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Modeling and clustering of traffic flows time
series in a flood prone area
Modelli statistici e clustering per serie temporali dei flussi
di traffico in un’area soggetta a inondazioni

Paola Zuccolotto, Giovanni De Luca, Rodolfo Metulini and Maurizio Carpita

Abstract Time series of traffic flows, recovered by mobile phone origin-destination
signals, are used to monitor mobility and crowding in an area subject to flooding
risk. We propose a time series model based on vector autoregressive with exoge-
nous covariates combined to dynamic harmonic regression and a subsequent clus-
tering procedure, aimed at obtaining groups of areas characterized by the common
tendency to the occurrence of extreme events, that in this case study are extremely
high incoming traffic flows.

Key words: Flooding risk, multivariate time series modelling, copula functions,
tail dependence, time series clustering

1 Introduction

It is well known that extreme weather events often have huge social consequences
for communities and individuals. Their immediate effects consist of loss of human
life, devastation of crops, damage to goods, and deterioration of overall health and
wealth conditions. Considered their social and economic impact, the statistical study
of extreme weather phenomena can also be approached from a management per-
spective. In fact, natural Disaster Management ([7]) recommends the development
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of a framework of exposure risk that can exploited in an early warning perspective.
In this work we focus attention on floods. To draw flooding risk exposure maps is of
fundamental importance, in order to face, in the best possible way, a flooding event.
Such maps cannot ignore human presence and people mobility, but they traditionally
assume a constant crowding over time. This assumption is far from reality, espe-
cially in metropolitan areas, so, a more detailed description of people presence and
mobility is a critical issue to determine an accurate flooding risk. To do that, mobile
phone network data have been used to obtain a dynamic monitoring of crowding in
areas with hydrogeological criticality ([1]). Another approach consists of using mo-
bile phone origin-destination signals, in order to recover information on traffic flows
and then build statistical models, able to give accurate forecasts of people mobility.
[6] proposed a model, based on combining vector autoregressive with exogenous
covariates and dynamic harmonic regression. They applied the method to the case
study of Mandolossa (an urbanized area subject to flooding, located on the western
outskirts of Brescia) using hourly data from September 2020 to August 2021. The
method worked quite well, but residuals exhibited a leptokurtic distribution with
heavy tails determined by a number of extreme events (i.e., days with particularly
high or low traffic flows). In this talk we propose to use the method of time series
clustering based on copula functions, proposed by [3], in order to cluster the resid-
uals time series with respect to their upper tail dependence. The aim of the analysis
is to obtain clusters of areas for which extreme events (in terms of extremely high
traffic flows) tend to occur together.

2 Data

Mobile Phone origin-destination (OD) data flows have been provided by Olivetti
S.p.A. (www.olivetti.com) with the support of FasterNet S.r.l. (www.fasternet.it) for
the MoSoRe Project 2020-2022 and they refer to one year of hourly observations
(from September 1st, 2020 to August 31st, 2021) of traffic among Aree di CEnsi-
mento (ACEs) in the province of Brescia. OD data refer to the number of phone
SIM cards connected to the TIM network that were retrieved during a 1-hour inter-
val by the antenna in a given ACE i and, after five or more minutes, by the antenna
in ACE j. 1 For each time interval t, and for selected ACEs (let say, i and j) in the
province of Brescia, three types of flows are available: flows arriving in i (inflows),
flows departing from i (outflows), and internal flows from i to i (internal).

1 Two types of cards can be distinguished: human SIM (about 85% of the total SIM) and M2M
technology machine SIM (about 15%). Since a user might have both a human SIM and some
devices with an M2M machine SIM, we restricted our attention to human SIMs to avoid double
counting of users.
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3 Time series modeling

In this work we limit our attention to 4 ACEs inside the flood prone area of the Man-
dolossa and to 38 properly selected neighbour ACEs. Specifically, with the final aim
of obtaining uncorrelated estimated residuals to whom perform the clustering, we
estimate, for each single neighbour ACE j the following VAR model with eXoge-
nous variables (VARX, [9]):

yt, j = ν j +
p

∑
h=1

Ah, jyt−h, j +B jxt, j + ε t, j , j = 1, . . . ,38 , (1)

where y is a vector of length 3 made of inflows to i (where i is represented by the
union of the 4 ACEs inside the Mandolossa), outflows from i and internal flows in
i, and where Bxt contains a two-way (i.e., daily and weekly periodicities) Dynamic
Harmonic Regression (DHR) component (which is based on a combination of sine
and cosine Fourier bases) and proper weekdays and month dummy variables.

The model recalls that used in [6], but lags of order smaller than 24 are here al-
lowed. According to an AIC criterion, we model the DHR component by including
7 daily and 4 weekly Fourier bases. We then calibrate the model by choosing the
autoregressive (AR) order based on the AIC, the Auto Correlation Function (ACF),
the Partial ACF and the Ljung-Box test. After having tested different AR structures,
we opted for a model with the first 25 lags (i.e., p = 25), that display a very lim-
ited autocorrelation with small values of ACF and with the Ljung-Box test almost
always rejected (by varying the AR order). The final model has been used to obtain
estimated residuals. Despite the analysis of all estimated residuals might be inter-
esting, in this application we just use the ones related to the inflows, as they allow
to cluster ACEs in terms of the dynamic of traffic to the area of the Mandolossa.

4 Time series clustering on upper tail dependence

In this Section we describe the clustering procedure we propose to define groups
of time series for which extreme events (in this case, extremely high traffic flows)
tend to occur together. To do that, we rely on the method originally proposed by
[3], where time series clustering is performed on a dissimilarity matrix based on
bivariate tail dependence coefficients, estimated by means of copula functions. A
2-dimensional copula ([8]) is a function denoted by

C : [0,1]2 → [0,1].

Given the random variables Xj,Xh, and their cumulative distribution functions
Uj = Fj(Xj),Uh = Fh(Xh), the 2-dimensional copula function applied to u j,uh, is
equivalent to the joint distribution function,
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C(u j,uh) = P(Fj(Xj)≤ u j,Fh(Xh)≤ uh)

that is
C(u j,uh) = FX

(
F−1

j (u j),F−1
h (uh)

)
.

Then
FX (x j,xh) =C (Fj(x j),Fh(xh)) .

Copula functions describe the joint distribution in a very flexible way, by com-
bining the univariate marginal distributions of the variables and a copula function
joining the margins. When a joint distribution is described by means of a copula
function, some interesting features of the multivariate distribution can be easily re-
covered. Examples are the tail dependence coefficients (TDCs): given two variables
Xj and Xj, the lower and upper TDCs are given, respectively, by

λ L
j|h = lim

v→0+
P(Uj ≤ v |Uh ≤ v)

and
λU

j|h = lim
v→1−

P(Uj > v |Uh > v).

In case of tail independence, λ L (λU ) is null, while, when λ L (λU ) is in the range
(0,1] then the extremely low (high) values of the two variables are dependent, with
stronger dependence as the coefficient value increases.

In this work we are interested to upper tail dependence, as events to be monitored
are exceptionally high traffic flows. To cluster times series based on upper TDCs,
the procedure proposed by [3] requires to obtain the ∆ S dissimilarity matrix ∆ ,
containing the dissimilarities δ jh between all the pairs of the N time series under
study, with

δ jh =− log(λU
j|h). (2)

The dissimilarity matrix ∆N is then used as a basis for the adopted clustering al-
gorithm [3, 4, 2]. In this work we propose a clustering algorithm able to take into
account, beyond dissimilarities, the spatial contiguity between areas. So, we intro-
duce a new dissimilarity measure δ θ

jh as a modification of (2),

δ θ
jh =− log(λU

j|h)+θc jh, (3)

where c jh is a contiguity coefficient assuming value 0 when the jth and hth time
series denote traffic flows coming from neighbouring areas, and 1 otherwise. The
dissimilarity matrix obtained by (3) is denoted by ∆ θ .

The parameter θ > 0 adjusts the impact of the contiguity coefficient in the dis-
similarity between two time series, and has to be determined through an iterative
procedure, as detailed in Algorithm 1.

Note that the quality of the clusterization is evaluated by the adopted internal
clustering validation indices with reference to the dissimilarity matrix ∆ . The ratio-
nale for this choice is that contiguity between areas is used to define a set of optimal
clusterizations at given values of θ , but the final choice among them is done by
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Algorithm 1 Upper tail dependence clustering with spatial structure
Require: Two dissimilarity matrices ∆ and ∆ θ , obtained as in (2) and (3).
1: Define a sequence Θ of values, starting from 0, that could be plausible values for θ (e.g.

0.005,0.01,0.015, . . . ,4)
2: for θ assuming all the values in Θ do
3: perform cluster analysis with a hierarchical agglomerative algorithm, using ∆ θ as dissim-

ilarity matrix
4: identify the optimal number of clusters k, by cutting the dendrogram with the method

proposed by [5]
5: for the clusterization into k groups, compute internal clustering validation indices (e.g.

Average silhouette width, Dunn index, Calinski and Harabasz index, ...) on the dissimilarity
matrix ∆

6: end for
7: plot the graphics of the values of the internal clustering validation indices versus θ , and decide

its optimal value

selecting the one that ensures the best separation among clusters, only in terms of
upper tail dependence. We carried out the procedure on the data described in Sec-
tion 2. The estimated standardized residuals of model (1) applied to the 38 traffic
flow time series have been used to derive the corresponding distribution functions
Û jt . For each of the (38×37)/2 = 703 pairs (Û jt ,Ûht), we estimated by Maximum
Likelihood a set of elliptical and Archimedean copulas and selected the best one
according to AIC. Once obtained the corresponding estimates of the upper tail de-
pendence coefficients, we carried out the clustering procedure of Algorithm 1 with
Θ = {0.005,0.01,0.015, . . . ,4} and using a hierarchical agglomerative algorithm
with complete linkage. As internal clustering validation indices we adopted the Av-
erage silhouette width, the Dunn index, the Calinski and Harabasz index, that all
suggested an optimal value of θ around 0.04 (Figure 1).
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Fig. 1 Graphics of the values of the internal clustering validation indices versus θ (point 7 of
Algorithm 1)

With θ = 0.04 the areas turn out to be divided into 4 clusters, as displayed in
Figure 2. We can observe that ACEs are grouped in a quite strong spatial neighbour-
hood structure, with extreme events occurring together in time in geographically
contiguous areas. We found a group (coloured in blue) of ACEs located in the south
outskirt of the Mandolossa. Those ACEs are characterized by a strong amount of
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streets going to the Mandolossa. Belongs to a second cluster (in purple) many of the
ACEs that are not contiguous to the Mandolossa but with large streets connecting
them with the Mandolossa itself. The other two clusters contain only a few ACEs,
with Caino being a group by itself.

Fig. 2 Map of the 38 Aree di Censimento grouped with the upper tail dependence clustering with
spatial structure applied to estimated residuals of flows to the Mandolossa (depicted in orange).
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