PAPER • OPEN ACCESS

Search for the rare decay $\textit{B}^{0} \rightarrow \textit{J} / \psi \phi_{-}^{\ast}$

To cite this article: R. Aaij et al 2021 Chinese Phys. C 45 043001

View the [article online](https://doi.org/10.1088/1674-1137/abdf40) for updates and enhancements.

You may also like

- [Multi-messenger Observations of a Binary](https://iopscience.iop.org/article/10.3847/2041-8213/aa91c9) **[Neutron Star Merger](https://iopscience.iop.org/article/10.3847/2041-8213/aa91c9)** B. P. Abbott, R. Abbott, T. D. Abbott et al.
- **[Helium identification with LHCb](https://iopscience.iop.org/article/10.1088/1748-0221/19/02/P02010)** R. Aaij, A.S.W. Abdelmotteleb, C. Abellan Beteta et al. -
- [Curvature-bias corrections using a](https://iopscience.iop.org/article/10.1088/1748-0221/19/03/P03010) [pseudomass method](https://iopscience.iop.org/article/10.1088/1748-0221/19/03/P03010) R. Aaij, A.S.W. Abdelmotteleb, C. Abellan Beteta et al.

\mathbf{S} earch for the rare decay $\boldsymbol{B}^0 \to \boldsymbol{J} \text{/} \boldsymbol{\psi} \boldsymbol{\phi}^*$

R. Aaij³¹ C. Abellán Beteta⁴⁹ T. Ackernley⁵⁹ B. Adeva⁴⁵ M. Adinolfi⁵³ H. Afsharnia⁹ C.A. Aidala⁸⁴ S. Aiola²⁵ Z. Ajaltouni⁹ S. Akar⁶⁴ J. Albrecht¹⁴ F. Alessio⁴⁷ M. Alexander⁵⁸ A. Alfonso Albero⁴⁴ Z. Aliouche⁶¹ G. Alkhazov³⁷ P. Alvarez Cartelle⁴⁷ S. Amato² Y. Amhis¹¹ L. An²¹ L. Anderlini²¹ A. Andreianov³⁷ M. Andreotti²⁰ F. Archilli¹⁶ A. Artamonov⁴³ M. Artuso⁶⁷ K. Arzymatov⁴¹ E. Aslanides¹⁰ M. Atzeni⁴⁹ B. Audurier¹¹ S. Bachmann¹⁶ M. Bachmayer⁴⁸ J.J. Back⁵⁵ S. Baker⁶⁰ P. Baladron Rodriguez⁴⁵ V. Balagura¹¹ W. Baldini²⁰ J. Baptista Leite¹ R.J. Barlow⁶¹ S. Barsuk¹¹ W. Barter⁶⁰ M. Bartolini^{23,i} F. Baryshnikov⁸⁰ J.M. Basels¹³ G. Bassi²⁸ B. Batsukh⁶⁷ A. Battig¹⁴ A. Bay⁴⁸ M. Becker¹⁴ F. Bedeschi²⁸ I. Bediaga¹ A. Beiter⁶⁷ V. Belavin⁴¹ S. Belin²⁶ V. Bellee⁴⁸ K. Belous⁴³ I. Belov³⁹ I. Belyaev³⁸ G. Bencivenni²² E. Ben-Haim¹² A. Berezhnoy³⁹ R. Bernet⁴⁹ D. Berninghoff¹⁶ H.C. Bernstein⁶⁷ C. Bertella⁴⁷ E. Bertholet¹² A. Bertolin²⁷ C. Betancourt⁴⁹ F. Betti^{19,e} M.O. Bettler⁵⁴ Ia. Bezshyiko⁴⁹ S. Bhasin⁵³ J. Bhom³³ L. Bian⁷² M.S. Bieker¹⁴ S. Bifani⁵² P. Billoir¹² M. Birch⁶⁰ F.C.R. Bishop⁵⁴ A. Bizzeti^{21,s} M. Bjørn⁶² M.P. Blago⁴⁷ T. Blake⁵⁵ F. Blanc⁴⁸ S. Blusk⁶⁷ D. Bobulska⁵⁸ J.A. Boelhauve¹⁴ O. Boente Garcia⁴⁵ T. Boettcher⁶³ A. Boldyrev⁸¹ A. Bondar⁴² N. Bondar³⁷ S. Borghi⁶¹ M. Borisyak⁴¹ M. Borsato¹⁶ J.T. Borsuk³³ S.A. Bouchiba⁴⁸ T.J.V. Bowcock⁵⁹ A. Boyer⁴⁷ C. Bozzi²⁰ M.J. Bradley⁶⁰ S. Braun⁶⁵ A. Brea Rodriguez⁴⁵ M. Brodski⁴⁷ J. Brodzicka³³ A. Brossa Gonzalo⁵⁵ D. Brundu²⁶ A. Buonaura⁴⁹ C. Burr⁴⁷ A. Bursche²⁶ A. Butkevich⁴⁰ J.S. Butter³¹ J. Buytaert⁴⁷ W. Byczynski⁴⁷ S. Cadeddu²⁶ H. Cai⁷² R. Calabrese^{20,g} L. Calefice^{14,12} L. Calero Diaz²² S. Cali²² R. Calladine⁵² M. Calvi^{24,j} M. Calvo Gomez⁸³ P. Camargo Magalhaes⁵³ A. Camboni⁴⁴ P. Campana²² D.H. Campora Perez⁴⁷ A.F. Campoverde Quezada⁵ S. Capelli^{24,j} L. Capriotti^{19,e} A. Carbone^{19,e} G. Carboni²⁹ R. Cardinale^{23,i} A. Cardini²⁶ I. Carli⁶ P. Carniti^{24,j} L. Carus¹³ K. Carvalho Akiba³¹ A. Casais Vidal⁴⁵ G. Casse⁵⁹ M. Cattaneo⁴⁷ G. Cavallero⁴⁷ S. Celani⁴⁸ J. Cerasoli¹⁰ A.J. Chadwick⁵⁹ M.G. Chapman⁵³ M. Charles¹² Ph. Charpentier⁴⁷ G. Chatzikonstantinidis⁵² C.A. Chavez Barajas⁵⁹ M. Chefdeville ⁸ C. Chen³ S. Chen²⁶ A. Chernov³³ S.-G. Chitic⁴⁷ V. Chobanova⁴⁵ S. Cholak⁴⁸ M. Chrzaszcz³³ A. Chubykin³⁷ V. Chulikov³⁷ P. Ciambrone²² M.F. Cicala⁵⁵ X. Cid Vidal⁴⁵ G. Ciezarek⁴⁷ P.E.L. Clarke⁵⁷ M. Clemencic⁴⁷ H.V. Cliff⁵⁴ J. Closier⁴⁷ J.L. Cobbledick⁶¹ V. Coco⁴⁷ J.A.B. Coelho¹¹ J. Cogan¹⁰ E. Cogneras⁹ L. Cojocariu³⁶ P. Collins⁴⁷ T. Colombo⁴⁷ L. Congedo^{18,d} A. Contu²⁶ N. Cooke⁵² G. Coombs⁵⁸ G. Corti⁴⁷ C.M. Costa Sobral⁵⁵ B. Couturier⁴⁷ D.C. Craik⁶³ J. Crkovská⁶⁶ M. Cruz Torres¹ R. Currie⁵⁷ C.L. Da Silva⁶⁶ E. Dall'Occo¹⁴ J. Dalseno⁴⁵ C. D'Ambrosio⁴⁷ A. Danilina³⁸ P. d'Argent⁴⁷ A. Davis⁶¹ O. De Aguiar Francisco⁶¹ K. De Bruyn⁷⁷ S. De Capua⁶¹ M. De Cian⁴⁸ J.M. De Miranda¹ L. De Paula² M. De Serio^{18,d} D. De Simone⁴⁹ P. De Simone²² J.A. de Vries⁷⁸ C.T. Dean⁶⁶ W. Dean⁸⁴ D. Decamp⁸ L. Del Buono¹² B. Delaney⁵⁴ H.-P. Dembinski¹⁴ A. Dendek³⁴ V. Denysenko⁴⁹ D. Derkach⁸¹ O. Deschamps⁹ F. Desse¹¹ F. Dettori^{26,f} B. Dey⁷² P. Di Nezza²² S. Didenko⁸⁰ L. Dieste Maronas⁴⁵ H. Dijkstra⁴⁷ V. Dobishuk⁵¹ A.M. Donohoe¹⁷ F. Dordei²⁶ A.C. dos Reis¹ L. Douglas⁵⁸ A. Dovbnya⁵⁰ A.G. Downes⁸ K. Dreimanis⁵⁹ M.W. Dudek³³ L. Dufour⁴⁷ V. Duk⁷⁶ P. Durante⁴⁷ J.M. Durham⁶⁶ D. Dutta⁶¹ M. Dziewiecki¹⁶ A. Dziurda³³ A. Dzyuba³⁷ S. Easo⁵⁶ U. Egede⁶⁸ V. Egorychev³⁸ S. Eidelman^{42,v} S. Eisenhardt⁵⁷ S. Ek-In⁴⁸ L. Eklund⁵⁸ S. Ely⁶⁷ A. Ene³⁶ E. Epple⁶⁶ S. Escher¹³ J. Eschle⁴⁹ S. Esen³¹ T. Evans⁴⁷ A. Falabella¹⁹ J. Fan³ Y. Fan⁵ B. Fang⁷² N. Farley⁵² S. Farry⁵⁹ D. Fazzini^{24,j}

Received 16 November 2020; Accepted 12 December 2020; Published online 12 January 2021

* Individual groups or members have received support from AvH Foundation (Germany); EPLANET, Marie Sk lodowska-Curie Actions and ERC (European Union); A*MIDEX, ANR, Labex P2IO and OCEVU, and R'egion Auvergne-Rh^one-Alpes (France); Key Research Program of Frontier Sciences of CAS, CAS PIFI, Thousand Talents Program, and Sci. & Tech. Program of Guangzhou (China); RFBR, RSF and Yandex LLC (Russia); GVA, XuntaGal and GENCAT (Spain); the Royal Society and the Leverhulme Trust (United Kingdom)

 \odot \odot Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. Article funded by SCOAP³ and published under licence by Chinese Physical Society and the Institute of High Energy Physics of the Chinese Academy of Sciences and the Institute of Modern Physics of the Chinese Academy of Sciences and IOP Publishing Ltd

P. Fedin³⁸ M. Féo⁴⁷ P. Fernandez Declara⁴⁷ A. Fernandez Prieto⁴⁵ J.M. Fernandez-tenllado Arribas⁴⁴ F. Ferrari^{19,e} L. Ferreira Lopes⁴⁸ F. Ferreira Rodrigues² S. Ferreres Sole³¹ M. Ferrillo⁴⁹ M. Ferro-Luzzi⁴⁷ S. Filippov⁴⁰ R.A. Fini¹⁸ M. Fiorini^{20,g} M. Firlej³⁴ K.M. Fischer⁶² C. Fitzpatrick⁶¹ T. Fiutowski³⁴ F. Fleuret^{11,b} M. Fontana¹² F. Fontanelli^{23,i} R. Forty⁴⁷ V. Franco Lima⁵⁹ M. Franco Sevilla⁶⁵ M. Frank⁴⁷ E. Franzoso²⁰ G. Frau¹⁶ C. Frei⁴⁷ D.A. Friday⁵⁸ J. Fu²⁵ Q. Fuehring¹⁴ W. Funk⁴⁷ E. Gabriel³¹ T. Gaintseva⁴¹ A. Gallas Torreira⁴⁵ D. Galli^{19,e} S. Gambetta^{57,47} Y. Gan³ M. Gandelman² P. Gandini²⁵ Y. Gao⁴ M. Garau²⁶ L.M. Garcia Martin⁵⁵ P. Garcia Moreno⁴⁴ J. García Pardiñas⁴⁹ B. Garcia Plana⁴⁵ F.A. Garcia Rosales¹¹ L. Garrido⁴⁴ C. Gaspar⁴⁷ R.E. Geertsema³¹ D. Gerick¹⁶ L.L. Gerken¹⁴ E. Gersabeck⁶¹ M. Gersabeck⁶¹ T. Gershon⁵⁵ D. Gerstel¹⁰ Ph. Ghez⁸ V. Gibson⁵⁴ M. Giovannetti^{22,k} A. Gioventù⁴⁵ P. Gironella Gironell⁴⁴ L. Giubega³⁶ C. Giugliano^{20,47,g} K. Gizdov⁵⁷ E.L. Gkougkousis⁴⁷ V.V. Gligorov¹² C. Göbel⁶⁹ E. Golobardes⁸³ D. Golubkov³⁸ A. Golutvin^{60,80} A. Gomes^{1,a} S. Gomez Fernandez⁴⁴ F. Goncalves Abrantes⁶⁹ M. Goncerz³³ G. Gong³ P. Gorbounov³⁸ I.V. Gorelov³⁹ C. Gotti^{24,j} E. Govorkova⁴⁷ J.P. Grabowski¹⁶ R. Graciani Diaz⁴⁴ T. Grammatico¹² L.A. Granado Cardoso⁴⁷ E. Graugés⁴⁴ E. Graverini⁴⁸ G. Graziani²¹ A. Grecu³⁶ L.M. Greeven³¹ P. Griffith²⁰ L. Grillo⁶¹ S. Gromov⁸⁰ B.R. Gruberg Cazon⁶² C. Gu³ M. Guarise²⁰ P. A. Günther¹⁶ E. Gushchin⁴⁰ A. Guth¹³ Y. Guz^{43,47} T. Gys⁴⁷ T. Hadavizadeh⁶⁸ G. Haefeli⁴⁸ C. Haen⁴⁷ J. Haimberger⁴⁷ S.C. Haines⁵⁴ T. Halewood-leagas⁵⁹ P.M. Hamilton⁶⁵ Q. Han⁷ X. Han¹⁶ T.H. Hancock⁶² S. Hansmann-Menzemer¹⁶ N. Harnew⁶² T. Harrison⁵⁹ C. Hasse⁴⁷ M. Hatch⁴⁷ J. He⁵ M. Hecker⁶⁰ K. Heijhoff³¹ K. Heinicke¹⁴ A.M. Hennequin⁴⁷ K. Hennessy⁵⁹ L. Henry^{25,46} J. Heuel¹³ A. Hicheur² D. Hill⁶² M. Hilton⁶¹ S.E. Hollitt¹⁴ J. Hu¹⁶ J. Hu⁷¹ W. Hu⁷ W. Huang⁵ X. Huang⁷² W. Hulsbergen³¹ R.J. Hunter⁵⁵ M. Hushchyn⁸¹ D. Hutchcroft⁵⁹ D. Hynds³¹ P. Ibis¹⁴ M. Idzik³⁴ D. Ilin³⁷ P. Ilten⁶⁴ A. Inglessi³⁷ A. Ishteev 80 K. Ivshin³⁷ R. Jacobsson⁴⁷ S. Jakobsen⁴⁷ E. Jans³¹ B.K. Jashal⁴⁶ A. Jawahery⁶⁵ V. Jevtic¹⁴ M. Jezabek³³ F. Jiang³ M. John⁶² D. Johnson⁴⁷ C.R. Jones⁵⁴ T.P. Jones⁵⁵ B. Jost⁴⁷ N. Jurik⁴⁷ S. Kandybei⁵⁰ Y. Kang³ M. Karacson⁴⁷ M. Karpov⁸¹ N. Kazeev⁸¹ F. Keizer^{54,47} M. Kenzie⁵⁵ T. Ketel³² B. Khanji¹⁴ A. Kharisova⁸² S. Kholodenko⁴³ K.E. Kim⁶⁷ T. Kirn¹³ V.S. Kirsebom⁴⁸ O. Kitouni⁶³ S. Klaver³¹ K. Klimaszewski³⁵ S. Koliiev⁵¹ A. Kondybayeva⁸⁰ A. Konoplyannikov³⁸ P. Kopciewicz³⁴ R. Kopecna¹⁶ P. Koppenburg³¹ M. Korolev³⁹ I. Kostiuk^{31,51} O. Kot⁵¹ S. Kotriakhova^{37,30} P. Kravchenko³⁷ L. Kravchuk⁴⁰ R.D. Krawczyk⁴⁷ M. Kreps⁵⁵ F. Kress⁶⁰ S. Kretzschmar¹³ P. Krokovny^{42,v} W. Krupa³⁴ W. Krzemien³⁵ W. Kucewicz^{33,l} M. Kucharczyk³³ V. Kudryavtsev^{42,v} H.S. Kuindersma³¹ G.J. Kunde⁶⁶ T. Kvaratskheliya³⁸ D. Lacarrere⁴⁷ G. Lafferty⁶¹ A. Lai²⁶ A. Lampis²⁶ D. Lancierini⁴⁹ J.J. Lane⁶¹ R. Lane⁵³ G. Lanfranchi²² C. Langenbruch¹³ J. Langer¹⁴ O. Lantwin^{49,80} T. Latham⁵⁵ F. Lazzari^{28,t} R. Le Gac¹⁰ S.H. Lee⁸⁴ R. Lefèvre⁹ A. Leflat³⁹ S. Legotin⁸⁰ O. Leroy¹⁰ T. Lesiak³³ B. Leverington¹⁶ H. Li⁷¹ L. Li⁶² P. Li¹⁶ X. Li⁶⁶ Y. Li⁶ Y. Li^6 Z. Li^{67} X. Liang⁶⁷ T. Lin⁶⁰ R. Lindner⁴⁷ V. Lisovskyi¹⁴ R. Litvinov²⁶ G. Liu⁷¹ H. Liu⁵ S. Liu⁶ X. Liu³ A. Loi²⁶ J. Lomba Castro⁴⁵ I. Longstaff⁵⁸ J.H. Lopes² G. Loustau⁴⁹ G.H. Lovell⁵⁴ Y. Lu⁶ D. Lucchesi^{27,m} S. Luchuk⁴⁰ M. Lucio Martinez³¹ V. Lukashenko³¹ Y. Luo³ A. Lupato⁶¹ E. Luppi^{20,g} O. Lupton⁵⁵ A. Lusiani^{28,r} X. Lyu⁵ L. Ma⁶ S. Maccolini^{19,e} F. Machefert¹¹ F. Maciuc³⁶ V. Macko⁴⁸ P. Mackowiak¹⁴ S. Maddrell-Mander⁵³ O. Madejczyk³⁴ L.R. Madhan Mohan⁵³ O. Maev³⁷ A. Maevskiy⁸¹ D. Maisuzenko³⁷ M.W. Majewski³⁴ S. Malde⁶² B. Malecki⁴⁷ A. Malinin⁷⁹ T. Maltsev^{42,v} H. Malygina¹⁶ G. Manca^{26,f} G. Mancinelli¹⁰ R. Manera Escalero⁴⁴ D. Manuzzi^{19,e} D. Marangotto^{25,o} J. Maratas^{9,u} J.F. Marchand⁸ U. Marconi¹⁹ S. Mariani^{21,47,h} C. Marin Benito¹¹ M. Marinangeli⁴⁸ P. Marino⁴⁸ J. Marks¹⁶ P.J. Marshall⁵⁹ G. Martellotti³⁰ L. Martinazzoli^{47,j} M. Martinelli^{24,j} D. Martinez Santos⁴⁵ F. Martinez Vidal⁴⁶ A. Massafferri¹ M. Materok¹³ R. Matev⁴⁷ A. Mathad⁴⁹ Z. Mathe⁴⁷ V. Matiunin³⁸ C. Matteuzzi²⁴ K.R. Mattioli⁸⁴ A. Mauri³¹ E. Maurice^{11,b} J. Mauricio⁴⁴ M. Mazurek³⁵ M. McCann⁶⁰ L. Mcconnell¹⁷ T.H. Mcgrath⁶¹ A. McNab⁶¹ R. McNulty¹⁷ J.V. Mead⁵⁹ B. Meadows⁶⁴ C. Meaux¹⁰ G. Meier¹⁴ N. Meinert⁷⁵ D. Melnychuk³⁵ S. Meloni^{24,j} M. Merk^{31,78} A. Merli²⁵ L. Meyer Garcia² M. Mikhasenko⁴⁷ D.A. Milanes⁷³ E. Millard⁵⁵ M. Milovanovic⁴⁷ M.-N. Minard⁸ L. Minzoni^{20,g} S.E. Mitchell⁵⁷ B. Mitreska⁶¹ D.S. Mitzel⁴⁷ A. Mödden¹⁴ R.A. Mohammed⁶² R.D. Moise⁶⁰ T. Mombächer¹⁴ I.A. Monroy⁷³ S. Monteil⁹ M. Morandin²⁷

G. Morello²² M.J. Morello^{28,r} J. Moron³⁴ A.B. Morris⁷⁴ A.G. Morris⁵⁵ R. Mountain⁶⁷ H. Mu³ F. Muheim⁵⁷ M. Mukherjee⁷ M. Mulder⁴⁷ D. Müller⁴⁷ K. Müller⁴⁹ C.H. Murphy⁶² D. Murray⁶¹ P. Muzzetto^{26,47} P. Naik⁵³ T. Nakada⁴⁸ R. Nandakumar⁵⁶ T. Nanut⁴⁸ I. Nasteva² M. Needham⁵⁷ I. Neri^{20,g} N. Neri^{25,0} S. Neubert⁷⁴ N. Neufeld⁴⁷ R. Newcombe⁶⁰ T.D. Nguyen⁴⁸ C. Nguyen-Mau⁴⁸ E.M. Niel¹¹ S. Nieswand¹³ N. Nikitin³⁹ N.S. Nolte⁴⁷ C. Nunez⁸⁴ A. Oblakowska-Mucha³⁴ V. Obraztsov⁴³ D.P. O'Hanlon⁵³ R. Oldeman^{26,f} M.E. Olivares⁶⁷ C.J.G. Onderwater⁷⁷ A. Ossowska³³ J.M. Otalora Goicochea² T. Ovsiannikova³⁸ P. Owen⁴⁹ A. Oyanguren^{46,47} B. Pagare⁵⁵ P.R. Pais⁴⁷ T. Pajero^{28,47,r} A. Palano¹⁸ M. Palutan²² Y. Pan⁶¹ G. Panshin⁸² A. Papanestis⁵⁶ M. Pappagallo^{18,d} L.L. Pappalardo^{20,g} C. Pappenheimer⁶⁴ W. Parker⁶⁵ C. Parkes⁶¹ C.J. Parkinson⁴⁵ B. Passalacqua²⁰ G. Passaleva²¹ A. Pastore¹⁸ M. Patel⁶⁰ C. Patrignani^{19,e} C.J. Pawley⁷⁸ A. Pearce⁴⁷ A. Pellegrino³¹ M. Pepe Altarelli⁴⁷ S. Perazzini¹⁹ D. Pereima³⁸ P. Perret⁹ K. Petridis⁵³ A. Petrolini^{23,i} A. Petrov⁷⁹ S. Petrucci⁵⁷ M. Petruzzo²⁵ T.T.H. Pham⁶⁷ A. Philippov⁴¹ L. Pica²⁸ M. Piccini⁷⁶ B. Pietrzyk⁸ G. Pietrzyk⁴⁸ M. Pili⁶² D. Pinci³⁰ F. Pisani⁴⁷ A. Piucci¹⁶ P.K Resmi¹⁰ V. Placinta³⁶ J. Plews⁵² M. Plo Casasus⁴⁵ F. Polci¹² M. Poli Lener²² M. Poliakova⁶⁷ A. Poluektov¹⁰ N. Polukhina^{80,c} I. Polyakov⁶⁷ E. Polycarpo² G.J. Pomery⁵³ S. Ponce⁴⁷ D. Popov^{5,47} S. Popov⁴¹ S. Poslavskii⁴³ K. Prasanth³³ L. Promberger⁴⁷ C. Prouve⁴⁵ V. Pugatch⁵¹ H. Pullen⁶² G. Punzi^{28,n} W. Qian⁵ J. Qin⁵ R. Quagliani¹² B. Quintana⁸ N.V. Raab¹⁷ R.I. Rabadan Trejo¹⁰ B. Rachwal³⁴ J.H. Rademacker⁵³ M. Rama²⁸ M. Ramos Pernas⁵⁵ M.S. Rangel² F. Ratnikov^{41,81} G. Raven³² M. Reboud⁸ F. Redi⁴⁸ F. Reiss¹² C. Remon Alepuz⁴⁶ Z. Ren³ V. Renaudin⁶² R. Ribatti²⁸ S. Ricciardi⁵⁶ D.S. Richards⁵⁶ K. Rinnert⁵⁹ P. Robbe¹¹ A. Robert¹² G. Robertson⁵⁷ A.B. Rodrigues⁴⁸ E. Rodrigues⁵⁹ J.A. Rodriguez Lopez⁷³ A. Rollings⁶² P. Roloff⁴⁷ V. Romanovskiy⁴³ M. Romero Lamas⁴⁵ A. Romero Vidal⁴⁵ J.D. Roth⁸⁴ M. Rotondo²² M.S. Rudolph⁶⁷ T. Ruf⁴⁷ J. Ruiz Vidal⁴⁶ A. Ryzhikov⁸¹ J. Ryzka³⁴ J.J. Saborido Silva⁴⁵ N. Sagidova³⁷ N. Sahoo⁵⁵ B. Saitta^{26,f} D. Sanchez Gonzalo⁴⁴ C. Sanchez Gras³¹ R. Santacesaria³⁰ C. Santamarina Rios⁴⁵ M. Santimaria²² E. Santovetti^{29,k} D. Saranin⁸⁰ G. Sarpis⁵⁸ M. Sarpis⁷⁴ A. Sarti³⁰ C. Satriano^{30,q} A. Satta²⁹ M. Saur⁵ D. Savrina^{38,39} H. Sazak⁹ L.G. Scantlebury Smead⁶² S. Schael¹³ M. Schellenberg¹⁴ M. Schiller⁵⁸ H. Schindler⁴⁷ M. Schmelling¹⁵ T. Schmelzer¹⁴ B. Schmidt⁴⁷ O. Schneider⁴⁸ A. Schopper⁴⁷ M. Schubiger³¹ S. Schulte⁴⁸ M.H. Schune¹¹ R. Schwemmer⁴⁷ B. Sciascia²² A. Sciubba³⁰ S. Sellam⁴⁵ A. Semennikov³⁸ M. Senghi Soares³² A. Sergi^{52,47} N. Serra⁴⁹ L. Sestini²⁷ A. Seuthe¹⁴ P. Seyfert⁴⁷ D.M. Shangase⁸⁴ M. Shapkin⁴³ I. Shchemerov⁸⁰ L. Shchutska⁴⁸ T. Shears⁵⁹ L. Shekhtman^{42,v} Z. Shen⁴ V. Shevchenko⁷⁹ E.B. Shields^{24,j} E. Shmanin⁸⁰ J.D. Shupperd⁶⁷ B.G. Siddi²⁰ R. Silva Coutinho⁴⁹ G. Simi²⁷ S. Simone^{18,d} I. Skiba^{20,g} N. Skidmore⁷⁴ T. Skwarnicki⁶⁷ M.W. Slater⁵² J.C. Smallwood⁶² J.G. Smeaton⁵⁴ A. Smetkina³⁸ E. Smith¹³ M. Smith⁶⁰ A. Snoch³¹ M. Soares¹⁹ L. Soares Lavra⁹ M.D. Sokoloff⁶⁴ F.J.P. Soler⁵⁸ A. Solovev³⁷ I. Solovyev³⁷ F.L. Souza De Almeida² B. Souza De Paula² B. Spaan¹⁴ E. Spadaro Norella^{25,0} P. Spradlin⁵⁸ F. Stagni⁴⁷ M. Stahl⁶⁴ S. Stahl⁴⁷ P. Stefko⁴⁸ O. Steinkamp^{49,80} S. Stemmle¹⁶ O. Stenyakin⁴³ H. Stevens¹⁴ S. Stone⁶⁷ M.E. Stramaglia⁴⁸ M. Straticiuc³⁶ D. Strekalina⁸⁰ S. Strokov⁸² F. Suljik⁶² J. Sun²⁶ L. Sun⁷² Y. Sun⁶⁵ P. Svihra⁶¹ P.N. Swallow⁵² K. Swientek³⁴ A. Szabelski³⁵ T. Szumlak³⁴ M. Szymanski⁴⁷ S. Taneja⁶¹ F. Teubert⁴⁷ E. Thomas⁴⁷ K.A. Thomson⁵⁹ M.J. Tilley⁶⁰ V. Tisserand⁹ S. T'Jampens⁸ M. Tobin⁶ S. Tolk⁴⁷ L. Tomassetti^{20,g} D. Torres Machado¹ D.Y. Tou¹² M. Traill⁵⁸ M.T. Tran⁴⁸ E. Trifonova⁸⁰ C. Trippl⁴⁸ G. Tuci^{28,n} A. Tully⁴⁸ N. Tuning³¹ A. Ukleja³⁵ D.J. Unverzagt¹⁶ A. Usachov³¹ A. Ustyuzhanin^{41,81} U. Uwer¹⁶ A. Vagner⁸² V. Vagnoni¹⁹ A. Valassi⁴⁷ G. Valenti¹⁹ N. Valls Canudas⁴⁴ M. van Beuzekom³¹ M. Van Dijk⁴⁸ H. Van Hecke⁶⁶ E. van Herwijnen⁸⁰ C.B. Van Hulse¹⁷ M. van Veghel⁷⁷ R. Vazquez Gomez⁴⁵ P. Vazquez Regueiro⁴⁵ C. Vázquez Sierra³¹ S. Vecchi²⁰ J.J. Velthuis⁵³ M. Veltri^{21,p} A. Venkateswaran⁶⁷ M. Veronesi³¹ M. Vesterinen⁵⁵ D. Vieira⁶⁴ M. Vieites Diaz⁴⁸ H. Viemann⁷⁵ X. Vilasis-Cardona⁸³ E. Vilella Figueras⁵⁹ P. Vincent¹² G. Vitali²⁸ A. Vollhardt⁴⁹ D. Vom Bruch¹² A. Vorobyev³⁷ V. Vorobyev^{42,v} N. Voropaev³⁷ R. Waldi⁷⁵ J. Walsh²⁸ C. Wang¹⁶ J. Wang³ J. Wang⁷² J. Wang⁴ J. Wang⁶ M. Wang³ R. Wang⁵³ Y. Wang⁷ Z. Wang⁴⁹ H.M. Wark⁵⁹ N.K. Watson⁵² S.G. Weber¹² D. Websdale⁶⁰ C. Weisser⁶³ B.D.C. Westhenry⁵³ D.J. White⁶¹ M. Whitehead⁵³ D. Wiedner¹⁴ G. Wilkinson⁶² M. Wilkinson⁶⁷ I. Williams⁵⁴

M. Williams^{63,68} M.R.J. Williams⁵⁷ F.F. Wilson⁵⁶ W. Wislicki³⁵ M. Witek³³ L. Witola¹⁶ G. Wormser¹¹ S.A. Wotton⁵⁴ H. Wu⁶⁷ K. Wyllie⁴⁷ Z. Xiang⁵ D. Xiao⁷ Y. Xie⁷ A. Xu⁴ J. Xu⁵ L. Xu³ M. Xu⁷ Q. Xu⁵ Z. Xu^5 Z. Xu^4 D. Yang³ Y. Yang⁵ Z. Yang³ Z. Yang⁶⁵ Y. Yao⁶⁷ L.E. Yeomans⁵⁹ H. Yin⁷ J. Yu⁷⁰ X. Yuan⁶⁷ O. Yushchenko⁴³ E. Zaffaroni⁴⁸ K.A. Zarebski⁵² M. Zavertyaev^{15,c} M. Zdybal³³ O. Zenaiev⁴⁷ M. Zeng³ D. Zhang⁷ L. Zhang³ S. Zhang⁴ Y. Zhang⁴ Y. Zhang⁶² A. Zhelezov¹⁶ Y. Zheng⁵ X. Zhou⁵ Y. Zhou 5 X. Zhu³ J.B. Zonneveld⁵⁷ S. Zucchelli^{19,e} D. Zuliani²⁷ G. Zunica⁶¹ (LHCb Collaboration) ¹Centro Brasileiro de Pesquisas Físicas (CBPF), Rio de Janeiro, Brazil 2 Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil ³Center for High Energy Physics, Tsinghua University, Beijing, China 4 School of Physics State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, China ⁵University of Chinese Academy of Sciences, Beijing, China 6 Institute Of High Energy Physics (IHEP), Beijing, China 7 Institute of Particle Physics, Central China Normal University, Wuhan, Hubei, China 8 Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, IN2P3-LAPP, Annecy, France 9 Université Clermont Auvergne, CNRS/IN2P3, LPC, Clermont-Ferrand, France ⁰Aix Marseille Univ, CNRS/IN2P3, CPPM, Marseille, France ¹¹Université Paris-Saclay, CNRS/IN2P3, IJCLab, Orsay, France ¹²LPNHE, Sorbonne Université, Paris Diderot Sorbonne Paris Cité, CNRS/IN2P3, Paris, France ³I. Physikalisches Institut, RWTH Aachen University, Aachen, Germany ¹⁴Fakultät Physik, Technische Universität Dortmund, Dortmund, Germany ¹⁵Max-Planck-Institut für Kernphysik (MPIK), Heidelberg, Germany ¹⁶Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany 17 School of Physics, University College Dublin, Dublin, Ireland ⁸INFN Sezione di Bari, Bari, Italy ¹⁹INFN Sezione di Bologna, Bologna, Italy ²⁰INFN Sezione di Ferrara, Ferrara, Italy ²¹INFN Sezione di Firenze, Firenze, Italy ²²INFN Laboratori Nazionali di Frascati, Frascati, Italy ²³INFN Sezione di Genova, Genova, Italy ²⁴INFN Sezione di Milano-Bicocca, Milano, Italy ²⁵INFN Sezione di Milano, Milano, Italy ²⁶INFN Sezione di Cagliari, Monserrato, Italy ²⁷Universita degli Studi di Padova, Universita e INFN, Padova, Padova, Italy ²⁸INFN Sezione di Pisa, Pisa, Italy ²⁹INFN Sezione di Roma Tor Vergata, Roma, Italy ³⁰INFN Sezione di Roma La Sapienza, Roma, Italy ³¹Nikhef National Institute for Subatomic Physics, Amsterdam, Netherlands ³²Nikhef National Institute for Subatomic Physics and VU University Amsterdam, Amsterdam, Netherlands ³³Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences, Kraków, Poland ³⁴AGH - University of Science and Technology, Faculty of Physics and Applied Computer Science, Kraków, Poland ⁵⁵National Center for Nuclear Research (NCBJ), Warsaw, Poland ³⁶Horia Hulubei National Institute of Physics and Nuclear Engineering, Bucharest-Magurele, Romania ³⁷Petersburg Nuclear Physics Institute NRC Kurchatov Institute (PNPI NRC KI), Gatchina, Russia ³⁸Institute of Theoretical and Experimental Physics NRC Kurchatov Institute (ITEP NRC KI), Moscow, Russia ³⁹Institute of Nuclear Physics, Moscow State University (SINP MSU), Moscow, Russia 40Institute for Nuclear Research of the Russian Academy of Sciences (INR RAS), Moscow, Russia ⁴¹Yandex School of Data Analysis, Moscow, Russia ⁴²Budker Institute of Nuclear Physics (SB RAS), Novosibirsk, Russia ⁴³Institute for High Energy Physics NRC Kurchatov Institute (IHEP NRC KI), Protvino, Russia, Protvino, Russia ⁴⁴ICCUB, Universitat de Barcelona, Barcelona, Spain ⁴⁵Instituto Galego de Física de Altas Enerxías (IGFAE), Universidade de Santiago de Compostela, Santiago de Compostela, Spain ⁶Instituto de Fisica Corpuscular, Centro Mixto Universidad de Valencia - CSIC, Valencia, Spain ¹⁷European Organization for Nuclear Research (CERN), Geneva, Switzerland ⁴⁸Institute of Physics, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland ¹⁹Physik-Institut, Universität Zürich, Zürich, Switzerland 50 NSC Kharkiv Institute of Physics and Technology (NSC KIPT), Kharkiv, Ukraine ⁵¹Institute for Nuclear Research of the National Academy of Sciences (KINR), Kyiv, Ukraine 52 University of Birmingham, Birmingham, United Kingdom ⁵³H.H. Wills Physics Laboratory, University of Bristol, Bristol, United Kingdom ⁵⁴Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom ⁵⁵Department of Physics, University of Warwick, Coventry, United Kingdom ⁶STFC Rutherford Appleton Laboratory, Didcot, United Kingdom ⁵⁷School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom

⁸School of Physics and Astronomy, University of Glasgow, Glasgow, United Kingdom

⁵⁹Oliver Lodge Laboratory, University of Liverpool, Liverpool, United Kingdom ⁶⁰Imperial College London, London, United Kingdom ⁶¹Department of Physics and Astronomy, University of Manchester, Manchester, United Kingdom 2 Department of Physics, University of Oxford, Oxford, United Kingdom ⁶³Massachusetts Institute of Technology, Cambridge, MA, United States ⁶⁴University of Cincinnati, Cincinnati, OH, United States ⁶⁵University of Maryland, College Park, MD, United States ⁶⁶Los Alamos National Laboratory (LANL), Los Alamos, United States ⁶⁷Syracuse University, Syracuse, NY, United States ⁶⁸School of Physics and Astronomy, Monash University, Melbourne, Australia, associated to ⁵⁵ ⁶⁹Pontifícia Universidade Católica do Rio de Janeiro (PUC-Rio), Rio de Janeiro, Brazil, associated to ² ⁰Physics and Micro Electronic College, Hunan University, Changsha City, China, associated to 1 Guangdong Provencial Key Laboratory of Nuclear Science, Institute of Quantum Matter, South China Normal University, Guangzhou, China, associated to ³ 72 School of Physics and Technology, Wuhan University, Wuhan, China, associated to 3 73 Departamento de Fisica, Universidad Nacional de Colombia, Bogota, Colombia, associated to 12 74 Universität Bonn - Helmholtz-Institut für Strahlen und Kernphysik, Bonn, Germany, associated to 16 ⁵Institut für Physik, Universität Rostock, Rostock, Germany, associated to 76 INFN Sezione di Perugia, Perugia, Italy, associated to 2 77 Van Swinderen Institute, University of Groningen, Groningen, Netherlands, associated to 31 ⁸Universiteit Maastricht, Maastricht, Netherlands, associated to 79 National Research Centre Kurchatov Institute, Moscow, Russia, associated to 38 80
National University of Science and Technology "MISIS", Moscow, Russia, associated to ³⁸ ⁸¹National Research University Higher School of Economics, Moscow, Russia, associated to ⁴¹ ²
National Research Tomsk Polytechnic University, Tomsk, Russia, associated to $8³$ DS4DS, La Salle, Universitat Ramon Llull, Barcelona, Spain, associated to 84 University of Michigan, Ann Arbor, United States, associated to $\frac{6}{5}$ a Universidade Federal do Triângulo Mineiro (UFTM), Uberaba-MG, Brazil ^bLaboratoire Leprince-Ringuet, Palaiseau, France ^cP.N. Lebedev Physical Institute, Russian Academy of Science (LPI RAS), Moscow, Russia d Università di Bari, Bari, Italy e Università di Bologna, Bologna, Italy f Università di Cagliari, Cagliari, Italy ^gUniversità di Ferrara, Ferrara, Italy h Università di Firenze, Firenze, Italy i Università di Genova, Genova, Italy ^jUniversità di Milano Bicocca, Milano, Italy k Università di Roma Tor Vergata, Roma, Italy ¹AGH - University of Science and Technology, Faculty of Computer Science, Electronics and Telecommunications, Kraków, Poland m Università di Padova, Padova, Italy n Università di Pisa, Pisa, Italy o Università degli Studi di Milano, Milano, Italy p Università di Urbino, Urbino, Italy ^qUniversità della Basilicata, Potenza, Italy r Scuola Normale Superiore, Pisa, Italy s Università di Modena e Reggio Emilia, Modena, Italy t Università di Siena, Siena, Italy ^uMSU - Iligan Institute of Technology (MSU-IIT), Iligan, Philippines v Novosibirsk State University, Novosibirsk, Russia

Abstract: A search for the rare decay $B^0 \to J/\psi \phi$ is performed using pp collision data collected with the LHCb detesignal of the decay is observed and an upper limit of 1.1×10^{-7} at 90% confidence level is set on the branching fraction. ctor at centre-of-mass energies of 7, 8 and 13 TeV, corresponding to an integrated luminosity of 9 fb⁻¹. No significant

Keywords: *B* physics, flavour physics, rare decay, $\omega - \phi$ mixing, branching fraction

DOI: 10.1088/1674-1137/abdf40

I. INTRODUCTION

The $B^0 \rightarrow J/\psi K^+ K^-$ decay was first observed by the LHCb experiment with a branching fraction of $(2.51 \pm$ 0.35 ± 0.19 × 10^{-6} [[1\]](#page-13-0). It proceeds primarily through the

Cabibbo-suppressed \bar{b} \rightarrow *ccd* transition. The K^+K^- pair can come either directly from the B^0 decay via an $s\bar{s}$ pair states that contain both $d\bar{d}$ and $s\bar{s}$ components, such as the $a_0(980)$ res[on](#page-13-1)ance¹. There is a potential contribution created in the vacuum, or from the decay of intermediate

¹⁾ The inclusion of charge-conjugate processes is implied throughout this paper.

from the ϕ meson as an intermediate state. The decay $B^0 \rightarrow J/\psi \phi$ is suppressed by the Okubo-Zweig-Iizuka to produce the ϕ meson in this process are of particular dominant contribution is via a small $d\bar{d}$ component in the ϕ wave-function, arising from $\omega - \phi$ mixing [\(Fig. 1\(a\)](#page-6-0)), the branching fraction of the $B^0 \rightarrow J/\psi \phi$ decay is prethe branching fraction of the $B^0 \rightarrow J/\psi \phi$ decay is predicted to be of the order of 10^{-7} [\[5](#page-13-3)]. Contributions to $B^0 \rightarrow J/\psi \phi$ decays from the OZI-suppressed tri-gluon fu-lower[[7](#page-13-4)]. Experimental studies of the decay $B^0 \rightarrow J/\psi \phi$ (OZI) rule that forbids disconnected quark diagrams [\[2](#page-13-1)- [4](#page-13-2)]. The size of this contribution and the exact mechanism theoretical interest [\[5](#page-13-3)-[7](#page-13-4)]. Under the assumption that the sion ([Fig. 1\(b\)\)](#page-6-0), photoproduction and final-state rescattering are estimated to be at least one order of magnitude could provide important information about the dynamics of OZI-suppressed decays.

No significant signal of $B^0 \rightarrow J/\psi \phi$ decay has been obto an integrated luminosity of 1 fb⁻¹ of *pp* collision data, collected at a centre-of-mass energy of 7 TeV. This paper presents an update on the search for $B^0 \rightarrow J/\psi \phi$ decays us fb^{-1} , including 3 fb^{-1} collected at 7 and 8 TeV fb^{-1} collected at 13 TeV served in previous searches by several experiments. Upper limits on theb[ra](#page-13-5)nching [fra](#page-13-6)ction of the [d](#page-13-0)ecay have been set by BaBar [\[8\]](#page-13-5), Belle [[9](#page-13-6)] and LHCb [\[1](#page-13-0)]. The LH-Cb limit was obtained using a data sample corresponding ing a data sample corresponding to an integrated luminosity of 9 fb⁻¹, including 3 fb⁻¹ collected at 7 and 8 TeV, denoted as Run 1, and 6 fb^{-1} collected at 13 TeV, denoted as Run 2.

an amplitude analysis of $B^0 \rightarrow J/\psi K^+ K^-$ decays over a wide $m(K^+K^-)$ range from the K^+K^- mass threshold to 2200 MeV/ c^2 . This paper focuses on the ϕ (1020) region, with the K^+K^+ mass in the range $1000-1050$ MeV/ c^2 , and on studies of the $J/\psi K^+ K^-$ and $K^+ K^-$ mass distributions, to distinguish the $B^0 \rightarrow J/\psi \phi$ signal from the nontions, to distinguish the $B^0 \rightarrow J/\psi \phi$ signal from the non-
resonant decay $B^0 \rightarrow J/\psi K^+ K^-$ and background contaminations. The abundant decay $B_s^0 \rightarrow J/\psi \phi$ is used as the nor-The sharp ϕ mass peak provides a clear signal characterthe copious $B_s^0 \rightarrow J/\psi \phi$ decays. On the other hand, inter-The LHCb measurement in Ref. [\[1](#page-13-0)] is obtained from malisation channel. The choice of mass fits over a full amplitude analysis is motivated by several considerations. istic and the lineshape can be very well determined using

ference of the *S*-wave (either $a_0(980)/f_0(980)$ or non-resonant) and *P*-wave amplitudes vanishes in the $m(K^+K^-)$ significant correlations observed between $m(J/\psi K^+ K^-)$, $m(K^+K^-)$ and angular variables make it challenging to lysis in discriminating the signal from the non- ϕ contri- B_s^0 → *J*/ $\psi K^+ K^-$ decays in the B^0 mass-region is essential in the search for $B^0 \rightarrow J/\psi \phi$. spectrum, up to negligible angular acceptance effects, after integrating over the angular variables. Furthermore, describe the mass-dependent angular distributions of both signal and background, which are required for an amplitude analysis. Finally, the power of the amplitude anabution and background is reduced by the large number of parameters that need to be determined in the fit. In addition, a good understanding of the contamination from

II. DETECTOR AND SIMULATION

spectrometer covering the pseudorapidity range $2 < \eta < 5$, rounding the pp interaction region, a large-area silicon-4Tm, and t
traw drift
The trackin
mentum, *p*,
ty that vari
200 GeV/*c* meter (IP), is measured with a resolution of $(15+)$ $29/p$ _T) μ m, where p_T is the component of the momentum transverse to the beam, in GeV/c . Different TheLHCb detector [[10](#page-13-7), [11](#page-14-0)] is a single-arm forward designed for the study of particles containing *b* or *c* quarks. The detector includes a high-precision tracking system consisting of a silicon-strip vertex detector surstrip detector located upstream of a dipole magnet with a bending power of about 4Tm, and three stations of silicon-strip detectors and straw drift tubes placed downstream of the magnet. The tracking system provides a measurement of the momentum, *p*, of charged particles with a relative uncertainty that varies from 0.5% at low momentum to 1.0% at 200 GeV/c. The minimum distance of a track to a primary vertex (PV), the impact paratypes of charged hadrons are distinguished using information from two ring-imaging Cherenkov detectors. Photons, electrons and hadrons are identified by a calorimeter system consisting of scintillating-pad and preshower detectors, an electromagnetic and a hadronic calorimeter. Muons are identified by a system composed of alternating layers of iron and multiwire proportional chambers.

Fig. 1. Feynman diagrams for the decay $B^0 \to J/\psi \phi$ via (a) $\omega - \phi$ mixing and (b) tri-gluon fusion.

lection. In the simulation, *pp* collisions are generated us-Samples of simulated decays are used to optimise the signal candidate selection and derive the efficiency of seing PYTHIA [\[12,](#page-14-1) [13](#page-14-2)] with a specific LHCb configuration [\[14\]](#page-14-3). Decays of unstable particles are described by EVTGEN [\[15\]](#page-14-4), in which final-state radiation is generated using PHOTOS[[16](#page-14-5)]. The interaction of the generated particles with the detector, and its response, are implemented using the GEANT4 toolkit [[17](#page-14-6), [18](#page-14-7)] as described in Ref. [[19](#page-14-8)].

III. CANDIDATE SELECTION

The online event selection is performed by a trigger, which consists of a hardware stage, based on information from the calorimeter and muon systems, followed by a software stage, which applies a full event reconstruction. An inclusive approach for the hardware trigger is used to maximise the available data sample, as described in Ref. [[20\]](#page-14-9). Since the centre-of-mass energies and trigger thresholds are different for the Run 1 and Run 2 data-taking, the offline selection is performed separately for the two periods, following the procedure described below. The resulting data samples for the two periods are treated separately in the subsequent analysis procedure.

loose selection is used to reconstruct both $B^0 \rightarrow J/\psi \phi$ and $B^0_s \rightarrow J/\psi \phi$ candidates in the same way, given their simil- \int_{s}^{0} \rightarrow *J*/ $\psi \phi$ candidates in the same way, given their similwith $p_T > 500 \text{ MeV}/c$ are combined to form a J/ψ vertex and an invariant mass, $m(\mu^+\mu^-)$, in the range 3020-3170 MeV/ c^2 . A pair of oppositely charged kaon bined to form a ϕ candidate. The K^+K^- pair is required to have an invariant mass, $m(K^+K^-)$, in the range 1000–1050 MeV/ c^2 . The J/ψ and ϕ candidates are combined to form a $B_{(s)}^0$ candidate, which is required to have good vertex quality and invariant mass, $m(J/\psi K^+ K^-)$, in the range 5200–5550 MeV/ c^2 . The resulting $B^0_{(s)}$ candid- χ^2_{IP} , where χ^2_{IP} is defined as the difference in the vertex-fit $\chi_{\rm IP}^2$, where $\chi_{\rm IP}^2$ is defined as the directence in the vertex-integration χ^2 of a given PV reconstructed with and without the particle being considered. The invariant mass of the $B_{(s)}^0$ momentum vector of the $B_{(s)}^0$ candidates is aligned with the vector connecting the PV to the $B_{(s)}^0$ decay vertex and $m(\mu^+\mu^-)$ is constrained to the known J/ψ meson mass dom combination of a prompt J/ψ meson and a pair of charged kaons, the decay time of the $B_{(s)}^0$ candidate is required to be greater than 0.3 ps. The offline selection comprises two stages. First, a ar kinematics. Two oppositely charged muon candidates candidate. The muon pair is required to have a common candidates identified by the Cherenkov detectors is comate is assigned to the PV with which it has the smallest candidate is calculated from a kinematic fit for which the [[21\]](#page-14-10). In order to suppress the background due to the ran-

In a second [sele](#page-14-11)[ctio](#page-14-12)n stage, a boosted decision tree (BDT) classifier [\[22,](#page-14-11) [23\]](#page-14-12) is used to further suppress com-

ing simulated $B_s^0 \rightarrow J/\psi \phi$ decays representing the ing simulated $B_s^0 \rightarrow J/\psi \phi$ decays representing the signal, and candidates with $m(J/\psi K^+ K^-)$ in the range 5480-5550 MeV/ $c²$ as background. Candidates in both *b*technique [[24](#page-14-13)], the $B_s^0 \rightarrow J/\psi \phi$ simulation sample is corsubtracted data, including that of the p_T and pseudorapidity of the B_s^0 , the χ^2_{IP} of the B_s^0 decay vertex, the χ^2 of the decay chain of the B_s^0 candidate [\[25\]](#page-14-14), the particle identification variables, the track-fit χ^2 of the muon and kaon binatorial background. The BDT classifier is trained ussamples are required to have passed the trigger and the loose selection described above. Using a multivariate rected to match the observed distributions in backgroundcandidates, and the numbers of tracks measured simultaneously in both the vertex detector and tracking stations.

imum track–fit χ^2 of the muons and the kaons, the p_T of $B_{(s)}^0$ candidate and the K^+K^- combination, the χ^2 $B_{(s)}^0$ for muons and kaons, the minimum $\chi_{\rm IP}^2$ of the muons and kaons, the χ^2 of the J/ψ decay vertex, the χ^2_{IP} of the $B^0_{(s)}$ candidate, and the χ^2 of the $B_{(s)}^0$ decay chain fit. The optimal requirement on the BDT response for the $B_{(s)}^0$ candidates is obtained by maximising the quantity ε/\sqrt{N} , where ε is the signal efficiency determined in simulation ± 15 MeV/ c^2 region around the known B^0 mass [[21](#page-14-10)]. The input variables of the BDT classifier are the minthe B_{∞}^0 candidate and the K^+K^- combination, the χ^2 of the B_{∞}^{0} decay vertex, particle identification probabilities and *N* is the number of candidates foun[d](#page-14-10) in the

also contain fake candidates from $\Lambda_b^0 \rightarrow J/\psi pK^-$ ($B^0 \rightarrow$ $J/\psi K^+\pi^-$) decays, where the proton (pion) is misidenti- $B_{(s)}^0$ candidate is rejected if its invariant mass, computed $\pm 15 \text{ MeV}/c^2$ of the known Λ_b^0 (B^0) mass [\[21\]](#page-14-10) and if the In addition to combinatorial background, the data fied as a kaon. To suppress these background sources, a with one kaon interpreted as a proton (pi[on\),](#page-14-10) lies within kaon candidate also satisfies proton (pion) identification requirements.

A previous study of $B_s^0 \rightarrow J/\psi \phi$ decays found that the d of the background from $B^0 \rightarrow J/\psi K^+ \pi^-$ decays is yield of the background from $B^0 \rightarrow J/\psi K^+ \pi^-$ decays is only 0.1% of the $B_s^0 \rightarrow J/\psi \phi$ signal yield [\[20\]](#page-14-9). Further-(Run 2) data sample, fall in the B^0 mass region 5265-5295 MeV/ c^2 , according to simulation. Thus this data. The ratio of the total efficiencies of $B^0 \rightarrow J/\psi \phi$ and $B_s^0 \rightarrow J/\psi \phi$ is estimated to be $0.99 \pm 0.03 \pm 0.03$ for Run 1 $\psi_s^0 \rightarrow J/\psi \phi$ is estimated to be $0.99 \pm 0.03 \pm 0.03$ for Run 1 $B_s^0 \rightarrow J/\psi \phi$ is estimated to be $0.99 \pm 0.03 \pm 0.03$ for Run 1
and $0.99 \pm 0.01 \pm 0.02$ for Run 2, where the first uncertainmore, only 1.2% of these decays, corresponding to about one candidate (three candidates) in the Run 1 background is neglected. The fraction of events containing more than one candidate is 0.11% in Run 1 data and 0.70% in Run 2 data and these events are removed from the total data sample. The acceptance, trigger, reconstruction and selection efficiencies of the signal and normalization channels are determined using simulation, which is corrected for the efficiency differences with respect to the ties are statistical and the second ones are associated with

litudes are assumed to be the same in $B^0 \rightarrow J/\psi \phi$ and $B^0_s \rightarrow J/\psi \phi$ decays. The systematic uncertainty associated $\psi_s^0 \rightarrow J/\psi \phi$ decays. The systematic uncertainty associated corrections to the simulation. The polarisation ampwith this assumption is found to be small and is neglected.

IV. MASS FITS

 $m(J/\psi K^+ K^-)$ and $m(K^+ K^-)$ in $B^0_{(s)} \rightarrow J/\psi K^+ K^-$ decays, as *illustrated in [Fig. 2](#page-8-0).* Hence, the search for $B^0 \rightarrow J/\psi \phi$ dedistributions of $m(J/\psi K^+ K^-)$ and $m(K^+ K^-)$. A fit to the $m(J/\psi K^+ K^-)$ distribution is used to estimate the yields of the background components in the $\pm 15 \text{ MeV}/c^2$ regions around the B_s^0 and B^0 nominal masses. A subsequent simultaneous fit to the $m(K^+K^-)$ distributions of candidates falling in the two $J/\psi K^+ K^-$ mass windows, with the is performed to estimate the yield of $B^0 \rightarrow J/\psi \phi$ decays. There is a significant correlation between cays is carried out by performing sequential fits to the background yields fixed to their values from the first step,

 $m(J/\psi K^+ K^-)$ distribution of both the $B^0 \rightarrow J/\psi K^+ K^-$ and $B_s^0 \rightarrow J/\psi K^+ K^-$ decays is modelled by the sum of a Hypadetermined from simulation. The $m(J/\psi K^+ K^-)$ shape of the $\Lambda_b^0 \rightarrow J/\psi p K^-$ background is described by a template slope left to vary. The PDFs of $B^0 \rightarrow J/\psi K^+ K^-$ and $B_s^0 \rightarrow J/\psi K^+ K^-$ decays share the same shape parameters, and the difference between the B_s^0 and B^0 masses 87.23 ± 0.16 MeV/ c^2 [\[21\]](#page-14-10). The probability density function (PDF) for the tia [[26](#page-14-15)] and a Gaussian function sharing the same mean. The fraction, the width ratio between the Hypatia and Gaussian functions and the Hypatia tail parameters are obtained from simulation, while the combinatorial background is described by an exponential function with the is constrained to [the](#page-14-10) known mass difference of

An unbinned maximum-likelihood fit is performed in

 $m(K^+K^-)$ in different $m(J/\psi K^+K^-)$ intervals with boundaries at 5220, 5265, 5295, 5330, 5400 and 5550 MeV/c^2 . They are obtained using simulated $B_s^0 \rightarrow J/\psi \phi$ decays and normalised to **Fig. 2.** (color online) Distributions of the invariant mass unity.

the $m(J/\psi K^+ K^-)$ range 5220 –5480 MeV/ c^2 for Run 1 $\Lambda_b^0 \rightarrow J/\psi pK^-$ is estimated from a fit to the $J/\psi pK^-$ mass 399 ± 26 (1914 ± 47) in the $J/\psi K^{+}K^{-}$ mass fit for the Run 1 (Run 2). The $m(J/\psi K^+ K^-)$ distributions, superimposed by tained yields of the $B^0 \rightarrow J/\psi K^+ K^-$ and $B^0_s \rightarrow J/\psi K^+ K^-$ decays, the Λ_b^0 background and the combinatorial background in the full range as well as in the $\pm 15 \text{ MeV}/c^2$ regions around the known B_s^0 and B^0 masses. and Run 2 data samples separately. The yield of distribution with one kaon interpreted as a proton. This yield is then constrained to the resulting estimate of the fit results, are shown in [Fig. 3](#page-9-0). [Table 1](#page-8-1) lists the ob-

Assuming the efficiency is independent of $m(K^+K^-)$, the ϕ meson lineshape from $B^0 \rightarrow J/\psi \phi$ $(B_s^0 \rightarrow J/\psi \phi)$ decays in the B^0 (B_s^0) region is given by cays in the B^0 (B_s^0) region is given by

$$
S_{\phi}(m) \equiv P_B P_R F_R^2(P_R, P_0, d) \left(\frac{P_R}{m'}\right)^{2L_R} \left| A_{\phi}(m'; m_0, \Gamma_0) \right|^2
$$

$$
\otimes G(m - m'; 0, \sigma), \qquad (1)
$$

where A_{ϕ} is a relativistic Breit-Wigner amplitude function [[27](#page-14-16)] defined as

$$
A_{\phi}(m; m_0, \Gamma_0) = \frac{1}{m_0^2 - m^2 - im_0 \Gamma(m)},
$$

$$
\Gamma(m) = \Gamma_0 \left(\frac{P_R}{P_0}\right)^{2L_{\pi}+1} \frac{m_0}{m} F_R^2(P_R, P_0, d) .
$$
 (2)

The parameter m (m') denotes the reconstructed (true) K^+K^- invariant mass, m_0 and Γ_0 are the mass and decay width of the $\phi(1020)$ meson, P_B is the J/ψ momentum in the B_s^0 (B^0) rest frame, P_R (P_0) is the momentum of the kaons in the K^+K^- ($\phi(1020)$) rest frame, L_R is the orbital angular momentum between the K^+ and K^- , F_R is the ing particle, which is set to be 1.5 $(GeV/c)^{-1} \sim 0.3$ fm Blatt-Weisskopf function, and *d* is the size of the decay-

 $J/\psi K^+ K^-$ mass distribution, showing the results for the full mass range and for the B_s^0 and B^0 regions. **Table 1.** Measured yields of all contributions from the fit to

Data	Category	Full	B_{s}^{0} region	B^0 region
Run 1	$B_s^0 \rightarrow J/\psi K^+ K^-$	55498 ± 238	51859 ± 220	35 ± 6
	$B^0 \to J/\psi K^+ K^-$	127 ± 19	Ω	119 ± 18
	$\Lambda_b^0 \rightarrow J/\psi pK^-$	407 ± 26	55 ± 8	61 ± 8
	Combinatorial background	758 ± 55	85 ± 11	94 ± 11
Run 2	$B^0_s \rightarrow J/\psi K^+ K^-$		249670 ± 504 233663 ± 472 153 ± 12	
	$B^0 \rightarrow J/\psi K^+ K^-$	637 ± 39	Ω	596 ± 38
	$\Lambda_b^0 \rightarrow J/\psi pK^-$	1943 ± 47	261 ± 16	290 ± 17
	Combinatorial background	2677 ± 109	303 ± 20	331 ± 21

Fig. 3. (color online) The distributions of $m(J/\psi K^+K^-)$, superimposed by the fit results, for (left) Run 1 and (right) Run 2 data samples. The top row shows the full B_s^0 signals in logarithmic scale while the bottom row is presented in a reduced vertical range to make the B^0 peaks visible. The violet (red) solid lines represent the $B^0_{(s)} \to J/\psi K^+ K^-$ decays, the orange dotted lines show the Λ_b^0 background and the green dotted lines show the combinatorial background.

resolution function *G*. For $L_R = 1$, F_R has the form [[28\]](#page-14-17). The amplitude squared is folded with a Gaussian

$$
F_R(P_R, P_0, d) = \sqrt{\frac{1 + (P_0 d)^2}{1 + (P_R d)^2}},
$$
\n(3)

and depends on the momentum of the decay products *PR* [[27\]](#page-14-16).

the reconstructed masses of K^+K^- and $J/\psi K^+K^-$, the shape of the $m(K^+K^-)$ distribution strongly depends on the chosen $m(J/\psi K^+ K^-)$ range. The top two plots in [Fig. 3](#page-9-0) show the $m(J/\psi K^+ K^-)$ distributions for Run 1 and Run 2 separately, where a small B^0 signal can be seen on the tail of a large B_s^0 signal. Therefore, it is necessary to estimate the lineshape of the K^+K^- mass spectrum from $B_s^0 \rightarrow J/\psi\phi$ decays in the B^0 region. The $m(K^+K^-)$ distribution of the $B_s^0 \rightarrow J/\psi \phi$ tail leaking into the B^0 mass winfied values of m_0 and Γ_0 , which are extracted from an unbinned maximum-likelihood fit to the $B_s^0 \rightarrow J/\psi \phi$ simula-As is shown in [Fig. 2](#page-8-0), due to the correlation between dow can be effectively described by Eq. (1) with modition sample.

The non- ϕ $K^+K^ K^+K^-$ contributions to $B^0 \rightarrow J/\psi K^+K^ (B_s^0 \rightarrow J/\psi K^+ K^-)$ decays include that from $a_0(980)$ [\[1](#page-13-0)] $(f_0(980)$ [\[29](#page-14-18)]) and nonresonant K^+K^- in an *S*-wave configuration. The PDF for this contribution is given by

$$
S_{\text{non}}(m) \equiv P_B P_R F_B^2 \left(\frac{P_B}{m_B}\right)^2 \left|A_R(m) \times e^{i\delta} + A_{NR}\right|^2, \quad (4)
$$

where *m* is the K^+K^- invariant mass, m_B is the known $B_{(s)}^0$ mass [\[21\]](#page-14-10), F_B is the Blatt-Weisskopf barrier factor of the $B_{(s)}^0$ meson, A_R and A_{NR} represent the resonant $(a_0(980)$ or $f_0(980)$ and nonresonant amplitudes, and δ litude A_{NR} is modelled as a constant function. The lineshape of the $a_0(980)$ ($f_0(980)$) resonance can be dechannels $\eta \pi^0$ ($\pi \pi$) and *KK*. The Flatté functions are givis a relative phase between them. The nonresonant amp-scribed by a Flatté function [\[30\]](#page-14-19) considering the coupled en by

$$
A_{a_0}(m) = \frac{1}{m_R^2 - m^2 - i(g_{\eta\pi}^2 \rho_{\eta\pi} + g_{KK}^2 \rho_{KK})}
$$
(5)

for the $a_0(980)$ resonance and

$$
A_{f_0}(m) = \frac{1}{m_R^2 - m^2 - im_R(g_{\pi\pi}\rho_{\pi\pi} + g_{KK}\rho_{KK})}
$$
(6)

for the $f_0(980)$ resonance. The parameter m_R denotes the $g_{\eta\pi}$ ($g_{\pi\pi}$) and g_{KK} are the coupling strengths of a_0 (980) $(f_0(980))$ to the $\eta \pi^0$ ($\pi \pi$) and *KK* final states, respectpole mass of the resonance for both cases. The constants

ively. The ρ factors are given by the Lorentz-invariant phase space:

$$
\rho_{\pi\pi} = \frac{2}{3} \sqrt{1 - \frac{4m_{\pi^*}^2}{m^2}} + \frac{1}{3} \sqrt{1 - \frac{4m_{\pi^0}^2}{m^2}} \,, \tag{7}
$$

$$
\rho_{KK} = \frac{1}{2} \sqrt{1 - \frac{4m_{K^*}^2}{m^2}} + \frac{1}{2} \sqrt{1 - \frac{4m_{K^0}^2}{m^2}} \,,\tag{8}
$$

$$
\rho_{\eta\pi} = \sqrt{\left(1 - \frac{(m_{\eta} - m_{\pi^0})^2}{m^2}\right)\left(1 - \frac{(m_{\eta} + m_{\pi^0})^2}{m^2}\right)}.
$$
(9)

The parameters for the $a_0(980)$ lineshape are $m_R =$ $0.999 \pm 0.002 \text{ GeV}/c^2$, $g_{\eta\pi} = 0.324 \pm 0.015 \text{ GeV}/c^2$, and $g_{KK}^2/g_{\eta\pi}^2 = 1.03 \pm 0.14$, determined by the Crystal Barrel experiment $[31]$ $[31]$ $[31]$; the parameters for the $f_0(980)$ lineshape are $m_R = 0.9399 \pm 0.0063$ GeV/ c^2 , $g_{\pi\pi} = 0.199 \pm 0.0063$ 0.030 GeV/ c^2 , and $g_{KK}/g_{\pi\pi} = 3.0 \pm 0.3$, according to the previous analysis of $B_s^0 \rightarrow J/\psi \pi^+ \pi^-$ decays [[32](#page-14-21)].

For the $\Lambda_b^0 \rightarrow J/\psi p K^-$ background, no dependency of the $m(K^+K^-)$ shape on $m(J/\psi K^+K^-)$ is observed in simu $m(K^+K^-)$ distributions in both the B_s^0 and B^0 regions. The lation. Therefore, a common PDF is used to describe the PDF is modelled by a third-order Chebyshev polynomial function, obtained from the unbi[nned m](#page-10-0)aximum-likelihood fit to the simulation shown in [Fig. 4](#page-10-0).

In order to study the $m(K^+K^-)$ shape of the combinatorial background in the B^0 region, a BDT requirement background-dominated sample. Simulated $\Lambda_b^0 \rightarrow J/\psi p K^$ and $B_s^0 \rightarrow J/\psi \phi$ events are then injected into this sample resulting $m(K^+K^-)$ distribution is shown in [Fig. 5](#page-10-1), which comprises a ϕ resonance contribution and random $K^+K^$ that strongly favours background is applied to form a with negative weights to subtract these cont[ributio](#page-10-1)ns. The combinations, where the shape of the former is described by Eq. (1) and the latter by a second-order Chebyshev

tions of this procedure, the $m(K^+K^-)$ shape has been checked to be compatible in different $J/\psi K^+ K^-$ mass repolynomial function. To validate the underlying assumpgions and with different BDT requirements.

the four $m(K^+K^-)$ distributions in both B_s^0 and B^0 re- ϕ resonance in $B^0_{(s)} \rightarrow J/\psi \phi$ decays is modelled by Eq. (1). The non- ϕ K^+K^- contribution to $B^0_{(s)} \rightarrow J/\psi K^+K^-$ decays is described by Eq. (4). The tail of $B_s^0 \rightarrow J/\psi \phi$ decays in is described by Eq. (4). The tail of $B_s^0 \rightarrow J/\psi \phi$ decays in the B^0 region is described by the extracted shape from simulation. The Λ_b^0 background and the combinatorial and [5](#page-10-1), respectively. All $m(K^+K^-)$ shapes are common to the B^0 and B_s^0 regions, except that of the B_s^0 tail, which is only needed for the B^0 region. The mass and decay width of $\phi(1020)$ meson are constrained to their PDG values [[21](#page-14-10)] while the width of the $m(K^+K^-)$ resolution function is allowed to vary in the fit. The pole mass of $f_0(980)$ $(a_0(980))$ and the coupling factors, including $g_{\pi\pi}$, $g_{KK}/g_{\pi\pi}$, $g_{\eta\pi}^2$ and $g_{KK}^2/g_{\eta\pi}^2$, are fixed to their central values in the reference fit. The amplitude A_{NR} is allowed to vary freely, while the relative phase δ between the $f_0(980)$ $(a_0(980))$ and nonresonance amplitudes is constrained to -255 ± 35 (-60 ± 26) degrees, which was de-A simultaneous unbinned maximum-likelihood fit to gions of Run 1 and Run 2 data samples is performed. The background are described by the shapes shown in [Figs. 4](#page-10-0)

Fig. 4. Distribution of $m(K^+K^-)$ in a $A_b^0 \rightarrow J/\psi pK^-$ simulation sample superimposed with a fit to a polynomial function.

Fig. 5. (color online) $m(K^+K^-)$ distributions of the enhanced combinatorial background in the (left) Run 1 and (right) Run 2 data samples. The $B_s^0 \to J/\psi \phi$ and $A_b^0 \to J/\psi p K^-$ backgrounds are subtracted by injecting simulated events with negative weights.

termined in the amplitude analysis of $B_s^0 \rightarrow J/\psi K^+ K^ (B^0 \rightarrow J/\psi K^+ K^-)$ $(B^0 \rightarrow J/\psi K^+ K^-)$ $(B^0 \rightarrow J/\psi K^+ K^-)$ decays [[1,](#page-13-0) [29\]](#page-14-18). The yields of the Λ_b^0 background, the $B_s^0 \rightarrow J/\psi \phi$ tail leaking into the B^0 region ponding values in [Table 1](#page-8-1), while the yields of non- ϕ K^+K^- for B_s^0 and B^0 decays as well as the yield of $B_s^0 \rightarrow J/\psi \phi$ decays take different values for Run 1 and and the combinatorial background are fixed to the corres-Run 2 data samples and are left to vary in the fit.

The branching fraction $\mathcal{B}(B^0 \rightarrow J/\psi \phi)$, the parameter Run 1 and Run 2. The yield of $B^0 \rightarrow J/\psi \phi$ decays is internof interest to be determined by the fit, is common for ally expressed according to

$$
N_{B^0 \to J/\psi\phi} = N_{B_s^0 \to J/\psi\phi} \times \frac{\mathcal{B}(B^0 \to J/\psi\phi)}{\mathcal{B}(B_s^0 \to J/\psi\phi)} \times \frac{\varepsilon_{B^0}}{\varepsilon_{B_s^0}} \times \frac{1}{f_s/f_d} \ , \quad (10)
$$

where the branching fraction $\mathcal{B}(B_s^0 \rightarrow J/\psi \phi)$ has been measured by the LHCb collaboration [[29](#page-14-18)], $\varepsilon_{B^0}/\varepsilon_{B^0_s}$ is the efficiency ratio given in Sec. III, f_s/f_d is the ratio of the production fractions of B_s^0 and B^0 mesons in pp collisions, which has been measured at 7 TeV to be 0.256 ± 0.020 in the LHCb detector acceptance [33]. The effect of increasing collision energy on f_s/f_d is found to benegligible for 8 TeV and a [s](#page-14-23)caling factor of 1.068 ± 0.046 is needed for 13 TeV [[34](#page-14-23)]. The parameters $\mathcal{B}(B_s^0 \rightarrow J/\psi \phi)$, $\varepsilon_{B_s^0}/\varepsilon_{B_s^0}$ and f_s/f_d are fixed to their central 0.256 ± 0.020 in the LHCb detector acceptance [\[33\]](#page-14-22). The propagated to $\mathcal{B}(B^0 \rightarrow J/\psi \phi)$ in the evaluation of systematvalues in the baseline fit and their uncertainties are ic uncertainties.

The $m(K^+K^-)$ distributions in the B_s^0 and B^0 regions samples. The branching fraction $\mathcal{B}(B^0 \rightarrow J/\psi \phi)$ is found to be $(6.8 \pm 3.0(\text{stat.})) \times 10^{-8}$. The significance of the decay $B^0 \rightarrow J/\psi \phi$, over the background-only hypothesis, is esare shown in [Fig. 6](#page-11-0) for both Run 1 and Run 2 data timated to be 2.3 standard deviations using Wilks' theorem [\[35\]](#page-14-24).

models for the $m(J/\psi K^+ K^-)$ and $m(K^+ K^-)$ distributions. the obtained estimate of $B(B^0 \rightarrow J/\psi \phi)$ and the corresated with an alternative model for the $B^0 \rightarrow J/\psi K^+ K^-$ defor the $B_s^0 \rightarrow J/\psi K^+ K^-$ analysis [\[20\]](#page-14-9) and includes contributions from *P*-wave $B^0 \rightarrow J/\psi \phi$ decays, *S*-wave $B^0 \rightarrow J/\psi K^+ K^-$ decays and their interference. In this case, $0 \rightarrow J/\psi K^+ K^-$ decays and their interference. In this case, To validate the sequential fit procedure, a large number of pseudosamples were generated according to the fit The model parameters were taken from the result of the baseline fit to the data. The fit procedure described above was applied to each pseudosample. The distributions of ponding pulls are found to be consistent with the reference result, which indicates that the procedure has negligible bias and its uncertainty estimate is reliable. A similar check has been performed using pseudosamples genercays, which is based on the am[plit](#page-14-9)ude model developed the robustness of the fit method has also been confirmed.

Fig. 6. (color online) Distributions in the (top) B_s^0 and (bottom) B^0 $m(K^+K^-)$ regions, superimposed by the fit results. The left and right columns show the results for the Run 1 and Run 2 data samples, respectively. The violet (red) solid lines are $B_{(s)}^0 \rightarrow J/\psi \phi$ decays, violet (red) dashed lines are non- ϕ $B^0_{(s)} \to J/\psi K^+ K^-$ signal, green dotted lines are the combinatorial background component, and the orange dotted lines are the Λ_b^0 background component.

V. SYSTEMATIC UNCERTAINTIES

the $B^0 \rightarrow J/\psi \phi$ and $B_s^0 \rightarrow J/\psi \phi$ modes. Two categories of systematic uncertainties are considered: multiplicative uncertainties, which are associated with the normalisation factors; and additive uncertainties, which affect the determination of the yields of

ated from the estimates of $\mathcal{B}(B_s^0 \rightarrow J/\psi \phi)$, f_s/f_d and $\varepsilon_{B_s^0}/\varepsilon_{B^0}$. Using the f_s/f_d measurement at 7TeV [\[29,](#page-14-18) [33\]](#page-14-22), $\mathcal{B}(B_s^0 \rightarrow J/\psi \phi)$ was measured to be $(10.50 \pm 0.13 \text{(stat.)} \pm$ 0.64 (syst.) ± 0.82 (f_s/f_d)) × 10^{-4} . The third uncertainty is f_s/f_d , since the estimate of $\mathcal{B}(B_s^0 \rightarrow J/\psi \phi)$ is inversely proportional to the value used for f_s/f_d . Taking this correlation into account yields $\mathcal{B}(B_s^0 \rightarrow J/\psi \phi) \times f_s/f_d =$ $(2.69 \pm 0.17) \times 10^{-4}$ for 7 TeV. The luminosity-weighted average of the scaling factor for f_s/f_d for 13 TeV has a $\varepsilon_{B_s^0}/\varepsilon_{B^0}$, its luminosity-weighted average has a relative $\mathcal{B}(B^0 \rightarrow J/\psi \phi)$. The multiplicative uncertainties include those propagcompletely anti-correlated with the uncertainty on average of the scaling factor for f_s/f_d for 13 TeV has a relative uncertainty of 3.4%. For the efficiency ratio uncertainty of 1.8%. Summing these three contributions in quadrature gives a total relative uncertainty of 7.3% on

ing of the $m(J/\psi K^+ K^-)$ and $m(K^+ K^-)$ shapes of the sigatic effect associated with the $m(J/\psi K^+ K^-)$ model of the difference of $\mathcal{B}(B^0 \to J/\psi \phi)$ is 0.03×10^{-8} , which is taken The additive uncertainties are due to imperfect modelnal and background components. To evaluate the systemcombinatorial background, the fit procedure is repeated by replacing the exponential function for the combinatorial background with a second-order polynomial function. A large number of simulated pseudosamples were generated according to the obtained alternative model. Each pseudosample was fitted twice, using the baseline and alternative combinatorial shape, respectively. The average as a systematic uncertainty.

In the $m(K^+K^-)$ fit, the yields of $\Lambda_b^0 \rightarrow J/\psi pK^-$ decay, combinatorial backgrounds under the B^0 and B_s^0 peaks, and that of the B_s^0 tail leaking into the B^0 region are fixed leads to a change of $\mathcal{B}(B^0 \rightarrow J/\psi \phi)$ by 0.05×10^{-8} for A_b^0 →*J*/ ψpK^- , 0.61×10⁻⁸ for the combinatorial background and 0.24×10^{-8} for the B_s^0 tail in the B^0 region, $\mathcal{B}(B^0 \rightarrow J/\psi \phi)$. to the values in [Table 1](#page-8-1). Varying these yields separately and these are assigned as systematic uncertainties on

3.0 $(\text{GeV}/c)^{-1}$. The maximum change of $\mathcal{B}(B^0 \rightarrow J/\psi \phi)$ is evaluated to be 0.01×10^{-8} , which is taken as a systemat-The constant *d* in Eq. (3) is varied between 1.0 and ic uncertainty.

The $m(K^+K^-)$ shape of the B_s^0 tail under the B^0 peak is extracted using a $B_s^0 \rightarrow J/\psi \phi$ simulation sample. The statistical uncertainty due to the limited size of this sample is estimated using the bootstrapping technique [[36\]](#page-14-25). A large number of new data sets of the same size as the original simulation sample were formed by randomly

ults of $B(B^0 \rightarrow J/\psi \phi)$ obtained by using these 0.29×10^{-8} . cloning events from the original sample, allowing one event to be cloned more than once. The spread in the respseudosamples in the analysis procedure is then adopted as a systematic uncertainty, which is evaluated to be

In the reference model, the $m(K^+K^-)$ shape of the $A_b^0 \rightarrow J/\psi pK^-$ background is determined from simulation, $m(J/\psi K^+ K^-)$ region. A sideband sample enriched with $\Lambda_b^0 \rightarrow J/\psi pK^-$ contributions is selected by requiring one ative $m(K^+K^-)$ shape is extracted from this sample after $m(K^+K^-)$ fit. The resulting change of $\mathcal{B}(B^0 \rightarrow J/\psi \phi)$ is 0.28×10^{-8} , which is assigned as a systematic uncertainty. under the assumption that this shape is insensitive to the kaon to have a large probability to be a proton. An alternsubtracting the random combinations, and used in the

The $m(K^+K^-)$ shape of the combinatorial background is represented by that of the $J/\psi K^+ K^-$ combinations with $m(K^+K^-)$ fit by using the combinatorial background BDT response, the result for $\mathcal{B}(B^0 \rightarrow J/\psi \phi)$ is found to be stable, with a maximum variation of 0.16×10^{-8} , which is a BDT selection that strongly favours the background over the signal, under the assumption that this shape is insensitive to the BDT requirement. Repeating the shape obtained with two non-overlapping sub-intervals of regarded as a systematic uncertainty.

I[n E](#page-14-21)qs. (7)–(9), the coupling factors $g_{\eta\pi}$, $g_{KK}^2/g_{\eta\pi}^2$, $g_{\pi\pi}$ and $g_{KK}/g_{\pi\pi}$, are fixed to their mean values from Ref. The sum of the variations in quadrature is 0.06×10^{-8} , [[31](#page-14-20), [32\]](#page-14-21). The fit is repeated by varying each factor by its experimental uncertainty and the maximum variation of the branching fraction is considered for each parameter. [which is](#page-13-8) assigned as a systematic uncertainty.

The systematic uncertainties are summarised in [Table 2](#page-13-8). The total systemati[c un](#page-14-26)[cer](#page-14-27)tainty is the sum in quadrature of all these contributions.

upper limit of $\mathcal{B}(B^0 \rightarrow J/\psi \phi)$ [[37](#page-14-26), [38](#page-14-27)]. The profile likelihood ratio as a function of $\mathcal{B} \equiv \mathcal{B}(B^0 \rightarrow J/\psi \phi)$ is defined A profile likelihood method is used to compute the as

$$
\lambda_0(\mathcal{B}) \equiv \frac{L(\mathcal{B}, \widehat{\widehat{\nu}})}{L(\widehat{\mathcal{B}}, \widehat{\nu})},\tag{11}
$$

where ν represents the set of fit parameters other than \mathcal{B} , B and \hat{v} are the maximum likelihood estimators, and \hat{v} is the profiled value of the parameter ν that maximises L for the specified B. Systematic uncertainties are incorporated by smearing the profile likelihood ratio function with a Gaussian function which has a zero mean and a width equal to the total systematic uncertainty:

Table 2. Systematic uncertainties on $\mathcal{B}(B^0 \to J/\psi \phi)$ for multiplicative and additive sources.

Multiplicative uncertainties	Value $(\%)$
$\mathcal{B}(B_s^0 \to J/\psi \phi)$	6.2
Scaling factor for f_s/f_d	3.4
$\varepsilon_{B^0}/\varepsilon_{B^0_s}$	1.8
Total	7.3
Additive uncertainties	Value (10^{-8})
$m(J/\psi K^+ K^-)$ model of combinatorial background	0.03
Fixed yields of Λ_h^0 in $m(K^+K^-)$ fit	0.05
Fixed yields of combinatorial background in $m(K^+K^-)$ fit	0.61
Fixed yields of B^0_s contribution in $m(K^+K^-)$ fit	0.24
Constant d	0.01
$m(K^+K^-)$ shape of B_s^0 contribution	0.29
$m(K^+K^-)$ shape of Λ_h^0	0.28
$m(K^+K^-)$ shape of combinatorial background	0.16
$m(K^+K^-)$ shape of non- ϕ	0.06
Total	0.80

$$
\lambda(\mathcal{B}) = \int_{-\infty}^{+\infty} \lambda_0(\mathcal{B}') \times G(\mathcal{B} - \mathcal{B}', 0, \sigma_{sys}(\mathcal{B}')) \, d\mathcal{B}' \,. \tag{12}
$$

[Fig. 7](#page-13-9). The 90% confidence interval starting at $B = 0$ is of the $\lambda(\mathcal{B})$ function in the physical region. The obtained upper limit on $\mathcal{B}(B^0 \rightarrow J/\psi \phi)$ at 90% CL is 1.1×10^{-7} . The smeared profile likelihood ratio curve is shown in shown as the red area, which covers 90% of the integral

VI. CONCLUSION

A search for the rare decay $B^0 \rightarrow J/\psi \phi$ has been per*pp* collisions collected with the LHCb experiment, corresponding to an integrated luminosity of 9 fb^{-1} . A branching fraction of $B(B^0 \to J/\psi \phi) = (6.8 \pm 3.0 \pm 0.9) \times 10^{-8}$ excess of the decay $B^0 \rightarrow J/\psi \phi$ above the background-only 90% CL is determined to be 1.1×10^{-7} , which is compatformed using the full Run 1 and Run 2 data samples of is measured, which indicates no statistically significant hypothesis. The upper limit on its branching fraction at

References

- LHCb Collaboration, R. Aaij *et al*., Phys. Rev. D **88**, 072005 (2013), arXiv:[1308.5916](https://arxiv.org/abs/1308.5916) $[1]$
- [2] S. Okubo, [Phys. Lett.](https://doi.org/10.1016/S0375-9601(63)92548-9) **5**, 165 (1963)
- G. Zweig, *An SU³ model for strong interaction symmetry and its breaking; Version 2* CERN-TH-412, CERN, 1964 [3]
- J. Iizuka, Progress of Theoretical Physics Supplement **37- 38**, 21 (1966) $[4]$
- M. Gronau and J. L. Rosner, Phys. Lett. B **666**, 185 (2008), arXiv:[0806.3584](https://arxiv.org/abs/0806.3584) [5]

Fig. 7. (color online) Smeared profile likelihood ratio curve shown as the blue solid line, and the 90% confidence interval indicated by the red area.

pared with the previous limit of 1.9×10^{-7} obtained by the ing integrated luminosity of 1 fb^{-1} . ible with theoretical expectations and improved com-LHCb experiment using Run 1 data, with a correspond-

ACKNOWLEDGEMENTS

We express our gratitude to our colleagues in the CERN accelerator departments for the excellent performance of the LHC. We thank the technical and administrative staff at the LHCb institutes. We acknowledge support from CERN and from the national agencies: CAPES, CN-Pq, FAPERJ and FINEP (Brazil); MOST and NSFC (China); CNRS/IN2P3 (France); BMBF, DFG and MPG (Germany); INFN (Italy); NWO (Netherlands); MNiSW and NCN (Poland); MEN/IFA (Romania); MSHE (Russia); MICINN (Spain); SNSF and SER (Switzerland); NASU (Ukraine); STFC (United Kingdom); DOE NP and NSF (USA). We acknowledge the computing resources that are provided by CERN, IN2P3 (France), KIT and DESY (Germany), INFN (Italy), SURF (Netherlands), PIC (Spain), GridPP (United Kingdom), RRCKI and Yandex LLC (Russia), CSCS (Switzerland), IFINHH (Romania), CBPF (Brazil), PL-GRID (Poland) and OSC (USA). We are indebted to the communities behind the multiple open-source software packages on which we depend.

- M. Gronau and J. L. Rosner, Phys. Lett. B **669**, 321 (2008), arXiv[:0808.3761](https://arxiv.org/abs/0808.3761) [6]
- Y. Li and H.-Y. Cheng, Phys. Lett. B **677**, 278 (2009), arXiv[:0901.2782](https://arxiv.org/abs/0901.2782) [7]
- BaBar Collaboration, B. Aubert *et al*., [Phys. Rev. Lett.](https://doi.org/10.1103/PhysRevLett.91.071801) **91**, 071801 (2003), arXiv[:hep-ex/0304014](https://arxiv.org/abs/0304014) [8]
- Belle Collabo[ration, Y. L](https://arxiv.org/abs/0805.3225)iu *et al*., Phys. Rev. D **78**, 011106 (2008), arXiv:[0805.3225](https://arxiv.org/abs/0805.3225) [9]
- LHCb Collaboration, A. A. Alves Jr. *et al*., JINST **3**, S08005 (2008) [10]
- LHCb Collaboration, R. Aaij *et al*., Int. J. Mod. Phys. A **30**, 1530022 (2015), arXiv[:1412.6352](https://arxiv.org/abs/1412.6352) [11]
- T. Sjöstrand, S. Mrenna, and P. Skands, [Comput. Phys](https://doi.org/10.1016/j.cpc.2008.01.036). [Commun.](https://doi.org/10.1016/j.cpc.2008.01.036) **178**, 852 (2008), arXiv[:0710.3820](https://arxiv.org/abs/0710.3820) [12]
- T. Sjöstrand, S. Mrenna, and P. Skands, JHEP **05**, 026 (2006), arXiv[:hep-ph/0603175](https://arxiv.org/abs/0603175) [13]
- [14] I. Belyaev *et al*., [J. Phys. Conf. Ser.](https://doi.org/10.1088/1742-6596/331/3/032047) **331**, 032047 (2011)
- [15] D. J. Lange, Nucl. Instrum. Meth. A **462**, 152 (2001)
- P. Golonka and Z. Was, Eur. Phys. J. C **45**, 97 (2006), arXiv:[hep-ph/0506026](https://arxiv.org/abs/0506026) [16]
- Geant4 Collaboration, J. Allison *et al*., IEEE Trans. Nucl. Sci. **53**, 270 (2006) $[17]$
- Geant4 Collaboration, S. Agostinelli *et al*., Nucl. Instrum. Meth. A **506**, 250 (2003) [18]
- [19] M. Clemencic *et al*., [J. Phys. Conf. Ser.](https://doi.org/10.1088/1742-6596/331/3/032023) **331**, 032023 (2011)
- LHCb collaboration, R. Aaij *et al*., Eur. Phys. J. C **79**, 706 (2019), Erratum ibid. C **80**, 601 (2020), arXiv: 1906.08356 [20]
- P. A. Zyla *et al*. (Particle Data Group), *Review of particle physics*, to be published in Prog. Theor. Exp. Phys. **6**, 083C01 (2020) [21]
- L. Breiman, J. H. Friedman, R. A. Olshen *et al*., *Classification and regression trees*, [Wadsworth](https://pdfs.semanticscholar.org/8017/699564136f93af21575810d557dba1ee6fc6.pdf) [international group,](https://pdfs.semanticscholar.org/8017/699564136f93af21575810d557dba1ee6fc6.pdf) Belmont, California, USA, 1984 [22]
- Y. Freund and R. E. Schapire, [J. Comput. Syst. Sci.](https://doi.org/10.1006/jcss.1997.1504) **55**, 119 (1997) [23]
- D. Martschei, M. Feindt, S. Honc *et al*., Journal of Physics: Conference Series **368**, (2012) [24]
- W. D. Hulsbergen, Nucl. Instrum. Meth. A **552**, 566 (2005), arXiv:[physics/0503191](https://arxiv.org/abs/0503191) [25]
- D. M[artínez Santos and](https://arxiv.org/abs/0503191) F. Dupertuis, Nucl. Instrum. Meth. A **764**, 150 (2014), arXiv[:1312.5000](https://arxiv.org/abs/1312.5000) [26]
- LHCb Collaboration, R. Aaij *[et al](https://arxiv.org/abs/1312.5000)*., [Phys. Rev. Lett](https://doi.org/10.1103/PhysRevLett.115.072001). **115**, 072001 (2015), arXiv[:1507.03414](https://arxiv.org/abs/1507.03414) [27]
- [28] F. Von Hippel and C. [Quigg, Phys](https://arxiv.org/abs/1507.03414). Rev. D **5**, 624 (1972)
- LHCb Collaboration, R. Aaij *et al*., Phys. Rev. D **87**, 072004 (2013), arXiv[:1302.1213](https://arxiv.org/abs/1302.1213) [29]
- [30] S. M. Flatté, Phys. Lett. B **63**[, 22](https://arxiv.org/abs/1302.1213)8 (1976)
- Crystal Barrel Collaboration, A. Abele *et al*., Phys. Rev. D **57**, 3860 (1998) [31]
- LHCb Collaboration, R. Aaij *et al*., Phys. Rev. D **86**, 052006 (2012), arXiv[:1204.5643](https://arxiv.org/abs/1204.5643) [32]
- LHCb Collaboration, [R. Aaij](https://arxiv.org/abs/1204.5643) *et al*., JHEP **04**, 001 (2013), arXiv[:1301.5286](https://arxiv.org/abs/1301.5286) [33]
- LHCb [Collaborat](https://arxiv.org/abs/1301.5286)ion, R. Aaij *et al*., [Phys. Rev. Lett](https://doi.org/10.1103/PhysRevLett.118.191801). **118**, 191801 (20[17\), arXiv:](https://doi.org/10.1214/aoms/1177732360)[1703.05747](https://arxiv.org/abs/1703.05747) [34]
- [35] S. S. Wilks, [Ann. Math. Stat.](https://doi.org/10.1214/aoms/1177732360) **9**, 60 (1938)
- [36] B. Efron, [Ann. Statist.](https://doi.org/10.1214/aos/1176344552) **7**, 1 (1979)
- G. Cowan, K. Cranmer, E. Gross *et al*., *Asymptotic formulae for likelihoodbased tests of new physics*, Eur. Phys. J. C **71**, 1554 (2011), arXiv: 1007.1727, [Erratum: Eur. Phys. J. C **73**, 2501 (2013)] [37]
- RooStats Team, G. Schott *et al*., *RooStats for searches, in Proceedings, PHYSTAT 2011 Workshop on Statistical Issues Related to Discovery Claims in Searches Experiments and Unfolding, CERN, Geneva, Switzerland 17-20 January 2011*, (Geneva), 199 –208, CERN, 2011, arXiv: 1203.1547 [38]