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Abstract
Donor profiling and donation prediction are two key tasks that any blood collec-
tion center must face. Profiling is important to target promotion campaigns, recruit-
ing donors who will guarantee a high production of blood units over time. Predict-
ing the future arrivals of donors allows to size the collection center properly and 
to provide reliable information on the future production of blood units. Both tasks 
can be addressed through a statistical prediction model for the intensity function of 
the donation event. We propose a Bayesian model, which describes this intensity 
as a function of individual donor’s random frailties and their fixed-time and time-
dependent covariates. Our model explains donors’ behaviors from their first dona-
tion based on their individual characteristics. We apply it to data of recurrent donors 
provided by the Milan department of the Associazione Volontari Italiani del Sangue 
in Italy. Our method proved to fit those data, but it can also be easily applied to other 
blood collection centers. The method also allows general indications to be drawn, 
supported by quantitative analyses, to be provided to staff.
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1 Introduction

Human blood is a key component for several care treatments and plays a cru-
cial role in all health care systems. It is needed to save lives in acute emergen-
cies, to allow for many types of surgical interventions, such as organ transplants, 
and it is continuously required for the survival of chronic patients. Unfortunately, 
blood cannot be produced in laboratory but can only be withdrawn from healthy 
subjects, and its short shelf life limits the period between withdrawal and use. 
Therefore, blood is a limited resource, while its demand is very high. For exam-
ple, before COVID-19, the demand was about 10 million units per year in the 
US and 2.1 million in Italy (World Health Organization 2012), and these values 
are growing again. In Western countries, blood is usually collected from volun-
teer donors, i.e., unpaid individuals who donate their blood voluntarily and for 
free. Blood is classified into groups and according to the Rhesus factor (Rh), and 
patients receive the blood of their own type (combination of group and Rh factor) 
or a compatible one. There are two types of donations, whole-blood and apher-
esis, where apheresis refers to the donation of specific blood constituents, such as 
erythrocytes or platelets, in which a mechanical apparatus separates the required 
blood constituents and reinfuses the others into the donor.

Blood is supplied by the Blood Donation (BD) system, which is tasked with 
providing an adequate supply of blood units to meet the demand of transfusion 
centers and hospitals, while respecting their storage capacity and the temporal 
profile of the demand. The BD Supply Chain (BDSC) can be divided into four 
echelons (Sundaram and Santhanam 2011): collection, transportation, storage and 
utilization. Many problems arise in the BDSC management from the collection 
echelon to the final utilization of blood units, which have been largely addressed 
in the literature (Beliën and Forcé 2012; Baş et al. 2016). In this paper, we focus 
on the collection echelon, which is very relevant to the entire BDSC because 
problems at this stage may deteriorate the performance of the entire BDSC and 
impact blood shortages and wasted units (Baş  Güre et  al. 2018). For example, 
it is straightforward that increasing the number of donations improves the per-
formance of the BD system, but also an effective management of the available 
donations, which directs donors to suitable days, can avoid shortage and wastage 
of blood units.

The management of a blood collection center must take into account a twofold 
perspective (Baş Güre et  al. 2018; Baş et  al. 2018). On the one hand, it should 
pursue operational goals common to several health care providers, such as wait-
ing time reduction, optimal workforce planning, and effective appointment sched-
uling. On the other hand, a blood collection center produces blood units and 
blood products to meet storage and utilization demands. Two aspects are particu-
larly critical from the production viewpoint. Firstly, the number of produced units 
and all activities carried out at any blood collection center strongly depend on 
the number of donors who arrive daily at the center to make a donation. Predict-
ing the daily number of donors in advance is therefore essential for proper plan-
ning and sizing of the collection center, and to provide reliable information on 
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the future production of blood units to the rest of the BDSC echelons. Secondly, 
blood collection centers invest, also in economic terms, to carry out campaigns to 
promote and acquire further donors. The goal is to enroll novel donors who regu-
larly and frequently donate blood. Therefore, it is important to identify the most 
productive donor profiles to better target these promotion campaigns and recruit 
donors who will guarantee a high production of blood units over time. Both needs 
can be addressed through a statistical prediction model for the intensity function 
of the donation event. For the profiling goal, the profiles of donors who donate 
more frequently can be identified by analyzing donors’ characteristics that sig-
nificantly yield shorter waiting times before the next donation. For the predic-
tion goal, the number of donors arriving on each day of a given horizon can be 
obtained by combining the predictions of all donors who can donate within that 
horizon.

This work considers whole-blood donations, which cover most of the donation 
events. We propose a Bayesian model for the intensity function of the blood dona-
tion event, which describes it as a function of individual donor’s random frailties 
and their time-dependent covariates. The aim is to explain donors’ behaviors since 
their first donation, based on their individual characteristics. Under the Bayesian 
approach, the parameters of the likelihood (the conditional distribution of individu-
als in the sample) are random, and all the statistical inference is based on the poste-
rior distributions of these random parameters, namely, the conditional distribution of 
the parameters given observed data. The posterior distribution of all parameters also 
allows to predict donors’ arrivals, thus supporting planning and other management 
tasks, and to identify the parameters that influence the intensity of the donation, thus 
supporting profiling. To show an application of our model, we apply it to the data 
provided by the Milan department of the Associazione Volontari Italiani del Sangue 
(AVIS), referred to as AVIS Milan in the following. AVIS is the largest Italian blood 
donor organization, founded in Milan in 1927. Today, it ensures about 80% of the 
national blood supply, and is present throughout the country with over 3400 centers. 
AVIS Milan, one of the most important nodes in the AVIS network, collects blood 
from donors residing or working in Milan. It collects about 1500 whole-blood dona-
tions per month and supplies them to the Niguarda hospital, located in the city. The 
dataset includes the list of donations from each donor, along with the measurements 
of some donors’ vital parameters (e.g., heart rate, blood pressure and hemoglobin) 
and information on donor’ habits acquired before each donation through an inter-
view with a physician.

The remainder of this paper is organized as follows. Section 2 overviews the lit-
erature related to the problem addressed in this work. Section 3 describes the vari-
ables and provides an exploratory analysis of the available dataset. Section 4 details 
our model, while Sect. 5 shows the posterior inference. Then, Sect. 6 exploits the 
model outcomes and predictions to support profiling decisions and management 
tasks. Finally, Sect. 7 concludes the work.
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2  Literature review

The BDSC has been extensively studied, as documented in Osorio et al. (2015) 
and Baş  Güre et  al. (2018). However, these literature reviews show that most 
studies focus on the storage and utilization echelons of the BDSC. In contrast, the 
collection has been marginally studied compared to the others (Ayer et al. 2018, 
2019; Baş et al. 2018).

The work of Baş et  al. (2018) has contributed first to the development of a 
decision support tool for blood collection, proposing an appointment schedul-
ing system that includes a linear programming model for preallocating time slots 
to blood types and a prioritization policy to assign a slot when a donor makes 
the reservation. Then, this framework was extended in Doneda et  al. (2023) to 
include home blood donations and in Yalçındağ et  al. (2020) to face uncertain 
donor arrivals. In fact, uncertainty is recognized as a major sticking point when 
dealing with blood donation management (Lanzarone and Yalçındağ 2019), as 
well as in several health care management contexts (Addis et al. 2015). Therefore, 
it must necessarily be considered to adequately address the problems arising in 
blood donation management, and to create more effective tools, solution methods 
and decision support systems for BDSC. In the following, to show its impact, 
we first overview recent works that deal with uncertainty in the management of 
blood collection. Then, we analyze recent works that propose stochastic models 
to predict the uncertain quantities affecting blood donation and to classify donors.

From the management viewpoint, Jabbarzadeh et  al. (2014) developed a 
robust optimization model for blood facility location and allocation decisions 
during post-disaster periods under supply and demand uncertainty. Zahiri et  al. 
(2015) adopted a robust possibilistic fuzzy programming approach to determine 
the best locations of blood facilities coping with several uncertain parameters. 
Ramezanian and Behboodi (2017) developed a robust optimization approach for 
the location-allocation problem of blood collection centers in the presence of sto-
chastic demands. Rabbani et al. (2017) analyzed the mobile blood collection sys-
tem for platelet production with uncertain donors’ arrivals. Hamdan and Diabat 
(2019) proposed a stochastic model for red blood cell supply that simultaneously 
considers production, inventory and location decisions. Finally, as mentioned, 
Yalçındağ et  al. (2020) included uncertain donors’ arrivals in the BD appoint-
ment scheduling.

Other works specifically focused on prediction and classification tasks in BD 
(Khalid et  al. 2013). Darwiche et  al. (2010) combined a principal component 
analysis and a support vector machine to predict blood donation occurrences, 
and applied this combined approach to donor data from a blood transfusion ser-
vice in Taiwan. Santhanam and Sundaram (2010) and Sundaram and Santhanam 
(2011) used decision trees to classify donors, in order to determine voluntary 
blood donorship based on blood donation patterns. Ramachandran et al. (2011) 
classified blood donors using a decision tree to identify regular donors and ena-
ble blood banks to organize blood donation camps efficiently. Similarly, Boon-
yanusith and Jittamai (2012) used neural networks and decision trees, to identify 
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patterns in blood donors’ behaviors based on the factors influencing the donation 
decision. In a perspective more similar to that of our work, Testik et al. (2012) 
adopted a two-step cluster method, together with classification and regres-
sion trees, to identify donors’ daily and hourly arrival patterns, considering 
data from a Turkish hospital. Khalilinezhad et  al. (2014) used association rule 
mining to find the best donors within the whole population, and applied their 
approach to data from two cities in the Middle East. More recently, Alkahtani 
and Jilani (2019) adopted a classification approach to predict returning donors 
and time series analysis to predict donation dates, focusing on the lower num-
ber of returning donors versus the higher number of non-returning ones. Bis-
choff et  al. (2019) used time series forecasting to predict the daily number of 
donations to a tertiary care center, to account for a decrease in platelets pro-
duction preemptively. Shashikala et  al. (2019) applied naive Bayes technique 
and K-nearest neighbors algorithm to predict whether individuals are donors or 
not. Kircic et al. (2020) used logistic regression and a naive Bayes classifier to 
determine blood donation probabilities. Kauten et  al. (2021) applied machine 
learning algorithms to model donor retention to support cost-effective outreach 
programs. They focused on predicting which donors will donate blood during a 
future time window, and applied the algorithm to operational data obtained from 
a large regional blood center in the US.

A few works addressed the BD prediction task in the Bayesian setting. Tava-
kol et  al. (2016) proposed a log-normal hazard model with gamma correlated 
frailties to model the chance of donating blood. They considered data from 
an Iranian province and identified the types of donors with higher chances to 
donate. Mohammadi et  al. (2016) implemented a bivariate zero-inflated Pois-
son regression to jointly model the number of blood donations and that of blood 
deferrals. They used non-informative priors, both in the presence and absence of 
covariates. Kassie and Birara (2021) adopted a Bayesian binary logistic regres-
sion approach to assess the impact of the covariates in blood donation, focusing 
on data from Northwestern Ethiopia.

Differently from these works, we consider recurrent events from the blood 
donation process. In the statistical literature, recurrent event data are tack-
led alternatively as: (i) modelling the intensity function of the event counts 
{N(t), t ≥ 0} ; (ii) modelling the whole sequence of gap times between succes-
sive realizations of the recurrent events (Cook and Lawless 2007). The second 
approach is more appropriate when the events are relatively infrequent or when, 
after an event, individual renewal takes place in some way. The first approach is 
most suitable when individuals frequently experience the event of interest, as in 
our application, and the occurrence does not alter the process itself. The canoni-
cal framework for analyzing event counts is that of inhomogeneous Poisson pro-
cesses. Among the original contribution of this paper, we model the intensity 
function of the whole-blood donation event process as a function of the indi-
vidual donors’ random frailties and their time-dependent covariates. We adopt a 
full Bayesian approach, assuming a prior distribution for all unknown likelihood 
parameters.
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3  Data and variables

We consider donation data of AVIS Milan from January 1st, 2010 to June 30th, 2018 
concerning the recurrent donors, namely the donors who started to donate after Janu-
ary 1st, 2010 and donated at least two times in those years. Only whole-blood donations 
are included in the study, and time is measured in days. Furthermore, as the focus is on 
recurrences, the first donations corresponding to time t = 0 are removed.

We include two types of data: donations and donors’ personal data, and information 
about donors’ habits. Specifically, we include donor ID, sex, age at first donation, age 
at current donation, blood group (A, B, AB or 0) and Rh factor (POS or NEG), dona-
tion ID and time of the donation, indicators of smoking, drinking, physical activity and 
stress level, tea and coffee consumption, diet type, height (in m ), weight (in kg ), Body 
Mass Index (BMI), and health state values such as systolic and diastolic blood pressure 
(SBP and DBP, respectively), heart rate (HR) and hemoglobin (HGB). The health state 
values are recorded with each donation, measured by a physician. According to the Ital-
ian donation rules, any candidate donor who is going to donate for the first time must 
be between 18 and 60 years old, while the age limit is extended to 65 years for succes-
sive donations; however, physicians can allow a donor to keep donating until 70 years 
old if eligible after clinical evaluation of the age-related risks. Donor’s weight must 
be greater than 50 kg , and blood pressure, heart rate and hemoglobin values must lie 
between fixed limits. As an example, hemoglobin range is [13, 18] g∕dl for male donors 
and [12, 16] g∕dl for female donors. The minimum time gap time between two con-
secutive donations is 90 days for men and women in menopause, and 180 days for the 
other women. However, a small tolerance on these thresholds is possible after clinical 
evaluation. In particular, in our dataset, the minimum gap time is 85 days for men and 
150 days for women. These rules are consistent with those that regulate blood donation 
processes in other countries, such as in Spain (Aldamiz-Echevarria and Aguirre-Gar-
cia 2014). An observation time interval is associated to each donor, starting with the 
donor’s first donation ( t = 0 ) and ending on June 30th, 2018. Therefore, the duration 
of a donor’s observation time interval can be different from that of the others. The final 
dataset consists of 25, 689 observations and 5, 937 unique donors, including 4, 005 
men and 1, 932 women.

Donation data show that most recurrent donors made only one donation yearly. 
Figure 1a displays the histogram of empirical yearly rates of donation, i.e., the total 
number of donations divided by the number of years under observation for each donor, 
while Fig. 1b reports the histogram of all donors’ gap times. The histogram in Fig. 1a 
is right-skewed, whereas that in Fig. 1b is bimodal due to the different donation rules 
between men and women.

The maximum number of recurrences is 29 for men and 14 for women. Figure 2 
provides the barplots of normalized recurrences grouped by sex, which are defined as:

for men and

number of men who perform k recurrences

total number of men × 29
, k = 1,… , 29
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for women. The normalization allows for a fair comparison of female and male 
donation recurrences. Note that the 99% empirical quantile for women is 11, which 
coincides with the 88% empirical quantile for men. This means that, subject to law 
obligations, men donate much less than women.

The available data have missing values in some covariates. Due to a significant 
number of missing data, diet and stress factors have been discarded from the data-
set. Missing values of the other variables were imputed using suitable frequentist 
methods, via the R package MICE (van Buuren and Groothuis-Oudshoorn 2011). In 
particular, before imputation, there were 40% missing values for coffee or tea con-
sumption, 14% for HGB, 9% for SBP, DBP and HR, 0.25% for BMI, and 0.19% for 
smoking, alcohol consumption and physical activity. The peak of missing data was 
recorded in 2013 and the minimum in 2018.

Among the factors that may affect blood donation recurrence, we investigate the 
covariates reported in Table 1. Note that information on smoking, alcohol consump-
tion and level of physical activity are communicated to the physician by the donors 
themselves; as such, they could be inaccurate.

The mean age of the sample at the first donation is 32 years (with a large standard 
deviation ≃ 10 years), male donors are about twice as female donors, the majority 
of the population has blood group 0 (46.4%), and positive Rh factor is more fre-
quent than negative Rh factor (about 87 and 84% of male and female donors are 

number of women who perform k recurrences

total number of women × 14
, k = 1,… , 14

Table 1  Covariates included in the model

Name Type Description

SEX Binary Sex: 1 male; 0 female
AGE Num Age at the time of first donation
SMOKE Binary Smoker: 1 yes; 0 no
ALCOHOL Binary Alcohol consumption: 1 yes; 0 no
PHYSICAL_ACTIVITY Binary Physical activity: 1 yes; 0 no
RH Binary Rh factor: 1 positive; 0 negative
GROUP_0 Binary Blood group 0
GROUP_A Binary Blood group A
GROUP_B Binary Blood group B
GROUP_AB Binary Blood group AB
BMI Num BMI
HR Num Heart rate
SBP Num Systolic blood pressure
DBP Num Diastolic blood pressure
HGB Num Hemoglobin
SEX∗HGB Num Interaction sex - hemoglobin
SEX∗RH Binary Interaction sex - Rh factor
SEX∗BMI Num Interaction sex - BMI
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Rh-positive, respectively). There are more non-smokers (67.49%) than smokers, 
alcohol non-consumers (69.82%) than consumers, and 76.03% of the donors practice 
physical activity. About 69% of donors have healthy weight, underweight women 
are about twice as underweight men, whereas overweight men are four times over-
weight women (Table 2).

With regard to the health state variables (SBP, DBP, HR, HGB), the boxplots in 
Fig. 3 show that women have a lower value of hemoglobin than men, as expected, 
while SBP, DBP and HR are homogeneous across sexes.

Only HGB and DBP are considered time-dependent variables in the model. This 
assumption arises from preliminary analyses, which indicated that the trajectories of 
SBP and HR do not seem to vary over the observation period.

Table 2  Sample frequencies of 
donors’ BMI, classified using 
the standard weight status 
categories (Center of Disease 
Control and Presentation; www. 
cdc. gov/ healt hywei ght/ asses 
sing/ bmi/ adult_ bmi/ index. html)

BMI Weight status Tot percentage Sex Percentage

< 18.5 Underweight 1.44 F
M

64.71
35.29

18.5–24.9 Healthy weight 69.00 F
M

32.29
67.71

25.0–29.9 Overweight 24.84 F
M

18.49
81.51

≥  30.0 Obese 4.72 F
M

27.70
72.30
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Fig. 3  Boxplots of HGB (top left), SBP (top right), DBP (bottom left) and HR (bottom right) grouped by 
donor sex
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4  Methods

Let I be the number of donors. For each donor i = 1,… , I , we consider a sin-
gle recurrent event process starting at day Ti0 = 0 of their first donation, where 
0 < Ti1 < Ti2 < ⋯ denote donor i’s days of subsequent donations. A counting pro-
cess {Ni(t)}t≥0 with Ni(t) =

∑+∞

k=1
1{Tik ≤ t} records the number of donations of 

donor i up to day t beyond the first donation. {Ni(t)}t≥0 is right-continuous, and 
mathematically defined by its event intensity function:

where the difference Ni(t + �t−) − Ni(t) represents the number of donations of donor 
i in the interval [t, t + �t) . Roughly speaking, �i(t) gives the instantaneous probabil-
ity of an event occurring on day t. Because of (1), {Ni(t)}t≥0 is an inhomogeneous 
Poisson process (Cook and Lawless 2007, Chapter 1). Donor i is observed over the 
time interval [0, ci] , in which he/she donates blood at days ti1,… , ti ni for a total of ni 
donations, with 0 < Ti1 = ti1 < ⋯ < Ti ni = ti ni ≤ ci . If tini < ci then ci is a censoring 
time.

Donor-specific information is fed into the model by including covariates and an 
individual random effect function into the associated individual multiplicative event 
intensity function �i(t) = �i(t|xt) , modeled as follows:

where x�
i
(t) =

(
xi1(t),… , xip(t)

)
 is the p-dimensional vector of covariates of donor i 

at time t, � the vector of regression coefficients, and ui(t) the i-specific donor random 
effect. Symbol ′ denotes the transposition of the column vector. Our model belongs 
to the class of Cox’s proportional hazard regressions with random effects (Klein and 
Moeschberger 2003). Hence, Eq. (2) can be explained as follows: the logarithm of 
the intensity �i(t) of the i-th donor is equal to the linear predictor x�

i
(t)� plus an indi-

vidual random effect ui(t) . In this way, the effect of the j-th covariate is represented 
by parameters �j . According to random effects models, the individual parameter ui(t) 
might represent the individual variability in the log-intensity, which is not explained 
by the covariates.

Some covariates in xi(t) are time-dependent, measured at day t in conjunction 
with donations, while others are recorded at day t = 0 and considered constant over 
time. The time-varying covariates in xi(t) are assumed to be step functions:

with ti ni+1 = ci and ti0 = 0 for all i. The vector xi(t) also includes interaction terms. 
In this application, the preliminary data analysis (Sect. 3) suggested to include the 
interactions between sex and hemoglobin, sex and Rh factor, and sex and BMI. The 
covariates are listed in Table 1. Note that, because of the coding of the blood group, 
the intercept includes the regression parameter corresponding to GROUP_A. Thus, 
the total number of covariates including interactions is 17. Only HGB and DBP are 

(1)�i(t) = lim
�t→0

P
(
Ni(t + �t−) − Ni(t) = 1

)
�t

(2)�i(t | xt) = ui(t) e
x
�
i
(t) �

(3)xi(t) = xi(tij) if tij ≤ t < ti j+1, j = 0, 1,… , ni, i = 1,… , I
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considered time-dependent, as mentioned in Sect.  3, and all numerical covariates 
have been standardized.

To write the likelihood, we first specify the assumptions about the random effect 
function ui(t) of donor i. We assume a piecewise constant ui(t) on the time domain 
[0,  c], with c = maxi=1,…,I ci and K = 10 intervals identified by the cut-points 
0 = a0 < a1 < ⋯ < aK = c , i.e.:

As donors cannot donate more than a certain number of times per year, we introduce 
an at-risk process {Yi(t)}t≥0 in the model, which represents the risk of donor i of 
experiencing a donation at day t, with:

The quantity Yi(t) forces the intensity to be 0 for the next �i days after every dona-
tion, i.e., it imposes that a donor cannot donate until �i days after the last donation, 
and even after their censoring time ci . �i depends on donor’s sex, and we fix �i = 85 
if i is a male donor and �i = 150 if i is a female donor; see the discussion in Sect. 3. 
Furthermore, as this process only includes the administrative-censored time ci and 
�i , it seems reasonable to assume that the at-risk indicator Yi(t) and the observa-
tion at day t, given by Ni(t + �t−) − Ni(t) , are independent. The contribution Li of 
donor i to the likelihood function is derived using Theorem 2.1 in Cook and Lawless 
(2007), which gives the conditional probability density of ni events occurring at days 
ti1 < ⋯ < tini for each donor i who recurrently donates over the time interval (0, ci] . 
Hence:

where nik is the number of donations experienced by donor i in the interval (ak−1, ak] 
and ni =

∑K

k=1
nik . Consequently, the likelihood of all I donors is:

As for the prior, we assume a priori independence between � and {uik} with:

(4)ui(t) =

K∑
k=1

uik 1(ak−1,ak](t).

(5)Yi(t) = 1(
TNi(t−)+�i , ci

)(t).

(6)

Li =

ni∏
j=1

�i(tij|xi(t)) exp
{
−∫

ci

0

Yi(s)�i(s|xi(s))ds
}

=

ni∏
j=1

ui(tij) exp

{
x
�
i
(tij)� − ∫

ci

0

Yi(s)ui(s)e
x
�
i
(s)�ds

}

=

K∏
k=1

u
nik
ik

exp

{
ni∑
j=1

x
�
i
(tij)� −

K∑
k=1

uik ∫
ak

ak−1

Yi(s)e
x
�
i
(s)�ds

}

(7)

L =

I∏
i=1

Li =

(
I∏

i=1

K∏
k=1

u
nik
ik

)
exp

{ I∑
i=1

ni∑
j=1

x
�
i
(tij)� −

I∑
i=1

K∑
k=1

uik ∫
ak

ak−1

Yi(s)e
x
�
i
(s)�ds

}
.
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and a hierarchical gamma prior for the steps {uik} , with hyperparameters {�0k} , 
which takes into account the length of the time-interval ak − ak−1 (Christensen et al. 
2010):

Equation (9) models a prior opinion of homogeneity among donors. Our choice cor-
responds to a discretized approximation of a very flexible non-parametric prior for 
the cumulative hazard, that is the gamma process prior (Kalbfleisch 1978). We have:

so that:

The hyperparameters c and � quantify the uncertainty on the steps uik and the pair-
wise correlation between frailties. In particular, they measure how the prior of the 
steps {uik} widespreads around its mean E (ui(t)) because:

and hence:

In addition, the correlation �(ui(s), uj(t)) between ui(s) and uj(t) changes with c and 
� as:

for all s, t ∈ (ak−1, ak] and k = 1,… ,K , while �(ui(s), uj(t)) = 0 otherwise.
Equation  (10) provides an immediate interpretation of the step function 

�0(t) ∶=
∑K

k=1
�0k1(ak−1,ak](t) as the baseline intensity function. In the Bayesian 

framework, the hyperparameters {�01,… , �0K} form a piecewise constant baseline 
intensity function. As a consequence, the posterior mean �̂0(t) of �0(t) , given by

(8)�1,… , �p
i.i.d.
∼ N(0, �2

0
)

(9)

{
uik | �0k, ci.i.d.∼ Gamma

(
c(ak − ak−1)�0k, c(ak − ak−1)

)
�0k

i.i.d.
∼ Gamma (�, �) k = 1,… ,K.

(10)E (ui(t)|�01,… , �0K , c) =

K∑
k=1

E (uik|�0k, c)1(ak−1,ak](t) =
K∑
k=1

�0k1(ak−1,ak](t),

(11)E (ui(t)) =

K∑
k=1

E (�0k) 1(ak−1,ak](t) = 1.

(12)Var
�
ui(t) � �01,… , �0K , c

�
=

∑K

k=1
�0k 1(ak−1,ak](t)

c

Var
(
u
ik

)
=

1

c(a
k
− a

k−1)
+

1

�
.

�(ui(s), uj(t)) =
c(ak − ak−1)

c(ak − ak−1) + �
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is a Bayesian estimate of the baseline intensity function �0(t) . The cut-points of 
the step functions ui(t) ’s over the time window have been taken equally spaced. 
The marginal prior (9) turns out to be a convenient choice, since in this case ∑K

k=1
�0k1(ak−1,ak](t) can be interpreted as the centering hazard for all donors. Finally, 

in accordance with the scale-invariance of the gamma prior of this parameterization, 
the parameter vik , defined by

represents the specific random effect of donor i at time t ∈ (ak−1, ak] for k = 1,… ,K . 
The terms {vik}k have a multiplicative effect on the intensity function of donor i, so 
that vik > 1 indicates more propensity to experience a donation and vice versa, with 
the same covariate values.

5  Posterior inference

We compute the posterior distribution of the Bayesian model (7)–(9) using a Markov 
chain Monte Carlo (MCMC) algorithm. In particular, we employ the Hamiltonian 
Monte Carlo (HMC) through the software platform Stan (Stan Development Team 
2020). The values of the hyperparameters in (8)–(9) are set to � = 2 , c = 0.01 and 
�2
0
= 104 . We run two HMC chains of 5000 iterations, each one with a warmup of 

3000 iterations, for a final sample of 4000 in total; MCMC convergence diagnostics 
available in the R package CODA show that convergence holds for all parameters 
(Plummer et al. 2006).

The posterior densities of the regression parameters in � for the Bayesian model 
with all 17 covariates including interactions are highly concentrated around 0. 
Therefore, we have discarded SBP and HR from the model, and the new model has 
been refitted. Figure 4 shows the marginal posterior densities of the 15 remaining 
covariates, in red if the factor increases the intensity of recurrence and in blue vice 
versa.

A posteriori, �SEX is concentrated on negative values, suggesting that male donors 
have a smaller recurrence intensity than female donors. Individuals with blood 
groups O, B, or AB exhibit a lower recurrence intensity compared to the reference 
blood group A. Similarly, donors with RH+ factor have a smaller recurrence inten-
sity than donors with the reference RH− . This suggests that, since RH− factor is 
much rarer than RH+ in the dataset but also in the Italian population, donors with 
negative Rh factor are more involved and regularly donate. Moreover, male donors 
with RH− factor donate more frequently than female donors with RH− . Smokers and 
drinkers tend to donate less than non-smokers and non-drinkers, while non-active 
donors (PHYSICAL_ACTIVITY = 0) are more likely to donate. Finally, HGB, 
DBP, age and BMI have a positive effect on the recurrence intensity. However, 

�̂0(t) =

K∑
k=1

E (�0k| data)1(ak−1,ak](t),

(13)vik =
uik

�0k
,
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note that the effects of HGB and BMI are stronger for female donors than for male 
donors, since the marginal posteriors of �SEX*HGB and �SEX*BMI are concentrated on 
negative values.

Table 3 reports posterior summaries of the baseline parameters �0k . The estima-
tion of the piecewise baseline intensity function �0(t) suggests that donors are more 
likely to donate in their first year and that this propensity tends to decrease over 
time.

Sex*HGB Sex*Rh Smoke

Physical activity Rh Sex Sex*BMI

Blood Group B BMI DBP HGB

Age at 1st donation Alcohol Blood Group 0 Blood Group AB

−1.25 −1.20 −1.15 −1.10 2.8 2.9 3.0 −0.25 −0.20

−0.225 −0.200 −0.175 −0.150 −0.125 −3.10 −3.05 −3.00 −2.95 −2.90 −4.45 −4.40 −4.35 −4.30 −4.25 −0.25 −0.20 −0.15 −0.10

−0.30 −0.25 −0.20 −0.15 0.15 0.20 0.00 0.02 0.04 0.06 1.05 1.10 1.15 1.20

0.22 0.24 0.26 −0.15 −0.12 −0.09 −0.06 −0.325 −0.300 −0.275 −0.250 −0.225 −0.200−0.7 −0.6 −0.5 −0.4 −0.3
0
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Fig. 4  Marginal posterior densities of the regression parameters and interactions in � after discarding 
SBP and HR. Blue and red colors discriminate between negative and positive effects of the factors on the 
intensity function, respectively

Table 3  Posterior mean, 
standard deviations and quantile 
of the baseline parameters �

0k

Parameter Mean Standard 
deviation

q
0.025

q
0.5

q
0.975

�01 5.50 0.12 5.26 5.50 5.74
�02 0.87 0.02 0.84 0.87 0.90
�03 0.60 0.01 0.57 0.60 0.63
�04 0.50 0.01 0.47 0.50 0.52
�05 0.41 0.01 0.39 0.41 0.43
�06 0.42 0.01 0.40 0.42 0.45
�07 0.39 0.01 0.36 0.39 0.42
�08 0.47 0.02 0.44 0.47 0.50
�09 0.56 0.02 0.51 0.55 0.60
�0 10 1.01 0.05 0.92 1.01 1.13
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Figure 5 displays the posterior means of the individual random effect functions 
{vik}k=1,…,K defined in Eq.  (13) for 10 randomly selected male and female donors. 
These plots show the random heterogeneity of the individuals in the sample, and 
express the variability that the other parameters of the model cannot quantify. From 
the figure we also see that the values of frailties are typically greater for men than 
for women. This is also confirmed if we plot the posterior means of more individual 
frailties, which are not included here. This is an expected result, because of the Ital-
ian donation rules for which men can donate more often than women.

We have reported above the posterior inference when hyperparameter c is set to 
0.01. Since this hyperparameter controls both the variance of each uik and the cor-
relation between uik and ujk , we have also fitted the model for c = 1 and c = 2 . The 
posterior estimates turned out to be robust and, for this reason, they are not reported 
here.

6  Profiling and prediction

Any blood collection center must deal with donor profiling and donation prediction.
Profiling is a key task to carry out effective campaigns to acquire further donors. 

Indeed, donor recruitment campaigns should be directed towards individuals whose 
characteristics could guarantee a high frequency of donation and continuity over 
the years. In this light, the proposed approach allows for predicting future donation 
patterns of each possible donor profile. More precisely, we can compute the pos-
terior predictive distribution of potential novel donors, identified by representative 
values of the vector of covariates. As a result, the collection center will be able to 
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appropriately choose the target of a recruitment campaign, directing it towards the 
most promising profiles, e.g., in high schools (very young donors) rather than in 
companies (older donors) or vice versa.

Prediction refers to the estimation of the blood units that will be donated in total 
and/or for each blood type over a given time horizon. This is required for the inter-
nal organization, to size the capacity and personnel needed on any day of the time 
horizon, and to predict the achievement of production targets for each blood type. 
In particular, for the internal organization, the time horizon is usually one week and 
there is no need to distinguish between different blood types. Instead, the production 
targets are set for a longer time horizon (e.g., one month) and for each blood type 
individually. In our framework, information can be provided in terms of the average 
number of donors over the time horizon, because each donation corresponds to a 
single blood unit and a donor can donate at most once a week or in a month.

6.1  Profiling

The aim of profiling is to identify donor profiles who donate more frequently, discov-
ering the characteristics that significantly yield shorter waiting times before the next 
donation. With this aim, we compute the posterior predictive probability that a new 
donor l identified by covariates xl will donate after t days from their first donation. 
In particular, the posterior predictive probability that the new donor l will donate 
after at least t days from the first donation can be computed as the MCMC mean of 
P(Wl1 > t|Tl0 = 0, parameters) , where we assume that the first donation of the new 
donor l is made at time Tl0 = 0 , so that Wl1 = Tl1 − Tl0 is the waiting time of the first 
recurrence (corresponding to the second donation). This probability can be derived 
from Corollary 1 of Chapter 1 in Cook and Lawless (2007). We let t vary in the first 
three months in which donor l is allowed to donate, i.e., t ∈ (�l + 1,�l + 90) where 
�l = 85 days for men and 150 for women. In this way, only ul1 , which covers the first 
310 days of the donation process, is needed. We obtain:

where we have assumed that the time-varying covariate vector xl(s) is constant 
between the two successive donations considered, and we have denoted this value 
as xl.

A few relevant profiles have been selected and reported in Table 4 to provide a 
concrete example. Profile 0 refers to a healthy young man with an age at first dona-
tion equal to 25 years. Profile 1 describes a healthy young woman, 20 years old, with 
the rest of the covariates as in Profile 0. Profiles 2 and 3 refer to healthy middle-aged 
donors (a male donor and a female donor). Profiles 4–7 refer to middle-aged men 
and women with unhealthy lifestyle habits. Finally, Profiles 8 and 9 correspond to 
Profiles  0 and 1, but with the less common blood type AB and negative Rh fac-
tor. HGB and DBP of each profile are set to the sample mean of the same-sex and 

P(Wl1 > t|Tl0 = 0, parameters) = exp

{
−�

t

0

𝜆l(s)ds

}
= exp

{
−�

t

0

ul1e
x
�
l
(s)�Yl(s)ds

}

=

{
1 if t ≤ 𝛷l

exp
{
−ul1e

x
�
l
�(t −𝛷l)

}
if t > 𝛷l
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age-matched donor subset. Finally, values of all covariates have been kept constant 
during the analyzed 90-day period in each profile.

Figure  6 shows the posterior mean and 95% posterior credible bounds of 
P(Wl1 > t|Tl0 = 0, xl, parameters) , for 10 simulated new donors ( l = 0, 1,… , 9 ). 
The faster these graphs decrease, the more the associated donors are more likely to 
donate as soon as they are allowed, which indicates more productive donors.

Profile 9 is the most productive, which refers to a woman who starts to donate 
at 20 years old, with a healthy weight, active life, no smoking, no alcohol and rare 
blood type AB with negative Rh factor. This agrees with comments made in Sect. 3 
about exploratory data analysis, namely women donate more often than men, sub-
ject to legal obligations. Furthermore, the posterior analysis (Sect. 5) showed that 
𝛽SEX < 0 for women, providing evidence that women have a higher recurrence inten-
sity compared to men. The next three best profiles (Profiles 3, 6 and 7) all repre-
sent middle-aged female donors. The posterior predictive probability that they will 
donate after at least t days from the first donation declines very rapidly in the first 
three weeks after �l and later approaches to zero. On the contrary, Profiles 0 and 8, 
both referring to young men, show the lowest propensity to donate as the associ-
ated posterior predictive survival probability decreases more slowly. The trajectories 
of male donors are clearly grouped by age: one group corresponds to middle-aged 
Profiles 2, 4 and 5, and the other to young Profiles 0 and 8. As for blood group and 
Rh factor, we observe from Fig. 6 that the effect of GROUP_AB together with nega-
tive Rh factor is significant for women only; in particular, note how Profiles 1 and 
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Fig. 6  Bayesian posterior prediction of P(W1 > t|T0 = 0, x, parameters) in the first 90 days in which each 
profile is allowed to donate after his/her first donation. 95% credible bounds are added as dashed lines
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9, both corresponding to the same female profile but with different blood group and 
Rh factor, differ so much. At the end of the three months, all profiles but Profile 2 
show a posterior predictive survival probability that approaches to zero, meaning 
that they are highly likely to have made the second donation within the analyzed 
time window. To conclude, among these profiles, we suggest AVIS Milan to target 
new recruitment campaigns for middle-aged men and young women.

6.2  Prediction

The estimate of the daily production of blood units can be obtained from the poste-
rior inference, by combining the predictions of all donors who might donate within a 
given horizon. Since our model does not account for the arrival of novel donors but 
only for the recurrent donations process, we can only estimate the number of blood 
units from the donors already in the sample. This represents a lower bound for the 
estimate of the total number of blood units that can be collected.

The number of donations from the donors in the dataset that will take place in 
the next � days after June 30th, 2018 (last day of observation in the database) can be 
expressed as:

with (conditional) expected value:

A Bayesian estimator �̂(�) of �(�) is given by its posterior mean:

Such conditional expected value �(�) should be at least equal to the production tar-
get. On the contrary, an average number of donations higher than the target is not 
considered as a problem, because extra units can be stored or distributed to neigh-
boring facilities. In addition, potential recurrent donors could be asked to delay the 
next donation to periods of underproduction.

The at-risk indicator Yi(s) of donor i = 1,… , I at day s ∈ (ci, ci + �] turns out to 
be:

where tini is the day of the last donation for donor i, and �i is again equal to 85 for 
men and 150 for women. In the light of those remarks, it follows from Eq. (6) that:

(14)N(�) =

I∑
i=1

1
(
Ni(ci + �) − Ni(ci) = 1|�, u,�0

)
,

(15)�(�) = E
(
N(�)|�, u,�0

)
=

I∑
i=1

P
(
Ni(ci + �) − Ni(ci) = 1|�, u,�0

)
.

(16)�̂(�) = E (�(�)| data) =
I∑

i=1

E
(
P
(
Ni(ci + �) − Ni(ci) = 1| data)).

(17)Yi(s) =

{
1 if s − tini ≥ �i

0 otherwise
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with Bayesian estimator p̂i ∶= E
(
P(Ni(ci + �) − Ni(ci) = 1)|data) given by:

Let us now focus on a time horizon of either a week ( � = 7 ) or a month ( � = 30 ) 
after June, 30th 2018, which are of practical importance. Figure 7a reports the esti-
mate of �(7) and �(30) and shows consistent values, since �(30) is approximately 
equal to four times �(7) . Figure 7b shows the estimate of �(30) per blood type, in 
which the proportion between groups is consistent, with the largest number of blood 
units for groups 0 and A, followed by group B. Compared to AVIS Milan practice, 
the observed monthly number of blood units produced in 2018 was approximately 
1500. However, note that this number includes not only the donations from the 
donors in our dataset, but also from non-recurrent donors and from recurrent donors 
already active before January 1st, 2010. In particular, the donations from the donors 
in our dataset (for which we make a prediction) represent about 60% of all donations 
recorded by AVIS Milan in the time window we focus on, corresponding to about 30 
donations recorded per day. Therefore, our �(7) and �(30) are coherent.

7  Conclusions

Uncertainty is a major issue when managing health care facilities and affects the 
performance of the service. This is particularly true when considering blood col-
lection centers, which merge the features of a service provider and those of a 

(18)

P
(
Ni(ci + �) − Ni(ci) = 1|�, u,�0

)
= 1 − exp

{
−∫

ci+�

ci

ui(s)e
x
�
i
�Yi(s)ds

}

(19)

p̂i =

⎧⎪⎨⎪⎩

1 − E
�
exp

�
− ∫ ci+�

ci
ui(s)e

x
�
i
�ds

�
� data

�
if tini +�i ≤ ci

1 − E
�
exp

�
− ∫ ci+�

tini
+�i

ui(s)e
x
�
i
e�ds

�
� data

�
if ci ≤ tini +�i ≤ ci + �

0 if tini +�i ≥ ci + �.
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production system. The ability to predict the times of donations is a key point to 
guarantee an adequate production of blood units and at the same time to properly 
manage the resource at the blood collection center. We focus our attention on two 
points in particular, profiling and prediction, and we propose a statistical predic-
tion model that quantitatively supports these tasks.

As for profiling, the use of the proposed model can make the process of acquir-
ing further donors more efficient, directing interventions towards donors who, 
once enrolled, will donate as often as they are allowed by the law. Our model 
indicates the most productive donor profiles among a set of possible alternatives. 
As for prediction, our model is able to predict the amount of donations in the 
next days. However, our approach considers only recurrent donors entered after 
the initial date of the time window, and provides estimates only for them. There-
fore, when evaluating the number of donations in a time horizon, those from 
non-recurrent donors and recurrent donors already active before the time win-
dow should be added. To predict the number of non-recurrent donors, we could 
consider a model describing the arrivals of novel donors; however, according 
to AVIS Milan staff, in recent years the amount of donations from novel donors 
seems negligible with respect to the others. Note that we have excluded recurrent 
donors already active before the time window since their inclusion would require 
left-censoring in the likelihood in addition to right-censoring. This extension is 
among our future works.

General indications can also be drawn for the case of AVIS Milan, which may 
result in useful qualitative knowledge, supported by quantitative analyses, to be 
provided to the staff. In particular, our analysis highlights a decreasing trend of 
the baseline intensity function. It also identifies individual features (sex, smok-
ing habits, alcohol consumption, physical activity, BMI, Rh factor, blood group, 
age at first donation, hemoglobin and minimum pressure) that most influence the 
intensity function and, hence, determine donors’ personal propensity to donate. 
Also, the interactions between sex and hemoglobin, Rh factor and BMI are found 
to be significant in differentiating donors’ behavior.

Our method can be immediately applied to the AVIS Milan case and also to 
other blood collection centers. In the latter case, it is enough to compute the pos-
terior distribution of the parameters, given the different data. Then, the results of 
similar analyses on other databases can provide helpful information for centers. 
In conclusion, we have proposed a model that has proven to be an effective solu-
tion for profiling and prediction needs, and that can be immediately used in any 
blood collection center.
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