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Casimir energy and black hole pair creation in Schwarzschild-de Sitter spacetime
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Following the subtraction procedure for manifolds with boundaries, we calculate by variational
methods, the Schwarzschild-de Sitter and the de Sitter space energy difference. By computing the
one loop approximation for TT tensors we discover the existence of an unstable mode even for the
non-degenerate case. This result seems to be in agreement with the sub-maximal black hole pair
creation of Bousso-Hawking. The instability can be eliminated by the boundary reduction method.
Implications on a foam-like space are discussed.

I. INTRODUCTION

An intriguing property of quantum physics is the particle creation generated by external fields, like a constant
electric or magnetic field, or by quantum fluctuation of the vacuum. In this last case only virtual particles are
involved. However when the energy scale is large enough virtual particles can be transformed into real. In line of
principle the same mechanism can be shared by the gravitational field where virtual black holes [1,2] can be created
and annihilated in analogy with particle physics. This particular phenomenon has been investigated in different
contexts and in particular when a cosmological constant is introduced [1,3]. In this example the process is mediated
by the corresponding gravitational instanton, and the semiclassical nucleation rate for a pair on a given background
is given by

Γ = A exp [− (Iinst − Iback)] . (1)

Iinst is the classical action of the gravitational instanton mediating the pair creation, Iback is the action of the
background field, and A is the prefactor containing quantum corrections. For the de Sitter (dS) space the quantum
creation of black holes leads to the discovery of an unstable mode in the physical sector, when one-loop approximation
is considered [4–6]. This quantum instability is related to the S2 × S2 instanton responsible for the pair creation
process. This instanton, termed the Nariai instanton [7], is nothing but the extreme Schwarzschild-de Sitter (SdS)
solution written in another system of coordinates. This instability leads to spontaneous nucleation of black holes
signaling a transition from a false vacuum to a true one [8]. This transition is possible when the energy stored in the
boundaries is the same for both spaces [9]. However as remarked in Ref. [6], the nucleation appears with a temperature

Tpair =
√
Λc

2π different from the temperature of the heat bath, which is the dS space with TdS = 1
2π

√

Λc

3 . This does

not happen, for example, in the hot Minkowski space where the nucleated black hole has the same temperature as the
heat bath [10]. The same situation holds even when we consider a negative cosmological constant, i.e. Anti-de Sitter
(AdS) space. In fact to spontaneously nucleate a black hole, which has an intrinsic temperature TS−AdS, the same
temperature has to be imposed to the AdS space [11–13]. However in Ref. [14], we have shown that a semi-classical
instability (WKB) appears for Minkowski space even at zero temperature, provided that boundary conditions be
energy preserving. The same semi-classical instability appears also for the AdS space [15] with the same energy
condition. An interesting common feature between these cases comes from the expression of the mixed Ricci tensor
Ra

i computed in these different backgrounds, namely the Schwarzschild, S-AdS and SdS metrics respectively. Indeed
in the first case, Ra

i has components:

Ra
i =

{

−2MG

r3
,
MG

r3
,
MG

r3

}

, (2)

while the case with the cosmological constant is

Ra
i =

{

−2MG

r3
± 2/b2,

MG

r3
± 2/b2,

MG

r3
± 2/b2

}

(3)

where the upper case and the lower case are related to the SdS and the S-AdS metrics respectively and b2 = 3/Λc.
Λc is the positive cosmological constant. It is straightforward to note that the only difference between these different
tensors is in the presence of the cosmological term. This means that the source of instability residing in the first
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component appears even in the other cases. However, only at one loop is possible to reveal the presence or the absence
of such an instability. We recall that one loop computations of the energy in this context represent a Casimir-like
energy which measures vacuum fluctuations. Following Refs. [14,15], we will consider a constant time slice Σ of the
SdS manifold M1, whose perturbations at Σ in absence of matter fields define quantum fluctuations of the Einstein-
Rosen bridge. Indeed, as will follow in Section II even though the SdS is not asymptotically flat, the hypersurface
Σ defines a wormhole with topology S2 × I, where I ⊂ R is a sub-interval of R. This is a consequence of having a
cosmological radius which sets an upper bound to the radial coordinate. To this purpose we will fix our attention on
a Hamiltonian with boundary

HT = HΣ +H∂Σ =

∫

Σ

d3x(NH+NiHi) +H∂Σ, (4)

where N is called the lapse function, Ni is the shift function and

{

H=Gijklπ
ijπkl

(

16πG√
g

)

−
( √

g

16πG

)

(

R(3) − 6
b2

)

Hi = −2πij

|j
. (5)

H∂Σ represents the energy stored into the boundary. The aim of this paper is the evaluation of

ESdS (M, b) = EdS (b) + ∆ESdS
dS (M, b)|classical +∆ESdS

dS (M, b)|1−loop , (6)

representing the total energy computed to one-loop in a SdS background. EdS (b) is the reference space energy, i.e.
the de Sitter space. ∆ESdS

dS (M, b)|classical is the energy difference between the SdS and the dS metrics, stored in

the boundaries and ∆ESdS
dS (M, b)|1−loop is the quantum correction to the classical term. The rest of the paper is

structured as follows, in section II we compute the quasilocal energy for the SdS space, in section III we give some of
the basic rules to perform the functional integration to evaluate the energy density of the Hamiltonian approximated
up to second order in the SdS background, in section IV we look for stable modes of the spin-two operator acting on
transverse traceless tensors, in section V we show the existence of only one negative mode under suitable conditions
and we compute the energy density for stable modes, in section VI, we confirm the existence of one negative mode
for the extreme SdS background, namely the Nariai metric, also in our framework and we give a computation for the
stable part in analogy with its non-extreme sector, in section VII we find a critical radius below which we have a
stabilization of the system. We summarize and conclude in section VIII.

II. QUASILOCAL ENERGY FOR THE SDS SPACE

In this section we fix our attention to the classical part of Eq.(6). We begin to define the line element

ds2 = −f (r) dt2 + f (r)−1 dr2 + r2dΩ2, (7)

referred to the SdS metric, where

f (r) =

(

1− 2MG

r
− r2

b2

)

. (8)

For Λc = 0 the metric describes the Schwarzschild metric, while for M = 0, we obtain the de Sitter metric (dS)

ds2 = −
(

1− r2

b2

)

dt2 +

(

1− r2

b2

)−1

dr2 + r2dΩ2. (9)

The gravitational potential f (r) admits three real roots. One is negative and it is located at

r− =
2√
3
b cos

(

θ + 2π

3

)

, (10)

1In Appendix A, we will report the details concerning the Kruskal-Szekeres description of the SdS manifold.
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while

r+ =
2√
3
b cos

(

θ + 4π

3

)

, r++ =
2√
3
b cos

(

θ

3

)

(11)

are associated to the black hole and cosmological horizons respectively, with

cos θ = −3MG
√
3/b. (12)

However in the wormhole language, we will say that r+ is the inner throat and r++ is the outer throat. Note also
that the hypersurface Σ is described by the three-dimensional wormhole whose metric is

ds2 = f (r)
−1

dr2 + r2dΩ2, (13)

where f (r) is given by Eq.(8). A relation between the three roots is given by







b2 = r2+ + r+r++ + r2++

2Ml2pb
2 = (r+r++) (r+ + r++)
0 = r− + r+ + r++

. (14)

Thus , we can write

f (r) = − 1

rb2
(r − r+) (r − r++) (r + r+ + r++) , (15)

with

r+ ≤ r ≤ r++ θ ∈
[

π

2
,
3π

2

]

. (16)

Since r+ is a monotonic increasing function of θ, while r++ is a monotonic decreasing with

{

r↾+ ∈ [0, b]

r⇂++ ∈ [0, b]
, (17)

in order to have the inequality (16) preserved, we have to consider θ ∈
[

π
2 , π

]

. Indeed when θ ∈
[

π, 3π
2

]

the inequality
(16) is reversed and the meaning of the internal and external roots is exchanged. Thus the de Sitter region delimited
by the bound of Eq.(16), at time fixed, can be represented as in Fig.1.

FIG. 1. The geometry of the constant time slice embedded in flat space with a polar angle suppressed. Isometric copies of
this surface can be smoothly joined at the throats, producing a periodic S2 ×R1 spatial topology.

A common value is reached when θ = π where r+ = r++ = b/
√
3 and the metric is termed extreme. This particular

case will be discussed in section VI. However, instead of looking at the de Sitter region with the topology of Fig.1,
we will look at the Einstein-Rosen bridge corresponding to the inner bifurcation surface depicted in Fig.2.

FIG. 2. The same representation of Fig.1 but with the cosmological “wormhole mouths” placed in antipodal region of the de
Sitter universe with a periodic S2 ×R1 spatial topology.
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At this point we can discuss the computation of the classical energy term

ESdS (M, b) = EdS (b) + ∆ESdS
dS (M, b)|classical , (18)

which can be computed by means of quasilocal energy. Quasilocal energy is defined as the value of the Hamiltonian
that generates unit time translations orthogonal to the two-dimensional boundary,

∆ESdS
dS (M, b)|classical =

1

8πG

∫

S2

d2x
√
σ
(

k − k0
)

, (19)

where |N | = 1 at S2 and k0 is the trace of the extrinsic curvature corresponding to the reference space, which in this
case is the dS space. For practical purposes, however, it is convenient to embed both spaces (Sds and dS) into flat
space and perform the subtraction procedure. To this purpose the radial coordinate x continuous on M is defined by

dx = ± dr
√

1− 2MG
r

− r2

b2

, (20)

where the plus sign is relative to Σ+, while the minus sign is related to Σ−. The surfaces located at r+ and r++

are bifurcation surfaces denoted S0
+ and S0

++, respectively. When M = 0, we obtain the embedding of dS space

into flat space. In Σ+ the evaluation of ∆ESdS
dS (M, b)|classical can be obtained as follows: first we consider the static

Einstein-Rosen bridge associated to the SdS space [16,17]

ds2 = −N2 (r) dt2 + gxxdx
2 + r2 (x) dΩ2, (21)

where N , gxx, and r are functions of x defined by Eq.(20). Second, we consider the boundary S2
+, located at

x (r) = x̄+ (R), and its associated normal nµ = (hxx)
1
2 δµy . The expression of the trace

k = − 1√
h

(√
hnµ

)

,µ
, (22)

gives for the SdS space

kSdS = −2
r,x
r |SdS

= −2

√

f (r)

r |SdS
= −2

r

√

1− 2MG

r
− r2

b2
. (23)

Note that if we make the identification N2 = 1− 2MG
r

− r2

b2
, the line element (21) reduces to the SdS metric written

in another form. The same applies to the dS metric by putting M = 0. Nevertheless for our purposes the form of
N (r) can be left unspecified. Thus the computation of E+ gives

∆ESdS
dS (M, b)|classical =

1

8πG

∫

S2

dΩ2r2





−2
√

f (r)

r
+

2
√

f (r)|M=0

r





|r=R

(24)

= −R

G

[
√

1− 2MG

R
− R2

b2
−
√

1− R2

b2

]

, (25)

where we have set M = 0 in kSdS to obtain the dS energy contribution. When R ≫ b, ∆ESdS
dS (M, b)|classical ≃

−iMb/R. Thus for every finite value of the boundary exceeding the cosmological radius, the classical energy acquires
an imaginary component which will not be here considered2. In contrast, if we consider the approximation R/b ≪ 1
and 2MG/R ≪ 1 [18], we obtain

2To deal with this case it is better to introduce the quasilocal mass, defined as

∆M
SdS

dS (M, b)|classical =
1

8πG

∫

S2

d
2
xN

√
σ
(

k − k
0
)

≃
R≫b

(

−iM
b

R

)(

i
R

b

)

= M.
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∆ESdS
dS (M, b)|classical ≃ −R

G

[(

1− MG

R
− R2

2b2

)

−
(

1− R2

2b2

)]

= M. (26)

Thus the energy contribution limited to Σ+ gives

ESdS (M, b) = EdS (b) + ∆ESdS
dS (M, b)

+
|classical = EdS (b) +M, (27)

that is the dS space cannot decay into the SdS space because the associated boundary energy is different. This is
in complete analogy with the Schwarzschild and the S-AdS cases. However if we look at the whole hypersurface
Σ = Σ+ ∪ Σ− the total classical energy becomes

ESdS (M, b) = EdS (b) + Etot (M, b)

= EdS (b) + ∆ESdS
dS (M, b)

+
|classical +∆ESdS

dS (M, b)
−
|classical (28)

with

∆ESdS
dS (M, b)+|classical =

1

8πG

∫

S2
+

d2x
√
σ
(

k − k0
)

,

∆ESdS
dS (M, b)−|classical = − 1

8πG

∫

S2
−

d2x
√
σ
(

k − k0
)

. (29)

Here the boundaries S2
+ and S2

− are located in the two disconnected regions M+ and M− respectively with coordinate
values x = x̄± and the trace of the extrinsic curvature in both regions is

kSdS =

{

−2r,x /r on Σ+

2r,x /r on Σ−
. (30)

Thus one gets

∆ESdS
dS (M, b)

±
|classical =

{

M on S2
+

−M on S2
−

, (31)

where for E− we have used the conventions relative to Σ− and S2
−. Therefore for every value of the boundary R,

(provided we take symmetric boundary conditions with respect to the bifurcation surface), we have

ESdS (M, b) = EdS (b) +M + (−M) = EdS (b) , (32)

namely the energy is conserved. As stressed in Ref. [16], since we have a spacetime with a bifurcation surface, the

quantities ∆ESdS
dS (M, b)

+
|classical and ∆ESdS

dS (M, b)
−
|classical have the same relative sign, while the total energy is given

by the sum ∆ESdS
dS (M, b)

+
|classical +∆ESdS

dS (M, b)
−
|classical

3. The energies associated to the boundaries are symmetric

and they have the same relative sign while the total energy reflects the orientation reversal of the two boundaries.
Since the total classical energy is conserved we can discuss the existence of an instability. To this aim we refer to the
variational approach to compute the energy density to one-loop [14,15,19–21].

III. ENERGY DENSITY CALCULATION IN SCHRÖDINGER REPRESENTATION

In previous section we have fixed our attention to the classical part of Eq.(6). In this section, we apply the same
calculation scheme of Refs. [14,15] to compute one loop corrections to the classical SdS term. Like the Schwarzschild
and the S-AdS case, there appear two classical constraints

3In Ref. [16] we have a subtraction instead of a sum. This is due to conventions adopted.
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{

H = 0
Hi = 0

(33)

and two quantum constraints

{

HΨ̃ = 0

HiΨ̃ = 0
(34)

for the Hamiltonian respectively, which are satisfied both by the SdS and dS metric on shell. HΨ̃ = 0 is known as
the Wheeler-DeWitt equation (WDW). Our purpose is the computation of

∆ESdS
dS (M, b)|1−loop =

〈

Ψ
∣

∣HSdS
Σ −HdS

Σ

∣

∣Ψ
〉

〈Ψ|Ψ〉 (35)

where HSdS
Σ and HdS

Σ are the total Hamiltonians referred to the SdS and dS spacetimes respectively for the volume
term [14] and Ψ is a wave functional obtained following the usual WKB expansion of the WDW solution4. In this
context, the approximated wave functional will be substituted by a trial wave functional of the gaussian form according
to the variational approach we shall use to evaluate ∆ESdS

dS (M, b)|1−loop. To compute such a quantity we will consider

on Σ deviations from the SdS metric spatial section of the form,

gij = ḡij + hij , (36)

where

ḡijdx
idxj =

(

1− 2MG

r
− r2

b2

)−1

dr2 + r2dΩ2 (37)

is the spatial SdS background. By setting M = 0 in Eq.(8) on the same slice we will obtain perturbations also for the
de Sitter metric. Thus the expansion of the three-scalar curvature

∫

d3x
√
gR(3) up to o

(

h2
)

gives

∫

Σ

d3x
√
ḡ

[

−1

4
h△h+

1

4
hli△hli −

1

2
hij∇l∇ih

l
j +

1

2
h∇l∇ih

li − 1

2
hijRiah

a
j +

1

2
hRijh

ij

]

+

∫

Σ

d3x
√
ḡ

[

1

4
hli
(

R(0) − 6/b2
)

hli −
1

4
hli
(

R(0)
)

hli +
1

4
h
(

R(0)
)

h

]

, (38)

where R(0) is the three-scalar curvature on-shell. To explicitly make calculations, we need an orthogonal decomposition
for both πij and hij to disentangle gauge modes from physical deformations. We define the inner product

〈h, k〉 :=
∫

Σ

√
gGijklhij (x) kkl (x) d

3x, (39)

by means of the inverse WDW metric Gijkl , to have a metric on the space of deformations, i.e. a quadratic form on
the tangent space at h, with

Gijkl = (gikgjl + gilgjk − 2gijgkl). (40)

The inverse metric is defined on co-tangent space and it assumes the form

〈p, q〉 :=
∫

Σ

√
gGijklp

ij (x) qkl (x) d3x, (41)

so that

GijnmGnmkl =
1

2

(

δikδ
j
l + δilδ

j
k

)

. (42)

4See also [22–24] for other applications of the WKB approximation concerning black hole physics.
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Note that in this scheme the “inverse metric” is actually the WDW metric defined on phase space. Now, we have the
desired decomposition on the tangent space of 3-metric deformations [25,26]:

hij =
1

3
hgij + (Lξ)ij + h⊥

ij (43)

where the operator L maps ξi into symmetric tracefree tensors

(Lξ)ij = ∇iξj +∇jξi −
2

3
gij (∇ · ξ) . (44)

Then the inner product between three-geometries becomes

〈h, h〉 :=
∫

Σ

√
gGijklhij (x)hkl (x) d

3x =

∫

Σ

√
g

[

−2

3
h2 + (Lξ)

ij
(Lξ)ij + hij⊥h⊥

ij

]

. (45)

With the orthogonal decomposition in hand we can define the trial wave functional

Ψ [hij (−→x )] = N exp

{

− 1

4l2p

[

〈

hK−1h
〉⊥
x,y

+
〈

(Lξ)K−1 (Lξ)
〉‖
x,y

+
〈

hK−1h
〉Trace

x,y

]

}

, (46)

where N is a normalization factor. Since we are only interested in the perturbations of the physical degrees of freedom,
we will only fix our attention on the TT (traceless and transverseless) tensor sector, therefore reducing the previous
form into

Ψ [hij (−→x )] = N exp

{

− 1

4l2p

〈

hK−1h
〉⊥
x,y

}

. (47)

This restriction is motivated by the fact that if an instability appears this will be in the physical sector referred to
TT tensors, namely a nonconformal instability. This choice seems to be corroborated by the action decomposition of
[27], where only TT tensors contribute to the partition function5. To calculate the energy density, we need to know
the action of some basic operators on Ψ [hij ] [19]. The action of the operator hij on |Ψ〉 = Ψ [hij ] is realized by

hij (x) |Ψ〉 = hij (−→x )Ψ [hij ] , (48)

while the action of the operator πij on |Ψ〉, in general, is

πij (x) |Ψ〉 = −i
δ

δhij (−→x )
Ψ [hij ] . (49)

The inner product is defined by the functional integration

〈Ψ1 | Ψ2〉 =
∫

[Dhij ] Ψ
∗
1 {hij}Ψ2 {hkl} (50)

and by applying previous functional integration rules, we obtain the expression of the one-loop-like Hamiltonian form
for TT (traceless and transverseless) deformations [14,15]

H⊥ =
1

4l2p

∫

M
d3x

√
gGijkl

[

K−1⊥ (x, x)ijkl + (△2)
a
j K

⊥ (x, x)iakl

]

. (51)

The propagator K⊥ (x, x)iakl comes from a functional integration and it can be represented as

K⊥ (−→x ,−→y )iakl :=
∑

N

h⊥
ia (

−→x )h⊥
kl (

−→y )

2λN (p)
, (52)

where h⊥
ia (

−→x ) are the eigenfunctions of △a
2j and λN (p) are infinite variational parameters.

5See also [28] for another point of view.
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IV. THE SCHWARZSCHILD-DE SITTER METRIC SPIN 2 OPERATOR AND THE EVALUATION OF

THE ENERGY DENSITY

The Spin-two operator for the SdS metric is defined by

(△2)
a
j := −△δaj + 2Ra

j − 6/b2δaj (53)

where △ is the curved Laplacian (Laplace-Beltrami operator) on a SdS background and Ra
j is the mixed Ricci tensor

whose components are:

Ra
i =

{

−2MG

r3
+ 2/b2,

MG

r3
+ 2/b2,

MG

r3
+ 2/b2

}

. (54)

As stressed in the introduction, the form of the mixed Ricci tensor for the SdS space has the same dependence for
the radial coordinate for both the Schwarzschild and the S-AdS spaces. Thus to evaluate the energy density, we are
led to study the following eigenvalue equation

(

−△δaj + 2Ra
j − 6/b2δaj

)

hi
a = E2hi

j (55)

where E2 is the eigenvalue of the corresponding equation. In doing so, we follow Regge and Wheeler in analyzing the
equation as modes of definite frequency, angular momentum and parity [29]. The quantum number corresponding to
the projection of the angular momentum on the z-axis will be set to zero. This choice will not alter the contribution to
the total energy since we are dealing with a spherical symmetric problem. In this case, Regge-Wheeler decomposition
shows that the even-parity three-dimensional perturbation is

heven
ij (r, ϑ, φ) = diag

[

H (r)

(

1− 2MG

r
− r2

b2

)−1

, r2K (r) , r2 sin2 ϑK (r)

]

Yl0 (ϑ, φ) . (56)

In this representation H (r) and K (r) behave as they were scalar fields. For a generic value of the angular momentum
L, one gets







(

−△l − 4MG
r3

− 2
b2

)

H (r) = E2
l,HH (r)

(

−△l +
2MG
r3

− 2
b2

)

K (r) = E2
l,KK (r)

, (57)

where E2
l,H and E2

l,K are the eigenvalues for the H (r) field and the K (r) field respectively. The Laplacian restricted
to Σ is

△l =

(

1− 2MG

r
− r2

b2

)

d2

dr2
+

(

2r − 3MG

r2
− 3

r

b2

)

d

dr
− l (l + 1)

r2
. (58)

Defining reduced fields

H (r) =
h (r)

r
; K (r) =

k (r)

r
, (59)

and passing to the proper geodesic distance from the throat of the bridge defined by Eq.(20), the system (57) becomes6







− d2

dx2h (x) +
(

V −
l (x)− 3

b2

)

h (x) = E2
l h (x)

− d2

dx2 k (x) +
(

V +
l (x) − 3

b2

)

k (x) = E2
l k (x)

(60)

with

V ∓
l (x) =

l (l + 1)

r2 (x)
∓ 3MG

r (x)
3 . (61)

6The system is invariant in form if we make the minus choice in Eq.(20).
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When r −→ r0 > r+

x (r) ≃
√

2κ+ (r − r+) V ∓
l (x) −→ l (l + 1)

r20
∓ 3MG

r30
= const, (62)

where

κ+ = lim
r→r+

1

2
|g′00 (r)| =

(r+ − r−) (r++ − r+)

2b2r+
(63)

is the “inner” surface gravity associated with the smallest root. The solution of (60) when r −→ r0 > r+ for both
backgrounds is

h (px) = k (px) =

√

2

π
sin (px) . (64)

This choice is dictated by the requirement that

h (x) , k (x) → 0 when x (r) → x (r+) ≃ 0. (65)

Thus the propagator becomes

K⊥
± (x, y) =

V

2π2

∫ ∞

0

dpp2
sin (px)

r (x)

sin (py)

r (y)

Yl0 (ϑ, φ)Yl′0 (ϑ, φ)

λ± (p)
(66)

λ± (p) is referred to the potential function V ±
l (x). Substituting Eq.(66) in Eq.(51) one gets (after normalization in

spin space and after a rescaling of the fields in such a way as to absorb l2p)

E (M, b, λ) =
V

8π2

∞
∑

l=0

2
∑

i=1

∫ ∞

0

dpp2
[

λi (p) +
E2

i (p,M, b, l)

λi (p)

]

(67)

where

E2
1,2 (p,M, b, l) = p2 +

l (l + 1)

r20
∓ 3MG

r30
− 3

b2
, (68)

λi (p) are variational parameters corresponding to the eigenvalues for a (graviton) spin-two particle in an external field

and V is the volume of the system. By minimizing (67) with respect to λi (p) one obtains λi (p) =
[

E2
i (p,M, b, l)

]
1
2

and

E
(

M, b, λ
)

=
V

8π2

∞
∑

l=0

2
∑

i=1

∫ ∞

0

dpp22
√

E2
i (p,M, b, l) (69)

with

p2 +
l (l + 1)

r20
− 3MG

r30
− 3

b2
> 0.

For the SdS background we get

E (M, b) =
V

4π2

∞
∑

l=0

∫ ∞

0

dpp2
(

√

p2 + c2− +
√

p2 + c2+

)

(70)

where

c2∓ =
l (l + 1)

r20
∓ 3MG

r30
− 3

b2
,

while when we refer to the dS space we put M = 0 and c2 = l (l + 1) /r20 − 3/b2. Here the meaning of the value r0 is
that of maintaining the same boundary conditions to correctly compute the Casimir-like energy. Then

9



E (b) =
V

4π2

∞
∑

l=0

∫ ∞

0

dpp2
(

2
√

p2 + c2
)

(71)

Now, we are in position to compute the difference between (70) and (71). Since we are interested in the ultraviolet
limit, we have

∆E (M, b) = E (M, b) − E (b)

=
V

4π2

∞
∑

l=0

∫ ∞

0

dpp2
[

√

p2 + c2− +
√

p2 + c2+ − 2
√

p2 + c2
]

=
V

4π2

∞
∑

l=0

∫ ∞

0

dpp3





√

1 +

(

c−
p

)2

+

√

1 +

(

c+
p

)2

− 2

√

1 +

(

c

p

)2


 (72)

and for p2 >> c2∓, c
2, we obtain

V

4π2

∞
∑

l=0

∫ ∞

0

dpp3

[

1 +
1

2

(

c−
p

)2

− 1

8

(

c−
p

)4

+ 1 +
1

2

(

c+
p

)2

− 1

8

(

c+
p

)4

−2−
(

c

p

)2

+
1

4

(

c

p

)4
]

= − V

2π2

c4M
8

∫ ∞

0

dp

p
, (73)

where c2M = 3MG/r30. We will use a cut-off Λ to keep under control the UV divergence

∫ ∞

0

dp

p
∼
∫ Λ

cM

0

dx

x
∼ ln

(

Λ

cM

)

, (74)

where Λ ≤ mp. Thus ∆E (M, b) for high momenta becomes

∆E (M, b) ∼ − V

2π2

c4M
16

ln

(

Λ2

c2M

)

= − V

32π2

(

3MG

r30

)2

ln

(

r30Λ
2

3MG

)

. (75)

and Eq.(6) to one loop is

(

ESdS (M, b)− EdS (b)
)

r≃r0>r+
= − V

32π2

(

3MG

r30

)2

ln

(

r30Λ
2

3MG

)

= − V

32π2

(

3 (r+r++) (r+ + r++)

2
(

r2+ + r+r++ + r2++

)

r30

)2

ln

(

2
(

r2+ + r+r++ + r2++

)

r30Λ
2

3 (r+r++) (r+ + r++)

)

, (76)

where we have used Eq.(14). On the other hand, when r −→ r++

x (r) ≃
√

2κ++ (r++ − r) V ∓
l (x) −→ l (l + 1)

r2++

∓ 3MG

r3++

= const, (77)

where

κ++ = lim
r→r++

1

2
|g′00 (r)| =

(r++ − r−) (r++ − r+)

2b2r++
(78)

is the “outer” surface gravity associated with the largest root. By repeating the steps going from Eq.(67) to Eq.(76)
with

10



E2
1,2 (p,M, b, l) = p2 +

l (l + 1)

r2++

∓ 3MG

r3++

− 3

b2
, (79)

we obtain

(

ESdS (M, b)− EdS (b)
)

r≃r++
= − V

32π2

(

3MG

r3++

)2

ln

(

r3++Λ
2

3MG

)

= − V

32π2

(

3r+ (r+ + r++)

2
(

r2+ + r+r++ + r2++

)

r2++

)2

ln

(

2
(

r2+ + r+r++ + r2++

)

r2++Λ
2

3r+ (r+ + r++)

)

. (80)

Like the Schwarzschild and the S-AdS cases, we observe that

lim
M→0

lim
r0→r+

∆E (M, b) 6= lim
r0→r+

lim
M→0

∆E (M, b) . (81)

This behavior seems to confirm that quantum effects come into play when we try to reach the inner throat. Differently
to the Schwarzschild and S-AdS cases, here we have two scales corresponding to the two throats (horizons) of the
metric. This is an artifact of the approximation we have adopted to deal with the differential equations of the system
(60). By defining a scale variable x = 3MG/

(

r30Λ
2
)

and a scale variable y = 3MG/
(

r3++Λ
2
)

, we obtain

ESdS (M, b)− EdS (b) =
(

ESdS (M, b)− EdS (b)
)

r≃r0>r+
+
(

ESdS (M, b)− EdS (b)
)

r≃r++

= − V

32π2

[

(

3MG

r30

)2

ln

(

r30Λ
2

3MG

)

+

(

3MG

r3++

)2

ln

(

r3++Λ
2

3MG

)

]

=
V Λ4

32π2

[

x2 lnx+ y2 ln y
]

= ∆E (x, y) . (82)

A stationary point is reached for x = y = 0, namely the dS space and another stationary point is in x = y = e−
1
2 .

This last one represents a minimum of ∆E (x, y). This means that there is a probability that the dS spacetime will
be subjected to a topology change and it will produce a SdS wormhole with a black hole pair7 generated on the
hypersurface Σ. To see if this is really possible, we have to establish if there exist unstable modes.

V. SEARCHING FOR NEGATIVE MODES

In this paragraph we look for negative modes of the eigenvalue equation (53). To this purpose we restrict the
analysis to the S wave. Indeed, in this state the centrifugal term is absent and this gives the function V (x) a potential
well form, which is different when the angular momentum l ≥ 1. Moreover the potential well appears only for the H
component, whose eigenvalue equation is

(

−△− 4MG

r3
− 2

b2

)

H (r) = −E2
0H (r) . (83)

△ is the operator △l of Eq.(58) with l = 0 and E2
0 > 0. By defining the reduced field h (r) = H (r) r, Eq.(83) becomes

− d

dr

(
√

1− 2MG

r
− r2

b2
dh

dr

)

+

(−3MG

r3
+ Ẽ2

)

h
√

1− 2MG
r

− r2

b2

= 0, (84)

7See also [30] for an approach of black hole pair creation based on the effective action.
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where Ẽ2 = −3/b2 + E2
0 . By means of Eq.(20), one gets

−dx

dr

d

dx

(
√

1− 2MG

r
− r2

b2
dh

dx

dx

dr

)

+

(

−3MG

r3
+ Ẽ2

)

h
√

1− 2MG
r

− r2

b2

= − d

dx

(

dh

dx

)

+

(

−3MG

r3
+ Ẽ2

)

h = 0. (85)

Near the throat

x (r) ≃ ±
√
2r+√
κ+

√

(

r

r+
− 1

)

, (86)

where we have used Eq.(63) defining the inner surface gravity. By defining the dimensionless variable ρ = r/r+, we
obtain ρ ≃ 1 + y2 where

y =
√
κ+x/

√

2r+ = κ̃+x. (87)

Eq.(85) becomes

− d

dy

(

dh

dy

)

κ̃2
+ +

(

− 3MG

r3+ρ
3 (y)

+ Ẽ2

)

h

= −d2h

dy2
+

(

− 3MG

κ̃2
+r

3
+ (1 + y2)

3 + λ

)

h = 0, (88)

where λ = Ẽ2/κ̃2
+. Expanding the potential around y = 0, one gets

− d2h

dy2
+

(

−3MG

κ̃2
+r

3
+

(

1− 3y2
)

+ λ

)

h (89)

= −d2h

dy2
+

(

ω2y2 − 3MG

κ̃2
+r

3
+

+ λ

)

h = 0, (90)

with ω =
√

9MG/
(

κ̃2
+r

3
+

)

. In this approximation we have obtained the equation of a quantum harmonic oscillator

equation whose spectrum is En = ~ω
(

n+ 1
2

)

. Since we are using natural units, ~ is set to one and

λn = 3MG/
(

κ̃2
+r

3
+

)

−
√

9MG/
(

κ̃2
+r

3
+

)

(

n+
1

2

)

. (91)

After some algebraic calculation, with the help of relation (14), we obtain

λn = 3

√

2r++ (r+ + r++)

(2r+ + r++) (r++ − r+)

(
√

2r++ (r+ + r++)

(2r+ + r++) (r++ − r+)
− 1√

2

(

n+
1

2

)

)

. (92)

Let us examine the first two eigenvalues. The first one is

λ0 = 3

√

2r++ (r+ + r++)

(2r+ + r++) (r++ − r+)

(
√

2r++ (r+ + r++)

(2r+ + r++) (r++ − r+)
− 1

2

)

. (93)

Since the eigenvalue must be positive, the following inequality must hold

√

2r++ (r+ + r++)

(2r+ + r++) (r++ − r+)
>

1

2
=⇒ 7

4
r+r++ +

7

4
r2++ +

1

2
r2+ > 0, (94)
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which is verified ∀θ ∈
[

π
2 , π

)

. To proof that there is only one eigenvalue, we look at the second one

λ1 = 3

√

2r++ (r+ + r++)

(2r+ + r++) (r++ − r+)

(
√

2r++ (r+ + r++)

(2r+ + r++) (r++ − r+)
− 3

2

)

. (95)

This implies the inequality

18r2+ > r+r++ + r2++, (96)

which is verified when θ ∈ (2.1708, π). Thus we have only one eigenvalue when θ ∈
[

π
2 , 2.1708

)

. In terms of E2 we get

E2 = −3/b2 − 3r++ (r+ + r++)

2b2r2+
+

3

8b2r2+

√

2r++ (r+ + r++) (2r+ + r++) (r++ − r+). (97)

Note that if we repeat the same calculation for the outer throat, i.e. r++, we discover the absence of negative
eigenvalues. Thus we can conclude that there is only one eigenvalue with the restriction that θ ∈

[

π
2 , 2.1708

)

.
According to Coleman [8], this is a signal of a transition from a false vacuum to a true one. It is evident that when
we consider the limit where r++ → r+, an infinite number of eigenvalues enter in the discrete spectrum. This is a
consequence of the approximated parabolic potential which is used to describe this extreme situation. To better deal
with this problem, we introduce the Nariai metric.

VI. THE NARIAI METRIC SPIN 2 OPERATOR AND THE EVALUATION OF THE ENERGY DENSITY

When r+ = r++, the metric becomes degenerate and the function f (r) of Eq.(15) becomes

fe (r) = − 1

rb2
(r − r̄)2 (r + 2r̄) , (98)

where r̄ = b/
√
3. Since fe (r) ≤ 0 everywhere r becomes a time coordinate and t becomes spatial. Nevertheless, this

is an artifact of a poor coordinate choice. To see what happens, we follow Ref. [4] and we let 9M2G2Λ = 1 − 3ε2 so
that the limit r+ → r++ corresponds to ε → 0. We define a new radial coordinate θ1, and a new time coordinate φ1,
by

cos θ1 =

√
3

bε
(r − r̄) φ1 = t

√
3

bε
, (99)

such that r+ = r̄ − ε
√
3/b and r++ = r̄ + ε

√
3/b. To first order in ε the metric assumes the form

ds2 = −b2

3

(

1 +
2

3
ε cos θ1

)

sin2 θ1dφ
2
1 +

b2

3

(

1− 2

3
ε cos θ1

)

dθ21

+
b2

3
(1− 2ε cos θ1) dΩ

2, (100)

describing a nearly degenerate SdS metric with two distinct roots. The related surface gravities, to first order in ε
assume the expressions [3]

κ+,++ =
b√
3

(

1∓ 2

3
ε cos θ1

)

, (101)

where the upper (lower) sign is for the cosmological (black hole) horizon. When ε → 0, the line element is

ds2 =
b2

3

(

− sin2 θ1dφ
2
1 + dθ21 + dΩ2

)

(102)

and the surface gravities degenerate into one with the value

κ =
b√
3
. (103)
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This is the Nariai metric [7] with topology H2 × S2. Its Euclidean form has the well known topology S2 × S2 and
form

ds2 =
b2

3

(

dΩ2
1 + dΩ2

)

. (104)

Every constant time section has the topology S1 × S2 with the throats of the same size as illustrated in Fig.3

FIG. 3. The geometry of the constant time slice degenerate Schwarzschild-de Sitter (Nariai) spacetime with a polar angle
suppressed. Isometric copies of this surface can be smoothly joined at the throats, producing a periodic S2×S1 spatial topology.

However we are interested for the Lorentzian version. In this case, Regge-Wheeler decomposition shows that the
even-parity three-dimensional perturbation is

heven
ij (θ1, θ, φ) =

b2

3
diag

[

H (θ1) ,K (θ1) , sin
2 θK (θ1)

]

Yl0 (θ, φ) . (105)

For a generic value of the angular momentum L, one gets







3
b2

(

−∂2
θ1

+ l (l + 1)− 2
)

H (θ1) = E2
l H (θ1)

3
b2

(

−∂2
θ1

+ l (l + 1)
)

K (θ1) = E2
l K (θ1)

, (106)

where the associated three dimensional mixed Ricci tensor is

Rj
i =

{

0,
3

b2
,
3

b2

}

. (107)

Also in this case the unstable mode appears for the l = 0 case leading to the eigenvalue equation

(

−∂2
θ1

− 2
)

H (θ1) = −λH (θ1) , (108)

where λ = b2E2/3. The eigenvalue is easily determined and its value is

λ = 2, (109)

with eigenfunction

H (θ1) = const. (110)

Since the range of integration is finite due to the periodicity of the argument, the eigenfunction is normalizable. For
the other component we have no solutions at all, because the operator is the same of a free particle having only a
continuous spectrum. For completeness, we calculate the energy difference between the SdS background in the Nariai
form and the dS metric in the stable sector. The total energy in the presence of the Nariai metric is

ENariai (b) =
V

2π2

1

2

∞
∑

l=0

∫ ∞

0

dpp2

(
√

p2 +
3l (l + 1)

b2
− 6/b2 +

√

p2 +
3l (l + 1)

b2

)

, (111)

while for the pure de Sitter metric, we have

EdS (b) =
V

2π2

1

2

∞
∑

l=0

∫ ∞

0

dpp22

(
√

p2 +
3l (l + 1)

b2
− 3/b2

)

. (112)

The Casimir-like energy becomes
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∆E (b) = ENariai (b) − EdS (b)

=
V

2π2

1

2

∞
∑

l=0

∫ ∞

0

dpp2

[
√

p2 +
3l (l + 1)

b2
− 6/b2 +

√

p2 +
3l (l + 1)

b2

−2

√

p2 +
3l (l + 1)

b2
− 3/b2

]

(113)

When p2 >> 6/b2 we write

∆E (b) ≃ − V

2π2

9

4b4

∫ ∞

0

dp

p
. (114)

Introducing an UV cut-off one gets

∫ ∞

0

dp

p
∼
∫ Λ2b2

0

dx

x
∼ ln

(

Λ2b2
)

(115)

and ∆E (b) for high momenta becomes

∆E (b) ∼ − V

2π2

9

16b4
ln
(

Λ2b2
)

= − V

32π2

9

b4
ln
(

Λ2b2
)

. (116)

VII. BOUNDARY REDUCTION AND STABILITY

An equivalent approach to Eq.(84) can be set up by means of a variational procedure applied on a functional whose
minimum represents the solution of the problem. Let us define

J
(

h,E2
)

=
1

2

x̄
∫

0

dx

[

(

dh (x)

dx

)2

− 3MG

r3 (x)
h2 (x)

]

+
Ẽ2

2

x̄
∫

0

h2 (x) dx,

where dx is given by Eq.(8). Eq.(84) is equivalent to find the minimum of

Ẽ2 =

x̄
∫

0

dx

[

(

dh(x)
dx

)2

− 3MG
r3(x)h

2 (x)

]

x̄
∫

0

h2 (x) dx

. (117)

For future purposes, we use the boundary conditions

h (x̄) = 0. (118)

When 2MG/r ≪ 1 Eq.(85) becomes

− d2h

dx2
+ Ẽ2h = 0 (119)

and the solution is

h (x) = A exp
(

−Ẽx
)

+B exp
(

Ẽx
)

. (120)

In the approximation of Eq.(119), we can suppose x so large that the increasing exponential has to be eliminated in

such a way to take only h (x) = A exp
(

−Ẽx
)

. If we change the variables in a dimensionless form like Eq.(87), we get
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µ =
Ẽ2

κ̃2
=

ȳ
∫

0

dy

[

(

dh(y)
dy

)2

− 3MG
r3
+
κ̃2
+
ρ3(y)

h2 (y)

]

y(a)
∫

0

dyh2 (y)

. (121)

The asymptotic behaviour of h (x) suggests to choose h (λ, y) = exp (−λy) as a trial function, and Eq.(121) becomes

µ (λ) = λ2 − 3MG

r3+κ̃
2
+

ȳ
∫

0

dy
ρ3(y) exp (−2λy)

1−exp(−2λy)
2λ

. (122)

Close to the throat exp (−2λy) ≃ 1− 2λy and

µ (λ) = λ2 − 3MG

r3+κ̃
2
+

+
9MG

r3+κ̃
2
+

[ ȳ

2λ
+ ȳ2

]

. (123)

The minimum of µ (λ) is reached for λ̄ =
(

9MG
4r3

+
κ̃2
+

ȳ
)

1
3

assuming therefore the value

µ
(

λ̄
)

= 3

(

9

4
Dȳ

)
2
3

− 3D + 3Dȳ2, (124)

where

D =
MG

r3+κ̃
2
+

=
2r++ (r+ + r++)

(2r+ + r++) (r++ − r+)

=
2 cos

(

θ
3

) (

cos
(

θ+4π
3

)

+ cos
(

θ
3

))

(

2 cos
(

θ+4π
3

)

+ cos
(

θ
3

)) (

cos
(

θ
3

)

− cos
(

θ+4π
3

)) . (125)

If we consider the value of θ such that only one eigenvalue appears, we obtain D = 2.25 and Eq.(124)becomes zero
for ȳc = .463 68 corresponding to ρ̄c = 1.215. This means that the unstable mode persists until the boundary radius
ρ̄ falls below ρ̄c.

VIII. SUMMARY AND CONCLUSIONS

In this paper we have extended the computation of the Casimir-like energy to the case of the Schwarzschild-de Sitter
(SdS) background with the de Sitter (dS) space as a reference space. This evaluation has been done to one-loop in
the TT (transverse, traceless) sector which is the gauge invariant part of the quantum fluctuation of the gravitational
field. As stressed in the introduction to correctly compute the Casimir energy we need to subtract field configurations
which have the same asymptotic properties and the same asymptotic boundary conditions. For the SdS metric and
the dS metric, this is the case. In this context a lot of work has been done; for example in Refs. [4–6], it has been
shown the existence of one negative mode in the TT sector when the saddle point approximation is considered: a
clear sign of instability. In particular, the instability has been related to the probability of creating a black hole pair
[6,31]. However this particular result has been obtained by looking at the partition function and therefore with the
introduction of an equilibrium temperature, that in the case of the pure Schwarzschild and flat metric can be imposed
to be equal, but in the present case (i.e. the SdS metric and the dS metric) it cannot. Therefore as stressed in Ref.
[6], it is not very clear how these spaces having a different temperature (periodicity) can be compared. On the other
hand if we adopt the hamiltonian approach we can avoid the introduction of a temperature and it is possible to build
a scheme where the classical contribution is conserved; this point is fundamental to discuss the instability [9]. What
we have found, in our framework, is the well known existence of an unstable mode in the S wave for the extreme
SdS metric (Nariai)8 but we have also found that an unstable mode exists also for the SdS metric. To interpret such

8For this last point a discussion can be found in Ref. [31].
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an instability as a decay process nucleating a black hole pair, we need to show the existence of only “one negative

mode” [8]. Unfortunately, in our approximation we have discovered a dependence of the number of negative modes
on θ the variable defined in Eq.(12). In particular, we have seen that the closest is the approach to the extreme
value θ = π, the highest is the number of negative eigenvalues falling into the negative spectrum. This abundance
of negative eigenvalues can be limited if we restrict the variability of θ into the interval

[

π
2 , 2.1708

)

; in this range
Coleman arguments can be applied. However the proliferation of negative modes in the nearly extremal SdS metric is a
consequence of the approximated potential of the eigenvalue equation. Indeed by using nearly degenerate coordinates
like those in Eq.(100), only one negative eigenvalue appears. It is interesting to observe that the appearance of a
negative mode, even for the SdS metric, can be related with the production of a sub-maximal black hole pair [32].
What is interesting to observe is the existence of a critical radius ρc below which the instability disappears. This
could open the possibility of an existing foam-like space composed by copies of bubbles in analogy with the model
discussed in Ref. [33]. Even in this case, a dependence of the ultraviolet cut-off is present. This is principally due to
the non renormalizability of quantum gravity. However, the fact that the same divergent behaviour appears also in
this case it is a signal of a more general situation typically concerning the spherically symmetric metrics, that is every
spherically symmetric metric describing a wormhole (black hole) can produce in the spectrum of quantum fluctuations
in a semiclassical approximation one negative mode, provided the boundary conditions be energy conserving.
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APPENDIX A: KRUSKAL-SZEKERES COORDINATES FOR SDS SPACETIME

We have defined the SdS line element in Eq.(7). To introduce the Kruskal-Szekeres [34–36] type coordinates we
consider the following transformation

ds2 = −
(

1− 2MG

r
− r2

b2

)

[

dt2 − dr∗2
]

+ r2dΩ2

= −
(

1− 2MG

r
− r2

b2

)

dvdu + r2 (u, v)dΩ2, (A1)

where v = t + r∗ is the ingoing radial null coordinate and u = t − r∗ is the outgoing radial null coordinate. The
“tortoise coordinate” r∗ is defined by

dr∗ = − rb2dr

(r − r+) (r − r++) (r + r+ + r++)
(A2)

and by means of the surface gravity associated to each root, we write

1

f
=

1

2κ+ (r − r+)
+

1

2κ++ (r − r++)
+

1

2κ− (r + r+ + r++)
, (A3)

where f (r) has been defined by Eq.(8), while κ++ and κ+ by Eq.(78) and Eq.(63), respectively. The last surface
gravity associated with the negative root is

κ− =
(2r+ + r++) (2r++ + r+)

2b2 (r+ + r++)
. (A4)

Thus

r∗ =
1

2κ+
ln

∣

∣

∣

∣

r

r+
− 1

∣

∣

∣

∣

+
1

2κ++
ln

∣

∣

∣

∣

r

r++
− 1

∣

∣

∣

∣

+
1

2κ−
ln

(

r

r+ + r++
+ 1

)

(A5)

To avoid singularities we can define Kruskal-Szekeres type coordinates

V ++ = expκ++v U++ = − exp−κ++u. (A6)
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These coordinates do not cover r ≤ r+ because of the coordinate singularity at r = r+ (and U++V ++ is complex for
r ≤ r+), but r = r+ and a similar four regions are covered by the (U+, V +) Kruskal-Szekeres-type coordinates to this
case.

V + = expκ+v U+ = − exp−κ+u. (A7)

For the ++ sign we have

U++V ++ = − exp (κ++ (v − u)) = − exp (2κ++r
∗) = −

(

r

r+
− 1

)

κ++

κ+

(

r

r+ + r++
+ 1

)

κ++

κ−

(

r

r++
− 1

)

(A8)

and the respective line element is

ds2++ = − (r+ + r++) r+r++

b2κ2
++r

(

r

r+ + r++
+ 1

)1−κ++

κ−

(

r

r+
− 1

)1−κ++

κ+

dU++dV ++ + r2
(

U++, V ++
)

dΩ2

= −2MG

κ2
++r

(

r

r+ + r++
+ 1

)1−κ++

κ−

(

r

r+
− 1

)1−κ++

κ+

dU++dV ++ + r2
(

U++, V ++
)

dΩ2, (A9)

while for the + sign we have

U+V + = − exp (κ+ (v − u)) = − exp (2κ+r
∗) = − (r − r+) (r + r+ + r++)

κ+

κ− (r++ − r)
κ+

κ++ (A10)

and the associated line element is

ds2+ = − (r+ + r++) r+r++

b2κ2
+r

(

r

r+ + r++
+ 1

)1−κ+

κ−

(

1− r

r++

)1− κ+

κ++

dU+dV + + r2
(

U+, V +
)

dΩ2

= −2MG

κ2
+r

(

r

r+ + r++
+ 1

)1−κ+

κ−

(

1− r

r++

)1− κ+

κ++

dU+dV + + r2
(

U+, V +
)

dΩ2. (A11)

The conformal Penrose diagram of the SdS space is shown in Fig.4. Regions limited by r+ < r < r++ lie between
the black hole and cosmological horizon. Regions r > r++ correspond to an asymptotic de Sitter region and region
r+ > r to the black hole interior.

FIG. 4. Penrose diagram for the Schwarzschild-de Sitter spacetime.
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