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Abstract. The paper presents a method to model the time-dependent evaporation of pendant 

drops taking into account the effect of drop deformation induced by gravity. The model is based 

on the solution to the time-dependent drop mass and energy conservation equations, where the 

mass and energy fluxes through the gas mixture are numerically evaluated for a range of Bond 

numbers and contact angles. The evaporation characteristics of pendant and sessile drops on 

hydrophobic and hydrophilic substrates are compared in terms of evaporation times and 

evaporative cooling, for both constant contact angle and constant contact radius modes. 

1.  Introduction 

The interest of the scientific community on the evaporation of a drop in contact with a solid surface 

is witnessed by the huge literature available on this topic. This is mainly due to its importance in many 

applications (like, printing technology [1], cooling systems [2], surface patterning [3], biomedical 

processes, etc.; see [4] for a recent review), but also to the complexity of the phenomena occurring in 

this process. Pendant drops, which are drops hanging from a surface, are often used for experimental 

studies on drop evaporation [5, 6], and they are important for surface tension measurements of air-liquid 

surfaces [7, 8], in heat transfer processes [9] or in large volume protein single-crystals growth [10]. 

Differently from sessile drops, pendant drops become unstable when their size increases, falling from 

the substrate, a fact that limits the size of the drops. The shape of a drop in contact with a solid surface 

has been deeply studied since the pioneering work of [11] and a copious literature on this subject is 

available (see for example [12] and the cited literature therein). 

The effect of gravity on the processes involving pendant drops has been often related to the natural 

convection caused by buoyancy in the gas surrounding the drop [13]. Gravity also influences the flow 

inside the drop, leading to fluid structures with interesting practical implications (see for example [14, 

15]). The first study on the specific effect of gravity induced deformation on the evaporation of a pendant 

drop is possibly that of [16], who found experimentally an increment in the evaporation rate up to about 

30%. In an experimental study presented in [17], it was shown that a pendant drop on super-hydrophobic 

substrates evaporates faster than the sessile one of equal volume, suggesting that this may be partially 

ascribed to the different drop shapes, caused by the opposite effect of gravity, considered the non-

negligible value of the Bond number (Bo = 0.2). 

Pendant and sessile drop evaporation can be considered a typical example of a diffusion-controlled 

phenomenon. Quasi-steadiness is often assumed, considering that the drop life-time is orders of 

magnitude larger than the transport time-scale. In the absence of external convection, and assuming 

constant gas mixture thermophysical properties, the analytical problem reduces to the solution to a 

Laplace equation [18, 19]. For drops with a spherical-cap shape (i.e. with negligible effect of gravity on 

their shape), the analytical solution given by [20] in terms of Mehler-Fock transform is almost 

universally used (see [21] for some different types of solution). Even when thermophysical properties 

are temperature dependent, the phenomenon can be modelled through the solution of a Laplace problem 

(see [22]). The analytical-numerical model reported in the next sections considers the evolution of the 

shape and temperature of evaporating pendant drops, and quantifies the effect of the actual drop shape 

and of the evaporative cooling for different evaporation modes and substrate wettability. 
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2.  Mathematical modelling 

In this paper, a mixed analytical-numerical approach will be used to model the diffusion-limited 

processes taking place during the evaporation of a pendant drop deformed by the effect of gravity. 

2.1.  Modelling the energy and mass fluxes through the gas phase 

In the following, the gas phase is assumed to be a binary mixture of the vapourising species and the 

ambient gas, behaving as a single component ideal gas. Under quasi-steady conditions, the species 

conservation equations can be written as. 

 ( ) 0p

j jN∇ =   (1) 

where p=0,1 for the ambient gas and the vapour, respectively, and the molar fluxes are 
( ) ( ) ( ) ( )

10

p p p pT

j j jN N y Mm cD y= − ∇ , where 
( ) ( )0 1T

j j jN N N= +  is the total molar flux, c the molar density, 

D10 the binary diffusion coefficient, Mm(p) the molar mass of the p-component and y(p) is the molar 

fraction of the p-component. The steady-state energy conservation equation is 

 
( )( ) ( )1

j j p j mix jU c T k Tρ ∇ = ∇ ∇   (2) 

where kmix is the gaseous mixture conductivity, 
( )1

pc  is the vapour specific heat capacity, ρ is the mass 

density of the mixture and Uj is the mass average velocity. In equation (2) minor terms (like viscous 

dissipation), assumed to be irrelevant for the present analysis, are neglected (refer to [24] p. 465, or [25] 

p. 589 for a more complete form). The effect of external convection is neglected, but the Stefan flow is 

fully considered (Uj is the Stefan flow velocity). Assuming negligible absorption of the gas in the liquid 

drop and uniform Dirichlet boundary conditions on the drop surface, an analytical solution to the PDE 

system (1, 2) can be found, also when the gas mixture thermophysical properties (ρ, 
( )1

pc  and kmix) depend 

on temperature (see [22] and Appendix), and the solution is given in terms of an auxiliary function, Φ, 

solution of the following Laplace problem 

 ( ) ( )2 0; drop surface 1; infinity 0∇ Φ = Φ = Φ =   (3) 

 In analytical modelling, pendant and sessile drops are often assumed to have the shape of a spherical 

cap, since the drop size is usually smaller than the capillary length, ( )1/2

c
L gσ ρ= . However, it was 

shown [26] that the evaporation rate of a sessile drop may be perceptibly influenced by the gravity 

induced drop deformation even when the drop size is smaller than Lc. The analytical solution of the 

problem (3) for spherical caps was given in [20] (see also [21] for other types of solutions), but when 

the drop is deformed by gravity, analytical solutions are not available and numerical tools are needed 

(see next subsection). The shape of sessile and pendant drops in the gravitational field is fully defined 

by its volume and the substrate wettability [26], that is by the Bond number 2 2

eq cBo R L=  (where 

( )1/3
3 4eqR V π= and V is the drop volume,) and the contact angle, θc. Since the evaporation and the heat 

rates can be found from the integral 
n

A
dA∇ Φ  (see Appendix), both rates depend on Bo and θc and, to 

find such dependence, a parametric analysis is performed, using the numerical methods described in the 

following subsections.  

2.2.  Energy transfer through the solid substrate 

The heat transfer from the solid substrate can be modelled assuming quasi-steadiness, and assuming that 

the substrate is much thicker than the drop, the problem is equivalent to the heat conduction from a semi-

infinite solid to a disc of radius equal to the drop basis radius, Rc, laying on the solid surface. This 

problem can be solved using the conductive shape factor method obtaining 

 ( )c w w d
Q k T T S= −ɺ   (4) 
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where S is the conductive shape factor. For the given configuration (a disk on a semi-infinite body) the 

shape factor is equal to S=4Rc [27]. This simple method can be considered acceptable when the drop 

temperature is almost constant, and this happens just after the first period of temperature variation, which 

is usually very short compared to the whole evaporation period. 

2.3.  Numerical methods for the solution of the Laplace problem 

The shape of a pendant drop in a gravitational field is found solving numerically the classical Bashford-

Adams equation [11] by a Runge-Kutta method with variable time steps. A double iteration cycle was 

necessary to yield the equilibrium drop shape for given Bo and θc, and the relative accuracy on the drop 

volume was better than 2×10⁻⁴, while the average accuracy on the contact angle was better than 0.4deg. 

The obtained drop shape was compared to the numerical solution of the integral method proposed in 

[28] (see [26] for details), and relative differences of the drop profile coordinates were less than 10⁻⁴. 

The drop profiles where then used to set the numerical domain to solve the problem (3) using the 

commercial code COMSOL Multiphysics®. Figure 1 shows some samples of the pendant drop shape 

on two substrates. The upper limit of the Bond number for the two contact angles is due to the stability 

constrains for pendant drops (see section 3). 

 

  
Figure 1. Pendant drop shapes on hydrophilic (θc = 50°) and hydrophobic (θc = 100°) substrates. 

 

A finite element discretisation approach is used on 2D axis-symmetric grids. The computational 

domain is a half-sphere with a radius R∞=30Req (see figure 2 for a schematic representation); this choice 

was suggested by previous works [29, 30]. The Dirichlet condition at infinity is substituted by an 

equivalent condition on the outer boundary, R= R∞, through an iterative procedure that accounts for the 

finiteness of the domain size (more details can be found in [26, 29, 30]). The mesh was unstructured, 

made by triangular tessellation, with grid refinements around the triple line. An analysis of grid 

independence was performed (more details can be found in [29, 31]) and in the present study grids made 

of about 105 cells were used. The evaporation and the sensible heat rates are evaluated by the integral 

n
A

dA∇ Φ  on the drop surface (see Appendix), and also on a spherical surface containing the drop, as 

an additional check. To quantify the effect of drop deformation on evaporation, a parameter G 

                                                           ( ) ( )
( )

,
,

,0

ev c

c

ev c

m Bo
G Bo

m

θ
θ

θ
=
ɺ

ɺ
     (5) 

is used, where ( ),ev cm Boθɺ  is the evaporation rate from a deformed drop with a given Bond number and 

( ),0ev cm θɺ is the corresponding value for an equivalent volume spherical cap, which is given by the 

Picknett-Bexon correlation [23]. Figure 2 shows the parameter G as a function of Bo for pendant drops 

on twelve substrates, with contact angle ranging from 20° up to 110°. 
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Figure 2. Schematic of the numerical domain and sample of the numerical mesh (size not to scale) 

(left). Non-dimensional evaporation rate G (equation 5) versus the Bond number for pendant drops on 

twelve hydrophilic and hydrophobic substrates (right). 

 

For a fixed Bond number, the parameter G increases with the contact angle. For a fixed contact angle 

θc the parameter G reaches a minimum value at a specific Bond number, depending on the substrate 

wettability. On hydrophobic substrates, pendant drops deformed by gravity show higher evaporation 

rate than the corresponding iso-volumic spherical caps. For hydrophilic substrates, the minimum value 

of G is obtained with deformed pendant drops. The smaller the contact angle, the larger the value of Bo 

corresponding to the minimum value of G. Within the range of the selected operating conditions, 

neglecting the effect of deformation can lead to an underestimation of the evaporation rate from pendant 

drops on hydrophobic substrates up to about 7%, while for hydrophilic substrates the overestimation can 

reach about 16%. Validation of the numerical method was done on drop geometries where analytical 

solutions to the problem (3) exist [20], and the agreement on the values of the evaporation rates was of 

the order of 10⁻³ for hydrophilic substrates and 10⁻⁴ for hydrophobic substrates. This numerical tool was 

then used to build up a database for the quantity 
n

A
dA∇ Φ  that will be used to solve the mass and energy 

balance on the pendant drop, as described in the next subsection.  

2.4.  The mass and energy balance on the drop 

The mass and energy conservation equations for the pendant drop, neglecting the non-uniformity of the 

inner temperature distribution, are 

 ev

dM
m

dt
= − ɺ ;    

( )
'

L d

ev LV s c

d c T
M m h Q Q

dt
= − + +ɺ ɺɺ  (6) 

where M is the drop mass, cL is the liquid specific heat, h’LV is the modified latent heat of vaporisation 

[32, 33], 
evmɺ  is the evaporation rate, 

s
Qɺ  is the sensible heat rate exchanged through the drop/gas 

interface and 
c

Qɺ  is that exchanged with the substrate. 
s

Qɺ  and 
evmɺ  are calculated from the quantity 

n
A

dA∇ Φ  (see Appendix), which can be found from the above-mentioned database by a bivariate 

interpolation, given the instantaneous value of Bo and θc. An implicit Euler method was used to 

numerically solve equations (6).  

3.  Results and discussion 

Time-dependent evaporation of water pendant and sessile drops is analysed, to point out the effect of 

drop deformation on the evaporation characteristics. The two main evaporation modes of sessile and 

pendant drops are the so-called constant contact radius (CCR) and constant contact angle (CCA). The 

CCR mode, often observed for hydrophilic substrates, is characterised by the pinning of the triple line 

and the constancy of the drop base radius. The CCA is often observed for hydrophobic substrates, the 



40th UIT International Heat Transfer Conference (UIT 2023)
Journal of Physics: Conference Series 2685 (2024) 012065

IOP Publishing
doi:10.1088/1742-6596/2685/1/012065

5

 

 

 

 

 

 

 

contact angle remains constant while the drop shrinks and the triple line slides on the substrate surface. 

However, when a drop evaporates on real substrates, both modes may appear and also a combination of 

the two is observed. With the aim of evidencing the sole effect of the drop shape on the evaporation, 

simplified scenarios will be used, assuming that the drop evaporates in one of the two modes during the 

whole observation period. One hydrophobic (θc=100°) and one hydrophilic (θc=50°) substrates are 

considered, and pendant, sessile and spherical-cap shaped drops are assumed to evaporate under both 

modes. Figure 3 shows the shape and the stability map (see [12] for a clear explanation) of sessile and 

pendant drops, respectively, and the paths followed by drops on hydrophobic and hydrophilic substrates 

are reported for both evaporation modes (thick black lines).  

 

The initial Bond number is 0.6 for the hydrophobic substrate and 1.6 for the hydrophilic substrate. 

When the CCA evaporation mode is set, the evaporation process is recorded until the Bond number 

reduces to 0.2, while with the CCR evaporation mode the process is analysed until the contact angle 

reduces to 20° for the hydrophilic substrate (θc,i=50°) and until the Bond number reduces to 0.25 for the 

hydrophobic substrate (θc,i=100°). The evaporative cooling effect is considered, setting the wall thermal 

conductivity equal to 1.05 W/mK (glass substrate) and it is further analysed later in this section. The 

initial drop temperature is fixed equal to 20°C in equilibrium with the wall and the surrounding gas. 

Figure 4 shows, for the CCA evaporation mode and θc,i=50°, the transient profiles of the non-

dimensional equivalent drop radius squared versus the non-dimensional time, 2

10 ,0/ eqtD Rτ = , where D10 

is the mass diffusion coefficient of the vaporizing species in air, calculated at the initial conditions, for 

sessile, pendant and a spherical cap drops, with the same initial volume. The evaporation process follows 

the well-known D2-law for all the drop shapes (with the exception of the short initial evaporative cooling 

period), with the sessile drop vaporizing faster. Figure 4 reports the corresponding profiles of the drop 

temperature, which evidences the initial cooling (about 0.5 degrees) followed by an almost constant 

temperature period. The time to reach Bo=0.2 is 3.3% and about 7% greater for the spherical and the 

pendant drops, respectively. For the CCA evaporation mode and θc,i=100° the differences in the time 

needed to reach the Bond number equal to 0.2 differ by less than 0.9%. Figure 5a shows the transient 

profiles of the heat rates as function of τ for the three drop shapes vaporizing in CCR mode on a 

hydrophilic substrate. When the drop contact angle reduces to 20°, the final Bond number is equal to 

0.874, 0.673 and 0.8 for the sessile, the pendant and the spherical drops, respectively. For the CCR mode 

too, the pendant drop vaporizes slower, always experiencing smaller evaporation and heat rates. 

Differently from the CCA cases, the evaporation and heat rates of the spherical-cap drop are initially 

 

 
Figure 3. Stability map for pendant drops (left) and shape map for sessile drops (right). The top 

grey curve in the graph on the left is the stability limit for pendant drops. The dashed lines are 

iso-Bo, the continuous lines are iso-θc, the thick black curves show the paths of CCA and CCR 

evaporating drops. The meaning of the geometrical parameters h and Rc is explained in figure 2. 
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lower than those of the sessile drop; at about τ =5000, the spherical-cap drop starts to show higher 

evaporation and heat rates. The time to reach Bo=0.9 is about 12% longer for the pendant drop compared 

to the sessile drop, and about 0.7% shorter for the spherical drop. The drop temperature varies in a range 

of less than 0.5 degrees for all the three drop shapes (not shown here). On a hydrophobic substrate 

(θc,i=100°), the effect of drop shape is rather limited, as for the corresponding CCA case. When the Bond 

number reduces to 0.25, θc is equal to 40.7°, 67.9° and 47.8° for the sessile, the pendant and the spherical 

drops, respectively. The lifetime to evaporate up to this point is 1.5% and 0.2% higher for the pendant 

and the spherical drops, respectively, compared to the sessile one.  

 

 
Figure 4. Non-dimensional drop radius squared (left) and drop temperature (right) versus the non-

dimensional time, for a sessile, a pendant and a spherical cap drop, on a hydrophilic substrate. 

 

(a)                                                                       (b) 

 
Figure 5. (a) Sensible heat rate exchanged with the gas, Qs (dash line), heat rate from the substrate, Qc 

(dash-point line) and latent heat rate, Ql=mevh
’
LV (solid line), versus the non-dimensional time. (b) Drop 

temperature versus the non-dimensional time on a substrate with three thermal conductivities.  

 

The effect of wall thermal conductivity on the cooling and evaporation characteristics for the CCR 

mode and θc=50° is briefly analysed, for three values of the wall thermal conductivity, namely 0.033 

W/mK (polyurethane), 1.05 W/mK (glass) and 12.1 W/mK (stainless steel). Figure 5b shows the profiles 

of drop temperature as function of the non-dimensional time within the initial evaporative cooling 

period. The cooling effect is important for the polyurethane substrate, with drop temperature reducing 

of about 4.4°C. On more conductive walls the cooling effect is less evident and the evaporation becomes 

faster. The effect of drop shape is similar for all the scenarios with the three selected thermal 

conductivities. The larger the thermal conductivity, the smaller the time when the spherical-cap shaped 
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drop starts vaporizing faster than the sessile drop, while the pendant drop always experiences the slowest 

vaporization. 

Conclusions 

The paper reports a theoretical investigation of the evaporation of sessile and pendant water drops with 

the specific aim to show the effect of drop deformation due to gravity on the evaporation characteristics. 

Drops on hydrophobic (θc=100°) and hydrophilic (θc =50°) substrates were studied. A comparison 

between the evaporation characteristics of pendant and sessile drops, which are differently deformed by 

gravity, and a spherical non-deformed drop, deposed on the same substrates, was performed. Two 

evaporation modes (constant contact angle, CCA, and constant contact radius, CCR) were considered. 

For all the selected cases, the pendant drops always show the slowest vaporisation. Differences are larger 

for hydrophilic substrates than for the hydrophobic ones, mainly due to the fact that, for stability issues, 

the initial drop sizes (and therefore the drop deformation) are smaller. The maximum difference in the 

evaporation time between the pendant and the sessile drops was found to be about 12% in case of 

evaporation on hydrophilic substrate in CCR mode.  

The effect of substrate conductivity of drop evaporative cooling was briefly analysed, by comparing 

the effect of three very different substrates (insulating material, glass and stainless steel). As expected, 

the larger effect was found for the case of insulating material with a cooling of about 4.4°C, while with 

the more conductive material (stainless steel) the effect was much lower (less than 0.1°C). 

Appendix 

The main features of the model proposed in [22], which allows to consider the dependence of the gas 

mixture thermo-physical properties on temperature are briefly summarised here (refer to [22, 19] for 

more details). The gas mixture properties were assumed to depend on the absolute temperature through 

power laws as 

 ( ) ( ) ( ) ( )( )0 1

0 1

1 11 0 1
10 10, ,

0 1

ˆ ˆ
ˆ ˆ ˆ ˆ ˆ ˆ; ; ;

ˆ ˆ

q q

m m b b

ref ref ref ref mix ref p p ref refq q

ref ref

a T a T
D D T T c c T T k k c c T T

a T a T

− − −+
= = = =

+
  (A1) 

where ˆ /T T T∞= , T∞  is the free stream temperature and the pedex ref refers to an arbitrary reference 

condition. The mixture thermal conductivity is obtained by the Wassilieva [34] relation, and the 

exponents m, qp and b depend on the species involved. Under uniform Dirichlet boundary conditions on 

the drop surface and at infinity, the solution to the conservation equations for the vapour concentration 

and the temperature fields can be written in a closed form when the harmonic auxiliary function Φ (see 

equations 3) is known. Defining the function 
( )( )( )0 1
1 1 1

0 1
ˆ ˆ ˆ ˆln 1

q q m b

ref ref ref MH y a T a T T Le
− − −= − + , where y(1) is the 

vapour molar fraction and  ( ) ( ) ( )1 11

, 10, ,1 /M p ref ref ref mix refLe b Mm c D c k
− = + , then  

 

0 1

0 1

0 1

0 1

1 1
2 20 1

0

0 0 0 1 0

1 1
1 10 01

0

0 0 0 1 0

ˆ ˆ1ˆ ˆ ˆ ˆ

ˆ ˆ
ˆ ˆ

1 1

b b
q m q m

h h

b b
q q

g g

a aT T
H T W T W H

K h K h K

a aT T
T W T W

K q K q K

+ +
+ − + −

+ +
+ +

    
= − + +       

     

    ΦΦ = − + + Φ       + +     

  (A2) 

where K₀, H₀, Φ₀ and Φ₁ are constants to be obtained from the boundary conditions, 

( ) ( )2 / 1
p p

h q m b= + − +  and ( ) ( )1 / 1
p p

g q b= + + . The function ( )sW x  is related to the 

hypergeometric function by ( ) ( )2 1 ,1,1 ,sW x F s s x= + . The sensible heat flux and the vapour mass flux 

on the drop surface can then be calculated in terms of the gradient of Φ as 

 ( ) ( )
( ) ( )

( )
( )0 01 1

1

, 0,1 1

1

, 0 1 1 0 1 1

ˆˆ
;

ˆ ˆ ˆ ˆ

bb
mix ref smix ref ref

j n j j j q j jq qq q

p ref ref ref ref ref

k K Tk T
n f q f T

c a T a T a T a T

+

∞

−
= ∇ Φ = − ∇ Φ = ∇ Φ = − ∇ Φ

+ Φ + Φ
  (A3) 
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The heat and evaporation rates are then found by integrating the normal component of the fluxes 

over the drop surface 

 
( )1

;
ev n j s q j

A A
m f dA Q f dA= ∇ Φ = ∇ Φ ɺ   (A4) 
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