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Abstract

We propose a fully nonparametric approach to the analysis of the Autocorre-

lated Conditional Duration (ACD) process applied to durations between financial

events. We use a recursive algorithm to estimate the nonparametric specification.

In a Monte Carlo experiment, we analyse its forecasting performance and compare

it with a correctly and a mis-specified parametric estimator. On a real dataset, the

nonparametric estimator seems to mildly overperform in terms of predictive power.

The nonparametric analysis can also provide guidance on the choice between alter-

native parametric specifications. In particular, once intraday seasonality is directly

modelled in the conditional duration function, the nonparametric approach provides

insights into the time-varying nature of the dynamics in the model that the standard

procedures of deseasonalization may lead one to overlook.
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1 Introduction

Waiting times between particular financial events, such as trades, quote updates or volume

accumulation, are an important object of analysis in the econometrics of financial market

microstructure. The statistical inspection of the durations between these events reveals

the presence of a series of stylized facts (for instance, clustering and overdispersion) that

are rather common features in financial data. For instance, they can be compared with

the clustering and fat tails displayed by the time-varying conditional variance of financial

returns. The traditional econometric approach to duration analysis therefore needs to be

extended to be able to fit and reproduce these peculiarities.

To this end, the autoregressive conditional duration (ACD) model, originally introduced

by Engle and Russell (1998), combines elements from the ARCH literature and of duration

analysis. The main structure of this model is composed of a random variable (the so-called

baseline duration), the distribution of which follows a law characterized by a positive

support (such as an exponential or a Weibull), multiplied by a deterministic conditional

duration, which in the seminal specification was a linear function of lagged values of the

observations and of the conditional duration itself.

A rich family of parametric extensions followed this first specification of the ACD

model. These contributions develop along two main lines: the functional form of the

time-varying conditional duration mean and the distribution of the innovations of the

conditional duration. Among the first line of extensions (which abound in the literature),

consider the log-ACD proposed by Bauwens and Giot (2000), where the conditional mean

function takes an exponential form, the asymmetric ACD, by Bauwens and Giot (2003),

characterized by the presence of a threshold in the conditional mean, and the Box-Cox

transformation proposed by Fernandes and Grammig (2006). Other interesting extensions

are those of Ghysels et al. (2004) and Bauwens and Veredas (2004) who introduce an

element of randomness in the conditional mean, which in the previous specifications was

deterministically modelled. For a review of several of these model variants, see Pacurar

(2008) or Hautsch (2011).

The second line of extensions addresses the modelling of the distribution of the con-

ditional duration, suggesting laws characterized by higher degrees of parametrization and

generality. Among the most commonly adopted densities are the Weibull, the gamma, the

lognormal, the Burr (encompassing the Weibull), the generalized gamma (encompassing

the Weibull and the Gamma) and the generalized F (encompassing the Burr). Combina-

tions of distributions have also been advanced (see De Luca and Zuccolotto (2006) or Luca
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and Gallo (2008)).

In the ACD literature, this variety of parametric specifications for the conditional mean

and distribution has only partially been matched by attempts to provide semiparametric

expressions for the conditional mean, which have the advantage of being robust to misspec-

ification. A number of semiparametric point process specifications have been proposed; see,

for instance, Saart et al. (2015), Brownlees et al. (2012) or Gerhard and Hautsch (2007).

The aim of this work is to introduce an even more general, fully nonparametric form of

the ACD family model, where the conditional mean is expressed as a generic function of the

lagged observation and of its own past and is nonparametrically estimated. Bauwens et al.

(2004) note that more complex specifications of the distribution of the innovations do not

seem to provide substantial improvements in the goodness of fit, and thus we believe that

a more flexible definition of the conditional mean function could provide improvements in

fitting the data.

The main difficulty of estimating ACD models in a fully nonparametric way resides in

the unobservability of one or some regressors. To overcome this difficulty, various solutions

have been proposed in the literature on GARCH models, which share many commonalities

with ACD models. Hafner (1998), proposes replacing the unobservable regressor with a

function of several lagged values of the observations. We can understand this approach as

an approximation of a GARCH(p,q) by an ARCH(∞) model. This approach is straight-

forward to implement, but because of the large number of regressors, it is computationally

heavy and suffers severely from the curse of dimensionality. Another interesting solution

comes from Franke and Muller (2002) and Franke et al. (2004), who employ a deconvolu-

tion kernel estimator, which relies heavily on the normality of the innovations (meaning

that this approach would hardly be extendable to an ACD framework) and has a rather

slow rate of convergence. The iterative scheme proposed by Bühlmann and McNeil (2002)

is an approach that naturally adapts to ACD models. Under a central, and albeit rather

restrictive, contraction hypothesis, the authors of the latter work show that the estimator

is consistent and has a rate of convergence equal to that of a usual bivariate nonpara-

metric regression technique. We thus expect this estimator to perform better than the

deconvolution kernel.

The advantages of the Bühlmann and McNeil (2002) approach are, in principle, rather

significant. As do all nonparametric methods, it only imposes very mild assumptions on

the function to be estimated, almost entirely eliminating the risk of incorrect specification.

However, its main cost is that the exact role played by an independent variable in the
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model cannot be summarized in a single vector of parameters, and this limits the scope

for inference. The main finding of this paper is that the nonparametric ACD estimator

improves, albeit not dramatically, on the forecasting precision of the linear specification.

More interestingly, close inspection of the conditional mean surfaces that we obtain from

the nonparametric analysis can provide valuable information on the possibly nonlinear

structure of the conditional mean function and on how to take into account the seasonality

in the data introduced by the time-of-the-day variable.

The outline of this work is as follows: Section 2 introduces the nonparametric estimator

for financial duration. In Section 3, a Monte Carlo experiment compares the performance

of the nonparametric estimator and of the maximum likelihood parametric estimator. In

Section 4, we estimate on a financial dataset that is commonly used in the ACD literature

and perform some forecast accuracy comparisons. Section 4 also presents an evaluation

of the shock impact curve calculated on the basis of a nonparametric estimation and the

results of joint estimation of the conditional duration and of the seasonality effects. Section

5 concludes.

2 The Theoretical framework

2.1 The Model

We introduce in this section the ACD model in the form that can be usually found in the

literature and then rewrite it in a way that allows us to estimate it nonparametrically.

Let {Xt} be a nonnegative stationary process adapted to the filtration {Ft, t ∈ Z}, with

Ft = σ({Xs; s ≤ t}), such that

Xt = ψtεt,

ψt = f(Xt−1, . . . , Xt−p, ψt−1, . . . , ψt−q), (1)

where p, q ≥ 0 and {εt} is an iid nonnegative process with mean 1 and a finite second

moment. We assume f(·) to be a strictly positive function. Since f(·) is Ft−1-measurable,

we have that E(Xt | Ft−1) = ψt, i.e., ψt is the time-varying conditional mean of the process.

We focus on the case in which p = q = 1, this restriction being widely justified by empirical

works. Several parameterizations of (1) have been introduced, the first being the linear

specification:

ψt = ω + αψt−1 + βXt−1. (2)
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More complex specifications followed (2), allowing for nonlinearity in the response of the

conditional mean to the realizations of Xt or in the autoregressive part. In our setup, f(·)
is allowed to be any function of the past realizations Xt−1 and of the lagged conditional

mean ψt−1. Moreover, parametric specifications of the ACD family often make use of

highly parameterized functions for the distributions of the innovations εt, while here we

only require the mean of the εt to be one and the variance to be finite. We expect our

estimation to outperform parametric models in the case in which the ‘real’ f shows some

accentuated nonlinearity as in the threshold models:

ψt = h(Xt−1) +
∑
i

βiI[Xt−1∈Bi]ψt−1,

where Bi are disjoint subsets of R+ and h(x) is again a strictly positive function.

To estimate f , we rewrite (1) in the additive form:

Xt = f(Xt−1, ψt−1) + ηt, (3)

ηt = f(Xt−1, ψt−1)(εt − 1).

The process {ηt} is a white noise, as E(ηt) = E(ηt|Ft−1) = 0 and E(ηsηt) =

E[E(ηsηt|Ft−1)] = 0 for s < t. The conditional variance of Xt is Var(Xt|Ft−1) =

f 2(Xt−1, ψt−1)(E(ε2t ) − 1). Thus, formally, f(Xt−1, ψt−1) could be estimated by regress-

ing Xt on f(Xt−1, ψt−1). In practice, the ψt are unobserved variables. To overcome this

problem, we adapt the recursive algorithm suggested by Bühlmann and McNeil (2002).

2.2 The estimation procedure

The algorithm is built as follows. Let {xt; 1 6 t 6 n} be realizations1 of the process (1),

with p = q = 1. The steps of the algorithm are indexed by j.

Step 1. Choose the starting values for the vector of the n conditional means. Index these

values by 0: {ψt,0}. Set j = 1.

Step 2. Regress nonparametrically {xt; 2 6 t 6 n} on {xt−1; 2 6 t 6 n} and on the

conditional means computed in the previous step: {ψt−1,j−1; 2 6 t 6 n}, to obtain

an estimate f̂j of f .

1We differentiate the population random variables Xt from the actual realizations xt.
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Step 3. Compute {ψ̂t,j = f̂j(xt−1, ψ̂t−1,j−1); 2 6 t 6 n}; remember to choose some sensible

value for ψ̂1,j, which cannot be computed recursively.

Step 4. Increment j, and return to step two to run a new regression using the {ψt} com-

puted in Step 3.

Averaging the estimates of the last steps of the algorithm, when it becomes more stable,

further improves the estimation procedure.

We refer to Bühlmann and McNeil (2002) for a justification and theoretical discussion

of the algorithm. We state here from the main theorem of that paper, which provides the

convergence rates of the estimates delivered by the algorithm. We first need some notation.

Henceforth, ‖Y ‖ denotes the L2 norm of Y : ‖Y ‖2 = E(Y 2). Let

f̃t,j(x, ψ) = E(Xt|Xt−1 = x, ψ̂t−1,j−1 = ψ),

ψ̃t,j = f̃t,j(xt−1, ψ̂t−1,j−1);

That is, ψ̃t,j is the true conditional expectation of Xt given the value of ψ̂t−1,j−1 estimated

at the previous step of the algorithm. Thus, the quantity

∆t;j,n ≡ ψ̃t,j − ψ̂t,j, j = 1, 2, . . . , t = j + 2, . . . , n,

gives us the estimation error introduced at the j-th step solely due to the estimation of f .

In nonparametric language, ‖∆‖ is the stochastic component of the risk of the estimator

ψ̂t,j of E(Xt|Xt−1, ψt−1,j−1).

Theorem 1 (Theorems 1 and 2 in Bühlmann and McNeil (2002)) Assume that

1. supx∈R |f(x, ψ)− f(x, ϕ)| 6 D|ψ − ϕ| for some 0 < D < 1, ∀ψ, ϕ ∈ R+.

2. E|ψt|2 ≤ C1, E|ψt,0|2 ≤ C2, max2≤t≤nE|ψ̂t,0|2 ≤ C3, C1,2,3 <∞,
‖ψj − ψj,0‖ <∞, ‖ψ̂j,0 − ψj,0‖ <∞ ∀j.

3. E({ψ̃t,j − ψt,j}2) 6 G2E({ψ̂t−1,j−1 − ψt−1,j−1}2) for some 0 < G < 1, for t = j +

2, j + 3, . . . and j = 1, 2, . . .

4. ∆n
.
= sup

j>1
max

j+2≤t≤n
‖∆t;j,n‖ → 0, as n→∞ for j = 1, 2, . . . , t = j + 2, . . . , n .
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Then, if {Xt}t∈N is as in (1) with p = q = 1 and choosing mn = C{− log ∆n},

max
mn+26t6n

‖ψ̂t,mn − ψt‖ = O(∆n), as n→∞.

The theorem tells us that if all the assumptions hold, then the upper bound on the

quadratic risk of the estimates of the {ψt} is of the same order as ∆n, that is, the error

of a one-step nonparametric regression to estimate ψt,j from (xt−1, ψt−1). That is, in a

bivariate nonparametric regression with an appropriate choice of the kernel function and

of the smoothing parameter and assuming, for instance, that f(x, ψ) is twice continuously

differentiable, the convergence rates are O(n−1/3). The authors suggest as a practical rule

mn ∼ 3 log(n).

We briefly discuss the assumptions of the theorem. For further insights, refer to

Bühlmann and McNeil (2002). First, let us write

‖ψ̂t,j − ψt‖ ≤ ‖ψ̂t,j − ψ̃t,j‖+ ‖ψ̃t,j − ψt,j‖+ ‖ψt,j − ψt‖. (4)

The first two components of the risk (4) are the usual quadratic risk of an estimator ψ̂t,j

of ψt,j. The additional component ‖ψt,j − ψt‖ is included because we do not observe ψt.

Assumption 1 controls this last part of the risk. If there were no estimation error in passing

from one step of the algorithm to the next, Assumption 1 combined with the recursive form

of the algorithm would be sufficient to ensure the convergence of ψt,m to the true value ψt.

Assumption 2 is technical and needed to give an upper bound to the estimation error of

the first step of the algorithm. Assumption 3 is used to control the second component of

(4). It can be written in the following way:

‖ψ̃t,j−ψt,j‖ = ‖E(Xt|Xt−1, ψ̂t−1,j−1)−E(Xt|Xt−1, ψt−1,j−1)‖ so Assumption 3 is a contrac-

tion property of the conditional expectation with respect to

‖ψ̂t−1,m−1 − ψt−1,j−1‖. It is again a technical property that Bühlmann and McNeil are

obliged to impose on the process to prove the consistency of the estimates delivered by

the algorithm. Assumption 4 bounds the first term of (4). It gives an upper bound to the

one-pass regression of Xt on Xt−1 and ψt−1,j−1.

2.3 The practical implementation

In our application to simulated and real data, we use the following settings. For the initial

values of the {ψt} to use in the first step of the algorithm, we choose a vector of random
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draws from an exponential distribution with expectation equal to the unconditional mean

of the data series {xt}. Bühlmann and McNeil (2002) suggest using a parametric estimate,

which is to be improved in the following steps of the algorithm. Since our goal is to compare

parametric with nonparametric estimates, we believe that challenging the nonparametric

procedure by providing dull initial values would make the competition fairer and the results

more reliable. Moreover, we noticed that the algorithm yields essentially the same outcome

in both cases, that is, when providing the random draws or the parametric estimate as

starting values. We can say that the algorithm is quite insensitive to changes in the choice

of the initial values, provided that these are sensible.

As far as the choice of the nonparametric technique is concerned, we use the locally

weighted smoother (LOESS)2, developed by Cleveland (1979). Hastie and Tibshirani

(1990) provide a good introduction to this nonparametric technique. The main idea is

to perform a local polynomial least squares fit in the neighbourhood of a point x0. The

design points entering the local regression are chosen as in the k-nearest neighbour method,

and the value of the function at each design point is weighted with a tri-cube kernel. The

degree of smoothing is determined by the percentage of the data points (also called the

span) entering the local regression. Following the suggestion of Cleveland, we fit a local

polynomial of order 1.

The reliance on nearest neighbours as an alternative to a symmetric, area-based (as in

the case of standard kernel smoothing) criterion as a method of selecting of the neighbour-

hood of interest seems to be particularly useful given the particular features of our data.

In our application, the predictors are the lagged durations Xt−1 and the conditional means

at the j-th step of the algorithm ψt−1,j. As Figure 1 shows, the predictor variables form

a non-uniform random design in the xψ plane and are visibly more dense in the region

next to the axes, drawing in the xψ plane a“falling star” pattern. We therefore need a

method that is capable of adapting, in the neighbourhood of interest, to the local density

of the predictors. Moreover, the bias of the local linear estimator does not depend on

the marginal density of the predictors, thereby addressing the boundary in the domain of

the regression function (both regressors are nonnegative). [Figure 1 about here] Follow-

ing Hastie and Tibshirani (1990), we use a generalized cross validation (GCV) criterion

to choose the span parameter. It can be proved that minimizing GCV is asymptotically

equivalent to minimizing the mean square error of the regression. [Figure 1 about here] At

each loop (and in the final averaged smoothing), we therefore use the span that minimizes

2We use the R implementation of LOESS.
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the quantity

GCV =
n−

∑n
t=1(xt − ψ̂t,j)

2

(n− trL)2
, (5)

where n is the sample size, ψ̂t,j is the predictor of xt corresponding to the loop j, and L

is the smoother matrix, that is, the matrix that premultiplied to the vector of observed

values {xt} yields the estimates. The quantity trL, the trace of the matrix L, plays a role

analogous to the number of degrees of freedom in a standard linear regression.

Finally, the error appearing in Equation (3) is heteroskedastic, thus calling for a

weighted fit. Obviously, the true weights would depend on the values ψt that we are

estimating. We therefore replace them in each loop with the estimates of the conditional

durations that were computed in the previous iteration.

3 Estimation of simulated processes

In this section, we assess the performance of the nonparametric specification via a com-

parison with the estimates of a linear ACD model on different simulated series. The first

simulated series is characterized by an asymmetry in the conditional mean equation, which

has the following form:

f(xt−1, ψt−1) = 0.2 + 0.1xt−1 + (0.3I[xt−160.5] + 0.85I[xt−1>0.5])ψt−1, (6)

and the conditional duration is Weibull distributed, with the scale parameter such that

its mean is equal to one. The sizes of the generated samples are 1000, 5000 and 10000

observations. We simulate 50 series from model (6). The simulated series are estimated

by ML with a linear ACD(1,1) specification and by the nonparametric smoother described

in Section 2.2 with 10 basic iterations, and we perform a final smoothing based on the

arithmetic mean of the last K = 4 iterations. The performance of the parametric and non-

parametric estimators is compared by computing two widely used measures of estimation

errors. The first one is the mean square error (MSE) based on a quadratic loss function:

MSE =
1

nM

M∑
l=1

n∑
i=1

(ψ̂il − ψil)
2, (7)
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where i = 1, . . . , n denotes the i−th estimated conditional mean within the series, and

l = 1, . . . ,M = 50 labels the 50 series simulated from Equation (6).

The second measure is the mean absolute error (MAE):

MAE =
1

nM

M∑
l=1

n∑
i=1

|ψ̂il − ψil|. (8)

We perform the same type of analysis on series simulated from a standard ACD(1,1)

model with no asymmetric component in the specification of the conditional mean equation.

The functional form is of the conditional mean is

f(xt−1, ψt−1) = 0.1 + 0.1xt−1 + 0.75ψt−1, (9)

and the conditional distribution and the sample size are the same as in the first group

of simulated series. The settings of the parametric and nonparametric estimators do not

change from the first example. In particular, we estimate a parametric ACD(1,1) model,

which is now correctly specified. [Figures 2 and 3 about here]

Figure 2 displays in a 200 data window an example of the evolution of the simulated

ψt (hence the true dgp), and of those estimated parametrically and nonparametrically.

Note that the parametric estimator seems to overreact and it yields too large estimates

for a small number of points. Figure 3 shows the surfaces f(xt−1, ψt−1) generated from

the nonlinear model in Equation (6) in their simulated version and in that estimated

nonparametrically. The abrupt change in the slope of f = ψ̂t(xt−1, ψt−1) as a function

of ψt−1 for x ≤ 0.5 and x > 0.5 is quite visible in the bottom part of the estimated

surface (near the origin), where the data are very dense and the bandwidth is rather small.

Farther from the origin, observations in the support become more sparse, and the result is

somewhat more smoothed. In any case, it is clear that the slope increases as x increases.

To complete the analysis on this group of simulations, we give in Table 1 an example of

how the span parameter minimizing the generalized cross-validation criterion evolves with

the steps of the algorithm. It is clear that the main loop converges quite early to a stable

value. Since the value of the span depends on the distribution of the predictors, a stable

value of this parameter indicates that there are no major changes in the distribution of the

{ψt}, suggesting that the algorithm has converged. [Tables 1 and 2 about here]

Table 2 compares the performance of the nonparametric and parametric estimators in

terms of MSE and MAE. In the case of the nonlinear model, both statistics show that
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the the nonparametric estimator outperforms the parametric estimator. Both MSE and

MAE decrease at each loop and decline further after the final averaging. When instead

the series is simulated starting from the linear ACD model, the parametric estimator is

correctly specified and, unsurprisingly, obtains the lowest MSE and MAE. The nonpara-

metric estimator selects a large span. This means that almost all data points enter the

local linear regression, making the LOESS smoother behave more like a standard linear

regression. We do not show the charts of the reconstructed surfaces in this case, as they

appear to be rather uninformative and flat.

4 Estimation on a financial data set

In this section, we evaluate the performance of the nonparametric specification of the ACD

model on a financial dataset. The estimated series consists in a set of trade, volume and

price durations of the following stocks traded in 1997 on the New York Stock Exchange:

Boeing, Disney and IBM.

4.1 Evidence on deseasonalized data

As noted in the seminal paper by Engle and Russell (1998), there is a strong intraday

seasonality in tick-by-tick data, as durations have a tendency to be shorter on average

at the beginning and close of trading sessions. It is therefore common to remove the

seasonal pattern by means of a nonparametric regression of raw durations on the time of

the day and to fit the adjusted data. In this round of estimations, we employ the simplified

deseasonalization technique used both in Engle and Russell (1998) and Bauwens and Giot

(2000). In a first step, one estimates the cyclical component. This is done by averaging the

durations over 30-minute intervals for each day in our sample. The average value for each

of the thirteen 30-minute bins (from 9h30 to 16h) is the value of the cyclical component at

the mid point of each interval. We obtain the value of the cyclical component as a smooth

function of the time-of-day variable by interpolating the 30 points using a cubic spline.

Figures 4, 5 and 6 present the surfaces estimated nonparametrically with 10 loops and a

final average of the last 4. [Figures 4, 5 and 6 about here] The visual analysis suggests

some conclusions. First, some nonlinearity is present in almost all surfaces, although

it never reaches the extreme features of the discontinuity as in the data simulated in the

previous section. Second, for some datasets, notably Disney volume and, to a lesser degree,

Boing price and IBM trade durations, the surface is almost linear. This is also supported
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by the very high values of the spans minimizing the generalized cross-validation (0.999,

0.995 and 0.981, respectively) criterion. In other datasets, the nonlinearities appear more

marked. Third, in these cases, the real data-generating process in the conditional mean

equation seems to place a low weight on the lagged observation Xt−1, and the dependence

of ψt on ψt−1 appears to diminish as X grows. This is a reasonable feature. Let us

consider a regime-switching model, which is dependent on whether the market speeds up

or slows down. When the market speeds up (short durations), we are more likely to observe

bunching in the data, that is, there is a larger autocorrelation component in the conditional

mean equation and hence a stronger dependence of ψt on ψt−1. When the market cools

down, we observe less clustering in the duration data, and the conditional duration in the

conditional mean is weaker.

We now proceed to compare the forecasting performance of the nonparametric and

parametric estimators with an in-sample forecasting experiment. Using the result of the

estimation, we use the conditional duration mean for time t estimated both parametrically

and nonparametrically as a forecast for the duration observed at time t + 1. We display

the averages of the squared (MSE) and absolute (MAE) forecast errors in Table 3, along

with the percentage gains obtained by nonparametric estimation. We also test for the

significance of differences in forecast accuracy by performing a Diebold and Mariano (2002)

test with an absolute loss function for MAE and a squared one fore MSE. In the table,

percentage gains between parentheses are not significant at the 5% level. [Table 3 about

here]

The nonparametric estimator seems to yield an improvement in the one-step-ahead

forecast accuracy in almost all cases, although only a few of them appear to be significant.

Overall, the differences tend to be small in magnitude, but whenever there is a statistically

significant difference, it is in favour of the nonparametric forecast.

4.2 Empirical application: evaluation of the shock impact curve

Engle and Russell (1998) note that the ACD model has the tendency to overpredict after

very long or very short durations. This would make a model with a concave shock impact

function (that in the ACD is linear) better suited as a forecasting tool. The desirability of

this feature has been explicitly acknowledged in the subsequent literature, and the Box-Cox

transformation-based ACD family of specifications proposed by Fernandes and Grammig

(2006) indeed shows concavity in the shape of the curve. The model proposed in this

paper does not have an a priori form for the shock impact curve because, depending on
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the resulting estimated surface, the response of the expected conditional duration to a

shock in the baseline duration can vary. As an experiment, we estimate our model with

the same data (quote durations for the IBM stock) used in Fernandes and Grammig (2006)

and compute the resulting shock impact curve by fixing ψi−1 at 1 and letting εt−1 vary to

evaluate its impact on the value of the expected conditional duration ψt.

Figure 7 displays the curve resulting from the nonparametric estimation along with that

resulting from the estimation of a parametric ACD model. The result seems to confirm

the hypothesis of Engle and Russell (1998). The nonparametric estimator in fact seems

to benefit from its greater flexibility and to produce a slightly concave response curve.

We can also notice that the concavity resulting from our estimator seems less pronounced

than that observed in the estimations of the modes proposed by Fernandes and Grammig

(2006), at least on the basis of a simple visual evaluation. [Figure 7 about here]

4.3 Inclusion of the time of the day as a covariate

Maximum likelihood estimation of linear ACD models on deseasonalized data can be seen

as a de facto semiparametric two-step procedure, where a first nonparametric deseasonal-

ization is followed by the fully parametric estimation of the actual ACD model proper.3

Yet, this standard practice does not take into account a possible time-dependence of the

ACD parameters. The risk of this approach is the possibility of missing some of the infor-

mation contained in the data and therefore providing suboptimal fit and forecasts if the

seasonality-affected observations are the actual object of the analysis.

In this subsection, we exploit the flexibility of the nonparametric ACD estimator and

include in the formula for the conditional duration the time of the day as an explanatory

variable. In this setup, Equation (3) becomes

Dt = f(Dt−1, ψt−1, τt) + ηt, (10)

with

ηt = f(Dt−1, ψt−1, τt)(εt − 1),

where τt is the time of the day corresponding to the t-th observation, expressed in seconds

from the beginning of the trading session, and Dt is the t-th un-desesonalized duration.

The estimation of the nonparametric ACD as described in Section 2 does not require

3The literature offers some exceptions to this practice: Rodŕıguez-Poo et al. (2008), Brownlees and
Gallo (2011) and Bortoluzzo et al. (2010).
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major changes in the recursive procedure, as τt is fully observable and can be treated as

an exogenous covariate. The practical implementation is also straightforward since the

LOESS function in R can accommodate a set of three explanatory variables instead of

the two used with deseasonalized data. To make the forecasts comparable, we multiply

the parametric ACD one-step-ahead predictions by the same values of the estimated time-

of-the-day effect used to deseasonalize the raw data before estimation. [Table 4 about

here]

Table 4 reports a comparison between forecast absolute and quadratic errors of the

parametric and nonparametric estimators. As in the case of deseasonalized data, many

differences in forecasting accuracy do not seem significant at the 5% level for price and

volume durations. By comparing Tables 3 and 4, we can see that the performance of the

nonparametric estimator improves for the figures related to the trade duration. In the case

of IBM trade durations, the percentage decreases in both MSE and MAE are statistically

significant, according to the Diebold-Mariano test. Although the absolute differences re-

main small, the general picture is in favour of better performance by the nonparametric

estimator. As in the deseasonalized dataset, whenever the forecasting difference is statis-

tically significant at the 5% level, it is the nonparametric estimator that is more accurate.

A visual account of the evolution of the nonparametrically estimated surface is provided

by Figures 8, 9 and 10, which display contour plots of the estimated surface of Boing price,

volume and trade durations computed at 30-minute intervals from 9:30 am to 4:00 pm.

The shape of the estimated conditional duration clearly varies during the day. Moreover,

the contour lines seemingly tend to shift gradually from one time period to the following

period, suggesting a clear pattern of time dependency of the parameters of the model.

Analogous time patterns of the estimated surface are present for all other durations of all

stocks. This evidence clearly suggests that the standard practice of separating the esti-

mations of the seasonality component and the conditional duration function risks missing

the opportunity to exploit significant information present in the data. Even in a fully

parametric specification, it may be therefore beneficial to include some form of interaction

between time of the day and the other model parameters. [Figures 8, 9 and 10 about

here]
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5 Conclusion

The nonparametric specification of the ACD model encompasses most of the parametric

forms thus far introduced to study high-frequency transaction data, the only exception

being constituted by models with two stochastic components, such as the SCD. The model

can easily be estimated by standard nonparametric techniques, although a recursive ap-

proach is necessary to address the fact that some regressors are not directly observable.

The simulated examples show that in the presence of asymmetry in the specification of the

conditional mean equation, the nonparametric estimator easily outperforms the symmetric

parametric estimator. An estimation on a financial data set shows a marginally better

performance of the nonparametric model in terms of forecasting power. When we in-

clude in the model time-of-the-day seasonality and estimate it jointly with the conditional

duration surface, the gain in forecast accuracy from using the nonparametric estimator

marginally improves for some stocks. Nevertheless, although not providing a specification

test for parametric models, the nonparametric analysis can be useful as a benchmark in

choosing the right parametric specification. The graphical study of the dependence of the

conditional mean on its lags can provide valuable information on which type of paramet-

ric specification to choose. Including the time-of-the-day variable in the nonparametric

analysis can provide valuable information on which deseasonalization procedure to use or

suggest a possible time variation of the parameters of the parametric specification.

Finally, we discuss what could be a further use of this estimation strategy in empirical

analysis. We believe that it could be beneficial to include in the regression of market mi-

crostructure variables, such as volume, prices, bid-ask spread or, when available, dummies

for the arrival of news in the market. These variables have often been used in ACD estima-

tions, but their impact on the frequency of trading is not always clear, and they could be

easily the subject of a nonparametric or, eventually, a semiparametric analysis. We leave

this development for further research.
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Loop Nonlinear Linear

1 0.831 0.999

2 0.206 0.999

3 0.708 0.999

4 0.597 0.999

5 0.612 0.999

6 0.736 0.999

7 0.612 0.999

8 0.623 0.999

9 0.622 0.999

10 0.622 0.999

Average 0.621 0.999

Table 1: Evolution of the GCV-selected bandwidth in an estimation of a series of 5000
observations simulated from a nonlinear and linear ACD specification.
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Figure 1: Scatterplot of a typical xψ domain
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1000 obs 5000 obs 10000 obs

Nonlinear Linear Nonlinear Linear Nonlinear Linear

Loop MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

1 0.060 0.120 0.0025 0.033 0.044 0.099 0.00054 0.015 0.042 0.098 0.00036 0.013

2 0.058 0.115 0.0028 0.036 0.037 0.088 0.00063 0.016 0.034 0.084 0.00039 0.013

3 0.057 0.114 0.0032 0.038 0.034 0.084 0.00072 0.017 0.030 0.078 0.00040 0.013

4 0.056 0.113 0.0036 0.040 0.032 0.082 0.00074 0.018 0.028 0.076 0.00042 0.014

5 0.056 0.113 0.0035 0.040 0.031 0.081 0.00074 0.017 0.027 0.074 0.00046 0.014

6 0.055 0.112 0.0035 0.040 0.031 0.081 0.00077 0.018 0.026 0.073 0.00045 0.014

7 0.057 0.113 0.0035 0.040 0.030 0.080 0.00078 0.018 0.026 0.073 0.00044 0.014

8 0.055 0.112 0.0036 0.040 0.030 0.080 0.00074 0.017 0.026 0.074 0.00044 0.014

9 0.056 0.113 0.0037 0.041 0.030 0.080 0.00077 0.018 0.026 0.073 0.00046 0.014

10 0.057 0.114 0.0038 0.040 0.030 0.080 0.00079 0.018 0.026 0.073 0.00049 0.014

avg 0.054 0.112 0.0033 0.038 0.030 0.080 0.00074 0.017 0.026 0.072 0.00045 0.014

par 0.086 0.143 0.0012 0.025 0.077 0.138 0.00024 0.011 0.074 0.135 0.00016 0.009

Table 2: Evolution of MSE and MAE for 50 series of 1000, 5000 and 10000 observations
simulated from a nonlinear and linear simulated ACD specification.
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Figure 2: Nonlinear ACD, simulated conditional mean (black, solid), parametric estimate
(blue, dashed) and nonparametric estimate (red, dotted).
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MSE MAE

Type Obs Stock Par Nonpar % Par Nonpar %

Trade 75435 Boeing 1.417 1.416 (0.02) 0.772 0.768 0.41

61630 Disney 1.426 1.425 (0.06) 0.818 0.816 (0.10)

136020 Ibm 1.240 1.240 (0.02) 0.742 0.741 0.17

74170 Exxon 1.275 1.274 (0.08) 0.771 0.771 (0.02)

Price 8682 Boeing 1.750 1.738 (0.58) 0.821 0.806 1.86

5985 Disney 1.362 1.360 (0.11) 0.765 0.761 (0.50)

18878 Ibm 1.305 1.301 (0.21) 0.754 0.749 (0.59)

12974 Exxon 2.243 2.107 6.44 0.849 0.831 2.04

Volume 4261 Boeing 0.415 0.409 1.31 0.483 0.478 1.01

3450 Disney 0.355 0.356 (-0.42) 0.465 0.465 (-0.09)

9684 Ibm 0.413 0.379 (0.18) 0.457 0.457 (0.46)

5597 Exxon 0.413 0.412 (0.29) 0.488 0.485 (0.56)

Table 3: In-sample MSE, MAE and percentage gain of the nonparametric estimator on a
set of trade, price and volume durations, the intraday seasonality of which was removed
and the average of which was normalized to one. Percentage gains are in parentheses if
the forecasts are not significantly different for the 5%-sized corresponding Diebold-Mariano
test.
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Stats MSE MAE

Type Obs Mean Stdev Stock Par Nonpar % Par Nonpar %

trade 75435 32 42 Boeing 1584 1581 (0.22) 25 25 0.33

61630 39 50 Disney 2351 2351 (0.01) 32 32 (0.12)

136020 18 22 Ibm 438 437 0.22 13 13 0.42

74170 33 40 Exxon 1487 1485 0.17 25 23 (0.06)

price 8682 274 434 Boeing 160962 163029 (-1.28) 226 224 (0.82)

5985 396 555 Disney 273336 263796 3.49 309 308 0.44

18878 127 172 Ibm 24133 25915 0.83 98 97 0.74

12974 184 307 Exxon 85822 86463 (-0.75) 158 161 (-1.68)

volume 4261 560 463 Boeing 147635 150132 (-1.69) 275 275 (-0.22)

3450 690 499 Disney 190170 192158 (-1.04) 325 324 (0.30)

9684 249 207 Ibm 28009 27879 (0.46) 116 115 (0.66)

5597 428 343 Exxon 86696 87806 (-1.28) 212 211 (0.34)

Table 4: In-sample MSE, MAE and percentage gain of the nonparametric estimator on
a set of trade, price and volume durations with time-of-the day entered as a regressor.
Percentage gains are in parentheses if the forecasts are not significantly different for the
5%-sized corresponding Diebold-Mariano test.
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Figure 3: Nonlinear ACD, simulated and estimated surface (final average).
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Figure 4: Estimated surfaces (final average) for trade durations of Boeing, Disney, IBM
and Exxon stocks.
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Figure 5: Estimated surfaces (final average) for price durations of Boeing, Disney, IBM
and Exxon stocks.
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Figure 6: Estimated surfaces (final average) for trade durations of Boeing, Disney, IBM
and Exxon stocks.
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Figure 7: Empirical shock impact curves of a parametric (dashed) ACD estimation and a
nonparametric (solid) estimation. Wider (above) and smaller (below) intervals for εt.
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Figure 8: Contour plots of the estimated surface for Boeing price durations computed at
30-minute intervals.
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Figure 9: Contour plots of the estimated surface for Boeing volume durations computed
at 30-minute intervals.
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Figure 10: Contour plots of the estimated surface for Boeing trade durations computed at
30-minute intervals.
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