
Artificial Intelligence 334 (2024) 104176

Contents lists available at ScienceDirect

Artificial Intelligence

journal homepage: www.elsevier.com/locate/artint

Controlled query evaluation in description logics through

consistent query answering ✩

Gianluca Cima a, Domenico Lembo a, Riccardo Rosati a,∗, Domenico Fabio Savo b

a Sapienza Università di Roma, Italy
b Università degli Studi di Bergamo, Italy

A R T I C L E I N F O A B S T R A C T

Keywords:

Description logics

Ontologies

Confidentiality preservation

Query answering

Data complexity

Controlled Query Evaluation (CQE) is a framework for the protection of confidential data, where a
policy given in terms of logic formulae indicates which information must be kept private. Functions
called censors filter query answering so that no answers are returned that may lead a user to
infer data protected by the policy. The preferred censors, called optimal censors, are the ones that
conceal only what is necessary, thus maximizing the returned answers. Typically, given a policy
over a data or knowledge base, several optimal censors exist.

Our research on CQE is based on the following intuition: confidential data are those that violate the
logical assertions specifying the policy, and thus censoring them in query answering is similar to
processing queries in the presence of inconsistent data as studied in Consistent Query Answering
(CQA). In this paper, we investigate the relationship between CQE and CQA in the context of
Description Logic ontologies. We borrow the idea from CQA that query answering is a form of
skeptical reasoning that takes into account all possible optimal censors. This approach leads to a
revised notion of CQE, which allows us to avoid making an arbitrary choice on the censor to be
selected, as done by previous research on the topic.

We then study the data complexity of query answering in our CQE framework, for conjunctive
queries issued over ontologies specified in the popular Description Logics DL-Lite and ⊥. In
our analysis, we consider some variants of the censor language, which is the language used by
the censor to enforce the policy. Whereas the problem is in general intractable for simple censor
languages, we show that for DL-Lite ontologies it is first-order rewritable, and thus in AC0 in data
complexity, for the most expressive censor language we propose.

1. Introduction

Preserving confidentiality in information systems involves devising query answering mechanisms that protect sensible data from
unauthorized access. This problem has been extensively studied in the fields of databases and Artificial Intelligence, specifically in
knowledge representation, with various works exploring it in the context of Description Logic (DL) ontologies (e.g. in [2–4]). In this
paper, we refer to a logic-based approach to confidentiality preservation known as Controlled Query Evaluation (CQE), originally

✩ This paper is an extended version of [1].

* Corresponding author.

E-mail addresses: cima@diag.uniroma1.it (G. Cima), lembo@diag.uniroma1.it (D. Lembo), rosati@diag.uniroma1.it (R. Rosati), domenicofabio.savo@unibg.it
Available online 2 July 2024
0004-3702/© 2024 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

(D.F. Savo).

https://doi.org/10.1016/j.artint.2024.104176

Received 2 December 2022; Received in revised form 19 June 2024; Accepted 24 June 2024

http://www.ScienceDirect.com/
http://www.elsevier.com/locate/artint
mailto:cima@diag.uniroma1.it
mailto:lembo@diag.uniroma1.it
mailto:rosati@diag.uniroma1.it
mailto:domenicofabio.savo@unibg.it
https://doi.org/10.1016/j.artint.2024.104176
http://crossmark.crossref.org/dialog/?doi=10.1016/j.artint.2024.104176&domain=pdf
https://doi.org/10.1016/j.artint.2024.104176
http://creativecommons.org/licenses/by-nc-nd/4.0/

Artificial Intelligence 334 (2024) 104176G. Cima, D. Lembo, R. Rosati et al.

introduced for propositional databases [5,6] and more recently studied over ontologies [7,8]. In CQE a declarative policy, typically
expressed as a set of logic formulae, specifies the information that is considered sensitive, and a function called censor modifies the
query answers so that users do not get data that may lead them to infer secrets protected by the policy. Censors that operate according
to some minimality criterion are called optimal, and are usually the preferred ones, for their ability to maximize answers to queries.
For example, if a policy prohibits the disclosure of both facts hasName(01,John) and hasSalary(01,2000), an optimal censor would
reveal just one of these facts (and retain the other confidential), rather than concealing both pieces of information. It is clear that in
general several (typically incomparable) optimal censors exist (for instance, in the previous example, there are two such censors).

Under a purely logical perspective, data protected by the policy in CQE are those that result inconsistent with respect to the logical
formulae specifying the policy. Thus, if we interpret the policy as a set of integrity constraints over the information schema, censoring
confidential data in query answering is similar to processing queries in the presence of data that contradict these constraints. In this
paper we move from the above observation to study, in the context of DL ontologies, the relationship existing between CQE and
Consistent Query Answering (CQA), a declarative framework aiming at guaranteeing meaningful query answering over inconsistent
logical theories, where otherwise inference becomes trivial, according to the “ex falso quod libet” principle of classical first-order
logic [9–14].

In our investigation, we start from the CQE framework proposed in [8]. This framework generalizes the one proposed in [15],
which in turn extends the one for propositional open databases given in [16] to DL ontologies (see also Section 8). The paper [8] carries
CQE over DLs through an elegant and simple declarative formalization based on the classical semantics of first-order logic, which
makes use of a definition of censor effective enough to protect sensitive information from the ability of a user of making (classical)
inferences over the ontology and the answers that the system returns to queries, even in the presence of expressive formulae in the
policy. These characteristics led us to devise a quite natural correspondence with the problem of CQA. More precisely, we define a CQE
instance as a triple consisting of a DL TBox (i.e. the intensional component of the ontology), an ABox (i.e. the extensional component
of the ontology) and a policy, expressed as a set of conjunctive queries (CQs), whose answers must never be inferred from the system
by a user asking queries over the TBox. We then consider the prototypical CQA framework based on the so-called ABox-Repair (AR)
semantics [14,17,11]. In this latter framework, given an ontology composed of a TBox and an ABox , possibly contradicting ,
a repair is an inclusion-maximal subset of that is consistent with , and processing a query 𝑞 amounts to computing the answers
to 𝑞 inferred by all (consistent) ontologies constituted by and one such repair.

We thus start considering censors that return inclusion-maximal subsets of the ABox that satisfy the policy seen as a set of
constraints.

Example 1. Let us formalize the previous example. Assume for simplicity an empty TBox and consider the policy

∃𝑥, 𝑦, 𝑧(hasName(𝑥, 𝑦) ∧hasSalary(𝑥, 𝑧)), saying that for a certain individual 𝑥 no both name and salary can be disclosed. Let us turn it
into a constraint, i.e. ∀𝑥, 𝑦, 𝑧(hasName(𝑥, 𝑦) ∧ hasSalary(𝑥, 𝑧) → ⊥). Given the ABox = {hasName(01,John), hasSalary(01,2000)},
the two possible optimal censors produce the two sets {hasName(01,John)} and {hasSalary(01,2000)}, which correspond to two
repairs of with respect to the TBox consisting of the above constraint. □

We note that, for more complex scenarios, e.g. with non-empty TBox, the form of censor we have considered above may result
quite restrictive, since it returns only subsets of the ABox. We solve this problem through a parameterization of censors with respect
to a language 𝑐 , i.e. a set of sentences in some fragment of first-order logic. Intuitively, under this perspective, an (optimal) censor
is a function returning a (maximal) subset of the sentences in 𝑐 implied by the TBox and the ABox of the CQE instance, such that
 satisfies the policy. We call 𝑐 the censor language.

We then borrow the idea from CQA that query answering is a form of skeptical reasoning that takes into account all possible
censors, that is, all possible sets of formulae they return, as CQA reasons over all possible repairs. We remark that this form of
query answering does not make a specific choice on the (optimal) censor to select for preserving confidentiality, which might be
discretionary or unfair in the absence of metadata suggesting a selection criterion. Our approach is thus different from the one in [8],
as well as from other previous works on CQE, where the focus is on the construction of a single censor, even though an idea similar
to ours has been also previously discussed in [15].

Once defined this comprehensive (and novel) framework for CQE, we study its general properties, consider censor languages of
increasing expressiveness, and investigate the relationship with CQA, providing a general property that establishes the conditions
under which CQE can be reduced to CQA. We then characterize the data complexity of answering conjunctive queries (CQs) under
the various censor languages we consider, for CQE instances whose TBox is expressed in the popular DLs DL-Lite [18] and ⊥ [19],
which are, respectively, the logical counterparts of OWL 2 QL and OWL 2 EL, two tractable profiles of OWL 2 [20]. More precisely,
we provide data complexity results for the cases when: (i) 𝑐 is the ABox of the CQE instance, i.e. the censor can enforce the policy
only by selecting facts in the ABox, as in Example 1 (ABox censor language); (ii) 𝑐 coincides with the set of facts expressed over the
signature of the TBox and ABox of the CQE instance (𝐆𝐀 censor language); (iii) 𝑐 is the language of Boolean CQs (BCQs) expressed
over the signature of the TBox and ABox of the CQE instance and whose length is at most 𝑘, for every integer 𝑘 ≥ 1 (𝐂𝐐𝑘 censor
language); and (iv) 𝑐 is as at point (iii), but with no limits on the maximum length of BCQs (𝐂𝐐 censor language). Some of our
findings follow from the correspondence between CQA and CQE, whereas for the cases in which the CQE problem does not have a
CQA counterpart we devise tailored techniques. The complexity results proved in this paper are shown in Fig. 1. Note that besides
entailment of BCQs, we also consider the special cases of entailment of ground atoms, a classical reasoning task in DL called instance
2

checking, and entailment of purely existential BCQs (BCQ∃), i.e. BCQs not admitting constants in their atoms. We also point out that all

Artificial Intelligence 334 (2024) 104176G. Cima, D. Lembo, R. Rosati et al.

𝑐

DL-Lite ⊥

Instance

checking

BCQ∃
entailment

BCQ

entailment

Instance

checking

BCQ∃
entailment

BCQ

entailment

ABox = coNP [4, 5] = coNP [4, 5] = coNP [4, 5] = coNP [4, 5] = coNP [4, 5] = coNP [4, 5]

𝐆𝐀 ≤ AC0[9] = coNP [6, 8] = coNP [6, 8] = coNP [6, 7] = coNP [6, 7] = coNP [6, 7]

𝐂𝐐𝑘 † ≤ AC0[13] = coNP [10, 12] = coNP [10, 12] = coNP [10, 11] = coNP [10, 11] = coNP [10, 11]

𝐂𝐐 ≤ AC0[14] ≤ AC0[14] ≤ AC0[14]
≤ coNP [16]

= PTime[15]
≤ coNP [16]

≥ PTime ‡ ≥ PTime ‡

Fig. 1. Data complexity of query answering in CQE: corresponding theorems are given between squared brackets. † : The results in this row hold for every fixed integer
𝑘 such that 𝑘 ≥ 1. ‡: The PTime lower bounds directly follow from [21, Theorem 4.3].

results on entailment of BCQs can be extended to arbitrary (i.e. non-Boolean) CQs in the standard way, and thus also hold for open
CQs.

Interestingly, the complexity of entailment never increases when moving from less expressive censor languages to more expressive
ones, and decreases in some cases, for both DL-Lite and ⊥. In particular, BCQ entailment for DL-Lite is intractable for all censor
languages but 𝐂𝐐, the most expressive language we consider for censors. For the case of ⊥, we prove a similar behavior for BCQ∃
entailment, which is PTime-complete when 𝑐 =𝐂𝐐 and coNP-complete for all the other less expressive censor languages. For BCQ
entailment (and instance checking) when 𝑐 = 𝐂𝐐 we could not establish exact complexity, leaving it open whether membership
in coNP can be further refined. Beyond their theoretical connotation, tractability results are interesting for practical applicability. In
particular, we believe that the DL-Lite case is very relevant for real-world applications, since it is characterized by an ontology lan-

guage suited for data-intensive scenarios and ontology-mediated query answering, as well as expressive policy and censor languages,
providing a setting that enables a designer great expressiveness for declaratively protecting data. It is worthwhile remarking that our
results show that data complexity of CQE for DL-Lite under 𝐂𝐐 censors is the same as standard query answering in this logic.

The rest of the paper is organized as follows. In Section 2 we provide some preliminaries on first-order logic and Description
Logics. In Section 3 we introduce our CQE framework and show its general properties. In Section 4 we investigate the relationship
between CQA and CQE. We then focus on CQE instances whose TBox is expressed in the DLs DL-Lite and ⊥. For these cases, we
study data complexity of conjunctive query answering (instance checking, entailment of BCQs and of BCQ∃s) under the restricted
censor languages ABox and 𝐆𝐀 in Section 5, under 𝐂𝐐𝑘 censor language in Section 6, and under 𝐂𝐐 censor language (i.e. the most
expressive language we consider for censors), in Section 7. We finally discuss some related work in Section 8 and then conclude the
paper in Section 9.

This paper is an extended version of [1].

2. Preliminaries

We make use of standard notions of function-free first-order (FO) logic, and, in particular, we consider DLs that are decidable
fragments of FO. As customary, we focus on DLs that use only unary and binary predicates, called (atomic) concepts and roles,
respectively [22].

We assume to have the pairwise disjoint countably infinite sets Σ𝑂 , Σ𝐼 , and Σ𝑉 , for (unary and binary) predicates, constants
(also known as individuals), and variables, respectively. Σ𝑂 is in turn partitioned in two pairwise disjoint sets Σ𝐶 and Σ𝑅 for atomic
concepts and atomic roles, respectively.

We use 𝐅𝐎 to indicate the language of all FO sentences over Σ𝑂 , Σ𝐼 , and Σ𝑉 . Every language considered in this paper is a subset
of 𝐅𝐎. Given a language ⊆ 𝐅𝐎, a theory in is a set of sentences in . Given a theory , the set of predicates and constants
occurring in is called the signature of and it is denoted by 𝑠𝑖𝑔(). Moreover, given a language ⊆ 𝐅𝐎, we denote by () the
subset of formulae in over 𝑠𝑖𝑔() ∪ Σ𝑉 .

A Boolean conjunctive query (BCQ) 𝑞 is a sentence in 𝐅𝐎 of the form 𝑞 = ∃�⃗�cq(�⃗�), where cq(�⃗�) = 𝛼1(�⃗�1) ∧… ∧ 𝛼𝑛(�⃗�𝑛), with 𝑛 ≥ 1
and �⃗� being a sequence of variables from Σ𝑉 such that �⃗� =

⋃𝑛
𝑖=1 �⃗�𝑖

1 and, for each 𝑖 = 1, … , 𝑛, 𝛼𝑖(�⃗�𝑖) is an atom such that 𝛼𝑖 ∈ Σ𝑂 and
each of its arguments belongs to Σ𝐼 ∪ �⃗�. The length of 𝑞 is the number of its atoms, denoted by length(𝑞). Furthermore, we say that 𝑞
is a BCQ∃ if it does not mention any constants.

In the following, we denote by 𝐂𝐐 the language of BCQs, by 𝐂𝐐∃ the language of BCQ∃s, by 𝐂𝐐𝑘 the language of BCQs from
𝐂𝐐 whose maximum length is 𝑘, and by 𝐆𝐀 the language of single-atom queries with no variables, i.e. ground atoms or facts. Notice
that 𝐂𝐐∃ ⊂ 𝐂𝐐, 𝐆𝐀 ⊂ 𝐂𝐐𝑘 ⊂ 𝐂𝐐𝑘+1 ⊂ 𝐂𝐐, for every integer 𝑘 ≥ 1, 𝐂𝐐∃ and 𝐆𝐀 are incomparable languages, and 𝐂𝐐∃ and 𝐂𝐐𝑘

are incomparable languages, for every integer 𝑘 ≥ 1.

A DL ontology is a finite theory ∪, where is the TBox (i.e. “Terminological Box”) and is the ABox, (i.e. “Assertional
Box”), that is, finite sets of assertions (i.e. sentences) specifying intensional and extensional knowledge, respectively.

Different DLs allow for different kinds of TBox and/or ABox assertions. In this paper, an ABox is always a finite set of ground
atoms, i.e. atoms of the form 𝐴(𝑎), 𝑃 (𝑎, 𝑏), where 𝐴 ∈ Σ𝐶 , 𝑃 ∈ Σ𝑅, and 𝑎, 𝑏 ∈ Σ𝐼 . We mainly consider the DLs DL-Lite [18] and
⊥. This latter extends [19] with the empty concept ⊥. Such DLs are the logical counterpart of the OWL 2 profiles OWL 2 QL
and OWL 2 EL, respectively [20].
3

1 With a little abuse of notation we treat here sequences of variables as sets.

Artificial Intelligence 334 (2024) 104176G. Cima, D. Lembo, R. Rosati et al.

DL-Lite expressions are constructed according to the following syntax:

𝐵 ∶=𝐴 ∣ ∃𝑅 𝑅 ∶= 𝑃 ∣ 𝑃−

where 𝑅 is called basic role, which can be an atomic role 𝑃 ∈ Σ𝑅, or its inverse 𝑃−, 𝐵 is called basic concept, which can be an atomic
concept 𝐴 ∈ Σ𝐶 , or a concept of the form ∃𝑅, called existential restriction, denoting the set of objects occurring as first argument of
a basic role 𝑅.

A DL-Lite TBox is a finite set of assertions of the form

𝐵1 ⊑ 𝐵2 𝐵1 ⊑ ¬𝐵2
𝑅1 ⊑𝑅2 𝑅1 ⊑ ¬𝑅2

Assertions of the first row above are called concept inclusions, whereas those of the second row are called role inclusions. Moreover,
assertions of the first column are also called positive inclusions, whereas those in the second column are called negative inclusions.

⊥ expressions are constructed according to the following syntax:

𝐶 ∶=𝐴 ∣ ∃𝑃 ∣ ∃𝑃 .𝐶 ∣ 𝐶1 ⊓ 𝐶2 ∣ ⊥ ∣ ⊤

where 𝐶 is called general concept, which can be an atomic concept 𝐴 ∈ Σ𝐶 , an existential restriction of the form ∃𝑃 , with 𝑃 ∈ Σ𝑅, a
concept of the form ∃𝑃 .𝐶 , with 𝑃 ∈ Σ𝑅, called qualified existential restriction and denoting the set of objects that the atomic role 𝑃
relates to some instance of the general concept 𝐶 , a concept of the form 𝐶1 ⊓ 𝐶2, i.e. a conjunction of two general concepts, ⊥, i.e.
the empty concept, or ⊤, i.e. the top concept. Note that ∃𝑃 is equivalent to ∃𝑃 .⊤, and thus it can be considered syntactic sugar, which
we however prefer to have in the ⊥ syntax to simplify comparison with DL-Lite syntax.

An ⊥ TBox is a finite set of assertions of the form

𝐶1 ⊑ 𝐶2

called general concept inclusions.

Besides DL-Lite and ⊥ assertions, we also consider denial assertions (or simply denials) over atomic concepts and roles, i.e.
sentences of the form

∀�⃗�(cq(�⃗�)→ ⊥)

where cq(�⃗�) is such that ∃�⃗�(cq(�⃗�)) is a BCQ. The length of the denial is the length of such a query. We will use denials to specify the
policy in CQE. In our technical treatment, we will also consider the DL DL-Lite,𝑑𝑒𝑛 [14], which extends DL-Lite with denials.

Example 2. Suppose we want to use an ontology to model the domain of a pharmacy, i.e. its customers, medicines, and so on. A
TBox in DL-Lite for this purpose might be as follows:

 = { ∃𝖻𝗎𝗒 ⊑ 𝖢𝗎𝗌𝗍𝗈𝗆𝖾𝗋,
∃𝖻𝗎𝗒− ⊑𝖬𝖾𝖽𝗂𝖼𝗂𝗇𝖾,
𝖬𝖾𝖽𝗂𝖼𝗂𝗇𝖾 ⊑ ∃𝗍𝗋𝖾𝖺𝗍𝗌,
∃𝗍𝗋𝖾𝖺𝗍𝗌− ⊑ 𝖢𝗈𝗇𝖽𝗂𝗍𝗂𝗈𝗇 }

From top to bottom, the above TBox assertions specify that: who buys something is a customer; what is bought is a medicine; each
medicine is used in at least a treatment (cf. role 𝗍𝗋𝖾𝖺𝗍𝗌) the subject of a treatment is always a medical condition.

Let us now consider the language ⊥. The expressive power of this DL is incomparable with that of DL-Lite. For instance, the
second and fourth assertions of cannot be specified in ⊥, which instead allows a designer to use constructs not available in
DL-Lite. The following TBox ′ is an example of ⊥ TBox (incomparable with):

 ′ = { ∃𝖻𝗎𝗒 ⊑ 𝖢𝗎𝗌𝗍𝗈𝗆𝖾𝗋,
𝖬𝖾𝖽𝗂𝖼𝗂𝗇𝖾 ⊑ ∃𝗍𝗋𝖾𝖺𝗍𝗌,
𝖢𝗎𝗌𝗍𝗈𝗆𝖾𝗋 ⊑ ∃𝖻𝗎𝗒.𝖬𝖾𝖽𝗂𝖼𝗂𝗇𝖾,
∃𝗍𝗋𝖾𝖺𝗍𝗌.𝖢𝗈𝗇𝖽𝗂𝗍𝗂𝗈𝗇 ⊑𝖬𝖾𝖽𝗂𝖼𝗂𝗇𝖾 }

 ′ specifies that anyone who buys something is a customer, each medicine is used in at least a treatment, and that a customer
must buy at least one medicine. It also models the fact that what treats a condition is a medicine.

An ABox suitable for both TBoxes given above could be the following, which states that 𝑏𝑜𝑏 bought some 𝑖𝑛𝑠𝑢𝑙𝑖𝑛 that treats
𝑑𝑖𝑎𝑏𝑒𝑡𝑒𝑠.

 = { 𝖻𝗎𝗒(𝑏𝑜𝑏, 𝑖𝑛𝑠𝑢𝑙𝑖𝑛), 𝗍𝗋𝖾𝖺𝗍𝗌(𝑖𝑛𝑠𝑢𝑙𝑖𝑛, 𝑑𝑖𝑎𝑏𝑒𝑡𝑒𝑠) }. □

The semantics of a theory in 𝐅𝐎 is given in terms of FO interpretations = ⟨Δ , ⋅⟩, where Δ is the interpretation domain,
i.e. a non-empty set of objects, and ⋅ is the interpretation function, which assigns to each unary predicate 𝐴 ∈ 𝑠𝑖𝑔() a subset
𝐴 ⊆Δ , to each binary predicate 𝑃 ∈ 𝑠𝑖𝑔() a subset 𝑃 ⊆Δ ×Δ , and to each constant 𝑐 occurring in 𝑠𝑖𝑔() an object 𝑐 ∈Δ .
4

An interpretation is a model of if satisfies all the sentences in (i.e. all such sentences evaluate to true in). We denote by

Artificial Intelligence 334 (2024) 104176G. Cima, D. Lembo, R. Rosati et al.

Mod() the set of models of . A theory is consistent if it has at least one model, i.e. if Mod() ≠ ∅, inconsistent otherwise, and
entails an FO sentence 𝜙 ∈ 𝐅𝐎(), denoted ⊧ 𝜙, if 𝜙 is satisfied by every ∈ Mod(). From now on, when we consider entailment of
an FO sentence 𝜙 from a theory we always assume that 𝜙 ∈ 𝐅𝐎(), and thus we omit to explicitly say it. When 𝜙 ∈𝐆𝐀, the above
entailment is also called instance checking. For non-entailment, we use the notation ̸⊧. As usual, we may also use ⊧ (resp. ⊧ 𝜙,
with 𝜙 a sentence) to indicate that the interpretation is a model of (resp. satisfies the sentence 𝜙). Analogously, ̸⊧ (resp.
 ̸⊧ 𝜙) denotes the fact that is not a model of (resp. does not satisfy 𝜙). Moreover, given an ABox , we denote with the
interpretation “isomorphic” to , i.e., = ⟨Δ , ⋅⟩ where Δ is the set of all the constants appearing in , and ⋅ is such that
𝑎 = 𝑎 for each constant 𝑎 appearing in , 𝑎 ∈ 𝐶 for each 𝐶(𝑎) ∈, and (𝑎 , 𝑏) ∈ 𝑃 for each 𝑃 (𝑎, 𝑏) ∈. Furthermore,
given a language ⊆ 𝐅𝐎 and a theory ⊆ 𝐅𝐎, we denote by Ent() the set {𝜙 ∈ () ∣ ⊧ 𝜙}. Obviously Ent() ⊆().

We then observe that a denial 𝛿 = ∀�⃗�(cq(�⃗�) → ⊥) is satisfied by an interpretation , if ∃�⃗�(cq(�⃗�)) is not satisfied by (i.e. it evaluates
to false in). As a consequence, ∪ {𝛿} is consistent if and only if ̸⊧ ∃�⃗�(cq(�⃗�)).

For the sake of completeness we report below the semantics of DL-Lite and ⊥, i.e. say when an interpretation satisfies assertions
in these languages. For the constructs of DL-Lite and ⊥, the interpretation function is extended to non-atomic concept and role
expressions as follows:

⊤ = Δ

⊥ = ∅
(𝑃−) = { (𝑜, 𝑜′) ∣ (𝑜′, 𝑜) ∈ 𝑃 }
(∃𝑅) = { 𝑜 ∣ ∃𝑜′ (𝑜, 𝑜′) ∈𝑅 }
(∃𝑅.𝐶) = { 𝑜 ∣ ∃𝑜′ (𝑜, 𝑜′) ∈𝑅 ∧ 𝑜′ ∈ 𝐶 }
(𝐶1 ⊓ 𝐶2) = 𝐶

1 ∩𝐶
2

(¬𝑅) = (Δ ×Δ) ⧵𝑅

(¬𝐵) = Δ ⧵𝐵

An interpretation satisfies a positive concept inclusion 𝐵1 ⊑ 𝐵2 (resp., a general concept inclusion 𝐶1 ⊑ 𝐶2, a positive role
inclusion 𝑅1 ⊑ 𝑅2) if 𝐵

1 ⊆ 𝐵
2 (resp., 𝐶

1 ⊆ 𝐶
2 , 𝑅

1 ⊆ 𝑅
2). Furthermore, satisfies a negative concept inclusion 𝐵1 ⊑ ¬𝐵2 (resp., a

negative role inclusion 𝑅1 ⊑ ¬𝑅2) if 𝐵
1 ∩𝐵

2 = ∅ (resp., 𝑅
1 ∩𝑅

2 = ∅). Finally, satisfies ABox assertions 𝐴(𝑎) and 𝑃 (𝑎, 𝑏) if 𝑎 ∈𝐴

and (𝑎 , 𝑏) ∈ 𝑃 , respectively.

In the following, given a TBox and an ABox , we denote by the ground closure of with respect to , i.e. the set of ABox
assertions 𝛼 such that the DL ontology ∪ ⊧ 𝛼. Notice that =𝐆𝐀Ent(∪).

We then recall that entailment of BCQs in DL-Lite is FO rewritable, i.e. for every DL-Lite TBox and BCQ 𝑞, it is possible to
effectively compute an FO query 𝑞𝑟, called the perfect reformulation of 𝑞 with respect to , such that, for each ABox , ∪ ⊧ 𝑞

if and only if ⊧ 𝑞𝑟. In this paper, we will make use of the algorithm PerfectRef presented in [18]. This algorithm computes a
perfect reformulation of 𝑞 with respect to by using only positive inclusions in as rewriting rules (we refer the reader to [18] for
additional details). The following proposition establishes correctness of PerfectRef.

Proposition 1 ([18]). Let ∪ be a consistent DL-Lite ontology and let 𝑞 be a BCQ. Then, ∪ ⊧ 𝑞 if and only if ⊧ PerfectRef(𝑞,).

We also point out that all the complexity results given in this paper are concerned with data complexity [23], that in our frame-

work is the complexity computed only with respect to the size of the ABox. Specifically, we will refer to the following complexity
classes [24]:

• NP, which is the set of decision problems decidable by a non-deterministic Turing machine in polynomial time;

• coNP, which is the set of decision problems whose complement is in NP;

• PTime, which is the set of decision problems decidable by a deterministic Turing machine in polynomial time;

• LogSpace, which is the set of decision problems decidable by a deterministic Turing machine requiring a logarithmic amount
of writable memory space;

• AC0, which is the set of decision problems decidable by a uniform family of circuits of constant depth and polynomial size, with
unlimited fan-in AND gates and OR gates.

As already remarked in the introduction, although we limit our technical treatment to languages containing only closed formulae,
our results also hold for open formulae.

3. CQE framework

Our framework for CQE is adapted from the one presented in [8].

An CQE instance is a triple ⟨ , , ⟩, where is a TBox in the DL , is an ABox such that ∪ is consistent, and is
the policy, i.e. a set of denial assertions over the signature of ∪, such that ∪ is consistent. Intuitively, is the schema a user
5

interacts with to pose her queries; is the dataset underlying the schema; specifies the knowledge that cannot be disclosed for

Artificial Intelligence 334 (2024) 104176G. Cima, D. Lembo, R. Rosati et al.

confidentiality reasons, in the sense that the user will never get, through query answers, sufficient knowledge to violate the denials
in .2 In the following, when the language used for the TBox is not specified we intend = 𝐅𝐎.

We then define a censor for a CQE instance.

Definition 1. Given a CQE instance = ⟨ , , ⟩ and a language 𝑐 ⊆ 𝐅𝐎(∪), a censor for in 𝑐 (also called 𝑐 censor for)
is a Boolean-valued function 𝖼𝖾𝗇𝗌 ∶ 𝑐 → {𝑡𝑟𝑢𝑒, 𝑓𝑎𝑙𝑠𝑒} such that:

(𝑖) for each 𝜙 ∈ 𝑐 , if 𝖼𝖾𝗇𝗌(𝜙) = true then ∪ ⊧ 𝜙, and

(𝑖𝑖) ∪ ∪ 𝖳𝗁(𝖼𝖾𝗇𝗌) is consistent, where 𝖳𝗁(𝖼𝖾𝗇𝗌) = {𝜙 ∈ 𝑐 ∣ 𝖼𝖾𝗇𝗌(𝜙) = true} and is called the theory of the censor 𝖼𝖾𝗇𝗌.

The set of theories of all the censors in 𝑐 for a CQE instance is denoted by 𝖳𝗁𝖲𝑐
(). The language 𝑐 is called the censor

language.

Intuitively, the censor establishes if a sentence in 𝑐 can be divulged to the user while preserving the policy. More precisely, the
sentences from 𝑐 that the censor discloses are the ones that are entailed by the TBox and the theory of the censor.

Among all censors, optimal ones are the most important, since they maximize the answers returned to users.

Definition 2. Given a CQE instance = ⟨ , , ⟩, a language 𝑐 ⊆ 𝐅𝐎(∪), and a censor 𝖼𝖾𝗇𝗌 for in 𝑐 , we say that 𝖼𝖾𝗇𝗌 is
optimal for in 𝑐 if there does not exist a censor 𝖼𝖾𝗇𝗌′ for in 𝑐 such that 𝖳𝗁(𝖼𝖾𝗇𝗌) ⊂ 𝖳𝗁(𝖼𝖾𝗇𝗌′).

The set of theories of all the optimal censors in 𝑐 for a CQE instance is denoted by 𝖮𝖳𝗁𝖲𝑐
().

Example 3. Let us consider again the pharmacy domain used in Example 2, but for the sake of simplicity do not bring TBox
assertions into play. We define the CQE instance = ⟨ , , ⟩, where = ∅, = {𝖻𝗎𝗒(𝑐1, 𝑚𝐴), 𝖻𝗎𝗒(𝑐1, 𝑚𝐵), 𝖻𝗎𝗒(𝑐2, 𝑚𝐴)}, and
 = {∀𝑥(𝖻𝗎𝗒(𝑥, 𝑚𝐴) ∧ 𝖻𝗎𝗒(𝑥, 𝑚𝐵) → ⊥)}. The policy specifies as confidential the fact that a customer buys both medicine A and
medicine B (this may reveal an embarrassing disease). The optimal censors for in 𝐂𝐐(∪) are only 𝖼𝖾𝗇𝗌1 and 𝖼𝖾𝗇𝗌2, where:

− 𝖳𝗁(𝖼𝖾𝗇𝗌1) consists of the BCQs ∃𝑥(𝖻𝗎𝗒(𝑥, 𝑚𝐵)), 𝖻𝗎𝗒(𝑐1, 𝑚𝐴), 𝖻𝗎𝗒(𝑐2, 𝑚𝐴), as well as all the queries in 𝐂𝐐(∪) that these BCQs
infer;

− 𝖳𝗁(𝖼𝖾𝗇𝗌2) consists of the BCQs 𝖻𝗎𝗒(𝑐1, 𝑚𝐵), 𝖻𝗎𝗒(𝑐2, 𝑚𝐴), as well as all the queries in 𝐂𝐐(∪) that these BCQs infer;

If we instead restrict the censor language to (i.e. censor theories can only contain facts of the ABox), we still have only two optimal
censors, which are as follows:

− 𝖳𝗁(𝖼𝖾𝗇𝗌3) = {𝖻𝗎𝗒(𝑐1, 𝑚𝐴), 𝖻𝗎𝗒(𝑐2, 𝑚𝐴)};

− 𝖳𝗁(𝖼𝖾𝗇𝗌4) = {𝖻𝗎𝗒(𝑐1, 𝑚𝐵), 𝖻𝗎𝗒(𝑐2, 𝑚𝐴)}.

Notice that, since in this example the TBox is empty, the above censors 𝖼𝖾𝗇𝗌3 and 𝖼𝖾𝗇𝗌4 are also optimal censors for in 𝐆𝐀. □

We introduce below a notation which is useful for formalizing the entailment problems studied in this paper.

Definition 3. Let = ⟨ , , ⟩ be a CQE instance, 𝑐 ⊆ 𝐅𝐎(∪), and 𝜙 ∈ 𝐅𝐎(∪). We write ⊧
𝑐𝑞𝑒

𝑐
𝜙, read as entails 𝜙

under 𝑐 censors, if ∪ 𝖳𝗁 ⊧ 𝜙 for every 𝖳𝗁 ∈𝖮𝖳𝗁𝖲𝑐
().

We are now ready to define entailment decision problems in CQE for the censor languages 𝐂𝐐(∪), 𝐂𝐐𝑘(∪) (for every
fixed integer 𝑘 ≥ 1), 𝐆𝐀(∪), and , where and are respectively the TBox and the ABox of the CQE instance at the hand.
We will refer to these problems as entailment under 𝐂𝐐 censors, entailment under 𝐂𝐐𝑘 censors, entailment under 𝐆𝐀 censors, and
entailment under ABox censors, respectively. The definitions are parametric with respect to the ontology language (i.e. the language
used to express the TBox) and the query language (i.e. the language used to express the user query).

Problem: CQ-Cens-Entailment(,)

Input: A CQE instance = ⟨ ,,⟩, a Boolean query 𝜙 ∈

Question: Does ⊧
𝑐𝑞𝑒

𝐂𝐐(∪) 𝜙?
6

2 Our notion of policy generalizes the one given in [8], where is a single CQ.

Artificial Intelligence 334 (2024) 104176G. Cima, D. Lembo, R. Rosati et al.

Problem: CQ𝑘-Cens-Entailment(,)

Input: A CQE instance = ⟨ ,,⟩, a Boolean query 𝜙 ∈

Question: Does ⊧
𝑐𝑞𝑒

𝐂𝐐𝑘(∪) 𝜙?

Problem: GA-Cens-Entailment(,)

Input: A CQE instance = ⟨ ,,⟩, a Boolean query 𝜙 ∈

Question: Does ⊧
𝑐𝑞𝑒

𝐆𝐀(∪) 𝜙?

Problem: ABox-Cens-Entailment(,)

Input: A CQE instance = ⟨ ,,⟩, a Boolean query 𝜙 ∈

Question: Does ⊧
𝑐𝑞𝑒

𝜙?

We remark that all the above mentioned problems collapse to standard query entailment in ∪ in the case when ∪ ∪ in
consistent, that is, if the original ontology does not contain confidential data with respect to the policy.

Hereinafter, to simplify the notation, we will sometimes omit to specify that a censor language is limited to the signature of ∪,
e.g. we will use 𝐂𝐐 instead of 𝐂𝐐(∪), when the signature is clear from the context.

The following example shows that, in general, the entailment problems above defined are incomparable to each other, when =
𝐂𝐐. Moreover, it also shows that, if we consider as censor languages the ABox and 𝐆𝐀 or the ABox and 𝐂𝐐, then the incomparability
holds even for instance checking.3

Example 4. Consider the following CQE instance = ⟨ , , ⟩, where:

 = { 𝐵 ⊑ 𝐶,𝐵 ⊑𝐷,𝐸 ⊑ ∃𝑅 }
 = { 𝐴(𝑜1),𝐵(𝑜1),𝐸(𝑜2), 𝐹 (𝑜2) }
 = { ∀𝑥(𝐴(𝑥) ∧𝐶(𝑥)→ ⊥), ∀𝑥, 𝑦(𝐹 (𝑥) ∧𝑅(𝑥, 𝑦)→ ⊥),

∀𝑥(𝐵(𝑥) ∧𝐶(𝑥)→ ⊥), ∀𝑥, 𝑦(𝐸(𝑥) ∧𝑅(𝑥, 𝑦)→ ⊥) }

If the censor language is the CQE instance ABox , then we have only one optimal censor 𝖼𝖾𝗇𝗌1 for whose theory is:

− 𝖳𝗁(𝖼𝖾𝗇𝗌1) = {𝐴(𝑜1), 𝐹 (𝑜2)}

Differently, if we consider 𝐆𝐀 as censor language, then we have the two optimal censors 𝖼𝖾𝗇𝗌2 and 𝖼𝖾𝗇𝗌3 for whose theories are:

− 𝖳𝗁(𝖼𝖾𝗇𝗌2) = {𝐴(𝑜1), 𝐷(𝑜1), 𝐹 (𝑜2)}
− 𝖳𝗁(𝖼𝖾𝗇𝗌3) = {𝐶(𝑜1), 𝐷(𝑜1), 𝐹 (𝑜2)}

In case the censor language is 𝐂𝐐, we have four optimal censors for that are as follows:

− 𝖳𝗁(𝖼𝖾𝗇𝗌4) contains the sentences 𝐴(𝑜1), 𝐷(𝑜1), 𝐹 (𝑜2), ∃𝑥(𝐶(𝑥)), ∃𝑥, 𝑦(𝑅(𝑥, 𝑦)), and all the sentences in 𝐂𝐐 inferred by them;

− 𝖳𝗁(𝖼𝖾𝗇𝗌5) contains the sentences 𝐴(𝑜1), 𝐷(𝑜1), ∃𝑦(𝑅(𝑜2, 𝑦)), ∃𝑥(𝐶(𝑥)), ∃𝑥(𝐹 (𝑥)), and all the sentences in 𝐂𝐐 inferred by them;

− 𝖳𝗁(𝖼𝖾𝗇𝗌6) contains the sentences 𝐶(𝑜1), 𝐷(𝑜1), 𝐹 (𝑜2), ∃𝑥(𝐴(𝑥)), ∃𝑥, 𝑦(𝑅(𝑥, 𝑦)), and all the sentences in 𝐂𝐐 inferred by them;

− 𝖳𝗁(𝖼𝖾𝗇𝗌7) contains the sentences 𝐶(𝑜1), 𝐷(𝑜1), ∃𝑦(𝑅(𝑜2, 𝑦)), ∃𝑥(𝐴(𝑥)), ∃𝑥(𝐹 (𝑥)), and all the sentences in 𝐂𝐐 inferred by them.

Now, consider the following sentences:

𝜙1 =𝐴(𝑜1), 𝜙2 =𝐷(𝑜1), 𝜙3 = 𝐹 (𝑜2), 𝜙4 = ∃𝑥, 𝑦(𝑅(𝑥, 𝑦)).

We have that:

− ⊧
𝑐𝑞𝑒

𝜙1, whereas ̸⊧𝑐𝑞𝑒𝐆𝐀 𝜙1 and ̸⊧𝑐𝑞𝑒𝐂𝐐 𝜙1;

− ⊧
𝑐𝑞𝑒

𝐆𝐀 𝜙2 and ⊧
𝑐𝑞𝑒

𝐂𝐐 𝜙2, whereas ̸⊧𝑐𝑞𝑒

𝜙2;

3 In the example, we show the pairwise incomparability between entailment under ABox censors, 𝐆𝐀 censors, and 𝐂𝐐 censors. Moreover, it is easy to verify
that the CQE instance considered here also shows the pairwise incomparability between entailment under ABox censors, 𝐆𝐀 censors, and 𝐂𝐐1 censors. Finally, the
7

incomparability between entailment under 𝐂𝐐𝑘 censors and 𝐂𝐐 censors will be illustrated in Section 6 (see in particular the proof of Theorem 12).

Artificial Intelligence 334 (2024) 104176G. Cima, D. Lembo, R. Rosati et al.

− ⊧
𝑐𝑞𝑒

𝐆𝐀 𝜙3 and ⊧
𝑐𝑞𝑒

𝜙3, whereas ̸⊧𝑐𝑞𝑒𝐂𝐐 𝜙3;

− ⊧
𝑐𝑞𝑒

𝐂𝐐 𝜙4, whereas ̸⊧𝑐𝑞𝑒

𝜙4 and ̸⊧𝑐𝑞𝑒𝐆𝐀 𝜙4. □

Surprisingly, we can show that instance checking under 𝐂𝐐 censors is a sound approximation of instance checking under 𝐆𝐀
censors. Indeed, this property is a consequence of a more general result that we establish for censor languages of increasing expres-

siveness. To prove this result, we need the following lemma (which will be also useful for other results of the next sections).

Lemma 1. Let = ⟨ , , ⟩ be a CQE instance, ⊆ 𝐅𝐎 be a language, 𝜙 ∈ be a sentence, and 𝖳𝗁 ∈ 𝖮𝖳𝗁𝖲() be the theory of an
optimal censor for in . We have that ∪ 𝖳𝗁 ⊧ 𝜙 if and only if 𝜙 ∈ 𝖳𝗁.

Proof. The if-part is immediate. Indeed, if 𝜙 ∈ 𝖳𝗁, then obviously ∪ 𝖳𝗁 ⊧ 𝜙.

Suppose now that ∪ 𝖳𝗁 ⊧ 𝜙. By way of contradiction, assume that 𝜙 ∉ 𝖳𝗁. We now prove that 𝖳𝗁′ = 𝖳𝗁 ∪ {𝜙} is such that
𝖳𝗁′ ∈ 𝖳𝗁𝖲(), thus as per Definition 2 contradicting the fact that 𝖳𝗁 ∈𝖮𝖳𝗁𝖲() because 𝖳𝗁 ⊂ 𝖳𝗁′.

By condition (i) of Definition 1, we know that 𝖳𝗁 can contain only sentences entailed by ∪. So, since ∪𝖳𝗁 ⊧ 𝜙 by assumption,
due to the monotonicity of first-order logic we derive that ∪ ⊧ 𝜙 as well. Together with the fact that 𝖳𝗁 ∈𝖮𝖳𝗁𝖲(), this implies
that the function 𝖼𝖾𝗇𝗌′ over such that 𝖼𝖾𝗇𝗌′(𝜙) = true if and only if 𝜙 ∈ 𝖳𝗁′ satisfies condition (i) of Definition 1. Furthermore, by
condition (ii) of Definition 1 we know that ∪ ∪𝖳𝗁 is consistent. So, since ∪𝖳𝗁 ⊧ 𝜙 by assumption, we derive that ∪ ∪𝖳𝗁∪{𝜙}
is consistent as well. This implies that the function 𝖼𝖾𝗇𝗌′ also satisfies condition (ii) of Definition 1, and therefore 𝖼𝖾𝗇𝗌′ is a censor
for in and 𝖳𝗁′ is its theory. Thus, 𝖳𝗁′ ∈ 𝖳𝗁𝖲(), as required. □

We are now able to prove the property we mentioned above.

Proposition 2. Let = ⟨ , , ⟩ be a CQE instance, 1 and 2 be two languages such that 1 ⊆2 ⊆ 𝐅𝐎, and 𝜙 ∈1 be a sentence. We
have that if ⊧

𝑐𝑞𝑒

2
𝜙, then ⊧

𝑐𝑞𝑒

1
𝜙.

Proof. Assume ̸⊧𝑐𝑞𝑒
1

𝜙, i.e. there exists 𝖳𝗁1
∈ 𝖮𝖳𝗁𝖲1

() such that ∪ 𝖳𝗁1
̸⊧ 𝜙. Since 1 ⊆ 2, one can easily obtain a theory

𝖳𝗁2
∈ 𝖮𝖳𝗁𝖲2

() starting from 𝖳𝗁1
as follows: 𝖳𝗁2

= 𝖳𝗁1
∪ Δ, where Δ is any maximal subset of 2

= {𝛼 ∈ 2 ∣ ∪ ⊧ 𝛼}

such that ∪ ∪ 𝖳𝗁1
∪ Δ is consistent.

Using the same arguments provided in the proof of Lemma 1, there cannot be an 𝛼 ∈1 such that 𝛼 ∈Δ and 𝛼 ∉ 𝖳𝗁1
, otherwise

this would contradict the optimality of 𝖳𝗁1
. So 𝜙 ∉ Δ because ∪ 𝖳𝗁1

̸⊧ 𝜙. Since 𝜙 ∈ 1 by initial assumption, 𝜙 ∉ 𝖳𝗁1
, and

𝜙 ∉Δ, we derive that 𝜙 ∉ 𝖳𝗁2
.

Due to Lemma 1, we know that ∪ 𝖳𝗁2
⊧ 𝛼 if and only if 𝛼 ∈ 𝖳𝗁2

holds for any 𝛼 ∈ 2. Thus, since 𝜙 ∈ 1, 1 ⊆ 2, and
𝜙 ∉ 𝖳𝗁2

, we can immediately derive that ∪ 𝖳𝗁2
̸⊧ 𝜙 as well. Hence, it follows that ̸⊧𝑐𝑞𝑒

2
𝜙. □

We remark that the converse of the above property does not necessarily hold, as Example 4 shows for 𝐂𝐐 and 𝐆𝐀.

Moreover, the following result, whose proof easily follows from Definition 1, shows that censors are independent from the syntax
used to express the CQE instance.

Proposition 3. Let = ⟨ , , ⟩ and ′ = ⟨ ′, ′, ′⟩ be two CQE instances such that 𝑠𝑖𝑔(∪) = 𝑠𝑖𝑔(′ ∪′), 𝑀𝑜𝑑(∪) =
𝑀𝑜𝑑(′ ∪′), and 𝑀𝑜𝑑(∪) =𝑀𝑜𝑑(′ ∪ ′), and let 𝑐 ⊆ 𝐅𝐎 be a language. We have that 𝖳𝗁𝖲𝑐

() = 𝖳𝗁𝖲𝑐
(′).

Given a censor language 𝑐 and two CQE instances and ′, if 𝖳𝗁𝖲𝑐
() = 𝖳𝗁𝖲𝑐

(′), then we say that and ′ are CQE-equivalent

with respect to 𝑐 .

Proposition 3 immediately implies that GA-Cens-Entailment in a CQE instance = ⟨ , , ⟩ coincides with GA-Cens-Entailment
in ′ = ⟨ , , ⟩.
Proposition 4. Let ⊆ 𝐅𝐎, 𝜙 ∈ , and = ⟨ , , ⟩ be a CQE instance. We have that ⊧

𝑐𝑞𝑒

𝐆𝐀 𝜙 if and only if ′ ⊧𝑐𝑞𝑒

𝜙, where ′ =
⟨ , , ⟩.

We conclude this section by defining the notion of FO rewritability for BCQ entailments in CQE, which will be used in the next
two sections.

Let ∈ {𝐴𝐵𝑜𝑥, 𝐆𝐀, 𝐂𝐐𝑘, 𝐂𝐐} and ∈ {𝐆𝐀, 𝐂𝐐∃, 𝐂𝐐}. We say that -Cens-Entailment(,) is FO rewritable if for each TBox
in the language and policy such that ∪ is consistent, and for each 𝑞 ∈, it is possible to effectively compute an FO query
𝑞𝑟 such that, for each ABox such that ∪ is consistent, ⟨ , , ⟩ ⊧𝑐𝑞𝑒

𝑞 if and only if ⊧ 𝑞𝑟.

4. Relationship between CQE and CQA
8

In this section, we discuss the relationship between the CQE framework we have just defined and CQA.

Artificial Intelligence 334 (2024) 104176G. Cima, D. Lembo, R. Rosati et al.

An CQA instance is a pair ⟨ , ⟩, where is a consistent TBox in the DL , is an ABox, and ∪ is a possibly inconsistent
ontology. The semantics of CQA is based on the notion of repair. Below, we provide the prototypical definition of a repair for a CQA
instance.

Definition 4. A repair for a CQA instance = ⟨ , ⟩ is a set such that:

(𝑖) ⊆;

(𝑖𝑖) ∪ is consistent;

(𝑖𝑖𝑖) there does not exist any ′ such that ⊂′ ⊆ and ∪′ is consistent.

We denote by 𝖱𝖾𝗉𝖲() the set of repairs for a CQA instance .

Given a CQA instance = ⟨ , ⟩, each repair ∈ 𝖱𝖾𝗉𝖲() aims to restore consistency with while preserving as many facts
as possible of those belonging to . Indeed, in the DL literature, the above semantics for CQA is known with the name of ABox-repair
semantics, or simply AR-semantics, and is among the ones that have been most thoroughly investigated [14,17,11,25].

Based on the notion of repair given in the above definition, we define entailment in CQA under the AR-semantics.

Definition 5. Let = ⟨ , ⟩ be a CQA instance and 𝜙 ∈ 𝐅𝐎. We say that AR-entails 𝜙, denoted by ⊧AR 𝜙, if ∪ ⊧ 𝜙 for every
 ∈ 𝖱𝖾𝗉𝖲().

We now provide some results that allow to establish correspondences between (theories of) censors and repairs.

The following lemma shows that, for the censor language , the set of theories of the optimal censors for a CQE instance =
⟨ , , ⟩ coincides with the set of repairs for the CQA instance = ⟨ ∪ , ⟩.
Lemma 2. Let = ⟨ , , ⟩ be a CQE instance. We have that 𝖮𝖳𝗁𝖲(⟨ , , ⟩) = 𝖱𝖾𝗉𝖲(⟨ ∪ , ⟩).
Proof. We start by showing that 𝖱𝖾𝗉𝖲(⟨ ∪ , ⟩) ⊆ 𝖮𝖳𝗁𝖲(⟨ , , ⟩). Let ∈ 𝖱𝖾𝗉𝖲(⟨ ∪ , ⟩). From Definition 4, we have
that is a maximal subset of such that ∪ ∪ is consistent. Therefore, from Definition 1 and Definition 2, there exists a censor
𝖼𝖾𝗇𝗌 for in such that = 𝖳𝗁(𝖼𝖾𝗇𝗌) and 𝖳𝗁(𝖼𝖾𝗇𝗌) ∈𝖮𝖳𝗁𝖲(⟨ , , ⟩).

We now show that 𝖮𝖳𝗁𝖲(⟨ , , ⟩) ⊆ 𝖱𝖾𝗉𝖲(⟨ ∪ , ⟩). We soon notice that ∪ is consistent by definition of CQE instance,
and thus ⟨ ∪ , ⟩ is indeed a CQA instance. Let us now consider any Γ ∈𝖮𝖳𝗁𝖲(⟨ , , ⟩). From Definition 1 we have that Γ ⊆.
Hence, condition (𝑖) of Definition 4 is verified for Γ. Fulfillment of condition (𝑖𝑖) of Definition 4 directly follows from condition (𝑖𝑖)
of Definition 1. Now, suppose, by way of contradiction, that Γ ∉ 𝖱𝖾𝗉𝖲(⟨ ∪ , ⟩). This may happen only if condition (𝑖𝑖𝑖) of
Definition 4 is not satisfied. This means that there exists an ∈ 𝖱𝖾𝗉𝖲(⟨ ∪ , 𝐴⟩) such that Γ ⊂ . As we have shown before,
𝖱𝖾𝗉𝖲(⟨ ∪ , ⟩) ⊆ 𝖮𝖳𝗁𝖲(⟨ , , ⟩), and thus ∈ 𝖮𝖳𝗁𝖲(⟨ , , ⟩), which contradicts the fact that Γ ∈ 𝖮𝖳𝗁𝖲(⟨ , , ⟩).
Therefore, condition (𝑖𝑖𝑖) of Definition 4 is satisfied, and so Γ ∈ 𝖱𝖾𝗉𝖲(⟨ ∪ , ⟩). □

In order to shift the above correspondence between censors and repairs at the level of entailment problems in the CQA and CQE
frameworks, we need to introduce an additional definition.

Definition 6. Let = ⟨ , , ⟩ be a CQE instance and ⊆ 𝐅𝐎. We say that is policy independent with respect to -entailment,
or simply -policy independent, if for every 𝜙 ∈ and every ′ ⊆ such that ∪′ ∪ is consistent, we have that ∪′ ∪ ⊧ 𝜙

if and only if ∪′ ⊧ 𝜙.

As we will show later, every DL-Lite or ⊥ CQE instance is 𝐂𝐐-policy independent. As an example of non-policy independence,
consider the CQE instance = ⟨ , , ⟩, where = {𝐴 ⊑ 𝐵 ⊔𝐶} (i.e. the TBox contains an axiom stating that instances of concept
𝐴 must be also instances of the union of concept 𝐵 and concept 𝐶), = {𝐴(𝑎)}, and = {∀𝑥(𝐴(𝑥) ∧𝐵(𝑥) → ⊥)}. It is not difficult
to see that the query 𝐶(𝑎) is entailed by ∪ ∪ but it is not entailed by ∪.

Clearly, by definition, if a CQE instance = ⟨ , , ⟩ is -policy independent for a language ⊆ 𝐅𝐎, then is also ′-policy
independent for every language ′ such that ′ ⊆. Roughly speaking, policy independence with respect to a language guarantees
that in a CQE instance the sentences in the policy act only as constraints on top of ∪ for the entailment of sentences in . Observe
that ∪ can contradict denials in .

The following theorem establishes the relationship existing between entailment of sentences in under ABox censors and under
the 𝐴𝑅-semantics for an -policy independent CQE instance.

Theorem 1. Let ⊆ 𝐅𝐎, 𝜙 ∈ , and = ⟨ , , ⟩ be an -policy independent CQE instance. We have that ⊧
𝑐𝑞𝑒

𝜙 if and only if
9

⟨ ∪ , ⟩ ⊧AR 𝜙.

Artificial Intelligence 334 (2024) 104176G. Cima, D. Lembo, R. Rosati et al.

Proof. Since is -policy independent, then, for each 𝜙 ∈ and for each repair ∈ 𝖱𝖾𝗉𝖲(⟨ ∪ , ⟩), we have that ∪ ∪ ⊧ 𝜙

if and only if ∪ ⊧ 𝜙 (recall that ⊆ by definition). Then, the claim directly follows from Lemma 2, since 𝖮𝖳𝗁𝖲(⟨ , , ⟩) =
𝖱𝖾𝗉𝖲(⟨ ∪ , ⟩). □

The following lemma is the analogous of Lemma 2 for optimal censors in 𝐆𝐀. Notice that in this case the 𝐴𝑅-repairs are computed
for an ontology whose ABox is the ground closure , where and are the ABox and the TBox of the CQE instance.

Lemma 3. Let = ⟨ , , ⟩ be a CQE instance. We have that 𝖮𝖳𝗁𝖲𝐆𝐀() = 𝖱𝖾𝗉𝖲
(⟨ ∪ , ⟩).

Proof. Since Mod(∪) = Mod(∪), then, from Proposition 3, we derive that and ⟨ , , ⟩ are CQE-equivalent with
respect to any censor language 𝑐 ⊆ 𝐅𝐎. So, if we consider 𝑐 = 𝐆𝐀, then we have that 𝖳𝗁𝖲𝐆𝐀() = 𝖳𝗁𝖲𝐆𝐀(⟨ , , ⟩), which
clearly implies that 𝖮𝖳𝗁𝖲𝐆𝐀() =𝖮𝖳𝗁𝖲𝐆𝐀(⟨ , , ⟩).

Now we prove that 𝖮𝖳𝗁𝖲𝐆𝐀(⟨ , , ⟩) = 𝖮𝖳𝗁𝖲
(⟨ , , ⟩). Let Γ ∈ 𝖳𝗁𝖲𝐆𝐀(⟨ , , ⟩). From Definition 1, it follows

that Γ ⊆ 𝐆𝐀, that ∪ ⊧ 𝛾 for each 𝛾 ∈ Γ, and that ∪ ∪ Γ is consistent. Now, since for every 𝛼 ∈ 𝐆𝐀 we have that
 ∪ ⊧ 𝛼 if and only if 𝛼 ∈ , we have that Γ ⊆ . So, since ∪ ∪ Γ is consistent, by exploiting again Definition 1,
we have that it is possible to define a censor 𝖼𝖾𝗇𝗌 for ⟨ , , ⟩ in such that Γ = 𝖳𝗁(𝖼𝖾𝗇𝗌). So, Γ ∈ 𝖳𝗁𝖲

(⟨ , , ⟩).
Thus, 𝖳𝗁𝖲𝐆𝐀(⟨ , , ⟩) ⊆ 𝖳𝗁𝖲

(⟨ , , ⟩). The other way around, i.e. 𝖳𝗁𝖲
(⟨ , , ⟩) ⊆ 𝖳𝗁𝖲𝐆𝐀(⟨ , , ⟩), can be

shown in the same way by observing that ⊆ 𝐆𝐀. We have that 𝖳𝗁𝖲𝐆𝐀(⟨ , , ⟩) = 𝖳𝗁𝖲
(⟨ , , ⟩), and therefore that

𝖮𝖳𝗁𝖲𝐆𝐀(⟨ , , ⟩) =𝖮𝖳𝗁𝖲
(⟨ , , ⟩).

From the results given so far, we have the following equalities: 𝖮𝖳𝗁𝖲𝐆𝐀() = 𝖮𝖳𝗁𝖲𝐆𝐀(⟨ , , ⟩) and 𝖮𝖳𝗁𝖲𝐆𝐀(⟨ , , ⟩) =
𝖮𝖳𝗁𝖲

(⟨ , , ⟩), from which it directly follows that 𝖮𝖳𝗁𝖲𝐆𝐀() =𝖮𝖳𝗁𝖲
(⟨ , , ⟩). By exploiting Lemma 2, we also have

that 𝖮𝖳𝗁𝖲
(⟨ , , ⟩) = 𝖱𝖾𝗉𝖲

(⟨ ∪ , ⟩), from which we have the claim. □

Lemma 3 soon implies the following result on entailments, when policy independency comes into play.

Theorem 2. Let ⊆ 𝐅𝐎, 𝜙 ∈, and = ⟨ , , ⟩ be a CQE instance such that ⟨ , , ⟩ is -policy independent. We have that ⊧
𝑐𝑞𝑒

𝐆𝐀 𝜙

if and only if ⟨ ∪ , ⟩ ⊧AR 𝜙.

Proof. From Lemma 3 we have that 𝖮𝖳𝗁𝖲𝐆𝐀() = 𝖱𝖾𝗉𝖲
(⟨ ∪ , ⟩). Since ⟨ , , ⟩ is -policy independent, from Theorem 1,

we derive that ⟨ , , ⟩ ⊧𝑐𝑞𝑒

𝜙 if and only if ⟨ ∪ , ⟩ ⊧AR 𝜙 holds for each 𝜙 ∈ . Due to Proposition 4, we have ⟨ , , ⟩ ⊧𝑐𝑞𝑒

𝜙 if and only if ⊧
𝑐𝑞𝑒

𝐆𝐀 𝜙. It follows that, for each 𝜙 ∈ , ⊧
𝑐𝑞𝑒

𝐆𝐀 𝜙 if and only if ⟨ ∪ , ⟩ ⊧AR 𝜙, as required. □

We conclude this section by considering another popular semantics, called IAR, originally introduced in [14]. Interestingly, en-

tailment of BCQs under the IAR-semantics is in AC0 in data complexity. We first provide the formal definition of IAR-entailment, and
then discuss its relationship with GA-Cens-Entailment.

Definition 7. Let = ⟨ , ⟩ be a CQA instance and 𝜙 ∈ 𝐅𝐎. We say that IAR-entails 𝜙, denoted by ⊧IAR 𝜙, if ∪∩ ⊧ 𝜙, where
∩ =

⋂
𝑖∈𝖱𝖾𝗉𝖲(⟨ ∪ ,⟩)𝑖.

For the case of instance checking, we can establish a precise relationship between IAR-entailment and GA-Cens-Entailment.

Theorem 3. Let = ⟨ , , ⟩ be a 𝐆𝐀-policy independent CQE instance and let 𝛾 ∈ 𝐆𝐀. We have that ⊧
𝑐𝑞𝑒

𝐆𝐀 𝛾 if and only if ⟨ ∪
 , ⟩ ⊧IAR 𝛾 .

Proof. Suppose that ⊧
𝑐𝑞𝑒

𝐆𝐀 𝛾 . As per Definition 3 we have that ∪Γ ⊧ 𝛾 for each Γ ∈𝖮𝖳𝗁𝖲𝐆𝐀(). Thus, by Lemma 1 we immediately
derive that 𝛾 ∈ Γ for each Γ ∈𝖮𝖳𝗁𝖲𝐆𝐀(). Moreover, from Lemma 3 we have that 𝖮𝖳𝗁𝖲𝐆𝐀() = 𝖱𝖾𝗉𝖲

(⟨ ∪ , ⟩). Hence, 𝛾 ∈ Γ
for each Γ ∈ 𝖱𝖾𝗉𝖲

(⟨ ∪ , ⟩). So, we derive that 𝛾 ∈′ as well, where ′ =
⋂

𝑖∈𝖱𝖾𝗉𝖲
(⟨ ∪ , ⟩)𝑖. From the definition of

IAR-entailment (Definition 7), this clearly implies that ⟨ ∪ , ⟩ ⊧IAR 𝛾 , as required.

Conversely, suppose that ⟨ ∪ , 𝐴 ⟩ ⊧IAR 𝛾 . Since IAR-entailment is a sound approximation of AR-entailment [14], we can derive
that ⟨ ∪ , 𝐴 ⟩ ⊧AR 𝛾 . Since = ⟨ , , ⟩ is a 𝐆𝐀-policy independent CQE instance, the CQE instance ⟨ , , ⟩ is 𝐆𝐀-policy
independent as well. Finally, the facts that ⟨ ∪ , 𝐴 ⟩ ⊧AR 𝛾 and ⟨ , , ⟩ is a 𝐆𝐀-policy independent CQE instance, due to
Theorem 2 directly imply that ⊧

𝑐𝑞𝑒

𝐆𝐀 𝛾 . □

The following example shows that Theorem 3 does not extend to entailment of BCQs (actually, already of BCQ∃s) rather than
instance checking.
10

Example 5. Consider the following CQE instance = ⟨ , , ⟩, where:

Artificial Intelligence 334 (2024) 104176G. Cima, D. Lembo, R. Rosati et al.

 = { 𝐵 ⊑ ∃𝑃 ,𝐶 ⊑ ∃𝑃 }
 = { 𝐵(𝑜),𝐶(𝑜) }
 = { ∀𝑥(𝐵(𝑥) ∧𝐶(𝑥)→ ⊥) }

If we consider 𝐆𝐀 as censor language, then we have the two optimal censors 𝖼𝖾𝗇𝗌1 and 𝖼𝖾𝗇𝗌2 for whose theories are:

− 𝖳𝗁(𝖼𝖾𝗇𝗌1) = {𝐵(𝑜)}
− 𝖳𝗁(𝖼𝖾𝗇𝗌2) = {𝐶(𝑜)}

Consider the CQA instance ⟨ ∪ , ⟩. Notice that = , and then ∩ =
⋂

𝑖∈𝖱𝖾𝗉𝖲
(⟨ ∪ , ⟩)𝑖 =

⋂
𝑖∈𝖱𝖾𝗉𝖲(⟨ ∪⟩,)𝑖.

Furthermore, we have 𝖱𝖾𝗉𝖲(⟨ ∪ ,)⟩ =𝖮𝖳𝗁𝖲𝐆𝐀() = {𝖳𝗁(𝖼𝖾𝗇𝗌1), 𝖳𝗁(𝖼𝖾𝗇𝗌2)} (cf. Lemma 2), and therefore ∩ = ∅.

Consider now the BCQ∃ 𝜙 = ∃𝑥, 𝑦(𝑃 (𝑥, 𝑦)). We have that ⊧
𝑐𝑞𝑒

𝐆𝐀 𝜙, whereas ⟨ ∪ , ⟩ ̸⊧IAR 𝜙. □

In this section we have given results about the correspondence between entailment problems in CQA and entailments under either
ABox or 𝐆𝐀 censors in CQE. In the next section, we will exploit the established relationships for devising data complexity results for
ABox-Cens-Entailment and GA-Cens-Entailment of BCQs in the case of DL-Lite and ⊥ CQE instances. As for CQ𝑘-Cens-Entailment
and CQ-Cens-Entailment, we notice that there is no semantic counterpart studied in CQA. Computational complexity of these two
decision problems will be attacked in Section 6 and Section 7 through a tailored approach.

5. CQE under restricted censor languages

In this section we establish the data complexity of the problems 𝐴𝐵𝑜𝑥-𝐶𝑒𝑛𝑠-𝐸𝑛𝑡𝑎𝑖𝑙𝑚𝑒𝑛𝑡(,) and

𝐺𝐴-𝐶𝑒𝑛𝑠-𝐸𝑛𝑡𝑎𝑖𝑙𝑚𝑒𝑛𝑡(,), where ∈ {DL-Lite, ⊥} and ∈ {𝐆𝐀, 𝐂𝐐∃, 𝐂𝐐}. These results allow us to clarify the compu-

tational properties of query answering in CQE when we adopt restricted censor languages, i.e. languages that can be less expressive
than the language used to formulate the queries. We devise such results by exploiting the connection between entailments in CQE
and in CQA.

Let 𝛿 = ∀�⃗�(𝜙(�⃗�) → ⊥) ∈ be a denial assertion. In the following, we denote by 𝑞𝛿 the BCQ ∃�⃗�(𝜙(�⃗�)) (that is equivalent to the
negation of 𝛿).

The next proposition shows that CQE instances in the DL languages considered in this paper are 𝐂𝐐-policy independent. To this
end, we make use of the following folklore lemma.

Lemma 4. Let be either a DL-Lite or ⊥ TBox, let Φ be a set of BCQs such that ∪ Φ is consistent, and let be a policy. Then,
Φ ∪ ∪ is consistent if and only if ∪Φ ̸⊧ 𝑞𝛿 for each 𝛿 ∈ .

Proof. Suppose ∪ Φ ̸⊧ 𝑞𝛿 for each 𝛿 ∈ . Now, let Φ be the ABox obtained from Φ by taking the set of atoms occurring in Φ
and considering every variable symbol as a new individual (assuming that different BCQs in Φ use different variable symbols). It is
immediate to verify that, for every TBox such that is either a DL-Lite or a ⊥ TBox, and for every FO sentence 𝜑 that does not
mention the new individuals, ∪Φ ⊧ 𝜑 if and only if ∪Φ ⊧ 𝜑, which implies that ∪ ∪Φ is consistent if and only if ∪ ∪Φ
is consistent. Now, by hypothesis ∪Φ is consistent, so ∪Φ is consistent. Hence, as shown in [26], ∪Φ ̸⊧ 𝑞𝛿 for each 𝛿 ∈

iff ̸⊧ 𝑞𝛿 for each 𝛿 ∈ (i.e. ⊧), where is the universal model of ∪Φ.4 Since ⊧ ∪Φ and ⊧ , is a model of
 ∪ ∪Φ as well. It follows that Φ ∪ ∪ is consistent, which implies that Φ ∪ ∪ is consistent.

Conversely, suppose that ∪ ∪Φ is consistent, i.e. that such a theory has a model . This immediately implies that ⊧ 𝛿 for
each 𝛿 ∈ , and thus ̸⊧ 𝑞𝛿 for each 𝛿 ∈ . For the monotonicity of first-order logic, is a model of ∪Φ as well. Hence, since
 ̸⊧ 𝑞𝛿 for each 𝛿 ∈ , we get that ∪Φ ̸⊧ 𝑞𝛿 for each 𝛿 ∈ . □

We now turn our attention to the 𝐂𝐐-policy independence property (see Definition 6) and show that all DL-Lite and ⊥ CQE
instances are 𝐂𝐐-policy independent. We will exploit this property in the next subsections to transfer from the CQA literature some
lower bounds for entailment under ABox and 𝐆𝐀 censors.

Proposition 5. Let be either a DL-Lite or an ⊥ CQE instance. We have that is 𝐂𝐐-policy independent.

Proof. It is enough to prove that, given either a DL-Lite or ⊥ TBox , an ABox , and a policy , such that ∪ ∪ is
consistent, then ∪ ∪ ⊧ 𝑞 if and only if ∪ ⊧ 𝑞, for each BCQ 𝑞.

Let , , and be as above and let 𝑞 be a BCQ. If ∪ ⊧ 𝑞, then, due to the monotonicity of first-order logic, we trivially have
that ∪ ∪ ⊧ 𝑞.

Suppose now that ∪ ∪ ⊧ 𝑞. Let be a universal model of ∪. Since ∪ ∪ is consistent by hypothesis, from Lemma 4

we have that ∪ ̸⊧ 𝑞𝛿 for each 𝛿 ∈ . As in the proof of Lemma 4, from the results in [26] it follows that ̸⊧ 𝑞𝛿 for each 𝛿 ∈ (i.e.
11

4 For a definition of universal model (also known as canonical model) we refer to [26].

Artificial Intelligence 334 (2024) 104176G. Cima, D. Lembo, R. Rosati et al.

 ⊧). Since ⊧ ∪ and since ⊧ , we derive that is a model of ∪ ∪ as well. Since ∪ ∪ ⊧ 𝑞 by assumption,
we finally derive, by virtue of the properties of universal models, that ⊧ 𝑞 as well, from which we have that ∪ ⊧ 𝑞. □

5.1. ABox as censor language

We start our study by setting the censor language to the assertions in the ABox, and start by establishing lower bounds for the
case of instance checking and the case of entailment of BCQ∃s.

Theorem 4. For any pair (,) such that ∈ {DL-Lite, ⊥} and ∈ {𝐆𝐀, 𝐂𝐐∃}, we have that 𝐴𝐵𝑜𝑥-𝐶𝑒𝑛𝑠-𝐸𝑛𝑡𝑎𝑖𝑙𝑚𝑒𝑛𝑡(,)
is coNP-hard in data complexity.

Proof. Let = ⟨ , , ⟩ be either a DL-Lite or a ⊥ CQE instance, and let 𝜙 be either a sentence in 𝐆𝐀 or a sentence in 𝐂𝐐∃.
By combining Theorem 1 and Proposition 5, it follows that ⊧

𝑐𝑞𝑒

𝜙 if and only if ⟨ ∪ , ⟩ ⊧AR 𝜙.

Since AR-entailment is coNP-hard in data complexity for both DL-Lite and ⊥ ontologies even for instance checking, as respec-

tively shown in [14, Theorem 3] and [17, Theorem 1], we immediately derive that 𝐴𝐵𝑜𝑥-𝐶𝑒𝑛𝑠-𝐸𝑛𝑡𝑎𝑖𝑙𝑚𝑒𝑛𝑡(, 𝐆𝐀) is coNP-hard
in data complexity for both = DL-Lite and = ⊥. Furthermore, in [11, Theorem 17] it is shown that AR-entailment is
coNP-hard in data complexity for both DL-Lite and ⊥ ontologies for entailment of BCQ∃s. Thus, we immediately derive that
𝐴𝐵𝑜𝑥-𝐶𝑒𝑛𝑠-𝐸𝑛𝑡𝑎𝑖𝑙𝑚𝑒𝑛𝑡(, 𝐂𝐐∃) is coNP-hard in data complexity for both = DL-Lite and = ⊥. □

We now provide matching upper bounds, and show that they hold even for the case of entailment of BCQs. First, for DL-Lite
(resp. ⊥) CQE instances, the next lemma characterizes the entailment of BCQs under ABox censors in terms of standard entailment
of BCQs in DL-Lite (resp. ⊥) ontologies.

Lemma 5. Let = ⟨ , , ⟩ be either a DL-Lite or an ⊥ CQE instance and let 𝑞 be a BCQ. Then, ̸⊧𝑐𝑞𝑒

𝑞 if and only if there exists
Γ ⊆ satisfying the following three conditions: (i) ∪ ∪Γ is consistent, (ii) ∪ ∪Γ ∪ {𝛼} is inconsistent for each 𝛼 ∈ ⧵Γ, and (iii)
 ∪ Γ ̸⊧ 𝑞.

Proof. According to the definition of optimal censors in for (see Definition 2), it is straightforward to verify the following: given
any Γ ⊆, conditions (i) and (ii) are satisfied if and only if Γ ∈𝖮𝖳𝗁𝖲().

Suppose that ⊧
𝑐𝑞𝑒

𝑞. Following Definition 3, we have that ∪𝖳𝗁 ⊧ 𝑞 for each 𝖳𝗁 ∈𝖮𝖳𝗁𝖲(). Thus, due to the above observation,

no Γ ⊆ can satisfy conditions (i), (ii), and (iii) simultaneously.

Conversely, suppose that there exists no Γ ⊆ satisfying (i), (ii), and (iii). Due to the above observation, this means that there
exists no Γ ∈𝖮𝖳𝗁𝖲() such that ∪ Γ ̸⊧ 𝑞, i.e. it holds that ∪ Γ ⊧ 𝑞 for each Γ ∈𝖮𝖳𝗁𝖲(). Thus, by Definition 3, it follows that
 ⊧

𝑐𝑞𝑒

𝑞. □

Notice that, due to Lemma 4, conditions (i) and (ii) in the above lemma can be equivalently reformulated in terms of standard
entailment as follows: (i)’ ∪ Γ ̸⊧ 𝑞𝛿 for each 𝛿 ∈ and (ii)’ for any 𝛼 ∈ ⧵ Γ, there is a 𝛿 ∈ such that ∪ Γ ∪ {𝛼} ⊧ 𝑞𝛿 . We are
now ready to provide the matching upper bounds.

Theorem 5. Both 𝐴𝐵𝑜𝑥-𝐶𝑒𝑛𝑠-𝐸𝑛𝑡𝑎𝑖𝑙𝑚𝑒𝑛𝑡(DL-Lite, 𝐂𝐐) and 𝐴𝐵𝑜𝑥-𝐶𝑒𝑛𝑠-𝐸𝑛𝑡𝑎𝑖𝑙𝑚𝑒𝑛𝑡(⊥, 𝐂𝐐) are in coNP in data complexity.

Proof. By Lemma 5, it directly follows that the problem of establishing whether ̸⊧𝑐𝑞𝑒

𝑞, which is the complement of our problem,
can be solved in non-deterministic polynomial time in data complexity by first guessing a subset Γ of the ABox and then checking
conditions (i), (ii), and (iii). Since ∪ is a consistent DL-Lite (resp. ⊥) ontology and since BCQ entailment in DL-Lite (resp. ⊥)
ontologies is in AC0 (resp. in PTime) in data complexity [18] (resp. [27]), all the three conditions can be verified in polynomial time
with respect to the size of the ABox. This proves a coNP upper bound for both the problems 𝐴𝐵𝑜𝑥-𝐶𝑒𝑛𝑠-𝐸𝑛𝑡𝑎𝑖𝑙𝑚𝑒𝑛𝑡(DL-Lite, 𝐂𝐐)
and 𝐴𝐵𝑜𝑥-𝐶𝑒𝑛𝑠-𝐸𝑛𝑡𝑎𝑖𝑙𝑚𝑒𝑛𝑡(⊥, 𝐂𝐐). □

Note that membership in coNP of 𝐴𝐵𝑜𝑥-𝐶𝑒𝑛𝑠-𝐸𝑛𝑡𝑎𝑖𝑙𝑚𝑒𝑛𝑡(DL-Lite, 𝐂𝐐) also follows from Theorem 1, Proposition 5, and from
the fact that AR-entailment of BCQs is in coNP for DL-Lite,𝑑𝑒𝑛 ontologies, as shown in [14]. Obviously, Theorem 5 implies that
𝐴𝐵𝑜𝑥-𝐶𝑒𝑛𝑠-𝐸𝑛𝑡𝑎𝑖𝑙𝑚𝑒𝑛𝑡(,) is in coNP for ∈ {DL-Lite, ⊥} and ∈ {𝐆𝐀, 𝐂𝐐∃}.

With the above theorems, we can establish the precise data complexity of 𝐴𝐵𝑜𝑥-𝐶𝑒𝑛𝑠-𝐸𝑛𝑡𝑎𝑖𝑙𝑚𝑒𝑛𝑡(,), when ∈
{DL-Lite, ⊥} and ∈ {𝐂𝐐, 𝐂𝐐∃, 𝐆𝐀}.

Corollary 1. For any pair (,) such that ∈ {DL-Lite, ⊥} and ∈ {𝐆𝐀, 𝐂𝐐∃, 𝐂𝐐}, we have that 𝐴𝐵𝑜𝑥-𝐶𝑒𝑛𝑠-𝐸𝑛𝑡𝑎𝑖𝑙𝑚𝑒𝑛𝑡(,
12

) is coNP-complete in data complexity.

Artificial Intelligence 334 (2024) 104176G. Cima, D. Lembo, R. Rosati et al.

5.2. GA as censor language

We now consider the case in which the censor language coincides with 𝐆𝐀.

First of all, from the above studied ABox-Cens-Entailment problems and by exploiting Proposition 4, we can immediately derive
upper bounds for our GA-Cens-Entailment problems.

Theorem 6. Both 𝐺𝐴-𝐶𝑒𝑛𝑠-𝐸𝑛𝑡𝑎𝑖𝑙𝑚𝑒𝑛𝑡(DL-Lite, 𝐂𝐐) and 𝐺𝐴-𝐶𝑒𝑛𝑠-𝐸𝑛𝑡𝑎𝑖𝑙𝑚𝑒𝑛𝑡(⊥, 𝐂𝐐) are in coNP in data complexity.

Proof. For ∈ {DL-Lite, ⊥}, we provide a polynomial time reduction from 𝐺𝐴-𝐶𝑒𝑛𝑠-𝐸𝑛𝑡𝑎𝑖𝑙𝑚𝑒𝑛𝑡(, 𝐂𝐐) to

𝐴𝐵𝑜𝑥-𝐶𝑒𝑛𝑠-𝐸𝑛𝑡𝑎𝑖𝑙𝑚𝑒𝑛𝑡(, 𝐂𝐐).
From Proposition 4 it follows that, given either a DL-Lite or an ⊥ CQE instance = ⟨ , , ⟩ and a BCQ 𝑞, we can decide

whether ⊧
𝑐𝑞𝑒

𝐆𝐀 𝑞 by first constructing a CQE instance ′ = ⟨ , , ⟩ and then checking whether ′ ⊧𝑐𝑞𝑒

𝑞. Clearly, this reduction
can be carried out in polynomial time because can be always computed in polynomial time for every ABox and TBox
expressed either in DL-Lite or in ⊥. The claimed upper bound then follows from Theorem 5, establishing membership in coNP of
𝐴𝐵𝑜𝑥-𝐶𝑒𝑛𝑠-𝐸𝑛𝑡𝑎𝑖𝑙𝑚𝑒𝑛𝑡(, 𝐂𝐐) for ∈ {DL-Lite, ⊥}. □

We note that the above results for DL-Lite also follow from Theorem 2 and from the fact that AR-entailment of BCQs is in coNP for
DL-Lite,𝑑𝑒𝑛 ontologies [14]. Obviously, Theorem 6 implies that 𝐺𝐴-𝐶𝑒𝑛𝑠-𝐸𝑛𝑡𝑎𝑖𝑙𝑚𝑒𝑛𝑡(,) is in coNP for ∈ {DL-Lite, ⊥}
and ∈ {𝐆𝐀, 𝐂𝐐∃}.

We now provide matching lower bounds for the ⊥ cases and for entailment of BCQ∃s by DL-Lite CQE instances under 𝐆𝐀
censors. For the remaining 𝐺𝐴-𝐶𝑒𝑛𝑠-𝐸𝑛𝑡𝑎𝑖𝑙𝑚𝑒𝑛𝑡(DL-Lite, 𝐆𝐀), instead, we will prove an AC0 membership in data complexity of the
problem.

We start with the ⊥ ontology language, by showing coNP-hardness already for instance checking and for entailment of BCQ∃s.

We observe that [11, Theorem 29] shows that instance checking under the IAR semantics is coNP-hard for ⊥ ontologies. One
might thus think that, in order to prove the same lower bound for 𝐺𝐴-𝐶𝑒𝑛𝑠-𝐸𝑛𝑡𝑎𝑖𝑙𝑚𝑒𝑛𝑡(⊥, 𝐆𝐀), it is enough to make use of
Theorem 3. However, [11, Theorem 29] cannot be directly used for our aims, because it is shown through a reduction that does not
work if we replace the ABoxes with their deductive closure with respect to the fixed TBox.5

We thus provide a tailored proof, which uses a slight modification of the above mentioned reduction.

Theorem 7. Both 𝐺𝐴-𝐶𝑒𝑛𝑠-𝐸𝑛𝑡𝑎𝑖𝑙𝑚𝑒𝑛𝑡(⊥, 𝐆𝐀) and 𝐺𝐴-𝐶𝑒𝑛𝑠-𝐸𝑛𝑡𝑎𝑖𝑙𝑚𝑒𝑛𝑡(⊥, 𝐂𝐐∃) are coNP-hard in data complexity.

Proof. We start with the 𝐆𝐀 case and then provide a slight variation for the 𝐂𝐐∃ case. The proof is by a LogSpace-reduction from
the complement of the satisfiability problem for propositional formulae in Negation Normal Form (NNF), a well-known NP-complete
problem.

The fixed ⊥ TBox , policy , and ground atom 𝛾 ∈𝐆𝐀 are as follows:

 = { 𝐴¬ ⊓ ∃𝑅1.𝐹 ⊑ ∃𝑅𝑇 ,

𝐴∨ ⊓ ∃𝑅1.∃𝑅𝑇 ⊑ ∃𝑅𝑇 ,

𝐴∨ ⊓ ∃𝑅2.∃𝑅𝑇 ⊑ ∃𝑅𝑇 ,

𝐴∧ ⊓ ∃𝑅1.∃𝑅𝑇 ⊓ ∃𝑅2.∃𝑅𝑇 ⊑ ∃𝑅𝑇 }
 = { ∀𝑥, 𝑦(𝑅𝑇 (𝑥, 𝑦) ∧ 𝐹 (𝑥)→ ⊥),

∀𝑥, 𝑦(𝑅𝑇 (𝑥, 𝑦) ∧𝐵(𝑥)→ ⊥) }
𝛾 =𝐵(𝑎𝜑), where 𝑎𝜑 is an individual.

Let 𝜑 be an NNF propositional formula over the set of propositional variables {𝑣1, … , 𝑣𝑛}. We now construct in LogSpace an
ABox 𝜑 exactly as done in the reduction provided in the proof of [11, Theorem 29]:

𝜑 = {𝐴∧(𝑎𝜓),𝑅1(𝑎𝜓 , 𝑎𝜒1),𝑅2(𝑎𝜓 , 𝑎𝜒2) ∣ 𝜓 = 𝜒1 ∧ 𝜒2 is a subformula of 𝜑} ∪
{𝐴∨(𝑎𝜓),𝑅1(𝑎𝜓 , 𝑎𝜒1),𝑅2(𝑎𝜓 , 𝑎𝜒2) ∣ 𝜓 = 𝜒1 ∨ 𝜒2 is a subformula of 𝜑} ∪
{𝐴¬(𝑎𝜓),𝑅1(𝑎𝜓 , 𝑎𝜒) ∣ 𝜓 = ¬𝜒 is a subformula of 𝜑} ∪
{𝑅𝑇 (𝑎𝑣𝑖 , 𝑎

′
𝑣𝑖
), 𝐹 (𝑎𝑣𝑖) ∣ 1 ≤ 𝑖 ≤ 𝑛} ∪ {𝐵(𝑎𝜑)}.

As described in [11], every subformula 𝜉 of 𝜑 (including subformulae corresponding to propositional variables) is represented
by an individual 𝑎𝜉 . In particular, the individual 𝑎𝜑 represents the entire formula 𝜑. Given an ABox 𝜑, the first denial in forces
every optimal censor for the ⊥ CQE instance 𝜑 = ⟨ , 𝜑, ⟩ to choose between maintaining in its theory either 𝑅𝑇 (𝑎𝑣𝑖 , 𝑎

′
𝑣𝑖
) or

𝐹 (𝑎𝑣𝑖), for each individual 𝑎𝑣𝑖 corresponding to a propositional variable 𝑣𝑖. Note that each such optimal censor represents a truth

5 More precisely, the ground atom 𝐵(𝑎𝜑) considered for instance checking in the proof of [11, Theorem 29] would always not belong to at least one repair, because
the deductive closure of the ABox contains the ground atom 𝑇 (𝑎𝜑) that is inconsistent with 𝐵(𝑎𝜑). Hence 𝐵(𝑎𝜑) would never be entailed, independently of the
13

propositional formula.

Artificial Intelligence 334 (2024) 104176G. Cima, D. Lembo, R. Rosati et al.

value assignment to the variables in the formula 𝜑, and that the TBox axioms propagate the truth value up to the whole formula 𝜑.
We also remark that, for the way in which the TBox is designed, every censor in 𝐆𝐀 for 𝜑 is a subset of the ABox 𝜑. Indeed, in
this case the ground closure of 𝜑 with respect to is equal to 𝜑.

Clearly, if the formula 𝜑 is satisfiable, then using the above argument, there is at least one optimal censor in 𝐆𝐀 for 𝜑 whose
theory, together with the TBox, entails ∃𝑥(𝑅𝑇 (𝑎𝜑, 𝑥)), thus discarding 𝛾 =𝐵(𝑎𝜑) for satisfying also the second denial in .

On the contrary, if the formula 𝜑 is unsatisfiable, then there is no assignment that makes true a subformula of 𝜑 that in turn
implies the truth of 𝜑. According to our construction, this means that there does not exist any optimal censor in 𝐆𝐀 for 𝜑 that
together with the TBox entails ∃𝑥(𝑅𝑇 (𝑎𝜑, 𝑥)). It follows that 𝛾 = 𝐵(𝑎𝜑) belongs to the theory of every optimal censor in 𝐆𝐀 for 𝜑.
It follows that 𝜑 ⊧

𝑐𝑞𝑒

𝐆𝐀 𝛾 if and only if 𝜑 is unsatisfiable, as required.

We now address the 𝐂𝐐∃ case. Let ′ be the fixed ⊥ TBox obtained by extending with the assertion 𝐵 ⊑ ∃𝑅′, i.e. ′ =
 ∪ {𝐵 ⊑ ∃𝑅′}, and let 𝑞 be the fixed BCQ∃ 𝑞 = ∃𝑥, 𝑦(𝑅′(𝑥, 𝑦)). Given the correctness of the above reduction, it is straightforward to
verify that the following property holds: given any NNF propositional formula 𝜑, we have that ′

𝜑 ⊧
𝑐𝑞𝑒

𝐆𝐀 𝑞 if and only if 𝜑 is unsatisfiable,
where ′

𝜑 is the CQE instance ′
𝜑 = ⟨ ′, 𝜑, ⟩ with and 𝜑 being, respectively, the fixed policy and the ABox constructible in

LogSpace from 𝜑 as illustrated in the above instance checking case. □

We now turn to the DL-Lite ontology language. We start by providing coNP-hardness for entailment of BCQ∃s.

Theorem 8. 𝐺𝐴-𝐶𝑒𝑛𝑠-𝐸𝑛𝑡𝑎𝑖𝑙𝑚𝑒𝑛𝑡(DL-Lite, 𝐂𝐐∃) is coNP-hard in data complexity.

Proof. In [11, Theorem 17], it is shown that there are , , and a BCQ∃ 𝑞, for which, given an ABox , checking whether ⟨ ∪
 , ⟩ ⊧AR 𝜙 is coNP-hard, where = ∅ and is composed of a single DL-Lite disjointness assertion (which can be clearly expressed
as a denial assertion).

By combining again Theorem 1 and Proposition 5, given an ABox , it follows that ⟨ ∪ , ⟩ ⊧AR 𝑞 if and only if ⟨ , , ⟩ ⊧𝑐𝑞𝑒

𝑞.
Since in the mentioned reduction = ∅, we have =, and therefore, due to Theorem 2, we can derive that ⟨ ∪ , ⟩ ⊧AR 𝑞 if
and only if ⟨ , , ⟩ ⊧𝑐𝑞𝑒𝐆𝐀 𝑞, for each ABox .

It immediately follows that 𝐺𝐴-𝐶𝑒𝑛𝑠-𝐸𝑛𝑡𝑎𝑖𝑙𝑚𝑒𝑛𝑡(DL-Lite, 𝐂𝐐∃) is coNP-hard in data complexity. □

Finally, we conclude this section by establishing that 𝐺𝐴-𝐶𝑒𝑛𝑠-𝐸𝑛𝑡𝑎𝑖𝑙𝑚𝑒𝑛𝑡(DL-Lite, 𝐆𝐀) is in AC0 in data complexity. We will
do this by proving FO-rewritability of the problem, thus improving the upper bound given by Theorem 6.

Theorem 3 actually states that, to solve 𝐺𝐴-𝐶𝑒𝑛𝑠-𝐸𝑛𝑡𝑎𝑖𝑙𝑚𝑒𝑛𝑡(DL-Lite, 𝐆𝐀), we can resort to the query rewriting techniques used
to establish IAR-entailment given in [14], provided that we prevently compute the deductive closure of the input ABox with respect
to the input TBox. We recall that GA entailment (in fact, BCQ entailment) under IAR-semantics in a DL is FO-rewritable, if for
every TBox expressed in and every ground atom 𝛾 , one can effectively compute an FO query 𝑞𝑟 such that for every ABox , ⟨ , ⟩ ⊧IAR 𝛾 if and only if ⊧ 𝑞𝑟. The query 𝑞𝑟 is called the IAR-perfect reformulation of 𝛾 with respect to .

To establish FO-rewritability of 𝐺𝐴-𝐶𝑒𝑛𝑠-𝐸𝑛𝑡𝑎𝑖𝑙𝑚𝑒𝑛𝑡(DL-Lite, 𝐆𝐀), however, we still need to address the above mentioned com-

putation of the mentioned deductive closure, and turn it into an additional query reformulation step. To this aim, we can exploit the
fact that, for a DL-Lite,𝑑𝑒𝑛 ontology ⟨ , ⟩, an FO query 𝑞 evaluates to true over if and only if 𝑞′ evaluates to true over , where
𝑞′ is obtained by suitably rewriting each atom of 𝑞 according to the positive inclusions of . Intuitively, in this way we cast into the
query all the possible causes of the facts that are contained in the deductive closure of the ABox with respect to the TBox (similarly
to what is done in query rewriting algorithms for DL-Lite [18]).

To compute such a query 𝑞′, we use the function 𝖠𝗍𝗈𝗆𝖱𝖾𝗐𝗋(𝑞,), which substitutes each atom 𝛼 occurring in query 𝑞 with the
formula 𝜆(𝛼) defined as follows (where 𝐴, 𝐵 are atomic concepts and 𝑅, 𝑆 are atomic roles):

𝜆(𝐴(𝑡)) =
⋁

 ⊧𝐵⊑𝐴 𝐵(𝑡) ∨
⋁

 ⊧∃𝑅⊑𝐴(∃𝑥(𝑅(𝑡, 𝑥)))∨⋁
 ⊧∃𝑅−⊑𝐴(∃𝑥(𝑅(𝑥, 𝑡)))

𝜆(𝑅(𝑡1, 𝑡2)) =
⋁

 ⊧𝑆⊑𝑅 𝑆(𝑡1, 𝑡2) ∨
⋁

 ⊧𝑆−⊑𝑅 𝑆(𝑡2, 𝑡1)

For example, if = {𝐴 ⊑ 𝐶, 𝐵 ⊑ 𝐶} and 𝑞 = ∃𝑥, 𝑦(𝐶(𝑥) ∧ 𝑃 (𝑥, 𝑦)), then 𝖠𝗍𝗈𝗆𝖱𝖾𝗐𝗋(𝑞,) returns the query 𝑞 = ∃𝑥, 𝑦((𝐶(𝑥) ∨ 𝐴(𝑥) ∨
𝐵(𝑥)) ∧ 𝑃 (𝑥, 𝑦)).

The following lemma states the property we are looking for.

Lemma 6. Let be a DL-Lite,𝑑𝑒𝑛 TBox, be an ABox such that ∪ is consistent, and 𝑞 be an FO sentence. We have that
⊧ 𝑞 if

and only if ⊧ 𝖠𝗍𝗈𝗆𝖱𝖾𝗐𝗋(𝑞,).

Proof. Without loss of generality, we assume that 𝑞 is in prenex normal form (note that every FO sentence is logically equivalent
to some FO sentence in prenex normal form [28]), i.e. 𝑞 = 𝑄1𝑥1… 𝑄𝑛𝑥𝑛Φ(𝑥1, … , 𝑥𝑛), where Φ(𝑥1, … , 𝑥𝑛) is a quantifier-free FO
sentence and 𝑄𝑖 is either ∀ or ∃, for each 𝑖 = 1, … , 𝑛. To prove the claim, it is enough to show that for any assignment 𝑎 to the
variables �⃗� = (𝑥1, … , 𝑥𝑛) with constants occurring in the ABox the following holds:

⊧Φ𝑎 if and only if ⊧ 𝖠𝗍𝗈𝗆𝖱𝖾𝗐𝗋(Φ𝑎,),
14

where Φ𝑎 denotes the formula obtained from Φ(𝑥1, … , 𝑥𝑛) by replacing the variable 𝑥𝑖 with the constant 𝑎(𝑥𝑖), for each 𝑖 = 1, … , 𝑛.

Artificial Intelligence 334 (2024) 104176G. Cima, D. Lembo, R. Rosati et al.

So, let 𝑎 be any assignment as above. By construction of 𝖠𝗍𝗈𝗆𝖱𝖾𝗐𝗋(⋅, ⋅), observe that checking whether
⊧ Φ𝑎 if and only if

 ⊧ 𝖠𝗍𝗈𝗆𝖱𝖾𝗐𝗋(Φ𝑎,) can be equivalently reformulated as follows:
⊧ 𝛼 if and only if ⊧ (𝜆(𝛼),), for each atom 𝛼 ∈Φ𝑎.

Now, if ⊧ (𝜆(𝛼),), then, by construction of 𝜆(⋅), we have that 𝛼 is entailed by ∪, and therefore
⊧ 𝛼.

On the contrary, if
⊧ 𝛼, then, by a trivial induction argument on the steps applied to derive 𝛼 from ∪, it can be immediately

verified that ⊧ (𝜆(𝛼),). □

We are now able to establish FO-rewritability of 𝐺𝐴-𝐶𝑒𝑛𝑠-𝐸𝑛𝑡𝑎𝑖𝑙𝑚𝑒𝑛𝑡(DL-Lite, 𝐆𝐀).

Theorem 9. 𝐺𝐴-𝐶𝑒𝑛𝑠-𝐸𝑛𝑡𝑎𝑖𝑙𝑚𝑒𝑛𝑡(DL-Lite, 𝐆𝐀) is FO-rewritable, and therefore in AC0 in data complexity.

Proof. Let be a DL-Lite TBox, let be a policy for , i.e. a set of denial assertions over the signature of such that ∪ is
consistent, and let 𝛾 ∈𝐆𝐀. We now show how to obtain an FO query 𝑞′ from , , and 𝛾 such that, for each ABox for which ∪

is consistent, we have that ⟨ , , ⟩ ⊧𝑐𝑞𝑒𝐆𝐀 𝛾 if and only if ⊧ 𝑞′, thus proving FO-rewritability of the problem and consequently its
membership in AC0.

Let the FO sentence 𝑞𝑟 be an IAR-perfect reformulation of 𝛾 with respect to the DL-Lite,𝑑𝑒𝑛 TBox ∪ [14]. Then, for every
ABox , ⟨ ∪ , ⟩ ⊧IAR 𝛾 if and only if

⊧ 𝑞𝑟. Now, from Lemma 6, it follows that, for every ABox ,
⊧ 𝑞𝑟 if and only

if ⊧ 𝖠𝗍𝗈𝗆𝖱𝖾𝗐𝗋(𝑞𝑟,). Since by Theorem 3, for every ABox such that ⟨ , ⟩ is consistent, ⟨ ∪ , ⟩ ⊧IAR 𝛾 if and only if
 ⊧

𝑐𝑞𝑒

𝐆𝐀 𝛾 , it follows that the FO sentence 𝖠𝗍𝗈𝗆𝖱𝖾𝗐𝗋(𝑞𝑟,) is such that ⊧
𝑐𝑞𝑒

𝐆𝐀 𝛾 if and only if ⊧ 𝖠𝗍𝗈𝗆𝖱𝖾𝗐𝗋(𝑞𝑟,). This proves the
FO-rewritability of 𝐺𝐴-𝐶𝑒𝑛𝑠-𝐸𝑛𝑡𝑎𝑖𝑙𝑚𝑒𝑛𝑡(DL-Lite, 𝐆𝐀), which, in turn, implies its membership in AC0. □

The above theorem actually identifies a technique for computing the FO rewriting of a ground atom for the

𝐺𝐴-𝐶𝑒𝑛𝑠-𝐸𝑛𝑡𝑎𝑖𝑙𝑚𝑒𝑛𝑡(DL-Lite, 𝐆𝐀) problem, based on a simple combination of the IAR-perfect reformulation algorithm of [14]

and the 𝖠𝗍𝗈𝗆𝖱𝖾𝗐𝗋 reformulation defined above.

We can now recall the data complexity of 𝐺𝐴-𝐶𝑒𝑛𝑠-𝐸𝑛𝑡𝑎𝑖𝑙𝑚𝑒𝑛𝑡(,), where ∈ {DL-Lite, ⊥} and ∈ {𝐂𝐐, 𝐂𝐐∃, 𝐆𝐀}.

Corollary 2. 𝐺𝐴-𝐶𝑒𝑛𝑠-𝐸𝑛𝑡𝑎𝑖𝑙𝑚𝑒𝑛𝑡(DL-Lite, 𝐆𝐀) is in AC0 in data complexity. The following problems are coNP-complete in data com-

plexity:

− 𝐺𝐴-𝐶𝑒𝑛𝑠-𝐸𝑛𝑡𝑎𝑖𝑙𝑚𝑒𝑛𝑡(DL-Lite,), for every ∈ {𝐂𝐐∃, 𝐂𝐐};

− 𝐺𝐴-𝐶𝑒𝑛𝑠-𝐸𝑛𝑡𝑎𝑖𝑙𝑚𝑒𝑛𝑡(⊥,), for every ∈ {𝐆𝐀, 𝐂𝐐∃, 𝐂𝐐}.

6. CQE under the CQ𝒌 censor language

In this section, we establish the data complexity of the problems 𝐶𝑄𝑘-𝐶𝑒𝑛𝑠-𝐸𝑛𝑡𝑎𝑖𝑙𝑚𝑒𝑛𝑡(,), for every fixed integer 𝑘 ≥ 1,
where ∈ {DL-Lite, ⊥} and ∈ {𝐆𝐀, 𝐂𝐐∃, 𝐂𝐐}. More precisely, in Section 6.1 we provide some preliminary properties. In
Section 6.2 we prove that entailment of both BCQs and BCQ∃s under 𝐂𝐐𝑘 censors is coNP-complete, for both DL-Lite and ⊥

CQE instances (the upper bound is given in Theorem 10, the lower bounds are shown in Theorem 11 and Theorem 12). Finally, in
Section 6.3 we prove that instance checking under 𝐂𝐐𝑘 censors for DL-Lite CQE instances is actually tractable, and more precisely
in AC0 in data complexity (Theorem 13). In particular, based on a crucial property provided by Proposition 6, we define a query
rewriting technique (Definition 8) that is able to reduce the above instance checking problem to the evaluation of a first-order sentence
on the ABox of the CQE instance.

6.1. Preliminary properties

Given a BCQ 𝑞 of the form ∃�⃗�(𝛼1 ∧ … ∧ 𝛼𝑛), a subquery of 𝑞 is a BCQ 𝑞′ of the form ∃�⃗�′(𝛼𝑖1 ∧ … ∧ 𝛼𝑖𝑚) such that, for every
𝑗 ∈ {1, … , 𝑚}, 1 ≤ 𝑖𝑗 ≤ 𝑛, and �⃗�′ are the variables of �⃗� that occur in some 𝛼𝑖𝑗 . Informally, the subquery 𝑞′ is obtained from 𝑞 by
deleting some of its atoms.

Given a policy , we denote by maxlen() the maximum length of a denial in . We also denote by Freeze(𝑞) the ABox obtained
from the BCQ 𝑞 by replacing each variable 𝑥 with a new individual 𝑎𝑥 (i.e. an individual not occurring in) and by treating the
obtained conjunction of ground atoms as a set of facts, in the obvious way. In the following, we also consider sets of BCQs. For every
such set Φ we always assume that different queries in Φ use different variable symbols. Moreover, we use Freeze(Φ) to indicate the
ABox

⋃
𝑞∈Φ Freeze(𝑞). We call fresh individuals of Freeze(Φ) the new individuals introduced in Freeze(Φ). We finally recall that, given

a denial 𝛿, 𝑞𝛿 indicates the BCQ corresponding to the negation of 𝛿.

The following lemma, easy to verify, shows how the freezing of a set of queries Φ can be used for checking whether ∪Φ entails
a BCQ.

Lemma 7. Let be either a DL-Lite or an ⊥ TBox, let Φ be a set of BCQs, and let 𝑞 be a BCQ that does not mention the fresh individuals
of Freeze(Φ). Then, ∪Φ ⊧ 𝑞 if and only if ∪ Freeze(Φ) ⊧ 𝑞.
15

The proof of the next lemma immediately follows from Lemma 4 and Lemma 7.

Artificial Intelligence 334 (2024) 104176G. Cima, D. Lembo, R. Rosati et al.

Lemma 8. Let be either a DL-Lite or an ⊥ TBox, let be a policy such that ∪ is consistent, and let Φ be a set of BCQs such that
 ∪Φ is consistent. We have that Φ ∪ ∪ is consistent if and only if ∪ Freeze(Φ) ̸⊧ 𝑞𝛿 for every 𝛿 ∈ .

Hereinafter, we consider two BCQs that are equal up to variable renaming as the same BCQ: in this way, for every integer 𝑘 ≥ 1,
𝐂𝐐𝑘(∪) is finite and can be computed in polynomial time with respect to the size of the ABox . We also recall that 𝐂𝐐Ent

𝑘
(∪)

denotes the set {𝑞 ∈𝐂𝐐𝑘(∪) ∣ ∪ ⊧ 𝑞}.

Similarly to what Lemma 5 does for ABox censors, the following lemma characterizes the entailment of BCQs under 𝐂𝐐𝑘 censors
(𝑘 ≥ 1) in terms of standard entailment of BCQs.

Lemma 9. Let = ⟨ , , ⟩ be either a DL-Lite or an ⊥ CQE instance, 𝑞 be a BCQ, and 𝑘 ≥ 1 be an integer. Then, ̸⊧𝑐𝑞𝑒𝐂𝐐𝑘
𝑞 if and

only if there exists a set Φ ⊆ 𝐂𝐐Ent
𝑘

(∪) satisfying the following three conditions: (i) ∪ ∪ Φ is consistent, (ii) ∪ ∪ Φ ∪ {𝜙} is
inconsistent for each 𝜙 ∈𝐂𝐐Ent

𝑘
(∪) ⧵Φ, and (iii) ∪Φ ̸⊧ 𝑞.

Proof. The proof can be obtained immediately by the same reasoning as in the proof Lemma 5 with the following observation, which
is trivial to verify: given any Φ ⊆𝐂𝐐Ent

𝑘
(∪), conditions (𝑖) and (𝑖𝑖) are satisfied if and only if Φ is equivalent to the theory of an

optimal censor in 𝐂𝐐𝑘 for . □

In the following, given a finite, non-empty set of BCQs Φ = {𝑞1, … , 𝑞𝑛} such that 𝑞𝑖 = ∃�⃗�𝑖(cq𝑖(�⃗�𝑖)) for every 𝑖 ∈ {1, … , 𝑛}, we
denote by Conj(Φ) the BCQ corresponding to the conjunction of all the BCQs in Φ, i.e.:

Conj(Φ) = ∃�⃗�1,… , �⃗�𝑛(
𝑛⋀

𝑖=1
cq𝑖(�⃗�𝑖)).

Notice that Conj(Φ) is a sentence equivalent to Φ.

Example 6. Consider the following set of BCQs: Φ = {∃𝑥 (𝐶(𝑥) ∧𝐷(𝑥)), ∃𝑦, 𝑧 (𝑅(𝑦, 𝑧) ∧𝐷(𝑧))}. We have that Conj(Φ) = ∃𝑥, 𝑦, 𝑧 (𝐶(𝑥) ∧
𝐷(𝑥) ∧𝑅(𝑦, 𝑧) ∧𝐷(𝑧)). □

A connected component of a BCQ 𝑞 is a BCQ 𝑞′ such that 𝑞′ is a subquery of 𝑞, and every atom in 𝑞 but not in 𝑞′ does not contain any
occurrence of the variables of 𝑞′. We say that a set of BCQs Φ is a decomposition of a BCQ 𝑞 if every 𝑞′ ∈ Φ is a connected component
of 𝑞 and Φ is equivalent to 𝑞. For instance, in Example 6 Φ is a decomposition of the query Conj(Φ)). Moreover, a partial instantiation

of a BCQ 𝑞 is a BCQ obtained from 𝑞 by replacing some of its variables with constants.

We then say that a set of BCQs Φ is closed under subqueries if, for every 𝑞 ∈Φ and for every subquery 𝑞′ of 𝑞, we have 𝑞′ ∈ Φ.

The following property holds for DL-Lite TBoxes.

Lemma 10. Let be a DL-Lite TBox, let 𝑞 be a BCQ, and let Φ be a set of BCQs closed under subqueries, such that ∪Φ is consistent.
Then, ∪Φ ⊧ 𝑞 if and only if there exists a finite subset Φ′ of Φ such that ∪Φ′ ⊧ 𝑞 and length(Conj(Φ′)) ≤ length(𝑞).

Proof. The proof can be easily obtained by extending the proof of the same, well-known property in the case when Φ is an ABox
(see e.g., [29]). □

6.2. Intractability results

We are now ready to provide a coNP upper bound for the decision problems of interest in this section.

Theorem 10. Let 𝑘 be any integer such that 𝑘 ≥ 1. We have that both the decision problems 𝐶𝑄𝑘-𝐶𝑒𝑛𝑠-𝐸𝑛𝑡𝑎𝑖𝑙𝑚𝑒𝑛𝑡(DL-Lite, 𝐂𝐐) and
𝐶𝑄𝑘-𝐶𝑒𝑛𝑠-𝐸𝑛𝑡𝑎𝑖𝑙𝑚𝑒𝑛𝑡(⊥, 𝐂𝐐) are in coNP in data complexity.

Proof. The proof exploits Lemma 9 in a similar way as the proof of Theorem 5 exploits Lemma 5. More specifically, due to Lemma 9,
the problem of checking whether ̸⊧𝑐𝑞𝑒𝐂𝐐𝑘

𝑞 can be solved in non-deterministic polynomial time in data complexity by first computing
𝐂𝐐Ent

𝑘
(∪) in polynomial time with respect to the size of the ABox , then by guessing a subset Φ of 𝐂𝐐Ent

𝑘
(∪), and finally by

checking conditions (𝑖), (𝑖𝑖), and (𝑖𝑖𝑖). Since we are dealing either with the DL-Lite ontology language or the ⊥ ontology language,
all three conditions can be verified in polynomial time with respect to the size of the ABox . This shows that the complement of
our problem is in NP, from which the claim follows. □

We now give matching lower bounds for both the decision problems 𝐶𝑄𝑘-𝐶𝑒𝑛𝑠-𝐸𝑛𝑡𝑎𝑖𝑙𝑚𝑒𝑛𝑡(⊥, 𝐆𝐀) and

𝐶𝑄𝑘-𝐶𝑒𝑛𝑠-𝐸𝑛𝑡𝑎𝑖𝑙𝑚𝑒𝑛𝑡(⊥, 𝐂𝐐∃), as well as for the decision problem 𝐶𝑄𝑘-𝐶𝑒𝑛𝑠-𝐸𝑛𝑡𝑎𝑖𝑙𝑚𝑒𝑛𝑡(DL-Lite, 𝐂𝐐∃), for every fixed in-

teger 𝑘 ≥ 1. Of course, these results imply that the problem is coNP-hard even when the query language is 𝐂𝐐, for both DL-Lite and
16

⊥ CQE instances. We start with the mentioned lower bounds for ⊥ CQE instances.

Artificial Intelligence 334 (2024) 104176G. Cima, D. Lembo, R. Rosati et al.

Theorem 11. For every integer 𝑘 ≥ 1, we have that both 𝐶𝑄𝑘-𝐶𝑒𝑛𝑠-𝐸𝑛𝑡𝑎𝑖𝑙𝑚𝑒𝑛𝑡(⊥, 𝐆𝐀) and 𝐶𝑄𝑘-𝐶𝑒𝑛𝑠-𝐸𝑛𝑡𝑎𝑖𝑙𝑚𝑒𝑛𝑡(⊥, 𝐂𝐐∃) are
coNP-hard in data complexity.

Proof. Let 𝑘 be any integer such that 𝑘 ≥ 1. We now show that both 𝐶𝑄𝑘-𝐶𝑒𝑛𝑠-𝐸𝑛𝑡𝑎𝑖𝑙𝑚𝑒𝑛𝑡(⊥, 𝐆𝐀) and

𝐶𝑄𝑘-𝐶𝑒𝑛𝑠-𝐸𝑛𝑡𝑎𝑖𝑙𝑚𝑒𝑛𝑡(⊥, 𝐂𝐐∃) are coNP-hard in data complexity.

We start with the 𝐆𝐀 case and then provide a slight variation for the 𝐂𝐐∃ case. The proof can be obtained by extending the proof
of Theorem 7. Specifically, recall the fixed ⊥ TBox , policy , and ground atom 𝛾 = 𝐵(𝑎𝜑) defined there. We define the fixed
⊥ TBox 𝑘 and policy 𝑘 as follows:

• 𝑘 is obtained from by replacing each occurrence of the concept ∃𝑅𝑇 with the concept ∃𝑅𝑇 .∃𝑃1. … .∃𝑃𝑘, where 𝑃1, … , 𝑃𝑘 are
fresh atomic roles in Σ𝑅;

• 𝑘 is obtained from by replacing the second denial assertion ∀𝑥, 𝑦(𝑅𝑇 (𝑥, 𝑦) ∧𝐵(𝑥) → ⊥) with the following denial assertion:

∀𝑥, 𝑦, 𝑧1, … , 𝑧𝑘(𝑅𝑇 (𝑥, 𝑦) ∧ 𝑃1(𝑦, 𝑧1) ∧… 𝑃𝑘(𝑧𝑘−1, 𝑧𝑘) ∧𝐵(𝑥) → ⊥).

Finally, given any NNF propositional formula 𝜑, we construct in LogSpace exactly the same ABox 𝜑 illustrated in the proof of
Theorem 7.

Importantly, notice that, for every subformula 𝜉 of 𝜑, we cannot have a sentence 𝑠 of the form 𝑠 = ∃𝑦, 𝑧1, … , 𝑧𝑘(𝑅𝑇 (𝑎𝜉, 𝑦) ∧
𝑃1(𝑦, 𝑧1) ∧𝑃2(𝑧1, 𝑧2) ∧… ∧𝑃𝑘(𝑧𝑘−1, 𝑧𝑘)) in the theory of a censor in 𝐂𝐐𝑘 for 𝑘,𝜑 = ⟨𝑘, 𝜑, 𝑘⟩, since 𝑠 is a sentence of length 𝑘 +1.
Based on this above observation, and by using analogous arguments as those provided in the proof of Theorem 7 of the correctness of
the reduction, one can easily verify that, for any NNF propositional formula 𝜑, we have that 𝜑 is satisfiable if and only if 𝑘,𝜑 ̸⊧𝑐𝑞𝑒𝐂𝐐𝑘

𝛾 ,
as required.

The variation for the 𝐂𝐐∃ case is similar to the variation provided at the end of the proof of Theorem 7. Specifically, let ′
𝑘

be the
fixed ⊥ TBox obtained by extending with the assertion 𝐵 ⊑ ∃𝑅′.∃𝑃1. … .∃𝑃𝑘, i.e. ′ = ∪{𝐵 ⊑ ∃𝑅′.∃𝑃1. … .∃𝑃𝑘}, and let 𝑞𝑘 be
the fixed BCQ∃ 𝑞𝑘 = ∃𝑥, 𝑦, 𝑧1, … , 𝑧𝑘(𝑅′(𝑥, 𝑦) ∧𝑃1(𝑦, 𝑧1) ∧𝑃2(𝑧1, 𝑧2) ∧… ∧𝑃𝑘(𝑧𝑘−1, 𝑧𝑘)). Given the correctness of the above reduction,
it is straightforward to verify that the following property holds: given any NNF propositional formula 𝜑, we have that ′

𝑘,𝜑
⊧
𝑐𝑞𝑒

𝐂𝐐𝑘
𝑞𝑘

if and only if 𝜑 is unsatisfiable, where ′
𝑘,𝜑

is the CQE instance ′
𝑘,𝜑

= ⟨ ′
𝑘
, 𝜑, 𝑘⟩ with 𝑘 and 𝜑 being, respectively, the fixed

policy and the ABox constructible in LogSpace from 𝜑 as illustrated in the above instance checking case. □

We now turn our attention to DL-Lite, and, as announced, provide a matching lower bound for entailment of BCQ∃s under 𝐂𝐐𝑘

censors.

Theorem 12. 𝐶𝑄𝑘-𝐶𝑒𝑛𝑠-𝐸𝑛𝑡𝑎𝑖𝑙𝑚𝑒𝑛𝑡(DL-Lite, 𝐂𝐐∃) is coNP-hard in data complexity, for every integer 𝑘 ≥ 1.

Proof. Let 𝑘 be any integer such that 𝑘 ≥ 1. We now show that 𝐶𝑄𝑘-𝐶𝑒𝑛𝑠-𝐸𝑛𝑡𝑎𝑖𝑙𝑚𝑒𝑛𝑡(DL-Lite, 𝐂𝐐∃) is coNP-hard in data complex-

ity. The proof is by a LogSpace reduction from the complement of 3-SAT, and it can be seen as an adaptation of the proof provided
in [14, Theorem 3]. The fixed DL-Lite TBox, policy , and BCQ∃ 𝑞𝑘 are as follows:

 = ∅, i.e. the TBox contains no assertions;

 = { ∀𝑥, 𝑦, 𝑧(𝑃 (𝑥, 𝑧) ∧𝑁(𝑦, 𝑧)→ ⊥),
∀𝑥, 𝑦, 𝑧(𝑃 (𝑥, 𝑦) ∧𝐴(𝑥)→ ⊥),
∀𝑥, 𝑦, 𝑧(𝑁(𝑥, 𝑦) ∧𝐴(𝑥)→ ⊥) };

𝑞𝑘 = ∃𝑦(𝐴(𝑦) ∧𝐴1(𝑦) ∧…∧𝐴𝑘(𝑦)).

Let 𝜑 = 𝑐1 ∧… ∧ 𝑐𝑚 be a 3-SAT instance with 𝑐𝑖 = 𝑙1
𝑖
∨ 𝑙2

𝑖
∨ 𝑙3

𝑖
, where each literal 𝑙𝑗

𝑖
is either a positive or a negative variable from a

set {𝑣1, … , 𝑣𝑛}. We say that a variable 𝑣 occurs positively (resp. negatively) in a clause 𝑐𝑖 if 𝑙𝑗
𝑖
= 𝑣 (resp. 𝑙

𝑗
𝑖
= ¬𝑣) for some 𝑗 = [1, 3].

We now construct in LogSpace an ABox 𝑘
𝜑 similarly to as done in the reduction provided in the proof of [14, Theorem 3]:

𝑘
𝜑 = {𝐴(𝑐𝑖) ∣ 1 ≤ 𝑖 ≤𝑚} ∪

⋃𝑚
𝑖=1{𝐴𝑗 (𝑐𝑖) ∣ 1 ≤ 𝑗 ≤ 𝑘} ∪⋃𝑚

𝑖=1{𝑃 (𝑐𝑖, 𝑣) ∣ 𝑣 occurs positively in 𝑐𝑖} ∪⋃𝑚
𝑖=1{𝑁(𝑐𝑖, 𝑣) ∣ 𝑣 occurs negatively in 𝑐𝑖}.

Intuitively, the first denial in forces every optimal censor in 𝐂𝐐𝑘 for the DL-Lite CQE instance 𝑘
𝜑 = ⟨ , 𝑘

𝜑, ⟩ to choose
between maintaining in its theory either facts of the form 𝑃 (𝑐𝑖, 𝑣) or facts of the form 𝑁(𝑐𝑖, 𝑣), for each possible variable 𝑣 involved
in the 3-SAT instance 𝜑. Note that each such optimal censor represents a truth value assignment to the variables in the instance.
Furthermore, we point out that we cannot have a sentence 𝑠 of the form 𝑠 = ∃𝑦(𝐴(𝑦) ∧𝐴1(𝑦) ∧… ∧𝐴𝑘(𝑦)) in the theory of a censor
in 𝐂𝐐𝑘 for 𝑘

𝜑, since 𝑠 is a sentence of length 𝑘 + 1.

Suppose that 𝜑 is unsatisfiable, i.e. for every truth value assigned to the variables in 𝜑 there will be at least one clause 𝑐𝑖 not
satisfied under such an assignment. It follows that in every theory Φ of an optimal censor in 𝐂𝐐𝑘 for 𝑘

𝜑 there is at least one (constant
17

representing the clause) 𝑐𝑖 such that there are no occurrences of the form 𝑃 (𝑐𝑖, 𝑣) or 𝑁(𝑐𝑖, 𝑣) in Φ, implying that 𝐴(𝑐𝑖) ∈ Φ. As a

Artificial Intelligence 334 (2024) 104176G. Cima, D. Lembo, R. Rosati et al.

consequence, due to the fact that, for every 𝑖 ∈ [1, 𝑚] and for every 𝑗 ∈ [1, 𝑘], we trivially have 𝐴𝑗 (𝑐𝑖) ∈Φ for every Φ ∈𝖮𝖳𝗁𝖲𝐂𝐐𝑘
(𝑘

𝜑),
we immediately get that Φ ⊧ 𝑞𝑘 for every Φ ∈𝖮𝖳𝗁𝖲𝐂𝐐𝑘

(𝑘
𝜑), and therefore 𝑘

𝜑 ⊧
𝑐𝑞𝑒

𝐂𝐐𝑘
𝑞𝑘.

Suppose now that 𝜑 is satisfiable. It follows that there exists at least one theory Φ ∈ 𝖮𝖳𝗁𝖲𝐂𝐐𝑘
(𝑘

𝜑) (corresponding to the assignment
that satisfies 𝜑) such that: for every 𝑖 ∈ [1, 𝑚], there exists a 𝑣 such that either 𝑃 (𝑐𝑖, 𝑣) ∈ Φ or 𝑁(𝑐𝑖, 𝑣) ∈Φ holds. As a consequence,
due to the second and third denials in , we get that 𝐴(𝑐𝑖) ∉Φ holds for every 𝑖 ∈ [1, 𝑚]. Thus, we derive that Φ ̸⊧ 𝑞𝑘, and therefore
𝑘
𝜑 ̸⊧𝑐𝑞𝑒𝐂𝐐𝑘

𝑞𝑘. □

6.3. A tractable case

We now concentrate on the instance checking case and show that, for every integer 𝑘 ≥ 1, 𝐶𝑄𝑘-𝐶𝑒𝑛𝑠-𝐸𝑛𝑡𝑎𝑖𝑙𝑚𝑒𝑛𝑡(DL-Lite, 𝐆𝐀)
is in AC0 in data complexity, thus improving the upper bound given in Theorem 10. We do so by proving FO-rewritability of the
problem.

The following crucial property is at the basis of the rewriting technique that we describe immediately after. Intuitively, the
conditions listed in the next proposition say that entailment under 𝐂𝐐𝑘 censors of a ground atom 𝛼 holds if and only if (a) 𝛼 is
entailed by the CQE instance without considering the policy; (b) 𝛼 can be disclosed without violating confidentiality rules encoded
through to the policy; (c) there is no 𝐂𝐐𝑘 optimal censor , denial 𝛿 ∈ , and subquery 𝑞′

𝛿
of 𝑞𝛿 , with length(𝑞′

𝛿
) ≤ length(𝑞𝛿) − 1,

having an image on 𝖳𝗁() (conditions (c1) and (c2)) that can be “extended” into an image of 𝑞𝛿 by using 𝛼 (condition (c3)), and thus
causing that ∪ 𝖳𝗁() ∪ {𝛼} violates 𝛿. Notice that 𝑞′

𝛿
might not belong to 𝖳𝗁() or to any 𝐂𝐐𝑘 censor, because 𝑘 might be smaller

than length(𝑞′
𝛿
).

Proposition 6. Let = ⟨ , , ⟩ be a DL-Lite CQE instance, let 𝛼 be a ground atom, let ℎ = maxlen() − 1, and let 𝑘 ≥ 1 be an integer.
Then, ⊧

𝑐𝑞𝑒

𝐂𝐐𝑘
𝛼 if and only if the following conditions hold:

(a) ∪ ⊧ 𝛼;

(b) {𝛼} ∪ ∪ is consistent;

(c) there exists no BCQ 𝑞′ ∈𝐂𝐐ℎ({𝛼} ∪ ∪) such that the following conditions hold:

(c1) there exists a partial instantiation 𝑞′′ of 𝑞′ with constants of not occurring in {𝛼} ∪ and a set Φ ⊆𝐂𝐐Ent
𝑘

(∪) such that
Φ is a decomposition of 𝑞′′;

(c2) {𝑞′} ∪ ∪ is consistent;

(c3) {𝛼, 𝑞′} ∪ ∪ is inconsistent.

Proof. First, it is easy to verify that ⊧
𝑐𝑞𝑒

𝐂𝐐𝑘
𝛼 if and only if condition (a) holds, condition (b) holds, and the following condition (c’)

holds: there exists no Φ′ ⊆𝐂𝐐Ent
𝑘

(∪) such that Φ′ ∪ ∪ is consistent and {𝛼} ∪Φ′ ∪ ∪ is inconsistent (the key point is that
such a set Φ′ would be certainly contained in the theory of some optimal censor in 𝐂𝐐𝑘 for that is inconsistent with 𝛼).

Then, since 𝑞′′ is obtained from 𝑞′ replacing some of its variables with constants not occurring in {𝛼} ∪ , and since 𝑞′′ is equivalent
to the set Φ, it immediately follows that condition (c2) holds iff Φ ∪ ∪ is consistent, and condition (c3) holds iff {𝛼} ∪Φ ∪ ∪

is inconsistent.

This immediately implies that, if condition (a) does not hold, or condition (b) does not hold, or condition (c) does not hold, then
 ̸⊧𝑐𝑞𝑒𝐂𝐐𝑘

𝛼.

Now suppose ̸⊧𝑐𝑞𝑒𝐂𝐐𝑘
𝛼. There are three possible cases: (i) condition (a) does not hold, which implies the thesis; (ii) condition (b)

does not hold, which implies the thesis; (iii) condition (c’) does not hold. In the latter case, there exists a subset Φ′ of 𝐂𝐐Ent
𝑘

(∪)
such that Φ′ ∪ ∪ is consistent and {𝛼} ∪ Φ′ ∪ ∪ is inconsistent. W.l.o.g. we can assume that Φ′ is closed under subqueries.
Now, since ∪Φ′ is consistent, by Lemma 8 inconsistency w.r.t. corresponds to the entailment in ∪Φ′ of a query 𝑞𝛿 for some
denial 𝛿 ∈ ; moreover, from Lemma 10 and from the fact that Φ′ ∪ ∪ is consistent and {𝛼} ∪ Φ′ ∪ ∪ is inconsistent, the
existence of the set Φ′ implies the existence of a subset Φ of Φ′ such that Φ ∪ ⊧ 𝑞𝛿 and length(Conj(Φ)) ≤ maxlen() − 1. Now
let 𝑞′ be the BCQ obtained from Conj(Φ) replacing every constant not occurring in {𝛼} ∪ Φ with a new existential variable. Then,
𝑞′ ∈ 𝐂𝐐ℎ({𝛼} ∪ ∪). And since Φ ∪ ⊧ 𝑞𝛿 , it follows that condition (c3) holds for 𝑞′ . Moreover, since Φ ⊆ Φ′ and Φ′ ∪ ∪

is consistent, it follows that Φ ∪ ∪ is consistent too, which immediately implies that condition (c2) holds for 𝑞′ . Finally, since
Φ′ ⊆𝐂𝐐Ent

𝑘
(∪) and Φ ⊆Φ′, condition (c1) holds for Φ, thus proving the thesis. □

Example 7. Let us consider a DL-Lite CQE instance = ⟨ , , ⟩ such that = ∅, = {𝐴(𝑎), 𝐵(𝑎), 𝐶(𝑏)}, and = {∀𝑥(𝐴(𝑥) ∧
𝐵(𝑥) ∧ 𝐶(𝑏) → ⊥)}. Then, let us fix 𝑘 = 1 and check entailment of 𝛼 = 𝐶(𝑏) under 𝐂𝐐1 censors. The set 𝐂𝐐𝐸𝑛𝑡

1 (∪) consists of
the ground atoms 𝐴(𝑎), 𝐵(𝑎), 𝐶(𝑏) and all BCQs of length 1 implied by such atoms. It is easy to see that there are three optimal 𝐂𝐐1
censors, i.e.,

1 = {𝐴(𝑎),𝐵(𝑎),∃𝑥𝐴(𝑥),∃𝑥𝐵(𝑥),∃𝑥𝐶(𝑥)}
2 = {𝐴(𝑎),𝐶(𝑏),∃𝑥𝐴(𝑥),∃𝑥𝐵(𝑥),∃𝑥𝐶(𝑥)}
18

3 = {𝐵(𝑎),𝐶(𝑏),∃𝑥𝐴(𝑥),∃𝑥𝐵(𝑥),∃𝑥𝐶(𝑥)}

Artificial Intelligence 334 (2024) 104176G. Cima, D. Lembo, R. Rosati et al.

In this case, 𝛼 is not entailed by under 𝐂𝐐1 censors. With respect to Proposition 6, we can see that conditions (𝑎) and (𝑏) are
satisfied, but conditions (𝑐) does not hold. To verify this latter point, consider 𝑞′ = ∃𝑥(𝐴(𝑥) ∧𝐵(𝑥)). An instantiation of 𝑞′ not using
constants in 𝛼 ∪ is 𝑞′′ = 𝐴(𝑎) ∧ 𝐵(𝑎), and a decomposition of 𝑞′′ contained in 𝐂𝐐𝐸𝑛𝑡

1 (∪) is Φ = {𝐴(𝑎), 𝐵(𝑎)}. It is easy to see
that conditions 𝑐1 − 𝑐3 are fulfilled. □

We are now ready to provide a technique to obtain a FO rewriting for instance checking under 𝐂𝐐𝑘 censors over DL-Lite CQE
instances.

In the following, given a BCQ 𝑞′ and a positive integer 𝑘, we denote by DVS𝑘(𝑞′) (𝑘-decomposing variable sets of 𝑞′) the set
of every minimal subset 𝑋 of variables of 𝑞′ such that, if 𝑞′′ is any BCQ obtained from 𝑞′ instantiating the variables in 𝑋, then 𝑞′′
admits a decomposition Φ such that Φ ∈𝐂𝐐𝑘. For instance, if 𝑞′ = ∃𝑥, 𝑦, 𝑧 (𝑅(𝑥, 𝑦) ∧𝐷(𝑦) ∧𝑆(𝑦, 𝑧) ∧𝐸(𝑧)), then DVS3(𝑞′) = {{𝑦}, {𝑧}},
DVS2(𝑞′) = {{𝑦}}, DVS1(𝑞′) = {{𝑦, 𝑧}}.

Definition 8. Given a DL-Lite TBox , a policy , and a ground atom 𝛼, we define the sentence CQ𝑘CensEntailed(𝛼, ,) as follows:

PerfectRef(𝛼,) ∧ Consistent({𝛼}, ,)∧⋀
𝑞′∈𝐂𝐐ℎ({𝛼}∪∪)

((⋀
𝑋∈DVS𝑘(𝑞′)

¬PerfectRef(Conj≠(𝑞′,𝑋, 𝛼,),)
)
∨

¬Consistent({𝑞′}, ,)∨
Consistent({𝛼, 𝑞′}, ,)

)

where:

• PerfectRef(𝑞,) is the perfect reformulation of 𝑞 with respect to (see also Section 2);

• Consistent(Φ, ,) (where Φ is a set of BCQs) is the sentence true if Φ ∪ ∪ is consistent, and is the sentence false otherwise;.6

• ℎ = maxlen() − 1;

• Conj≠(𝑞′, 𝑋, 𝛼,) returns a BCQ with inequalities that is obtained by adding to the BCQ 𝑞′ the conjunction of all the inequality
atoms of the form 𝑥 ≠ 𝑐 for every variable 𝑥 ∈𝑋 and for every constant occurring in {𝛼} ∪ . For instance, if 𝑞′ = ∃𝑥, 𝑦, 𝑧 (𝑅(𝑥, 𝑦) ∧
𝐷(𝑦) ∧𝑆(𝑦, 𝑧)), 𝑋 = {𝑦}, and the constants occurring in {𝛼} ∪ are 𝑐 and 𝑑, then

Conj≠(𝑞′,𝑋, 𝛼,) = ∃𝑥, 𝑦, 𝑧 (𝑅(𝑥, 𝑦) ∧𝐷(𝑦) ∧𝑆(𝑦, 𝑧) ∧ 𝑦 ≠ 𝑐 ∧ 𝑦 ≠ 𝑑);

• PerfectRef(Conj≠(𝑞′, 𝑋, 𝛼,),) considers the BCQ with inequalities Conj≠(𝑞′, 𝑋, 𝛼,) as a standard BCQ without inequalities,
managing inequality atoms as standard role atoms.

The following proposition states that the sentence CQ𝑘CensEntailed(𝑞, ,) can be used to decide 𝐶𝑄𝑘-𝐶𝑒𝑛𝑠-𝐸𝑛𝑡𝑎𝑖𝑙𝑚𝑒𝑛𝑡(DL-Lite,

𝐂𝐐).

Proposition 7. Let = ⟨ , , ⟩ be a DL-Lite CQE instance and let 𝛼 be a ground atom. Then, ⊧
𝑐𝑞𝑒

𝐂𝐐𝑘
𝛼 if and only if ⊧

CQ𝑘CensEntailed(𝛼, ,).

Proof. The proof is an immediate consequence of Proposition 6 and of the following facts:

• for a consistent DL-Lite ontology ∪, we have that ⊧ PerfectRef(𝛼,) if and only if ∪ ⊧ 𝛼 (see Condition (𝑎) in
Proposition 1);

• Consistent({𝛼}, ,) captures Condition (𝑏) of Proposition 1;

• PerfectRef(Conj≠(𝑞′, 𝑋, 𝛼,),) evaluates to true in if and only if there exist a partial instantiation 𝑞′′ of 𝑞′ with constants
not occurring in {𝛼} ∪ and a set Φ ⊆𝐂𝐐Ent

𝑘
(∪) such that Φ is a decomposition of 𝑞′′ (see Condition (𝑐1) of Proposition 1);

• ¬Consistent({𝑞′}, ,) captures Condition (𝑐2) of Proposition 1 (note that sentence CQ𝑘CensEntailed(𝛼, ,), modulo the con-

junct ¬PerfectRef(Conj≠(𝑞′, 𝑋, 𝛼,),), is in CNF);

• Consistent({𝛼, 𝑞′}, ,) captures Condition (𝑐3) of Proposition 1. □

Example 8. Let us consider again Example 7. Let 𝑘 = 1, ℎ = 2, 𝑞′ = ∃𝑥 (𝐴(𝑥) ∧𝐵(𝑥)); then, the set DVS1 is {{𝑥}}. Now, it is immediate
to verify that:

PerfectRef(𝛼,) = 𝐶(𝑏);
Consistent({𝛼}, ,) = true;

¬PerfectRef(Conj≠(𝑞′, 𝑋, 𝛼,),) = ∃𝑥 (𝐴(𝑥) ∧𝐵(𝑥) ∧ 𝑥 ≠ 𝑏);

6 Notice that the consistency of Φ ∪ ∪ is equivalent to checking the consistency of the DL-Lite,𝑑𝑒𝑛 ontology Freeze(Φ) ∪ ∪ (this check is decidable as shown
19

in [14]).

Artificial Intelligence 334 (2024) 104176G. Cima, D. Lembo, R. Rosati et al.

¬Consistent({𝑞′}, ,) = false;

Consistent({𝛼, 𝑞′}, ,) = false.

Thus, the sentence CQ𝑘CensEntailed(𝛼, ,) (for 𝑘 = 1) contains a subsentence (in conjunction with the rest of the sentence) of the
form

𝐶(𝑏) ∧ true ∧ (¬(∃𝑥𝐴(𝑥) ∧𝐵(𝑥) ∧ 𝑥 ≠ 𝑏) ∨ false ∨ false)

which evaluates to false over (because satisfies ∃𝑥 (𝐴(𝑥) ∧ 𝐵(𝑥) ∧ 𝑥 ≠ 𝑏)). Hence, we conclude that does not satisfy
CQ𝑘CensEntailed(𝛼, ,), and therefore 𝐶(𝑏) is not entailed under 𝐂𝐐𝑘 censors for 𝑘 = 1. □

Since evaluating an FO sentence over an ABox is in AC0 in data complexity, Proposition 7 immediately implies the main result of
this subsection.

Theorem 13. For every integer 𝑘 ≥ 1, the following holds: 𝐶𝑄𝑘-𝐶𝑒𝑛𝑠-𝐸𝑛𝑡𝑎𝑖𝑙𝑚𝑒𝑛𝑡(DL-Lite, 𝐆𝐀) is FO-rewritable, and therefore in AC0 in
data complexity.

The following corollary summarizes the results given in this section. Namely, it recalls the data complexity of

𝐶𝑄𝑘-𝐶𝑒𝑛𝑠-𝐸𝑛𝑡𝑎𝑖𝑙𝑚𝑒𝑛𝑡(,), where ∈ {DL-Lite, ⊥} and ∈ {𝐂𝐐, 𝐂𝐐∃, 𝐆𝐀}, for every integer 𝑘 ≥ 1.

Corollary 3. Let 𝑘 be a integer such that 𝑘 ≥ 1. We have that the problem 𝐶𝑄𝑘-𝐶𝑒𝑛𝑠-𝐸𝑛𝑡𝑎𝑖𝑙𝑚𝑒𝑛𝑡(DL-Lite, 𝐆𝐀) is in AC0 in data com-

plexity. Furthermore, the following problems are coNP-complete in data complexity:

− 𝐶𝑄𝑘-𝐶𝑒𝑛𝑠-𝐸𝑛𝑡𝑎𝑖𝑙𝑚𝑒𝑛𝑡(DL-Lite,), for every ∈ {𝐂𝐐∃, 𝐂𝐐};

− 𝐶𝑄𝑘-𝐶𝑒𝑛𝑠-𝐸𝑛𝑡𝑎𝑖𝑙𝑚𝑒𝑛𝑡(⊥,), for every ∈ {𝐆𝐀, 𝐂𝐐∃, 𝐂𝐐}.

7. CQE under full censor language

In this section, we study the data complexity of the problems 𝐶𝑄-𝐶𝑒𝑛𝑠-𝐸𝑛𝑡𝑎𝑖𝑙𝑚𝑒𝑛𝑡(,), where ∈ {DL-Lite, ⊥} and ∈
{𝐆𝐀, 𝐂𝐐∃, 𝐂𝐐}. We start, in Section 7.1, with the case of DL-Lite CQE instances, and prove that 𝐶𝑄-𝐶𝑒𝑛𝑠-𝐸𝑛𝑡𝑎𝑖𝑙𝑚𝑒𝑛𝑡(DL-Lite, 𝐂𝐐)
is tractable and actually in AC0 in data complexity (Theorem 14). As done for showing membership in AC0 of

𝐶𝑄𝑘-𝐶𝑒𝑛𝑠-𝐸𝑛𝑡𝑎𝑖𝑙𝑚𝑒𝑛𝑡(DL-Lite, 𝐆𝐀) in Section 6.3, we first provide a crucial property, given in Proposition 8, that establishes
some necessary and sufficient conditions for a BCQ to be entailed by a DL-Lite CQE instance under 𝐂𝐐 censors, and then, based on
such a property, we define a query rewriting technique that is able to reduce 𝐶𝑄-𝐶𝑒𝑛𝑠-𝐸𝑛𝑡𝑎𝑖𝑙𝑚𝑒𝑛𝑡(DL-Lite, 𝐂𝐐) to the evaluation
of a first-order sentence on the ABox of the CQE instance based. This membership in AC0 obviously holds even for ∈ {𝐆𝐀, 𝐂𝐐∃}.
Then, in Section 7.2 we approach the case of ⊥ CQE instances, and show that 𝐶𝑄-𝐶𝑒𝑛𝑠-𝐸𝑛𝑡𝑎𝑖𝑙𝑚𝑒𝑛𝑡(⊥,) is PTime-complete
when =𝐂𝐐∃ (Theorem 15), and in coNP when =𝐂𝐐 (Theorem 16). Of course, this latter membership holds even when =𝐆𝐀.

The following general property of entailment under 𝐂𝐐 censors will be useful in both the next subsections. The proof follows
immediately from the definition of CQ-Cens-Entailment.

Lemma 11. Let = ⟨ , , ⟩ be either a DL-Lite CQE instance or an ⊥ CQE instance, and let 𝑞 be a BCQ. Then, ̸⊧𝑐𝑞𝑒𝐂𝐐 𝑞 if and only
if at least one of the following conditions holds: (i) ∪ ̸⊧ 𝑞; (ii) {𝑞} ∪ ∪ is inconsistent; (iii) there exists a BCQ 𝑞′ ∈ 𝐂𝐐Ent(∪)
such that {𝑞′} ∪ ∪ is consistent and {𝑞, 𝑞′} ∪ ∪ is inconsistent.

Intuitively, the above proposition says that a query 𝑞 is not entailed under 𝐂𝐐 censors if and only if (𝑖) 𝑞 is not entailed by the
CQE instance without considering the policy, or (𝑖𝑖) 𝑞 discloses some information considered confidential according to the policy,
or (𝑖𝑖𝑖) there is a 𝑞′ as described above which implies the existence of an optimal 𝐂𝐐 censor such that 𝑞′ ∈ 𝖳𝗁() (because
𝑞′ ∈𝐂𝐐Ent(∪)) and ∪ 𝖳𝗁() ̸⊧ 𝑞 (because {𝑞, 𝑞′} is inconsistent with ∪).

7.1. DL-Lite CQE instances

We now focus on the case of DL-Lite CQE instances, analyzing the data complexity of 𝐶𝑄-𝐶𝑒𝑛𝑠-𝐸𝑛𝑡𝑎𝑖𝑙𝑚𝑒𝑛𝑡(DL-Lite, 𝐂𝐐).
We first prove the following property, which is analogous to what Proposition 6 establishes in the case 𝐂𝐐𝑘-Cens-Entailment.

Such a property is crucial for the FO-rewritability of 𝐶𝑄-𝐶𝑒𝑛𝑠-𝐸𝑛𝑡𝑎𝑖𝑙𝑚𝑒𝑛𝑡(DL-Lite, 𝐂𝐐), since each of its conditions can be tested
efficiently through an FO encoding.

Proposition 8. Let = ⟨ , , ⟩ be a DL-Lite CQE instance, let 𝑞 be a BCQ, and let ℎ = maxlen() −1. Then, ⊧
𝑐𝑞𝑒

𝐂𝐐 𝑞 if and only if the
following conditions hold:
20

(a) ∪ ⊧ 𝑞;

Artificial Intelligence 334 (2024) 104176G. Cima, D. Lembo, R. Rosati et al.

(b) {𝑞} ∪ ∪ is consistent;

(c) there exists no BCQ 𝑞′ ∈𝐂𝐐Ent
ℎ

(∪) such that:

(c1) {𝑞′} ∪ ∪ is consistent;

(c2) {𝑞, 𝑞′} ∪ ∪ is inconsistent.

Proof. First, by Lemma 11, ⊧
𝑐𝑞𝑒

𝐂𝐐 𝑞 if and only if conditions (a) and (b) hold, and there exists no 𝑞′ ∈ 𝐂𝐐Ent(∪) such that
conditions (c1) and (c2) hold. Now, since {𝑞, 𝑞′} ∪ is consistent, by Lemma 8 inconsistency w.r.t. corresponds to the entailment
in {𝑞, 𝑞′} ∪ of a query 𝑞𝛿 for some denial 𝛿 ∈ . By Lemma 10, we can assume that length(𝑞′) ≤ maxlen() −1. But, since {𝑞′} ∪ ∪
is consistent, at least one atom of 𝑞𝛿 must be satisfied by 𝑞, therefore we can assume that length(𝑞′) ≤ maxlen() − 1. Consequently,
𝑞′ ∈𝐂𝐐Ent

ℎ
(∪), which proves the thesis. □

Notice that, with respect to Proposition 6, Proposition 8 is simpler: in particular, condition (c1) of Proposition 6 is not needed
anymore, since the BCQ 𝑞′ of condition (c) certainly belongs to the censor language.

Based on Proposition 8, we are now able to define a first-order sentence that encodes the entailment of BCQs under 𝐂𝐐 censors
in DL-Lite CQE instances.

Definition 9. Let be a DL-Lite TBox, be a policy, 𝑞 a BCQ, and let ℎ = maxlen() −1, we define the sentence CQCensEntailed(𝑞,
 ,) as follows:

PerfectRef(𝑞,) ∧ Consistent({𝑞}, ,)∧⋀
𝑞′∈𝐂𝐐ℎ({𝑞}∪∪)

(
¬PerfectRef(𝑞′,) ∨ ¬Consistent({𝑞′}, ,)

∨Consistent({𝑞, 𝑞′}, ,)
)

where PerfectRef(⋅, ⋅) and Consistent(⋅, ⋅, ⋅) are as in Definition 8.

The following proposition states that CQCensEntailed(𝑞, ,) can be used to decide 𝐶𝑄-𝐶𝑒𝑛𝑠-𝐸𝑛𝑡𝑎𝑖𝑙𝑚𝑒𝑛𝑡(DL-Lite, 𝐂𝐐).

Proposition 9. Let = ⟨ , , ⟩ be a DL-Lite CQE instance and let 𝑞 be a BCQ. Then, ⊧
𝑐𝑞𝑒

𝐂𝐐 𝑞 if and only if ⊧ CQCensEntailed(𝑞,
 ,).

Proof. The proof is an immediate consequence of Proposition 8, of the fact that, for a consistent DL-Lite ontology ∪, we have
that ⊧ PerfectRef(𝑞,) if and only if ∪ ⊧ 𝑞 (cf. Proposition 1), and of the fact that, in condition (c) of Proposition 8, it is
sufficient to consider BCQs 𝑞′ of maximum length maxlen() − 1 mentioning only constants appearing in 𝑞 or in . □

The above property immediately implies the FO-rewritability of 𝐶𝑄-𝐶𝑒𝑛𝑠-𝐸𝑛𝑡𝑎𝑖𝑙𝑚𝑒𝑛𝑡(DL-Lite, 𝐂𝐐).

Theorem 14. 𝐶𝑄-𝐶𝑒𝑛𝑠-𝐸𝑛𝑡𝑎𝑖𝑙𝑚𝑒𝑛𝑡(DL-Lite, 𝐂𝐐) is FO-rewritable, and therefore in AC0 in data complexity.

Example 9. Consider the CQE instance = ⟨ , , ⟩, where is the DL-Lite TBox of Example 2, and and are as in Example 3.
For clarity and convenience, we reproduce them below:

 = { ∃𝖻𝗎𝗒 ⊑ 𝖢𝗎𝗌𝗍𝗈𝗆𝖾𝗋,
∃𝖻𝗎𝗒− ⊑𝖬𝖾𝖽𝗂𝖼𝗂𝗇𝖾,
𝖬𝖾𝖽𝗂𝖼𝗂𝗇𝖾 ⊑ ∃𝗍𝗋𝖾𝖺𝗍𝗌,
∃𝗍𝗋𝖾𝖺𝗍𝗌− ⊑ 𝖢𝗈𝗇𝖽𝗂𝗍𝗂𝗈𝗇 }

 = { 𝖻𝗎𝗒(𝑐1,𝑚𝐴),𝖻𝗎𝗒(𝑐1,𝑚𝐵),𝖻𝗎𝗒(𝑐2,𝑚𝐴) }

 = { ∀𝑥(𝖻𝗎𝗒(𝑥,𝑚𝐴) ∧ 𝖻𝗎𝗒(𝑥,𝑚𝐵)→ ⊥) }

Additionally, consider the following CQ asking whether the customer 𝑐1 bought the medicine 𝑚𝐵 :

𝑞 = 𝖢𝗎𝗌𝗍𝗈𝗆𝖾𝗋(𝑐1) ∧ 𝖻𝗎𝗒(𝑐1,𝑚𝐵) ∧𝖬𝖾𝖽𝗂𝖼𝗂𝗇𝖾(𝑚𝐵).

We aim to verify whether ⊧
𝑐𝑞𝑒

𝐂𝐐 𝑞. By exploiting Proposition 9, we can do this by verifying whether ⊧ CQCensEntailed(𝑞, ,).
Let’s analyze each component of CQCensEntailed(𝑞, ,) separately. PerfectRef(𝑞,) contains several queries among which the query
𝖻𝗎𝗒(𝑐1, 𝑚𝐵) is the only one satisfied by . Moreover, since {𝖻𝗎𝗒(𝑐1, 𝑚𝐵)} ∪ ∪ is consistent, then Consistent({𝑞}, ,) is 𝑡𝑟𝑢𝑒.
Continuing with the construction of the formula, we need to compute the set 𝐂𝐐maxlen()−1({𝑞} ∪ ∪), that in our case is constituted
by BCQs of maximum length 1 built using the predicates in ∪ , and the constants in 𝑞 or in . Queries in this set include the query
𝑞′ = 𝖻𝗎𝗒(𝑐1, 𝑚𝐴). One can verify that the presence of such a query leads CQCensEntailed(𝑞, ,) to evaluate to false in , specifically
because we have that Consistent({𝑞, 𝑞′}, ,) is false. Hence, we can conclude that ̸⊧𝑐𝑞𝑒𝐂𝐐 𝑞. In fact, as in Example 3, we have only
21

two optimal censors for in 𝐂𝐐, and we can verify that the theory of one of them does not contain 𝖻𝗎𝗒(𝑐1, 𝑚𝐵). □

Artificial Intelligence 334 (2024) 104176G. Cima, D. Lembo, R. Rosati et al.

7.2. ⊥ CQE instances

We now consider the case of ⊥ CQE instances. For this case, we are able to prove two complexity results:

(1) for the class of 𝐂𝐐∃ queries, CQ-Cens-Entailment is PTime-complete in data complexity;

(2) for the class of all BCQs, CQ-Cens-Entailment is in coNP in data complexity.

We first turn our attention to (1). To prove such a result, we introduce a property (Lemma 12) that establishes that the BCQ 𝑞′
of Lemma 11 can be searched among the subqueries of the BCQs occurring in the denials of . Such a property immediately implies
the membership in PTime (Theorem 15).

Hereinafter, we say that a BCQ 𝑞 can be partitioned into two BCQs 𝑞′ and 𝑞′′ if 𝑞′ and 𝑞′′ have no variables in common and
𝑞 = 𝑞′ ∧ 𝑞′′.

Lemma 12. Let be an ⊥ TBox, let be a policy, let 𝑞 be a BCQ∃, and let 𝑞′ be a BCQ such that ∪ {𝑞} is consistent and ∪ {𝑞′} is
consistent. Then, ∪ ∪ {𝑞′, 𝑞} is inconsistent iff there exists a denial 𝛿 ∈ such that 𝑞𝛿 can be partitioned into two BCQs 𝑞′

𝛿
, 𝑞′′

𝛿
such that

 ∪ {𝑞′} ⊧ 𝑞′
𝛿

and ∪ {𝑞} ⊧ 𝑞′′
𝛿

.

Proof. To prove this lemma we make use of the well-known notion of chase [30], and in particular we use the function
chase(,) that computes the chase of an ABox with respect to an ⊥ TBox . First, by Lemma 4, ∪ ∪ {𝑞′, 𝑞} is in-

consistent if and only if ∪ {𝑞′, 𝑞} ⊧ 𝑞𝛿 for some 𝛿 ∈ . Moreover, by Lemma 7, ∪ {𝑞′, 𝑞} ⊧ 𝑞𝛿 iff ∪ Freeze({𝑞′, 𝑞}) ⊧ 𝑞𝛿 .
Now, Freeze({𝑞′, 𝑞}) = Freeze(𝑞′) ∪ Freeze(𝑞), and since 𝑞 ∈ 𝐂𝐐∃, it follows that Freeze(𝑞) does not share any constant symbol with
Freeze(𝑞′). Consequently, chase(Freeze({𝑞′, 𝑞},) = chase(Freeze(𝑞′),) ∪ chase(Freeze(𝑞),), which implies that ∪ {𝑞′, 𝑞} ⊧ 𝑞𝛿 iff
chase(Freeze(𝑞′),) ∪ chase(Freeze(𝑞),) ⊧ 𝑞𝛿 , and since chase(Freeze(𝑞′),) and chase(Freeze(𝑞),) do not share any constant, the
thesis follows. □

We are now ready to prove that 𝐶𝑄-𝐶𝑒𝑛𝑠-𝐸𝑛𝑡𝑎𝑖𝑙𝑚𝑒𝑛𝑡(⊥, 𝐂𝐐∃) is tractable.

Theorem 15. 𝐶𝑄-𝐶𝑒𝑛𝑠-𝐸𝑛𝑡𝑎𝑖𝑙𝑚𝑒𝑛𝑡(⊥, 𝐂𝐐∃) is PTime-complete in data complexity.

Proof. First, we prove PTime-hardness by reducing the problem of instance checking in under the standard semantics, which is a
PTime-hard problem [21] to 𝐶𝑄-𝐶𝑒𝑛𝑠-𝐸𝑛𝑡𝑎𝑖𝑙𝑚𝑒𝑛𝑡(⊥, 𝐂𝐐∃). Given any PTime-hard instance checking problem (under the standard
semantics) ∪ ⊧ 𝐶(𝑎), where is an TBox, let us call ′ the TBox obtained from adding the inclusion 𝐶 ⊓ 𝐶 ′ ⊑ ∃𝑅′.⊤,
where 𝐶 ′ (resp. 𝑅′) is an atomic concept (resp. an atomic role) not occurring in ∪, and let us call ′ the ABox ∪ {𝐶 ′(𝑎)}.
It is immediate to see that ∪ ⊧ 𝐶(𝑎) iff ′ ∪′ ⊧ ∃𝑥, 𝑦(𝑅′(𝑥, 𝑦)). Moreover, since in the above reduction the ontology ∪ is
consistent, it immediately follows that ′ ∪′ ⊧ ∃𝑥, 𝑦(𝑅′(𝑥, 𝑦)) iff the CQE instance ⟨ ′, ′, ∅⟩ ⊧𝑐𝑞𝑒𝐂𝐐 ∃𝑥, 𝑦(𝑅′(𝑥, 𝑦)), which proves the

PTime-hardness of 𝐶𝑄-𝐶𝑒𝑛𝑠-𝐸𝑛𝑡𝑎𝑖𝑙𝑚𝑒𝑛𝑡(⊥, 𝐂𝐐∃).
As for PTime-membership, let q be a 𝐂𝐐∃, Lemma 11 and Lemma 12 immediately imply that ⟨ , , ⟩ ̸⊧𝑐𝑞𝑒𝐂𝐐 𝑞 iff: either (i)

 ∪ ̸⊧ 𝑞; or (ii) ∪ ∪ {𝑞} is inconsistent; or (iii) there exists a denial 𝛿 ∈ such that 𝑞𝛿 can be partitioned into two subqueries 𝑞′
and 𝑞′′ such that (a) ∪ ⊧ 𝑞′, (b) ∪ ∪{𝑞′} is consistent, (c) ∪ ∪{𝑞′, 𝑞} is inconsistent, and (d) ∪{𝑞} ⊧ 𝑞′′. It is immediate
to verify that the above conditions (i), (ii) and (iii) can be verified in PTime, since in ⊥ each of the above entailment checks under
the standard semantics can be decided in PTime in data complexity, and the number of possible decompositions of every denial in
two subqueries is finite and independent of the ABox. □

We now address (2), i.e., we consider the case of entailment of BCQs, and show that 𝐶𝑄-𝐶𝑒𝑛𝑠-𝐸𝑛𝑡𝑎𝑖𝑙𝑚𝑒𝑛𝑡(⊥, 𝐂𝐐) is in coNP

in data complexity.

Given a CQE instance = ⟨ , , ⟩, a BCQ 𝑞 and a BCQ 𝑞′, in the following it will be convenient to use a specific definition that
summarizes the following three conditions: (i) ∪ ⊧ 𝑞′; (ii) ∪ ∪ {𝑞′} is consistent; (iii) ∪ ∪ {𝑞′, 𝑞} is inconsistent. If this is
the case, we say that 𝑞′ is censor-conflicting with 𝑞 in . Now, Lemma 11 can be immediately rephrased in terms of censor-conflicting
queries as follows:

Lemma 13. Let = ⟨ , , ⟩ be an ⊥ CQE instance and let 𝑞 be a BCQ. We have that ⊧
𝑐𝑞𝑒

𝐂𝐐 𝑞 if and only if ∪ ⊧ 𝑞 and there exists
no BCQ 𝑞′ that is censor-conflicting with 𝑞 in .

Below we outline the structure of our proof for (2).

• We first recall the notion of partial rewriting and the existence of a partial rewriting for every BCQ over an ⊥ ontology
(Lemma 14).

• Then, we show (Lemma 16) that, if there exists a BCQ 𝑞′ that is censor-conflicting with a BCQ 𝑞 in , then there exists a BCQ 𝑞′′
that is censor-conflicting with 𝑞 in and which is a subquery of a partial rewriting (with respect to) of the BCQ 𝑞𝛿 of some
22

denial 𝛿 in .

Artificial Intelligence 334 (2024) 104176G. Cima, D. Lembo, R. Rosati et al.

• Finally, using a property (Lemma 15) of the non-tree-shaped part (called graph-core) of the partial rewriting identified by
Lemma 16, we are able to prove that (Lemma 17), if there exists a BCQ 𝑞′ that is censor-conflicting with 𝑞 in , then there
exists a BCQ 𝑞′′ that is censor-conflicting with 𝑞 in and such that the size of 𝑞′′ is polynomially bounded (in data complexity).
This immediately implies that CQ-Cens-Entailment is in coNP in data complexity (Theorem 16).

We recall the notion of normalized ⊥ TBox [31]. An ⊥ TBox is normalized if every concept inclusion in has one of the
following forms:

𝐴⊑ 𝐶

𝐴⊑ ∃𝑅.𝐵

𝐴 ⊓𝐵 ⊑ 𝐶

∃𝑅.𝐴 ⊑ 𝐶

where 𝐴, 𝐵 are either atomic concepts or ⊤, 𝐶 is either an atomic concept or ⊥, and 𝑅 is an atomic role.

It is easy to verify that, given an ⊥ TBox , it is possible to compute in linear time (see [31]) a normalized ⊥ TBox ′ that
uses a linear number of new, auxiliary atomic concepts and is such that, for every ABox and policy , ⟨ , , ⟩ ⊧𝑐𝑞𝑒𝐂𝐐 𝑞 if and only
if ⟨ ′, , ⟩ ⊧𝑐𝑞𝑒𝐂𝐐 𝑞 for every BCQ 𝑞 on the signature of ∪ ∪ .

Consequently, from now on, without loss of generality we assume that the ⊥ CQE instances that we consider are such that their
TBox is normalized.

A homomorphism from a BCQ 𝑞 to a BCQ 𝑞′ is a function ℎ that maps the terms of 𝑞 into the terms of 𝑞′ in such a way that ℎ(𝑞) is
a subquery of 𝑞′, where ℎ(𝑞) denotes the BCQ obtained from 𝑞 replacing every term 𝑡 with ℎ(𝑡). It is immediate to verify that, given
a set of BCQs Φ and a BCQ 𝑞, Φ ⊧ 𝑞 iff there exists a homomorphism from 𝑞 to Conj(Φ), where Conj(Φ) is the BCQ corresponding to
the conjunction of all the BCQs in Φ (see Section 6.1).

Given an ⊥ TBox and a BCQ 𝑞, a partial rewriting of 𝑞 w.r.t. is a BCQ 𝑞′ such that, for every set of BCQs Φ, if Φ ⊧ 𝑞′ then
 ∪Φ ⊧ 𝑞. The following property follows immediately from well-known properties of query answering and query rewriting in ⊥

[32,33].

Lemma 14. Let be an ⊥ TBox, let Φ be a set of BCQs such that ∪Φ is consistent, and let 𝑞 be a BCQ. If ∪Φ ⊧ 𝑞, then there exists
a partial rewriting 𝑞′ of 𝑞 w.r.t. such that Φ ⊧ 𝑞′.

Now, we associate every BCQ 𝑞 with a directed graph 𝐺(𝑞) defined as follows. The nodes of 𝐺(𝑞) are the terms occurring in 𝑞.
Every node 𝑡 of 𝐺(𝑞) is labeled with a conjunction of atomic concepts (corresponding to the concept atoms for 𝑡 in 𝑞). Moreover,
there is an edge with label 𝑅 from 𝑡1 to 𝑡2 in 𝐺(𝑞) if the atom 𝑅(𝑡1, 𝑡2) occurs in 𝑞. We say that 𝑞 is tree-shaped with root-variable 𝑣
if 𝐺(𝑞) is a tree whose root is the variable 𝑣. Note that multi-edges between two nodes prevent a query from being tree-shaped. For
instance, the BCQ 𝑞 = ∃ 𝑥, 𝑦, 𝑧, 𝑤 (𝐶(𝑥) ∧𝑅(𝑥, 𝑦) ∧ 𝑆(𝑥, 𝑧) ∧𝐷(𝑧) ∧𝐸(𝑧) ∧𝑅(𝑦, 𝑤)) is tree-shaped with root-variable 𝑥.

An existential subtree of a BCQ 𝑞 is a subquery 𝑞′ of 𝑞 that is tree-shaped, does not contain constants, and shares (at most) its
root-variable with the atoms of 𝑞 that do not occur in 𝑞′.

The graph-core of a BCQ 𝑞 is the BCQ obtained from 𝑞 by eliminating all the existential subtrees of 𝑞.

Lemma 15. Let be an ⊥ TBox , let be an ABox such that ∪ is consistent, and let 𝑞 be a BCQ 𝑞. If ∪ ⊧ 𝑞, then there exists
a partial rewriting 𝑞′ of 𝑞 w.r.t. such that ⊧ 𝑞′ and the number of distinct terms occurring in the graph-core of 𝑞′ is not greater than the
number of distinct terms occurring in 𝑞.

Proof. Since by hypothesis ∪ is consistent, it follows that ∪ ⊧ 𝑞 iff − ∪ ⊧ 𝑞, where − is the TBox obtained from
by eliminating the concept inclusions mentioning ⊥. Thus, the thesis follows immediately from the query rewriting technique for
shown in [27]. □

We are now ready to prove a crucial property.

Lemma 16. Let = ⟨ , , ⟩ be an ⊥ CQE instance such that = , i.e., the ABox coincides with its ground closure w.r.t. . Let
𝑞 and 𝑞′ be two BCQs. If 𝑞′ is censor-conflicting with 𝑞 in , then there exist: (i) a denial 𝛿 in , (ii) a BCQ 𝑞′

𝛿
that is a partial rewriting of

𝑞𝛿 w.r.t. , and (iii) a homomorphism ℎ from 𝑞′
𝛿

to Conj({𝑞′, 𝑞}), such that ℎ′(𝑞′′
𝛿
) is censor-conflicting with 𝑞 in and ⊧ ℎ′(𝑞′′

𝛿
), where

ℎ′ is the restriction of ℎ to the mapping of the variables of 𝑞′
𝛿

to constants, and 𝑞′′
𝛿

is constituted by the set of atoms of 𝑞′
𝛿

that are mapped by
ℎ onto atoms of 𝑞′.

Proof. Since {𝑞′, 𝑞} is inconsistent with ∪ , it follows that there exists a denial 𝛿 ∈ such that ∪ {𝑞′, 𝑞} ⊧ 𝑞𝛿 , hence by
Lemma 14 there exists a BCQ 𝑞′

𝛿
that is a partial rewriting of 𝑞𝛿 w.r.t. such that {𝑞′, 𝑞} ⊧ 𝑞′

𝛿
, which in turn implies that there exists

a homomorphism ℎ from 𝑞′
𝛿

to Conj({𝑞′, 𝑞}). Now let ℎ′ be the restriction of ℎ to the mapping of variables of 𝑞′
𝛿

into constants, and
let 𝑞′′

𝛿
be the BCQ constituted by the set of atoms of 𝑞′

𝛿
that are mapped by ℎ into atoms of 𝑞′: since 𝑞′ and 𝑞 do not share variable

symbols, all the variables that appear both in 𝑞′′
𝛿

and in atoms of 𝑞′
𝛿

outside 𝑞′′
𝛿

are mapped to constants by ℎ. Consequently, ℎ′(𝑞′′
𝛿
)

23

does not share variables with the other atoms of 𝑞′
𝛿
. It is now immediate to verify that {ℎ′(𝑞′′

𝛿
), 𝑞} ⊧ 𝑞′

𝛿
, hence (a) ∪ ∪ {ℎ′(𝑞′′

𝛿
), 𝑞}

Artificial Intelligence 334 (2024) 104176G. Cima, D. Lembo, R. Rosati et al.

is inconsistent; moreover, {𝑞′} ⊧ ℎ(𝑞′′
𝛿
), and since 𝑞′ is censor-conflicting with 𝑞 in it follows that (b) ∪ ∪{ℎ′(𝑞′′

𝛿
)} is consistent,

and (c) ∪ ⊧ ℎ′(𝑞′′
𝛿
). Consequently, ℎ′(𝑞′′

𝛿
) is censor-conflicting with 𝑞 in .

Now, since ∪ ⊧ ℎ′(𝑞′′
𝛿
), by Lemma 14 there exists a partial rewriting 𝑞′′ of ℎ′(𝑞′′

𝛿
) w.r.t. such that ⊧ 𝑞′′. Since by hypothesis

 = , it follows ([27]) that such a 𝑞′′ can be obtained from ℎ′(𝑞′′
𝛿
) by roll-up steps that use inclusions of the TBox : since we

assume that is a normalized TBox, such roll-up steps rewrite pairs of role and concept atoms 𝑅(𝑡, 𝑥), 𝐶(𝑥) (or single role atoms
𝑅(𝑡, 𝑥)) such that 𝑥 is a variable not occurring elsewhere in the query. Given the fact that 𝑞′′

𝛿
is a subquery of a rewriting 𝑞′

𝛿
of 𝑞𝛿 ,

it follows that there exists a partial rewriting 𝑞′′′
𝛿

of 𝑞𝛿 w.r.t. in which the variables eliminated by the roll-up steps that transform
ℎ′(𝑞′′

𝛿
) in 𝑞′′ are not occurring at all (i.e., none of the backward chaining steps that introduce such variables in 𝑞′

𝛿
is executed in the

rewriting process that generates 𝑞′′′
𝛿

) and 𝑞′
𝛿
⊧ 𝑞′′′

𝛿
. Therefore, assuming now that 𝑞′′

𝛿
is the BCQ constituted by the set of atoms of 𝑞′

𝛿
that are mapped by ℎ onto atoms of 𝑞′, the above properties (a), (b) and (c) still hold, and in addition, ⊧ ℎ′(𝑞′′

𝛿
), thus proving the

thesis. □

The next lemma establishes an upper bound on the size of a censor-conflicting BCQ.

Lemma 17. Let = ⟨ , , ⟩ be an ⊥ CQE instance such that = , and let 𝑞 be a BCQ. If there exists a BCQ 𝑞′ that is censor-

conflicting with 𝑞 in , then there exists a BCQ 𝑞′′ that is censor-conflicting with 𝑞 in and whose length is no greater than 𝑘(𝑘 + 𝑛𝑘2(𝑛 +
2𝑘)2𝑘)2, where 𝑘 is the size of ∪ ∪ {𝑞} and 𝑛 is the size of .

Proof. Given a BCQ 𝑞 and two variables 𝑥, 𝑦 occurring in 𝑞, we say that 𝑥 and 𝑦 are 𝐂𝐐𝑘(∪)-equivalent in 𝑞 if, for every BCQ
𝑞′ ∈𝐂𝐐𝑘(∪), 𝜎(𝑞) ⊧ 𝜎′(𝑞′) iff 𝜎(𝑞) ⊧ 𝜎′′(𝑞′), where 𝜎 = {𝑥 → 𝑎𝑥, 𝑦 → 𝑎𝑦}, 𝜎′ = {𝑧 → 𝑎𝑥}, 𝜎′′ = {𝑧 → 𝑎𝑦}, 𝑧 is a variable occurring
in 𝑞′ and 𝑎𝑥 and 𝑎𝑦 are constants not occurring in 𝑞.

Now let ℎ′(𝑞′′
𝛿
) be the BCQ of Lemma 16. Let ℎ0 be a homomorphism that maps (the variables of) ℎ′(𝑞′′

𝛿
) into (the constants of) .

Let 𝑞′′ be the BCQ obtained from ℎ′(𝑞′′
𝛿
) unifying two of its variables 𝑥 and 𝑦 such that ℎ0(𝑥) = ℎ0(𝑦), 𝑥 and 𝑦 are the root-variables

of two existential subtrees of 𝑞′′
𝛿

, and 𝑥 and 𝑦 are 𝐂𝐐𝑘(∪)-equivalent. Also, let 𝑆𝑥 be the subtree of 𝑥 in ℎ′(𝑞′′
𝛿
) and let 𝑆𝑦 be

the subtree of 𝑦 in ℎ′(𝑞′′
𝛿
). Now suppose that ∪ ∪ {𝑞′′} is inconsistent. Then, there exists a denial 𝛿0 such that 𝑞𝛿0 contains a

variable 𝑧 whose subtree 𝑆𝑧 is isomorphic to 𝑆𝑥 ∪𝑆𝑦. However, since 𝛿 ∈ , it immediately follows that the denial 𝛿1 obtained from
𝛿0 replacing the subtree 𝑆𝑧 with 𝑆𝑥𝑧, where 𝑆𝑥𝑧 is the subtree obtained from 𝑆𝑥 replacing 𝑥 with 𝑧, is a denial implied by ∪ . But
now, it is immediate to verify that ℎ′(𝑞′′

𝛿
) implies 𝑞𝛿1 , consequently ∪ ∪{ℎ′(𝑞′′

𝛿
)} is inconsistent, thus contradicting the hypothesis.

Therefore, ∪ ∪ {𝑞′′} is consistent.

Now let 𝑞′ be the BCQ obtained from ℎ′(𝑞′′
𝛿
) by unifying all the variables 𝑥 and 𝑦 such that ℎ0(𝑥) = ℎ0(𝑦) and 𝑥 and 𝑦 are

𝐂𝐐𝑘(∪)-equivalent. By iterating the above argument used for 𝑞′′, it follows that ∪ ∪ {𝑞′} is consistent. Moreover, of course
 ∪ ∪ {𝑞′, 𝑞} is inconsistent (since ∪ ∪ {ℎ′(𝑞′′

𝛿
), 𝑞} is inconsistent and 𝑞′ ⊧ ℎ′(𝑞′′

𝛿
)). Finally, it is immediate to see that ⊧ 𝑞′

(because of the homomorphism ℎ0). Consequently, 𝑞′ is censor-conflicting with 𝑞 in .

Moreover, observe that there are at most 𝑛𝑘2(𝑛 +2𝑘)2𝑘 variables in the subtrees of ℎ′(𝑞′′
𝛿
) that either are not 𝐂𝐐𝑘(∪)-equivalent

or are mapped by ℎ0 into different constants (since 𝑛 + 2𝑘 is the number of terms that can occur in the BCQs of 𝐂𝐐𝑘(∪), 𝑘 is
the maximum number of atoms and 2𝑘 is the maximum number of terms in a BCQ), and, by Lemma 15, we can assume that 𝑞′

𝛿
has a

graph-core such that the number of terms occurring in it is not greater than the number of terms occurring in 𝑞𝛿 , hence such a number
of terms is bounded by 𝑘. Consequently, we have that in ℎ′(𝑞′′

𝛿
) there are at most 𝑘 (initial) terms occurring outside the subtrees of

ℎ′(𝑞′′
𝛿
). Therefore, the number of distinct terms occurring in ℎ′(𝑞′′

𝛿
) is bounded by 𝑘 + 𝑛𝑘2(𝑛 + 2𝑘)2𝑘, which implies that the number

of distinct atoms that occur in ℎ′(𝑞′′
𝛿
) is bounded by 𝑘(𝑘 + 𝑛𝑘2(𝑛 + 2𝑘)2𝑘)2. □

Using Lemma 17, we are able to provide an upper bound for the data complexity of 𝐶𝑄-𝐶𝑒𝑛𝑠-𝐸𝑛𝑡𝑎𝑖𝑙𝑚𝑒𝑛𝑡(⊥, 𝐂𝐐).

Theorem 16. 𝐶𝑄-𝐶𝑒𝑛𝑠-𝐸𝑛𝑡𝑎𝑖𝑙𝑚𝑒𝑛𝑡(⊥, 𝐂𝐐) is in coNP in data complexity.

Proof. Let = ⟨ , , ⟩, with an ⊥ TBox, and let 𝑞 be a BCQ. By Lemma 13 and Lemma 17, we can decide ̸⊧𝑐𝑞𝑒𝐂𝐐 𝑞 by first
computing , then guessing both a BCQ 𝑞′ whose size is no greater than 𝑘(𝑛 +𝑘 + 𝑛𝑘2(𝑛 +2𝑘)2𝑘)2, and a homomorphism ℎ from the
variables of 𝑞′ to the constants of , and then checking that: (i) every atom of ℎ(𝑞′) belongs to (i.e.

⊧ 𝑞′); (ii) ∪ ∪ {𝑞′}
is consistent, i.e. by Lemma 4, ∪ {𝑞′} ̸⊧ 𝑞𝛿 for every 𝛿 ∈ ; (iii) ∪ ∪ {𝑞, 𝑞′} is inconsistent, i.e. by Lemma 4, ∪ {𝑞′, 𝑞} ⊧ 𝑞𝛿
for some 𝛿 ∈ . Since both the computation of and the three above conditions can be checked in PTime in data complexity, the
thesis follows. □

We finally recall the results established in this section regarding the data complexity of 𝐶𝑄-𝐶𝑒𝑛𝑠-𝐸𝑛𝑡𝑎𝑖𝑙𝑚𝑒𝑛𝑡(,), where
 ∈ {DL-Lite, ⊥} and ∈ {𝐂𝐐, 𝐂𝐐∃, 𝐆𝐀}.

Corollary 4. 𝐶𝑄-𝐶𝑒𝑛𝑠-𝐸𝑛𝑡𝑎𝑖𝑙𝑚𝑒𝑛𝑡(DL-Lite,) is in AC0 in data complexity, for every ∈ {𝐆𝐀, 𝐂𝐐∃, 𝐂𝐐}. Furthermore, we have that:

− 𝐶𝑄-𝐶𝑒𝑛𝑠-𝐸𝑛𝑡𝑎𝑖𝑙𝑚𝑒𝑛𝑡(⊥, 𝐂𝐐∃) is PTime-complete in data complexity;
24

− 𝐶𝑄-𝐶𝑒𝑛𝑠-𝐸𝑛𝑡𝑎𝑖𝑙𝑚𝑒𝑛𝑡(⊥, 𝐆𝐀) and 𝐶𝑄-𝐶𝑒𝑛𝑠-𝐸𝑛𝑡𝑎𝑖𝑙𝑚𝑒𝑛𝑡(⊥, 𝐂𝐐) are both PTime-hard and in coNP in data complexity.

Artificial Intelligence 334 (2024) 104176G. Cima, D. Lembo, R. Rosati et al.

8. Related work

In the last thirty years, CQE has been studied quite extensively in the context of databases and knowledge bases. It was originally
introduced in [5] for propositional databases. In that paper, the authors provide a general framework for confidentiality-preserving
query answering and discuss some criteria that can be used by a censor to alter user queries. Analogously to our framework, the
aim is to ensure that an attacker cannot exactly deduce secret information from the responses of the system, whereas other works
on confidentiality preservation (e.g. [34,35]) also study how to prevent the user from establishing which secret is more probable.
In [5], data are interpreted under the closed world assumption and censors may refuse to provide an answer to a query but never lie
to users. The relationship between the lying approach, i.e. when the system may return non-correct answers, and the refusal one, i.e.
when the system can refuse to answer some queries, has been then investigated for propositional closed databases in [36–38,6]. The
case of propositional open databases is instead studied in [16].

Clearly, all the above papers focus on a setting different from the one studied in this article. In particular, we remark that
ontologies considered in our framework are first-order open theories and that our censors never mark a query as refused, but enforce
confidentiality by returning a strict subset of the query answers entailed by the system. Thus, we adopt a form of lying, since may
say that a query is not entailed, even if in fact it is.

Works on CQE over DL ontologies are closer to our research [15,8,7,39]. In [15], the authors generalize the CQE paradigm for
incomplete databases presented in [16], and study CQE for ontologies in OWL 2 RL, one of the tractable profiles of OWL 2 [20], and
policies represented by sets of ground atoms. The paper [15] proposes the use of optimal (view-based) censors that allow users to
query the ontology without inferring the ground atoms in the policy. It also identifies a fragment of OWL 2 RL for which constructing
(a secure view of the ontology through) one such censor is polynomial. The same authors then continue their investigation in [8],
for ontologies specified in Datalog or in one of the OWL 2 profiles and for policy expressed as a CQ. As in [15], the main focus of
the paper is on verifying the existence of a censor and establishing the computational complexity of producing it. Two incomparable
different censor notions are considered, one based on views (as in [15]), and another based on obstruction.

The paper [7] instead considers a framework in which a knowledge base , expressed in any DL with decidable reasoning
and enjoying compactness (as, e.g.), is coupled with a set of so-called secrecies, i.e. axioms in that, if entailed by ,
should not be disclosed to the user. The paper analyzes two security models. In the first model, a view 𝑢 is exposed to the user
only if 𝑢 is contained in the set of the logical consequences of and has an empty intersection with . The second model is
more sophisticated and imposes, in addition, that a user should not understand whether 𝑢 is obtained by filtering or another
knowledge base not inferring secrecies (this property has been later called indistinguishability in the literature). The latter model is
shown to be more robust than the former to attacks of users that may have additional object-level background knowledge and/or
are aware that the underlying ontology has complete knowledge about a certain set of axioms. Differently from [8], the paper [7]

does not clearly distinguish between the intensional and extensional levels of the ontology. Moreover, it does not allow to specify
CQs in the policy, since the considered secrecies are axioms in the ontology language , which, being a DL, cannot capture CQs. A
restricted policy language, consisting only of subsumptions between concepts, is also investigated in [39], where the authors define
and analyze properties of censors for Boolean ontologies.

In the present paper, we elaborate on the framework proposed in [15,8], since we want an expressive policy (i.e. given in terms of
CQs) and confidentiality enforced by hiding only facts contained in the ABox, as needed in many practical settings. More precisely,
we revise the approach of [15,8] and define CQE as the problem of computing the answers to a query that are in the intersection
of the answers returned by all the optimal censors, i.e. we study a form of skeptical reasoning over all such censors. As noted in
the introduction, this concept has already been discussed in [15], which offers some initial contributions in this direction, though
addressing the issue is not among its primary objectives. Specifically, the paper identifies linear 𝑅𝐿− ontologies among those that allow
for a single (view-definable) censor. For non-linear 𝑅𝐿− ontologies, it proposes a WIDTIO (When In Doubt Throw It Out) approach,
where the censor is determined as the intersection of all optimal censors. We emphasize that this latter strategy is substantially
different from our approach of skeptical reasoning on all optimal censors. A further difference of our paper with respect to [15,8],
is that we also parametrize the notion of censor to a language. Then, we study computational complexity of CQE for four different
specific languages: the language coinciding with the ABox of the CQE instance, 𝐆𝐀, 𝐂𝐐𝑘, and 𝐂𝐐. This latter language is the only
one implicitly considered in [8].

Aside the above mentioned differences, in the present article, we inherit the user model proposed in [8], and therefore, as in that
paper, we do not require censors to enjoy the indistinguishability property. We instead elaborate on indistinguishability in [40–42]

for confidentiality-preserving query answering over (possibly prioritized) DL ontologies, and in [43] in the context of ontology-based
data access and integration. Information disclosure under censors enjoying indistinguishability in a data integration setting is also
studied in [44,45]. For a thorough comparison between censors that fulfill or not indistinguishability in the context of DL ontologies,
we direct the reader to [40] and to the more recent note [46].

Besides CQE, confidentiality issues in DLs have also been studied using different approaches. The paper [4] proposes the use
of authorization views to specify the information accessible by users. The use of views to protect sensitive data can be considered
somewhat complementary to the CQE approach, in which the policy specifies the non-accessible information. It is worth noting
that the idea of authorization views was originally introduced in [47] within the context of databases and has since been further
developed [35,48]. These papers explore the notion of perfect privacy, wherein non-disclosure of confidential data is guaranteed if
the adversary’s belief about the query answer remains unchanged even after seeing the answer to the views. The setting investigated
25

is probabilistic and does not account for ontologies.

Artificial Intelligence 334 (2024) 104176G. Cima, D. Lembo, R. Rosati et al.

Provable data privacy on views has been considered in [49], for concept retrieval and subsumption queries over ontologies.
Secrecy preserving reasoning in the presence of several agents has been instead studied in [50], for propositional Horn logics and the
DL . Privacy-preserving query answering as a reasoning problem has been addressed in [2], whereas instance checking for
ontologies has been studied in [3], in both cases in frameworks different from CQE. Data anonymization in the context of ontologies
has been instead studied in [51–53]. In particular, in [52,53] the authors propose a comprehensive solution for both (a form of)
repairing and privacy-preservation, moving from the observation that such problems share the aim of having to hide some unwanted
(incorrect or confidential) consequences to users. Even though the spirit of this observation is similar to the motivation at the basis
of the present work, the approach of [52,53] is inherently different from ours, because it is based on the idea of modifying the data
in order to guarantee consistency or privacy through the use of existential individuals in place of hard constants.

As thoroughly discussed in this paper, the problem of repairing data that violate integrity constraints specified over the data
schema has been extensively studied within the context of Consistent Query Answering (CQA). Initially investigated for relational
databases (see, e.g. [9,10,54]), this approach was later applied to ontologies (as in [14,11,55]). In abstract terms, CQA is the problem
of computing answers to queries by reasoning over all possible repairs. In the context of ontologies, because of the open world
semantics they adopt, a natural definition that has been frequently considered is that of ABox-repair (see Definition 4). Since CQA
under ABox-repairs is inherently intractable even for lightweight ontologies like DL-Lite [56,57], people often adopted a WIDTIO
approach and resorted to consider as (unique) repair the intersection of all the ABox-repairs, called IAR-repair. Entailment under
IAR-repair is a sound approximation of entailment under ABox-repairs (see Definition 7), and may enjoy some nice computational
behavior for lightweight ontology languages. For instance, it is first-order rewritable (and thus in AC0 in data complexity) for some
logics of the DL-Lite family [14].

In this paper, we study the relationship between CQE and CQA, and to this aim we make use of the notions of ABox and IAR-

repairs, as well as of some results about query entailment under such repairs for DL-Lite and ontologies. All these notions and
results have been formally introduced in the previous sections. Other forms of repairs proposed in the context of ontologies, as the
CAR, ICAR, or ICR-repair [57,6], are not considered in this paper.

We conclude this section by pointing out that some connections between CQA and declarative privacy preservation are also
discussed in [58]. The framework in that paper is similar to ours, with so-called secrecy views playing essentially the role of the
policy. However, the setting considered there is relational and without intensional knowledge (TBox), and secrecy views are enforced
through virtual modifications of database values with SQL NULLs, so that this approach is incomparable with ours. Nonetheless, in
the present article we elaborate on the intuition of [58] and investigate in depth the relationship between our CQE framework and
CQA in DLs.

9. Discussion and conclusions

The complexity results presented in the paper provide an almost complete picture of the data complexity of conjunctive query
entailment in our CQE framework for DL-Lite and ⊥, as summarized in Fig. 1.

Among the data complexity results given in this paper, those for the entailment problem under 𝐂𝐐 censors are certainly the most
surprising and unpredictable.

In fact, as highlighted by Fig. 1:

• in the case of DL-Lite CQE instances, entailment of BCQs under 𝐂𝐐 censors is tractable and in AC0, while the same problem
under ABox censors, 𝐆𝐀 censors, and 𝐂𝐐𝑘 censors is intractable (coNP-complete) in data complexity;

• similarly, in the case of ⊥ CQE instances, entailment of BCQs without constants under 𝐂𝐐 censors is tractable and in PTime,
while the same problem under ABox censors, 𝐆𝐀 censors, and 𝐂𝐐𝑘 censors is intractable (coNP-complete) in data complexity.

In the case of DL-Lite, the reason of this behavior lies in the fact that, as shown by Proposition 8 and Definition 9, the entailment
of a BCQ 𝑞 under 𝐂𝐐 censors can be decided essentially by checking the existence of a single BCQ of fixed size (in data complexity)
having some properties that can be checked in polynomial time (actually in AC0). This property does not hold for all the other censor
languages considered in the paper.

In the case of ⊥, the reason for the tractability lies in the property expressed by Lemma 11 that, together with Lemma 12,
identifies a technique that allows for deciding the entailment of a BCQ under 𝐂𝐐 censors in polynomial time (in data complexity).
Notice that Lemma 11 does not hold for any censor language different from 𝐂𝐐 considered in this paper. Notice also that Lemma 12

does not hold for BCQs with constants (it does not hold even for ground atoms).

We also remark that, while some of the results for ABox and 𝐆𝐀 censors have been obtained by exploiting the correspondence
between CQE and CQA stated in Section 4 and some known complexity results on CQA in DLs, all the results for entailment under
both 𝐂𝐐 censors and under 𝐂𝐐𝑘 censors are not related to any known complexity result in the setting of CQA, and require proofs
and techniques rather different from those used in the field of CQA.

As for future work, we believe that it would be very important to provide an exact bound for the entailment of BCQs under
𝐂𝐐 censors in ⊥ CQE instances. In particular, it would be very interesting to verify whether the above described computational
advantage provided by 𝐂𝐐 censors over the other censor languages extends to such a case.

Then, the complexity analysis of CQE could be extended to more expressive policy languages (as in [41,59]), as well as to other
censor languages and other DLs. For example, it would be interesting to consider CQE instances whose TBox combines features of
26

both DL-Lite and ⊥.

Artificial Intelligence 334 (2024) 104176G. Cima, D. Lembo, R. Rosati et al.

Also, based on the complexity analysis of CQE presented in this paper, it would be very important to look for practical techniques
allowing for the implementation of CQE extensions of current DL reasoners and Ontology-based Data Access systems [60,61]. In
particular, we believe that the first-order rewritings presented in the paper (Definition 8 and Definition 9) constitute an important
starting point towards the definition of practical algorithms for CQE in DLs. First attempts in this direction can be found in [43].

Finally, we remark that the approach to CQE pursued in this paper effectively protects sensitive information in the presence of
users able to make classical first-order inferences over the ontology and the query answers. On the one hand, this approach has a
natural relationship with CQA, and formalizing this correspondence has been one of the main objectives of our investigation. On the
other hand, the confidentiality-preservation model we have realized does not consider more sophisticated capabilities of the users
(which, for instance, could be able to make non-classical inferences exploiting forms of closed-world reasoning, or could be equipped
with additional domain knowledge), as highlighted in [46]. Refining the framework so that it implements a richer confidentiality-

preservation model is another important research direction which we intend to address in the future.

CRediT authorship contribution statement

Gianluca Cima: Writing – review & editing, Writing – original draft, Validation, Supervision, Methodology, Investigation, For-

mal analysis, Conceptualization. Domenico Lembo: Writing – review & editing, Writing – original draft, Validation, Supervision,
Methodology, Investigation, Formal analysis, Conceptualization. Riccardo Rosati: Writing – review & editing, Writing – original
draft, Validation, Supervision, Methodology, Investigation, Formal analysis, Conceptualization. Domenico Fabio Savo: Writing –
review & editing, Writing – original draft, Validation, Supervision, Methodology, Investigation, Formal analysis, Conceptualization.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

No data was used for the research described in the article.

Acknowledgements

This work was partially supported by: projects FAIR (PE0000013) and SERICS (PE00000014) under the MUR National Recov-

ery and Resilience Plan funded by the EU - NextGenerationEU; GLACIATION (101070141) project funded by the EU; ANTHEM
(PNC0000003) (AdvaNced Technologies for Human-centrEd Medicine) project (CUP B53C22006700001) funded by the MUR Na-

tional Plan for NRRP Complementary Investments; and the MUR PRIN POLAR (2022LA8XBH) project (POLicy specificAtion and
enfoRcement for privacy-enhanced data management).

References

[1] D. Lembo, R. Rosati, D.F. Savo, Revisiting controlled query evaluation in description logics, in: Proc. of the 28th Int. Joint Conf. on Artificial Intelligence (IJCAI),
2019, pp. 1786–1792.

[2] B. Cuenca Grau, I. Horrocks, Privacy-preserving query answering in logic-based information systems, in: Proc. of the 18th Eur. Conf. on Artificial Intelligence
(ECAI), 2008, pp. 40–44.

[3] J. Tao, G. Slutzki, V.G. Honavar, Secrecy-preserving query answering for instance checking in , in: Proc. of the 4th Int. Conf. on Web Reasoning and Rule
Systems (RR), 2010, pp. 195–203.

[4] D. Calvanese, G. De Giacomo, M. Lenzerini, R. Rosati, View-based query answering in description logics: semantics and complexity, J. Comput. Syst. Sci. 78 (1)
(2012) 26–46.

[5] G.L. Sicherman, W. de Jonge, R.P. van de Riet, Answering queries without revealing secrets, ACM Trans. Database Syst. 8 (1) (1983) 41–59.

[6] J. Biskup, P.A. Bonatti, Controlled query evaluation for enforcing confidentiality in complete information systems, Int. J. Inf. Secur. 3 (1) (2004) 14–27.

[7] P.A. Bonatti, L. Sauro, A confidentiality model for ontologies, in: Proc. of the 12th Int. Semantic Web Conf. (ISWC), 2013, pp. 17–32.

[8] B. Cuenca Grau, E. Kharlamov, E.V. Kostylev, D. Zheleznyakov, Controlled query evaluation for datalog and OWL 2 profile ontologies, in: Proc. of the 24th Int.
Joint Conf. on Artificial Intelligence (IJCAI), 2015, pp. 2883–2889.

[9] M. Arenas, L.E. Bertossi, J. Chomicki, Consistent query answers in inconsistent databases, in: Proc. of the 18th ACM SIGACT SIGMOD SIGART Symp. on Principles
of Database Systems (PODS), 1999, pp. 68–79.

[10] L.E. Bertossi, Database Repairing and Consistent Query Answering, Synthesis Lectures on Data Management, Morgan & Claypool Publishers, 2011.

[11] M. Bienvenu, C. Bourgaux, Inconsistency-tolerant querying of description logic knowledge bases, in: Reasoning Web. Semantic Technologies for Intelligent Data
Access – 12th Int. Summer School Tutorial Lectures (RW), 2016, pp. 156–202.

[12] M. Calautti, S. Greco, C. Molinaro, I. Trubitsyna, Preference-based inconsistency-tolerant query answering under existential rules, Artif. Intell. 312 (2022).

[13] T. Lukasiewicz, E. Malizia, M.V. Martinez, C. Molinaro, A. Pieris, G.I. Simari, Inconsistency-tolerant query answering for existential rules, Artif. Intell. 307 (2022).

[14] D. Lembo, M. Lenzerini, R. Rosati, M. Ruzzi, D.F. Savo, Inconsistency-tolerant query answering in ontology-based data access, J. Web Semant. 33 (2015) 3–29.

[15] B. Cuenca Grau, E. Kharlamov, E.V. Kostylev, D. Zheleznyakov, Controlled query evaluation over OWL 2 RL ontologies, in: Proc. of the 12th Int. Semantic Web
Conf. (ISWC), 2013, pp. 49–65.

[16] J. Biskup, T. Weibert, Keeping secrets in incomplete databases, Int. J. Inf. Secur. 7 (3) (2008) 199–217.

[17] R. Rosati, On the complexity of dealing with inconsistency in description logic ontologies, in: Proc. of the 22nd Int. Joint Conf. on Artificial Intelligence (IJCAI),
27

2011, pp. 1057–1062.

http://refhub.elsevier.com/S0004-3702(24)00112-7/bib1CD01C5AF7DC519BCB2DF42B7119A56Ds1
http://refhub.elsevier.com/S0004-3702(24)00112-7/bib1CD01C5AF7DC519BCB2DF42B7119A56Ds1
http://refhub.elsevier.com/S0004-3702(24)00112-7/bib10E049ED18F17809C0891730AA434076s1
http://refhub.elsevier.com/S0004-3702(24)00112-7/bib10E049ED18F17809C0891730AA434076s1
http://refhub.elsevier.com/S0004-3702(24)00112-7/bibC9451E325D32FDF55E67E4816B08FC3Cs1
http://refhub.elsevier.com/S0004-3702(24)00112-7/bibC9451E325D32FDF55E67E4816B08FC3Cs1
http://refhub.elsevier.com/S0004-3702(24)00112-7/bib6803652022B04A878C1B6A8B5AA34703s1
http://refhub.elsevier.com/S0004-3702(24)00112-7/bib6803652022B04A878C1B6A8B5AA34703s1
http://refhub.elsevier.com/S0004-3702(24)00112-7/bibB18835ADB356E3928C396D629798A5EFs1
http://refhub.elsevier.com/S0004-3702(24)00112-7/bib07FDD97079C5F2A0346253BFA0D5601Fs1
http://refhub.elsevier.com/S0004-3702(24)00112-7/bib943690F6EA48E49DD87FC59CCAD30A1Ds1
http://refhub.elsevier.com/S0004-3702(24)00112-7/bib84E54654BB6C2B33563CF6DB0C240166s1
http://refhub.elsevier.com/S0004-3702(24)00112-7/bib84E54654BB6C2B33563CF6DB0C240166s1
http://refhub.elsevier.com/S0004-3702(24)00112-7/bibFBA3DB20AC92892E987721E98435389Fs1
http://refhub.elsevier.com/S0004-3702(24)00112-7/bibFBA3DB20AC92892E987721E98435389Fs1
http://refhub.elsevier.com/S0004-3702(24)00112-7/bibE42135364B57ACBB3E7010C0BEF41890s1
http://refhub.elsevier.com/S0004-3702(24)00112-7/bib32770953BA2777BCBFAEF5E091EBBFBCs1
http://refhub.elsevier.com/S0004-3702(24)00112-7/bib32770953BA2777BCBFAEF5E091EBBFBCs1
http://refhub.elsevier.com/S0004-3702(24)00112-7/bibFB64008D46CD1A6D1AD7A74FF5C96A36s1
http://refhub.elsevier.com/S0004-3702(24)00112-7/bibBC96DBCFF9832C3C928D2AA1548AEC2Cs1
http://refhub.elsevier.com/S0004-3702(24)00112-7/bibA9FBB3F095D6A5B5E5DDCFFD0A74517Ds1
http://refhub.elsevier.com/S0004-3702(24)00112-7/bib45EC0C3D69F02F40610A135BEB3D7610s1
http://refhub.elsevier.com/S0004-3702(24)00112-7/bib45EC0C3D69F02F40610A135BEB3D7610s1
http://refhub.elsevier.com/S0004-3702(24)00112-7/bibC9CA3AC1931DB41C6CCE41160C4E1468s1
http://refhub.elsevier.com/S0004-3702(24)00112-7/bibE972136AC3ED5CED374C9FE157393A4Es1
http://refhub.elsevier.com/S0004-3702(24)00112-7/bibE972136AC3ED5CED374C9FE157393A4Es1

Artificial Intelligence 334 (2024) 104176G. Cima, D. Lembo, R. Rosati et al.

[18] D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, R. Rosati, Tractable reasoning and efficient query answering in description logics: the DL-Lite family, J.
Autom. Reason. 39 (3) (2007) 385–429.

[19] F. Baader, R. Küsters, R. Molitor, Computing least common subsumers in description logics with existential restrictions, in: Proc. of the 16th Int. Joint Conf. on
Artificial Intelligence (IJCAI), 1999, pp. 96–101.

[20] B. Motik, A. Fokoue, I. Horrocks, Z. Wu, C. Lutz, B. Cuenca Grau, O.W.L. Web, Ontology language profiles, W3C recommendation, World Wide Web Consortium,
available at http://www .w3 .org /TR /owl -profiles/, Oct. 2009.

[21] D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, R. Rosati, Data complexity of query answering in description logics, Artif. Intell. 195 (2013) 335–360.

[22] F. Baader, D. Calvanese, D. McGuinness, D. Nardi, P.F. Patel-Schneider (Eds.), The Description Logic Handbook: Theory, Implementation and Applications, 2nd
edition, Cambridge University Press, 2007.

[23] M.Y. Vardi, The complexity of relational query languages, in: Proc. of the 14th ACM SIGACT Symp. on Theory of Computing (STOC), 1982, pp. 137–146.

[24] C.H. Papadimitriou, Computational Complexity, Addison Wesley Publ. Co., 1994.

[25] T. Lukasiewicz, E. Malizia, M.V. Martinez, C. Molinaro, A. Pieris, G.I. Simari, Inconsistency-tolerant query answering for existential rules, Artif. Intell. 307 (2022)
103685.

[26] M. Ortiz, S. Rudolph, M. Simkus, Query answering in the horn fragments of the description logics SHOIQ and SROIQ, in: Proc. of the 22nd Int. Joint Conf. on
Artificial Intelligence (IJCAI), 2011, pp. 1039–1044.

[27] R. Rosati, On conjunctive query answering in , in: Proc. of the 20th Int. Workshop on Description Logic (DL), in: CEUR, vol. 250, 2007, pp. 451–458.

[28] P.G. Hinman, Fundamentals of Mathematical Logic, A K Peters/CRC Press, 2005.

[29] G. Gottlob, S. Kikot, R. Kontchakov, V.V. Podolskii, T. Schwentick, M. Zakharyaschev, The price of query rewriting in ontology-based data access, Artif. Intell.
213 (2014) 42–59.

[30] R. Fagin, P.G. Kolaitis, R.J. Miller, L. Popa, Data exchange: semantics and query answering, Theor. Comput. Sci. 336 (1) (2005) 89–124.

[31] F. Baader, S. Brandt, C. Lutz, Pushing the envelope, in: Proc. of the 19th Int. Joint Conf. on Artificial Intelligence (IJCAI), 2005, pp. 364–369.

[32] H. Pérez-Urbina, B. Motik, I. Horrocks, Tractable query answering and rewriting under description logic constraints, J. Appl. Log. 8 (2) (2010) 186–209.

[33] M. König, M. Leclère, M. Mugnier, M. Thomazo, Sound, complete and minimal UCQ-rewriting for existential rules, Semant. Web 6 (5) (2015) 451–475.

[34] F. Bancilhon, N. Spyratos, Protection of information in relational data bases, in: Proc. of the 3rd Int. Conf. on Very Large Data Bases (VLDB), 1977, pp. 494–500.

[35] G. Miklau, D. Suciu, A formal analysis of information disclosure in data exchange, J. Comput. Syst. Sci. 73 (3) (2007) 507–534.

[36] J. Biskup, For unknown secrecies refusal is better than lying, Data Knowl. Eng. 33 (1) (2000) 1–23.

[37] J. Biskup, P.A. Bonatti, Lying versus refusal for known potential secrets, Data Knowl. Eng. 38 (2) (2001) 199–222.

[38] J. Biskup, P.A. Bonatti, Controlled query evaluation for known policies by combining lying and refusal, Ann. Math. Artif. Intell. 40 (1–2) (2004) 37–62.

[39] T. Studer, J. Werner, Censors for boolean description logic, Trans. Data Priv. 7 (3) (2014) 223–252.

[40] G. Cima, D. Lembo, R. Rosati, D.F. Savo, Controlled query evaluation in description logics through instance indistinguishability, in: Proc. of the 29th Int. Joint
Conf. on Artificial Intelligence (IJCAI), 2020, pp. 1791–1797.

[41] G. Cima, D. Lembo, L. Marconi, R. Rosati, D.F. Savo, Controlled query evaluation over prioritized ontologies with expressive data protection policies, in: Proc.
of the 20th Int. Semantic Web Conf. (ISWC), in: Lecture Notes in Computer Science, vol. 12922, Springer, 2021, pp. 374–391.

[42] P. Bonatti, G. Cima, D. Lembo, L. Marconi, R. Rosati, L. Sauro, D.F. Savo, Controlled query evaluation in OWL 2 QL: a “longest honeymoon” approach, in: Proc.
of the 21th Int. Semantic Web Conf. (ISWC), in: Lecture Notes in Computer Science, vol. 12922, Springer, 2021, pp. 428–444.

[43] G. Cima, D. Lembo, L. Marconi, R. Rosati, D.F. Savo, Controlled query evaluation in ontology-based data access, in: Proc. of the 19th Int. Semantic Web Conf.
(ISWC), in: Lecture Notes in Computer Science, vol. 12506, Springer, 2020, pp. 128–146.

[44] M. Benedikt, B. Cuenca Grau, E.V. Kostylev, Logical foundations of information disclosure in ontology-based data integration, Artif. Intell. 262 (2018) 52–95.

[45] M. Benedikt, P. Bourhis, L. Jachiet, M. Thomazo, Reasoning about disclosure in data integration in the presence of source constraints, in: Proc. of the 28th Int.
Joint Conf. on Artificial Intelligence (IJCAI), 2019, pp. 1551–1557.

[46] P.A. Bonatti, A false sense of security, Artif. Intell. 310 (2022).

[47] Z. Zhang, A. Mendelzon, Authorization views and conditional query containment, in: Proc. of the 10th Int. Conf. on Database Theory (ICDT), in: Lecture Notes
in Computer Science, vol. 3363, Springer, 2005, pp. 259–273.

[48] A. Machanavajjhala, J. Gehrke, On the efficiency of checking perfect privacy, in: S. Vansummeren (Ed.), Proc. of the 25th ACM SIGACT SIGMOD SIGART Symp.
on Principles of Database Systems (PODS), ACM Press, 2006, pp. 163–172.

[49] P. Stouppa, T. Studer, Data privacy for knowledge bases, in: Proc. of the Int. Symp. on Logical Foundations of Computer Science (LFCS), 2009, pp. 409–421.

[50] J. Tao, G. Slutzki, V.G. Honavar, A conceptual framework for secrecy-preserving reasoning in knowledge bases, ACM Trans. Comput. Log. 16 (1) (2014) 3:1–3:32.

[51] B.C. Grau, E.V. Kostylev, Logical foundations of linked data anonymisation, J. Artif. Intell. Res. 64 (2019) 253–314.

[52] F. Baader, F. Kriegel, A. Nuradiansyah, R. Peñaloza, Computing compliant anonymisations of quantified ABoxes w.r.t. policies, in: Proc. of the 19th Int.
Semantic Web Conf. (ISWC), in: Lecture Notes in Computer Science, vol. 12506, Springer, 2020, pp. 3–20.

[53] F. Baader, P. Koopmann, F. Kriegel, A. Nuradiansyah, Computing Optimal Repairs of Quantified ABoxes w.r.t. Static TBoxes, Proc. of the 28th Int. Conf. on
Automated Deduction (CADE), vol. 12699, Springer, 2021, pp. 309–326.

[54] A. Calì, D. Lembo, R. Rosati, On the decidability and complexity of query answering over inconsistent and incomplete databases, in: Proc. of the 22nd ACM
SIGACT SIGMOD SIGART Symp. on Principles of Database Systems (PODS), 2003, pp. 260–271.

[55] T. Lukasiewicz, E. Malizia, M.V. Martinez, C. Molinaro, A. Pieris, G.I. Simari, Inconsistency-tolerant query answering for existential rules, Artif. Intell. 307 (2022)
103685.

[56] D. Lembo, M. Ruzzi, Consistent query answering over description logic ontologies, in: Proc. of the 1st Int. Conf. on Web Reasoning and Rule Systems (RR), 2007.

[57] D. Lembo, M. Lenzerini, R. Rosati, M. Ruzzi, D.F. Savo, Inconsistency-tolerant semantics for description logics, in: Proc. of the 4th Int. Conf. on Web Reasoning
and Rule Systems (RR), 2010, pp. 103–117.

[58] L.E. Bertossi, L. Li, Achieving data privacy through secrecy views and null-based virtual updates, IEEE Trans. Knowl. Data Eng. 25 (5) (2013) 987–1000.

[59] G. Cima, D. Lembo, L. Marconi, R. Rosati, D.F. Savo, D. Sinibaldi, Controlled query evaluation over ontologies through policies with numerical restrictions, in:
Proc. of the 4th IEEE Int. Conf. on Artificial Intelligence and Knowledge Engineering, (AIKE), IEEE, 2021, pp. 33–36.

[60] D. Calvanese, B. Cogrel, S. Komla-Ebri, R. Kontchakov, D. Lanti, M. Rezk, M. Rodriguez-Muro, G. Xiao, Ontop: answering SPARQL queries over relational
databases, Semant. Web 8 (3) (2017) 471–487.

[61] G. De Giacomo, D. Lembo, M. Lenzerini, A. Poggi, R. Rosati, M. Ruzzi, D.F. Savo, MASTRO: A Reasoner for Effective Ontology-Based Data Access, Proc. of the
28

1st Int. Workshop on OWL Reasoner Evaluation (ORE), vol. 858, CEUR, 2012.

http://refhub.elsevier.com/S0004-3702(24)00112-7/bib7BF7E85658B4839B75E54A972DF07009s1
http://refhub.elsevier.com/S0004-3702(24)00112-7/bib7BF7E85658B4839B75E54A972DF07009s1
http://refhub.elsevier.com/S0004-3702(24)00112-7/bibF9D95DBC9B96E6BE965D0A1DF9E0BF71s1
http://refhub.elsevier.com/S0004-3702(24)00112-7/bibF9D95DBC9B96E6BE965D0A1DF9E0BF71s1
http://www.w3.org/TR/owl-profiles/
http://refhub.elsevier.com/S0004-3702(24)00112-7/bib4BF0EA7E04B1969153915B8B64A3A490s1
http://refhub.elsevier.com/S0004-3702(24)00112-7/bibCE6007D5607A5387E1480CEEE9555ADFs1
http://refhub.elsevier.com/S0004-3702(24)00112-7/bibCE6007D5607A5387E1480CEEE9555ADFs1
http://refhub.elsevier.com/S0004-3702(24)00112-7/bib27485B588B3FBCD9711EB6A16D41A1ECs1
http://refhub.elsevier.com/S0004-3702(24)00112-7/bib4F29FB5E00C951CC96787B83A417E6E8s1
http://refhub.elsevier.com/S0004-3702(24)00112-7/bib147629A76B3C49A8EF14FB127197237Ds1
http://refhub.elsevier.com/S0004-3702(24)00112-7/bib147629A76B3C49A8EF14FB127197237Ds1
http://refhub.elsevier.com/S0004-3702(24)00112-7/bib5075F2E1E869D78DB2CEFBC9FD5CB71As1
http://refhub.elsevier.com/S0004-3702(24)00112-7/bib5075F2E1E869D78DB2CEFBC9FD5CB71As1
http://refhub.elsevier.com/S0004-3702(24)00112-7/bibA3BD8736D9DDA20BCBB82428DD91588Bs1
http://refhub.elsevier.com/S0004-3702(24)00112-7/bib957396E8E298034D22C53E2C1169FCCCs1
http://refhub.elsevier.com/S0004-3702(24)00112-7/bibBAB9B6EF342E15BC6682E948BBB0DF7Bs1
http://refhub.elsevier.com/S0004-3702(24)00112-7/bibBAB9B6EF342E15BC6682E948BBB0DF7Bs1
http://refhub.elsevier.com/S0004-3702(24)00112-7/bib631ABD8925FB087FB2F330BCD0955FE9s1
http://refhub.elsevier.com/S0004-3702(24)00112-7/bib908EBFE81111CCC4D43F9F8AC23E5832s1
http://refhub.elsevier.com/S0004-3702(24)00112-7/bibC6065F857C7F8AA70BCA2EBEEF4E7782s1
http://refhub.elsevier.com/S0004-3702(24)00112-7/bib18DC57A413ADE1B32180C657F800D6FBs1
http://refhub.elsevier.com/S0004-3702(24)00112-7/bib88F947A50F3748F4C772931537B5666Bs1
http://refhub.elsevier.com/S0004-3702(24)00112-7/bib546B45AAA8B450D25D259A2A125C0EB9s1
http://refhub.elsevier.com/S0004-3702(24)00112-7/bibEB0716C5349B29565F8AE06B08F2B0C5s1
http://refhub.elsevier.com/S0004-3702(24)00112-7/bib532F7689CF9C100D18797FE905901B03s1
http://refhub.elsevier.com/S0004-3702(24)00112-7/bib7E5C25466481E479FA951B412B215EABs1
http://refhub.elsevier.com/S0004-3702(24)00112-7/bibAE99F5832A72AC8D5419FF768519A9DEs1
http://refhub.elsevier.com/S0004-3702(24)00112-7/bib691C4F1C8F52649ACD1EBC9398026BD4s1
http://refhub.elsevier.com/S0004-3702(24)00112-7/bib691C4F1C8F52649ACD1EBC9398026BD4s1
http://refhub.elsevier.com/S0004-3702(24)00112-7/bibF9D47A83D71FBDFDAEBA6DB165FCE13Bs1
http://refhub.elsevier.com/S0004-3702(24)00112-7/bibF9D47A83D71FBDFDAEBA6DB165FCE13Bs1
http://refhub.elsevier.com/S0004-3702(24)00112-7/bib6E514A81EF5AE333DADAC49396DE6E1As1
http://refhub.elsevier.com/S0004-3702(24)00112-7/bib6E514A81EF5AE333DADAC49396DE6E1As1
http://refhub.elsevier.com/S0004-3702(24)00112-7/bib7009D2DA812005F83AF7B5AEEFE84A07s1
http://refhub.elsevier.com/S0004-3702(24)00112-7/bib7009D2DA812005F83AF7B5AEEFE84A07s1
http://refhub.elsevier.com/S0004-3702(24)00112-7/bib7680DA015276CCD3FA9455128B2D3587s1
http://refhub.elsevier.com/S0004-3702(24)00112-7/bib6489AA116B00ED9F5C0B543235F6B932s1
http://refhub.elsevier.com/S0004-3702(24)00112-7/bib6489AA116B00ED9F5C0B543235F6B932s1
http://refhub.elsevier.com/S0004-3702(24)00112-7/bib1A07DF269E587672ABA12A935FA0746Cs1
http://refhub.elsevier.com/S0004-3702(24)00112-7/bibB9D7F97129B3562B9673C1D56946978Cs1
http://refhub.elsevier.com/S0004-3702(24)00112-7/bibB9D7F97129B3562B9673C1D56946978Cs1
http://refhub.elsevier.com/S0004-3702(24)00112-7/bibF8AC53D09626A5AA5F65BB4FD9953EFDs1
http://refhub.elsevier.com/S0004-3702(24)00112-7/bibF8AC53D09626A5AA5F65BB4FD9953EFDs1
http://refhub.elsevier.com/S0004-3702(24)00112-7/bibB3F12D6C9274D193EE7F4348C829ED88s1
http://refhub.elsevier.com/S0004-3702(24)00112-7/bibE5A80E272CB11B32AE22BC407D7C9414s1
http://refhub.elsevier.com/S0004-3702(24)00112-7/bib0D57AF8347DC2C3FB9E67D2B73A74179s1
http://refhub.elsevier.com/S0004-3702(24)00112-7/bibC9EC8B54938F761DAEF3BB6DB45834D9s1
http://refhub.elsevier.com/S0004-3702(24)00112-7/bibC9EC8B54938F761DAEF3BB6DB45834D9s1
http://refhub.elsevier.com/S0004-3702(24)00112-7/bibF967C4E2C281D74BE14CF1A2878E3FD0s1
http://refhub.elsevier.com/S0004-3702(24)00112-7/bibF967C4E2C281D74BE14CF1A2878E3FD0s1
http://refhub.elsevier.com/S0004-3702(24)00112-7/bibAE2562BDF772F5D396972A9CB34B3021s1
http://refhub.elsevier.com/S0004-3702(24)00112-7/bibAE2562BDF772F5D396972A9CB34B3021s1
http://refhub.elsevier.com/S0004-3702(24)00112-7/bib0E347AA07D7F2AB852979188E22477CBs1
http://refhub.elsevier.com/S0004-3702(24)00112-7/bib0E347AA07D7F2AB852979188E22477CBs1
http://refhub.elsevier.com/S0004-3702(24)00112-7/bibE13CDC8B0A30B36AB97E003FBBAE2DC7s1
http://refhub.elsevier.com/S0004-3702(24)00112-7/bib27C450A1BEF67787217567A3CC05F667s1
http://refhub.elsevier.com/S0004-3702(24)00112-7/bib27C450A1BEF67787217567A3CC05F667s1
http://refhub.elsevier.com/S0004-3702(24)00112-7/bibD7E5B0D4679CE88BBDF8BDF63BBCD8CFs1
http://refhub.elsevier.com/S0004-3702(24)00112-7/bib215CC0544C2AE2246800CF25B4DE861Es1
http://refhub.elsevier.com/S0004-3702(24)00112-7/bib215CC0544C2AE2246800CF25B4DE861Es1
http://refhub.elsevier.com/S0004-3702(24)00112-7/bibBCC046BF70DABF7198DDA55CED5C32CCs1
http://refhub.elsevier.com/S0004-3702(24)00112-7/bibBCC046BF70DABF7198DDA55CED5C32CCs1
http://refhub.elsevier.com/S0004-3702(24)00112-7/bibAE81543B2A88565D5F3228E12FE14E70s1
http://refhub.elsevier.com/S0004-3702(24)00112-7/bibAE81543B2A88565D5F3228E12FE14E70s1

	Controlled query evaluation in description logics through consistent query answering
	1 Introduction
	2 Preliminaries
	3 CQE framework
	4 Relationship between CQE and CQA
	5 CQE under restricted censor languages
	5.1 ABox as censor language
	5.2 GA as censor language

	6 CQE under the CQk censor language
	6.1 Preliminary properties
	6.2 Intractability results
	6.3 A tractable case

	7 CQE under full censor language
	7.1 DL-Lite CQE instances
	7.2 ⊥ CQE instances

	8 Related work
	9 Discussion and conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgements
	References

