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Abstract
We apply the classifier-Lasso (Su et al. 2016) to detect the presence of latent types in
two data sets of previous contest experiments, one that keeps the grouping of contes-
tants fixed over the experiment and one that randomly regroups contestants after each
round. Our results suggest that there exist three distinct types of players in both contest
regimes. The majority of contestants in fixed groups behaves reciprocal to opponents’
previous choices. A higher share of reciprocators per group is associated to lower
average overspending which hints at cooperative attempts. For experiments in which
contestants are regrouped, we find a significantly lower share of ‘reciprocators’ and
no significant association between the share of reciprocators and average efforts.

Keywords Experimetrics · Behavioral types · Experiment · Contest · C-Lasso

Mathematics Subject Classification C38 · C57 · C73

1 Introduction

The characterization of heterogeneous behavior has a long tradition across economic
disciplines.Various approaches have been used to group subjects’ behavior in parsimo-
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nious, yet tractable ways. One eminent example is the typology in public good settings
proposed by Fischbacher et al. (2001) who use a variant of the strategy method (Selten
1965). If we look at competitive settings, however, little progress has been made in
defining a meaningful typology.

An early attempt comes fromPotters et al. (1998) in the experimental analysis of the
Tullock (1967) rent-seeking contest. The authors acknowledge that, from the remarks
left by participants, it is possible to classify three types of players: the ‘gamesmen’,
who seem to understand the strategic nature of the game; the ‘adapters’, who adapt to
the outcomes of the previous rounds; and the ‘confused’, who randomize effort. More
recently, Herrmann and Orzen (2008) find support for the existence of different types
in a variant of the Tullock contest using the strategy method. Modeling heterogeneity
in competitive situations such as contests is an important step to understand conflict
resolution, as it facilitates further research on the different motives that drive the
behavior of individuals and aids comprehension of group dynamics caused by different
type compositions.

In this paper we propose a typology of contestants in the Tullock rent-seeking
model using the classifier-Lasso (C-Lasso, Su et al. 2016) that is able to identify and
estimate latent group structures in panel data. C-Lasso has been recently applied across
economic settings (Lu and Su 2017; Wang et al. 2019). To explore type heterogeneity
in competitive environments, we apply the C-Lasso to a data set of six repeated contest
experiments that differ in whether the groups of contestants stay fixed (partners) or
are randomly re-matched after each round (strangers). Other studies have highlighted
differences in average behavior under certain circumstances between partners and
strangers (e.g., Baik et al. 2015; Fallucchi and Renner 2016). Instead of focusing on
the overall level of rent-seeking, we look at the strategies that players adopt.

Results from our estimations suggest that the optimal number of behavioral types
in both partners and strangers contests is three, in line with what has been previously
suggested. In partners, we label more than half of contestants as ‘reciprocators’ since
they show an increasing response function with respect to the effort based on the
opponents’ previous choices.A second group, only formed by a tenth of players, adapts
their effort to the past opponents’ choices in a concave fashion, although their level of
expenditures is the highest among types (’gamesmen’). For the remaining third, the
‘others’, opponents’ effort on current choices seems to matter in a non-standard way.
In experiments with strangers matching we also find ‘reciprocators’. However they
represent a significantly lower fraction of players (around 25%). These findings are
coherent with the experimental evidence in other settings that fixed matching protocol
induces a higher orientation to reciprocity (e.g. Schmidt et al. 2001). Interestingly,
in partners matching, groups that consist of more ‘reciprocators’ are associated to
significantly lower average group efforts. For strangers matching this result does not
hold, because of the nature of the game as well as the low fraction of players adopting
this strategy reduces their impact on overall effort.

The paper also contributes to the ‘experimetrics’ literature, suggesting the C-Lasso
as a tool to observe heterogeneity in experimental data. Other sophisticated approaches
to form taxonomies in experimental settings are based on Bayesian models (Houser
et al. 2004; El-Gamal and Grether 1995; Shachat and Wei 2012) or finite mixture
models (McLachlan and Peel 2000). The latter have become standard for categoriz-
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ing individuals in repeated experiments such as public good games (Bardsley and
Moffatt 2007), beauty contests (Bosch-Domènech et al. 2010), lottery choices (Conte
et al. 2011), and private information games (Brocas et al. 2014). From an econometric
point of view, C-Lasso avoids a series of drawbacks of mixture models. In particular,
the likelihood function of a finite mixture model usually shows irregularities such as
multimodality (Lehmann and Casella 2006; Spiliopoulos et al. 2018), and therefore
introduces a complication in detecting the local maximum point that corresponds to
the efficient root.1 On the contrary, the application of a penalized likelihood maxi-
mization of C-Lasso produces a unique solution. One other application of this method
is provided by Bordt and Farbmacher (2019) who use experimental data of repeated
public good games to replicate the classification of behavioral types proposed by Fis-
chbacher et al. (2001) using the C-Lasso mechanism. Their results are consistent with
the re-analysis done using hierarchical clustering by Fallucchi et al. (2019) and sug-
gest a coherence of subject behavior in repeated games with the choices elicited via
strategy method.

The remainder of the paper is organized as follows. The next section describes the
contest data and presents the C-Lasso mechanism. In Sect. 3 we present the results of
the C-Lasso estimations for both contest with fixed groups and randomly re-matched
groups. We conclude in Sect. 4 with a discussion of our results.

2 Material andmethods

Tullock contests are frequently used to model competitive situations under uncertainty
(Konrad 2009) and form an essential part of the experimental economics literature
(Dechenaux et al. 2015). In a standard specification of the contest, N players compete
for a prize of size P whose assignment is probabilistic. The chance of contestant i
to win the prize increases with his own efforts xi ∈ {0, P} but decreases with the
total sum of efforts over all contestants

∑N
i=1 xi . The individual profit πi depends

thus on all contestants’ expenditures, the prize assignment and a homogeneous initial
endowment e:

πi =
{
e − xi + P with probability xi/

∑N
i=1 xi

e − xi otherwise.
(1)

Our data set consists of six experimental treatments. In two of them (Savikhin and
Sheremeta 2013; Mago et al. 2016) contestants repeatedly play the contest against the
same three opponents. In the remaining four treatments (Sheremeta 2010; Sheremeta
and Zhang 2010; Price and Sheremeta 2011; Chowdhury et al. 2014) contestants are

1 Alternative approaches to deal with these problems have been proposed in the literature without a general
consensus (e.g., McLachlan and Peel 2000; Mercatanti 2013; Feller et al. 2018).
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Fig. 1 Distribution of effort choices in FM (left graph) and RM (right graph) studies.

randomly regrouped with three opponents after each round.2 We further refer to the
two treatment types as fixedmatching (FM) and randommatching (RM), respectively.3

After each round, they are reminded of their own effort and receive information on
their opponents’ total effort and whether they have won the prize. At the end of the
experiment the accumulated earnings are converted and paid out in cash.We present in
Fig. 1 below the distribution of efforts for the studies under the twomatching protocols.
The distributions look similar, with a modal interval at a higher level in RM treatments
than in FM. Comparing the average effort levels to the Nash prediction, we observe
substantial rent dissipation across groups, of about 181% of the Nash Equilibirum
predictions in FM studies, and 208% in RM studies.

Consistent with evidence fromother experimental contests (Dechenaux et al. 2015),
the sample shows substantial variation in efforts. Part of the observed heterogeneity
may be explained by divergent contestants’ reactions to the information provided
after each round of the contest. For example, prior effort of opponents could lead
to imitative behavior (e.g. Apesteguia et al. 2007) or to adapt own efforts in line
with the (myopic) best response function of the contest. Further, how information
of the previous round affects effort decisions might depend on whether opponents
stay the same or potentially change after each round. We thus are interested in how
contestants can be characterized by their reactions to prior information within FM
and RM treatments and how contestants differ between fixed and random matching
regimes.

We analyze the data of FM treatments, N = 96 contestants observed for T = 19
periods, and of RM treatments, N = 183 contestants observed for T = 29, into
two panel data sets (ωi t = (yit , xi t )).4 The variables of interest are yit , the effort

2 In the course of the empirical analysis, we normalize the prize and the range of possible effort values to
[0; 1] for all treatments to facilitate the comparison of results.
3 For all treatments, different subjects are recruited from a pool of students (Chowdhury et al. (2014)
recruits from University of East Anglia, the other studies from Purdue University). We test for differences
in average group efforts within both FM and RM treatments using Kruskal–Wallis rank tests but do not
detect significant deviations (p-value FM: 0.222, p-value RM: 0.280).
4 From the original data set we drop the observations of four contestants in FM treatments and nine
contestants in RM treatments, whose prize assignments are time-invariant, and the first period due to lag
effects in the model.
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of contestant i at time t , and the vector of covariates xi t : the sum of expenditures
of the contestant’s opponents at t − 1 (l.othereffort), the squared sum of expendi-
tures of the contestant’s opponents at t − 1 (l.othereffort2), an indicator of the contest
outcome for contestant i at t − 1 (l.win) and a time indicator (period). We include
l.othereffort2, since the contest’s (myopic) theoretical best response function is con-
cave (BR(X) = √

X−i − X−i , where X−i is the sum of opponent expenditures) and
thus better approximated by including a square term in the regression. As you can see
from Fig. 1, the distribution of effort has a mode at the lowest expenditures interval
in both cases. A relevant fraction of choices hit the lower bound of 0 (6% in FM and
13% in RM), while less than 2% in FM and 3% in RM hit the upper bound. Given
the censored nature of the outcome, we can plausibly assume a Tobit panel to model
the contests. In its standard form, the heterogeneity is captured only by the individual
fixed effects μi :

yit = max(0, μi + xi tβ + εi t ) with εi t ∼ N (0, σ 2
ε ), (2)

where the vector of coefficients β is maintained constant, which implies behavioral
pattern homogeneity. The opposite is a model where we impose complete heterogene-
ity, namely a model that estimates coefficients at individual level (β i ). Our interest is
to group behavior of contestants into a small number of distinct types. We estimate
the optimal number of behavioral types, as well as the types’ behavioral patterns, with
the C-Lasso (Su et al. 2016). The method allows identifying latent structures in panel
data by shrinking the set of N individual coefficients β i to a smaller set of K < N
group-specific coefficients βk :

yit = max(0, μi + xi tβk + εi t ) with

βk �= βk′ when k �= k′, and εi t ∼ N (0, σ 2
ε ). (3)

One advantage of C-Lasso is that the classification of individuals in latent groups is
obtained by a statistical learning procedure. This is achieved by adopting the approach
proposed by Su et al. (2016), that we extend to the Tobit case,minimizing the penalized
nonlinear likelihood (PNL) function:

min
(βi ,μi ,βk ,σ

2
ε )

1

NT

N∑

i=1

T∑

t=1

�(ωi t ;μi ,β i , σ
2
ε ) + λ

N

N∑

i=1

K∏

k=1

||β i − βk ||, (4)

where the first term denotes the individual log likelihood function of the Tobit model
and the second is a penalization term.

Similar to the original version of Lasso (Tibshirani 1996), λ acts as shrinkage
parameter on the β coefficients. In Lasso applications, a share of β coefficients are
shrunk to zero, whereas in C-Lasso the individual coefficients βi are shrunk to a
smaller set of group-specific βk via the penalization term. If λ would be posed to 0,
the penalization termwould disappear and the problemwould resolve in optimizing the
log likelihood function of the panel Tobit under complete heterogeneity. By contrast,
for a given K , the greater the λ, the closer the estimated βk would be to the case of
complete homogeneity.
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Table 1 C-Lasso Tobit regression results for FM treatments

Dep. variable: effort Pooled Tobit C-Lasso Tobit

Type 1 Type 2 Type 3
Reciprocators Gamesmen Others

l.othereffort 0.504*** (0.030) 0.113** (0.051) 1.000*** (0.237) − 0.282*** (0.085)

l.othereffort2 − 0.151*** (0.015) − 0.012 (0.020) − 0.347*** (0.094) 0.101*** (0.030)

l.win 0.126*** (0.016) 0.031** (0.014) − 0.009 (0.041) − 0.004 (0.026)

period 0.001 (0.001) 0.000 (0.001) − 0.005 (0.003) − 0.003* (0.002)

σε 0.307*** (0.005) 0.200*** (0.006) 0.263*** (0.012) 0.274*** (0.009)

Obs;N;% 1824; 96; 100% 1064; 56; 58% 171; 9; 9% 589; 31; 32%
Standard errors (in parenthesis); p-values: *≤ 0.10, **≤ 0.05, ***≤ 0.01; Obs. is the total number of
observations; N is the number of contestants of each type; % is the relative share of each type with respect
to the full sample.

Therefore, the minimization problem (4) has to be preceded by a further optimiza-
tion to set the λ that balances the two opposite conditions of complete homogeneity
and heterogeneity.5 In particular, when the optimal number of groups K is unknown,
as in our case, this preliminary optimization problem simultaneously estimates K and
sets λ by minimizing a penalized Information Criterion function.6 Afterwards, the
optimal classification of individuals in groups Gk and estimation of the group-specific
coefficients βk is carried out.

3 Results

Confirming the suggestions of Potters et al. (1998), our estimation results show that
the optimal number of latent groups in the FM sample is three. 58% of the contestants
form type 1 (56 contestants), 9% fall into type 2 (9 contestants) and the remaining
ones account for type 3 (see Table 1). We test whether contestants that belong to the
least frequent type would be equally well represented in one of the other two types.
However, likelihood ratio tests reveal that assigning the least frequent type to either
one of the other types significantly reduces the model fit. We thus turn to the C-Lasso
regression results that characterize the differences in types.

Table 1 reports the estimates of a standard Tobit model with pooled observa-
tions as well as C-Lasso coefficients for each of the three types. The results of the
pooled Tobit regression imply that, over all contestants, the effect of past oppo-
nents’ effort on own effort is concave given the positive (negative) significant effect of
l.otherefforts (l.othereffort2). Winning the contest in the previous round (l.win) signif-
icantly increases the efforts of contestants in the subsequent round. Moreover, we do
not find a significant time trend (period) when pooling observations. Yet, the pooled

5 In statistical learning this is technically called the overfitting/underfitting tradeoff.
6 For this procedure, we follow Su et al. (2016) and provide a detailed description in the Appendix. We
carry out the C-LASSO estimation using the MATLAB code, which we provide with comments in the
supplementary material.
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estimation results mask the heterogeneous behaviors observed in the three groups
identified by C-Lasso.

For all three contestant types, opponent expenditures in the previous round matter
for own effort choices, but how they matter varies across types.7 For the first type,
contestants show an increasing response functionwith respect to l.otherefforts, and fur-
ther increase (decrease) their effort after a win (loss). Being faced with lower (higher)
bidding opponents leads these contestants to bid low (high) themselves, suggesting
a ‘good for good’ and ‘evil for evil’ reply to previous opponents’ choices. We refer
to contestants of type 1 as ‘reciprocators’. The second type does not significantly
respond to previous contest outcome, but own efforts relate positively to other efforts
and negatively to its square term. The inverted u-shape that relates l.othereffort to cur-
rent choices, suggests that these players decrease their effort when competition gets
fierce, which is line with what would be expected under standard game theoretical
considerations. Following the taxonomy of Potters et al. (1998), we label this type
as ‘gamesmen’. For the third type this relationship appears to be inverted, and more-
over, efforts are decreasing over time. We do not find an intuitive explanation for this
behavior in the contest literature, which is why we simply label them ‘others’.
To visualize how the different player types respond to efforts of opponents from
previous rounds, we plot in Fig. 2 the estimated best response (BR) function of each
type and the theoretical myopic BR as a function of the average of opponents’ effort in
the previous round.8 All estimated best response functions deviate substantially from
the theoretical myopic BR. This is not surprising when considering that in the data
higher average opponent effort in t-1 is associated to higher own effort in period t.9 For
reciprocators the estimated best response is slowly increasing (its marginal effect is flat
and positive), indicating that a marginal increase (decrease) of the average competitor
effort in the previous period leads to an increase (decrease) in own current efforts.
The best response function of the ‘gamesmen’ is concave. Yet, when compared to
the theoretical BR, their response to prior opponents’ expenditures is very aggressive,
meaning that ‘gamesmen’ start to decrease efforts only when the average effort of
opponents is already considerably high (around 0.5). For ‘others’ instead, the response
is slightly convex.

Result 1: C-Lasso identifies three contestant types in treatments with fixed matching.
We classify them as ‘reciprocators’ ( 58%), ‘gamesmen’ ( 9%), and ‘others’ ( 32%)
based on how their choices are explained by opponents’ choices in the previous contest
round.

For reciprocators, that form the majority of contestants, we want to understand
whether their reciprocal bidding behavior reduces average individual efforts or exac-

7 AcrossC-Lasso groups,we reject the null hypotheses that the coefficients of l.othereffort and l.othereffort2

are jointly equal to zero (H0 : β1 = β2 = 0) and the hypothesis that the average partial effect of l.othereffort
on own efforts is zero (H0 : β1 + 2β2l.othereffort = 0, where l.othereffort is fixed to be the mean value of
l.othereffort) on the 1% significance level using F-tests.
8 Since the marginal effect of a regressor on the dependent variable depends in Tobit models on its own
level (Wooldridge 2002), we additionally present for each type the marginal effect over the range of average
l.othereffort in Figs. 8 (FM) and 9 (RM) in the Appendix.
9 See Fig. 6, 7 in the Appendix.
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Fig. 2 Estimated myopic best response on average opponents’ effort in FM treatments.
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Fig. 3 Relationship between the share of reciprocators and average group effort—FM treatments

erbates competition.We thus examine how the share of reciprocators in a contest group
influences the average group effort. Remember that for all treatments each group con-
sists of four contestants. If reciprocal behavior results in collaboration, then groups
with a higher fraction of reciprocators should be associated to lower average effort
levels. On the contrary, if reciprocity increases competition then we should witness
higher average effort levels in groups formed by many reciprocators. Figure 3 shows
how the share of reciprocators per group relates to the average group effort. We find
that average group effort is decreasing with the fraction of reciprocators per group
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Table 2 C-Lasso Tobit regression results for RM treatments

Dep. variable: effort Pooled Tobit C-Lasso Tobit

Type 1 Type 2 Type 3
(Reciprocators)

l.othereffort 0.350*** (0.017) 0.167*** (0.048) − 0.058*** (0.021) − 0.551*** (0.053)

l.othereffort2 − 0.095*** (0.009) − 0.035* (0.021) 0.033*** (0.009) 0.208*** (0.021)

l.win 0.209*** (0.010) 0.119*** (0.017) 0.020** (0.008) 0.146*** (0.016)

period 0.001* (0.001) − 0.006*** (0.001) − 0.006*** (0.000) − 0.001 (0.001)

σε 0.321*** (0.003) 0.271*** (0.005) 0.188*** (0.003) 0.309*** (0.007)

Obs;N;% 5307; 183; 100% 1305; 45; 25% 2784; 96; 52% 1218; 42; 23%
Standard errors (in parenthesis); p-values: *≤ 0.10, **≤ 0.05, ***≤ 0.01; Obs. is the total number of
observations; N is the number of contestants of each type. % is the relative share of each type with respect
to the full sample.

(spearman’s ρ = −0.407 p-value = 0.048), suggesting that presence of reciproca-
tors tends to reduce efforts over time.10

Result 2: In FM treatments average group expenditures are lower for contest groups
with a higher share of ‘reciprocators’.

Contestants of the FM treatments know that their opponents stay the same over the
course of the experiments, so that cooperative tendencies seem to occur naturally.
Surprisingly, the ‘reciprocator’ as player type has not received much attention in
contest experiments. This might be because in many contest experiments, including
Potters et al. (1998), contestants are randomly regrouped after each round, making
reciprocal actions less effective. Using data on four different RM contest studies, we
explore whether reciprocators also appear in RM treatments.

Result 3: C-Lasso identifies three contestant groups for contests with random match-
ing. Only 25% can be identified as ‘reciprocators’, significantly less than in fixed
matching treatments.

The C-Lasso categorizes the 183 RM contestants into three types. Table 2 reports
the C-Lasso estimates and compares them to the pooled Tobit regression estimates,
that are similar to the estimates of the FM panel. The first type contains 45 contestants,
whose regression estimates and marginal effect of l.othereffort on effort resemble the
ones of ‘reciprocators’ in FM treatments. Again we analyze the relationship between
the share of ‘reciprocators’ and average effort. Since in RM treatments the share of
reciprocators per group may change every round, we look at the relationship on the
session level for which contestants stay fixed. The RM treatments contain in total 16
sessions. The lowess smoother in Fig. 5 suggests no directional relationship between
the share of reciprocators in a session and the average session effort. This is in line

10 A low share of reciprocators implies a high share of contestants assigned to other types. We thus
examine if a decrease in average group efforts is not only associated with an increase in the share of
Footnote 10 continued
reciprocators but also associated with a decrease in the share of gamesmen or others, but we do not find
evidence for such an association.
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Fig. 4 Estimated myopic best response on average opponents’ effort in RM treatments
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Fig. 5 Relationship between the share of reciprocators and average group effort - RM treatments

with the Spearman correlation coefficient, which we find not significant (spearman’s
ρ = −0.177 p-value = 0.513). Similar to FM treatments, the average session efforts
mostly exceed the theoretical equilibrium level.

The share of reciprocators across RM contestants reaches only 25% which is sig-
nificantly lower than in treatments where opponents remain fixed (about 58%).11

Presumably we observe less reciprocators in random matched treatments, since there
is no direct feedback on the effectiveness of own collaboration attempts. The other

11 A Pearson’s chi-squared test, conducted on the contingency table of the empirical distribution of the
number of reciprocators in the two samples (FM and RM), rejects the null hypothesis that the samples are
drawn from the same super-population (p-value < 0.001).
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contestant types two (52%) and three (22%) increase (decrease) their efforts after
previously won (lost) rounds and show a u-shaped relationship between l.othereffort
and current own efforts. The magnitude of the regression coefficients suggests that
previous round information affects current efforts to a lesser extent for type two con-
testants (see also the estimated BR depicted in Fig. 4). Similar to the ‘others’ type
in FM treatments, both types differ from what is expected from standard game theo-
retical considerations, presumably because contestants do not expect new opponents
to behave as their last round opponents did. The convex response of type three to
l.othereffort suggests that these contestants bid high after a round of especially high
or low opponent efforts. Possibly high bids after rounds of high opponent efforts are
the result of some sort of spiteful behavior (Herrmann and Orzen 2008), whereas high
bids after rounds of low opponent effort might reflect the attempt to increase ones own
probability of winning in case opponent efforts remain low.

4 Robustness check: fair and unfair lottery outcome

The previous analysis was based on the assumption that some players would play a
myopic best-response strategy. Therefore, we limited the variables that impact play-
ers’ effort to the information received from the previously played round, including a
dummy for prize wins, which is commonly used as a control in experimental contest
studies. Nevertheless, the literature suggests other specifications that might offer addi-
tional insights. Potentially, one could think about omitting certain variables from the
base regression, including opponent efforts of two or three earlier periods, or further
separating existing variables, such as l.win.

For example, Sheremeta (2011) suggests to separate the effects of fair and unfair
wins. A fair (unfair) win is defined as a win for which own effort has been higher
(lower) than the average in the group. Sheremeta (2011) finds that fair wins have a
positive effect on next round effort, whereas unfair wins decrease own effort.

We evaluate alternative sets of regressors, by pairwisely comparing the log likeli-
hood of the Tobit base regression with the log likelihood of nine alternative models
using likelihood ratio tests.12 We observe a significant drop in the likelihood of
the models that exclude variables from the base model while we detect no signifi-
cant increase when including additional lagged regressors. Only when replacing the
dummy l.win with the fair and unfair wins (l.fairwin and l.unfairwin) the model’s
likelihood increases significantly. We therefore select the alternative set of regressors:
l.othereffort, l.othereffort2, l.fairwin, l.unfairwin and period, and repeat the C-Lasso
routine as previously described.13 The newly formed player types mostly correspond

12 We report the different specifications and the respective p-values of the likelihood ratio tests in Table 5
in Appendix.
13 As before, the optimal number of types in RM treatments is three. For FM treatments, we find that K = 4
results in a lower IC value, yet one type contains only 3 out of 96 contestants (of which none was previously
classified as reciprocator). Hence, we restrict the model to three types to simplify the comparison with the
previous specifications.
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to the already established types (89 out of 96 FM contestants and 171 out of 183 RM
contestants do not change type classification).14

The effects of l.fairwin and l.unfairwin in the pooled regression of FMandRM treat-
ments are significant and show the same direction than reported by Sheremeta (2011),
namely positive for prize wins when the winner’s bid is higher than the average bid in
the group l.fairwin and negative otherwise l.unfairwin.15 Yet, the C-Lasso estimates
uncover that types react heterogenously to a fair and unfair lottery outcome. In FM
treatments, l.fairwin significantly increases efforts of reciprocators, while l.unfairwin
significantly decreases the efforts of type others. In RM treatments, l.fairwin seems
to increase efforts significantly across player types, however l.unfairwin significantly
decreases only the efforts of type 2. These two groups represent a high share of contes-
tants (30% in FM and 50% in RM). Compared to the base regression, the coefficients
of the remaining regressors are robust with respect to their significance and direction
of the effects. Similar to our main results we observe that groups with more recipro-
cators are associated to lower average efforts in FM treatments which is not the case
for RM treatments (see Figs. 10 and 11 in the Appendix). In summary, type-specific
effects do not necessarily coincide with average effects in the population. However,
this robustness check helped to better characterize the behavior of groups that was not
previously well understood. Type heterogeneity is therefore important to keep in mind
when drawing general conclusions about contestants behavior.

5 Discussion and conclusion

In many competitive situations the development of a contestant taxonomy is impeded
because one cannot directly assess the motivation behind individual choices. We use
the C-Lasso methodology that identifies latent group structures in panel data and thus
categorizes contestants based on how their effort choices relate to information they
received of the previous round.

Using data from six different studies, we find that contestants react heterogeneously
to information of the previous contest round. C-Lasso identifies three types of contes-
tants for both contestmatching protocols. Themajority of contestants in FM treatments
can be classified as reciprocators that attempt to cooperate by lowering own efforts
when previous opponent efforts were low. As a result, contest groups that contain
more reciprocators show lower average effort levels and thus increase group profits.
For RM treatments the number of reciprocators appears to be significantly lower, in
line with the idea that cooperative attempts in the current round cannot be observed
by ones next rounds opponents.

Our exploration on what types of contestants are out there hopefully releases a
pulse on how we think about competitive situations such as conflict resolution. Once
we acknowledge that choice rules of competing individuals are heterogeneous, we
can develop a better understanding for the tools that are needed to mitigate conflicts

14 We show in Tables 8 and 9 in Appendix the transition of players between the types defined by the base
specification and the fairwin specification respectively for FM and RM treatments.
15 We report the regression Tables 6 and 7 in Appendix.
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and to reduce overspending in competitive situations. For example, reciprocators are
willing to conditionally cooperate over the course of the contest, which is most fruitful
whenever the number of them in a group is high and thus cooperation can reinforce
itself. Knowing the type composition of groups can possibly deliver valuable insights
on what group dynamics can be expected, across applications.

We suggest two directions for future research to understand the main drivers of
behavioral types. The first direction is to checkwhether different types react differently
to other changes in the contest structure. For example, excessive over-expenditures
observed in larger groups (Lim et al. 2014) may be driven by less cooperative activity,
that has been demonstrated for different experimental settings (Nosenzo et al. 2015).
We also believe that the extension of such analysis to other market settings could help
to better link counterintuitive results with individual behavior (e.g., Orzen 2008). The
second direction concerns the use of methods that reveal latent group structures in
panel data to shed light on different topics, such as framing (e.g., Chowdhury et al.
2019) or impulsive behavior (e.g., Rubinstein 2016; Sheremeta 2018).
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Appendix A

A.1 C-Lasso procedure for the selection of the optimal number of behavioral types

Recall the penalized nonlinear likelihood (PNL) function from Eq. (4):

min
(βi ,μi ,βk ,σ

2
ε )

1

NT

N∑

i=1

T∑

t=1

�(ωi t ;μi ,β i , σ
2
ε ) + λ

N

N∑

i=1

K∏

k=1

||β i − βk ||, (4)

where �(ωi t ;μi ,β i , σ
2
ε ), the first term, denotes the individual log likelihood func-

tion of the Tobit model given the data ωi t , the individual fixed effect μi , the vector
of individual coefficients β i , and the variance σ 2

ε of the normal i.i.d. idiosyncratic
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Table 3 FM panel - values of
the information criteria (IC)
function for alternative number
of groups K , and tuning
parameter cλ selection

Tuning parameter K: Number of groups

cλ 1 2 3 4

0.100 0.048 0.031 0.038 Inf

0.129 0.048 0.035 0.044 0.038

0.170 0.048 0.034 0.046 0.035

0.215 0.048 0.039 0.043 0.035

0.278 0.048 0.043 0.052 0.033

0.359 0.048 0.042 0.039 0.033

0.464 0.048 0.049 0.037 0.051

0.600 0.048 0.050 0.021 0.041

0.774 0.048 0.053 0.021 0.027

1.000 0.048 0.055 0.028 0.040

Table 3 contains for each (K , cλ) combination the result of the IC
function in Eq. (6) using the FM panel

error term. To make the convex optimization methods feasible, �(ωi t ;μi ,β i , σ
2
ε ) is

transformed to (Olsen 1978):

−�(ωi t ;β i , μi , σ
2
ε ) =

∑

yit>0

1

2

[
ln(2π) − lnθ2 + (θ yit − x′

i tδi − c′
i tηi )

2
]

+
∑

yit=0

ln
[
1 − �(x′

i tδi + c′
i tηi ))

]
(5)

Once the minimization procedure has been carried out, the original parameters are
retrieved by σε = 1/θ , β i = δi/θ , and μi = ηi/θ .

The second term of the PNL allows the assignment of individuals to groups as well
as the estimation of the group coefficients βk . The value of λ is data dependent and
has to be chosen, jointly with the number of groups K , by minimizing the following
penalized information criterion (IC) function:

min
(K ,λ)

2

NT

K∑

k=1

∑

i∈Ĝk (K ,λ)

T∑

t=1

�(ωi t ; μ̂i Ĝk (K ,λ)
, β̂ Ĝk (K ,λ)

, σ̂ 2
ε(K ,λ)) + ν(NT )−0.5qK

(6)

For any couple (K , λ), the first term in Eq. (6) is evaluated by a two-step procedure.
In the first step, a classification of individuals in K groups is obtained by minimizing
Eq. (4). These groups are denoted by Ĝk(K , λ), k = 1, ..., K (Table 4). In the second
step, the individuals classified in eachgroup Ĝk(K , λ) are pooled to estimate the group-
specific parameters μiĜk (K ,λ)

, β Ĝk (K ,λ)
, σ 2

ε(K ,λ) by Tobit panel analyses (so called

post-Lasso analyses). This two-step procedure is repeated over a grid of values for the
couple (K , λ). For the choice of the values of λ, we follow (Su et al. 2016) who tune λ

over a finite set λ(cλ) = var(y)T (−1/3), where var(y) is the variance of the dependent
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Table 4 RM panel - values of
the information criteria (IC)
function for alternative number
of groups K , and tuning
parameter cλ selection

Tuning parameter K: Number of groups

cλ 1 2 3 4

0.100 0.197 0.191 0.155 0.166

0.129 0.197 0.190 0.159 0.178

0.170 0.197 0.194 0.158 0.172

0.215 0.197 0.195 0.153 0.175

0.278 0.197 0.194 0.146 0.179

0.359 0.197 0.193 0.120 0.179

0.464 0.197 0.190 0.120 0.179

0.600 0.197 0.187 0.122 0.174

0.774 0.197 0.185 0.132 0.145

1.000 0.197 0.180 0.140 0.155

Table 3 contains for each (K , cλ) combination the result of the IC
function in equation (6) using the RM panel.

variable, T the time dimension of the panel, and cλ is a scalar. For our specific case, we
choose cλ over a geometrically increasing sequence 0.1 · 10(l−1)/9 (l = 1, ..., 10).16

The minimization problem limited to the first term in (6) resolves in a maximum
likelihood estimation under complete heterogeneity. To counterbalance, the first term
is penalized by the second term ν(NT )−0.5qK , where q is the number of explanatory
variables and ν ∈ (0, 1) a penalization parameter which is set to ν = 0.22.17

We evaluate Eq. (6) for all combinations of the cλ sequence and K = 1, ..., 4
and consequently choose the combination (K , cλ) that minimizes the IC function. We
report in Tables 3 and 4 the resulting values for the IC function for the FM and RM
studies. The minimum value of the IC function is equal to 0.021 in the FM panel
and equal to 0.120 in the RM panel, corresponding to the optimal number of groups
K = 3 in both cases.With the optimal combination of tuning parameter and number of
groups we estimate Eq. (4) and retrieve the C-Lasso group estimates.18 Lastly, we do
not detect signs of model misspecification using RESET tests (Ramsey 1969; Peters
2000).19

Appendix B Supplementary Figures and Tables

See Figs. 6, 7, 8, 9, 10, 11, Tables 5, 6, 7, 8, 9.

16 Su et al. (2016) use a geometrically increasing sequence of ten cλ from 0.01,...,0.1 and from 0.2,...,2 for
a linear model and a Probit model, respectively. Since the Tobit model resembles a combination of these
two models, our sequence overlaps with both original sequences proposed.
17 This value is obtained using simulated data for which we fix a-priori the number of groups (Kknown =
1, 2, 3, 4), and assess the correctly specified number of groups over all Kknown and a sequence of λ.
18 Estimates are unbiased using a half-panel jackknife procedure (Dhaene and Jochmans 2015).
19 We use RESET specifications that include quadratic and cubic terms of linear predictions, as they are
found to have high statistical power in Monte Carlo simulations (Ramalho and Ramalho 2012; Lechner
1995). P-values for the quadratic and cubic terms in FM (RM) treatments: 0.667, 0.427 (0.480, 0.196).
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Fig. 8 Marginal effect of mean l.othereffort on effort (FM treatments)
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Fig. 9 Marginal effect of mean l.othereffort on effort (RM treatments)
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Fig. 10 Relationship between the share of reciprocators and average group effort - FM treatments fairwin
specification
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Fig. 11 Relationship between the share of reciprocators and average group effort - RM treatments fairwin
specification
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Table 5 Likelihood ratio test: p-values for Tobit model selection

Base: l.win, l.othereffort, l.othereffort2, period FM RM

Base - period vs. Base 0.016 0.000

Base - l.win vs. Base 0.000 0.000

Base - l.othereffort2 vs. Base 0.022 0.011

Base - l.othereffort -
l.othereffort2

vs. Base 0.000 0.000

Base vs. Base - l.win + l.fairwin +
l.unfairwin

0.000 0.000

Base vs. Base + l2.othereffort 0.120 0.257

Base vs. Base + l2.othereffort +
l2.othereffort2

0.198 0.417

Base vs. Base + l2.othereffort +
l3.othereffort

0.263 0.113

Base vs. Base + l2.othereffort +
l3.othereffort

0.442 0.295

+ l2.othereffort2 +
l3.othereffort2

Table 5 shows the p-values of the likelihood ratio tests between two Tobit model specifications. For p-values below 0.05,
we reject the Null hypothesis that the first model, with less variables, is nested in the second one, implying that including
the additional variable(s) of the second model leads to a significant increase its log likelihood.

Table 6 C- Lasso Tobit regression results for FM treatments - fairwin specification

Dep. variable: effort Pooled Tobit C-Lasso Tobit

Type 1 Type 2 Type 3
Reciprocators Gamesmen Others

l.othereffort 0.496*** (0.029) 0.106** (0.048) 0.744*** (0.186) –0.280*** (0.095)

l.othereffort2 –0.143*** (0.015) –0.007 (0.019) –0.256*** (0.076) 0.099*** (0.033)

l.fairwin 0.190*** (0.018) 0.053*** (0.016) –0.009 (0.044) 0.054* (0.028)

l.unfairwin –0.064** (0.029) –0.037 (0.023) –0.021 (0.065) –0.144*** (0.049)

period 0.000 (0.001) 0.001 (0.001) -0.006* (0.003) –0.007*** (0.002)

σε 0.302*** (0.005) 0.202*** (0.006) 0.241*** (0.013) 0.280*** (0.008)

Obs;N;% 1824; 96; 100% 1083; 57; 59% 190; 10; 10% 551; 29; 30%
Standard errors (in parenthesis); p-values: *≤ 0.10, **≤ 0.05, ***≤ 0.01; Obs. is the total number of
observations; N is the number of contestants of each type; % is the relative share of each type with respect
to the full sample.
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Table 7 C- Lasso Tobit regression results for RM treatments - fairwin specification

Dep. variable: effort Pooled Tobit C-Lasso Tobit

Type 1 Type 2 Type 3
(Reciprocators)

l.othereffort 0.357*** (0.017) 0.189*** (0.046) –0.036* (0.021) –0.529*** (0.057)

l.othereffort2 -0.091*** (0.009) -0.036* (0.019) 0.029*** (0.008) 0.201*** (0.023)

l.fairwin 0.285*** (0.011) 0.156*** (0.017) 0.052*** (0.010) 0.185*** (0.019)

l.unfairwin -0.036** (0.018) -0.062* (0.032) –0.045*** (0.012) 0.003 (0.041)

period 0.000 (0.001) -0.007*** (0.001) -0.005*** (0.000) -0.001 (0.001)

σε 0.312*** (0.003) 0.266*** (0.005) 0.182*** (0.003) 0.316*** (0.007)

Obs;N;% 5307; 183; 100% 1479; 51; 28% 2668; 92; 50% 1160; 40; 22%
Standard errors (in parenthesis); p-values: *≤ 0.10, **≤ 0.05, ***≤ 0.01; Obs. is the total number of
observations; N is the number of contestants of each type. % is the relative share of each type with respect
to the full sample.

Table 8 Type transition between base and fairwin specification - FM treatments

Number of players Fairwin Type 1 Fairwin Type 2 Fairwin Type 3 Sum

Reciprocators 53 3 0 56

Gamesmen 2 7 0 9

Others 2 0 29 31

Sum 57 10 29 96

Table 9 Type transition between base and fairwin specification - RM treatments

Number of players Fairwin Type 1 Fairwin Type 2 Fairwin Type 3 Sum

Type 1 (Reciprocators) 43 2 0 45

Type 2 8 88 0 96

Type 3 0 2 40 42

Sum 51 92 40 183
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