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Abstract: Illicit drug production in clandestine laboratories involves the use of large quantities of

different chemicals that can be obtained for legitimate purposes. The identification of these chemicals,

including reagents, catalyzers and solvents, is crucial for forensic investigations. From a legal point

of view, a drug precursor is a material that is specific and critical to the production of a finished

chemical and that constitutes a significant portion of the final molecular structure of the drug. In this

study, a gas chromatography quartz-enhanced photoacoustic spectroscopy (GC-QEPAS) sensor—in

conjunction with a deep learning model—was evaluated for its effectiveness in the detection and

identification of interesting compounds for the production of amphetamine, methamphetamine,

3,4-methylenedioxymethamphetamine (MDMA), phenylcyclohexyl piperidine (PCP), and cocaine.

The GC-QEPAS sensor includes a gas sampler, a fast GC for separation, and a QEPAS detector, which

excites molecules exiting the GC column using a quantum cascade laser to provide the infra-red

(IR) spectrum. The on-site capability of the GC-QEPAS system offers significant advantages over

the current instruments employed in this field, including rapid analysis, which is crucial in field

operations. This allows law enforcement to quickly identify specimens of interest on site. The

system’s performance was validated by taking into account the limit of detection, repeatability, and

within-laboratory reproducibility. The results showed excellent repeatability and reproducibility for

both the GC and QEPAS modules. The deep learning model, a multilayer perceptron neural network,

was trained using IR spectra and retention times, achieving very high classification accuracy in the

testing conditions. This study demonstrated the efficacy of the GC-QEPAS sensor combined with a

deep learning model for the reliable identification of drug precursors, providing a robust tool for law

enforcement during criminal investigations in clandestine laboratories.

Keywords: machine learning; drug precursor; analytical instrument; gas chromatography; quartz-

enhanced photoacoustic spectroscopy

1. Introduction

A major source of illicit drugs today is the clandestine laboratory, where substances
such as 3,4-Methylenedioxymethamphetamine (MDMA), phenylcyclohexyl piperidine
(PCP), and methamphetamine are manufactured. Many processes can be used to man-
ufacture controlled substances, depending on the desired end product and the starting
materials. Most of the chemicals used in the manufacture of drugs have legitimate uses and
can be obtained without restrictions through chemical suppliers, supermarkets, and shops.
The key to criminal investigations in clandestine laboratories is recognizing combinations of
chemicals that can occur in controlled substances. The three main types of chemicals used
in the manufacturing of controlled substances are reagents, catalyzers, and solvents [1,2].
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Reagents are chemicals used to induce a reaction, typically involving one of the
precursors. They contribute only a small portion of the end product. Solvents are liquids
used to solubilize reagents and are used as carriers during a reaction. They are also used to
purify end products [3]. The United Nations Office on Drugs and Crime refers to precursors
as materials specific and critical to the production of a finished chemical, representing
a significant portion of the final molecular structure of the drug [4]. According to the
EU precursors COUNCIL REGULATION (EC) No 111/2005, precursors are “scheduled”
(controlled) and are divided into several categories: category 1 covers the most sensitive
substances from which illicit drugs can be produced most easily; category 2 covers less
sensitive substances; and category 3 covers bulk chemicals that can have different types of
uses in the manufacturing process (e.g., feedstock, solvents, impurity removers, etc.) [5].

Clandestine laboratory investigation is one of the most dangerous tasks undertaken
by law enforcement due to the presence of hazardous chemical compounds [2]. A “bomb
factory” cannot be immediately distinguished from a clandestine laboratory preparing
drugs of abuse, despite the presence in the scientific literature of analytical approaches to
spot bomb factories [6–10].

Many portable devices have been developed to mitigate the danger of crime scene
investigations in clandestine laboratories. These instruments not only assist in uncov-
ering illicit drug laboratories and chemical waste dumps but also enable the detection
and identification of volatile organic compounds (VOCs), which safeguards the health of
operators [11]. Deena et al. [12] developed a colorimetric sensor that uses machine learning
to detect drugs and their precursors. Montiel et al. [13] demonstrated the effectiveness of
an electrochemical method based on the electrochemical fingerprint of amphetamine-type
stimulant precursors by employing a derivatization approach that enabled the electroox-
idation of benzyl methyl ketone (BMK). Wen et al. [14] developed a portable embedded
drug precursor gas detection device based on a cataluminescence-based sensor array that
involved a chemometric approach to analyzing drug precursor patterns. Colling et al. [15]
investigated the efficiency and effectiveness of a microfluidic gas-to-liquid interface for the
extraction of target amphetamines and their precursors from air samples.

This study shows that a gas chromatography quartz-enhanced photoacoustic spec-
troscopy (GC-QEPAS) sensor combined with deep learning is effective in the detection
and identification of common drug precursors, reagents, and solvents used in illicit drug
production. Although this is not the first time that a QEPAS-based sensor has been used to
analyze precursors of drugs of abuse, this is the first time that a QEPAS approach based
on artificial neural networks (ANNs) specifically developed for on-site use of the sensor
during criminal investigations in clandestine laboratories has been used [16].

ANNs are at the core of deep learning, as they are versatile, powerful, and scalable,
making them well suited for carrying out large and highly complex tasks [17]. ANNs are
computing systems whose structure is inspired by biological neural networks. Generally,
they consist of many simple processors linked by weighted connections. By analogy,
the processing nodes can be called neurons. The power of the system emerges from the
appropriate combination of many units [18].

Typically, an ANN consists of three main components: the input layer, which receives
data; the hidden layers, which are responsible for recognizing patterns associated with the
analyzed process or system; and the output layer, which comprises neurons that generate
the final outputs derived from prior layer processing. Among the ANN architectures, the
multilayer perceptron (MLP) is the most prevalent. It has a multilayer feedforward design
in which information flows unidirectionally from the input layers to the output layers
(Figure 1). MLP was chosen for this study because its classification efficiency has been
proven to be effective and reliable in many fields [19–22].
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Figure 1. Multilayer perceptron scheme.

Indeed, MLP is expected to provide better results than traditional methods that rely
on comparing retention times and infrared (IR) spectra with databases. The conventional
approach, which involves comparing IR spectra to reference spectra in databases, typically
relies on similarity metrics such as the correlation coefficient and often struggles to deal
with the variability introduced by different experimental conditions. By contrast, as a neural
network, MLP can automatically learn and extract features from the training experimental
dataset. This capability allows the MLP to build a robust model, taking into account the
variability in spectra due to different sample matrices, sample concentrations, noise, and
other experimental conditions. By learning from the data itself, the MLP method builds
a more adaptable and reliable model. The robustness of the MLP model is particularly
advantageous in real-world scenarios, such as monitoring clandestine laboratories in which
experimental conditions can vary significantly. Traditional database comparison methods
may struggle in these scenarios because they cannot handle the complexity and variability
of real data [23].

2. Materials and Methods

In this study, six chemicals used for the production of illicit drugs were analyzed:
safrole (category 1-EU regulation, CAS 94-59-7), piperidine (category 1-EU regulation,
CAS 110-89-4), BMK (category 1-EU regulation, CAS 103-79-7), methyl ethyl ketone (MEK;
category 3-EU regulation, CAS 78-93-3), acetone (category 3-EU regulation, CAS 67-64-1),
toluene (category 3-EU regulation, CAS 108-88-3), and benzaldehyde (CAS 100-52-7). All
the target analytes were purchased from Monforte Lab Suppliers (Grassobbio, Italy).

Benzaldehyde and MEK are involved in the synthesis of methamphetamine through
the Baeyer–Villinger reaction [24]. BMK, or 1-phenyl-2-propanone, is the precursor most
commonly used for amphetamine and methamphetamine synthesis [25]. Four principal
precursors—safrole, isosafrole, piperonal, and 3,4-methylenedioxyphenyl-2-propanone
(PMK)—are typically used in the illicit manufacture of MDMA and related drugs. Moreover,
safrole is the key starting material, as the other three precursors can be synthesized from
it [26]. Piperidine is a common component in the production of the hallucinogen PCP
(“angel dust”) [27]. Acetone and toluene are extensively employed as solvents in various
illicit drug production processes, including cocaine purification. MEK is also used as a
solvent in cocaine production [28].

To achieve a precise concentration of the target analytes in air, a 60 L glass chamber
was connected to the sensor sampler via a plastic tube. The samples were introduced
into the chamber by puncturing a porous septum located on the tap of the box using a
10 µL syringe (Eppendorf, Hamburg, Germany). Below the septum, a heated crucible was
installed to facilitate sample evaporation within seconds. To prevent sample decomposition,
the temperature of the hot crucible was carefully controlled, maintaining a sufficiently high
level to enhance analyte vaporization without causing thermal degradation. The average
temperature used was around 40 ◦C. Additionally, the results obtained with the hot crucible
were compared to those from analyses conducted without it, focusing on both retention
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time and the shape of the IR curve, to ensure no sample degradation occurred. Pearson’s
correlation coefficient was used to compare the IR curves. As a result, a well-defined
concentration of analytes was achieved within the chamber.

Analyses were carried out by introducing more than one compound into the chamber
in order to reproduce a more realistic scenario in which more target compounds are
expected to be present.

Multivariate data analysis was performed using Python code within a Jupyter Note-
book environment running on an Apple Mac Mini equipped with an 8-core CPU, a 10-core
GPU, and 8 GB of unified memory. The following packages were used in the modules:
NumPy [29], Pandas [30], Matplot Library [31], Plotly [32], and Scikit-Learn [33].

2.1. Instrument

This article examines the effectiveness of a GC-QEPAS sensor (Consorzio CREO, Italy)
in detecting and identifying illicit drug precursors [16]. The sensor comprises three main
components:

• a gas sampler and pre-concentrator designed to deal with large air volumes (a compact
purge and trap device based on commercial sorbent tubes from Markes International
Ltd. that can sample approximately 1 L of air and transfer pre-concentrated vapors to
the FAST-GC separation module in less than 3 min).

• a fast GC (CNR-IMM, Bologna, Italy) [34] consisting of one micro-electro-mechanical
system (MEMS) for preconcentration and injection and one MEMS GC column for
separation integrated on a silicon micro-machined chip.

• a QEPAS detector that measures the photoacoustic spectra of the analytes eluted
by the fast GC and that incorporates a quantum cascade laser source (MiniQCL,
Block Engineering, Southborough, MA, USA) capable of continuously scanning
the thermal IR spectrum within wavelengths ranging from 7.4 µm to 10.7 µm for
spectroscopic analysis.

Additionally, the sensor is equipped with a mini-PC controller to manage all the
sensing chains automatically and run spectral analysis algorithms for identification. The
GC-QEPAS sensor was used with the settings shown in Table 1. The sensor parameters
used in this article were already optimized in [16].

Table 1. GC-QEPAS sensor settings.

Pre-Concentrator Stage

Sampling time 10–60 s

Sampling flow 800–1000 mL/min

Release temperature 200–290 ◦C

GC settings

Initial temperature 60–80 ◦C

Hold time 5–30 s

Ramp rate 120–140 ◦C/min

Max temperature 240–270 ◦C

Hold time 1–2 min

QEPAS settings

QTF cell temperature 80–120 ◦C

Laser wavelength scan 8–10 µm

Laser modulation 32,760–32,768 Hz

Laser pulse width 200 ns
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2.2. Validation

The analytical method underwent a validation process following the European Net-
work of Forensic Science Institute guidelines for the analysis of illicit drugs and the Com-
mission Implementing Regulation (EU) 2021/808 based on a validation plan for qualitative
methods [35,36]. For the qualitative method developed in this study, the following vali-
dation parameters were taken into account: limit of detection (LOD), repeatability, and
within-laboratory reproducibility.

LOD values were experimentally estimated by considering three times the signal-to-
noise ratio of the recorded chromatographs.

Repeatability was calculated both for the chromatographic outputs (retention time),
using the standard deviation and the coefficient of variation (CV%) of the retention time,
and the IR spectrum, considering the position of the maximum value in the spectrum.
Repeatability was calculated based on at least six replicates of the analysis of each target
analyte performed on the same day and under the same experimental conditions.

Within-laboratory reproducibility was determined for both the chromatographic re-
sults (retention time, tR) and the IR spectra. The standard deviation and CV% of the
retention times were evaluated to assess the chromatographic outputs. Regarding the IR
spectra, the position of the maximum of the spectra was evaluated using the standard
deviation and CV%. Reproducibility was calculated based on a minimum of 18 analysis
replicates for each target analyte. Replicates were spread across at least three different days,
with six replicates carried out per day by varying operators, reagent and solvent batches,
room temperature, and ambient moisture levels.

3. Results and Discussion

The validation parameters were computed separately for both the GC and QEPAS
modules to ensure the reliability of the data obtained from each component of the sensor
system. This separation ensures that each module’s performance can be individually
assessed and optimized. Table 2 shows the LOD and repeatability of the GC outputs.

Table 2. Limit of detection and repeatability of the GC outputs.

Analyte Average tR (s)
SD tR (s)—
Repeatability

CV% tR—
Repeatability

LOD
(ppm)

Acetone 65.36 0.97 1.5 0.96

Methyl ethyl ketone 75.40 1.3 1.7 2.4

Toluene 83.15 0.81 0.98 0.066

Piperidine 84.54 1.0 1.2 0.68

Benzaldehyde 132.1 1.4 1.1 0.0026

Benzyl methyl ketone 179.7 2.2 1.2 0.12

Safrole 182.6 1.2 0.65 0.24

Benzaldehyde had the lowest LOD among the target analytes (estimated at 0.0026 ppm).
Repeatability and within-laboratory reproducibility of the GC module were assessed based
on the CV% of retention times. The CV% of retention times was below 2% for all analytes
on the same day (repeatability). Within-laboratory reproducibility showed slightly higher
CV% values, with acetone nearing 3% and toluene at 2.24%, but remained acceptable for
reliable analytical performance. Notably, for all other analytes, a CV% lower than 2% was
obtained for this parameter. The results indicate that variations in experimental conditions
had a minimal impact on retention times (Table 3).
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Table 3. Within-laboratory reproducibility of the GC outputs.

Target Analyte Mean Retention Time (s) SD (s) CV%

Acetone 62.96 1.9 3.1

Methyl ethyl ketone 74.68 1.4 1.9

Toluene 83.69 1.9 2.2

Piperidine 85.32 1.5 1.8

Benzaldehyde 134.3 2.1 1.6

Benzyl methyl ketone 179.3 1.9 1.0

Safrole 184.9 2.1 1.1

To validate the QEPAS module, the position of the maximum of the spectra was taken
into account. The CV% for repeatability was consistently below 0.5% for all analytes.
Notably, for three analytes (acetone, BMK, and safrole), there were no variations among
the IR spectra (recorded at 0.00%, rounded to two decimal places) (Table 4). Similar results
were obtained for within-laboratory reproducibility. The CV% for all analytes remained
below 0.5% (Table 5).

Table 4. Repeatability of QEPAS spectra.

Target Analyte
Average Peak Position

(Maximum of the Spectrum) (µm)
SD (mm) CV%

Acetone 8.18 0.00 0.0

Methyl ethyl ketone 8.48 0.10 0.12

Toluene 9.66 0.048 0.49

Piperidine 8.93 0.0045 0.050

Benzaldehyde 8.26 0.0067 0.081

Benzyl methyl ketone 8.14 0.00 0.00

Safrole 9.48 0.00 0.00

Table 5. Within-laboratory reproducibility of QEPAS spectra.

Target Analyte
Average Peak Position

(Maximum of the Spectrum) (µm)
SD (mm) CV%

Acetone 8.18 0.0043 0.053

Methyl ethyl ketone 8.49 0.030 0.35

Toluene 9.63 0.042 0.44

Piperidine 8.92 0.0071 0.079

Benzaldehyde 8.26 0.0066 0.080

Benzyl methyl ketone 8.14 0.0065 0.080

Safrole 9.48 0.0078 0.082

The comprehensive validation procedure underscores the excellent repeatability and
reproducibility of the analytical results achieved by both the GC and QEPAS systems. The
retention times of various targets have been shown to be repeatable and reproducible. Vari-
ations in operators and experimental conditions had minimal impacts on the final results.

A similar validation protocol was applied to the QEPAS module to ensure the relia-
bility of its outputs. The CV% for each target analyte confirms the good results of both
repeatability and within-laboratory reproducibility. Therefore, the analytical method is
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effective for its intended purpose and can be confidently used to investigate clandestine
laboratories that produce illicit drugs.

Classification via Deep Learning

The IR spectra obtained from the QEPAS module underwent standard normal variate
pre-processing, which involved centering and scaling each spectrum based on its standard
deviation to mitigate scattering effects [37]. The MLP ANN was then trained using three
different inputs. First, only the pre-processed IR spectra were used. Second, the model
was trained using both outputs from the sensor: retention times and IR spectra. Finally,
principal component analysis (PCA) was used to reduce the dimensionality of the training
set, which comprised retention times and IR spectra, resulting in new variables called
principal components (PCs). These components were also used to train the MLP model.

The MLPs in this study offer an accurate and robust classification approach by con-
sidering the inherent variability and complex patterns within the data. Moreover, MLP
was shown to be an effective choice for investigating clandestine laboratories where the
experimental conditions vary significantly, thereby making them particularly suitable for
real forensic scenarios.

The MLP models were tuned for the three input approaches using two hidden layers,
each containing one hundred neurons. Moreover, two different solvers were tested: lbfgs,
which is typically used for small datasets, and adam, which is useful for large datasets
(i.e., with thousands of training samples or more) [33]. Six different model configurations
were evaluated. As a result, six different model configurations were evaluated, considering
the following combinations of inputs and solvers: (1) IR spectra using adam solver; (2) IR
spectra using lbfgs solver; (3) IR spectra coupled with the corresponding retention times
using adam solver; (4) R spectra coupled with the corresponding retention times using
lbfgs solver; (5) PCs based on IR spectra and retention times using adam solver; and (6) PCs
based on IR spectra and retention times using lbfgs solver.

The parameters for the estimator, using both the lbfgs and adam solvers, were obtained
with the “model.get_params” function. The details are shown in Table 6.

Table 6. Parameters for MLP model using lbfgs and adam solver.

Parameters Value

Activation Relu

Batch_size Auto

Beta_1 0.9

Beta_2 0.999

Epsilon 1 × 108

Hidden_layers_size 100

Learning_rate Constant

Max_fun 15,000

Max_iter 200

Power_t 0.5

Random_state None

Verbose False

The models’ accuracy was assessed to identify the most effective strategy for classify-
ing the GC-QEPAS data. Leave-p-out cross-validation (LPO; class sklearn.model_selection.
LeavePOut(p)) was selected as the primary method for evaluating the models’ performance.
LPO randomly splits the original dataset into a training set, which is used to set up the
model, and an evaluation set, which is used to assess its performance [38]. In this study,
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70% of the dataset was used as the training set, and the remaining 30% was used as the
evaluation set. Table 7 shows the accuracy of the models.

Table 7. Model accuracy with three different types of input.

Input Data Model Accuracy

Solver: adam Solver: lbfgs

IR spectra 100% 100%

IR spectra and tR 100% 100%

PCs based on IR spectra and tR 100% 93%

The models trained using only IR spectra and those trained using a combination of IR
spectra and retention times demonstrated identical performance, achieving a final accuracy
of 100% with no misclassifications. This consistent accuracy across different inputs indicates
the robustness of the MLP models. Overfitting was considered unlikely, as the models were
validated using an independent evaluation set comprising a different range of samples
from those used in the training set.

Furthermore, the model trained with PCA scores achieved 100% accuracy when using
the adam solver but exhibited lower accuracy when using the lbfgs solver, where BMK
was completely misclassified as safrole. This significant misclassification suggests that the
use of PCA scores with the lbfgs solver may not be suitable for real-world applications.
Therefore, the approach using PCA scores with the lbfgs solver is not recommended for
practical scenarios. The high accuracy achieved with the adam solver should be considered
reliable only when the concentration of the target compounds is well above the LoD. Near
the LoD, the accuracy of the deep learning models is expected to decrease. The lowest
concentration of target analytes used for training the deep learning models in this study
was greater than one unit of measurement above the LoD. This approach was deemed
reliable because the concentration of chemicals in a clandestine laboratory is expected to be
higher than LoD because criminals use pure compounds to obtain high yields of products.

Additionally, the time taken to train the models and make predictions using the evalu-
ation set was calculated to evaluate the efficiency of each solver and input configuration.
The fastest solver for training the model was lbfgs when using the principal components
derived from the IR spectra and retention time as input. However, for prediction speed, this
model configuration was the second fastest. For prediction, the adam solver demonstrated
the quickest performance when using the IR spectra as input data. This highlights the adam
solver’s effectiveness in scenarios where rapid predictions are crucial, despite its slightly
slower training time compared to the lbfgs solver. Table 8 provides a detailed comparison
of the training and prediction times for different input data and solver combinations.

Table 8. Time taken to train the models and make predictions.

Training Time

Input data Solver: adam Solver: lbfgs

IR spectra 0.386 s 0.445 s

IR spectra and tR 0.0567 s 0.0331 s

PCs based on IR spectra and tR 0.0600 s 0.0207 s

Prediction Time

Input data Solver: adam Solver: lbfgs

IR spectra 0.0004 s 0.0248 s

IR spectra and tR 0.0009 s 0.011 s

PCs based on IR spectra and tR 0.032 s 0.0007 s
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In summary, while the MLP models trained with either IR spectra alone or in combi-
nation with retention times showed excellent accuracy and robustness, the performance of
the PCA-based approach varied significantly depending on which solver was used. These
findings highlight the importance of selecting appropriate pre-processing techniques and
solvers to ensure the accurate classification of GC-QEPAS data.

4. Conclusions

This study demonstrated the effectiveness of the GC-QEPAS sensor combined with the
MLP deep learning model in the on-site detection and identification of chemicals associated
with illicit drug production. MLP based on IR spectra and spectra plus retention times
was shown to be a better classification method than using PCA scores to train the models.
MLP can automatically learn and extract relevant features from the experimental data,
dealing with the inherent variability and complexity of real-world scenarios. This capability
ensures high accuracy and robustness across a wide range of experimental conditions.
The MLP can handle different sample matrices, concentrations, and noise levels, making
it more reliable for use in environments such as clandestine laboratories, where many
conditions are unpredictable. The integration of the MLP with the GC-QEPAS sensor not
only enhanced its detection capabilities but also ensured that the system remained effective
and accurate across a wide range of scenarios. This robustness demonstrated the suitability
of the MLP approach for on-site forensic applications, highlighting its potential for broader
implementation in detecting and identifying chemical substances under various conditions.

The GC-QEPAS sensor ensured accurate and efficient on-site analysis of various
drug precursors, reagents, and solvents involved in the production of street samples
of amphetamine, methamphetamine, MDMA, PCP, and cocaine. The validation results
highlight the sensor’s high sensitivity, repeatability, and reproducibility, showing a low
LOD and robust performance across different experimental conditions. The MLP models
trained using the IR spectra alone or in combination with retention times proved to be highly
effective in classifying the chemicals, achieving nearly 100% accuracy in the experimental
conditions adopted to simulate the forensic scenario of a clandestine drug laboratory.

The comprehensive validation and successful application of the GC-QEPAS sensor
highlight its potential as a powerful tool that law enforcement agencies can use in crime
scene examinations of clandestine drug laboratories. By facilitating the detection and
identification of critical chemicals on site, this approach can enhance the capabilities of
investigators and provide them with timely information that can increase the safety and
efficacy of police investigations of illegal drug-related cases.
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