.1007/978-3-642-18216-7
16. Brambilla, M., Cabot, J., Wimmer, M.: Model-Driven Software Engineering in

Practice. Springer International Publishing (2017). https://doi.org/10.1007/978-
3-031-02549-5

17. Broy, M., et al.: Does every computer scientist need to know formal methods?
Form. Asp. Comput. (2024). https://doi.org/10.1145/3670795

18. Carioni, A., Gargantini, A., Riccobene, E., Scandurra, P.: A scenario-based vali-
dation language for ASMs. In: Börger, E., Butler, M., Bowen, J.P., Boca, P. (eds.)

https://doi.org/10.1007/978-3-319-41591-8_17
https://doi.org/10.1002/spe.1019
https://doi.org/10.1007/978-3-031-63790-2_1
https://doi.org/10.1007/978-3-030-29852-4_7
https://doi.org/10.1007/978-3-031-63790-2_10
https://doi.org/10.1007/978-3-030-77543-8_8
https://doi.org/10.1007/978-3-030-77543-8_8
https://doi.org/10.1007/978-3-319-91271-4_25
https://doi.org/10.1002/smr.2205
https://doi.org/10.1007/978-3-662-56641-1
https://doi.org/10.1007/978-3-642-18216-7
https://doi.org/10.1007/978-3-031-02549-5
https://doi.org/10.1007/978-3-031-02549-5
https://doi.org/10.1145/3670795

ASMETA Tool Set for Rigorous System Design 517

Abstract State Machines, B and Z, pp. 71–84. Springer, Berlin, Heidelberg (2008).
https://doi.org/10.1007/978-3-540-87603-8 7

19. Cavada, R., et al.: The nuxmv symbolic model checker. In: Biere, A., Bloem, R.
(eds.) Computer Aided Verification, pp. 334–342. Springer International Publish-
ing, Cham (2014). https://doi.org/10.1007/978-3-319-08867-9 22

20. Cimatti, A., et al: NuSMV 2: an opensource tool for symbolic model checking.
In: Brinksma, E., Larsen, K.G. (eds.) Computer Aided Verification, pp. 359–364.
Springer, Berlin, Heidelberg (2002). https://doi.org/10.1007/3-540-45657-0 29

21. Garavel, H., Beek, M.H.t., Pol, J.V.D.: The 2020 expert survey on formal methods.
In: Formal Methods for Industrial Critical Systems: 25th International Conference,
FMICS 2020, Vienna, Austria, September 2–3, 2020, Proceedings 25, pp. 3–69.
Springer (2020). https://doi.org/10.1007/978-3-030-58298-2 1

22. Gleirscher, M., Marmsoler, D.: Formal methods in dependable systems engineering:
a survey of professionals from Europe and North America. Empir. Softw. Eng.
25(6), 4473–4546 (2020). https://doi.org/10.1007/s10664-020-09836-5

23. Gleirscher, M., van de Pol, J., Woodcock, J.: A manifesto for applicable formal
methods. Softw. Syst. Model. 22(6), 1737–1749 (2023). https://doi.org/10.1007/
s10270-023-01124-2

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-3-540-87603-8_7
https://doi.org/10.1007/978-3-319-08867-9_22
https://doi.org/10.1007/3-540-45657-0_29
https://doi.org/10.1007/978-3-030-58298-2_1
https://doi.org/10.1007/s10664-020-09836-5
https://doi.org/10.1007/s10270-023-01124-2
https://doi.org/10.1007/s10270-023-01124-2
http://creativecommons.org/licenses/by/4.0/

	Contents – Part II
	ASMETA Tool Set for Rigorous System Design
	1 Introduction
	2 Abstract State Machines
	3 Overview of the ASMETA Toolset
	3.1 Getting and Using ASMETA

	4 The Pill-Box Case Study
	5 AsmetaL: The ASMETA Language
	6 Model Simulation
	6.1 Model Animation

	7 Scenario-Based Validation
	8 Model Review
	9 Formal Verification Through Model Checking
	10 Model Refinement
	10.1 Time Handling: pillbox_time
	10.2 Managing Multiple Pills: pillbox_final

	11 From an ASMETA Model to Code
	12 Conclusion
	References

