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ASYMPTOTICS FOR BANDWIDTH SELECTION IN
NONPARAMETRIC CLUSTERING 
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ABSTRACT: In the framework of nonparametric clustering, clusters are defined as
the domains of attraction of the modes of the density function assumed to underlie the
data. To identify clusters, an estimate of the density is then needed, with kernel density
estimator taking the lion’s share. When resorting to these methods a fine tuning of
the amount of smoothing, governing the modal structure of the density, is required.
While thoroughly analyzed in the context of density estimation, this issue has been
scarcely studied for clustering purposes. In this work the problem is addressed from
an asymptotic perspective. A sensible distance among groupings is introduced and its
asymptotic expression is derived and exploited in order to obtain a bandwidth selection
procedure specifically tailored for nonparametric clustering.

KEYWORDS: modal clustering, kernel estimator, gradient bandwidth, mean shift�

1 Introduction

Density-based clustering pursues the aim of providing a statistical formaliza-
tion to the widespread, yet ill-posed, problem of finding groups in a set of data.
According to the nonparametric - or modal - formulation, clusters are seen as
the domains of attraction of the modes of the density assumed to underlie the
data, usually estimated by nonparametric methods. Linking the notion of clus-
ter to the features of the underlying density frames the problem into a standard
inferential context. As a consequence the concept of induced clustering, the
partition implied by the characteristics of the density itself, is defined with the
ideal population clustering being the one induced by the true density.

Regardless of the specific nonparametric density estimator adopted, the se-
lection of a smoothing parameter is required. This choice represents a relevant
issue since under- or over-smoothed estimates may lead to deceiving indica-
tions about the modal structure of the density, and hence about the number of
groups.
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The selection of the amount of smoothing is usually addressed via the
minimization of some measure of distance which quantifies the discrepancy
between the estimate and the target density. Standard references are the Inte-
grated Squared Error and its expected value (MISE), or its asymptotic coun-
terpart. While for the explicit task of density estimation, the distance criterion
is usually selected to provide good estimates in a global sense, the same may
be suboptimal in a clustering framework, where a focus on the local character-
istics of the density would be more adequate to identify the modal regions.

The aim of this work is to address the problem of nonparametric density
estimation for the final purpose of modal clustering. Density estimation is per-
formed via the minimization of an appropriate metric relying on the compar-
ison between the partitions induced by the estimated distribution and the true
one, i.e. the ideal population clustering. A manageable asymptotic approxima-
tion of the considered metric is provided, which allows to define the optimal
amount of smoothing for nonparametric clustering when a kernel estimator is
adopted.

2 Optimal bandwidth for the asymptotic distance in measure

Let us assume that the observed data X = {xi}i=1,...,n, are sampled from a
random variable X with unknown density f . For mathematical tractability, in
the following we restrict our attention to the univariate case, i.e. xi 2 R.

A standard choice to estimate f is to resort to the kernel estimator

f̂h(x) = (1/nh)
n

Â
i=1

K[(x� xi)/h]

where K is a kernel function and h > 0 is the bandwidth which controls for the
amount of smoothing and, then, the modal structure.

To tailor the choice of h for clustering purposes, we consider the distance
in measure (Chacón, 2015) between Ĉh = {Ĉ1, . . . ,Ĉr}, the clustering induced
by f̂h, and C0 = {C0,1, . . . ,C0,s}, the ideal population one, induced by the true
f :

d(Ĉh,C0) =
1
2

min
s2Ps

(
r

Â
i=1

P(ĈiDC0,s(i))+
s

Â
i=r+1

P(C0,s(i))

)
, (1)

where Ps is the set of permutations of {1, . . . ,s}, CDC0 = (C \Cc
0)[ (Cc

\C0)
and with possibly r  s. This distance can be seen as the minimal probability
mass that needs to be moved to transform one clustering into the other. Be-
ing sample-specific, the distance in measure is subject to a random variability.
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Hence, the Expected Distance in Measure EDM(h) = E[d(Ĉh,C0)] is alterna-
tively considered as a non-stochastic error distance. The optimal bandwidth is
then defined as hEDM = argminh>0EDM(h).

Under some regularity assumptions, it can be proved (Casa et al., 2019)
that EDM(h) is asymptotically equivalent to

AEDM(h) =
r�1

Â
j=1

f (m j)

f (2)(m j)
y
⇣1

2
µ2(K) f (3)(m j)h2,R(K(1)) f (m j)(nh3)�1

⌘
(2)

where y(µ,s2) = (2/p)1/2
n

se�µ2/(2s2) + |µ|
R |µ|/s

0 e�z2/2dz
o
, m j is the jth lo-

cal minimum of f , g(l) denotes the lth derivative of a function g, µ2(K) =R •
�• x2K(x)dx, and R(K(1)) =

R •
�• K(1)(x)2dx.

Since neither the EDM(h) nor the AEDM(h) admit an explicit represen-
tation of their minima, the idea is to rely on a tight upper bound. The study
of the behaviour of y(·, ·) allows us to introduce two different upper bounds,
whose minimizers can be computed explicitly. It follows that

hAB1 =

0

B@
9R(K(1))

⇣
Âr�1

j=1 f (m j)3/2/ f (2)(m j)
⌘2

2pµ2(K)2
⇣

Âr�1
j=1 f (m j)| f (3)(m j)|/ f (2)(m j)

⌘2

1

CA

1/7

n�1/7

hAB2 =

 
24R(K(1))Âr�1

j=1 f (m j)3/2/ f (2)(m j)

11µ2(K)2 Âr�1
j=1 f (m j)1/2 f (3)(m j)2/ f (2)(m j)

!1/7

n�1/7 .

Note that, since the derived bandwidths are depending on some unknown quan-
tities, from an operational point of view we need to resort to plug-in strategies.

3 Some results and conclusions

In this section we present an excerpt of the numerical results obtained in one-
dimensional setting in order to evaluate the performances of the proposed se-
lectors as well as the quality of the introduced asymptotic approximations.

The top panel of Table 1 shows the quality of the derived approximations
to the EDM, as a function of the bandwidth, when all the involved quantities
are known. The approximations improve as the sample size increases and they
appear to behave satisfactorily especially around the value of h minimizing the
EDM. In the bottom panel we can see the results, in terms of EDM, of the
data-based bandwidth selectors over B = 1000 synthetic samples, along with
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Table 1. Top panel: true density (left); EDM, AEDM and the bounds vs h for
n = 1000,10000 (middle and right panels). The vertical dashed line is associated
to the gradient bandwidth. Bottom panel: EDM estimates (and standard errors) at the
optimum h according to the AEDM, the two bounds, and the gradient bandwidth.
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DM estimate
ĥAEDM 0.015 (0.018) 0.005 (0.003)
ĥAB1 0.013 (0.010) 0.005 (0.003)
ĥAB2 0.014 (0.011) 0.005 (0.003)

ĥGRAD 0.013 (0.009) 0.005 (0.003)

the performances of the gradient bandwidth, representing a sensible competi-
tor in this framework, obtained via MISE minimization. The proposed selec-
tors ĥAB1 and ĥAB2 led to more accurate clusterings than hAEDM, with a slight
preference for the former. The gradient-based bandwidth, in turn, not only
produces competitive results, but its Monte Carlo average distance in measure
appears lower than the one produced by the asymptotic EDM minimizers. In
fact, a deeper insight into the standard errors of the obtained distances shows
that ĥAEDM, as well as ĥAB1 and ĥAB2, produce more variable results, due to a
higher sensitivity of the minimizers to the plugged in pilot estimates.

For a complete exposition of the results, alongside with a multivariate gen-
eralization, see Casa et al., 2019.

References
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