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Abstract

The use of new sources of big data collected at a high-frequency
rate in conjunction with administrative data is critical to developing
indicators of the exposure to risks of small urban areas. Correctly
accounting for the crowding of people and for their movements is cru-
cial to mitigate the effect of natural disasters, while guaranteeing the
quality of life in a “smart city” approach. We use two different types
of mobile phone data to estimate people crowding and traffic inten-
sity. We analyze the temporal dynamics of crowding and traffic using
a Model-Based Functional Cluster Analysis, and their spatial dynam-
ics using the T-mode Principal Component Analysis. Then, we propose
five indicators useful for risk management in small urban areas: two
composite indicators based on cutting-edge mobile phone dynamic data
and three indicators based on open-source street map static data. A
case study for the flood-prone area of the Mandolossa (the western
outskirts of the city of Brescia, Italy) is presented. We present a multi-
dimensional description of the territory based on the proposed indicators
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at the level of small areas defined by the Italian National Statisti-
cal Institute as “Sezioni di Censimento” and “Aree di Censimento”.

Keywords: Minimization of Drive Test Data, T-mode Principal Component
Analysis, Crowding Indicator, Traffic Indicator.

1 Introduction

Risk is generally considered as a function of hazard, vulnerability, and expo-
sure [1]. Among these components, exposure represents the people and the
tangible human assets located in hazard-prone areas. If the number of people
in a certain area increases, the risk increases accordingly. Correctly quantify-
ing the exposure is, therefore, crucial to understand the risk associated with
natural (e.g., floods and earthquakes [2]) or non-natural disasters (e.g., car
accidents [3], bridge closure [4]) in urban areas. To this aim, information on
people crowding, the traffic they generate, and the road network (whose struc-
ture shapes the dynamic of traffic) at a high level of disaggregation (i.e., at
“small area” level [5]) are needed.

According to the Italian National Institute of STATistics (ISTAT), the
highest level of disaggregation is represented by the “Sezione di CEnsimento”
(SCE), that roughly corresponds to a portion of a municipality. Some use-
ful information about the geography and demography of the SCEs is freely
available on the ISTAT website, such as the surface area and the number of
residents according to the last census. However, the sole use of such static infor-
mation does not allow producing dynamic maps of risk exposure as proposed
by Balistrocchi et al. [6] or by Kong et al. [7] in the context of floods studies.

Some risk indicators for small areas can be found in the literature. For
example, Lin & Shen [8] and Saghapour et al. [9] develop composite indica-
tors in support of preparedness for pandemic diseases spreads; Wang et al. [10]
presents ecological indicators for correctly measuring health in small areas.
Nowadays, modern sources of mobile phone data are increasingly combined
with satellite and sensor technologies (e.g., [11]) with the aim of producing
dynamic information related to the density of people’s presences and move-
ments. This approach allows investigating issues of great relevance, such as
the monitoring of the impact of social and cultural events [12], the variability
in the distribution of presences in the neighborhoods of a large city [13], the
seasonality of the second homes in a tourist area [14], the increase of remote
working in sparsely populated areas [15] or forecasting traffic in flooding risk
areas to support data-driven decision-making [16].

In this paper, we characterize SCEs in terms of the crowding of people (i.e.,
“city users” according to the definition by Metulini & Carpita [17]) and the
dynamic of traffic in different times of the day and on the characteristics of
the road network. We combine different kinds of geo-referenced sources of data
and construct two composite indicators and three simple indicators of risk: a
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“Crowding Indicator” (that we call CRO), a “Traffic Indicator” (that we call
TRA), the portion of territory occupied by the road network (that we call
STR), the vehicular traffic area dedicated to roadways (that we call ROA),
and the portion of the street area occupied by the urban and local roads (that
we call ULR).

The case study presented in this work relates to the Mandolossa region,
a flood-prone area on the western outskirt of Brescia (Italy). This choice is
motivated by our interest in proposing statistical approaches for mapping the
exposure in flood-prone areas for the MoSoRe@UniBS Project.

In previous works of ours (e.g., [6] and [17]), we used mobile phone data of
people crowding to construct maps of flood exposure. This paper extends the
work in Metulini & Carpita [17] by combining a crowding indicator based on
city users with traffic indicators constructed using a mixture of two types of
mobile phone data and administrative data coming from different sources. In
particular, two sources of georeferenced mobile phone data are used to estimate
crowding and traffic: the Mobile Phone Density (MPD) data, that were also
used in the previous work, and the recently released Minimization Drive Test
(MDT) technology data [18]. The two sets of data present different desirable
characteristics. The former represents users subscribed to the Telecom Italia
Mobile (TIM) company in a squared pixel of 150 meters per side in a 15-
minutes time interval. This type of data well captures the crowding of people
in small areas and, since available for several years, has been used in various
statistical applications in the literature in the last decade (see Section 3.1
for a review). A disadvantage in using this kind of data is that just users
from a single company (TIM) are counted, disregarding users of other phone
companies. We solve this issue by following the approach in Metulini and
Carpita [17] and use the MPD data to define a crowding indicator.

The other type of mobile phone data is very recently released, and, to our
knowledge, it has not yet been used in any field other than network engi-
neering, where its use is related to, e.g., smart traffic load maintenance of
the network [19]. The MDT data strongly outperforms the MPD in terms of
georeferencing. Indeed, the MDT technology captures signals from devices sub-
scribed to TIM and connected to the mobile phone network in a 15-minute time
interval with very high accuracy. Similarly to the MPD data, the MDT data
are reported on a pixel grid, but the pixels measure 10 meters per side. Both
the MPD and MDT data sets represent a spatiotemporal variable observed on
a regular pixel grid at subsequent times. However, as we will discuss in more
detail in Section 3, the two types of mobile phone data present very differ-
ent characteristics. MPD data typically offer a detailed representation of the
temporal dimension of crowding in (small) areas at a lower geographic resolu-
tion. By contrast, being their data collection expensive and time-consuming,
MDT data are typically available for short periods of time, but provide a more
detailed representation of the spatial dimension. Regarding the MPD data,
the data provider recommends considering small aggregations of 2 or 3 pixels,
which are quite large. More precisely, a pixel of the MPD grid coincides with
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the smallest SCEs in the city of Brescia. For this reason, we decided to aggre-
gate the MPD and MDT data in such a way as to represent crowding and
traffic in the SCEs. This choice is particularly useful for local administrations
because it allows the indicators to be compared with other relevant official
statistics published by ISTAT. Furthermore, this choice allows for preserving
the small level of geographical detail in the representation of the analyzed
phenomena, being the SCE the smallest “nomenclature of territorial units for
statistics” in Italy.

In this work, we exploit the different characteristics of the two datasets
to analyze two distinct phenomena. Specifically, we use the MPD data to
study the crowding and the MDT data to capture the traffic on the roads in
a selection of SCEs in the Province of Brescia. In particular, we propose an
innovative approach for constructing traffic indicators in small areas. Indeed,
the MDT data allows us to estimate the traffic intensity by identifying the
devices that are located on the streets. To this aim, the MDT data has been
compared to a street map in such a way as to distinguish the signals that
originated on the streets and those that did not. For this scope, an accurate
street map representing the width of the roadway is needed to identify the cells
of the grid that correspond to streets. While retrieving the width of the roads,
we realized that available street maps from open-source administrative data
are not complete (i.e., some streets are missing). We, therefore, constructed
a new comprehensive street map by merging the available ones. This step
represents a further contribution of our work to the literature.

We obtain two composite (synthetic) indicators of the exposure of the
SCEs, CRO and TRA, that respectively represent the dynamics in the crowd-
ing of people and in the traffic. By applying a model-based functional data
clustering to the two sets of data we show the presence of different temporal
dynamics among SCEs. This evidence motivates us to use a T-mode Principal
Component Analysis (PCA) [20] to capture the spatiotemporal patterns in the
data. In addition, we define three simple indicators of the static characteristics
of the viability of the SCEs - STR, ROA, and ULR - based on the informa-
tion from the official street maps. We use the five indicators to characterize the
exposure of the Mandolossa flood-prone area as well as its complexity, which
we express as the variability in the composite indicators among the SCEs of
the same municipality (or “Aree di CEnsimento”, ACE, according to ISTAT).

The paper organizes as follows: Section 2 discusses the available street
maps, shows the construction of the new street map, and defines the indicators
STR, ROA, and ULR. Section 3 describes the mobile phone data. In partic-
ular, Section 3.1 is dedicated to the MPD data and Section 3.2 to the MDT
data, while Section 3.3 discusses the data harmonization process. Section 4
investigates the database by means of model-based functional data cluster-
ing. Section 5 illustrates the T-mode PCAs and defines the indicators CRO
and TRA. Section 6 presents and discusses results in the flood-prone area of
Mandolossa. Section 7 concludes the paper.
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2 The street map construction and indicators

The MDT data was used to estimate the traffic since, as we will discuss in detail
in subsection 3.2, it captures signals produced by a subset of electronic devices
and assigns them to georeferenced cells of a pixel grid with good accuracy. To
identify the MDT signals coming from the streets, the pixel grid should be
compared with a proper map of the road network. In this Section, we present
the construction of the street map, which is a necessary preliminary step for
our analysis. Moreover, some data from the street maps are extracted and
three variables that represent the main characteristics of the road network in
the SCEs are defined. The following analysis and computations were carried
out by means of the R software. In particular, we referred to the packages
raster, rgdal, rgeos, and sp for geographic data analysis and modeling. The
mapview package was used to produce the presented maps.

Several street maps are currently available, and two types can be distin-
guished: maps that represent streets as lines (e.g., OpenStreetMap) and those
that represent them as polygons. Only the second type is suitable for the pur-
pose of our analyses because it represents the width of the roadway and allows
us to identify the phone signals that come from streets.

Two street maps with polygon data are available for the area under analy-
sis: the “DataBase Topografico Regionale” (DBTR) from which we extracted
the map of the Province of Brescia (last updated 2021) and the “Uso e cop-
ertura del suolo della regione Lombardia 2018” (DUSAF 6.0) released by the
Lombardy Region. Both are freely available at the “Geoportale della Lom-
bardia” website (https://www.geoportale.regione.lombardia.it). The DBTR is
defined on multiple layers, among which we selected the “vehicular traffic
area” and the “street area”. The DUSAF map divides the area into polygons
representing land use. Among those, we selected the ones corresponding to
streets.

The representation of the streets provided by both maps is rather incom-
plete. The DBTR is the main street map of the Province and offers a much
more comprehensive road network than the DUSAF map, but a few major
streets are missing (e.g., the “BreBeMi” highway). Moreover, in each of the
two selected layers, many streets interrupt abruptly, and the representation
appears patchy. The DUSAF map reports only a few major streets (e.g., high-
ways) and does not capture the road network in residential areas. As one can
notice in Figure 1, the two layers of the DBTR and the DUSAF street map
only partially overlap. However, the combination of the three (i.e., the two
layers of the DBTR and the DUSAF map) provides a detailed representation
of the area. Therefore, a new map has been created by overlaying the maps
and joining the overlapping polygons. The resulting map (shown in the right
map of Figure 1) describes a continuous network and captures the minor roads
in the residential areas as well as the fast-paced streets that link the urban
areas. Overall, the road network area in the new map is equal to 26 km2, while
the DBTR map, which is the main official street map, covers 22 km2 and the
DUSAF map captures only 9 km2.

https://www.geoportale.regione.lombardia.it
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Fig. 1: Example of comparison of the street maps in the DUSAF 6.0 and the
DBTR. The maps show the central-west area of the MDT database (latitude
45.53 N - 45.58 N and longitude 10.08095 N - 10.14 N). The left map represents
the DBTR and reports the layers of “vehicular traffic area” (blue) and “street
area” (red). The central map reports the DUSAF 6.0 map. The right map
shows the street map obtained by merging the maps in the DUSAF 6.0 and
the DBTR (green).

To describe the main characteristics of the new road network map of the
SCEs and provide important insights into the viability of these small areas,
we compute three simple indicators. Let | . | be the surface area (computed
in m2) and let N SCE polygons with index j. For each SCE j, we computed
the portion of the area occupied by the road network, which we call the STR
indicator. We defined STR as the ratio:

STRj =
| Streetsj |
| SCEj |

. (1)

The indicator ranges between 0 and 1. We found that, on average, 21% of
the area of the SCEs is occupied by the streets. However, the STR indicator
largely varies among the SCEs and takes a minimum value equal to 0.002 and
a maximum value of 0.99.

A preliminary analysis of the characteristics of the streets reported in the
DBTR led to the identification of two additional variables that particularly
characterize the SCEs’ viability: the portion of the vehicular traffic area dedi-
cated to the roadway and the portion of the street area occupied by the urban
and local roads.

The portion of the vehicular traffic area dedicated to the roadway is the
part of the road aimed at the flow of vehicles. We computed it from the DBTR
but, as previously discussed, a few major roads are not reported in the DBTR.
Therefore, information has been integrated with those in the DUSAF maps
and the missing streets have been assigned to roadways. We define, for each
SCE, the vehicular traffic area dedicated to roadways as the area of roadway
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variable mean sd cv min max skew kurt
STR 0.22 0.14 0.63 0.00 1.00 1.49 7.65
ROA 0.81 0.16 0.20 0.00 1.00 -1.50 6.28
ULR 0.91 0.24 0.26 0.00 1.00 -2.75 9.51

Table 1: Descriptive statistics of the three indicators defined on the street
maps (Eq.s 1-3). Reported values are, in order, the variable name, mean, stan-
dard deviation, coefficient of variation, minimum, maximum, skewness, and
kurtosis.

divided by the area of vehicular traffic:

ROAj =
| Roadwayj |

| vehicular trafficj |
. (2)

The indicator ranges between 0 and 1 and we found that the mean value of
ROA is 0.8, indicating that on average 80% of the vehicular traffic area of the
SCEs is dedicated to roadways.

To compute the portion of the street area occupied by the urban and local
roads, we considered the variable “technical-functional classification” in the
“street area” layer that divides the roads into 6 categories: highways, primary
roads outside urban areas, secondary roads outside urban areas, urban neigh-
borhood roads, urban freeways, and local roads. According to the data, the
variable presents some missing values in correspondence to some inhabited cen-
ters. A careful graphic inspection revealed that these polygons correspond to
urban and local roads. Therefore, the modalities representing urban and local
roads have been grouped into a new one and the missing values have been
assigned to this class. At last, data have been integrated with the DUSAF
maps and, after a graphical inspection, the roads not reported in the DBTR
have been assigned to the “highways” modality.

The street categories and their distribution among the SCEs have been
analyzed. We found that less than 6% of the SCEs have highways, 14% have
primary roads and 11% have secondary roads outside urban areas. At last, we
computed the portion of street area per each SCE j occupied by the urban
and local roads:

ULRj =
| Urban and local roadsj |

| Streetsj |
. (3)

The indicator ULR ranges between 0 and 1, with a mean equal to 0.91.
To conclude, Table 1 presents the main characteristics of the indicators

STR, ROA, and ULR.

3 Mobile phone data description and processing

Two data sets were used for the analysis: the Mobile Phone Density (MPD)
data, and the Minimization of Drive Test (MDT) data. Both datasets refer to
users subscribed to the TIM company, which is currently the largest operator
in Italy. MPD data was provided by the Municipality of Brescia in the context
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of a territorial monitoring project developed between 2014 and 2016 by its
statistical office in cooperation with the DMS StatLab (Data Methods and
Systems Statistical Laboratory) of the University of Brescia. Nowadays, the
data is also available on a dashboard released by TIM. The second dataset
has been provided by Olivetti S.p.A. (www.olivetti.com) with the support of
FasterNet S.r.l. (www.fasternet.it) for the MoSoRe Project 2020-2022. The
MDT data at our disposal refers to 2021 and is not available for previous years.
For this reason, we were forced to use data from different periods of time. We
address this aspect in Section 3.3, where we also show how the data have been
treated in order to overcome this issue. These two sources of data, as well as
mobile phone signals in general, suffer from the issue of measurement error,
as stressed by many works (see, e.g., [21]). This issue might be mitigated by
integrating different mobile phone data sources [22]. Unfortunately, the mobile
phone data used in this work, which are proprietary, are provided without the
associated measurement error. However, as discussed in the Introduction, the
data have been aggregated into SCEs in order to mitigate the measurement
error in the MPD data.

The two sets of data do not just differ in the period of observation, they
also come with different geographical resolutions. Indeed, both the data are
reported on a grid of pixels, but the pixels of the MPD grid measure 150
meters per side, while the MDT ones are 10 meters per side. To clarify, MPD
data pixels often cover the smallest SCEs, while MDT data pixels are so small
that they can be tied back to bits of roads or buildings. On the other hand,
MPD data is much easier to collect and can be provided by the telephone
operator within an hour of observing it. MDT data, by contrast, requires
longer processing times, as well as the installation and activation of particular
technologies, which must be tested on-site before data collection. This makes
the collection of MDT signals much more time-consuming and expensive and
also poses limits on the extent of the territory observed. As a result, datasets of
MDT signals typically cover much shorter time periods and smaller areas than
those of MPD data. Specifically, in our setting, the MPD database covers a
rectangular area of approximately 80 × 128 km2 containing the whole Province
of Brescia, while the MDT dataset covers a rectangular area of approximately
10.5 × 14.4 km2 within the Province of Brescia.

The following subsections discuss in detail the MPD and the MDT data.

3.1 Crowding data (MPD)

The MPD data come from mobile phone signals retrieved by TIM and have
progressively aroused the enthusiasm of the urban planners’ community [23,
24]. In our setting, MPD data are the average number of mobile phone SIMs
(both calling and not calling) that are assigned to a given cell of the pixel
grid in a specific quarter. MPD data have been used in the context of urban
planning. For example, Carpita and Simonetto [12] applied statistical methods
to analyze the presence of people during big events in the city of Brescia such as
the “1000 Miglia” car race. Zanini et al. [25] found, by means of an independent

www.olivetti.com
www.fasternet.it
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component analysis, a number of spatial components that separate the main
areas of the city of Milano. Secchi et al. [26] applied the method of Bagging
Voronoi Treelet analysis to identify sub-regions of the metropolitan area of
Milan sharing a similar pattern over time.

Our MPD database refers to the TIM mobile phone signals recorded from
April 1st, 2014 to August 11th, 2016, in a rectangular region defined by latitude
45.21 N–46.36 N and longitude 9.83 N–10.85 N (province of Brescia). Data were
aggregated into 923 × 607 squared cells, and they are available at intervals
of 15 minutes, for a total of more than 40,000 million records. For each cell
and for each time interval, the corresponding record refers to the number of
mobile phones simultaneously connected to the network in that area in that
time interval, with phones whose signals were retrieved in more than one area
attributed just to the area related to their last signal in that quarter. Data can
be seen as a spatial raster, with the grid’s color intensity expressing the number
of mobile phone signals. Data have been retrieved anonymously. Moreover, the
mobility feature of these data is hidden, in the sense that it is not possible
to trace a single person over time. It is worth saying that, for MPD data to
be reliable, the considered polygon should be at least 400 meters on each side
(i.e., 2 or 3 pixels), so, grid cells have been aggregated accordingly.

Since the object of analysis is the SCEs, which are irregular polygons,
while raw data are in the form of rectangular grids of a raster, we need an
aggregation strategy to obtain the total number of people in each polygon.
The weighted scheme adopted by Metulini & Carpita [17] is an overlapping
strategy that assigns the number of people in the raster grid to the polygon
based on the share of the overlapping area. Given the cells of the grid Cellk
with k = 1, 2, . . . ,K overlapping a specified SCE j, the ratio

Ajk =
| SCEj ∩ Cellk |

| Cellk |
(4)

represents the portion of Cellk covered by the chosen SCE j. Let MPDk be
the MPD in Cellk, the estimated MPD in SCE j is computed as

MPDj =
∑
k

MPDk ·Ajk (5)

with Ajk defined in Eq. (4). It is worth observing that, by considering MPDs
at the SCE level (Eq. 5), we mitigate the impact of the geolocalization inaccu-
racy since the average area of the considered SCEs is 164559m2. Another issue
related to this kind of data is that they refer to just one mobile phone com-
pany. Although variable rescaling does not affect the results when constructing
indicators, we follow [17] and pre-process the data to obtain an estimate of
users of other mobile phone companies as well. For a national-level analysis, a
convenient solution is represented by using the market share of TIM company
(that stands at 30.2% according to “Il Sole 24 Ore” newspaper dated Decem-
ber 2016) and applying it to raw data so to retrieve an estimation for the total
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number of people. However, for the case of small areas, Metulini & Carpita [17]
showed that TIM market share varies among national and municipality dimen-
sions because of differences in incomes and the demographic structure. For this
reason, a market ratio for Brescia should be used. The authors also show that
TIM market share does not vary among the five districts that constitute the
municipality of Brescia, which avoids the need to calculate the market share
for smaller areas. According to their strategy, based on comparing the number
of residents aged 11-80 at January 1st, 2016 from the ISTAT administrative
archive with the number of mobile phone signals in different city districts in
three different quarters of the late evening (i.e. 20:00-20:15, 21:00-21:15, 22:00-
22:15) and in 42 different weekdays between 2015 and 2016, the market share
ratio stands at about 23% in the area of Brescia. We let ETMS = 23% to be
the estimated TIM market share and, as a final step, to obtain an Adjusted
measure for MPD (AMPD) which considers all the mobile phone users (not
only the TIM users) at quarter t, we multiply MPD by the 1/ETMS according
to the following formula:

AMPDjt =
MPDjt

ETMS
(6)

3.2 Signal data (MDT)

“Minimization of Drive Test” [18, 19, 27] refers to a recent technology that cap-
tures signals produced by phone calls, text messages, internet browsing, and
technical operations (e.g., location update) of devices with a SIM associated
to the TIM company, transmitted over the 3G/4G mobile network from/to
terminal devices with GPS enabled. The methodology registers radio measure-
ments of the signals on a geo-referenced grid of pixels measuring 10 meters
on each side. MDT data have been only recently made available by TIM and,
so far, have found few applications in the engineering literature for purposes
related to the technical control of telephone networks (e.g., smart traffic load
maintenance). In this work, we propose an innovative application of the MDT
data for statistical purposes. In fact, the MDT technology allows for high accu-
racy in users’ geolocalization (i.e., 10 meters), which cannot be achieved by
other types of mobile phone data. For this reason, it is possible to identify the
devices that produce MDT signals from streets. In turn, this information can
be used to estimate traffic and construct traffic indicators.

Our database collects all the MDT signals registered on 5 different days
of the week in November 2021 in a pixel grid representing a rectangular area
of 150 km2 in the Mandolossa region. Since the detection of MDT signals
requires particular technologies to be activated, the days of the data collection
were carefully chosen. The first day - Wednesday 10 - was sampled and the
collected data were analyzed. Once assessed the adequacy of the data for the
analysis, the other 4 days of detection were chosen in such a way as to cover a
typical week: namely Friday 19, Saturday 20, Sunday 21, and Monday 22. For
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Fig. 2: MDT data pre-processing. Left: street network (orange); center: MDT
grid cells on streets (blue points); right: SCE boundaries (black).

each day, 96 times of observations were collected and corresponded to four 15-
minute intervals per hour (i.e., for each hour of each day, we have observations
at minutes: 00-14, 15-29, 30-44, 45-59). For each time interval, the database
reports the total number of signals registered in a cell of the pixel grid.

A few aspects should be carefully evaluated when analyzing MDT data.
First, the database represents a sample of a much wider population, as about
10% of the current electronic devices produce MDT signals. Second, a device
can produce multiple MDT signals at a time and a signal cannot be traced
back to the device from which it has been generated. To overcome this issue,
we did not consider the number of signals in a SCE and referred instead to
the number of cells of the grid from which signals were generated. Given the
limited number of electronic devices captured and the short time intervals
observed, this choice nicely represents the traffic intensity in the selected area.

We restricted the database to the cells of the grid located on the streets. To
this aim, we compared the MDT database with the street map constructed in
Section 2 and reported in the left plot of Figure 2. As previously discussed, our
street map represents the width of the roadway. Therefore, we identified the
cells of the MDT pixel grid that correspond to streets by overlaying the grid
on the street map. Since MDT signals are geolocated with 10 meters accuracy,
we considered “on street” all the cells that are at most 10 meters far from the
roadway. This step reduced the database to approximately 49% of the grid, as
shown in the central map of Figure 2.

We compared the MDT data to the administrative boundaries map (see
the right plot of Figure 2) and assigned each street cell to the corresponding
SCE. This step led to the construction of an 834× 480 matrix where each row
represents a SCE where at least one MDT signal has been detected on a street
during the observed days, the columns refer to the times of observation (i.e.,
96 15-minutes intervals collected for the 5 considered days), and entries report
the on street-cells counts. Then, the MDT counts have been divided by the
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area of the road network of the SCE:

MDTjt =
Number(Streets Cellsjt)

| Streetsj |
. (7)

Therefore, we obtained MDT variables representing the presence of individuals
on the streets of the SCEs at different times of the day that can be compared
independently of the dimension of the streets in each SCE.

3.3 Harmonization of the AMPD and MDT data

In this work, we use AMPD data to estimate the presence of people in the
SCEs and construct an indicator of city users’ crowding. Moreover, we take
advantage of the higher georeferencing accuracy of the MDT data to estimate
the traffic intensity and define an indicator of street traffic. To this aim, a
few aspects of the data should be carefully evaluated. First, as shown in the
previous section, the two datasets refer to different periods of observation:
the MPD data were collected between April 2014 and August 2016, while the
MDT data refer to five days of November 2021. In order to overcome this issue
and guarantee the comparability of the data, we considered the observation of
November only. In other words, we restricted the AMPD database to the 30
days of November 2015 and kept the whole MDT dataset. Second, we aim at
the definition of small area indicators, but the AMPD and the MDT data are
collected on a pixel grid. Therefore, the grid cells have been aggregated into
SCEs according to the administrative boundaries map published by ISTAT.
Note that the MDT database only captures a fraction of the territory of the
SCEs located at the borders of the area under analysis, which refers to the
Mandolossa, as clearly shown in Figure 3.

The two sets of data were analyzed. We found that the number of cells that
originated MDT signals on streets is very low at night and can vary consider-
ably during the day. High variability has been observed in the AMPD quarter
time series as well. Therefore, the AMPD and the MDT quarter data have
been averaged into hours. Moreover, since Metulini & Carpita [17] observed
considerable differences in the temporal dynamics of city users among week-
ends and weekdays, observations corresponding to the two groups of days have
been distinguished and the corresponding hourly intervals have been averaged
into two time series of 24 hours. For the AMPD data, the midweek 24-hour
time series was obtained by averaging 21 days of November 2015 (5 Mondays
and 4 Tuesdays, Wednesdays, Thursdays, and Fridays), and the weekend time
series by averaging 9 days (i.e., 4 Saturdays and 5 Sundays)1. By contrast, for
the MDT data, 3 days of November 2021 (Wednesday 10, Friday 19, and Mon-
day 22) were averaged to compute the midweek time series, while the weekend
time series was computed on 2 days (Saturday and Sunday 20-21). The main
descriptive statistics of the variables AMPD and MDT are reported in Table 2.

1The AMPD time interval corresponding to Sunday, November 1st, 2015 at 00-01 showed
anomalous values and has been neglected.
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Fig. 3: Map of the SCEs in the MDT database. The map represents the SCEs
in the Mandolossa area (blue polygons) and the area described by the MDT
database (red rectangle).

variable mean sd cv min max skew kurt
AMPD 62.11 104.76 1.69 0.01 1329.37 3.85 23.83
MDT 2.71 4.20 1.55 0 72.84 4.72 42.01

Table 2: Descriptive statistics of the variables AMPD and MDT defined in
Eq.s (6) and (7) at hourly intervals. Reported values are, in order, the variable
name, mean, standard deviation, coefficient of variation, minimum, maximum,
skewness, and kurtosis. Values of the MDT data have been multiplied by
10,000. Moreover, statistics of the MDT data have been computed considering
SCEs for which at least 12 time intervals with values different from zero were
available.

Note that the statistics for the MDT data have been computed considering
SCEs for which at least 12 time intervals with values different from zero were
available. This choice allows avoiding values to be affected by SCEs with few
roads or little traffic flows especially at night.

A clustering of functional curves has been performed on the obtained time
series for both the AMPD and the MDT data. The analysis showed the pres-
ence of retrieved features in the two sets of data. To capture the spatiotemporal
patterns and summarize the information in two synthetic indicators, two T-
mode PCAs have been performed. However, for the PCA, the hourly time
intervals have been further aggregated into six time intervals of 4 hours: (0-4],
(4-8], (8-12], (12-16], (16-20], (20-24]. This choice is motivated by the fact that
the MDT hourly data still showed high variability in all the SCEs. Indeed, the
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hourly variation ranges on average between -40% and +240%. For compara-
bility, the AMPD data have been aggregated into the same 12 time intervals
by applying Eq. (6) with t equal to the 12 considered intervals.

4 Model-based functional cluster analysis of
MPD and MDT data

In this section, we consider the time series of AMPD and MDT data, at the
level of SCE, as functional curves, in order to grasp a possible clustering struc-
ture in terms of regularities in the temporal dynamics of city users and traffic.
Indeed, the MPD and MDT data can be interpreted as independent realiza-
tions of two continuous stochastic processes whose functional expressions are
unknown and a realization at discrete points in time is the only known element.

Jacques & Preda (2013) [28] distinguish three classes of clustering methods
for functional data: the raw data, the distance-based, and the model-based
(also known as filtering) methods. The former ones do not consider the raw
data as realizations of a continuous stochastic process and have therefore been
excluded. By contrast, the latter two rely on considering the realizations on
discrete points as coming from a continuous process and hence estimate proper
functional curves. The distance-based methods use clustering algorithms based
on specific traditional distances methods (such as the k-means one) adapted
to functional data, while the model-based methods approximate the curves
into some basis functions and perform clustering using the basis expansion
coefficients. Among those, we chose the model-based methods because we are
interested in the interpretation of the estimated curves’ parameters.

We adopted the model-based functional cluster analysis (M-B FCA) [29, 30]
to cluster SCEs, which has been applied by means of the funFEM package in
R. The M-B FCA presented in [30] is a clustering algorithm for functional
data that clusters a set of observed curves into K homogenous groups based
on a Discriminative Functional Mixture (DFM) model. The algorithm aims
to cluster a set of observed curves {x1, . . . xn} generated by an unknown
stochastic process X(t) =

∑p
r=1 γr(X)υr(t) defined over a random vector

γ = (γ1(X), . . . , γp(X)) and a set of basis functions {υ1, . . . , υp} with p
assumed known and fixed. To do so, it estimates the probability that the
curve xi belongs to the k-th cluster by maximizing the expectation of the data
log-likelihood conditionally to the (p × d) orthogonal matrix U of the most
discriminative latent subspace for the K groups spanned by d basis functions
{φ1, . . . φd}. The latter basis functions are obtained as φr =

∑p
l=1 urlυl such

that U = (url) is orthogonal for r = 1, . . . , d with d < K and d < p. This
relationship implies that

Γ = UΛ + ϵ (8)

where Γ is a (p × 1) random vector, Λ is the random (d × 1) vector of the
latent expansion coefficients of the observed curves {x1, . . . xn} on the basis
{φ1, . . . φd}, and ϵ is a vector of length p of independent and random noise
terms. We assume that: (i) conditionally to the k-th cluster, Λ is distributed
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according to a multivariate Gaussian density with (d × d) covariance matrix
Σk; (ii) ϵ is distributed according to a multivariate Gaussian density; (iii) the
(p × p) covariance matrix of W ′Γ conditional to the k-th group is a block
diagonal matrix: 

Σk 0

0

 β 0
. . .

0 β



 (9)

where W = [U, V ] and V is the orthogonal complement of U . Eq.(8) and
assumptions (i)-(iii) define a family of 12 DFM models capturing the variance
of the data of the k-th group through Σk and the variance of the noise outside
the functional subspace by means of the parameters β. The model’s parameters
are estimated via the Fisher-EM algorithm [31].

The M-B FCA was performed separately on the two sets of data AMPD
and MDT. Indeed, we are not interested to analyse them jointly since the two
data represent two distinct phenomena. In our framework, each realization xi
of the stochastic process corresponds to one SCE observed for 48 points in
time (i.e., 24 midweek and 24 weekend hours). An inspective analysis of the
MDT database showed that only 470 of 1072 analyzed SCEs corresponded
to time series with more than 12 hours different from 0. Therefore, for the
MDT database only, these 470 SCEs were grouped into a fictitious cluster, and
the M-B FCA was performed on the remaining 602 SCEs. Differently, for the
AMPD dataset, all the 1072 SCEs have been considered in the M-B FCA. As a
preliminary step, the curves have been standardized in such a way that each xi
has 0 mean and standard deviation equal to 1 to compensate for the different
geographical extent of the SCEs. In doing so, the amplitude of the curves has
been regularized. It is worth noticing that we chose not to regularize curves
in terms of their phases as we aim at accounting for the differences in curves’
periodicity by means of the clustering analysis.

To model the functional curves, we used Fourier basis functions because
they are particularly suitable to describe periodic data such as time series [28].
As far as the number of basis functions is concerned, p has been chosen within
a range of values between 1 (i.e., a constant function) and 15 (i.e., a function
with a constant, 7 cosines, and 7 sines) on the basis of the sum of the root mean
squared errors (RMSE) computed between the process’ realization xi and the
smoothed estimated curve evaluated at discrete points of time (see the left
plots of Figure 4). An illustrative example of the fitting of the smoothing curves
is reported in the right plots of Figure 4, where results for a randomly chosen
SCE have been reported. As it could be noticed, at least 9 basis functions
are necessary for the curves to satisfactorily approximate the observed data.
Therefore, p = 9 with γ = {γ0, γcos1 , γsin1

, γcos2 , γsin2
, γcos3 , γsin3

, γcos4 , γsin4
}

has been chosen, for both AMPD and MDT data, as the result of a trade-off
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Fig. 4: Selection of the number of Fourier basis functions among p =
1, 3, 5, 7, 9, 11, 13, 15. Left: sum of RMSE between the process’ realization xi
and the smoothed estimated curve evaluated at discrete points in time. Right:
Fitting of the smoothing curves to the observed points in time for a randomly
chosen SCE. Top: AMPD data. Bottom: MDT data.

between the need to correctly model the curves and the aim of estimating a
parsimonious model.

The best model among the 12 composing the DFM family defined in Eq.(8)
and assumptions (i)-(iii) has been chosen along with the optimal number of
clusters using the Bayesian Information Criterion (BIC)2. Since the BIC tends
to overestimate the number of clusters when the M-B FCA is performed on
non-Gaussian clusters (see [32], Section 3.3, p. 97), we posed a constraint on
the minimum dimension of the clusters (at least 100 SCEs each). This choice
also eases the interpretation of the results. We found that the best model for
the AMPD data is a DFM where the noise variance is allowed to vary across

2Same results are obtained using the Akaike Information Criterion (AIC).
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Table 3: Dimension of the clusters for the AMPD and the MDT data.

AMPD MDT
Cluster Dimension Cluster Dimension

1 223 0 470
2 186 1 216
3 229 2 106
4 229 3 100
5 205 4 180

Total 1072 Total 1072

Table 4: Estimated γ2cosi + γ2sini
associated with the Fourier basis functions

of the i-th period (i = 1, . . . , 4) for each cluster obtained on the AMPD (top)
and MDT (bottom) data.

AMPD

Period (i) Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5
1 (24 hours) 1.05 3.75 1.49 0.32 0.02
2 (12 hours) 34.38 1.33 23.63 38.54 34.50
3 (6 hours) 4.99 3.60 1.76 0.36 0.63
4 (3 hours) 0.17 5.83 1.96 1.44 0.68

Total 40.59 14.51 28.84 40.66 35.83

MDT

Period (i) Cluster 1 Cluster 2 Cluster 3 Cluster 4
1 (24 hours) 0.04 0.09 0.17 0.13
2 (12 hours) 14.93 10.87 1.75 27.65
3 (6 hours) 0.19 0.17 0.24 0.29
4 (3 hours) 1.13 0.84 0.81 2.02

Total 16.29 11.97 2.97 30.09

groups. For the MDT, the best model resulted in the DFM with a diagonal Σk

matrix and noise variance not restricted to be common across clusters. The
optimal choice resulted in K = 5 clusters of curves for the AMPD data. For
the MDT data, we obtained K = 4, to which we add the previously defined
cluster containing SCEs with zero or few MDT signals detected (“cluster 0”).
Table 3 reports the dimensions of the obtained clusters.

For each SCE, the probability of belonging to each cluster has been ana-
lyzed. We found that most of the probabilities are close to 0 or 1, with very
few intermediate values. This evidence suggests that the method performs well
in assigning the SCEs to each group.

Let us indicate with γcosi and γsini the estimated coefficients associated
with, respectively, the i-th cosine and sine for i = 1, . . . , 4. The period (or
phase) of the four bases corresponds to, in order, 24, 12, 6, and 3 hours. The
adopted M-B FCA method estimates a set of γ coefficients for each cluster,
whose associated parameters can be evaluated to characterize the smoothed
curves of the clusters’ centroids. According to [33], the variability in the values
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Fig. 5: M-B FCA results for the SCEs in the Mandolossa area. Full set of clus-
tered curves (left) and centroids by cluster (right). Top: AMPD data. Reported
curves correspond to clusters 1 (black), 2 (red), 3 (green), 4 (blue), and 5
(light blue). Bottom: MDT data. Reported curves correspond to clusters are
1 (black), 2 (red), 3 (green), and 4 (blue).

of the smoothed curves can be evaluated in terms of the sum of the squares of
the estimated coefficients associated with each Fourier basis i, i.e., γ2cosi+γ

2
sini

.
These values have been reported in Table 4 for each cluster. The corresponding
curves for both the two sets of data are shown in Figure 5, where the left
charts report all the estimated functional curves and the right ones show the
clusters’ centroids.

As far as AMPD data are concerned, according to Table 4, the curves of
all the clusters but the second are strongly determined by the Fourier basis
functions corresponding to the period of 12 hours (estimated values are 34.38,
23.63, 38.54 and 34.50). This evidence clearly emerges in the centroids’ curves
shown in the top right chart of Figure 5. Indeed, all but the red cluster display
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one negative and one positive peak per day. By contrast, cluster 2 appears
strongly determined by the periods of 6 and 3 hours, and the centroid’s curve
displays two negative and two positive peaks per day. Moreover, the sum of
the estimated parameters per each period, i.e.

∑4
i=1 = γ2cosi + γ2sini

, can be
interpreted as a measure of the variability of the estimated curves in the clus-
ters. As shown in the last row of the AMPD Table in 4 (top), clusters 1 and
4 display the highest variability.

For the MDT data, Table 4 (bottom) reports high values for the period of
12 hours for all but the third cluster, and it could be noticed that all but the
green curve in the bottom right chart of Figure 5 display one negative and one
positive peak per day. According to the sum of the estimated parameters, the
largest variation is registered for cluster 4, while cluster 3 shows the lowest.

5 T-Mode principal component analysis of
MPD and MDT data

The preliminary analysis of the two datasets showed the presence of hetero-
geneity among the SCEs and retrieved features over time. In order to ease
the interpretation of such datasets, the Principal Component Analysis (PCA)
is typically applied to reduce the dimensionality in such a way that most
of the information in the data is preserved. Several types of PCAs for spa-
tiotemporal data can be found in the literature [34] and, among those, the
PCA with T-mode decomposition of the dispersion matrix is particularly suit-
able to our data. Indeed, this analysis simplifies the observed time series into
discrete groups of clustered time intervals and isolates subgroups of obser-
vations with similar spatial patterns [20]. The methodology has been widely
adopted in meteorology literature with the aim to identify spatial patterns
in climate phenomena (e.g., [20, 35–37]), but it is suitable to investigate any
other spatiotemporal phenomena.

The T-mode PCA requires transposing the data matrix Z in such a way
that each analyzed variable refers to a time of observation [38]. Therefore, the
obtained data matrix ZT has n rows representing small areas and m columns
reporting a variable observed at different times. In our case study, the rows
of ZT correspond to the SCEs j, columns represent the time intervals t, and
entries are either the AMPDjt or MDTjt. The two variables have been stan-
dardized to prevent scaling to affect results. Specifically, our ZT matrix has
dimensions (1043 × 12). Indeed, some outliers in the AMPD data have been
detected and the corresponding 29 small SCEs have been excluded. These
outliers correspond to very small SCEs mostly on the borders of the ana-
lyzed rectangle of coordinates and their limited area might have affected the
measurement of the AMPD data. As a consequence, the analyzed correla-
tion matrix is the 1043× 1043 Z ′

TZT . The T-mode PCA decomposes ZT in a
1043× 12 standardized scores matrix FT and a 12× 12 loading matrix AT :

ZT = FTA
′
T . (10)
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Per each component, the loadings in AT can be plotted as a time series, and
spatial patterns can be observed by mapping the corresponding scores in FT .
The R package FactoMineR was used for the PCA computations. Moreover,
some tests from the packages PCAtest and EFAtools were used to assess the
adequacy of the data to the analysis and the goodness of results.

As a preliminary step, the KMO sampling statistic [39] has been computed
to assess the adequacy of the two sets of data to the PCA. The KMO measures
the proportion of variance among a set of variables that might be common
variance and represents the degree to which each observed variable is predicted
by the others. The higher the KMO, which can take values between 0 and 1,
the higher the proportion of (potentially) common variance. We found that
the overall KMO value is 0.829 for the AMPD data and 0.932 for the MDT
and that the single variable’s KMO values are all above 0.75. Therefore, we
conclude that the two sets of data as well as all the variables that they contain
are suitable for the analysis.

Then, we tested the presence of non-random correlation in the data, which
is a necessary condition for the PCA. To this aim, we applied the Vieira’s ψ
[40] and the Gleason and Staelin’s ϕ [41] statistics. Both statistics capture the
degree of correlation between the observed variables by computing the area
between the ranked eigenvalues ew line and the horizontal line at 1. Indeed, if
variables are uncorrelated, their associated eigenvalues tend to 1 and approx-
imate a horizontal line when plotted in a ranked order. By contrast, the more
the variables are correlated, the bigger some eigenvalues and the steeper the
curve of the ranked values. Specifically, the Vieira’s statistic is defined as
ψ =

∑
w(ew − 1)2 and takes values between 0 and m(m− 1) = 132; while the

Gleason and Staelin’s statistic is ϕ =
√

(
∑

w e
2
w −m)/(m2 −m) and takes val-

ues between 0 and 1. The statistics are then compared with the corresponding
ones estimated from over 1000 uncorrelated datasets generated by randomly
permuting the measurements on each variable of the original dataset. In this
way, we are able to determine the probability of the null hypothesis that the
obtained value of the statistics can be observed upon a dataset of uncorrelated
variables. For the AMPD data, we found ψ = 112.62 and ϕ = 0.92, while for
the MDT data, we found ψ = 64.31 and ϕ = 0.70. The associated p-values
are all approximately 0. Therefore, the two tests strongly support the hypoth-
esis that the correlation structure in the two sets of variables is non-random.
At last, the variables have been standardized to prevent results from being
affected by the scaling.

Three criteria have been used for the selection of the principal components
(PC): the Kaiser–Guttman criterion (i.e., “eigenvalues greater than one”), the
elbow method, and the rank-of-roots statistic [42], which is defined as the per-
centage of explained variance. The three methods led to the identification of
one component only for the AMPD variables, which explains 92.8% of the vari-
ance. The component is highly and positively associated with all the observed
time intervals (see the left plot of Figure 6). As a further check, we computed
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Fig. 6: Loadings for the first principal component obtained from the PCA on
AMPD (left) and MDT (right) variables. Midweek intervals are indicated by
mw and are represented by blue bars, while weekends are indicated as we and
represented by light blue bars. Time intervals are reported in order (from 0-4
to 20-24) and indicated by the starting and ending hour.

the Vieira’s index of the loadings [40], which quantifies how likely is each vari-
able to be associated with a PC. Specifically, the index is here computed as
ILt = (u2t e

2)/st where t indicates a variable (i.e., an observed time interval),
ut is the loading of the t-th variable, and st is the standard deviation of the
t-th variable. The index of the loadings is used to test the significance of the
contributions of the original variables to the PC via permutation. Applied to
the AMPD data, the index indicates that all the variables’ contributions to
the first component are significant. We conclude that all the information in
the AMPD data is summarized in the first component, which can therefore
be interpreted as a measure of crowding, and to which we refer as the CRO
indicator.

As far as the MDT variables are concerned, two principal components can
be identified according to all three aforementioned criteria. However, the first
principal component explains 71.6% of the variance, while the second one
10.3%. Therefore, we restricted our attention to the first one. This choice is
supported by the Vieira’s index of the loadings, which indicates that all 12
intervals have significant contributions to the first component. The component
is positively associated with all the variables and is mostly determined by the
daytime hours and the midweek days, as shown by the loadings plot in Figure 6
(right). Therefore, this component is a measure of the street traffic and we
refer to it as the TRA Indicator.
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Fig. 7: Map of the six selected ACEs.

6 Results and discussion

In this Section, we discuss the results of the M-B FCA and of the T-mode
PCAs. Results are presented both at the SCE level (i.e., by showing the dis-
tribution of the indicators on the full sample) and at the ACE (“Area di
CEnsimento” ISTAT, i.e. by studying the distribution of the indicators among
the SCEs that belong to the same ACE) level. In this respect, 5 major ACEs
(that are municipalities) have been identified, namely Castegnato, Cellatica,
Gussago, Rodengo Saiano, and Roncadelle. In addition, a new ACE has been
created by merging 14 small ACEs of the municipality of Brescia included in
the analyzed area. We refer to the latter as “Brescia North-West (NW)”. The
selected ACEs are shown in Figure 7. As one can notice, Brescia NW includes
most of the SCEs (many very small) in the area, namely 67% of the SCEs that
constitute the selected ACEs. We focused our attention on these 6 ACEs as
they cover the flood-prone area and are therefore crucial for risk management.

In Figure 8 the M-B FCA results on the AMPD and on the MDT data
are plotted on a map. In this way, each SCE is represented on the map with a
color corresponding to the cluster it belongs to. Some spatial patterns emerge
in both maps, especially in the AMPD data (left map). Overall, the two sets
of data result in very different geographical distributions of the clusters.

The spine plots in Figure 9 represent the proportion of SCEs belonging to
each M-B FCA cluster in the analyzed ACEs. As far as AMPD data are con-
cerned (left chart), we note that most of the SCEs in Brescia NW belong to
the green, red, or black clusters which correspond to areas where people gather
during leisure time; Castegnato is almost equally composed of all the clusters
but the red one; Cellatica collects mostly SCEs in the green and light blue
cluster, which correspond to areas mostly crowded at night and might there-
fore be traced back to residential areas; while Gussago, Rodengo Saiano, and
Roncadelle are mostly composed of blue clusters’ SCEs. By contrast, smaller
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Fig. 8: Map of SCEs, colored by the belonging of the M-B FCA clusters.
Clusters are represented with colors as in Figure 5. Left: AMPD data. Right:
MDT data. The white SCEs in the MDT map indicate areas where less than
12 hourly intervals are different from 0 (cluster 0).

differences emerge in the MDT clusters (right chart of Figure 9). Brescia NW
appears largely composed of the white cluster representing the SCEs for which
few or no signals have been detected on the streets. This might be partially
due to the very limited area of the SCEs in the city center, which determines a
lower probability of detecting MDT signals. Despite this, all the ACEs appear
mostly composed of black and blue clusters.

After all, these results highlight the existence of a strong heterogeneity in
the temporal dynamic of city users and traffic among SCEs, as well as among
the SCEs of the same ACE. This heterogeneity further motivated us to propose
indicators of exposure for small areas that are able to account for the temporal
dynamics of crowding and traffic on the road network.

The T-mode PCAs presented in Section 5 led to the identification of two
composite indicators: the crowding CRO and the traffic TRA. The SCEs’
scores for CRO and TRA have been normalized to the [0, 1] range and averaged
to represent the ACEs. The average values of the two indicators in the SCEs
of the ACEs are shown in Figure 10. The left map reports the CRO indicator,
and Brescia NW appears the most crowded area. In the right plot of Figure 10
representing the TRA indicator the ACEs with intense traffic emerge. In par-
ticular, the maximum value corresponds to Roncadelle, where there are a few
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Fig. 9: Spine plot representing the distribution of the SCEs of the 6 chosen
ACEs by M-B FCA clusters. The widths of the bars are proportional to the
number of SCEs in that ACE. Left: AMPD data. Right: MDT data. The white
cluster in the MDT spine plot collects SCEs where less than 12 hourly intervals
are different from 0 (cluster 0).

major roads that connect the city center to the northwest Province of Brescia.
High values of TRA are also found for the ACEs bordering Roncadelle in cor-
respondence to the route of the “Serenissima” and “BreBeMi” highways and
of the city’s west ring road.

The main characteristics of the 6 ACEs are plotted in Figure 11, where
the indicators CRO and TRA are reported along with the indicators STR,
ROA and ULR defined in Eq.s (1), (2), and (3) respectively. The spider plots
report the mean, the 10th, and the 90th percentiles of the SCEs’ variables
in the considered ACEs. Note that the scale of the plot is normalized with
respect to the maximum and minimum of each ax. A few differences between
the six ACEs emerge. In particular, Brescia NW is the most crowded ACE,
the network of roads is dense, and the ACE is very busy. Roncadelle, which
is adjacent to Brescia NW, appears the busiest ACE, and it is also consider-
ably crowded. Overall, the road network appears quite similar to Brescia NW,
although fewer roadways constitute the streets of Roncadelle. Gussago, Cel-
latica, and Castegnato show similar characteristics for all the indicators: the
road network is dense but, the areas are neither very crowded nor particularly
busy. Lastly, Rodengo Saiano is associated with low values of the indicators
TRA and CRO and has a moderate road network.
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Fig. 10: ACE scores for the CRO (left) and TRA (right) composite indicators
from T-mode PCA. Values represent the average normalized score of the SCEs
in the ACE. The red line identifies the six main ACEs of the area under
analysis.

7 Concluding remarks

The adoption of new sources of big data coming from sensors and tracking
systems in conjunction with traditional data is important for the correct quan-
tification of the exposure to risks at the small area level. In this work, we
showed how the combination of the information from five different sources (i.e.,
DBTR, DUSAF, MPD, MDT, and the map of the administrative boundaries)
may provide a multifaceted representation of the exposure to risks in small
areas, based on the street network, the city user crowding, and traffic on the
territory.

We used MPD and MDT data to estimate people crowding and traffic
intensity respectively. The temporal dynamics of the MPD and MDT data
were explored using the M-B FCA, while their spatial dynamics were analyzed
by means of the T-Mode PCA. Then, we proposed five indicators: three on the
static characteristics of the viability of the area - STR, ROA, and ULR - and
two on the dynamic patterns of people crowding and traffic - CRO and TRA.
The indicators might be used to identify the areas with a high concentration of
people or major connecting routes. This information can be extremely impor-
tant in various practical contexts, for example for the definition of traffic risk
indicators on which insurers can rely for vehicle liability insurance. Moreover,
the indicators can also be used to obtain a multi-dimensional description of
the territory at different levels, for example from SCEs to ACEs (municipal-
ities), as shown in Section 6. In this respect, we proposed an application of
the indicators to the Mandolossa, a flood-risk area in the northwest of the city
of Brescia. Overall, the joint analysis of the different data sources has thus
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Fig. 11: The five indicators measured on the six major ACEs of the Man-
dolossa area. The green continuous line represents the indicator’s mean value
in the ACE SCEs, and the green dotted lines report the 10th and 90th per-
centiles. The scale of the plot is normalized with respect to the maximum and
minimum of each axis.

allowed us to grasp the main characteristics of the small areas that make up the
territory. The analysis can potentially be extended to other areas of the Lom-
bardy Region as well as of the national territory. To this aim, a major problem
emerges in the availability of MDT data. The MDT data, unlike the MPD
one, is highly accurate in georeferencing but is not systematically detected and
requires specific technologies and methods for the collection of signals from
the mobile phone network.
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In this work, MPD and MDT data were analyzed separately. We exploited
the different characteristics of these data to capture different phenomena. A
possible future development concerns the joint analysis of the two types of data
in order to understand the relationship between road traffic and crowding in
small urban areas.
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[30] Bouveyron, C., Côme, E., Jacques, J.: The discriminative functional mix-
ture model for a comparative analysis of bike sharing systems. The Annals
of Applied Statistics 9(4), 1726–1760 (2015)

[31] Bouveyron, C., Brunet, C.: Simultaneous model-based clustering and
visualization in the fisher discriminative subspace. arXiv preprint
arXiv:1101.2374 (2011)

[32] Bouveyron, C., Celeux, G., Murphy, T., Raftery, A.: Model-Based Clus-
tering and Classification for Data Science: With Applications in R.
Cambridge Series in Statistical and Probabilistic Mathematics. Cam-
bridge University Press, Cambridge (2019). https://doi.org/10.1017/
9781108644181

[33] Pollock, D.S.G.: Topics in time-series analysis the fourier decomposi-
tion of a time series. lecture notes. https://www.le.ac.uk/users/dsgp1/
COURSES/LEIMETZ/FOURIER.pdf. (2011)

[34] Preisendorfer, R.W., Zwiers, F.W., Barnett, T.P.: Foundations of Prin-
cipal Component Selections Rules. 81-4, vol. 192. Scripps Institute of
Oceanography., ??? (1981)

[35] Barreira, S., Compagnucci, R.: Spatial fields of antarctic sea-ice concen-
tration anomalies for summer - autumn and their relationship to southern
hemisphere atmospheric circulation during the period 1979-2009. Annals
of Glaciology 52, 140–150 (2011)

[36] Isaak, D., Luce, C., Chandler, G., Horan, D., Wollrab, S.: Principal com-
ponents of thermal regimes in mountain river networks. Hydrology and
Earth System Sciences 22, 6225–6240 (2018)

[37] Ibebuchi, C.C.: Patterns of atmospheric circulation in western europe
linked to heavy rainfall in germany: preliminary analysis into the 2021
heavy rainfall episode. Theoretical and Applied Climatology 148, 269–283
(2022)

[38] Richman, M.: Review article, rotation of principal components. J. Clima-
tol. 6, 293–355 (1986)

[39] Kaiser, H.F., Rice, J.: Little jiffy, mark iv. Educational and psychological
measurement 34(1), 111–117 (1974)

[40] Vieira, V.: Permutation tests to estimate significances on principal
components analysis. Computational Ecology and Software 2, 103–123
(2012)

https://doi.org/10.1017/9781108644181
https://doi.org/10.1017/9781108644181
https://www.le.ac.uk/users/dsgp1/COURSES/LEIMETZ/FOURIER.pdf
https://www.le.ac.uk/users/dsgp1/COURSES/LEIMETZ/FOURIER.pdf


Statistical indicators based on mobile phone and street maps data 31

[41] Gleason, T., Staelin, R.: A proposal for handling missing data. Psychome-
trika 40, 229–252 (1975)

[42] ter Braak, C.: CANOCO - a FORTRAN program for canonical community
ordination by [partial] [detrended] [canonical] correspondence analysis,
principal components analysis and redundancy analysis (version 2.1), vol.
11. (1987)


	Introduction
	The street map construction and indicators
	Mobile phone data description and processing
	Crowding data (MPD)
	Signal data (MDT)
	Harmonization of the AMPD and MDT data

	Model-based functional cluster analysis of MPD and MDT data 
	T-Mode principal component analysis of MPD and MDT data
	Results and discussion
	Concluding remarks
	Funding
	Conflict of interest/Competing interests
	Availability of data and materials




