MEDICINE MEETS VIRTUAL REALITY 15

Studies in Health Technology and Informatics

This book series was started in 1990 to promote research conducted under the auspices of the EC programmes' Advanced Informatics in Medicine (AIM) and Biomedical and Health Research (BHR) bioengineering branch. A driving aspect of international health informatics is that telecommunication technology, rehabilitative technology, intelligent home technology and many other components are moving together and form one integrated world of information and communication media. The complete series has been accepted in Medline. Volumes from 2005 onwards are available online.

Series Editors:

Dr. J.P. Christensen, Prof. G. de Moor, Prof. A. Famili, Prof. A. Hasman, Prof. L. Hunter, Dr. I. Iakovidis, Dr. Z. Kolitsi, Mr. O. Le Dour, Dr. A. Lymberis, Prof. P.F. Niederer, Prof. A. Pedotti, Prof. O. Rienhoff, Prof. F.H. Roger France, Dr. N. Rossing, Prof. N. Saranummi, Dr. E.R. Siegel, Dr. P. Wilson, Prof. E.J.S. Hovenga, Prof. M.A. Musen and Prof. J. Mantas

Volume 125

Recently published in this series

- Vol. 124. A. Hasman, R. Haux, J. van der Lei, E. De Clercq and F.H. Roger France (Eds.), Ubiquity: Technologies for Better Health in Aging Societies – Proceedings of MIE2006
- Vol. 123. D. Uyttendaele and P.H. Dangerfield (Eds.), Research into Spinal Deformities 5
- Vol. 122. H.-A. Park, P. Murray and C. Delaney (Eds.), Consumer-Centered Computer-Supported Care for Healthy People – Proceedings of NI2006 – The 9th International Congress on Nursing Informatics
- Vol. 121. L. Bos, L. Roa, K. Yogesan, B. O'Connell, A. Marsh and B. Blobel (Eds.), Medical and Care Computerics 3
- Vol. 120. V. Hernández, I. Blanquer, T. Solomonides, V. Breton and Y. Legré (Eds.), Challenges and Opportunities of HealthGrids – Proceedings of Healthgrid 2006
- Vol. 119. J.D. Westwood, R.S. Haluck, H.M. Hoffman, G.T. Mogel, R. Phillips, R.A. Robb and K.G. Vosburgh (Eds.), Medicine Meets Virtual Reality 14 – Accelerating Change in Healthcare: Next Medical Toolkit
- Vol. 118. R.G. Bushko (Ed.), Future of Intelligent and Extelligent Health Environment
- Vol. 117. C.D. Nugent, P.J. McCullagh, E.T. McAdams and A. Lymberis (Eds.), Personalised Health Management Systems – The Integration of Innovative Sensing, Textile, Information and Communication Technologies
- Vol. 116. R. Engelbrecht, A. Geissbuhler, C. Lovis and G. Mihalas (Eds.), Connecting Medical Informatics and Bio-Informatics – Proceedings of MIE2005

ISSN 0926-9630

Medicine Meets Virtual Reality 15

in vivo, in vitro, in silico: Designing the Next in Medicine

Edited by

James D. Westwood Randy S. Haluck MD FACS Helene M. Hoffman PhD Greg T. Mogel MD Roger Phillips PhD CEng FBCS CIPT Richard A. Robb PhD

and

Kirby G. Vosburgh PhD

Amsterdam • Berlin • Oxford • Tokyo • Washington, DC

© 2007 The authors.

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, without prior written permission from the publisher.

ISBN 978-1-58603-713-0 Library of Congress Control Number: 2006939763

Publisher IOS Press Nieuwe Hemweg 6B 1013 BG Amsterdam Netherlands fax: +31 20 687 0019 e-mail: order@iospress.nl

Distributor in the UK and Ireland Gazelle Books Services Ltd. White Cross Mills Hightown Lancaster LA1 4XS United Kingdom fax: +44 1524 63232 e-mail: sales@gazellebooks.co.uk Distributor in the USA and Canada IOS Press, Inc. 4502 Rachael Manor Drive Fairfax, VA 22032 USA fax: +1 703 323 3668 e-mail: iosbooks@iospress.com

LEGAL NOTICE

The publisher is not responsible for the use which might be made of the following information.

PRINTED IN THE NETHERLANDS

Preface *in vivo, in vitro, in silico*: Designing the Next in Medicine

James D. WESTWOOD and Karen S. MORGAN Aligned Management Associates, Inc.

Our culture is obsessed with design. Magazines, television, and websites publicize current trends in clothing, architecture, home furnishings, automobiles, and more. We design objects to convey ideas about wealth, status, age, gender, education, politics, religion, accomplishment, and aspiration. Design seems mysteriously vital to our wellbeing, like sleep and dreaming.

Sometimes designers can fuse utility and fantasy to make the mundane appear fresh—a cosmetic repackaging of the same old thing. Because of this, medicine—grounded in the unforgiving realities of the scientific method and peer review, and of flesh, blood, and pain—can sometimes confuse "design" with mere "prettifying."

Design solves real problems, however. It reshapes material, image, and data into something more useful than was previously available. It addresses challenges of increasing complexity and data overload. It simplifies tasks to reduce confusion and error. It accelerates adoption and training by making new tools more intuitive to use. It comforts clinicians as well as patients by giving engineering a friendly interface.

This year's theme acknowledges the importance of design—currently and as an opportunity—within the MMVR community.

in vivo. We design machines to explore our living bodies. Imaging devices, robots, and sensors move constantly inward, operating within smaller dimensions: system, organ, cell, DNA. Resolution and sensitivity are increasing. Our collaboration with these machines is burdened by vast quantities of input and output data. Physician to machine to patient to machine to physician and back again: it's a crowded information highway prone to bottlenecks, misinterpreted signals, and collisions. Out of necessity, we design ways to visualize, simplify, communicate, and understand complex biomedical data. These can be as basic as color-coding or as advanced as Internet2. In our measurement and manipulation of health, the design of information is critical.

in vitro. Using test tubes and Petri dishes, we isolate *in vivo* to better manipulate and measure biological conditions and reactions. The bold new field of tissue engineering, for example, relies on creating an imitation metabolic system for growing artificial body parts. Scientists carefully design the scaffolding to which cells will group themselves on their own. The artificial guides nature's path inside a glass container as we strive to improve what nature gives us.

in silico. We step out of the controlled *in vitro* environment and into a virtual reality. The silica mini-worlds of test tubes and Petri dishes are translated into mini-worlds contained within silicon chips. In the *in silico* lab, algorithms replace chemicals and proteins in the quest for new drugs. On a different scale, we design simulations of biological systems to serve as educational tools. A simulated human body improves learning by utilizing intuition, repetition, and objective assessment. In surgical training, we are replacing patients with computers, in part because the latter is less susceptible to pain and less likely to hire a lawyer.

The future of medicine remains within all three environments: *in vivo*, *in vitro*, and *in silico*. Design is what makes these pieces fit together—the biological, the informational, the physical/material—into something new and more useful.

And what is the next in medicine? We cannot say, but we hope it offers solutions to the very real challenges that are now upon us: an aging global population; disparities between rich and developing nations; epidemic, disaster, and warfare; and limited economic and natural resources. We are eager to see what new tools are designed to confront these old problems, each involving medicine in some way.

We are thankful to all who have made MMVR15 possible and that, after fifteen years, MMVR remains a place where so many talented, visionary, and hardworking individuals share their research to design the next in medicine.

MMVR15 Proceedings Editors

James D. Westwood MMVR15 Program Coordinator Aligned Management Associates, Inc.

Randy S. Haluck MD FACS Associate Professor of Surgery Chief, Minimally Invasive Surgery and Bariatrics Penn State, Hershey Medical Center

Helene M. Hoffman PhD Assistant Dean, Educational Computing Adjunct Professor of Medicine Division of Medical Education School of Medicine University of California, San Diego

Greg T. Mogel MD Associate Professor of Radiology and Biomedical Engineering Keck School of Medicine/Viterbi School of Engineering University of Southern California

Roger Phillips PhD CEng FBCS CIPT Research Professor, Simulation & Visualization Group Director, Hull Immersive Visualization Environment (HIVE) Department of Computer Science University of Hull (UK)

Richard A. Robb PhD Scheller Professor in Medical Research Professor of Biophysics & Computer Science Director, Mayo Biomedical Imaging Resource Mayo Clinic College of Medicine

Kirby G. Vosburgh PhD Associate Director, Center for Integration of Medicine and Innovative Technology (CIMIT) Brigham and Women's Hospital Harvard Medical School

MMVR15 Organizing Committee

Michael J. Ackerman PhD Office of High Performance Computing & Communications, National Library of Medicine

Ian Alger MD New York Presbyterian Hospital; Weill Medical College of Cornell University

David C. Balch MA DCB Consulting LLC

Steve Charles MD MicroDexterity Systems; University of Tennessee

Patrick C. Cregan FRACS Nepean Hospital, Wentworth Area Health Service

Henry Fuchs PhD Dept of Computer Science, University of North Carolina

Walter J. Greenleaf PhD Greenleaf Medical Systems

Randy S. Haluck MD FACS Dept of Surgery, Penn State College of Medicine

David M. Hananel Surgical Programs, Medical Education Technologies Inc.

Wm. LeRoy Heinrichs MD PhD Medical Media & Information Technologies/ Gynecology & Obstetrics, Stanford University School of Medicine

Helene M. Hoffman PhD School of Medicine, University of California, San Diego

Heinz U. Lemke PhD Institute for Technical Informatics, Technical University Berlin

viii

Alan Liu PhD National Capital Area Medical Simulation Center, Uniformed Services University

Greg T. Mogel MD Keck School of Medicine/Viterbi School of Engineering, University of Southern California

Kevin N. Montgomery PhD National Biocomputation Center, Stanford University

Makoto Nonaka MD PhD Foundation for International Scientific Advancement

Roger Phillips PhD CEng FBCS CIPT Dept of Computer Science, University of Hull (UK)

Carla M. Pugh MD PhD Center for Advanced Surgical Education, Northwestern University

Richard A. Robb PhD Mayo Biomedical Imaging Resource, Mayo Clinic College of Medicine

Jannick P. Rolland PhD College of Optics and Photonics, University of Central Florida

Richard M. Satava MD FACS Dept of Surgery, University of Washington

Rainer M.M. Seibel MD Inst of Diagnostic & Interventional Radiology, University of Witten/Herdecke

Steven Senger PhD Dept of Computer Science, University of Wisconsin – La Crosse

Ramin Shahidi PhD Image Guidance Laboratories, Stanford University School of Medicine Don Stredney Interface Laboratory, OSC

Julie A. Swain MD Cardiovascular and Respiratory Devices, U.S. Food and Drug Administration

Robert M. Sweet MD Dept of Urology, University of Minnesota

Kirby G. Vosburgh PhD CIMIT/Brigham & Women's Hospital/ Harvard Medical School

Dave Warner MD PhD Biodesign Institute/Decision Theater, Arizona State University; MindTel LLC; Inst for Interventional Informatics

Suzanne J. Weghorst MA MS Human Interface Technology Lab, University of Washington

Mark D. Wiederhold MD PhD FACP The Virtual Reality Medical Center

Patricia Youngblood PhD Medical Media & Information Technologies, Stanford University School of Medicine

Contents

Preface James D. Westwood and Karen S. Morgan	v
Conference Organization	vii
Burrhole Simulation for an Intracranial Hematoma Simulator Eric Acosta, Alan Liu, Rocco Armonda, Mike Fiorill, Randy Haluck, Carol Lake, Gilbert Muniz and Mark Bowyer	1
Cranial Implant Design Using Augmented Reality Immersive System Zhuming Ai, Ray Evenhouse, Jason Leigh, Fady Charbel and Mary Rasmussen	7
SOFA – An Open Source Framework for Medical Simulation J. Allard, S. Cotin, F. Faure, PJ. Bensoussan, F. Poyer, C. Duriez, H. Delingette and L. Grisoni	13
Integrated Lower Extremity Trauma Simulator Bruce D. Anderson, Per Nordquist, Eva Skarman, Mark T. Boies, Gina B. Anderson and David B. Carmack	19
Data Acquisition and Development of a Trocar Insertion Simulator Using Synthetic Tissue Models Veluppillai Arulesan, Govindarajan Srimathveeravalli, Thenkurussi Kesavadas, Prashant Nagathan and Robert E. Baier	25
Centralized Data Recording for a Distributed Surgical Skills Trainer to Facilitate Automated Proficiency Evaluation <i>Christoph Aschwanden, Craig Cornelius, Lawrence Burgess,</i> <i>Kevin Montgomery and Aneesh Sharma</i>	28
Precise Determination of Regions of Interest for Hepatic RFA Planning Claire Baegert, Caroline Villard, Pascal Schreck and Luc Soler	31
Virtual Reality and Haptic Interface for Cellular Injection Simulation P. Pat Banerjee, Silvio Rizzi and Cristian Luciano	37
The Structure of the Radial Pulse – A Novel Noninvasive Ambulatory Blood Pressure Device Martin Baruch, Katherine Westin Kwon, Emaad Abdel-Rahman and Ross Isaacs	40
A 6DOF Gravity Compensation Scheme for a Phantom Premium Using a Neural Network Matthew Birtwisle and Andy Bulpitt	43
Endotracheal Intubation Training Using Virtual Images: Learning with the Mobile Telementoring Intubating Video Laryngoscope Ben H. Boedeker, Scott Hoffman and W. Bosseau Murray	49

Efficient Modelling of Soft Tissue Using Particle Systems Oliver Buckley and Nigel W. John	55
Requirement Specification for Surgical Simulation Systems with Surgical Workflows Oliver Burgert, Thomas Neumuth, Michel Audette, Antje Pössneck, Rafael Mayoral, Andreas Dietz, Jürgen Meixensberger and Christos Trantakis	58
3D Visualization and Open Planning Platform in Virtual Fluoroscopy G. Chami, R. Phillips, J.W. Ward, M.S. Bielby and A.M.M.A. Mohsen	64
Intra-Operative Registration for Image Enhanced Endoscopic Sinus Surgery Using Photo-Consistency Min Si Chen, Gerardo Gonzales and Rudy Lapeer	67
Evaluating Enhanced Volume Rendering Visualization of Cerebral Aneurysms Marcelo Cohen, Ken Brodlie and Nick Phillips	73
Skills Acquired on Virtual Reality Laparoscopic Simulators Transfer into the Operating Room in a Blinded, Randomised, Controlled Trial <i>P.H. Cosman, T.J. Hugh, C.J. Shearer, N.D. Merrett, A.V. Biankin and J.A. Cartmill</i>	76
 Implementing Virtual Worlds for Systematic Training of Prehospital CPR in Medical School J. Creutzfeldt, L. Hedman, C. Medin, C.J. Wallin, A. Hendrick, P. Youngblood, Wm.L. Heinrichs and L. Felländer-Tsai 	82
Feasibility of Using Intraoperatively-Acquired Quantitative Kinematic Measures to Monitor Development of Laparoscopic Skill Sayra M. Cristancho, Antony J. Hodgson, Neely Panton, Adam Meneghetti and Karim Qayumi	85
Parametric Eye Models Jessica R. Crouch and Andrew Cherry	91
Real-Time Smoke and Bleeding Simulation in Virtual Surgery Stefan Daenzer, Kevin Montgomery, Rüdiger Dillmann and Roland Unterhinninghofen	94
Modeling Isotropic Organs Using Beam Models for the Haptic Simulation of Blunt Dissections Vishal Dalmiya, Guillermo Ramirez and Venkat Devarajan	100
Determination of Key and Driving Points of a Beam Model for Tissue Simulation Vishal Dalmiya, Sumit Tandon, Pradeep Mohanraj and Venkat Devarajan	106
CIELab and sRGB Color Values of <i>in vivo</i> Normal and Grasped Porcine Liver Smita De, Aylon Dagan, Phil Roan, Jacob Rosen, Mika Sinanan, Maya Gupta and Blake Hannaford	109
A Scalable Intermediate Representation for Remote Interaction with Soft Tissues Dhanannjay Deo, Suvranu De and Shivkumar Kalyanaraman	112

xiii

Physics-Based Stereoscopic Suturing Simulation with Force Feedback and Continuous Multipoint Interactions for Training on the da Vinci ® Surgical System Dhanannjay Deo, Suvranu De and Tejinder P. Singh	115
A Web-Based Teamwork Skills Training Program for Emergency Medical Teams Eleen B. Entin, Jason Sidman, Gilbert Mizrahi, Barry Stewart, Fuji Lai, Lisa Neal, Colin Mackenzie and Yan Xiao	121
Virtual Reality for Robotic Laparoscopic Surgical Training Matthew J. Fiedler, Shing-Jye Chen, Timothy N. Judkins, Dmitry Oleynikov and Nick Stergiou	127
Validation System of MR Image Overlay and Other Needle Insertion Techniques Gregory S. Fischer, Eva Dyer, Csaba Csoma, Anton Deguet and Gabor Fichtinger	130
Ultrasound and Needle Insertion Simulators Built on Real Patient-Based Data Clément Forest, Olivier Comas, Christophe Vaysière, Luc Soler and Jacques Marescaux	136
Use of a Virtual Human Performance Laboratory to Improve Integration of Mathematics and Biology in Sports Science Curricula in Sweden and the United States D. Garza, T. Besier, T. Johnston, B. Rolston, A. Schorsch, G. Matheson, C. Annerstedt, J. Lindh and M. Rydmark	140
In Vitro Skin-Tissue Experiment for Increased Realism in Open Surgery Simulations Paul D. Gasson and Rudy J. Lapeer	143
Game Design in Virtual Reality Systems for Stroke Rehabilitation Daniel Goude, Staffan Björk and Martin Rydmark	146
The Red DRAGON: A Multi-Modality System for Simulation and Training in Minimally Invasive Surgery Scott Gunther, Jacob Rosen, Blake Hannaford and Mika Sinanan	149
The Effect of Degree of Immersion Upon Learning Performance in Virtual Reality Simulations for Medical Education Fátima Gutiérrez, Jennifer Pierce, Víctor M. Vergara, Robert Coulter, Linda Saland, Thomas P. Caudell, Timothy E. Goldsmith and Dale C. Alverson	155
Experiences of Using the EndoAssist-Robot in Surgery Nina Halín, Pekka Loula and Pertti Aarnio	161
Comprehensive 3D Visual Simulation for Radiation Therapy Planning Felix G. Hamza-Lup, Ivan Sopin and Omar Zeidan	164
Haptic Interface Module for Hysteroscopy Simulator System Matthias Harders, Ulrich Spaelter, Peter Leskovsky, Gabor Szekely and Hannes Bleuler	167

Comparative Visualization of Human Nasal Airflows Bernd Hentschel, Christian Bischof and Torsten Kuhlen	170
A Blending Technique for Enhanced Depth Perception in Medical X-Ray Vision Applications Frida Hernell, Anders Ynnerman and Örjan Smedby	176
 Surgery on the Lateral Skull Base with the Navigated Controlled Drill Employed for a Mastoidectomy (Pre Clinical Evaluation) M. Hofer, R. Grunert, E. Dittrich, E. Müller, M. Möckel, K. Koulechov, M. Strauss, W. Korb, T. Schulz, A. Dietz, T. Lüth and G. Strauss 	179
Localized Virtual Patient Model for Regional Anesthesia Simulation Training System John Hu, Yi-Je Lim, Neil Tardella, Chuyin Chang and Lisa Warren	185
Surface Exploration Using Instruments: The Perception of Friction Cindy Hung, Adam Dubrowski, David Gonzalez and Heather Carnahan	191
An Interactive, Cognitive Simulation of Gastroesophageal Reflux Disease Bruce Jarrell, Sergei Nirenburg, Marjorie McShane, George Fantry, Stephen Beale, David Mallott and John Raczek	194
A Stable Cutting Method for Finite Elements Based Virtual Surgery Simulation Lenka Jeřábková, Jakub Jeřábek, Rostislav Chudoba and Torsten Kuhlen	200
Visualization of Large-Scale Confocal Data Using Computer Cluster Bei Jin, Zhuming Ai and Mary Rasmussen	206
A Haptic-Enabled Toolkit for Illustration of Procedures in Surgery (TIPS) Minho Kim, Tianyun Ni, Juan Cendan, Sergei Kurenov and Jörg Peters	209
Non-Clinical Evaluation of the KAIST-Ewha Colonoscopy Simulator II Woo Seok Kim, Hyun Soo Woo, Woojin Ahn, Kyungno Lee, Jang Ho Cho, Doo Yong Lee and Sun Young Yi	214
A Pneumatic Haptic Feedback Actuator Array for Robotic Surgery or Simulation Chih-Hung King, Adrienne T. Higa, Martin O. Culjat, Soo Hwa Han, James W. Bisley, Gregory P. Carman, Erik Dutson and Warren S. Grundfest	217
Virtual Simulation-Enhanced Triage Training for Iraqi Medical Personnel Paul N. Kizakevich, Andrew Culwell, Robert Furberg, Don Gemeinhardt, Susan Grantlin, Robert Hubal, Allison Stafford and R. Todd Dombroski	223
Training and Assessment of Procedural Skills in Context Using an Integrated Procedural Performance Instrument (IPPI) <i>R. Kneebone, F. Bello, D. Nestel, F. Yadollahi and A. Darzi</i>	229
Real-Time Marker-Based Tracking of a Non-Rigid Object Andreas Köpfle, Florian Beier, Clemens Wagner and Reinhard Männer	232
A New Force-Based Objective Assessment of Technical Skills in Endoscopic Sinus Surgery Toru Kumagai, Juli Yamashita, Osamu Morikawa and Kazunori Yokoyama	235

A Proposal of Speculative Operation on Distributed System for FEM-Based Ablation Simulator Naoto Kume, Yoshihiro Kuroda, Megumi Nakao, Tomohiro Kuroda, Keisuke Nagase, Hiroyuki Yoshihara and Masaru Komori	238
Tissue Resection Using Delayed Updates in a Tetrahedral Mesh Kishalay Kundu and Marc Olano	241
Organ Exclusion Simulation with Multi-Finger Haptic Interaction for Open Surgery Simulator Yoshihiro Kuroda, Makoto Hirai, Megumi Nakao, Toshihiko Sato, Tomohiro Kuroda, Keisuke Nagase and Hiroyuki Yoshihara	244
Semi-Automatic Development of Optimized Surgical Simulator with Surgical Manuals Yoshihiro Kuroda, Tadamasa Takemura, Naoto Kume, Kazuya Okamoto, Kenta Hori, Megumi Nakao, Tomohiro Kuroda and Hiroyuki Yoshihara	250
Avatars Alive! The Integration of Physiology Models and Computer Generated Avatars in a Multiplayer Online Simulation Laura Kusumoto, Wm. LeRoy Heinrichs, Parvati Dev and Patricia Youngblood	256
Evaluation of a Simulation-Based Program for Medic Cognitive Skills Training <i>Fuji Lai, Eileen B. Entin, Tad Brunye, Jason Sidman and Elliot E. Entin</i>	259
Human Factors Engineering for Designing the Next in Medicine <i>Fuji Lai</i>	262
In-vivo Validation of a Stent Implantation Numerical Model Denis Laroche, Sebastien Delorme, Todd Anderson and Robert DiRaddo	265
Progressive Update Approach to Real-Time Cutting of Finite Element Models in Surgical Simulation Bryan Lee, Dan C. Popescu and Sébastien Ourselin	271
Towards an Immersive Virtual Environment for Medical Team Training Chang Ha Lee, Alan Liu, Sofia Del Castillo, Mark Bowyer, Dale Alverson, Gilbert Muniz and Thomas P. Caudell	274
Haptic Rendering of Device and Patient Impedances in Catheter-Based Simulation <i>Christopher Lee</i>	280
Collaborative Virtual Desktop as Decision Support System for Surgical Planning Pascal Le Mer and Dominique Pavy	283
Low Cost Eye Surgery Simulator with Skill Assessment Component Rainer Leuschke, Anuja Bhandari, Brian Sires and Blake Hannaford	286
Computer Simulation of Corticospinal Activity During Transcranial Electrical Stimulation in Neurosurgery Daliang Leon Li, H. Louis Journee, Arjen van Hulzen, William T. Rath, Robert J. Sclabassi and Mingui Sun	292

An Overview of 3D Video Transmission and Display Technologies for Telemedicine Applications <i>Qiang Liu, Robert J. Sclabassi, Amin Kassam, Feng Zhu, Ron Machessault,</i> <i>Gary Gilbert and Mingui Sun</i>	298
Real-Time Image Mosaicing for Medical Applications Kevin E. Loewke, David B. Camarillo, Christopher A. Jobst and J. Kenneth Salisbury	304
Magnetically Levitated Nano-Robots: An Application to Visualization of Nerve Cells Injuries <i>Mingji Lou and Edmond Jonckheere</i>	310
Telesurgery via Unmanned Aerial Vehicle (UAV) with a Field Deployable Surgical Robot Mitchell J.H. Lum, Jacob Rosen, Hawkeye King, Diana C.W. Friedman, Gina Donlin, Ganesh Sankaranarayanan, Brett Harnett, Lynn Huffman, Charles Doarn, Timothy Broderick and Blake Hannaford	313
Application of Hidden Markov Modeling to Objective Medical Skill Evaluation Thomas Mackel, Jacob Rosen and Carla Pugh	316
Manual Registration of Ultrasound with CT/Planning Data for Hepatic Surgery Mathias Markert, Stefan Weber and Tim C. Lueth	319
2D Ultrasound Augmented by Virtual Tools for Guidance of Interventional Procedures John Moore, Gerard Guiraudon, Doug Jones, Nick Hill, Andrew Wiles, Dan Bainbridge, Chris Wedlake and Terry Peters	322
Smooth Haptic Interaction from Discontinuous Simulation Data Jesper Mosegaard, Bo Søndergaard Carstensen, Allan Rasmusson and Thomas Sangild Sørensen	328
Cybertherapy – New Applications for Discomfort Reductions José Luis Mosso, Skip Rizzo, Brenda Wiederhold, Verónica Lara, Jesús Flores, Edmundo Espiritusanto, Arturo Minor, Amador Santander, Omar Avila, Osvaldo Balice and Benjamin Benavides	334
Applications of Computer Assisted Surgery and Medical Robotics at the ISSSTE, México: Preliminary Results José Luis Mosso, Mauricio Pohl, Juan Ramon Jimenez, Raquel Valdes, Oscar Yañez, Veronica Medina, Fernando Arambula, Miguel Angel Padilla, Jorge Marquez, Alfonso Gastelum, Alejo Mosso and Juan Frausto	337
Development of an Interactive Module to Enhance and Understand Cavity Navigation Andrés A. Navarro Newball, Franco Roviello, Domenico Prattichizzo, Francisco J. Herrera and Cesar A. Marin	340
Design Methodology for a Novel Multifunction Laparoscopic Tool: Engineering for Surgeons' Needs <i>Carl A. Nelson, David J. Miller and Dmitry Oleynikov</i>	343

A User-Friendly Interface for Surgeons to Create Haptic Effects in Medical Simulation <i>Liya Ni, David W.L. Wang, Adam Dubrowski and Heather Carnahan</i>	349
Modeling and Rendering for a Virtual Bone Surgery System Qiang Niu and Ming C. Leu	352
A Serious Gaming/Immersion Environment to Teach Clinical Cancer Genetics Thomas M. Nosek, Mark Cohen, Anne Matthews, Klara Papp, Nancy Wolf, Gregg Wrenn, Andrew Sher, Kenneth Coulter, Jessica Martin and Georgia L. Wiesner	355
Surgical Scissors Extension Adds the 7th Axis of Force Feedback to the Freedom 6S Marilyn J. Powers, Ian P.W. Sinclair, Iman Brouwer and Denis Laroche	361
An Adaptive Framework Using Cluster-Based Hybrid Architecture for Enhancing Collaboration in Surgical Simulation J. Qin, P.A. Heng, K.S. Choi and Simon S.M. Ho	367
From Simulations to Automated Tutoring Sowmya Ramachandran and Barbara Sorensen	373
Haptics-Constrained Motion for Surgical Intervention Jing Ren, Huaijing Zhang, Rajni V. Patel and Terry M. Peters	379
Development of a Guiding Endoscopy Simulator Klaus Rieger and Reinhard Männer	385
A Novel Approach for Training of Surgical Procedures Based on Visualization and Annotation of Behavioural Parameters in Simulators <i>Mikko J. Rissanen, Yoshihiro Kuroda, Megumi Nakao, Tomohiro Kuroda,</i> <i>Keisuke Nagase and Hiroyuki Yoshihara</i>	388
NeuroVR: An Open-Source Virtual Reality Platform for Clinical Psychology and Behavioral Neurosciences <i>Giuseppe Riva, Andrea Gaggioli, Daniela Villani, Alessandra Preziosa,</i> <i>Francesca Morganti, Riccardo Corsi, Gianluca Faletti and Luca Vezzadini</i>	394
Cellular Phones for Reducing Battlefield Stress: Rationale and a Preliminary Research <i>Giuseppe Riva, Alessandra Grassi, Daniela Villani and Alessandra Preziosa</i>	400
Managing Exam Stress Using UMTS Phones: The Advantage of Portable Audio/Video Support <i>Giuseppe Riva, Alessandra Grassi, Daniela Villani, Andrea Gaggioli and</i> <i>Alessandra Preziosa</i>	406
Employing Graphics Hardware for an Interactive Exploration of the Airflow in the Human Nasal Cavity Marc Schirski, Christian Bischof and Torsten Kuhlen	409
Task Sequencing Effects for Open and Closed Loop Laparoscopic Skills Elizabeth A. Schmidt, Mark W. Scerbo, Gayatri Kapur and Adair R. Heyl	412

xviii

Evaluating Tool-Artery Interaction Force During Endovascular Neurosurgery for Developing Haptic Engine <i>Anindita Sengupta, T. Kesavadas, Kenneth R. Hoffmann, Robert E. Baier</i> <i>and S. Schafer</i>	418	
Validating Metrics for a Mastoidectomy Simulator Christopher Sewell, Dan Morris, Nikolas H. Blevins, Sumit Agrawal, Sanjeev Dutta, Federico Barbagli and Kenneth Salisbury	421	
Evaluating Drilling and Suctioning Technique in a Mastoidectomy Simulator Christopher Sewell, Dan Morris, Nikolas H. Blevins, Federico Barbagli and Kenneth Salisbury	427	
Patient Specific Simulation and Navigation of Ventriculoscopic Interventions R. Sierra, S.P. DiMaio, J. Wada, N. Hata, G. Székely, R. Kikinis and F. Jolesz	433	
Developing Performance Criteria for the e-Pelvis Simulator Using Visual	120	
Analysis Jonathan Silverstein, Gene Selkov Jr., Lawrence Salud and Carla Pugh	436	
Immersive Virtual Anatomy Course Using a Cluster of Volume Visualization Machines and Passive Stereo	439	
Jonathan C. Silverstein, Colin Walsh, Fred Dech, Eric Olson, Michael E. Papka, Nigel Parsad and Rick Stevens	159	
Virtual Open Heart Surgery: Obtaining Models Suitable for Surgical Simulation Thomas Sangild Sørensen, Jean Stawiaski and Jesper Mosegaard	445	
Virtual Open Heart Surgery Segmentation Jean Stawiaski, Jesper Mosegaard and Thomas Sørensen	448	
A Virtual-Reality Approach for the Treatment of Benign Paroxysmal Positional	451	
Vertigo Karl V. Steiner, Michael Teixido, Brian Kung, Mads Sorensen, Robert Forstrom and Patrick Coller	451	
Medical Student Evaluation Using Augmented Standardized Patients: New	454	
Development and Results Bo Sun, Frederic D. McKenzie, Hector M. Garcia, Thomas W. Hubbard, John A. Ullian and Gayle A. Gliva	434	
Design of the Next-Generation Medical Implants with Communication and	467	
Energy Ports Mingui Sun, Steven A. Hackworth, Zhide Tang, Jun Zhao, Daliang Li, Sharon E. Enos, Brian Errigo, Gary Gilbert, Ronald Marchessault, Sylvain Cardin, Troy Turner and Robert J. Sclabassi	457	
Development of a Surgical Robot System for Endovascular Surgery with Augmented Reality Function Naoki Suzuki, Asaki Hattori, Shigeyuki Suzuki and Yoshito Otake	460	

Surgery Simulation Using Patient-Specific Models for Laparoscopic Colectomy 464 Shigeyuki Suzuki, Ken Eto, Asaki Hattori, Katsuhiko Yanaga and Development and Evaluation of a Virtual Intensive Therapy Unit – VITU 467 A. Theodoropoulos, R. Kneebone, B. Dornan, R. Leonard and F. Bello Low Fidelity Simulation of Temporal Bone Drilling Leads to Improved But 470 Cory Torgerson, Ryan Brydges, Joseph Chen and Adam Dubrowski Objective Surgical Performance Assessment for Virtual Hysteroscopy 473 Stefan Tuchschmid, Michael Bajka, Daniel Bachofen, Gábor Székely Interactive Physically-Based X-Ray Simulation: CPU or GPU? 479 Franck P. Vidal, Nigel W. John and Romain M. Guillemot Device Connectivity for Image-Guided Medical Applications 482 Jochen von Spiczak, Eigil Samset, Simon DiMaio, Gerhard Reitmayr, Dieter Schmalstieg, Catherina Burghart and Ron Kikinis Natural Orifice Transluminal Endoscopic Surgery (NOTES): An Opportunity 485 Kirby G. Vosburgh and Raúl San José Estépar Immersive Visualization with Automated Collision Detection for Radiotherapy 491 J.W. Ward, R. Phillips, T. Williams, C. Shang, L. Page, C. Prest A SHALL DAL HILLARD CARDALA

Obstacle Crossing in a Virtual Environment with the Rehabilitation Gait Robot LOKOMAT Mathias Wellner, Thomas Thüring, Eldin Smajic, Joachim von Zitzewitz,	497
Alexander Duschau-Wicke and Robert Riener	
GPU-Friendly Marching Cubes for Visualizing Translucent Isosurfaces Yongming Xie, Pheng-Ann Heng, Guangyu Wang and Tien-Tsin Wong	500
Can We Remember Stiffness? Yasushi Yamauchi	503
VR Enhanced Upper Extremity Motor Training for Post-Stroke Rehabilitation: Task Design, Clinical Experiment and Visualization on Performance and	
Progress	506
Shih-Ching Yeh, Albert Rizzo, Margaret McLaughlin and Thomas Parsons	
Clinical Evaluation of the KAIST-Ewha Colonoscopy Simulator II Sun Young Yi, Hyun Soo Woo, Woojin Ahn, Woo Seok Kim and	512

Naoki Suzuki

Sub-Optimal Outcomes

and Matthias Harders

for Augmented Reality Guidance

Treatment Planning

and A.W. Beavis

Doo Yong Lee Virtual Worlds for Teaching the New CPR to High School Students 515 Patricia Youngblood, Leif Hedman, Johan Creutzfeld, Li Fellander-Tsai, Karl Stengard, Kim Hansen, Parvati Dev, Sakti Srivastava, Laura Kusumoto, Arnold Hendrick and Wm. LeRoy Heinrichs

Towards an Understanding of Conventional Surgical Haptics for Use in MIS	520
John S. Zelek and Hao Xin	
Author Index	523