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Introduction

In many applications there is the need to calibrate a vector of decision variables. For instance, in the

context of control systems, we might be interested in tuning the parameters of a controller in order

to achieve some desired performances [36]. Similarly, many machine learning methods require a

proper calibration of their hyper-parameters so that certain requirements are met [15]. An important

remark is that, in some cases, it might be difficult or even impossible to objectively quantify the

“goodness” of a calibration of the decision variables. For example, the performances of a controller

tuning might be assessed by a human operator (decision-maker) that expresses his/her judgement

through visual inspection (or other sensory evaluations) of the behavior achieved by the system under

control. Whether the “goodness” of a calibration is evaluated subjectively or objectively, we are often

interested in finding the tuning that attains the best results, i.e. the one that maximizes a measure of

performance, minimizes some cost or best satisfies the human decision-maker’s criterion. At the same

time, the values that the decision variables can assume might be restricted in some way. For example,

only those controller calibrations that stabilize the system under control [102] are actually of interest.

The goal that we have in mind is concise, yet staggeringly difficult: find the global solution(s) of an

optimization problem [143]. The “goodness” of a calibration is described by an objective function1,

which is either minimized or maximized. The constraints of the optimization problem distinguish the

tunings that are allowed (feasible) from those that are not (infeasible), effectively defining the decision

space. In most cases, it is also possible to quantify to which degree each constraint is satisfied/violated.

Finally, a global solution of an optimization problem is a feasible calibration of the decision variables

that achieves the lowest (or highest) value of the objective function.

Numerous types of optimization problems exist. We could distinguish between linear and nonlinear

[100], convex and non-convex [18], local and global [143] optimization problems. Alternatively, mo-

tivated by the previous examples, we could classify an optimization problem based on the information

that we have available on the objective function and the constraints functions. We distinguish between:

• A-priori known objective/constraints functions, in a sense that their analytical expressions are

available. For example, we might be interested in estimating the parameters (decision vector) of

a model that describes some physical phenomenon. To do so, we could acquire some data on the

phenomenon and find the parametrization that minimizes the deviation, in a Least Squares [57]

sense, between the model and the observations (objective function). Some parameters might
1Objective as in goal, not to be confused as the opposite of subjective. In fact, as we will see in this book, an objective
function can represent the subjective criterion of a human decision-maker.
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represent positive physical quantities (such as masses, resistances, and so on), hence we require

a (a-priori known) positivity constraint for each.

• Unknown but measurable objective/constraints functions. We could view these as black-boxes

that take a calibration of the decision vector as the input and return the degree of “good-

ness”/violation as the output. For instance, we might be interested in finding the controller

calibration that minimizes the settling time of the closed-loop step response of a control system

but, at the same time, exhibits a small overshoot [36]. Typically, there does not exist a tuning

that simultaneously minimizes both criteria, a trade-off must be made [84]. We could proceed

as follows: minimize the settling time (objective function) and ensure that the overshoot does

not exceed a maximum tolerated level (constraint). Clearly, if no accurate mathematical model

of the control system is available, the settling time and the overshoot resulting from a calibration

of the controller’s parameters can only be measured by performing an experiment.

• Unknown and not quantifiable objectively objective/constraints functions. In this case, the

optimization is carried out by actively querying a human decision-maker, who discerns “good”

calibrations from “bad” ones (objective function) and, at the same time, assesses whether a tuning

is acceptable (feasible) or not (infeasible). In this case, information on the objective function

is expressed in the form of preferences, e.g. “this calibration is better than that one”. From

an utility theory [104] standpoint, the preferences of the decision-maker can be described by a

(unknown) mathematical function that associates to each tuning its level of satisfaction (utility).

Furthermore, the most preferred tuning is the one which has the highest utility. Constraints that

are unknown and cannot be quantified objectively, which we refer to as decision-maker-based

constraints, are assessed in a different manner: we ask the decision-maker a “yes/no question”

(e.g. “is this calibration acceptable?”) [156]. From an optimization perspective, acceptability is

equivalent to feasibility. We wrap up this last classification of the objective/constraints functions

with a clarifying example. Consider a highly configurable packaging plant and suppose that the

quality of the produced packages depends on several calibration parameters (decision vector).

A quality control inspector assesses the performances of the plant by taking samples (packages)

resulting from different tunings of the industrial process. The inspector would like to select the

calibration that best suits his/her quality standards (e.g. the packages are wrapped uniformly,

the end product is visually appealing, and so on). To do so, he/she keeps comparing samples

resulting from different parametrizations (such as “the packages obtained by calibration 𝒙1 are

better than those produced by 𝒙2”), until a satisfactory tuning is found. At the same time, it is

2
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reasonable to assume that some calibrations of the packaging plant produce undesirable results

(e.g. if some of the packages are damaged in the process). In such cases, the inspector simply

states that the tuning is not acceptable (infeasible)2.

In practice, an optimization problem could include a combination of different types of objective/-

constraints functions. For example, we could have problems with a black-box objective function but

a-priori known constraints functions.

The task of finding the global solutions of an optimization problem has been addressed in the global

optimization literature [59, 97, 139, 143]. Compared to local optimization [100], finding global

solutions is much harder due to the fact that an exhaustive search of the feasible region might be

required. Nonetheless, many general purpose global optimization algorithms have been proposed in the

past fifty years. These include: DIvide a hyper-RECTangle (DIRECT [67]), multi-start methods [90],

simulated annealing [75], Particle SWARM (PSWARM [72]) optimization and evolutionary algorithms

(such as genetic algorithms) [8]. In practice, most of these methods require an excruciatingly high

number of evaluations of the objective/constraints functions to converge to a sufficiently accurate

global solution of the optimization problem. Clearly, whenever either or both the objective function

and the constraints functions are unknown and expensive to measure (e.g. they might require running

a computer simulation or performing a real-world experiment, see previous examples), the number

of evaluations must be as low as possible. Thus, a more suitable and realistic goal would be: find

a calibration of the decision vector with a lower degree of optimality accuracy but using the least

amount of evaluations. Driven by this goal, two branches of global optimization have emerged: black-

box optimization and preference-based optimization. The former addresses those global optimization

problems wherein the objective function and (possibly) the constraints functions are unknown but

measurable, while the latter handles calibration processes which involve human decision-makers.

Black-box optimization has gained a lot of popularity in the past two decades due to the widespread

of Bayesian optimization [22, 45, 93], which has been successfully used to tune the hyper-parameters

of machine learning algorithms [134] but also for controller calibration purposes [14, 42, 73, 89, 98].

At the moment, preference-based optimization is more niche, very few methods [11, 12, 21, 52, 156]

and applications [120, 155] are present in the literature.

2In this example, the objective function (quality of the packages) and the constraints (acceptability) are closely related:
an acceptable tuning is “better than” any unacceptable one. In practice, this need not be the case. For example, we could
have two decision-makers: the quality inspector, who defines the “goodness” of the packages, and an industrial operator,
who checks if the plant is working properly. It could be that the tunings which produce high quality packages are too
“demanding” for the industrial process (unacceptable).
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The most widely used algorithms for black-box and preference-based optimization are surrogate-based

methods (or response surface techniques) [65, 149]. These methods rely on approximations of the

objective function and the constraints functions, which are referred to as surrogates, that are cheap to

evaluate (as opposed to their counterparts). The rationale behind response surface techniques is quite

straightforward:

1. Approximate the objective function and the constraints functions using only the information at

hand (i.e. the measures and/or the feedback from the decision-maker),

2. Propose a new calibration to be evaluated,

3. Perform the simulations/experiments required to assess the quality of the proposed tuning,

4. Repeat until a maximum number of evaluations is reached.

In some sense, even Newton’s method [100] relies on a surrogate: at each iteration, the algorithm

constructs a quadratic approximation of the objective function at a point and selects the next calibration

as the decision vector that minimizes (or maximizes) it. However, differently from the quadratic

approximation of Newton’s method, the surrogates used by response surface techniques aim to describe

the objective function and the constraints functions in a global sense. For this reason, surrogate-

based methods keep track of all the calibrations that have been tried instead of only the current best

candidate (as it is common for more traditional optimization algorithms). The most popular surrogate

models for black-box and preference-based optimization are based either on radial basis functions

[38] or Gaussian processes [153], which are both suited for global function approximation. The

former models are deterministic while the latter have a probabilistic interpretation. Most Bayesian

optimization methods actually rely on Gaussian process approximations [22, 45, 93]. At the same

time, there exist several other optimization algorithms that use radial basis function surrogates, see for

example [10, 11, 54, 111, 115, 116, 156]. Most response surface techniques differ on how they handle

the exploration-exploitation dilemma [65, 149]:

• On the one hand, it might be tempting to use the surrogate models as “proxies” for the real

objective/constraints functions and simply solve an approximate version of the optimization

problem (exploitation);

• On the other hand, the only way to improve the quality of the approximations and to guarantee

the global convergence of a surrogate-based method is to evaluate calibrations that are located

in those regions of the search space where less information is available (exploration).
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Global convergence is heavily related to exploration: in some sense, any optimization algorithm that

is globally convergent must be, ultimately, exhaustive [97]. The easiest way to explore the decision

space is to sample it in a uniform fashion, by constructing a grid of points at which to measure the

objective/constraints functions. The very same rationale is used by one of the most straightforward

global optimization methods, namely Grid Search (GS [5]). The resolution of the grid determines the

accuracy of the solution returned by GS [5]. Clearly, such method is extremely inefficient: the number

of samples scales exponentially in the number of decision variables. Instead, the goal of surrogate-

based methods is to minimize the number of samples at which to evaluate the objective/constraints

functions, making the pure exploratory approach impractical. For this reason, most response surface

techniques select new calibrations for evaluation by trading off exploration and exploitation. The

criterion used to make the selection is called the infill sampling criterion. Typically, it involves solving

an additional global optimization problem wherein an acquisition function (which trades off exploration

and exploitation) is either maximized or minimized. Some widely known acquisition functions for

Bayesian optimization are the probability of improvement [79] and the expected improvement [94]. In

the non-Bayesian framework, many methods use an explicit trade-off between the objective function

surrogate, an exploration function and a penalization term for the black-box constraints, see for example

[10, 11, 116, 156].

Contributions

This book focuses on surrogate-based methods for black-box and preference-based optimization.

(1) A first minor contribution of this book is a unified dissertation on global, black-box and preference-

based optimization, which helps us to better contextualize surrogate-based methods. Typically, these

three frameworks are treated separately in the literature, due to their vastness. In this book, we

highlight how global, black-box and preference-based optimization procedures are all leaves of the

same tree, which aim to solve the same global optimization problem using different information on

the objective function and the constraints. Furthermore, we show that the exploration-exploitation

dilemma is a recurrent topic in all three frameworks.

We are mainly interested in those surrogate-based methods that rely on radial basis function approxi-

mations. In particular, we focus on four recent procedures: (i) GLobal minimum using Inverse distance

weighting and Surrogate radial basis functions (GLIS [10]), which is used for black-box optimization

(with no unknown constraints functions), (ii) GLISp [11], that is an extension of the latter method to

the preference-based framework, and (iii/iv) C-GLIS/C-GLISp [156], which add unknown (possibly
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decision-maker-based) constraints to the picture. We derive several extensions of the just mentioned

methods:

(2) The second contribution of this book is the definition of the algorithms GLIS-r [108] and

GLISp-r [109], which extend GLIS [10] and GLISp [11] respectively. In particular, we address

some limitations of the exploration function used by the latter methods and propose a revisited

infill sampling criterion. Moreover:

• We provide a proof of convergence for GLIS-r [108] and GLISp-r [109]. Currently, no

such proof is available for GLIS [10] and GLISp [11]. To the best of our knowledge, in the

preference-based optimazion literature, no other surrogate-based method has convergence

guarantees. In this book, we show, by leveraging notions of utility theory [104], that it

is possible to prove the convergence of a preference-based optimization procedure as we

would for any other global or black-box optimization algorithm.

• We show on several benchmark optimization problems that GLISp-r [109] is more robust

than GLISp [11], i.e. the proposed method is less likely to get stuck on local minima of

global optimization problems, without sacrificing its convergence speed.

(3) The third contribution of this book is the derivation of a general surrogate-based scheme for

black-box and preference-based optimization, which we refer to as generalized Metric Response

Surface (gMRS [108]) due to its similarities to MSRS [116], a popular black-box optimization

procedure. gMRS [108] is able to handle any continuous surrogate model and any proper

exploration function. Its global convergence is also addressed. In practice, we show that

GLIS-r [108] and GLISp-r [109] are none other than two implementations of the gMRS [108]

scheme.

(4) The fourth contribution of this book is the extension of the GLIS-r [108] and GLISp-r [109]

procedures to the case when also unknown (possibly decision-maker-based) constraints are

present, giving rise to C-GLIS-r and C-GLISp-r. Differently from C-GLIS and C-GLISp

[156]:

• We modify the Probabilistic Support Vector Machine classifier [15, 106], making it more

suitable for black-box and preference-based optimization, and use it to estimate the prob-

ability of feasibility of a calibration of the decision vector (with respect to the unknown

constraints).
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• We propose an infill sampling criterion that behaves differently based on whetherC-GLIS-r

and C-GLISp-r have found a feasible calibration or not.

The proposed methods, C-GLIS-r and C-GLISp-r, are shown to be more efficient than C-GLIS

and C-GLISp [156] on several benchmark optimization problems.

(5) The fifth and last contribution of this book is the application of the proposed algorithms on a

control systems case study. In particular, we use GLIS-r [108], GLISp-r [109], C-GLIS-r and

C-GLISp-r to calibrate the position controller of a hydraulic forming press. We rely on a simulator

of the hydraulic press under study, which makes it possible to test several different optimization

strategies. In the black-box framework, we define suitable performance indicators and use them as

the objective/constraints functions. Instead, in the preference-based setting, the author of this book

plays the role of the calibrator, who assesses the “goodness” of the controller tunings and states which

are not acceptable (decision-maker-based constraint). We show that preference-based optimization

can be quite useful when only qualitative control specifications are available. Furthermore, we

highlight the advantages of adding the unknown (possibly decision-maker-based) constraints: (i)

fewer unsatisfactory calibrations are tested and (ii) the exploration of the whole decision space is

limited, making it possible to find “good” controller tunings in fewer simulations.

Book outline

The remainder of this book is organized as follows:

• Part I reviews global, black-box and preference-based optimization in a unified manner and can

be considered as a minor contribution of this book.

– Chapter 1 defines the global optimization problem, presents key concepts related to the

convergence of any global optimization method and reviews several general purpose algo-

rithms, highlighting different strategies for tackling the exploration-exploitation dilemma.

– Chapter 2 covers the black-box optimization framework with a focus on surrogate-based

methods. The most popular surrogate models are reviewed and a plethora of infill sampling

criteria are examined.

– Chapter 3 presents the definition of the preference-based optimization problem from an

utility theory perspective and shows how surrogate-based methods can be employed to

solve it.

– Chapter 4 reviews the GLIS [10], GLISp [11], C-GLIS and C-GLISp [156] algorithms.
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• Part II covers the theoretical contributions of this book.

– Chapter 5 describes the proposed extensionsGLIS-r [108] andGLISp-r [109], addressing

their convergence to the global minima of the black-box and preference-based optimization

problems respectively. Then, the general surrogate-based scheme, gMRS [108], is derived.

Its convergence is also proven.

– Chapter 6 presents algorithms C-GLIS-r and C-GLISp-r, which extend the GLIS-r

[108] and GLISp-r [109] procedures to manage unknown (possibly decision-maker-based)

constraints.

• Part III contains the empirical results achieved by the proposed procedures on several bench-

mark optimization problems, as well as the control systems case study.

– Chapter 7 reports a thorough comparison between the proposed procedures, i.e. GLIS-r

[108], GLISp-r [109], C-GLIS-r and C-GLISp-r, and the original methods, namely GLIS

[10], GLISp [11], C-GLIS and C-GLISp [156].

– Chapter 8 shows the application of the presented black-box and preference-based algo-

rithms for the calibration of the position controller of a hydraulic forming press.

• Lastly, the appendices of this book are organized as follows.

– Appendix A reviews the mathematical background for this book (order theory, metric

spaces, differentiability of multivariable functions and basic optimization notions).

– Appendix B reports the benchmark optimization problems used to compare the algorithms,

in Chapter 7.

– Appendix C describes the settings for the black-box and preference-based optimization

procedures used in Part III.

8



Part I

Literature review and background





Chapter 1. Global optimization

This chapter and the following two present a thorough but gentle review of the optimization frame-

works of interest: Global Optimization (GO), Black-Box Optimization (BBO) and Preference-Based

Optimization (PBO). The main contributions of this book concern mostly the latter two frameworks.

However, GO, BBO and PBO are deeply intertwined, motivating a broader examination. Furthermore,

surrogate-based methods (that are the main focus of this book) are none other than a family of global

optimization algorithms. Due to the vastness of global, black-box and preference-based optimization,

these topics are often treated separately in the literature. Here, we provide a unified dissertation on

the three frameworks, which we consider to be a minor contribution of this book.

Roughly speaking, an optimization algorithm is a (often iterative) procedure that exploits the infor-

mation at hand on the objective function and the constraints functions to look for the solution(s) of

an optimization problem. To acquire information, the algorithm must evaluate an appropriate number

of samples of the decision vector. The main difference between GO, BBO and PBO lies in how the

sample evaluation process is assumed to be carried out and its resulting data, as highlighted by the

following Definition.

Definition 1.1: Sample evaluation. In this book, we use the term sample evaluation to refer

to the process of extracting information on the optimization problem at hand from a given

sample (interchangeably: point, calibration, tuning) of the decision vector. Global, black-box

and preference-based optimization procedures make the following assumptions on the objective

function and the constraints functions that constitute the optimization problem:

• Global optimization: the analytical formulations of the objective function and the con-

straints functions are available. A sample evaluation is simply the computation of the

values assumed by those functions at the given point. Derivative information can also be

included if the gradients (and the Hessians) of the objective function and the constraints

functions are also known, or if they can be estimated reliably (for example, through finite

differentiation [100]).

• Black-box optimization: the objective function and, possibly, some of the constraints func-

tions can only be measured by running computer simulations or performing real-world

experiments; no analytical formulations are available. Therefore, a sample evaluation
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amounts to executing one or several (possibly time-consuming and/or expensive) simula-

tions/experiments to measure the values of the functions of interest at a given point.

• Preference-based optimization: the only way to evaluate samples is through the inter-

action with a human Decision-Maker (DM). In particular, information on the objective

function comes in the form of preferences (e.g. “this calibration is better than that one”),

which are obtained by asking the DM to compare a sample to one or several other tunings

of the decision vector that have been previously evaluated. In turn, similarly to black-box

optimization, this might require running computer simulation or performing real-world

experiment, depending on how the decision-maker expresses his/her judgement. Instead,

decision-maker-based constraints require asking the DM whether or not a sample is fea-

sible or not, based on his/her (subjective) criterion. To summarize: a sample evaluation

in the preference-based optimization setting amounts to querying the decision-maker in

order to extract preferences and, possibly, feasibility information.

The rest of this Chapter is organized as follows. In Section 1.1, we present the global optimization

problem, whose solution is the goal of any global, black-box and preference-based optimization

algorithm. We review several key concepts that are fundamental for GO, BBO and PBO. In particular,

we address the existence of a global solution as well as the necessary and sufficient condition that

ensures the global convergence of any algorithm. Then, in Section 1.2, we briefly present some

general purpose global optimization methods, highlighting different ways to tackle the exploration-

exploitation dilemma. We also give a rough taxonomy of GO methods, contextualizing response

surface techniques.

1.1 The global optimization problem

As the name implies, Global Optimization (GO) is a branch of optimization tasked with finding the

global optimizers of an objective function over some constraint set. In this book, without loss of

generality, we consider the (constrained) minimization of a certain cost function. Typically, global

optimization procedures assume that the cost function is multimodal, i.e. it has several local minimizers

over the constraint set. The next Definition presents the global optimization problem.
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Definition 1.2: Global optimization problem [143]. We define the Global Optimization Problem

(GOP) as follows:

X∗ = arg min
𝒙
𝑓 (𝒙) (1.1)

s.t. 𝒙 ∈ Ω,

where:

• 𝒙 =

[
𝑥 (1) . . . 𝑥 (𝑛)

]⊤
∈ R𝑛, 𝑛 ∈ N, is the decision vector and 𝑥 ( 𝑗) is the 𝑗-th decision

variable,

• 𝑓 : R𝑛 → R is the cost function,

• Ω ⊆ R𝑛 is the constraint set (or feasible region/set) of the GOP (1.1),

• X∗ is the set of global minimizers of the GOP (1.1). If at least a solution exists, X∗ is

defined as:

X∗ =

{
𝒙∗𝑖 : 𝒙∗𝑖 ∈ Ω, 𝑓

(
𝒙∗𝑖

)
= 𝑓 ∗ = min

𝒙∈Ω
𝑓 (𝒙) , 𝑖 = 1, . . . , 𝑁∗

}
, (1.2)

otherwise X∗ = ∅. 𝑁∗ ∈ N ∪ {0} is the number of global minimizers of the GOP (1.1).

• 𝑓 ∗ in (1.2) is the global minimum of the GOP (1.1).

There exist several global optimization algorithms which make different assumptions on the feasible

region Ω of the GOP (1.1), such as:

• Ω = R𝑛, i.e. the GOP (1.1) is unconstrained;

• The GOP (1.1) is bound (or box) constrained, which means that:

Ω = {𝒙 : 𝒍 ≤ 𝒙 ≤ 𝒖} , (1.3)

where 𝒍, 𝒖 ∈ R𝑛, 𝒍 ≤ 𝒖, and the inequalities are to be considered component-wise;

• Ω includes several linear and nonlinear constraints, such as:

Ω =

{
𝒙 : 𝒍 ≤ 𝒙 ≤ 𝒖, bounds

𝐴𝑖𝑛𝑒𝑞 · 𝒙 ≤ 𝒃 𝒊𝒏𝒆𝒒, linear inequalities

𝐴𝑒𝑞 · 𝒙 = 𝒃𝒆𝒒, linear equalities (1.4)
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𝒈𝒊𝒏𝒆𝒒 (𝒙) ≤ 0𝑞3 , nonlinear inequalities

𝒈𝒆𝒒 (𝒙) = 0𝑞4

}
. nonlinear equalities

In (1.4), we differentiate between linear and nonlinear constraints. Moreover, 𝒍, 𝒖 ∈ R𝑛, 𝒍 ≤ 𝒖,

𝐴𝑖𝑛𝑒𝑞 ∈ R𝑞1×𝑛, 𝒃 𝒊𝒏𝒆𝒒 ∈ R𝑞1 , 𝐴𝑒𝑞 ∈ R𝑞2×𝑛, 𝒃𝒆𝒒 ∈ R𝑞2 , 𝒈𝒊𝒏𝒆𝒒 : R𝑛 → R𝑞3 and 𝒈𝒆𝒒 : R𝑛 → R𝑞4 .

𝑞1, 𝑞2, 𝑞3, 𝑞4 ∈ N ∪ {0} are the numbers of constraints belonging to each category. Notation-

wise, 0𝑞3 represents the 𝑞3-dimensional zero column vector (and similarly for 0𝑞4). Typically,

global optimization procedures only consider inequality constraints, hence Ω in (1.4) can be

concisely defined as:

Ω =
{
𝒙 : 𝒍 ≤ 𝒙 ≤ 𝒖, 𝒈(𝒙) ≤ 0𝑞

}
, (1.5)

where 𝒈 : R𝑛 → R𝑞, 𝒈 (𝒙) =
[
𝑔(1) (𝒙) . . . 𝑔(𝑞) (𝒙)

]⊤
, 𝑞 ∈ N ∪ {0}, includes both linear and

nonlinear inequality constraints.

Depending on the problem at hand, the set of global minimizers of the GOP (1.1), i.e. X∗ in (1.2),

could be empty. The following Theorem gives us sufficient conditions that ensure the existence of a

global minimizer.

Theorem 1.1: Extreme Value Theorem [5]

Suppose that 𝑓 : R𝑛 → R is a continuous function and Ω ⊂ R𝑛 is a compact set. Then:

arg min
𝒙∈Ω

𝑓 (𝒙) ≠ ∅.

Often, it is sufficient to find a single point in X∗. However, typically, it is not possible to seek an

exact solution, 𝒙∗
𝑖
∈ X∗, using a finite number of sample evaluations. The following Theorem gives

us necessary and sufficient conditions for the asymptotic (i.e. as the number of sample evaluations

goes to infinity) convergence of a global optimization method.

Theorem 1.2: Convergence of a global optimization algorithm [143]

LetΩ ⊂ R𝑛 be a compact set. An algorithm converges to the global minimum of every continuous

function 𝑓 : R𝑛 → R over Ω if and only if its sequence of iterates,

⟨𝒙𝑖⟩𝑖≥1 = ⟨𝒙1, 𝒙2, . . .⟩,

is dense in Ω.

In a sense, Theorem 1.2 says that any convergent method must be ultimately (i.e. if allowed to run

indefinitely) exhaustive, although the detailed exploration of the unpromising regions of Ω might be
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delayed [97]. In practice, instead of finding an exact solution of the GOP (1.1), a more realistic goal

is to seek an 𝜖-optimal solution, which is defined as follows.

Definition 1.3: 𝜖-optimal solution [59]. Consider the GOP in (1.1) and assume that X∗ ≠ ∅.

Suppose that an algorithm A has been used to solve the optimization problem and let 𝒙𝒃𝒆𝒔𝒕 ∈ Ω

be its best-found candidate. Define an optimality accuracy 𝜖 ∈ R>0. We say that A has obtained

an 𝜖-optimal solution for the GOP (1.1) if:

min
𝒙∗
𝑖
∈X∗



𝒙𝒃𝒆𝒔𝒕 − 𝒙∗𝑖




2 ≤ 𝜖 or (1.6a)

| 𝑓 (𝒙𝒃𝒆𝒔𝒕) − 𝑓 ∗ | ≤ 𝜖 . (1.6b)

In (1.6a), the optimality is evaluated based on the distance between 𝒙𝒃𝒆𝒔𝒕 and its closest global

minimizer in X∗; instead, in (1.6b), only the cost function values are considered. Clearly, if 𝑓 (𝒙) is

Lipschitz continuous, the two definitions of 𝜖-optimality are closely related. In general, any algorithm

which guarantees to find an 𝜖-optimal solution in finite time must make a number of sample evaluations

that is, in the worst case, exponential in the number of decision variables 𝑛 [97]. Intuitively, this bound

arises from the fact that we need to evaluate a set of samples which contains points that are sufficiently

near to all points in the constraint set Ω; in turn, this means that we have to construct something like a

grid of points in 𝑛 dimensions with a resolution determined by 𝜖 [85]. The number of points in such

a grid scales exponentially in 𝑛. This rationale is followed by one of the simplest global optimization

algorithms, namely Grid Search (GS [5]), which we cover in Section 1.2.2.

1.2 Global optimization algorithms

Up until now we have only described the global optimization problem in general, without referring to

any particular algorithm that can be used to solve it. In practice, there exist an extensive amount of

global optimization methods. On the surface, we can distinguish between derivate-free and derivative-

based algorithms [118]. The former procedures do not rely on the gradient (and Hessian) of the cost

function, nor those of the constraints functions, in any way. The search is carried out using only the

cost function and constraints functions values obtained through sample evaluations. Also, no attempt

is made to approximate the derivatives (for example, by means of finite differentiation [100]). Vice-

versa for derivative-based methods, which either assume that the derivatives of the cost function (and,

possibly, of the constraints functions) are available or can be estimated in some way. Before introducing

a more thorough taxonomy for global optimization methods, we mention some key principles that

need to be taken into consideration when defining optimization algorithms.
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Remark 1.1 (Principles for constructing optimization algorithms [143]). There are three key principles

for the definition and the comparison of optimization algorithms:

1. A method that uses all available a-priori information will outperform any other algorithm that

relies on less information. Some examples of a-priori information in the optimization context

are:

• Analytical expressions of the cost function 𝑓 (𝒙) and its derivatives,

• Lipschitz constant of 𝑓 (𝒙) (in case the cost function is Lipschitz continuous),

• Approximate location of one of the global minimizers of the GOP (1.1).

2. If no a-priori information is available, then an algorithm must rely only on the information

brought by the evaluation of a set of samples.

3. Given a fixed number of sample evaluations, optimization algorithms will only differ from each

other in the distribution of the tried points.

The latter principles give us some insight on how to compare different algorithms.

Definition 1.4: Sample efficiency of optimization algorithms. Consider two global optimization

algorithms A1 and A2. Suppose that A1 and A2 are used to solve a global optimization problem

(1.1) to a prescribed optimality accuracy 𝜖 ∈ R>0 (as in Definition 1.3). Define 𝑁A1 and 𝑁A2

as the number of sample evaluations required respectively by A1 and A2 to find an 𝜖-optimal

solution. Then, we say that A1 is more sample efficient than A2 on the specific GOP and for a

given 𝜖 if and only ifa

𝑁A1 < 𝑁A2 .

aClearly, this is only one of many possible ways of comparing different algorithms. Alternatively, we could assess
which method shows, on average, lower execution times. We also would like to add that, in order to achieve a fair
comparison, both algorithms should be initialized in a similar fashion. For example, if A1 and A2 require an initial
pool of samples from which to start the search, then the same set of points should be fed to the two procedures.

Intuitively, the sample efficiency of a method must depend on the optimization problem at hand, as

well as on the chosen optimality accuracy. Some GOPs (1.1) are generally much harder than others;

for example, a non-convex problem with many local minimizers is definitely harder than a convex one.

At the same time, some algorithms (such as DIRECT [67]) are able to find a promising region of Ω

(i.e. one which is likely to contain a global minimizer) quite fast but struggle when performing local

search. Therefore, these methods could take an excruciatingly high amount of sample evaluations to

achieve an 𝜖-optimal solution when 𝜖 is “very small”.

16



Global optimization

Notation and conventions. In this book (as in most of the optimization literature) we use the term

“sample efficient” more loosely. In particular, we say that an algorithm is sample efficient if, when

compared to other similar methods, it converges faster to a “good” solution of the GOP (1.1) on several

benchmark global optimization problems.

The key to sample efficiency is a proper balance between two (often) conflicting objectives [97, 139,

149]:

1. Exploitation (or local search): the algorithm uses all the knowledge available on the optimization

problem (i.e. the previously evaluated samples and, possibly, a-priori information) to select new

candidate points that are likely to improve the current best solution. Exploitation often amounts

to performing a local search over the most promising region of Ω found by the algorithm, with

the aim of finding a local (or possibly global) solution of the GOP (1.1).

2. Exploration (or global search) of the whole constraint set Ω, so that no region which could

possibly contain a global minimizer of the GOP (1.1) is left uncharted.

Before moving on to reviewing some popular global optimization algorithms, which differ on how

they handle the exploration-exploitation dilemma, we present a taxonomy of GO methods. Due to

the fact that global optimization is extremely broad, several different taxonomies have been proposed

throughout the years, see for example [97, 139, 143]. In this book, we consider three macro-categories

of global optimization methods:

1. Exact (or complete) methods [97] are deterministic algorithms which guarantee to find a global

minimizer of the GOP (1.1) (or, rather, an 𝜖-optimal solution) using a predictable amount

of resources, such as sample evaluations or computation time. Typically, sufficient a-priori

information on the cost function is required for such guarantee and in order to define a proper

stopping criterion. Exact methods mostly rely on two principles:

• The branching principle: the GOP (1.1) is recursively split into subproblems which are,

sooner or later, easy to solve. Since, in practice, only a limited number of points can be

evaluated, the performances of a pure branching scheme depend on its ability to find a

good ordering of samples to be evaluated, for which premature termination has no severe

effect. Some examples of exact methods which follow the branching principle are Grid

Search (GS [5]) (Section 1.2.2) and DIvide a hyper-RECTangle (DIRECT [67]) (Section

1.2.3).
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• The branch and bound principle: the GOP (1.1) is recursively split into subproblems and

for each of these we compute a bound on the cost function. The bounds are then used to

eliminate those subproblems which cannot lead to a point that is better than (or at least

as good as) the best sample found so far. See [87, 97] for an in-depth look at branch and

bound methods.

2. Direct methods [143] are all those methods which only rely on the information brought by

the evaluated samples (i.e. their locations, the values of the cost function and the constraints

functions, possibly including their derivatives) to carry out the search. In practice, these methods

can be globally convergent but, differently from exact methods, have no way of knowing when

an 𝜖-optimal solution has been found since they make no assumptions on the GOP (1.1) (such

as Lipschitz continuity of 𝑓 (𝒙)). Hence, a typical stopping criterion is a maximum number of

sample evaluations/iterations or a maximum tolerated execution time. This macro-category is

extremely broad, here we just mention three popular families of direct methods:

a) Random search methods, which perform the optimization by relying on randomly generated

candidate samples. These can be used as starting points for local optimization procedures.

Random search methods include the well-known multi-start methods (Section 1.2.4)

b) Trajectory methods; these operate similarly to a more traditional local optimization pro-

cedure, but include exploration strategies that prevent them from getting stuck on local

minima. A popular trajectory method for unconstrained and bound constrained global

optimization is simulated annealing [75], which operates as follows. The algorithm starts

from a point 𝒙1 ∈ Ω. At each iteration 𝑘 , the procedure generates a sample, 𝒙𝑘+1, in a

neighborhood of its current best solution, 𝒙𝑘 , based on some probabilistic sampling rule.

Then, 𝒙𝑘+1 replaces 𝒙𝑘 either if 𝑓 (𝒙𝑘+1) ≤ 𝑓 (𝒙𝑘 ) or with probability

exp
{
− 𝑓 (𝒙𝑘+1) − 𝑓 (𝒙𝑘 )

𝑇𝑘

}
when 𝑓 (𝒙𝑘+1) > 𝑓 (𝒙𝑘 ) (acceptance rule). The algorithm is stopped once a maximum

number of iterations is reached. Simulated annealing is inspired from the fact that the

heating (annealing) and slow cooling of a metal brings it into a more uniformly crystalline

state that is believed to be the state where the free energy of bulk matter takes its global

minimum [97]. Similarly, the acceptance rule depends on the parameter 𝑇𝑘 ∈ R>0 (called

the temperature) that decreases (cools) as the iterations go on, making it less likely to

accept new samples 𝒙𝑘+1 that bring no improvement.
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c) Population-based methods [139] which carry out the optimization by initializing and

updating a set of candidate samples (called the population). These algorithms typically

follow nature-inspired heuristics, using principles taken from biological evolution, physics

and social behavior. Well-known procedures that pertain to this class are the Particle

SWARM (PSWARM [72]) optimization algorithm and evolutionary algorithms (such as

genetic algorithms) [8].

3. Surrogate-based methods (or response surface techniques)1 [65, 149]; these algorithms itera-

tively build surrogate models that approximate the cost function (and, possibly, some of the

constraints functions) of the GOP (1.1) and use them to drive the search for optimal solutions.

Typically, response surface techniques are more computationally demanding than the aforemen-

tioned methods due to the time required for the construction of the surrogate model(s). The aim

of surrogate-based methods is the minimization of the number of sample evaluations required

to achieve an 𝜖-optimal solution. For this reason, response surface techniques are typically

applied to those GOPs (1.1) where the cost function (and, possibly, some of the constraints

functions) are expensive to evaluate. Some response surface techniques are globally convergent,

although it is often of secondary concern since only few sample evaluations can be performed.

Surrogate-based methods are the de facto standard algorithms for black-box and preference-

based optimization. For this reason, they will be covered in detail in Chapter 2 and Chapter

3.

Note that the presented taxonomy is by no means complete, it only serves us to contextualize black-box

and preference-based optimization, as well as to give a brief overview of the most common families

of algorithms. For a more thorough examination see [97, 139, 143].

Several methods for global optimization have been proposed in the past years. Here, we forego an

exhaustive analysis and instead review a series of algorithms that pertain to different categories.

1.2.1 Relationship to local optimization

Before moving on with our dissertation on global optimization, it is important to highlight its rela-

tionship with local optimization. So far, we have seen how solving GOPs (1.1) can be particularly

complex, requiring a number of sample evaluations that is, in the worst-case, exponential in the number

of decision variables. The difficulties in global optimization stem mainly from the fact that [97, 143]:

1Surrogate-based methods are also referred to as indirect methods in [143].
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1. There are generally many local minimizers of 𝑓 (𝒙) over Ω but only one (a few) of them is (are)

the global minimizer(s),

2. The feasible region described by Ω may be disconnected,

3. General criteria for assessing whether a point 𝒙 ∈ Ω is a global solution for the GOP (1.1) and

not just a local minimizer are much harder to define. In particular, it is not sufficient to impose

some conditions on the gradient and the Hessian of 𝑓 (𝒙) (such as the ones in Appendix A.4).

See for example [59, 143] for some of these criteria.

Most often, an exhaustive search is needed to guarantee that the global minimizers of the GOP (1.1)

are found. However, some applications do not actually require seeking a global solution 𝒙∗
𝑖
∈ X∗ in

(1.2): a local solution 𝒙+ ∈ Ω, 𝑓
(
𝒙∗
𝑖

)
≤ 𝑓 (𝒙+) , might suffice.

Roughly speaking, local optimization procedures typically start from a single point, 𝒙1 ∈ R𝑛, and

try to improve upon it by producing a sequence of iterates ⟨𝒙𝑖⟩𝑖≥1 such that 𝑓 (𝒙1) > 𝑓 (𝒙2) > . . .

[100]. Typically, these methods do not keep track of all the points that have been tried but rather

only of the current best candidate. Conversely, as we will see shortly, global optimization procedures

often save most or all the samples that have been previously evaluated, as these provide valuable

(global) information on the GOP (1.1). The next Remark further distinguishes between local and

global optimization algorithms.

Remark 1.2 (Relationship between local and global optimization [59]). Local optimization procedures

also try to solve Problem (1.1) but, differently from global optimization algorithms, they are content

with finding a feasible point 𝒙+ ∈ Ω such that

𝑓
(
𝒙+

)
≤ 𝑓 (𝒙) , ∀𝒙 ∈ Ω ∩ N (𝒙1) ,

where 𝒙1 is the starting point for the local optimization procedure and N (𝒙1) is some neighborhood

of 𝒙1. Thus, 𝒙+ is only a local solution of Problem (1.1)

A particular case are convex optimization problems, for which any local solution is also a global

solution of the GOP (1.1) (see Appendix A.4).

Local optimization algorithms do not need to generate a sequence of iterates that is dense in Ω

to ensure their convergence to a local minimizer. Furthermore, there exist first-order and second-

order conditions that characterize the local minimizers of Problem (1.1), see Appendix A.4. These

are often used as a stopping criteria for local optimization algorithms. Strong theoretical results

are also available on the convergence rates of several of these methods. In the case of unconstrained

optimization problems, under some hypotheses, the steepest descent algorithm has a linear convergence
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rate whereas Newton and quasi-Newton methods show quadratic and superlinear convergence rates

respectively [100]. For this reason, local optimization methods can be particularly sample efficient

(in a sense that they converge to local minima quite fast), even when there are several thousands of

decision variables. Finally, there exist many local optimization methods which can handle nonlinear

equality and inequality constraints, such as Sequential Quadratic Programming, Penalty and Barrier

methods [100]. In comparison, global optimization procedures typically assume that the feasible

region is composed of only simple bounds on the decision variables (i.e. with Ω as in (1.3)). However,

as we will see in Section 1.2.6, penalty functions can also be used to handle nonlinear inequality

constraints for global optimization procedures.

To quote [85], “global optimization is hopelessly hard while local optimization is hopelessly easy”. If

the GOP (1.1) to be solved is convex, then there is no reason to use global optimization procedures.

However, in practice, many real-world applications require solving non-convex optimization problems,

hoping to find a global solution. These include: packing problems, scheduling problems, nonlinear

Least Squares problems and several engineering design problems [2, 57, 97], just to cite a few.

As a final remark, note that many global optimization procedures include local searches at the end:

initially, a GO method A1 locates a promising region of Ω that is likely to contain a global minimizer

of the GOP (1.1); then, a local optimization algorithm A2 looks for a more accurate solution, starting

from the best point found by A1.

1.2.2 Grid Search

One of the most straightforward algorithms for global optimization is Grid Search (GS) [5], which can

be applied to bound constrained GOPs (1.1), i.e. with Ω defined as in (1.3). We take advantage of its

simplicity to give some insights on how to address the global convergence of any GO procedure.

The optimization is carried out by generating a uniformly spaced grid of points and evaluating the

cost function at all the samples, returning the one which achieves the lowest value. Each decision

variable 𝑥 (𝑖) , 1 ≤ 𝑖 ≤ 𝑛, is discretized so that it can only assume 𝑛𝑔 ≥ 2, 𝑛𝑔 ∈ N, possible values that

are equidistant in the interval
[
𝑙 (𝑖) , 𝑢(𝑖)

]
. In total, the grid is composed of

(
𝑛𝑔

)𝑛 points, which are

all possible combinations among the discrete values that each 𝑥 (𝑖) can assume. Therefore, the total

number of sample evaluations is:

𝑁 =
(
𝑛𝑔

)𝑛
. (1.7)

Algorithm 1 describes one possible implementation of the Grid Search optimization procedure while

Figure 1 shows a two-dimensional example of the samples obtained by GS [5], with 𝑛𝑔 = 4 and for

𝒍 = 02, 𝒖 = 12.
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Algorithm 1: Grid Search (GS [5])
Input: (i) Cost function 𝑓 (𝒙) of the GOP (1.1); (ii) Lower bounds 𝒍 ∈ R𝑛 and upper bounds 𝒖 ∈ R𝑛 of the
GOP (1.1); (iii) Number of discrete values for each decision variable 𝑛𝑔 ≥ 2, 𝑛𝑔 ∈ N.
Output: (i) Best cost obtained by the procedure 𝑦𝑏𝑒𝑠𝑡 , (ii) Best sample obtained by the procedure 𝒙𝒃𝒆𝒔𝒕 .
1: Compute the step sizes 𝛿 ( 𝑗 ) = 𝑢( 𝑗)−𝑙 ( 𝑗)

𝑛𝑔−1 ,∀ 𝑗 = 1, . . . , 𝑛
2: Generate the grid of samples:

X =

{
𝒙𝑖 : 𝑥 ( 𝑗 )

𝑖
= 𝑙 ( 𝑗 ) + 𝑘 · 𝛿 ( 𝑗 ) ,∀ 𝑗 = 1, . . . , 𝑛,∀𝑘 = 0, . . . , 𝑛𝑔 − 1

}
3: Evaluate all the points in X, obtaining Y = {𝑦𝑖 : 𝑓 (𝒙𝑖) , 𝒙𝑖 ∈ X}
4: Select the best solution:

𝑦𝑏𝑒𝑠𝑡 = min
𝑦𝑖∈Y

𝑦𝑖

𝒙𝒃𝒆𝒔𝒕 = arg min
𝒙𝑖∈X

𝑓 (𝒙𝑖)

𝑑𝑚𝑎𝑥

Figure 1: Two-dimensional example of the samples (black circles) obtained by the GS [5] procedure. Each
decision variable has been discretized so that it can assume only 𝑛𝑔 = 4 values. The bounds are 𝒍 = 02
and 𝒖 = 12. 𝒙∗, denoted using a grey star, represents a possible global minimizer of the GOP (1.1) in the
worst case. 𝑑𝑚𝑎𝑥 (in red) is the distance from 𝒙∗ to the closest point obtained by GS [5].

The convergence of the GS [5] algorithm is addressed by the following Theorem.
Theorem 1.3: Convergence of GS [5]

Let Ω ⊂ R𝑛 be defined as in (1.3) and 𝑓 : R𝑛 → R be a continuous function. Then, provided

that 𝑛𝑔 → ∞, Algorithm 1 converges to the global minimum of the GOP (1.1).

Proof. Note that Ω in (1.3) is a compact subset of R𝑛 (see Appendix A.2, Lemma A.2). 𝑓 (𝒙) is

assumed to be continuous and therefore, due to the Extreme Value Theorem 1.1, the considered GOP

(1.1) admits a solution. To prove Theorem 1.3, we need to verify that the sequence of iterates ⟨𝒙𝑖⟩𝑖≥1

generated by Algorithm 1 is dense in Ω (see Theorem 1.2). To do so, consider the set of samples X

computed by the GS [5] procedure, which contains all the elements of ⟨𝒙𝑖⟩𝑖≥1. In practice, Algorithm
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1 partitions Ω into several disjoint boxes, whose vertices are the points in X, with sides of length:

𝑢(𝑖) − 𝑙 (𝑖)
𝑛𝑔 − 1

, 𝑖 = 1, . . . , 𝑛.

Therefore, the maximum distance 𝑑𝑚𝑎𝑥 ∈ R≥0 between any point in Ω and the samples in X is actually

the distance between the center of any of the boxes into which Ω is partitioned and its vertices (see

Figure 1):

𝑑𝑚𝑎𝑥 = max
𝒙∈Ω

min
𝒙𝑖∈X

∥𝒙 − 𝒙𝑖∥2 (1.8)

=
∥𝒖 − 𝒍 ∥2

2 ·
(
𝑛𝑔 − 1

) .
We can immediately see that 𝑑𝑚𝑎𝑥 → 0 for 𝑛𝑔 → ∞. Hence, given any 𝒙 ∈ Ω, GS [5] will eventually

sample a point within an arbitrary distance 𝜖 ∈ R>0 of 𝒙. We can conclude that X is dense in Ω

(see Appendix A.2, Definition A.16) and thus, by Theorem 1.2, Algorithm 1 converges to the global

minimum of the GOP (1.1). □

Note that a convergent global optimization algorithm is not necessarily efficient. Theorem 1.3 only

ensures that, if the resolution of the grid is infinitely small, then GS [5] finds the exact global minimum

of the GOP (1.1). We can also compute the minimum number of sample evaluations required by Grid

Search to find an 𝜖-optimal solution (in the worst case).

Lemma 1.1. Let Ω ⊂ R𝑛 be defined as in (1.3) and 𝑓 : R𝑛 → R be a continuous function. Given

an optimality accuracy 𝜖 ∈ R>0, Algorithm 1 requires at least

𝑁 ≥
[
∥𝒖 − 𝒍 ∥2

2 · 𝜖 + 1
]𝑛

(1.9)

sample evaluations to achieve an 𝜖-optimal solution as defined in (1.6a), in the worst case.

Proof. In the worst case, the global minimizers of the GOP (1.1) are located at the centers of the boxes

into which Ω is partitioned by Algorithm 1. Consider 𝒙∗
𝑖

to be one one of such global minimizers.

Then, the distance between 𝒙∗
𝑖

and its closest point in X is 𝑑𝑚𝑎𝑥 in (1.8). Consider the notion of

𝜖-optimality as defined in (1.6a). We require that:

min
𝒙𝑖∈X



𝒙∗
𝑖 − 𝒙𝑖




2 = 𝑑𝑚𝑎𝑥 ≤ 𝜖 .
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We can compute a worst case lower bound on 𝑛𝑔 by substituting to 𝑑𝑚𝑎𝑥 its expression in (1.8):

∥𝒖 − 𝒍 ∥2
2 ·

(
𝑛𝑔 − 1

) ≤ 𝜖

∥𝒖 − 𝒍 ∥2
2 · 𝜖 ≤

(
𝑛𝑔 − 1

)
𝑛𝑔 ≥

∥𝒖 − 𝒍 ∥2
2 · 𝜖 + 1.

Recall that the number of sample evaluations performed by GS [5] for a certain 𝑛𝑔 is 𝑁 =
(
𝑛𝑔

)𝑛. Thus,

Algorithm 1 requires at least

𝑁 ≥
[
∥𝒖 − 𝒍 ∥2

2 · 𝜖 + 1
]𝑛

sample evaluations to achieve an 𝜖-optimal solution (as defined in (1.6a)). □

If the cost function of the GOP (1.1) is Lipschitz continuous (see Appendix A.2.4), then we can

also compute the minimum number of sample evaluations required to achieve a certain optimality

accuracy 𝜖 ∈ R>0 for 𝑓 (𝒙) as in (1.6b).

Lemma 1.2. Let Ω ⊂ R𝑛 be defined as in (1.3) and 𝑓 : R𝑛 → R be a Lipschitz continuous

function with Lipschitz constant 𝐶 ∈ R>0. Given an optimality accuracy 𝜖 ∈ R>0, Algorithm 1

requires at least

𝑁 ≥
[
𝐶 · ∥𝒖 − 𝒍 ∥2

2 · 𝜖 + 1
]𝑛

(1.10)

sample evaluations to achieve an 𝜖-optimal solution as defined in (1.6b), in the worst case.

Proof. From (1.6b), we require that |𝑦𝑏𝑒𝑠𝑡 − 𝑓 ∗ | ≤ 𝜖 . As we have previously seen in Lemma 1.1, in

the worst case the global minimizers are situated at the centers of the boxes into which Ω is partitioned.

Thus, since 𝑓 (𝒙) is Lipschitz continuous, we have:

|𝑦𝑏𝑒𝑠𝑡 − 𝑓 ∗ | ≤ 𝐶 · 𝑑𝑚𝑎𝑥 ≤ 𝜖 .

We can compute a worst case lower bound on 𝑛𝑔 by substituting to 𝑑𝑚𝑎𝑥 its expression in (1.8):

𝐶 · ∥𝒖 − 𝒍 ∥2
2 ·

(
𝑛𝑔 − 1

) ≤ 𝜖

𝑛𝑔 ≥ 𝐶 · ∥𝒖 − 𝒍 ∥2
2 · 𝜖 + 1.

Thus, Algorithm 1 requires at least

𝑁 ≥
[
𝐶 · ∥𝒖 − 𝒍 ∥2

2 · 𝜖 + 1
]𝑛
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sample evaluations to achieve an 𝜖-optimal solution (as defined in (1.6b)). □

The next Remark gives us more general expressions for 𝑁 in (1.9) and in (1.10) that do not de-

pend on the bounds 𝒍, 𝒖.

Remark 1.3. Typically, when dealing with bound constrained GOPs (1.1), the decision variables are

rescaled so that the feasible region becomes the 𝑛-dimensional unit hypercube, i.e. 𝒍 = 0𝑛 and 𝒖 = 1𝑛.

Then, the worst case lower bound provided by Lemma 1.1 becomes:

𝑁 ≥
[ √

𝑛

2 · 𝜖 + 1
]𝑛
, (1.11)

while the one of Lemma 1.2 results in:

𝑁 ≥
[
𝐶̃ ·

√
𝑛

2 · 𝜖 + 1
]𝑛
. (1.12)

𝐶̃ is a properly rescaled Lipschitz constant for 𝑓 (𝒙), which takes into account that the decision vector

has been rescaled.

Clearly Lemma 1.1 and Lemma 1.2 highlight how GS [5] can be extremely inefficient, even for low-

dimensional problems. Furthermore, (1.9) and (1.10) show how the problem of finding the global

solutions of an optimization problem is affected by the curse of dimensionality. In particular, the

number of sample evaluations required to obtain an 𝜖-optimal solution (in the worst case) grows

exponentially with the number of decision variables 𝑛.

One of the main shortcomings of Algorithm 1 is that the cost function values achieved by the samples

in X are not used in any way to help the search (in practice, Algorithm 1 only performs exploration and

no exploitation). Moreover, the samples in X are not evaluated in any particular order. Clearly, if GS

[5] were to somehow delay the evaluation of those points that are less likely to offer an improvement, its

sample efficiency would increase. Nonetheless, Algorithm 1 is often used to tune the hyper-parameters

of many machine learning methods [58], manly because it is easy to parallelize. In the next Section,

we show a more refined algorithm that still relies on partitioning Ω into smaller boxes.

1.2.3 The DIRECT algorithm

We have seen that Grid Search can be extremely inefficient due to the fact that it evaluates all the points

in a uniformly spaced grid, regardless of their cost function values. A much better alternative to GS [5]

is the DIvide a hyper-RECTangle (DIRECT) [67] algorithm, which too is used for bound constrained

GOPs (1.1). Instead of dividing Ω into several boxes with the same volume and evaluating the cost
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function at each of their vertices, DIRECT [67] sequentially partitions Ω into smaller hyper-rectangles

based on the values of 𝑓 (𝒙) measured at their center points.

Algorithm 2 summarizes each step of the procedure. At first, the feasible region of the GOP (1.1)

is normalized so that it becomes the 𝑛-dimensional unit hypercube. At each iteration, the algorithm

considers a partition of Ω:

Ω𝑝 =

{
Ω(1) ,Ω(2) , . . .

}
, (1.13)

i.e. such that Ω(𝑖) ∩Ω( 𝑗) = ∅,∀𝑖 ≠ 𝑗 ,
⋃

Ω(𝑖)∈Ω𝑝 Ω
(𝑖) = Ω; Ω(𝑖) ∈ Ω𝑝 are all boxes of (possibly) different

volumes. Then, DIRECT [67] selects a set of potentially optimal boxes Ω𝑜 ⊆ Ω𝑝 defined as follows.

Let 𝒙𝑖 be the center point of the 𝑖-th hyper-rectangle Ω(𝑖) ∈ Ω𝑝 and 𝑑𝑖 ∈ R>0 denote the distance from

𝒙𝑖 to the vertices of the box. Also, let 𝜏 ∈ R>0 be a positive constant. A hyper-rectangle Ω( 𝑗) ∈ Ω𝑝 is

said to be potentially optimal if there exists some rate-of-change constant 𝐶̃ ∈ R>0 such that:

𝑓
(
𝒙 𝑗

)
− 𝐶̃ · 𝑑 𝑗 ≤ 𝑓 (𝒙𝑖) − 𝐶̃ · 𝑑𝑖, ∀𝑖 = 1, . . . ,

��Ω𝑝

�� , (1.14a)

𝑓
(
𝒙 𝑗

)
− 𝐶̃ · 𝑑 𝑗 ≤ 𝑦𝑏𝑒𝑠𝑡 (𝑘) − 𝜏 · |𝑦𝑏𝑒𝑠𝑡 (𝑘) | , (1.14b)

where 𝑦𝑏𝑒𝑠𝑡 (𝑘) is the value of the cost function achieved by the best candidate found so far (i.e. at

iteration 𝑘) by the procedure. The class of potentially optimal boxes,Ω𝑜 =

{
Ω

(1)
𝑜 ,Ω

(2)
𝑜 , . . .

}
,Ω𝑜 ⊆ Ω𝑝,

is composed of all those sets for which the conditions in (1.14) hold. Note that the expression

𝑓
(
𝒙 𝑗

)
− 𝐶̃ · 𝑑 𝑗 in (1.14a) can be seen as a trade-off between the cost achieved by the center point of

the 𝑗-th box (exploitation) and its volume (exploration). Thus, potentially optimal hyper-rectangles

are those which achieve a good balance between these two objectives. The second condition in

(1.14b) prevents DIRECT [67] from performing unnecessarily accurate local searches, which result

in negligible improvements. Each potentially optimal box is then partitioned into smaller hyper-

rectangles, as described in Algorithm 2, and Ω𝑝 in (1.13) is updated accordingly. The procedure is

stopped once a maximum number of iterations, 𝑘𝑚𝑎𝑥 ∈ N, is reached.

Figure 2 depicts an application of DIRECT [67] to a two-dimensional problem. At first, Ω𝑝 in (1.13)

contains only the normalized feasible region Ω, i.e. Ω𝑝 =
{
Ω(1)} with Ω(1) = Ω. In this case, there

is only one potentially optimal hyper-rectangle: Ω(1) . Four samples are selected for evaluation as

described in Algorithm 2; then, Ω(1) is trisected along 𝑥 (1) and 𝑥 (2) . Ω𝑝 is updated and now contains

four different hyper-rectangles of different volumes. The same process is iterated two other times. In

particular, at the second and third iteration there are, respectively, one and two potentially optimal

hyper-rectangles.

The global convergence of DIRECT has been addressed in [67], as reported in the following Theorem.
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Algorithm 2: DIvide a hyper-RECTangle (DIRECT [67])
Input: (i) Cost function 𝑓 (𝒙) of the GOP (1.1); (ii) Lower bounds 𝒍 ∈ R𝑛 and upper bounds 𝒖 ∈ R𝑛 of the
GOP (1.1); (iii) Desired relative accuracy 𝜏 ∈ R>0; (iv) Maximum number of iterations 𝑘𝑚𝑎𝑥 ∈ N.
Output: (i) Best cost obtained by the procedure 𝑦𝑏𝑒𝑠𝑡 (𝑘𝑚𝑎𝑥); (ii) Best sample obtained by the procedure
𝒙𝒃𝒆𝒔𝒕 (𝑘𝑚𝑎𝑥).
1: Normalize the feasible region Ω to the 𝑛-dimensional unit hypercube
2: Initialize the class containing all the sets into which Ω will be partitioned:

Ω𝑝 =

{
Ω(1)

}
, Ω(1) = Ω

3: Let 𝒙1 be the center of Ω(1) and set X = {𝒙1}
4: Evaluate the cost function at 𝒙1, obtaining 𝑦1 = 𝑓 (𝒙1). Also set Y = {𝑦1}
5: Initialize the best candidate: 𝒙𝒃𝒆𝒔𝒕 (0) = 𝒙1 and 𝑦𝑏𝑒𝑠𝑡 (0) = 𝑦1
6: for 𝑘 = 1, . . . , 𝑘𝑚𝑎𝑥 do
7: Identify the set of potentially optimal boxes as in (1.14):

Ω𝑜 =

{
Ω

(1)
𝑜 ,Ω

(2)
𝑜 , . . .

}
, Ω𝑜 ⊆ Ω𝑝

8: for all Ω( 𝑗 )
𝑜 ∈ Ω𝑜 do

9: Divide hyper-rectangle Ω( 𝑗 )
𝑜 with center 𝒙 𝑗 as follows:

a: Identify the set I ⊆ {1, . . . , 𝑛} of dimensions with the maximum side length 𝛿𝑚𝑎𝑥
b: Set 𝛿 = 𝛿𝑚𝑎𝑥

3
c: Select the new 2 · |I | candidate samples as 𝒙 𝑗 ± 𝛿 · 𝒆𝑖 ,∀𝑖 ∈ I, and add them to X
d: Evaluate the cost function at all newly found points, 𝑓

(
𝒙 𝑗 ± 𝛿 · 𝒆𝑖

)
,∀𝑖 ∈ I, and update Y

accordingly
e: Divide the box Ω

( 𝑗 )
𝑜 by trisecting along the dimensions in I, from the one with the lowest

min
{
𝑓
(
𝒙 𝑗 + 𝛿 · 𝒆𝑖

)
, 𝑓

(
𝒙 𝑗 − 𝛿 · 𝒆𝑖

)}
to the 𝑖-th with the highest

f: Replace Ω( 𝑗 )
𝑜 in Ω𝑝 with the sets that constitute its partition

10: Update 𝑦𝑏𝑒𝑠𝑡 (𝑘) and 𝒙𝒃𝒆𝒔𝒕 (𝑘) accordingly

Theorem 1.4: Convergence of DIRECT [67]

Let Ω ⊂ R𝑛 be defined as in (1.3) and 𝑓 : R𝑛 → R be a continuous function. Then, provided

that 𝑘𝑚𝑎𝑥 → ∞, Algorithm 2 converges to the global minimum of the GOP (1.1).

The proof is similar to that of the convergence theorem for GS [5] (Theorem 1.3), see [67].

Due to its effectiveness and simplicity, DIRECT [67] has received much attention since its release. The

review in [66] sums up many of the extensions of the method that have been developed in the past

two decades. Notably, the authors of [34] have proposed an extension of DIRECT [67] that is able to

handle a GOP (1.1) with any type of constraints, i.e. with Ω defined as in (1.4).

1.2.4 Multi-start methods

In Section 1.2.1 we have seen how local optimization procedures are quite efficient in finding local

solutions of the GOP (1.1). A simple way to adapt these methods for global optimization is to randomly

sample the feasible region Ω using a uniform distribution, obtaining a set of 𝑁𝑖𝑛𝑖𝑡 ∈ N initial samples,

and then start a local optimization algorithm from each of these points. This paradigm is followed
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Figure 2: Two-dimensional example of the first three iterations of the DIRECT [67] algorithm. The black
dots are the previously evaluated samples. The blue hyper-rectangles are the potentially optimal ones.
Finally, the red points are those generated at Step 9 of Algorithm 2. This Figure is taken from [66].

by multi-start methods [59, 90] and described in Algorithm 3. The main advantages of multi-start

methods are:

1. They can be parallelized, i.e. multiple local optimization procedures can be run simultaneously,

2. Nonlinear constraints are easily handled: we only need to select a suitable local optimization

algorithm.

However, as we will see shortly, multi-start methods can be very sample inefficient. In any case, at

least asymptotically, it is possible to prove their convergence (in probability) to the global minimum

of the GOP (1.1).
Theorem 1.5: Convergence of a multi-start method [59]

Let Ω be a compact subset of R𝑛 and 𝑓 : R𝑛 → R be a continuous function. Then, provided that

𝑁𝑖𝑛𝑖𝑡 → ∞, Algorithm 3 converges to the global minimum of the GOP (1.1) with probability

one.

Intuitively, as the number of samples 𝑁𝑖𝑛𝑖𝑡 produced by randomly sampling Ω increases, it becomes

more likely to find a point 𝒙 𝑗 within a neighborhood of a global minimizer 𝒙∗
𝑖

of the GOP (1.1).
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Hence, running a local optimization procedure from 𝒙 𝑗 will yield 𝒙∗
𝑖
. See [136] for an in-depth look

at some convergence results for random search methods.

Multi-start methods can be sample inefficient due to the fact that several runs of the local optimization

procedure (started from different points) can lead to the same local minimizer of the GOP (1.1), as

highlighted by the following Definition.

Definition 1.5: Basin of attraction [81, 143]. Let 𝒙+ ∈ Ω be a local minimizer of the GOP (1.1)

and A be a local optimization algorithm. We define the basin of attraction BA (𝒙+; A) as a

subset of Ω such that A converges to 𝒙+ for any starting point 𝒙1 ∈ BA (𝒙+; A).

Roughly speaking, a basin of attraction for an optimization algorithm is the set of initial samples

leading to the same local minimizer. Therefore, if the random sampling phase of a multi-start method

produces several points that belong to the same basin of attraction, some of the search effort is wasted.

Ideally, we would like to have exactly one point inside each basin of attraction associated to all the

local minimizers 𝒙+ of the GOP (1.1).

One way to make multi-start methods more efficient is to use a clustering scheme to limit the number

local optimization procedures which lead to the same solution. A popular algorithm that follows such

rationale is Density Clustering [59].

Algorithm 3: Multi-start method [59]
Input: (i) Cost function 𝑓 (𝒙) of the GOP (1.1); (ii) Constraint set Ω of the GOP (1.1); (iii) Number of initial
samples 𝑁𝑖𝑛𝑖𝑡 ∈ N from which to start the local optimization procedure; (iv) Local optimization algorithm A.
Output: (i) Best cost obtained by the procedure 𝑦𝑏𝑒𝑠𝑡 ; (ii) Best sample obtained by the procedure 𝒙𝒃𝒆𝒔𝒕 .
1: Initialize best value for the cost function: 𝑦𝑏𝑒𝑠𝑡 = +∞
2: Generate the set of initial samplesX𝑖𝑛𝑖𝑡 , |X𝑖𝑛𝑖𝑡 | = 𝑁𝑖𝑛𝑖𝑡 , by randomly samplingΩ using a uniform distribution
3: for all 𝒙𝑖 ∈ X𝑖𝑛𝑖𝑡 do
4: Run algorithm A, starting from 𝒙𝑖 , to obtain a solution 𝒙̃ with corresponding cost 𝑦̃
5: if 𝑦̃ < 𝑦𝑏𝑒𝑠𝑡 then
6: Update the best candidate sample: 𝑦𝑏𝑒𝑠𝑡 = 𝑦̃, 𝒙𝒃𝒆𝒔𝒕 = 𝒙̃

1.2.5 Particle SWARM optimization

Particle Swarm optimization (PSWARM) is a population-based global optimization scheme that has been

first proposed in [72]. Its derivation is inspired by the social behavior of bird flocks and fish schools.

PSWARM [72] can be applied to bound constrained global optimization problems (hence, with Ω as in

(1.3)). Here, we briefly summarize the dissertation in [144] to explain each step of the procedure. The

PSWARM [72] algorithm maintains a population of particles, where each particle represents a potential

solution of the GOP (1.1). The population is composed of 𝑁𝑝𝑜𝑝 ∈ N elements and is updated at each
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iteration 𝑘 of the optimization procedure. We denote the population at the 𝑘-th iteration as:

P (𝑘) =
{
𝑝𝑖 (𝑘) : 𝑝𝑖 (𝑘) ∈ R𝑛 × R𝑛 × R𝑛, 𝑖 = 1, . . . , 𝑁𝑝𝑜𝑝

}
. (1.15)

A particle 𝑝𝑖 (𝑘) is composed of three characteristics:

1. The current position of the particle, 𝒙 ∈ R𝑛,

2. The current velocity of the particle, 𝒗 ∈ R𝑛,

3. The best position achieved by the particle, 𝒃 ∈ R𝑛.

For the remainder of this Section, we will use an object-oriented programming notation to reference

each characteristic. In particular, 𝑝𝑖 (𝑘) → 𝒙 represents the position of the 𝑖-th particle at the 𝑘-th

iteration; similarly for the other characteristics.

The best position of each particle is updated as follows:

𝑝𝑖 (𝑘) → 𝒃 =


𝑝𝑖 (𝑘 − 1) → 𝒃 if 𝑓 (𝑝𝑖 (𝑘) → 𝒙) ≥ 𝑓 (𝑝𝑖 (𝑘 − 1) → 𝒃)

𝑝𝑖 (𝑘) → 𝒙 if 𝑓 (𝑝𝑖 (𝑘) → 𝒙) < 𝑓 (𝑝𝑖 (𝑘 − 1) → 𝒃)
. (1.16)

Therefore, the best candidate sample found by PSWARM [72] at the 𝑘-th iteration is:

𝒙𝒃𝒆𝒔𝒕 (𝑘) = arg min
𝒃𝑖∈{𝒃𝑖 :𝒃𝑖=𝑝𝑖 (𝑘)→𝒃,𝑝𝑖 (𝑘)∈P(𝑘)}

𝑓 (𝒃𝑖) (1.17)

and, similarly, the best cost is:

𝑦𝑏𝑒𝑠𝑡 (𝑘) = 𝑓 (𝒙𝒃𝒆𝒔𝒕 (𝑘)) . (1.18)

The velocity of each particle is updated as follows2:

𝑝𝑖 (𝑘) → 𝑣 ( 𝑗) = 𝑝𝑖 (𝑘 − 1) → 𝑣 ( 𝑗)+

+ 𝛿1 · 𝑟 ( 𝑗)1 (𝑘) ·
[
𝑝𝑖 (𝑘 − 1) → 𝑏 ( 𝑗) − 𝑝𝑖 (𝑘 − 1) → 𝑥 ( 𝑗)

]
+ (1.19)

+ 𝛿2 · 𝑟 ( 𝑗)2 (𝑘) ·
[
𝑥
( 𝑗)
𝑏𝑒𝑠𝑡

(𝑘 − 1) − 𝑝𝑖 (𝑘 − 1) → 𝑥 ( 𝑗)
]
,

where 𝛿1, 𝛿2 ∈ (0, 2] are two user-defined constants (called the acceleration coefficients) and 𝒓1 (𝑘) , 𝒓2 (𝑘)

are two vectors of random variables drawn from the uniform distribution, 𝒓1 (𝑘) , 𝒓2 (𝑘) 𝑖.𝑖.𝑑.∼ U (0𝑛, 1𝑛),

that are generated at each iteration. The update is performed for each dimension 𝑗 = 1, . . . , 𝑛. The

acceleration coefficients in (1.19) trade-off the maximum step size towards the best position for the
2This is only one possible way to update the velocity of each particle. An alternative would be to keep track of a subset
of particles for each 𝑝𝑖 (𝑘) and from which the best one is selected (i.e. the local best candidate sample for 𝑝𝑖 (𝑘)). Then,
in (1.19), the velocity would be updated using the local best candidate for the particle instead of 𝒙𝒃𝒆𝒔𝒕 (𝑘) in (1.17). This
rationale is referred to as lbest update whereas the one in (1.19) is called gbest update [37].
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𝑖-th particle, 𝑝𝑖 (𝑘) → 𝒃, and the best candidate sample (among all particles), 𝒙𝒃𝒆𝒔𝒕 (𝑘), respectively.

Finally, the position of each particle is updated as:

𝑝𝑖 (𝑘) → 𝒙 = 𝑝𝑖 (𝑘 − 1) → 𝒙 + 𝑝𝑖 (𝑘) → 𝒗. (1.20)

Note that, in order to satisfy the bound constraints in Ω (1.3), the values of 𝑝𝑖 (𝑘) → 𝒙 in (1.20)

are clamped so that they are between 𝒍 and 𝒖. Similarly for the velocities computed in (1.19),

although (often) more restrictive bounds are used: 𝒍𝒗 ≤ 𝑝𝑖 (𝑘) → 𝒗 ≤ 𝒖𝒗 such that 𝒍𝒗, 𝒖𝒗 ∈ R𝑛 and

𝒍𝒗 ≥ 𝒍, 𝒖𝒗 ≤ 𝒖.

Algorithm 4 highlights each step of the PSWARM [72] procedure. Several different extensions have been

proposed in the past two decades. The dissertation in [144] provides a detailed review on many results

for the method. We remark that the original formulation of the PSWARM [72] procedure (Algorithm

4) is not globally convergent, although it can be made so by integrating it with some techniques

“borrowed” from random search methods. Notably, the authors of [146] merge PSWARM [72] with the

pattern search framework [118] (a popular family of derivative-free optimization methods). Although

the method proposed in [146] is only guaranteed to find a stationary point for the GOP (using a finite

number of iterations), empirical results show that it is a highly competitive alternative to many global

optimization algorithms, such as DIRECT [67].

1.2.6 Handling general constraints for global optimization

In the previous Sections, we have seen that algorithms such as GS [5], DIRECT [67] and PSWARM [72]

can only handle bound constrained GOPs (1.1). That is often the case for global optimization methods.

In practice, however, many optimization problems include linear and nonlinear inequality constraints

(i.e. Ω is defined as in (1.5)). One way to manage those constraints that cannot be handled explicitly

is to add a penalty function 𝜌 : R𝑛 → R≥0 to the cost function, which discourages their violation.

Commonly, the quadratic penalty function [100] is used:

𝜌 (𝒙) =
𝑞∑︁
𝑗=1

(
max

{
0, 𝑔( 𝑗) (𝒙)

})2
. (1.21)

Then, the cost function of the GOP (1.1) becomes:

𝑓𝜌 (𝒙) = 𝑓 (𝒙) + 𝛿𝜌 · 𝜌 (𝒙) , (1.22)
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Algorithm 4: Particle SWARM (PSWARM [72]) optimization
Input: (i) Cost function 𝑓 (𝒙) of the GOP (1.1); (ii) Lower bounds 𝒍 ∈ R𝑛 and upper bounds 𝒖 ∈ R𝑛 of the
GOP (1.1); (iii) Number of particles 𝑁𝑝𝑜𝑝 ∈ N which constitute the population; (iv) Acceleration coefficients
𝛿1, 𝛿2 ∈ (0, 2]; (v) Maximum number of iterations 𝑘𝑚𝑎𝑥 ∈ N.
Output: (i) Best cost obtained by the procedure 𝑦𝑏𝑒𝑠𝑡 (𝑘𝑚𝑎𝑥), (ii) Best sample obtained by the procedure
𝒙𝒃𝒆𝒔𝒕 (𝑘𝑚𝑎𝑥).
1: Initialize the iteration counter to 𝑘 = 1
2: Initialize the population P (𝑘) as follows:

a: Generate the positions of each particle by drawing from the uniform random distribution on the intervals[
𝑙 (𝑖) , 𝑢 (𝑖)

]
:

𝑝𝑖 (𝑘) → 𝑥 ( 𝑗 ) ∼ U
(
𝑙 (𝑖) , 𝑢 (𝑖)

)
, ∀𝑖 = 1, . . . , 𝑁𝑝𝑜𝑝,∀ 𝑗 = 1, . . . , 𝑛

b: Generate the velocities of each particle by drawing from the uniform random distribution on the intervals[
𝑙
(𝑖)
𝑣 , 𝑢

(𝑖)
𝑣

]
:

𝑝𝑖 (𝑘) → 𝑣 ( 𝑗 ) ∼ U
(
𝑙
(𝑖)
𝑣 , 𝑢

(𝑖)
𝑣

)
, ∀𝑖 = 1, . . . , 𝑁𝑝𝑜𝑝,∀ 𝑗 = 1, . . . , 𝑛

c: Set 𝑝𝑖 (𝑘) → 𝒃 = 𝑝𝑖 (𝑘) → 𝒙,∀𝑖 = 1, . . . , 𝑁𝑝𝑜𝑝
3: Initialize the best candidate sample 𝒙𝒃𝒆𝒔𝒕 (𝑘) and cost 𝑦𝑏𝑒𝑠𝑡 (𝑘) as in (1.17) and (1.18)
4: for 𝑘 = 2, . . . , 𝑘𝑚𝑎𝑥 do
5: for all 𝑝𝑖 ∈ P (𝑘) do
6: Update the velocity of each particle as in (1.19)
7: Update the position of each particles as in (1.20)
8: Update the best position of each particle as in (1.16)
9: Update the best candidate sample 𝒙𝒃𝒆𝒔𝒕 (𝑘) and cost 𝑦𝑏𝑒𝑠𝑡 (𝑘) as in (1.17) and (1.18)

where 𝛿𝜌 ∈ R>0 is the penalty parameter. Thus, the penalized global optimization problem amounts

to:

arg min
𝒙
𝑓𝜌 (𝒙) (1.23)

s.t. 𝒍 ≤ 𝒙 ≤ 𝒖.

Typically, 𝛿𝜌 ≫ 1 in (1.22) so that constraints violations are heavily penalized.

Note that the local and global solutions of Problem (1.23) need not coincide with those of the GOP

(1.1). To fix this, the penalized global optimization problem should be solved multiple times with

progressively higher values of the penalty parameter 𝛿𝜌. More formally, at each iteration 𝑘 , we use a

global optimization algorithm A to solve Problem (1.23). Let 𝒙𝒃𝒆𝒔𝒕𝝆 (𝑘)3 be the solution of Problem

(1.23) found by A, and 𝛿𝜌 (𝑘) be the penalty parameter at the 𝑘-th iteration. Then, provided that A is

globally convergent and 𝛿𝜌 (𝑘) → ∞ for 𝑘 → ∞, 𝒙𝒃𝒆𝒔𝒕𝝆 (𝑘) → 𝒙∗
𝑖
, where 𝒙∗

𝑖
∈ X∗ in (1.2) (see [100]

for a formal proof).

3If A is a local optimization procedure, then 𝒙𝒃𝒆𝒔𝒕𝝆 (𝑘) is typically used as a starting point for A at the (𝑘 + 1)-th iteration.
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Clearly, solving multiple global optimization problems (for different values of 𝛿𝜌) can be quite time-

consuming. Instead, it is common to follow a two step approach: (i) run a global optimization procedure

A1 to solve Problem (1.23) with a “sufficiently high” 𝛿𝜌 and then (ii) use a local optimization procedure

A2 to seek a global solution of the GOP (1.1), starting from the solution found by A1. Alternatively,

exact penalty functions [32] can be used. An exact penalty function 𝜌 : R𝑛 → R is such that, for

certain choices of the parameter 𝛿𝜌 in (1.22), solving Problem (1.23) yields the same solutions to

those of the GOP (1.1)4. Hence, the global optimization algorithm is run only once. See [33] for the

application of exact penalty functions in the context of GO.

4Note that the quadratic penalty function in (1.21) is not an exact penalty function [100].
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Chapter 2. Black-box optimization

This Chapter is devoted to reviewing the Black-Box Optimization (BBO) framework, which is a

specific instance of global optimization that makes the following assumptions on the GOP (1.1).

Assumption 2.1 (Assumptions for black-box optimization). Consider the global optimization problem

in (1.1) with Ω defined as in (1.5). In the context of black-box optimization, the cost function and

(possibly) some of the constraints functions of the GOP (1.1) are assumed to be unknown (in a sense

that no analytical formulation is available) and expensive to measure. The term “expensive” refers to

the fact that a non-negligible amount of resources (such as time) needs to be spent in order to obtain

the values of 𝑓 (·) and (possibly) of some 𝑔( 𝑗) (·)’s at a given sample 𝒙𝑖 ∈ R𝑛. Typically, in the BBO

framework, computer simulations or real-world experiments are required to measure the quantities of

interest.

For the remainder of this book, we will say that a function is a black-box if it is both unknown and

expensive to evaluate.

Note that the just seen Assumption is consistent with the definition of sample evaluation in Chapter 1

(Definition 1.1). Black-box cost functions and constraints functions are present in many engineering

design problems [2, 135]. Simulators are common tools for describing arbitrarily complex systems and

products and are built, for example, from finite-element physics-based models. Running a simulation

can take from a few minutes up to several days. At the same time, simulators might depend on some

parameters that need to be optimized. This is where black-box optimization procedures come in handy.

Black-box optimization procedures still aim to solve the GOP (1.1); thus, the algorithms described in

Chapter 1 could potentially be used as solvers for BBO problems. However, in practice, the number

of sample evaluations required by general-purpose GO algorithms (such as DIRECT [67]) to find a

“decent” solution is (often) excessively high and thus prohibitive under Assumption 2.1. Instead, in

the BBO framework, we would rather find a decision vector with a lower degree of optimality accuracy

(as in Definition 1.3) but using very few sample evaluations. Additionally, the curse of dimensionality

(Section 1.2.2) is even more relevant for black-box optimization. Recall that the number of sample

evaluations required to achieve an 𝜖-optimal solution in the worst case is exponential in 𝑛. For this

reason, BBO optimization methods typically only consider problems with few decision variables, in

general up to 𝑛 = 20 [45].

This Chapter is organized as follows. Section 2.1 defines the black-box optimization problem and

shows its relationship to the GOP (1.1). Then, Section 2.2 introduces surrogate-based methods (or
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response surface techniques), which are the most popular algorithms for solving black-box optimization

problems. After that, the subsequent Sections describe response surface techniques in greater detail.

In particular, Section 2.3 covers the data used by surrogate-based methods when solving the black-

box optimization problem; Section 2.4 delves into two well-known experimental designs, namely full

factorial designs and latin hypercube designs; Section 2.5 describes the most commonly used surrogate

models, which are based either on radial basis functions or Gaussian processes; lastly, Section 2.6

covers a plethora of infill sampling criteria for different response surface techniques.

2.1 The black-box optimization problem

The global optimization problem in (1.1) and the black-box optimization problem are mathematically

equivalent; the difference lies in how the cost function and (possibly) some of the constraints functions

are measured (see Assumption 2.1). Throughout this book, we explicitly distinguish between the

constraints functions whose analytical formulations are known from those which are black-boxes.

Hence, we re-write the GOP (1.1) as:

X∗ = arg min
𝒙
𝑓 (𝒙) (2.1)

s.t. 𝒙 ∈ Ω ∩ Ξ,

where Ω, defined either as in (1.3) or in (1.5)1, is a set of completely known constraints. Instead, Ξ

can either be Ξ = R𝑛, if no black-box constraints are present, or

Ξ =
{
𝒙 : 𝒈Ξ (𝒙) ≤ 0𝑞Ξ

}
(2.2)

otherwise. In (2.2), 𝒈Ξ (𝒙) is a vector-valued function such that 𝒈Ξ : R𝑛 → R𝑞Ξ , 𝑞Ξ ∈ N, and

𝒈Ξ (𝒙) =
[
𝑔
(1)
Ξ

(𝒙) . . . 𝑔
(𝑞Ξ)
Ξ

(𝒙)
]⊤

. The set of global minimizers of the GOP (2.1) is:

X∗ =

{
𝒙∗𝑖 : 𝒙∗𝑖 ∈ Ω ∩ Ξ, 𝑓

(
𝒙∗𝑖

)
= 𝑓 ∗ = min

𝒙∈Ω∩Ξ
𝑓 (𝒙) , 𝑖 = 1, . . . , 𝑁∗

}
, (2.3)

which, differently from X∗ in (1.2), also takes into account the constraint set Ξ in (2.2). In any case, we

make the following Assumption to potentially avoid a degenerate case for which X∗ = ∅ in Problem

(2.1).

Assumption 2.2. Throughout this book, we assume that Ω ∩ Ξ ≠ ∅ for the GOP (2.1).

Depending on structure of Ξ, we can distinguish two black-box optimization frameworks.

1Typically, no equality constraints are considered in black-box optimization.
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Definition 2.1: Unconstrained and constrained BBO. Regardless of the structure of Ω for the

GOP (2.1), we say that a method belongs to the unconstrained black-box optimization framework

if it assumes that Ξ = R𝑛. Vice-versa, whenever Ξ is defined as in (2.2), we speak of constrained

black-box optimization.

We continue our dissertation on black-box constraints by defining the Ξ-feasibility function as follows.

Definition 2.2: Ξ-feasibility function. Let Ξ be the set that describes the black-box constraints

of the GOP (2.1). We define the Ξ-feasibility function 𝑢Ξ : R𝑛 → {0, 1} as follows:

𝑢Ξ (𝒙) =


1 if 𝒙 ∈ Ξ

0 if 𝒙 ∉ Ξ

. (2.4)

𝑢Ξ (𝒙) in (2.4) is particularly relevant for those black-box optimization problems for which we can

only evaluate whether a sample 𝒙𝑖 ∈ R𝑛 is feasible with respect to Ξ or not, i.e. when the measures of

𝒈Ξ (𝒙𝑖) are not available and we can only assess 𝑢Ξ (𝒙𝑖).

Notation and conventions. We say that a sample 𝒙𝑖 ∈ R𝑛 is Ξ-feasible if 𝑢Ξ (𝒙𝑖) = 1 and Ξ-infeasible

if 𝑢Ξ (𝒙𝑖) = 0. Moreover, 𝒙𝑖 is feasible (with respect to the GOP (2.1)) if 𝒙𝑖 ∈ Ω ∩ Ξ and infeasible

otherwise.

In practice, when black-box constraints are present, the goal of finding the global minimizers of the

GOP (2.1) becomes quite far-fetched, as pointed out by the following Remark.

Remark 2.1 (On finding the global minima of a constrained black-box optimization problem [111]).

The ideal goal of any constrained black-box optimization procedure is to find a suitably accurate

global minimizer of the GOP (2.1) (i.e. with a realistic optimality accuracy 𝜖 as in Definition 1.3),

using relatively few sample evaluations. However, even for low-dimensional unconstrained black-

box optimization problems, a large number of sample evaluations is required to guarantee that the

obtained solution is even approximately optimal. For higher-dimensional black-box constrained

problems, finding a suitably accurate global minimizer of the GOP (2.1) within a reasonable amount

of sample evaluations becomes impossible. Hence, a more realistic goal followed by most constrained

BBO algorithms is: seek a good local minima of the GOP (2.1), possibly starting from a point (or a

set of points) that is (are) Ξ-feasible.

We add that, consistently with Remark 2.1, no convergence proofs are available for most black-box

optimization algorithms in the constrained BBO framework, since it is not a major concern. In practice,

the easiest way for a BBO procedure to ensure its global convergence to the global minimizer(s) of
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the GOP (2.1) (even in the presence of black-box constraints) is to generate a sequence of iterates

⟨𝒙𝑖⟩𝑖≥1 that is dense in Ω. Consequently, this makes ⟨𝒙𝑖⟩𝑖≥1 also dense in Ω ∩ Ξ. Finally, if 𝑓 (𝒙) is

continuous and both Ω and Ξ are compact, such an algorithm would converge to the global minima

of the GOP (2.1) (cf. Theorem 1.1 and Theorem 1.2). There is a clear downside to this approach:

if the size of Ξ is small in comparison to Ω, then an algorithm that produces a sequence of iterates

that is dense in Ω is bound to spend most of its sample evaluations on points that are not Ξ-feasible

(at least, in the long run). In practice, when dealing with black-box constrained problems, we must

limit the evaluation of Ξ-infeasible samples as much as possible. For example, a point 𝒙𝑖 ∉ Ξ could

be associated to a controller calibration that results in an unstable closed-loop system or in extremely

unsatisfactory performances, which must be avoided at all costs.

Constraints for black-box optimization can be classified according to the QRAK taxonomy, which we

now review.

Definition 2.3: QRAK taxonomy [6, 35]. We classify a generic constraint,

𝑔̃ (𝒙) ≤ 0, (2.5)

𝑔̃ : R𝑛 → A,A ⊆ R, for the GOP (2.1) as follows:

1. Quantifiable or binary:

• Quantifiable: it is possible to measure the degree of feasibility and/or violation of

the constraint, for instance 𝑔̃ : R𝑛 → R;

• Binary: given a sample 𝒙𝑖 ∈ R𝑛, we only know if the constraint in (2.5) is violated

or not. A binary constraint function is defined as 𝑔̃ : R𝑛 → {0, 1}, resulting either

in 𝑔̃ (𝒙𝑖) = 0 (feasible) or 𝑔̃ (𝒙𝑖) = 1 (infeasible).

2. Relaxable or unrelaxable:

• Relaxable: a relaxable constraint is one that does not need to be satisfied in order

to obtain meaningful outputs from the simulations/experiments that are performed

to measure the black-box cost function 𝑓 (𝒙);

• Unrelaxable: the opposite of before. For example, suppose that we want to optimize

a certain positive physical quantity; it would not make sense to simulate its corre-

sponding physics-based model using a negative value for it, since we would obtain

a measure of 𝑓 (𝒙) that is meaningless.
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3. A-priori vs black-box:

• A-priori: the analytical expression of function 𝑔̃ (𝒙) is available;

• Black-box: 𝑔̃ (𝒙) is unknown but its values can be obtained from expensive computer

simulations or real-world experiments (cf. Assumption 2.1).

4. Known vs hidden:

• Known: the constraint 𝑔̃ (𝒙) ≤ 0 is explicitly given to the optimization solver (in

practice, it could be a black-box, but we know of its existence beforehand);

• Hidden: the constraint 𝑔̃ (𝒙) ≤ 0 is unknown to the solver (not taken into consid-

eration). For example, if 𝑓 (𝒙) is measured from a computer simulation, a hidden

constraint could be associated to simulation crashes.

5. Coupled vs decoupled [49]:

• Coupled: the values of 𝑓 (𝒙) and 𝑔̃ (𝒙) are obtained from the same simulation/ex-

periment;

• Decoupled: 𝑓 (𝒙) and 𝑔̃ (𝒙) can be measured separately.

Going back to the GOP (2.1), keeping in mind Definition 2.3, we assume that:

• The constraints defined by the set Ω are unrelaxable, a-priori, known and decoupled. No

additional assumption is made regarding whether they are quantifiable or binary;

• Vice-versa, the constraints defined by the set Ξ are relaxable, black-box and known. In practice,

we do not strictly assume that the constraints in (2.2) are coupled or decoupled. However, we

suppose that a sample evaluation returns all the information of interest on both the cost function

and the constraints functions. Finally, some BBO methods assume that it is possible to measure

𝒈Ξ (·) (quantifiable), others suppose that we can only asses whether a sample is Ξ-feasible or

not (binary).

We conclude this Section with an Example of a black-box optimization problem in the context of

control systems. We take advantage of the next Example to introduce some terminology and concepts

that will also be relevant for Chapter 8, where we will apply the proposed BBO methods to tune the

controllers of a hydraulic forming press.
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Example 2.1: Black-box optimization for control systems

The goal of any control system is to correct or limit the deviation of a controlled variable (or

output), produced by a system under control, from a reference variable (called the setpoint).

To do so, a controller (or regulator) commands suitable corrective actions (namely, the control

actions) to the system in order to drive the output towards the setpoint [102]. For example, we

could be interested in bringing and maintaining the temperature (output) of an oven (system

under control) at a certain fixed level (setpoint). To do so, the controller generates the signals

(control actions) that are fed to the heaters (actuators) to drive the oven temperature towards

the desired value.

Different control systems might require different controllers. That depends quite a lot on the

performance requirements (which are referred to as control specifications) that the regulators

must satisfy. For example, if we are controlling a cooking oven, we would like its temperature to

reach the desired value in the least amount of time as possible (low rise time) but, simultaneously,

avoid temperature peaks that could ruin the food. Additionally, we would prefer to have moderate

control actions to limit electricity consumption.

Most regulators depend on some parameters. For example, the widely known Proportional-

Integral-Derivative (PID) controllers [4] have three parameters which are, respectively, the

proportional, integral and derivative gains. These parameters affect the setpoint tracking

performances, hence they must be carefully tuned to satisfy the control specifications. This

is where black-box optimization procedures come in. In control systems applications, the

parameters of the controller constitute the decision vector while the cost function and the

constraints functions are related to the control specifications.

Let us consider the output, setpoint and control action signals denoted, respectively, as:

𝑜𝑢𝑡𝑝𝑢𝑡 (𝑡; 𝒙), 𝑆𝑃(𝑡), 𝑐𝑜𝑛𝑡𝑟𝑜𝑙_𝑎𝑐𝑡𝑖𝑜𝑛(𝑡; 𝒙). (2.6)

Consistently with the control systems literature, we use the variable 𝑡 to denote the time. In

particular, 𝑆𝑃(𝑡) is the value of the setpoint at time 𝑡 ∈ R (continuous time signal). If the

signals in (2.6) are sampled at a certain sampling time 𝑇𝑠 ∈ R>0, then 𝑆𝑃(𝑡) is the value of the

setpoint at time 𝑡 · 𝑇𝑠, where 𝑡 ∈ Z (discrete time signal). Notice that the output and the control

action signals in (2.6) depend on the tuning, 𝒙, of the controller.
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A common and easy way to assess the quality of a (closed-loop) control system is to perform a

step test. In this case, the setpoint is defined as:

𝑆𝑃(𝑡) =


0 for 𝑡 < 0

𝐴 for 𝑡 ≥ 0
, (2.7)

where 𝐴 ∈ R, and the resulting 𝑜𝑢𝑡𝑝𝑢𝑡 (𝑡; 𝒙) is called the step response of the system. If 𝑆𝑃(𝑡)

is defined as in (2.7), there exist several indicators that describe the quality of the tracking

performances of the controller [36, 102]:

1. The rise time 𝑡𝑟𝑖𝑠𝑒 (𝒙), which is the time required by the output to rise from 0.1 · 𝐴 (10%

of the setpoint) to 0.9 · 𝐴 (90% of the setpoint);

2. The settling time 𝑡𝑠𝑒𝑡𝑡𝑙𝑒 (𝒙), which is the time required by the output to reach and stay

within a tolerance of 5% from the setpoint;

3. The maximum overshoot 𝑚𝑎𝑥_𝑜𝑠(𝒙), i.e. the difference between the maximum peak of

the output signal and the setpoint. Typically, it is expressed in percentage with respect to

𝐴.

Additionally, one way to measure the “aggressiveness” of the control action is the Total Square

Variation (TSV) index [36]. Consider 𝑜𝑢𝑡𝑝𝑢𝑡 (𝑡; 𝒙) to be sampled at a sampling time 𝑇𝑠 and that

a total of 𝑇 ∈ N samples have been acquired. Then, the TSV indicator is defined as:

𝑡𝑠𝑣 (𝒙) = 1
𝑇𝑠

𝑇−1∑︁
𝑡=1

[𝑐𝑜𝑛𝑡𝑟𝑜𝑙_𝑎𝑐𝑡𝑖𝑜𝑛(𝑡 + 1; 𝒙) − 𝑐𝑜𝑛𝑡𝑟𝑜𝑙_𝑎𝑐𝑡𝑖𝑜𝑛(𝑡; 𝒙)]2 . (2.8)

In general, low 𝑡𝑠𝑣 (𝒙)’s indicate smoother (and thus more moderate) control actions. Vice-

versa, high 𝑡𝑠𝑣 (𝒙)’s are associated to more aggressive regulators.

Figure 3 depicts the values of the proposed indicators for different tunings of a controller. We can

perform black-box optimization as follows: we minimize the rise time or the settling time of the

step response (i.e. 𝑓 (𝒙) = 𝑡𝑟𝑖𝑠𝑒 (𝒙) or 𝑓 (𝒙) = 𝑡𝑠𝑒𝑡𝑡𝑙𝑒 (𝒙)) while keeping the maximum overshoot

below a given threshold 𝑜 ∈ R≥0 (i.e. Ξ = {𝒙 : 𝑚𝑎𝑥_𝑜𝑠 (𝒙) ≤ 𝑜}). Even the 𝑡𝑠𝑣 (𝒙) indicator in

(2.8) could be used as a black-box constraint in a similar fashion. Furthermore,Ω should contain

some bounds on the regulators’ parameters (for example, often the gains of PID controllers must

be non-negative [4, 102]). In this case, a sample evaluationa for 𝒙𝑖 amounts to: (i) performing

a closed-loop step test with controller’s parameters 𝒙𝑖, acquiring the signals in (2.6), and (ii)
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computing the performance indicators of interest from 𝑜𝑢𝑡𝑝𝑢𝑡 (𝑡; 𝒙𝑖) and 𝑐𝑜𝑛𝑡𝑟𝑜𝑙_𝑎𝑐𝑡𝑖𝑜𝑛(𝑡; 𝒙𝑖).

Clearly, if no model of the control system is available, the relationship between 𝑡𝑟𝑖𝑠𝑒 (𝒙), 𝑡𝑠𝑒𝑡𝑡𝑙𝑒 (𝒙),

𝑚𝑎𝑥_𝑜𝑠(𝒙), 𝑡𝑠𝑣 (𝒙), and the decision vector 𝒙 is unknown. That is often the case for complex

control systems, for which it can be challenging to derive sufficiently expressive models, making

black-box optimization procedures suited for the controller calibration task.

aBe careful not to confuse the samples of the signals in (2.6) from the samples of the decision vector (tunings)
tested by a black-box optimization procedure.

Tuning 𝒙𝑖 𝑡𝑟𝑖𝑠𝑒 (𝒙𝑖) [𝑠𝑒𝑐] 𝑡𝑠𝑒𝑡𝑡𝑙𝑒 (𝒙𝑖) [𝑠𝑒𝑐] 𝑚𝑎𝑥_𝑜𝑠(𝒙𝑖) 𝑡𝑠𝑣(𝒙𝑖)
𝒙1 (red) 4.270 6.347 0.000% 0.004
𝒙2 (green) 0.544 3.377 25.369% 0.875
𝒙3 (blue) 0.422 4.348 45.197% 2.530

Figure 3: Performances achieved by a controller with tunings 𝒙𝑖 , 𝑖 = 1, 2, 3, on the same control system
(see Example 2.1). The output signal and the control action of each regulator are shown with a different
color. The dashed black lines denote the setpoint and the ±5% band. The table reports the values of the
indicators described in Example 2.1.

2.2 The rationale behind surrogate-based methods

Now, we review some algorithms that can be used to solve the GOP (2.1). As pointed out in Section

1.2, surrogate-based methods (or response surface techniques) [65, 149] are the de facto standard

algorithms for black-box (and preference-based) optimization. Surrogate-based methods are iterative

procedures which typically follow the scheme reported in Algorithm 5. We can distinguish three main

phases [149]:

1. The experimental design phase [91, 123, 135], which is devoted to generating a set of 𝑁𝑖𝑛𝑖𝑡 ∈ N

initial samples that is “well-spread” within the constraint set Ω (see Section 2.4).

42



Black-box optimization

2. The following two phases are executed at each iteration of any surrogate-based procedure:

a) Build/update surrogate model(s) for the cost function and (possibly) the black-box con-

straints functions (or the Ξ-feasibility function). A surrogate model is none other than an

approximation of 𝑓 (𝒙) or of 𝒈Ξ (𝒙)/𝑢Ξ (𝒙) that is constructed using only the data obtained

from the sample evaluations. The most popular ones are based either on radial basis

functions [38] or Gaussian processes [153] (see Section 2.5).

b) Infill sampling phase [65, 149], which is devoted to generating new candidate samples

to be evaluated. There exist several different infill sampling criteria but, in general, this

step amounts to solving an additional global optimization problem where an acquisition

function, 𝑎 : R𝑛 → R, is either minimized or maximized. 𝑎 (𝒙) is a function which

trades-off exploitation (i.e. using the surrogate models as “proxies” for the GOP (2.1))

and exploration of the constraint set Ω. See Section 2.6 for a review of some popular infill

sampling criteria.

Given the expensiveness of the cost function and, possibly, of some of the constraints functions (see

Assumption 2.1), the usual stopping criterion for surrogate-based methods is a maximum number of

sample evaluations, 𝑁𝑚𝑎𝑥 ∈ N, which we refer to as budget. For the remainder of this book, we denote

the best candidate sample found by a surrogate-based method when 𝑁 ∈ N samples have been tried

as 𝒙𝒃𝒆𝒔𝒕 (𝑁). Similarly, the measure of the cost function at 𝒙𝒃𝒆𝒔𝒕 (𝑁) is 𝑦𝑏𝑒𝑠𝑡 (𝑁). Then, intuitively,

the solution found by any surrogate-based method when the budget is exhausted is 𝒙𝒃𝒆𝒔𝒕 (𝑁𝑚𝑎𝑥) (with

cost 𝑦𝑏𝑒𝑠𝑡 (𝑁𝑚𝑎𝑥)). As we will see in Chapter 3, response surface technique can also be used to solve

preference-based optimization problems, following the same scheme described in Algorithm 5.

Clearly, Algorithm 5 is computationally expensive since, at each iteration, the surrogate models must

be updated and, also, an additional global optimization problem must be solved. However, most

response surface techniques make the following Assumption.

Assumption 2.3 (Assumption for surrogate-based methods). The computational overhead caused by

Step 6 and Step 7 of Algorithm 5 is negligible when compared to the time required to perform sample

evaluations.

Lastly, note that most response surface techniques have several hyper-parameters that need to be

carefully tuned. Some of them are related to the surrogate models while others regulate, for example,

the exploration-exploitation trade-off and the penalization of Ξ-infeasible regions of Ω. Hence, some

surrogate-based procedures also include a recalibration phase devoted to tuning these hyper-parameters

(Step 5 of Algorithm 5).
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Algorithm 5: General scheme for surrogate-based methods
Input: (i) A-priori known constraint setΩ of the GOP (2.1); (ii) Initial number of samples 𝑁𝑖𝑛𝑖𝑡 ∈ N; (iii) Budget
𝑁𝑚𝑎𝑥 ∈ N, 𝑁𝑚𝑎𝑥 > 𝑁𝑖𝑛𝑖𝑡 ; (iv) (Possibly) hyper-parameters for each phase of the surrogate-based procedure.
Output: (i) (If available) best cost obtained by the procedure 𝑦𝑏𝑒𝑠𝑡 (𝑁𝑚𝑎𝑥); (ii) Best sample obtained by the
procedure 𝒙𝒃𝒆𝒔𝒕 (𝑁𝑚𝑎𝑥).
1: (Experimental design) Select a set of 𝑁𝑖𝑛𝑖𝑡 starting points
2: Evaluate the initial samples
3: Set 𝑁 = 𝑁𝑖𝑛𝑖𝑡
4: repeat
5: (Optional) Recalibrate the hyper-parameters
6: (Build/update surrogate model(s)) Use the available data to construct surrogate models for the cost

function and the black-box constraints functions/Ξ-feasibility function
7: (Infill sampling phase) Use the previously computed surrogate model(s) to generate one or more new

candidate samples
8: Evaluate the new candidate samples
9: Update the data (i.e. store the new sample evaluations)

10: Update the best candidate sample (if needed)
11: Increase 𝑁 accordingly to how many points have been generated by the infill sampling phase
12: until 𝑁 = 𝑁𝑚𝑎𝑥

Optimization algorithm

Radial basis functions, 
Gaussian processes

Surrogate modelsෝ𝒈Ξ𝑁 𝒙 ො𝑢Ξ𝑁 𝒙መ𝑓𝑁 𝒙

Hydraulic forming pressReal-world process/system𝒈Ξ
′ 𝒙 𝑢Ξ

′ 𝒙𝑓′ 𝒙

Physics-based simulator 
of the hydraulic press

Simulator𝒈Ξ 𝒙 𝑢Ξ 𝒙𝑓 𝒙

Surrogate-based method

: Approximation/data stream : Optimization : Hyper-parameters tuning

Figure 4: General workflow for surrogate-based optimization. A surrogate-based method interacts
with either a simulator or a real-world system, acquiring data that is used for the estimation of its
surrogate models. The continuous arrows highlight a typical workflow. Instead, the dashed arrows
represent a possible (but less likely) scenario of interaction. Lastly, we report some examples for each
layer (highlighted in yellow). This Figure has been adapted from [139].

We conclude this Section by giving a general workflow for surrogate-based optimization [139], see

Figure 4. Following Assumption 2.1, we presume that each sample evaluation amounts to either

running a computer simulation or performing a real-world experiment. In the latter case, surrogate-

based methods interact directly with the real-world process/system. However, often, a direct interaction

with the real system is avoided. Instead, we rely on a simulator that approximates the process to be

optimized. Thus, surrogate-based methods acquire information on 𝑓 (𝒙) and, possibly, 𝒈Ξ (𝒙) and/or
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𝑢Ξ (𝒙) by running simulations with certain calibrations of the decision vector. Then, the surrogate

models 𝑓𝑁 (𝒙) , 𝒈̂Ξ𝑁 (𝒙) and 𝑢̂Ξ𝑁 (𝒙) are estimated from the acquired data (the subscripts indicate

that 𝑁 ∈ N sample evaluations have been used for their estimation, as we will see in Section 2.5).

The latter are then optimized in some way (through a suitable GO procedure) by the infill sampling

criterion of the considered response surface technique. Note that, in theory, we could perform the

optimization by interfacing the global optimization procedure directly to either the simulator or the

real-world process (dashed red arrows in Figure 4). However, due to the expensiveness of sample

evaluations, it is definitely not recommended.

2.3 Data available for black-box optimization

Before moving on to analyze each main phase of Algorithm 5, we highlight the data available to

surrogate-based methods after performing several sample evaluations (in the black-box optimization

framework). Suppose that 𝑁 ∈ N samples have been evaluated, then we have at our disposal:

1. The locations of the samples:

X =
{
𝒙𝑖 : 𝑖 = 1, . . . , 𝑁, 𝒙𝑖 ∈ Ω, 𝒙𝑖 ≠ 𝒙 𝑗 ,∀𝑖 ≠ 𝑗

}
. (2.9)

Note that, in the black-box (and preference-based) optimization framework(s), all samples are

generated so that they are feasible with respect to the constraint setΩ of the GOP (2.1). Moreover,

in (2.9), we have assumed that all points are different, although it might not necessarily be the

case if the experimental design phase and/or the infill sampling phase are not properly defined.

2. The cost function measures:

Y =

{
𝑦𝑖 : 𝑦𝑖 = 𝑓 (𝒙𝑖) + 𝜂 𝑓𝑖 , 𝒙𝑖 ∈ X, (2.10)

𝜂 𝑓𝑖
𝑖.𝑖.𝑑.∼ some probability distribution

}
.

In general, the measures of 𝑓 (𝒙) can be affected by noise, as highlighted by (2.10).

3. The information on the black-box constraints in Ξ. In practice, we suppose that, at least, we

know the feasibility of each sample in X with respect to Ξ, as highlighted by the following set:

UΞ = {𝑢𝑖 : 𝑢𝑖 = 𝑢Ξ (𝒙𝑖) , 𝒙𝑖 ∈ X} . (2.11)
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Most surrogate-based algorithms also assume that it is possible to measure the values of each

constraint function 𝑔( 𝑗)
Ξ

(𝒙𝑖) ,∀𝒙𝑖 ∈ X,∀ 𝑗 = 1, . . . , 𝑞Ξ:

CΞ =

{
𝒄𝑖 : 𝒄𝑖 = 𝒈Ξ (𝒙𝑖) + 𝜼Ξ𝑖 , 𝒙𝑖 ∈ X, (2.12)

𝜼Ξ𝑖
𝑖.𝑖.𝑑.∼ some probability distribution

}
.

Similarly to the cost function, the constraints functions measures in (2.12) might also be affected

by noise. In any case, we assume that the noise terms affecting each 𝑔( 𝑗)
Ξ

(𝒙) are independent.

Thus, we can split set CΞ into 𝑞Ξ different sets, one for each black-box constraint:

C ( 𝑗)
Ξ

=

{
𝑐
( 𝑗)
𝑖

: 𝑐( 𝑗)
𝑖

= 𝑔
( 𝑗)
Ξ

(𝒙𝑖) + 𝜂𝑔 ( 𝑗 )
Ξ𝑖

, 𝒙𝑖 ∈ X, (2.13)

𝜂
𝑔
( 𝑗 )
Ξ𝑖

𝑖.𝑖.𝑑.∼ some probability distribution
}
.

On a side note, if the measures of the black-box constraints functions are assumed to be affected

by noise, a more proper definition for the Ξ-feasibility function in (2.4) would be:

𝑢Ξ (𝒙𝑖) =


1 if 𝒈Ξ (𝒙𝑖) + 𝜼Ξ𝑖 ≤ 0𝑞Ξ

0 if 𝒈Ξ (𝒙𝑖) + 𝜼Ξ𝑖 > 0𝑞Ξ
. (2.14)

Hence, the elements of set UΞ in (2.11) could be mislabeled. Clearly, the entries of UΞ in (2.11)

can be derived immediately from CΞ in (2.12), if the latter set is available.

We remark that all the aforementioned sets have the same cardinality, namely |X| = |Y| = |CΞ | =

|UΞ | = 𝑁 .

Consistently with [54, 111, 115, 116], we make the following Assumption on the measures of the cost

function and the black-box constraints functions.

Assumption 2.4 (Noiseless measures). Unless stated otherwise, we assume that the measures of 𝑓 (𝒙)

in Y (2.10) and the measures of 𝒈Ξ (𝒙) in CΞ (2.12) are not affected by noise. That is often the

case for deterministic computer simulations, although it might not necessarily be true for real-world

experiments.

2.4 Experimental designs

The experimental design phase of Algorithm 5 is used to find an initial set of samples, X, |X| =

𝑁𝑖𝑛𝑖𝑡 , 𝑁𝑖𝑛𝑖𝑡 ∈ N, for evaluation. In this context, Ω in (2.1) is referred to as the design space whereas

the output of the procedure, X, is called a design. Consistently with Assumption 2.4, in this Section

we briefly cover some experimental design techniques for deterministic experiments, i.e. such that,
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given a sample 𝒙̃ ∈ Ω, replicating the evaluation at 𝒙̃ yields the same results [123, 124]. That is often

the case for computer simulations, for which no repetition of the evaluations is needed. Conversely,

real-world experiments are often affected by different sources of random errors (such as human error,

systematic error and noise [135]). In this case, the effects of the random errors can be mitigated by

replicating experiments [41].

The most important properties for a good (deterministic) experimental design are [149]:

• Space-fill: the design points should be uniformly spread over the entire design space. That is

because most surrogate models are more accurate in the vicinity of those samples from which

they are built. Hence, a uniform level of model accuracy throughout the design space requires

a uniform spread of points [135].

• Non-collapse: two design points should not share any coordinate value if we do not know

a-priori which dimensions are important, i.e. 𝑥 (𝑘)
𝑖

≠ 𝑥
(𝑘)
𝑗
,∀𝒙𝑖, 𝒙 𝑗 ∈ X, 𝑖 ≠ 𝑗 , 1 ≤ 𝑘 ≤ 𝑛. If

all the decision variables of the GOP (2.1) are assumed to be relevant, then the non-collapse

property becomes less significant.

• Constraints-fill: the samples generated by the experimental design should satisfy all the con-

straints in Ω. Most procedures assume that the design space is a simple box; an easy (but

inefficient) way to achieve the constraint-fill property is to repeat the experimental design until

𝒙𝑖 ∈ Ω,∀𝒙𝑖 ∈ X.

In what follows, we consider Ω to be defined as in (1.3) (i.e. only box constraints are present). The

most straightforward way to sample points in a uniform manner is through a full factorial design [135],

which basically boils down to grid search. Each decision variable 𝑥 ( 𝑗) is discretized so that it can

assume 𝑛𝑔 ≥ 1, 𝑛𝑔 ∈ N, possible values that are equidistant in the interval
[
𝑙 ( 𝑗) , 𝑢( 𝑗)

]
. Differently

from Algorithm 1, full factorial designs typically select the values as the midpoints of each subinterval

instead of its bounds, i.e. 𝑥 ( 𝑗) can assume the values:

𝑙 ( 𝑗) + 𝑘 · 𝑢
( 𝑗) − 𝑙 ( 𝑗)
𝑛𝑔 + 1

, 𝑘 = 1, . . . , 𝑛𝑔 . (2.15)

Clearly, full factorial designs are space-filling but are quite restrictive: 𝑁𝑖𝑛𝑖𝑡 can only be chosen as

𝑁𝑖𝑛𝑖𝑡 =
(
𝑛𝑔

)𝑛, making them impractical for higher-dimensional problems. An example of full factorial

design for 𝑁𝑖𝑛𝑖𝑡 = 9 is depicted in Figure 5.

A better alternative to full factorial designs are Latin Hypercube Designs (LHDs) [91], which are

non-collapsing by construction. The decision variables are still discretized but, this time, they can
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assume the values2:

𝑙 ( 𝑗) + 𝑘 · 𝑢
( 𝑗) − 𝑙 ( 𝑗)
𝑁𝑖𝑛𝑖𝑡 + 1

, 𝑘 = 1, . . . , 𝑁𝑖𝑛𝑖𝑡 . (2.16)

For the sake of simplicity, denote these values as {1, 2, . . . , 𝑁𝑖𝑛𝑖𝑡} (which correspond to 𝑘 in the

previous expression). A LHD generates a matrix of samples 𝑋 ∈ R𝑁𝑖𝑛𝑖𝑡×𝑛 such that every column

is a random permutation of
[
1 2 . . . 𝑁𝑖𝑛𝑖𝑡

]⊤
. Furthermore, 𝑋 is built so that each value for

𝑥 ( 𝑗) , 𝑗 = 1, . . . , 𝑛, appears at most once in every column and every row. Figure 5 shows three sets of

samples generated by a LHD. Note that latin hypercube designs are not necessarily space-filling, e.g.

that is not the case if the samples in X are distributed along the main diagonal of the box defined by

Ω. Before moving on, we report a numerical example to better grasp how LHDs work.

Example 2.2: Latin hypercube design

Consider Ω = {𝒙 : 𝒍 ≤ 𝒙 ≤ 𝒖} with 𝒍 = 02 and 𝒖 =

[
1 2

]⊤
. Suppose that we want to generate

𝑁𝑖𝑛𝑖𝑡 = 4 samples through a latin hypercube design. The values that each decision variable can

assume are 𝑘
5 for 𝑥 (1) and 2·𝑘

5 for 𝑥 (2) , 𝑘 = 1, . . . , 𝑁𝑖𝑛𝑖𝑡 , i.e.:

𝑥 (1) ∈ {0.2, 0.4, 0.6, 0.8} and 𝑥 (2) ∈ {0.4, 0.8, 1.2, 1.6} .

Re-define the set of values for the two decision variables as simply {1, 2, 3, 4}. Then, one

possible matrix of samples, 𝑋 ∈ R4×2, returned by a LHD is obtained by selecting the following

random permutations: 

1 2

3 1

2 4

4 3


which amounts to 𝑋 =



0.2 0.8

0.6 0.4

0.4 1.6

0.8 1.2


.

As previously stated, latin hypercube designs are non-collapsing by construction but not neces-

sarily space-filling. The latter property results from a proper selection of the 𝑛 permutations of[
1 2 . . . 𝑁𝑖𝑛𝑖𝑡

]⊤
among the 𝑁𝑖𝑛𝑖𝑡! choices; in total, there are (𝑁𝑖𝑛𝑖𝑡!)𝑛 different ways of construct-

ing the matrix 𝑋 , making the LHD space quite vast. In practice, we seek those designs that minimize

some cost function that is a measure of “space-fillingness”. In [95], the authors propose to evaluate

2Some LHDs actually consider (without loss of generality) Ω to be the unit hypercube. Then, instead of selecting the
values for each 𝑥 ( 𝑗 ) as in (2.16), 𝑁𝑖𝑛𝑖𝑡 intervals are considered:

[
0, 1

𝑁𝑖𝑛𝑖𝑡

]
,

[
1

𝑁𝑖𝑛𝑖𝑡
, 2
𝑁𝑖𝑛𝑖𝑡

]
, . . . ,

[
𝑁𝑖𝑛𝑖𝑡−1
𝑁𝑖𝑛𝑖𝑡

, 1
]
. After that, the

possible values for 𝑥 ( 𝑗 ) are extracted randomly from each interval. That is the case for MATLAB’s implementation of the
LHD procedure, which has been used to generate Figure 5.
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Figure 5: Examples of experimental designs for 𝑛 = 2, 𝒍 = 02, 𝒖 = 12 and 𝑁𝑖𝑛𝑖𝑡 = 9. From left to
right, top to bottom: full factorial design, a “good” latin hypercube design (space-filling), a “bad” LHD
(not space-filling) and, lastly, a constraints-filling latin hypercube design. The samples produced by the
experimental designs are denoted using black circles whereas the infeasible region of the design space Ω

is highlighted in red.

the quality of the set of samples X returned by an experimental design as:

𝐽𝑝 (X) = ©­«
∑︁

𝒙𝑖 ,𝒙 𝑗∈X,𝑖≠ 𝑗

1

𝒙𝑖 − 𝒙 𝑗


𝑝 ª®¬

1
𝑝

, (2.17)

where 𝑝 ∈ N is a parameter specified by the user and ∥·∥ is some norm that defines the distance

between the points in X. In the case of latin hypercube designs, 𝐽𝑝 (X) in (2.17) is often minimized

by means of simulated annealing or evolutionary strategies that are specifically tailored for LHDs, see

[95, 135].

So far, we have addressed how to make latin hypercube designs, which are already non-collapsing,

also space-filling. For what concerns the constraints-fill property, an easy way to select a constraints-

filling LHD is to keep generating sets of samples, X, of increasing size until at least 𝑁𝑖𝑛𝑖𝑡 points are
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feasible with respect to Ω. This rationale is described in Algorithm 6. Figure 5 shows an example of

constraints-filling latin hypercube design obtained by the proposed scheme. Alternatively, there exist

other experimental designs which directly take into account the constraints in Ω [138].

Algorithm 6: Constraints-filling Latin Hypercube Design
Input: (i) Design space Ω, as defined in (1.5); (ii) Number of samples to generate 𝑁𝑖𝑛𝑖𝑡 ∈ N.
Output: (i) Design X, |X| = 𝑁𝑖𝑛𝑖𝑡 , 𝒙𝑖 ∈ Ω,∀𝒙𝑖 ∈ X.
1: Initialize the number of samples to generate as 𝑁𝑔𝑒𝑛 = 𝑁𝑖𝑛𝑖𝑡
2: Initialize the number of samples that fulfill all the constraints in Ω as 𝑁Ω = 0
3: while 𝑁Ω ≠ 𝑁𝑖𝑛𝑖𝑡 do
4: Generate the set X𝑔𝑒𝑛 of 𝑁𝑔𝑒𝑛 samples using a LHD
5: Extract the samples that satisfy all the constraints, X = X𝑔𝑒𝑛 ∩Ω, and set 𝑁Ω = |X|
6: if 𝑁Ω > 𝑁𝑖𝑛𝑖𝑡 then
7: Keep only the first 𝑁𝑖𝑛𝑖𝑡 samples, i.e. X = {𝒙𝑖 : 𝒙𝑖 ∈ Ω, 𝑖 = 1, . . . , 𝑁𝑖𝑛𝑖𝑡 }
8: Set 𝑁Ω = 𝑁𝑖𝑛𝑖𝑡
9: Increase the number of samples to generate: 𝑁𝑔𝑒𝑛 = 𝑁𝑔𝑒𝑛 + 1

We conclude this Section by pointing out that there exist several other experimental designs, such as

minimax and maximin distance designs [64], as well as statistical designs [123].

2.5 Surrogate models

This Section is devoted to reviewing two of the most popular surrogate models, which are based either

on Radial Basis Functions (RBFs) [38] or Gaussian Processes (GPs) [153]. In what follows, we derive

the approximations only for the cost function 𝑓 (𝒙) of the GOP (2.1). However, the surrogate models

for each black-box constraint function 𝑔( 𝑗)
Ξ

(𝒙) , 𝑗 = 1, . . . , 𝑞Ξ, can be handled in the same manner,

using the measures in C ( 𝑗)
Ξ

(2.13) instead of those in Y (2.10).

Notation and conventions. Let ℎ : R𝑛 → R be a generic function, we denote a surrogate for ℎ (·)

computed from 𝑁 sample evaluations as ℎ̂𝑁 : R𝑛 → R. Furthermore, whenever needed, we explicit

the most relevant additional parameters of ℎ̂𝑁 (𝒙) using the following notation: ℎ̂𝑁 (𝒙; 𝜖, 𝜃), where

𝜖, 𝜃 represent two generic parameters.

The next Remark highlights which surrogate models are most suited for response surface techniques.

Remark 2.2. Recall that surrogate-based methods aim to solve a global optimization problem. There-

fore, most procedures use surrogate models that are able to describe 𝑓 (𝒙) and 𝑔( 𝑗)
Ξ

(𝒙) , 𝑗 = 1, . . . , 𝑞Ξ,

in a global sense. The reasoning behind it is that, if the approximations are “good enough”, then

solving

X̂∗ = arg min
𝒙
𝑓𝑁 (𝒙)

s.t. 𝒙 ∈ Ω

50



Black-box optimization

𝑔̂
( 𝑗)
Ξ𝑁

(𝒙) ≤ 0 𝑗 = 1, . . . , 𝑞Ξ

leads to solutions that are sufficiently close to the ones of the GOP (2.1).

As a final remark, we stress that the samples inX (2.9) are assumed to be distinct, which is a mandatory

assumption for those surrogate models based on radial basis functions.

2.5.1 Radial basis function interpolation

Before actually defining the surrogate model of interest, we review radial functions and radial basis

functions.

Definition 2.4: Radial function [38]. A function 𝜙 : R𝑛 → R is called radial provided that

there exists a univariate function 𝜑 : R≥0 → R such that:

𝜙 (𝒙) = 𝜑 (𝑟) , 𝑟 = ∥𝒙∥ , (2.18)

where ∥·∥ is some norm on R𝑛.

Definition 2.5: Radial basis function [38]. Given a fixed center 𝒙𝑖 ∈ R𝑛, a shape parameter

𝜖 ∈ R>0 and a radial function 𝜑 : R≥0 → R, we define the corresponding Radial Basis Function

(RBF) 𝜙𝑖 : R𝑛 → R as:

𝜙𝑖 (𝒙; 𝜖) = 𝜑 (𝜖 · ∥𝒙 − 𝒙𝒊 ∥) . (2.19)

In this book, we will always use the Euclidean norm ∥𝒙 − 𝒙𝑖∥2 in (2.19). Note that, from Definition

2.5, radial basis functions are radially (or spherically) symmetric about their centers, i.e. given any

two points 𝒙1, 𝒙2 ∈ R𝑛 such that ∥𝒙1 − 𝒙𝑖∥ = ∥𝒙2 − 𝒙𝑖∥, we have 𝜙𝑖 (𝒙1) = 𝜙𝑖 (𝒙2). Several RBFs

exist; the next Definition reports some of the most commonly used ones.

Definition 2.6: Commonly used radial functions [44]. Some commonly used radial functions

are (𝑟 = ∥𝒙∥):

• Inverse quadratic: 𝜑 (𝑟) = 1
1+𝑟2 ;

• Multiquadratic: 𝜑 (𝑟) =
√

1 + 𝑟2;

• Linear: 𝜑 (𝑟) = 𝑟;

• Gaussian: 𝜑 (𝑟) = exp
{
−𝑟2};

• Thin plate spline: 𝜑 (𝑟) = 𝑟2 · ln (𝑟);
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• Inverse multiquadratic: 𝜑 (𝑟) = 1√
1+𝑟2 .

The corresponding radial basis functions, 𝜙𝑖 (𝒙; 𝜖), can be obtained by setting 𝑟 = 𝜖 · ∥𝒙 − 𝒙𝒊 ∥.

Figure 6 depicts the aforementioned radial basis functions with different values of the shape parameter.

Smaller values of 𝜖 lead to “flatter” RBFs, whereas increasing the value of the shape parameter makes

𝜑 (·) “more peaked”. Furthermore, in the case of inverse quadratic, Gaussian and inverse multi-

quadratic RBFs, a higher 𝜖 makes 𝜑 (·) significantly different from zero only in a small neighborhood

of the center 𝑥1 (more local behavior).

Figure 6: Examples of radial basis functions with center 𝑥1 = 0 and for different values of the shape
parameter 𝜖 .

RBFs can be used to approximate the cost function 𝑓 (𝒙) of the GOP (2.1) as follows. Suppose to

have at our disposal the data resulting from 𝑁 sample evaluations (see Section 2.3). We define the

surrogate model 𝑓𝑁 : R𝑛 → R as the radial basis function expansion [38]:

𝑓𝑁

(
𝒙; 𝜷 𝑓 , 𝜖 𝑓

)
=

𝑁∑︁
𝑖=1

𝛽
(𝑖)
𝑓
· 𝜑 𝑓

(
𝜖 𝑓 · ∥𝒙 − 𝒙𝑖∥2

)
=

𝑁∑︁
𝑖=1

𝛽
(𝑖)
𝑓
· 𝜙 𝑓𝑖

(
𝒙; 𝜖 𝑓

)
(2.20)

= 𝝓 𝑓

(
𝒙; 𝜖 𝑓

)⊤ · 𝜷 𝑓 ,
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where the subscripts (·) 𝑓 indicate that the shape parameter 𝜖 𝑓 ∈ R>0 and the radial function 𝜑 𝑓 (·) are

referred to the surrogate model for the cost function 𝑓 (𝒙). In (2.20), 𝝓 𝑓

(
𝒙; 𝜖 𝑓

)
∈ R𝑁 is the radial

basis function vector,

𝝓 𝑓

(
𝒙; 𝜖 𝑓

)
=

[
𝜑 𝑓

(
𝜖 𝑓 · ∥𝒙 − 𝒙1∥2

)
. . . 𝜑 𝑓

(
𝜖 𝑓 · ∥𝒙 − 𝒙𝑁 ∥2

) ]⊤ (2.21)

=

[
𝜙 𝑓1

(
𝒙; 𝜖 𝑓

)
. . . 𝜙 𝑓𝑁

(
𝒙; 𝜖 𝑓

) ]⊤
,

and 𝜷 𝑓 =
[
𝛽
(1)
𝑓

. . . 𝛽
(𝑁)
𝑓

]⊤
∈ R𝑁 is a vector of weights which needs to be computed from the sets

X in (2.9) and Y in (2.10). The main advantages of the RBF expansion surrogate model in (2.20) are

[38]:

1. It is invariant under all Euclidean transformations (i.e. translations, rotations and reflections),

2. It is insensitive to the dimension 𝑛 of the space R𝑛 where the samples lie.

Furthermore, we can state the following results on the differentiability of the RBF expansion surrogate

model.

Proposition 2.1: Differentiability of the RBF expansion. Function 𝑓𝑁

(
𝒙; 𝜷 𝑓 , 𝜖 𝑓

)
in (2.20)

is differentiable everywhere with respect to 𝒙 if and only if the chosen radial basis function

𝜙 𝑓𝑖
(
𝒙; 𝜖 𝑓

)
= 𝜑 𝑓

(
𝜖 𝑓 · ∥𝒙 − 𝒙𝑖∥2

)
is differentiable everywhere.

Proof. Clearly, if 𝜙 𝑓𝑖
(
𝒙; 𝜖 𝑓

)
in (2.20) is differentiable everywhere with respect to 𝒙, then

𝑓𝑁

(
𝒙; 𝜷 𝑓 , 𝜖 𝑓

)
is a linear combination of differentiable functions, making it differentiable. Vice-

versa, if 𝜙 𝑓𝑖
(
𝒙; 𝜖 𝑓

)
is not differentiable everywhere, then the same can be said for the surrogate model

in (2.20). □

Lemma 2.1: Gradient of the RBF expansion. Suppose that 𝑓𝑁
(
𝒙; 𝜷 𝑓 , 𝜖 𝑓

)
in (2.20) is differen-

tiable everywhere (see Proposition 2.1). Then, its gradient is:

∇𝒙 𝑓𝑁

(
𝒙; 𝜷 𝑓 , 𝜖 𝑓

)
=

𝑁∑︁
𝑖=1

𝛽
(𝑖)
𝑓
· ∇𝒙𝜙 𝑓𝑖

(
𝒙; 𝜖 𝑓

)
, (2.22)

where ∇𝒙𝜙 𝑓𝑖
(
𝒙; 𝜖 𝑓

)
is the gradient of the chosen radial basis function.

We follow up Proposition 2.1 with two Examples where we show that the linear RBF leads to a

surrogate model that is not differentiable at each 𝒙𝑖 ∈ X, whereas the inverse quadratic RBF results
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in a 𝑓𝑁

(
𝒙; 𝜷 𝑓 , 𝜖 𝑓

)
in (2.20) that is differentiable everywhere. We also take advantage of the next

Examples to show some basic differentiability results on the Euclidean norm and the squared Euclidean

norm.
Example 2.3: Linear radial basis function

We want to prove that 𝑓𝑁
(
𝒙; 𝜷 𝑓 , 𝜖 𝑓

)
in (2.20) defined using the linear radial basis function, i.e.

𝜙 𝑓𝑖
(
𝒙; 𝜖 𝑓

)
= 𝜖 𝑓 · ∥𝒙 − 𝒙𝑖∥2, is not differentiable at each 𝒙𝑖 ∈ X. Consider the Euclidean norm

∥𝒙 − 𝒙𝑖∥2 and define the auxiliary variable 𝒛 = 𝒙 − 𝒙𝑖. We now prove that ∥𝒛∥2 is differentiable

everywhere except at the origin 0𝑛. To do so, we compute the partial derivatives of ∥𝒛∥2 at any

point 𝒛̃ ∈ R𝑛:

𝜕

𝜕𝑧( 𝑗)
∥𝒛∥2

�����
𝒛=𝒛̃

= lim
𝑡→0



𝒛̃ + 𝑡 · 𝒆 𝑗

2 − ∥ 𝒛̃∥2

𝑡

= lim
𝑡→0



𝒛̃ + 𝑡 · 𝒆 𝑗

2 − ∥ 𝒛̃∥2

𝑡
·


𝒛̃ + 𝑡 · 𝒆 𝑗

2 + ∥ 𝒛̃∥2

𝒛̃ + 𝑡 · 𝒆 𝑗

2 + ∥ 𝒛̃∥2

= lim
𝑡→0



𝒛̃ + 𝑡 · 𝒆 𝑗

2
2 − ∥ 𝒛̃∥2

2

𝑡 ·
(

𝒛̃ + 𝑡 · 𝒆 𝑗

2 + ∥ 𝒛̃∥2

)
= lim
𝑡→0

(
𝒛̃ + 𝑡 · 𝒆 𝑗

)⊤ ·
(
𝒛̃ + 𝑡 · 𝒆 𝑗

)
− 𝒛̃⊤ · 𝒛̃

𝑡 ·
(

𝒛̃ + 𝑡 · 𝒆 𝑗

2 + ∥ 𝒛̃∥2

)
= lim
𝑡→0

���𝒛̃⊤ · 𝒛̃ + 𝑡2 + 2 · 𝑡 · 𝒛̃( 𝑗) −���𝒛̃⊤ · 𝒛̃

𝑡 ·
(

𝒛̃ + 𝑡 · 𝒆 𝑗

2 + ∥ 𝒛̃∥2

)
= lim
𝑡→0

�𝑡 ·
(
𝑡 + 2 · 𝒛̃( 𝑗)

)
�𝑡 ·

(

𝒛̃ + 𝑡 · 𝒆 𝑗

2 + ∥ 𝒛̃∥2

)
= lim
𝑡→0

𝑡 + 2 · 𝒛̃( 𝑗)

𝒛̃ + 𝑡 · 𝒆 𝑗

2 + ∥ 𝒛̃∥2
.

Clearly, if 𝒛̃ ≠ 0𝑛, the partial derivatives at 𝒛̃ exist and are equal to:

𝜕

𝜕𝑧( 𝑗)
∥𝒛∥2

�����
𝒛=𝒛̃

=
𝑧( 𝑗)

∥ 𝒛̃∥2
.

Vice-versa, for 𝒛̃ = 0𝑛, the limit becomes:

lim
𝑡→0

𝑡 + 2 · 𝑧( 𝑗)

𝒛̃ + 𝑡 · 𝒆 𝑗

2 + ∥ 𝒛̃∥2
= lim
𝑡→0

𝑡

𝑡 · 𝒆 𝑗

2

= lim
𝑡→0

𝑡
√
𝑡2

= lim
𝑡→0

𝑡

|𝑡 | .
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We can see that the limit does not exist since:

1 = lim
𝑡→0+

𝑡

|𝑡 | ≠ lim
𝑡→0−

𝑡

|𝑡 | = −1.

Thus, we conclude that ∥𝒛∥2 is not differentiable at the origin since its partial derivatives do not

exist at 𝒛 = 0𝑛.

To prove that ∥𝒛∥2 is differentiable ∀𝒛 ∈ R𝑛 \ {0𝑛}, we still need to verify if all its partial

derivatives are continuous on such set. Clearly, that is the case for 𝜕

𝜕𝑧 ( 𝑗 )
∥𝒛∥2 = 𝑧 ( 𝑗 )

∥𝒛∥2
,∀ 𝑗 =

1, . . . , 𝑛.

Now, recall that 𝒛 = 𝒙 − 𝒙𝑖. Then, the gradient of ∥𝒙 − 𝒙𝑖∥2 is defined ∀𝒙 ∈ R𝑛 \ {𝒙𝑖} and is

equal to:

∇𝒙 ∥𝒙 − 𝒙𝑖∥2 =
𝒙 − 𝒙𝑖

∥𝒙 − 𝒙𝒊 ∥2
. (2.23)

Therefore, the linear radial basis function 𝜙 𝑓𝑖
(
𝒙; 𝜖 𝑓

)
= 𝜖 𝑓 · ∥𝒙 − 𝒙𝑖∥2 is not differentiable at

𝒙 = 𝒙𝑖, making 𝑓𝑁

(
𝒙; 𝜷 𝑓 , 𝜖 𝑓

)
in (2.20) not differentiable at each 𝒙𝑖 ∈ X.

Example 2.4: Inverse quadratic radial basis function

We want to prove that 𝑓𝑁
(
𝒙; 𝜷 𝑓 , 𝜖 𝑓

)
in (2.20) defined using the inverse quadratic radial basis

function, i.e. 𝜙 𝑓𝑖
(
𝒙; 𝜖 𝑓

)
=

(
1 + 𝜖2

𝑓
· ∥𝒙 − 𝒙𝑖∥2

2

)−1
, is differentiable everywhere. First of all, we

demonstrate that the squared Euclidean norm is differentiable everywhere. Clearly, ∥𝒙 − 𝒙𝒊 ∥2
2

is differentiable∀𝒙 ∈ R𝑛 \{𝒙𝑖} since it is the composition of two functions that are differentiable

on their respective domains (see Example 2.3). Thus, we only need to check whether or not the

squared Euclidean norm is differentiable at 𝒙𝑖. We compute its partial derivatives at 𝒙𝑖:

𝜕

𝜕𝑥 ( 𝑗)
∥𝒙 − 𝒙𝑖∥2

2

�����
𝒙=𝒙𝑖

= lim
𝑡→0



𝒙𝑖 + 𝑡 · 𝒆 𝑗 − 𝒙𝑖


2

2 − ∥𝒙𝑖 − 𝒙𝑖∥2
2

𝑡

= lim
𝑡→0



𝑡 · 𝒆 𝑗

2
2

𝑡

= lim
𝑡→0

𝑡2

𝑡

= 0.

We have proven that the partial derivates of ∥𝒙 − 𝒙𝒊 ∥2
2 exist ∀𝒙 ∈ R𝑛. Moreover, we can easily

compute the analytical expression of each partial derivative by applying the chain rule:

𝜕

𝜕𝑥 ( 𝑗)
∥𝒙 − 𝒙𝒊 ∥2

2 =
𝑑

𝑑𝑡
𝑡2

�����
𝑡=∥𝒙−𝒙𝒊 ∥2

· 𝜕

𝜕𝑥 ( 𝑗)
∥𝒙 − 𝒙𝒊 ∥2
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= 2 · 𝑡
�����
𝑡=∥𝒙−𝒙𝒊 ∥2

·
𝑥 ( 𝑗) − 𝑥 ( 𝑗)

𝑖

∥𝒙 − 𝒙𝒊 ∥2

= 2 ·
(
𝑥 ( 𝑗) − 𝑥 ( 𝑗)

𝑖

)
.

Clearly, all 𝜕

𝜕𝑥 ( 𝑗 )
∥𝒙 − 𝒙𝒊 ∥2

2 , 𝑗 = 1, . . . , 𝑛, are continuous everywhere and therefore we can

conclude that the squared Euclidean norm is differentiable ∀𝒙 ∈ R𝑛. Hence, the gradient of

∥𝒙 − 𝒙𝑖∥2
2 is defined ∀𝒙 ∈ R𝑛 and is equal to:

∇𝒙 ∥𝒙 − 𝒙𝑖∥2
2 = 2 · (𝒙 − 𝒙𝑖) . (2.24)

We now go back to the inverse quadratic radial basis function 𝜙 𝑓𝑖
(
𝒙; 𝜖 𝑓

)
=(

1 + 𝜖2
𝑓
· ∥𝒙 − 𝒙𝑖∥2

2

)−1
. From the just seen results on ∥𝒙 − 𝒙𝑖∥2

2, we can conclude that 𝜙 𝑓𝑖
(
𝒙; 𝜖 𝑓

)
is differentiable everywhere since it is the composition of two functions that are differentiable

everywhere on their respective domains:

𝜙 𝑓𝑖
(
𝒙; 𝜖 𝑓

)
= ℎ1

(
ℎ2

(
𝒙; 𝜖 𝑓

) )
,

ℎ1 (𝑡) =
1

1 + 𝑡 , ℎ1 : R≥0 → (0, 1],

ℎ2
(
𝒙; 𝜖 𝑓

)
= 𝜖2

𝑓 · ∥𝒙 − 𝒙𝒊 ∥2
2 , ℎ2 : R𝑛 → R≥0,

and 1 + 𝜖2
𝑓
· ∥𝒙 − 𝒙𝑖∥2

2 > 0,∀𝒙 ∈ R𝑛, 𝜖 𝑓 ∈ R>0.

Lastly, we compute the gradient of 𝜙 𝑓𝑖
(
𝒙; 𝜖 𝑓

)
using the chain rule:

∇𝒙𝜙𝑖
(
𝒙; 𝜖 𝑓

)
=
𝑑

𝑑𝑡
ℎ1 (𝑡)

�����
𝑡=ℎ2(𝒙;𝜖 𝑓 )

· ∇𝒙ℎ2
(
𝒙; 𝜖 𝑓

)
= − 1

(1 + 𝑡)2

�����
𝑡=ℎ2 (𝒙)

· 2 · 𝜖2
𝑓 · (𝒙 − 𝒙𝒊)

= −
2 · 𝜖2

𝑓(
1 + 𝜖2

𝑓
· ∥𝒙 − 𝒙𝒊 ∥2

2

)2 · (𝒙 − 𝒙𝒊) .

So far, we have defined several radial basis functions and highlighted some key properties for the RBF

expansion surrogate model in (2.20), but we have not yet stated how to choose the weight vector 𝜷 𝑓 .

In practice, most BBO methods compute 𝜷 𝑓 so that 𝑓𝑁
(
𝒙; 𝜷 𝑓 , 𝜖 𝑓

)
interpolates the data in X (2.9) and

Y (2.10), namely:

𝑓𝑁

(
𝒙𝑖; 𝜷 𝑓 , 𝜖 𝑓

)
= 𝑦𝑖, ∀𝑖 = 1, . . . , 𝑁, 𝒙𝑖 ∈ X, 𝑦𝑖 ∈ Y.
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From (2.20), the interpolation conditions amount to:

Φ 𝑓

(
𝜖 𝑓

)
· 𝜷 𝑓 = 𝒚, (2.25)

where Φ 𝑓

(
𝜖 𝑓

)
∈ R𝑁×𝑁 is a symmetric matrix whose (𝑖, 𝑗)-th entry is

Φ
(𝑖, 𝑗)
𝑓

(
𝜖 𝑓

)
= 𝜑 𝑓

(
𝜖 𝑓 ·



𝒙𝑖 − 𝒙 𝑗




2

)
, i.e.:

Φ 𝑓

(
𝜖 𝑓

)
=


𝜑 𝑓

(
𝜖 𝑓 · ∥𝒙1 − 𝒙1∥2

)
· · · 𝜑 𝑓

(
𝜖 𝑓 · ∥𝒙1 − 𝒙𝑁 ∥2

)
...

. . .
...

𝜑 𝑓
(
𝜖 𝑓 · ∥𝒙𝑁 − 𝒙1∥2

)
· · · 𝜑 𝑓

(
𝜖 𝑓 · ∥𝒙𝑁 − 𝒙𝑁 ∥2

)


=


𝜙 𝑓1

(
𝒙1; 𝜖 𝑓

)
· · · 𝜙 𝑓𝑁

(
𝒙1; 𝜖 𝑓

)
...

. . .
...

𝜙 𝑓1
(
𝒙𝑁 ; 𝜖 𝑓

)
· · · 𝜙 𝑓𝑁

(
𝒙𝑁 ; 𝜖 𝑓

)


(2.26)

=


𝝓 𝑓

(
𝒙1; 𝜖 𝑓

)⊤
...

𝝓 𝑓

(
𝒙𝑁 ; 𝜖 𝑓

)⊤

.

Instead, 𝒚 ∈ R𝑁 in (2.25) is simply a vector which stacks all the cost function measures in Y:

𝒚 =

[
𝑦1 . . . 𝑦𝑁

]⊤
. (2.27)

Clearly, the linear system in (2.25) has a unique solution if and only if matrix Φ 𝑓

(
𝜖 𝑓

)
is non-singular.

For some RBFs, matrix Φ 𝑓

(
𝜖 𝑓

)
in (2.26) is positive definite (and thus invertible). To analyze the

positive definiteness of the interpolation matrix, we introduce the notion of complete monotonicity of

functions.

Definition 2.7: Completely monotone function [38, 44]. A function 𝜓 : R≥0 → R that is in

C0 (R≥0) ∩ C∞ (R>0)a is said to be completely monotone if and only if

(−1)𝑘 · 𝑑
𝑘

𝑑𝑟 𝑘
𝜓 (𝑟) ≥ 0, ∀𝑟 > 0 and 𝑘 = 0, 1, . . . (2.28)

aSee Definition A.26.

The following Theorem links completely monotone functions to the solution of the linear system in

(2.25).
Theorem 2.1: Positive definiteness of Φ 𝑓

(
𝜖 𝑓

)
[44]

Let 𝜓 𝑓 : R≥0 → R be a completely monotone function that is not constant. Then, matrixΦ 𝑓

(
𝜖 𝑓

)
in (2.26) based on the radial function 𝜑 𝑓 (𝑟) = 𝜓 𝑓

(
𝑟2) is positive definite.
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In the next Example we prove that the Gaussian radial basis function gives rise to a positive definite

Φ 𝑓

(
𝜖 𝑓

)
in (2.26).

Example 2.5: Positive definiteness of the interpolation matrix associated to Gaussian radial

basis functions

Consider the Gaussian radial basis function with unitary shape parameter, namely 𝜑 𝑓 (𝑟) =

exp
{
−𝑟2}. Following Theorem 2.1, we define 𝜓 𝑓 : R≥0 → R as:

𝜓 𝑓 (𝑟) = exp {−𝑟} .

Clearly, 𝜑 𝑓 (𝑟) = 𝜓 𝑓
(
𝑟2) . It is easy to prove that the exponential function is infinitely differen-

tiable on R and:
𝑑𝑘

𝑑𝑟 𝑘
𝜓 𝑓 (𝑟) = (−1)𝑘 · exp {−𝑟} , 𝑘 = 0, 1, . . .

Thus, the conditions in (2.28) are satisfied and 𝜓 𝑓 (𝑟) is a completely monotone function.

Finally, by Theorem 2.1, the matrix Φ 𝑓

(
𝜖 𝑓

)
in (2.26) originated from the Gaussian radial basis

function is positive definite.

There are alternative ways to check whether or not matrix Φ 𝑓

(
𝜖 𝑓

)
in (2.26) is positive definite that

rely on the concept of positive definite functions, see [23, 38, 44] for more details. Here, we simply

highlight which of the radial functions in Definition 2.6 give rise to a non-singular Φ 𝑓

(
𝜖 𝑓

)
in (2.26).

Proposition 2.2. The following radial functions result in a non-singular Φ 𝑓

(
𝜖 𝑓

)
in (2.26)

[23, 38, 44]:

• Inverse quadratic,

• Gaussian (see Example 2.5),

• Inverse multiquadratic.

As a final remark note that, even though Φ 𝑓

(
𝜖 𝑓

)
in (2.26) is non-singular for some RBFs, the shape

parameter 𝜖 𝑓 as well as the number and the distribution of the samples in X (2.9) affect its condition

number, see [38, 119] for more details. To compensate for this, the shape parameter 𝜖 𝑓 is typically

chosen through cross-validation [24, 119]. Alternatively, if exact interpolation is not a concern, then

the linear system in (2.25) can be solved by taking a low-rank approximation of Φ 𝑓

(
𝜖 𝑓

)
, as proposed

in [10]. By proceeding this way, any RBF in Definition 2.6 can be used and also the problems related

to the condition number of Φ 𝑓

(
𝜖 𝑓

)
are accounted for. We will review the low-rank approach for

solving the linear system in (2.25) more in detail in Section 4.1.1.
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Theorem 2.1 limits the choice of the radial basis functions for 𝑓𝑁
(
𝒙; 𝜷 𝑓 , 𝜖 𝑓

)
in (2.20) to only those

which lead to a non-singular Φ 𝑓

(
𝜖 𝑓

)
in (2.26). An alternative surrogate model which can handle any

of the RBFs in Definition 2.6 is [54, 126, 152]:

𝑓𝑁

(
𝒙;𝜶 𝑓 , 𝜷 𝑓 , 𝜖 𝑓

)
= 𝝓 𝑓

(
𝒙; 𝜖 𝑓

)⊤ · 𝜷 𝑓 + 𝜋 𝑓
(
𝒙;𝜶 𝑓

)
, (2.29)

where 𝜋 𝑓
(
𝒙;𝜶 𝑓

)
∈ Π𝑑𝜋 . Π𝑑𝜋 is the space of polynomials in 𝑛 variables and of degree at most

𝑑𝜋 ∈ N ∪ {−1, 0}. In particular, if 𝑑𝜋 = −1, then Π−1 = {0} and thus the model in (2.29) is equal

to the one in (2.20). Note that 𝜋 𝑓
(
𝒙;𝜶 𝑓

)
can be expressed as a linear combination of functions[

𝑥 (1)
]𝑑1

, . . . ,
[
𝑥 (𝑛)

]𝑑𝑛 with 𝑑1 + . . . + 𝑑𝑛 ≤ 𝑑𝜋. More formally, consider a basis 𝜋 𝑓1 (𝒙) , . . . , 𝜋 𝑓𝑁𝜋 (𝒙)

of Π𝑑𝜋 , with 𝑁𝜋 =
©­«
𝑑𝜋 + 𝑛

𝑛

ª®¬. We can write 𝜋 𝑓
(
𝒙;𝜶 𝑓

)
in (2.29) as:

𝜋 𝑓
(
𝒙;𝜶 𝑓

)
=

𝑁𝜋∑︁
𝑗=1
𝛼
( 𝑗)
𝑓

· 𝜋 𝑓 𝑗 (𝒙) , (2.30)

where 𝜶 𝑓 =

[
𝛼
(1)
𝑓

. . . 𝛼
(𝑁𝜋 )
𝑓

]⊤
∈ R𝑁𝜋 is a vector of weights associated to the latter polynomial.

In the case of model (2.29), the interpolation conditions amount to:
Φ 𝑓

(
𝜖 𝑓

)
𝑃 𝑓

𝑃⊤
𝑓

0𝑁𝜋×𝑁𝜋

 ·

𝜷 𝑓

𝜶 𝑓

 =


𝒚

0𝑁𝜋

 , (2.31)

where 𝑃 𝑓 ∈ R𝑁×𝑁𝜋 is defined as:

𝑃 𝑓 =


𝜋 𝑓1 (𝒙1) · · · 𝜋 𝑓𝑁𝜋 (𝒙1)

...
. . .

...

𝜋 𝑓1 (𝒙𝑁 ) · · · 𝜋 𝑓𝑁𝜋 (𝒙𝑁 )


=


𝝅 𝑓 (𝒙1)⊤

...

𝝅 𝑓 (𝒙𝑁 )⊤


and 𝝅 𝑓 (𝒙𝑖) =

[
𝜋 𝑓1 (𝒙𝑖) . . . 𝜋 𝑓𝑁𝜋 (𝒙𝑖)

]⊤
∈ R𝑁𝜋 . In [54, 107], the authors derive which values of

𝑑𝜋 guarantee that the linear system of equations in (2.31) admits a unique solution for each RBF in

Definition 2.6, as highlighted by the following Proposition.

Proposition 2.3. Consider the RBFs in Definition 2.6. Then, selecting 𝑑𝜋 ≥ 𝑑𝜋𝑚𝑖𝑛 for 𝜋 𝑓
(
𝒙;𝜶 𝑓

)
in (2.29) as:

• 𝑑𝜋𝑚𝑖𝑛 = −1 for inverse quadratic, Gaussian and inverse multiquadratic RBFs,

59



Davide Previtali

• 𝑑𝜋𝑚𝑖𝑛 = 0 for the multiquadratic and linear RBFs,

• 𝑑𝜋𝑚𝑖𝑛 = 1 for the thin plate spline RBF,

ensures that the linear system of equations in (2.31) admits a unique solution [54, 107].

As a final remark, note that, under the assumptions of Proposition 2.1, 𝑓𝑁
(
𝒙;𝜶 𝑓 , 𝜷 𝑓 , 𝜖 𝑓

)
in (2.29) is

still differentiable everywhere with respect to 𝒙, since polynomials are differentiable everywhere.

2.5.2 Gaussian process regression

Differently from the surrogate models in (2.20) and (2.29), which are deterministic, a Gaussian Process

(GP) [153] is a probabilistic model that describes the distribution of the values that the cost function

𝑓 (𝒙) of the GOP (2.1) can assume. A GP is a generalization of the Gaussian probability distribution

and is defined as follows.

Definition 2.8: Gaussian process [153]. A Gaussian process is a collection of random variables,

any finite number of which have a joint Gaussian distribution.

A GP is completely specified by its mean function, 𝜇 𝑓 : R𝑛 → R, and covariance function (or kernel),

𝑘 𝑓 : R𝑛 × R𝑛 → R:

𝜇 𝑓 (𝒙) = E [ 𝑓 (𝒙)] , (2.32)

𝑘 𝑓
(
𝒙, 𝒙̃; 𝜽 𝑓

)
= E

[ (
𝑓 (𝒙) − 𝜇 𝑓 (𝒙)

)
·
(
𝑓 (𝒙̃) − 𝜇 𝑓 (𝒙̃)

) ]
, (2.33)

where 𝜽 𝑓 is a vector of hyper-parameters for the kernel (similarly to the shape parameter for the

RBFs in (2.19)). For convenience, we assume that 𝜇 𝑓 (𝒙) is the zero function, i.e. 𝜇 𝑓 (𝒙) = 0.

Notation-wise, whenever we model 𝑓 (𝒙) using a Gaussian process, we denote it as:

𝑓 (𝒙) ∼ GP
(
0, 𝑘 𝑓

(
𝒙, 𝒙̃; 𝜽 𝑓

) )
. (2.34)

In the context of black-box optimization, we assume to have at our disposal the set of samples X in

(2.9) and the measures of the cost functionY in (2.10). In the GP setting, differently from Assumption

2.4, we suppose that the measures of 𝑓 (𝒙) are affected by Gaussian noise as follows.

Assumption 2.5. The measures of the cost function 𝑓 (𝒙) are affected by zero-mean Gaussian noise

with variance 𝜎2
𝑓
∈ R≥0, i.e.:

𝑦𝑖 = 𝑓 (𝒙𝑖) + 𝜂 𝑓𝑖 , 𝜂 𝑓𝑖
𝑖.𝑖.𝑑.∼ N

(
0, 𝜎2

𝑓

)
,∀𝑖 = 1, . . . , 𝑁, 𝒙𝑖 ∈ X, 𝑦𝑖 ∈ Y. (2.35)
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In addition to the vector of measures 𝒚 in (2.27), we also consider the vector containing the noiseless

values of 𝑓 (·), i.e.:

𝒇 =

[
𝑓 (𝒙1) . . . 𝑓 (𝒙𝑁 )

]⊤
∈ R𝑁 . (2.36)

Black-box optimization methods which use surrogates based on Gaussian processes follow the tradi-

tional Bayesian learning paradigm [77]. In particular, an approximation of 𝑓 (𝒙) of the GOP (2.1) is

obtained through a process called Gaussian process regression. First of all, we must choose a suitable

prior distribution for the cost function 𝑓 (𝒙) which, in this case, is the one in (2.34). In practice, we

need to select a suitable kernel function 𝑘 𝑓
(
𝒙, 𝒙̃; 𝜽 𝑓

)
; the following Theorem defines which functions

can be used as kernels.
Theorem 2.2: Mercer’s Theorem [30]

Let 𝑘 𝑓 : R𝑛 × R𝑛 → R be a symmetrica function and consider the set of samples X in (2.9).

𝑘 𝑓
(
𝒙, 𝒙̃; 𝜽 𝑓

)
is a kernel function if and only if the matrix

𝐾 𝑓

(
𝜽 𝑓

)
=


𝑘 𝑓

(
𝒙1, 𝒙1; 𝜽 𝑓

)
· · · 𝑘 𝑓

(
𝒙1, 𝒙𝑁 ; 𝜽 𝑓

)
...

. . .
...

𝑘 𝑓
(
𝒙𝑁 , 𝒙1; 𝜽 𝑓

)
· · · 𝑘 𝑓

(
𝒙𝑁 , 𝒙𝑁 ; 𝜽 𝑓

)

, (2.37)

whose (𝑖, 𝑗)-th entry is𝐾 (𝑖, 𝑗)
𝑓

(
𝜽 𝑓

)
= 𝑘 𝑓

(
𝒙𝑖, 𝒙 𝑗 ; 𝜽 𝑓

)
, is positive semidefinite. We refer to𝐾 𝑓

(
𝜽 𝑓

)
in (2.37) as the Gram matrix.

aA function 𝑘 𝑓 : R𝑛 × R𝑛 → R is said to be symmetric if and only if 𝑘 𝑓 (𝒙1, 𝒙2) = 𝑘 𝑓 (𝒙2, 𝒙1) ,∀𝒙1, 𝒙2 ∈ R𝑛

In practice, some of the radial basis functions in Definition 2.6 can be used as kernels3. A popular

one is the squared exponential kernel [153]:

𝑘 𝑓 (𝒙, 𝒙̃) = exp
{
−1

2
· ∥𝒙 − 𝒙̃∥2

2

}
,

which is none other than a Gaussian RBF with shape parameter 𝜖 𝑓 = 1√
2
. Alternatively, the squared

exponential kernel can also include two hyper-parameters:

𝑘 𝑓
(
𝒙, 𝒙̃; 𝜽 𝑓

)
=

(
𝜃
(1)
𝑓

)2
· exp

−
1
2
· ©­« ∥𝒙 − 𝒙̃∥2

𝜃
(2)
𝑓

ª®¬
2 ,

where 𝜃 (1)
𝑓

is referred to as the signal standard deviation whereas 𝜃 (2)
𝑓

is the characteristic length

scale.

3When that is the case, the Gram matrix in (2.37) is equivalent to Φ 𝑓

(
𝜖 𝑓

)
in (2.26).
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Now, we go back to the problem of finding a surrogate model for the cost function following the

Bayesian learning paradigm. By imposing the GP prior in (2.34) on the cost function 𝑓 (𝒙), the

probability distribution of 𝒇 in (2.36) is:

𝑝
(
𝒇 ; 𝜽 𝑓

)
= N

(
𝝁 𝒇 , Σ 𝒇

)
, (2.38a)

𝝁 𝒇 = 0𝑁 , (2.38b)

Σ 𝒇 = 𝐾 𝑓

(
𝜽 𝑓

)
. (2.38c)

Then, from (2.35), the likelihood 𝑝
(
𝒚
�� 𝒇 ,X)

is also Gaussian and it is equal to:

𝑝
(
𝒚
�� 𝒇 ,X)

= N
(
𝝁
𝒚
�� 𝒇 ,X , Σ𝒚

�� 𝒇 ,X)
, (2.39a)

𝝁
𝒚
�� 𝒇 ,X = 𝒇 , (2.39b)

Σ
𝒚
�� 𝒇 ,X = 𝜎2

𝑓 · 𝐼𝑁 . (2.39c)

Similarly, the marginal likelihood 𝑝
(
𝒚
��X; 𝜽 𝑓

)
is Gaussian since (2.35) is the sum of two normally

distributed random variables, in particular:

𝑝
(
𝒚
��X; 𝜽 𝑓

)
= N

(
𝝁
𝒚
��X , Σ𝒚

��X)
, (2.40a)

𝝁
𝒚
��X = 0𝑁 , (2.40b)

Σ
𝒚
��X = 𝐾 𝑓

(
𝜽 𝑓

)
+ 𝜎2

𝑓 · 𝐼𝑁 . (2.40c)

On a side note, the marginal likelihood in (2.40) is typically used to calibrate the hyper-parameters 𝜽 𝑓
of the kernel by solving the following optimization problem [153]:

arg min
𝜽 𝑓

[
− ln 𝑝

(
𝒚
��X; 𝜽 𝑓

) ]
(2.41)

s.t. 𝜽 𝑓 ∈ Θ,

whereΘ is a set of constraints for 𝜽 𝑓 (such as the non-negativity of some hyper-parameters). Typically,

the variance 𝜎2
𝑓

of the Gaussian noise in (2.35) is also estimated via Problem (2.41). This way

of estimating the hyper-parameters of the kernel is commonly referred to as Maximum Likelihood

Estimation (MLE).

Next, we apply Bayes’ theorem using the distributions in (2.38), (2.39) and (2.40):

𝑝
(
𝒇
�� 𝒚,X; 𝜽 𝑓

)
=
𝑝

(
𝒚
�� 𝒇 ,X)

· 𝑝
(
𝒇 ; 𝜽 𝑓

)
𝑝

(
𝒚
��X; 𝜽 𝑓

) , (2.42)
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to obtain the posterior distribution 𝑝
(
𝒇
�� 𝒚,X; 𝜽 𝑓

)
. Using the conjugacy properties of the Gaussian

distribution [15], it is possible to prove that:

𝑝
(
𝒇
�� 𝒚,X; 𝜽 𝑓

)
= N

(
𝝁

𝒇
�� 𝒚,X , Σ 𝒇

�� 𝒚,X)
, (2.43a)

𝝁
𝒇
�� 𝒚,X = 𝐾 𝑓

(
𝜽 𝑓

)
·
[
𝐾 𝑓

(
𝜽 𝑓

)
+ 𝜎2

𝑓 · 𝐼𝑁
]−1

· 𝒚, (2.43b)

Σ
𝒇
�� 𝒚,X = 𝜎2

𝑓 · 𝐾 𝑓

(
𝜽 𝑓

)
·
[
𝐾 𝑓

(
𝜽 𝑓

)
+ 𝜎2

𝑓 · 𝐼𝑁
]−1

. (2.43c)

Note that, by Mercer’s Theorem 2.2, 𝐾 𝑓

(
𝜽 𝑓

)
is positive semidefinite. Hence,[

𝐾 𝑓

(
𝜽 𝑓

)
+ 𝜎2

𝑓
· 𝐼𝑁

]
in (2.43) is invertible ∀𝜎2

𝑓
∈ R>0.

In practice, we are actually interested in predicting the value of the cost function 𝑓 (𝒙) at a point that

has not been previously evaluated, i.e. we want to estimate 𝑓 = 𝑓 (𝒙̃) for some 𝒙̃ ∉ X in (2.9). To do

so, we define the prior on the random vector
[
𝒇⊤ 𝑓

]⊤
analogously to (2.38). Then, we find the joint

posterior distribution 𝑝
(
𝒇 , 𝑓

�� 𝒚,X, 𝒙̃; 𝜽 𝑓
)

following the same rationale used to find 𝑝
(
𝒇
�� 𝒚,X; 𝜽 𝑓

)
in

(2.43). Lastly, we marginalize with respect to 𝑓 , obtaining the predictive distribution [153]:

𝑝
(
𝑓
�� 𝒇 , 𝒚,X, 𝒙̃; 𝜽 𝑓

)
= N

(
𝜇
𝑓

�� 𝒇 ,𝒚,X,𝒙̃ , Σ 𝑓

�� 𝒇 ,𝒚,X,𝒙̃) , (2.44a)

𝜇
𝑓

�� 𝒇 ,𝒚,X,𝒙̃ = 𝒌 𝑓
(
𝒙̃; 𝜽 𝑓

)⊤ ·
[
𝐾 𝑓

(
𝜽 𝑓

)
+ 𝜎2

𝑓 · 𝐼𝑁
]−1

· 𝒚, (2.44b)

Σ
𝑓

�� 𝒇 ,𝒚,X,𝒙̃ = 𝑘 𝑓
(
𝒙̃, 𝒙̃; 𝜽 𝑓

)
− 𝒌 𝑓

(
𝒙̃; 𝜽 𝑓

)⊤ ·
[
𝐾 𝑓

(
𝜽 𝑓

)
+ 𝜎2

𝑓 · 𝐼𝑁
]−1

· 𝒌 𝑓
(
𝒙̃; 𝜽 𝑓

)
, (2.44c)

where 𝒌 𝑓
(
𝒙̃; 𝜽 𝑓

)
∈ R𝑁 is the kernel vector:

𝒌 𝑓
(
𝒙̃; 𝜽 𝑓

)
=

[
𝑘 𝑓

(
𝒙1, 𝒙̃; 𝜽 𝑓

)
. . . 𝑘 𝑓

(
𝒙𝑁 , 𝒙̃; 𝜽 𝑓

) ]⊤
. (2.45)

Finally, the surrogate model of the cost function 𝑓 (𝒙) of the GOP (2.1) is the mean of the predictive

distribution in (2.44):

𝑓𝑁

(
𝒙; 𝜷 𝑓 , 𝜽 𝑓

)
= 𝒌 𝑓

(
𝒙; 𝜽 𝑓

)⊤ · 𝜷 𝑓 , (2.46)

where 𝜷 𝑓 =
[
𝐾 𝑓

(
𝜽 𝑓

)
+ 𝜎2

𝑓
· 𝐼𝑁

]−1
· 𝒚.

Remark 2.3 (Relationship to the RBF expansion surrogate model). The surrogate model in (2.46)

resulting from Assumption 2.5 is quite similar to the radial basis function expansion in (2.20). Notably,

in the noiseless case (𝜎2
𝑓
= 0), the weight vector 𝜷 𝑓 in (2.46) is computed as 𝜷 𝑓 = 𝐾 𝑓

(
𝜽 𝑓

)−1 · 𝒚,

which is equivalent to solving the linear system in (2.25), provided that the kernel function is a suitable

radial basis function (such as the ones highlighted in Proposition 2.2).

63



Davide Previtali

2.6 Infill sampling criteria

An infill sampling criterion (Step 7 of Algorithm 5) of a surrogate-based method is a strategy for

selecting new candidate samples for evaluation. Typically, only one point is selected at each iteration

of Algorithm 5. Consider the unconstrained black-box optimization problem (Ξ = R𝑛) in (2.1) and

suppose to have at our disposal 𝑁 samples in X (2.9). The simplest way to select a new candidate

sample 𝒙𝑁+1 ∈ Ω is to solve the following global optimization problem (pure exploitation):

𝒙𝑁+1 = arg min
𝒙
𝑓𝑁 (𝒙) (2.47)

s.t. 𝒙 ∈ Ω.

However, as pointed out in [149], any surrogate-based method which uses the infill sampling criterion

described by Problem (2.47) is not guaranteed to converge to a global (or even local) minimizer of

the GOP (2.1). Instead, most response surface techniques rely on a so-called acquisition function,

𝑎𝑁 : R𝑛 → R, which trades off exploration and exploitation. The new candidate sample is selected by

solving either4

𝒙𝑁+1 = arg min
𝒙
𝑎𝑁 (𝒙) (2.48a)

s.t. 𝒙 ∈ Ω or

𝒙𝑁+1 = arg max
𝒙
𝑎𝑁 (𝒙) (2.48b)

s.t. 𝒙 ∈ Ω,

depending on definition of the acquisition function. In the context of constrained BBO, the black-box

constraints in Ξ can be handled by modifying 𝑎𝑁 (𝒙) so that the exploration of those regions of Ω that

are likely to contain Ξ-infeasible samples is penalized. As we will see shortly, there also exist several

alternatives to the strategy in (2.48).

Many response surface techniques share the same surrogate models (such as the ones reviewed

in Section 2.5) but use different infill sampling criteria. In what follows, we distinguish between

surrogate-based methods that use deterministic surrogates (such as the RBF expansion in Section

2.5.1) and response surface techniques that, instead, rely on probabilistic models (e.g. based on GPs

as in Section 2.5.2). Furthermore, consistently with [93], we refer to the latter as Bayesian Optimiza-

tion (BayesOpt) procedures. In the next Sections, we review a plethora of infill sampling criteria used

by the most popular black-box optimization algorithms.

In what follows, we assume to have performed 𝑁 ∈ N sample evaluations. Hence, sets X in (2.9), Y

in (2.10), UΞ in (2.11) and (possibly but not necessarily) CΞ in (2.12) are available. Moreover, we
4Problems (2.48a) and (2.48b) could admit multiple global solutions but we are interested in just one of them.
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refrain from reporting the hyper-parameters of the surrogate models, such as 𝜖 𝑓 for (2.20) and (2.29),

as well as 𝜽 𝑓 for (2.44), to ease the notation.

2.6.1 Infill sampling criteria for methods based on deterministic surrogates

Most methods that use deterministic surrogates presume that Assumption 2.4 holds and behave

accordingly.

Unconstrained black-box optimization

We start our review by considering the unconstrained black-box optimization framework (Ξ = R𝑛).

Gutmann-RBF [54]. The method proposed in [54] uses the surrogate model in (2.29) and an acqui-

sition function that is a measure of “bumpiness” for 𝑓𝑁 (𝒙). The rationale behind it is the following.

At each iteration of the Gutmann-RBF [54] algorithm, a target value 𝜏 ∈ (−∞,min𝒙∈Ω 𝑓𝑁 (𝒙)] 5 for

which to aim for is chosen; 𝜏 can be seen as an estimate of the global minimum of the GOP (2.1). The

new candidate sample 𝒙𝑁+1 ∉ X is selected such that the surrogate model 𝑓𝑁+1 (𝒙) in (2.29) that we

would obtain by interpolating the sample evaluations in X ∪ {𝒙𝑁+1} and Y ∪ {𝜏} is the most smooth

(i.e. the least “bumpy”), see Figure 7 for an example. In [54], the author shows that there exists a

𝑥1

𝑥2 𝑥3

𝑥4

𝑥𝑥 𝜏

Figure 7: One-dimensional example, taken from [27], which highlights what it means for a surrogate to be
“bumpy” for the Gutmann-RBF [54] algorithm. Suppose to have evaluated four samples,X = {𝑥1, 𝑥2, 𝑥3, 𝑥4}
(black circles), and fix a target value 𝜏. The Figure displays two surrogate models (blue and dashed red
lines) obtained by interpolating both the previously evaluated samples and a new one, 𝑥, at two different
locations. The Gutmann-RBF [54] method assumes that it is more likely that a point with cost 𝜏 is located
at the blue circle rather than at the red one because the resulting interpolant is less “bumpy”.

5The case 𝜏 = min𝒙∈Ω 𝑓𝑁 (𝒙) is admissible only if min𝒙∈Ω 𝑓𝑁 (𝒙) < 𝑦𝑖 ,∀𝑦𝑖 ∈ Y.
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natural measure of “bumpiness” 𝑎̃𝑁 (𝒙) for 𝑓𝑁 (·) in (2.29), which can be computed for any 𝒙 ∈ R𝑛

that has not been previously evaluated, namely:

𝑎̃𝑁 (𝒙) = (−1) (𝑑𝜋𝑚𝑖𝑛+1) · 𝜁 (𝒙) ·
[
𝜏 − 𝑓𝑁 (𝒙)

]2
, ∀𝒙 ∈ R𝑛 \ X. (2.49)

𝑑𝜋𝑚𝑖𝑛 in (2.49) is set as in Proposition 2.3 and 𝜁 (𝒙) is obtained by solving the following linear system:
Φ 𝑓

(
𝜖 𝑓

)
𝝓 𝑓

(
𝒙; 𝜖 𝑓

)
𝑃 𝑓

𝝓 𝑓

(
𝒙; 𝜖 𝑓

)⊤
𝜑 𝑓 (0) 𝝅 𝑓 (𝒙)⊤

𝑃⊤
𝑓

𝝅 𝑓 (𝒙) 0𝑁𝜋×𝑁𝜋


·


𝜷 𝑓 (𝒙)

𝜁 (𝒙)

𝜶 𝑓 (𝒙)


=


0𝑁
1

0𝑁𝜋


,

which can be seen as imposing the interpolation conditions in (2.31) to a set of samples of the decision

vector and measures of the cost function defined by the pairs

(𝒙1, 0) , . . . , (𝒙𝑁 , 0) , (𝒙, 1). In particular, in [16], the authors propose an efficient way to com-

pute 𝜁 (𝒙) that is based on a factorization of the interpolation matrix. A better alternative to the

minimization of 𝑎̃𝑁 (𝒙) in (2.49) (which is not defined at each 𝒙𝑖 ∈ X) is the maximization of the

following acquisition function:

𝑎𝑁 (𝒙) =


1

𝑎̃𝑁 (𝒙) if 𝒙 ∈ R𝑛 \ X

0 otherwise
, (2.50)

as in Problem (2.48b). The choice of the target value 𝜏 in (2.49) is critical: targets that are close to

min𝒙∈Ω 𝑓𝑁 (𝒙) make the search for 𝒙𝑁+1 highly local (exploitation), whereas setting 𝜏 = −∞ leads

to a more exploratory behavior. In practice, the target values are cycled in between the iterations of

the Gutmann-RBF [54] algorithm, following a sequence T𝑐𝑦𝑐𝑙𝑒 = ⟨𝜏0, . . . , 𝜏𝑁𝑐𝑦𝑐𝑙𝑒−1⟩ that is repeated

every 𝑁𝑐𝑦𝑐𝑙𝑒 ∈ N iterations. Furthermore, in [54], it is proven that by choosing the target values in

a particular manner (such as by including a term 𝜏𝑗 = −∞ in T𝑐𝑦𝑐𝑙𝑒) and under suitable choices of

𝜑 𝑓 (·) and 𝑑𝜋 for the surrogate model in (2.29), the method converges to the global minimum of any

continuous function over some compact subset of R𝑛.

MSRS [116]. The Metric Stochastic Response Surface method (MSRS [116]) is a black-box optimiza-

tion procedure that can be used for bound constrained optimization problems (i.e. with Ω as in (1.3)).

We focus on an implementation of the method based on the surrogate 𝑓𝑁 (𝒙) in (2.29), which is

referred to as MSRBF [116]. MSRBF [116] uses the following exploration function:

𝑧𝑁 (𝒙) = −min
𝒙𝑖∈X

∥𝒙 − 𝒙𝑖∥2 , (2.51)

as well as the surrogate 𝑓𝑁 (𝒙), to drive the search for new candidate samples. 𝑧𝑁 (𝒙) in (2.51) is simply

the (negative) distance of a point 𝒙 ∈ R𝑛 from its closest sample inX. No additional global optimization
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problem is solved when looking for 𝒙𝑁+1. Instead, at each iteration, the MSRBF [116] procedure

randomly generates a set of samplesXΩ using either a uniform random distribution onΩ (Global MSRBF

[116]) or by adding random perturbations to the current best solution 𝒙𝒃𝒆𝒔𝒕 (𝑁) (Local MSRBF [116]);

then, 𝒙𝑁+1 is chosen among the points contained inside XΩ. Consider the minimum and maximum

of 𝑓𝑁 (𝒙) and 𝑧𝑁 (𝒙) over XΩ, which we denote as 𝑓𝑁𝑚𝑖𝑛 (XΩ) = min𝒙∈XΩ
𝑓𝑁 (𝒙) , 𝑓𝑁𝑚𝑎𝑥 (XΩ) =

max𝒙∈XΩ
𝑓𝑁 (𝒙) and analogously for 𝑧𝑁 (𝒙). The new candidate sample is selected among the points

in XΩ as the one that minimizes the following acquisition function:

𝑎𝑁 (𝒙) = 𝛿 · ˆ̄𝑓𝑁 (𝒙;XΩ) + (1 − 𝛿) · 𝑧𝑁 (𝒙;XΩ) , (2.52)

where 𝛿 ∈ [0, 1] is the exploration-exploitation trade-off weight and

ˆ̄𝑓𝑁 (𝒙;XΩ) =


𝑓𝑁 (𝒙)− 𝑓𝑁𝑚𝑖𝑛 (XΩ)

𝑓𝑁𝑚𝑎𝑥 (XΩ)− 𝑓𝑁𝑚𝑖𝑛 (XΩ)
if 𝑓𝑁𝑚𝑎𝑥 (XΩ) ≠ 𝑓𝑁𝑚𝑖𝑛 (XΩ)

1 otherwise
,

𝑧𝑁 (𝒙;XΩ) =


𝑧𝑁 (𝒙)−𝑧𝑁𝑚𝑎𝑥 (XΩ)

𝑧𝑁𝑚𝑎𝑥 (XΩ)−𝑧𝑁𝑚𝑖𝑛 (XΩ) if 𝑧𝑁𝑚𝑎𝑥 (XΩ) ≠ 𝑧𝑁𝑚𝑖𝑛 (XΩ)

1 otherwise
.

Hence, the new candidate sample is chosen as:

𝒙𝑁+1 = arg min
𝒙∈XΩ

𝑎𝑁 (𝒙) . (2.53)

Similarly to Gutmann-RBF [54], the exploration-exploitation trade-off weight 𝛿 of algorithm MSRBF

[116] is varied in between iterations, following a sequence Δ𝑐𝑦𝑐𝑙𝑒 = ⟨𝛿0, . . . , 𝛿𝑁𝑐𝑦𝑐𝑙𝑒−1⟩ that is

repeated every 𝑁𝑐𝑦𝑐𝑙𝑒 ∈ N iterations. Furthermore, the authors propose to use the sequence

Δ𝑐𝑦𝑐𝑙𝑒 = ⟨0.2, 0.4, 0.6, 0.9, 0.95, 1⟩ as to properly alternate between local and global search. Un-

der some mild assumptions on how the set XΩ is generated, MSRS [116] is shown to be convergent

almost surely. An extension of MSRS [116] that is more suited for higher-dimensional problems, called

SO-SA, has been proposed in [151]. Therein, the authors suggest to draw 𝛿 in (2.52) from a uniform

random distribution U (0, 1) and keep the trade-off unaltered until it fails to find a significantly bet-

ter solution (greedy approach). SO-SA [151] also revisits the generation of the set XΩ to take into

consideration local sensitivity information.

CORS [115]. Constrained Optimization using Response Surfaces (CORS [115]) is an algorithm pro-

posed by the same authors of MSRS [116] that can handle nonlinearly constrained global optimization

problems, i.e. with Ω defined as in (1.5). In CORS [115], the new candidate sample for evaluation is

chosen as the point that minimizes a surrogate of the cost function over Ω, but that is sufficiently far
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away from the samples in X (2.9). In [115], the authors consider 𝑓𝑁 (𝒙) as defined in (2.29), giving

rise to CORS-RBF. The infill sampling criterion for the CORS [115] algorithm is:

𝒙𝑁+1 = arg min
𝒙
𝑓𝑁 (𝒙) (2.54)

s.t. 𝒙 ∈ Ω

∥𝒙 − 𝒙𝑖∥2 ≥ 𝛿 · 𝑑Ω (X) 𝑖 = 1, . . . , 𝑁, 𝒙𝑖 ∈ X,

where

𝑑Ω (X) = max
𝒙∈Ω

min
𝒙𝑖∈X

∥𝒙 − 𝒙𝑖∥2 (2.55)

is a limit on how far 𝒙𝑁+1 can be from the previously evaluated points, and 𝛿 ∈ [0, 1] is the

exploration-exploitation trade-off parameter. In particular, setting 𝛿 = 0 results in pure exploitation

whereas higher values of 𝛿 lead to global search. Like the previously mentioned methods, the trade-off

parameter 𝛿 for CORS [115] is cycled in between iterations of the procedure, following a sequence

Δ𝑐𝑦𝑐𝑙𝑒 = ⟨𝛿0, . . . , 𝛿𝑁𝑐𝑦𝑐𝑙𝑒−1⟩ that is repeated every 𝑁𝑐𝑦𝑐𝑙𝑒 ∈ N iterations. In particular, ifΔ𝑐𝑦𝑐𝑙𝑒 includes

at least one non-zero entry, then the procedure converges to the global minimum of any continuous

function over some compact set.

GLIS [10]. GLobal minimum using Inverse distance weighting and Surrogate radial basis functions

(GLIS [10]) is a more recent black-box optimization method which uses the surrogate model 𝑓𝑁 (𝒙)

in (2.20). The linear system in (2.25) is solved using a low-rank approximation of Φ 𝑓

(
𝜖 𝑓

)
in (2.26)

to avoid issues related to the condition number of the interpolation matrix. GLIS [10] looks for new

candidate samples by trading off the exploitation of the surrogate model 𝑓𝑁 (𝒙) and the exploratory

contributions brought by two exploration functions, 𝑧𝑁 : R𝑛 → (−1, 0] and 𝑠𝑁 : R𝑛 → R, which are

defined as:

𝑧𝑁 (𝒙) =


0 if 𝒙 ∈ X

− 2
𝜋
· arctan

(
1∑𝑁

𝑖=1 𝑤𝑖 (𝒙)

)
otherwise

, (2.56a)

𝑠𝑁 (𝒙) = −

√√√
𝑁∑︁
𝑖=1

𝑣𝑖 (𝒙) ·
(
𝑦𝑖 − 𝑓𝑁 (𝒙)

)2
, (2.56b)

where:

𝑣𝑖 (𝒙) =


1 if 𝒙 = 𝒙𝑖, 𝒙𝑖 ∈ X

0 if 𝒙 = 𝒙 𝑗 , 𝑗 ≠ 𝑖, 𝒙𝑖, 𝒙 𝑗 ∈ X
𝑤̃𝑖 (𝒙)∑𝑁
𝑗=1 𝑤̃ 𝑗 (𝒙)

otherwise

. (2.57)
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The exploration functions in (2.56) are based on the Inverse Distance Weighting (IDW) functions

𝑤𝑖 : R𝑛 \ {𝒙𝑖} → R>0, 𝑤𝑖 (𝒙) = (∥𝒙 − 𝒙𝑖∥2)−2 and 𝑤̃𝑖 : R𝑛 \ {𝒙𝑖} → R>0, 𝑤̃𝑖 (𝒙) = exp
{
− ∥𝒙 − 𝒙𝑖∥2

2
}
·

(∥𝒙 − 𝒙𝑖∥2)−2 [69, 132]. For this reason, 𝑧𝑁 (𝒙) and 𝑠𝑁 (𝒙) in (2.56) are referred to as IDW distance

function and IDW variance function respectively. Both functions provide exploratory capabilities; the

former only depends on the locations of the previously evaluated samples, while the latter takes into

consideration also their corresponding measures of the cost function as well as the surrogate model.

GLIS [10] looks for new candidate sample by minimizing the following acquisition function:

𝑎𝑁 (𝒙) = 𝑓𝑁 (𝒙) + Δ𝑌 · 𝛿1 · 𝑧𝑁 (𝒙) + 𝛿2 · 𝑠𝑁 (𝒙) , (2.58)

as in Problem (2.48a). In (2.58), Δ𝑌 = max
{
max𝑦𝑖∈Y 𝑦𝑖 − min𝑦𝑖∈Y 𝑦𝑖, 𝜖Δ𝑌

}
(where 𝜖Δ𝑌 ∈ R>0 is a

small tolerance) is used to make 𝑧𝑁 (𝒙) comparable to the other two terms of 𝑎𝑁 (𝒙). 𝛿1, 𝛿2 ∈ R≥0

are the weights for the exploration functions. At the moment, no cycling is performed on 𝛿1 and 𝛿2

and no proof of convergence is available for GLIS [10]. In Chapter 4, we will analyze this algorithm

in greater detail. Instead, in Chapter 5, we will propose a globally convergent extension of GLIS [10].

Constrained black-box optimization

Now, we move onto those algorithms that can be used for constrained black-box optimization, i.e. with

Ξ ⊂ R𝑛 for the GOP (2.1) defined as in (2.2). We review two methods that are the extensions of MSRBF

[116] and CORS-RBF [115] respectively. Both procedures assume that all the black-box constraints

functions are measurable, i.e. the set CΞ in (2.12) is available. Moreover, MSRBF [116] and CORS-RBF

[115] consider Ω to be defined as in (1.3) (only bound constraints).

ConstrLMSRBF [111]. ConstrLMSRBF [111] is an extension of the Local MSRBF [116] algorithm

that is able to handle high-dimensional constrained black-box optimization problems. The method

assumes that, after the initial experimental design, at least one Ξ-feasible sample is available. This

time, the surrogate model in (2.29) is used to approximate both the cost function 𝑓 (𝒙) and the black-

box constraints functions 𝒈Ξ (𝒙) of the GOP (2.1). At each iteration of ConstrLMSRBF [111], the set

of samples XΩ is generated as in Local MSRBF [116], i.e. by perturbing the current best candidate

𝒙𝒃𝒆𝒔𝒕 (𝑁). Then, only those points that are predicted to be Ξ-feasible by the surrogates 𝒈̂Ξ𝑁 (𝒙) are

kept; thus, XΩ is replaced by:

XΩ∩Ξ =
{
𝒙 : 𝒙 ∈ XΩ, 𝒈̂Ξ𝑁 (𝒙) ≤ 0𝑞Ξ

}
.

If no points in XΩ are predicted to be Ξ-feasible, then the set XΩ∩Ξ collects the ones with the minimum

number of predicted constraints violations. The new candidate sample 𝒙𝑁+1 is selected among the
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points in XΩ∩Ξ (instead of XΩ) as the one that minimizes the acquisition function in (2.52), i.e.

𝒙𝑁+1 = arg min
𝒙∈XΩ∩Ξ

𝑎𝑁 (𝒙) . (2.59)

The exploration-exploitation parameter 𝛿 in (2.52) is still cycled as proposed for MSRBF [116].

ConstrLMSRBF [111] also keeps track of the number of successful and failed iterations (in a sense that

they lead to an improvement of the best candidate 𝒙𝒃𝒆𝒔𝒕 (𝑁)) to modify the step size of the perturbations

used to generate XΩ∩Ξ.

An extension of ConstrLMSRBF [111], which handles the case when all initial points (resulting from

the experimental design) are Ξ-infeasible, is provided in [112]. The algorithm is divided into two

phases, the first devoted to finding an initial Ξ-feasible sample and the second to improving the best Ξ-

feasible candidate, by solving Problem (2.59). In particular, the first phase follows the same rationale

of ConstrLMSRBF [111] but looks for 𝒙𝑁+1 by minimizing a different acquisition function over XΩ∩Ξ:

𝑎𝑁 (𝒙) = max
1≤ 𝑗≤𝑞Ξ

(
max

{
𝑔̂
( 𝑗)
Ξ𝑁

(𝒙) , 0
})
, (2.60)

which is the maximum predicted constraint violation.

COBRA [112]. COBRA [112] is an extension of CORS-RBF [115] which, similarly to

ConstrLMSRBF [111], uses the surrogate model in (2.29) for both 𝑓 (𝒙) and 𝒈Ξ (𝒙) of the GOP

(2.1). The method operates in two phases. The first phase is devoted to finding a Ξ-feasible sample (if

none are available after the initial experimental design) through the following infill sampling criterion:

𝒙𝑁+1 = arg min
𝒙
𝑎𝑁 (𝒙) (2.61)

s.t. 𝒙 ∈ Ω

𝑔̂
( 𝑗)
Ξ𝑁

(𝒙) + 𝜍 ( 𝑗)
Ξ

≤ 0 𝑗 = 1, . . . , 𝑞Ξ

∥𝒙 − 𝒙𝑖∥2 ≥ 𝛿 · 𝑑Ω 𝑖 = 1, . . . , 𝑁, 𝒙𝑖 ∈ X,

where the acquisition function is the quadratic penalty function:

𝑎𝑁 (𝒙) =
𝑞Ξ∑︁
𝑗=1

max
{
𝑔̂
( 𝑗)
Ξ𝑁

(𝒙) , 0
}2
. (2.62)

𝑑Ω in (2.61) is defined differently from 𝑑Ω (X) in (2.55) for CORS-RBF [115] and it is actually equal

to the length of the smallest side of the box defined by Ω (regardless of X). Similarly to the base

method, 𝛿 ∈ (0, 1) is an exploration-exploitation trade-off parameter that is cycled in between the

iterations of the procedure. Lastly, 𝝇Ξ ∈ R𝑞Ξ
>0, 𝝇Ξ =

[
𝜍
(1)
Ξ

. . . 𝜍
(𝑞Ξ)
Ξ

]
, is a vector of (small) margins

that prevent sampling points that are too close to the boundary of Ξ̂ =
{
𝒙 : 𝒈̂Ξ𝑁 (𝒙) ≤ 0𝑞Ξ

}
. Once the
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COBRA [112] algorithm finds a Ξ-feasible sample, the procedure moves on to the second phase, where

new candidate samples are sought by solving the following optimization problem:

𝒙𝑁+1 = arg min
𝒙
𝑓𝑁 (𝒙) (2.63)

s.t. 𝒙 ∈ Ω

𝑔̂
( 𝑗)
Ξ𝑁

(𝒙) + 𝜍 ( 𝑗)
Ξ

≤ 0 𝑗 = 1, . . . , 𝑞Ξ

∥𝒙 − 𝒙𝑖∥2 ≥ 𝛿 · 𝑑Ω 𝑖 = 1, . . . , 𝑁, 𝒙𝑖 ∈ X.

In [112], the authors propose to use different sequences of values for 𝛿 in the two phases, i.e. for

Problems (2.61) and (2.63). Furthermore, the margins 𝝇Ξ are adjusted based on the number of

subsequent successful or failed iterations (in a sense that they lead to Ξ-feasible or Ξ-infeasible

samples).

2.6.2 Infill sampling criteria for Bayesian optimization methods

Bayesian optimization procedures look for new candidate samples by making use of the probabilistic

interpretation of their surrogate models (see Section 2.5.2). Intuitively, the variance of the predictive

distribution is a useful tool to guide the search towards those regions of Ω where 𝑓𝑁 (𝒙) is most

uncertain. BayesOpt has gained a lot of popularity in the past two decades, after the development

of the EGO [68] algorithm. Consequently, many different extensions and infill sampling criteria have

been developed, see for example the surveys [22, 45, 131]. Here, we forego an in-depth dissertation

on Bayesian optimization and instead focus only on the most commonly used acquisition functions.

Furthermore, we only consider surrogate models obtained by imposing Gaussian process priors on

𝑓 (𝒙) and 𝒈Ξ (𝒙), although other probabilistic models have been used in the past. For the remainder

of this Section, we avoid the cumbersome notation of Section 2.5.2 and simply refer to the mean and

the variance of the predictive distribution of 𝑓 (𝒙) at a given point 𝒙 ∈ R𝑛, i.e. 𝑝
(
𝑓
�� 𝒇 , 𝒚,X, 𝒙; 𝜽 𝑓

)
in (2.44), as 𝜇 𝑓𝑁 (𝒙) and Σ 𝑓𝑁 (𝒙) respectively. Similarly, for each black-box constraint function

𝑔
( 𝑗)
Ξ

(𝒙) , 𝑗 = 1, . . . , 𝑞Ξ, we have 𝜇
𝑔
( 𝑗 )
Ξ𝑁

(𝒙) and Σ
𝑔
( 𝑗 )
Ξ𝑁

(𝒙).

Unconstrained black-box optimization

We start by analyzing the unconstrained black-box optimization case (Ξ = R𝑛).
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Probability of improvement. In one of the earliest works on Bayesian optimization [79], the author

suggests to look for new candidates by maximizing the probability of improvement:

𝑎𝑁 (𝒙) = 𝑃𝐼𝑁 (𝒙)

= 𝑝
(
𝑓 (𝒙) ≤ 𝑦𝑏𝑒𝑠𝑡 (𝑁)

�� 𝒇 , 𝒚,X, 𝒙)
= ΦN

(
𝑦𝑏𝑒𝑠𝑡 (𝑁) − 𝜇 𝑓𝑁 (𝒙)√︁

Σ 𝑓𝑁 (𝒙)

)
, (2.64)

where ΦN (·) is the standard normal cumulative distribution. In practice, the acquisition function

in (2.64) amounts to pure exploitation [22]. A more suitable criterion for global optimization is the

following:

𝑎𝑁 (𝒙) = 𝑃𝐼𝑁𝛿 (𝒙)

= 𝑝
(
𝑓 (𝒙) ≤ 𝑦𝑏𝑒𝑠𝑡 (𝑁) − 𝛿

�� 𝒇 , 𝒚,X, 𝒙̃)
= ΦN

(
𝑦𝑏𝑒𝑠𝑡 (𝑁) − 𝛿 − 𝜇 𝑓𝑁 (𝒙)√︁

Σ 𝑓𝑁 (𝒙)

)
, (2.65)

where 𝛿 ∈ R≥0 is a trade-off parameter. In particular, in [79], 𝛿 is initialized to a high value, so that the

algorithm prioritizes exploration in the early iterations, and gets progressively smaller to give more

importance to the surrogate later on.

Expected improvement. Instead of selecting the next sample for evaluation based on the probability

of it leading to an improvement, a better alternative is to use the maximum expected improvement

criterion [94], which also takes into account to what degree 𝒙𝑁+1 is likely to be better than the current

best candidate. Formally, the improvement brought by a point 𝒙 ∈ R𝑛 is defined as:

𝐼𝑁 (𝒙) = max {0, 𝑦𝑏𝑒𝑠𝑡 (𝑁) − 𝑦} , (2.66)

where 𝑦 = 𝑓 (𝒙) + 𝜂 𝑓 , 𝜂 𝑓 ∼ N
(
0, 𝜎2

𝑓

)
, is the measure of the cost function at 𝒙 (which is assumed to

be corrupted by Gaussian noise, see Assumption 2.5). Then, the expected improvement is defined as:

𝑎𝑁 (𝒙) = 𝐸𝐼𝑁 (𝒙)

= E
[
𝐼𝑁 (𝒙)

�� 𝒇 , 𝒚,X, 𝒙]
=


[
𝑦𝑏𝑒𝑠𝑡 (𝑁) − 𝜇 𝑓𝑁 (𝒙)

]
· ΦN (𝑧 (𝒙)) +

√︁
Σ 𝑓𝑁 (𝒙) · 𝜙N (𝑧 (𝒙)) if Σ 𝑓𝑁 (𝒙) > 0

0 otherwise
, (2.67)

where:

𝑧 (𝒙) =
𝑦𝑏𝑒𝑠𝑡 (𝑁) − 𝜇 𝑓𝑁 (𝒙)√︁

Σ 𝑓𝑁 (𝒙)
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and 𝜙N (·) is the probability density function of the standard normal distribution. The new candidate

sample is selected as the one that maximizes the expected improvement, as in Problem (2.48b). The

first term of the acquisition function in (2.67) promotes the exploitation of 𝑓𝑁 (𝒙) = 𝜇 𝑓𝑁 (𝒙) in (2.46),

while the second term favors the exploration in those regions of Ω where there is high uncertainty

about whether or not 𝑓 (𝒙) will be better than 𝑦𝑏𝑒𝑠𝑡 (𝑁) [125]. 𝐸𝐼𝑁 (𝒙) in (2.67) is widely used due

to the fact that it is the infill sampling criterion of one of the most popular Bayesian optimization

procedures, namely EGO [68]. Many extensions of the expected improvement criterion have been

developed in the past two decades, see [154] for an in-depth review. Later on, we will cover three

extensions of 𝐸𝐼𝑁 (𝒙) in (2.67) which can be used for constrained black-box optimization.

Lower confidence bound. The last infill sampling criterion that we cover for unconstrained black-

box optimization is the lower confidence bound criterion, which has been proposed in [28]. Therein,

the authors look for new candidate samples by minimizing the following acquisition function:

𝑎𝑁 (𝒙) = 𝐿𝐶𝐵𝑁 (𝒙)

= 𝜇 𝑓𝑁 (𝒙) − 𝛿 ·
√︃
Σ 𝑓𝑁 (𝒙), (2.68)

where 𝛿 ∈ R≥0 is an exploration-exploitation trade-off parameter that is chosen by the user. Intuitively,

minimizing the mean of the predictive distribution, i.e. the surrogate model 𝑓𝑁 (𝒙) in (2.46), is

pure exploitation. Instead, the minimization of −
√︁
Σ 𝑓𝑁 (𝒙) leads to finding the sample 𝒙𝑁+1 which

maximizes the information gain [76, 137] (pure exploration). As a matter of fact, it has been shown

that a surrogate-based method which, at each iteration, looks for the next candidate sample by solving:

𝒙𝑁+1 = arg min
𝒙

−
√︃
Σ 𝑓𝑁 (𝒙)

s.t. 𝒙 ∈ Ω

is guaranteed to find the global minimum of the GOP (2.1), although not efficiently. Notably, under

some assumptions on the cost function 𝑓 (𝒙) of the GOP (2.1) (such as if the real cost function is

actually drawn from the same GP prior used to define its surrogate model, see (2.34)), it is possible

to derive lower bounds on the convergence rates of Bayesian optimization methods that rely on the

𝐿𝐶𝐵𝑁 (𝒙) criterion in (2.68) [137]. To achieve such convergence rates, the parameter 𝛿must be varied

appropriately throughout the optimization procedure.

Constrained black-box optimization

Now, we move on to the constrained black-box optimization framework. We cover three different infill

sampling criteria that are based on the expected improvement in (2.67).
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Constrained Expected Improvement. Suppose to have at our disposal the surrogate models (pre-

dictive distributions) for both the cost function 𝑓 (𝒙) and the black-box constraints functions 𝒈Ξ (𝒙)

of the GOP (2.1), which are described by 𝜇 𝑓𝑁 (𝒙) , Σ 𝑓𝑁 (𝒙) and 𝜇
𝑔
( 𝑗 )
Ξ𝑁

(𝒙) , Σ
𝑔
( 𝑗 )
Ξ𝑁

(𝒙) , 𝑗 = 1, . . . , 𝑞Ξ,

respectively. In the Bayesian framework, it is straightforward to derive the probability of Ξ-feasibility

of any given sample 𝒙 ∈ R𝑛 from the aforementioned surrogate models. In what follows, we denote

the probability of Ξ-feasibility as:

𝑝𝑁 (𝒙 ∈ Ξ) = 𝑝
(
𝒙 ∈ Ξ

��CΞ,X, 𝒙) ,
where the subscript (·)𝑁 indicates that it has been estimated from the data resulting from 𝑁 sample

evaluations. Under the assumption that the noise terms which affect the black-box constraints are

independent (see Section 2.3), we have that:

𝑝𝑁 (𝒙 ∈ Ξ) = 𝑝
(
𝒙 ∈ Ξ

��CΞ,X, 𝒙)
=

𝑞Ξ∏
𝑗=1

𝑝

(
𝑔
( 𝑗)
Ξ

(𝒙) ≤ 0
�� 𝒈( 𝑗) , 𝒄( 𝑗) ,X, 𝒙)

=

𝑞Ξ∏
𝑗=1

ΦN
©­­«−

𝜇
𝑔
( 𝑗 )
Ξ𝑁

(𝒙)√︃
Σ
𝑔
( 𝑗 )
Ξ𝑁

(𝒙)
ª®®¬ , (2.69)

where, with a slight abuse of notation,

𝒈( 𝑗) =
[
𝑔
( 𝑗)
Ξ

(𝒙1) . . . 𝑔
( 𝑗)
Ξ

(𝒙𝑁 )
]⊤

∈ R𝑁 and

𝒄( 𝑗) =
[
𝑐
( 𝑗)
1 . . . 𝑐

( 𝑗)
𝑁

]⊤
∈ R𝑁

are defined similarly to 𝒇 in (2.36) and 𝒚 in (2.27) (cf. also the set 𝐶 ( 𝑗)
Ξ

in (2.13)). The probability of

Ξ-feasibility in (2.69) can be used to penalize the search in those regions of Ω that are likely to contain

Ξ-infeasible points. In particular, in [128], the author proposes to look for new candidate samples by

maximizing the constrained expected improvement:

𝑎𝑁 (𝒙) = 𝐶𝐸𝐼𝑁 (𝒙)

= 𝑝𝑁 (𝒙 ∈ Ξ) · 𝐸𝐼𝑁 (𝒙) , (2.70)

where 𝐸𝐼𝑁 (𝒙) is defined as in (2.67) although, in this case, 𝑦𝑏𝑒𝑠𝑡 (𝑁) is the measure of the cost

function for the best Ξ-feasible candidate. Note that if no Ξ-feasible sample has been found by the

initial experimental design, then we can seek one by maximizing the probability of Ξ-feasibility in

(2.69), i.e. [49]:

𝒙𝑁+1 = arg max
𝒙
𝑝𝑁 (𝒙 ∈ Ξ) (2.71)

s.t. 𝒙 ∈ Ω,
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resulting in a two-phase approach such as the extended ConstrLMSRBF [111] and COBRA [112]

algorithms.

SuperEGO [125]. SuperEGO [125] is an extension of the popular EGO [68] algorithm which handles

constrained black-box optimization problems through the following infill sampling criterion:

𝒙𝑁+1 = arg max
𝒙
𝐸𝐼𝑁 (𝒙) (2.72)

s.t. 𝒙 ∈ Ω

𝑝𝑁 (𝒙 ∈ Ξ) ≥ 𝛾,

where 𝐸𝐼𝑁 (𝒙) is defined as in (2.67), 𝑝𝑁 (𝒙 ∈ Ξ) as in (2.69) and 𝛾 ∈ [0, 1] is a user-defined

threshold (typically, 𝛾 = 0.95). In [125], the author argues that the probability of Ξ-feasibility impacts

the acquisition function in (2.70) too strongly, keeping the algorithm from exploring points directly

along the boundary of Ξ of the GOP (2.1) (where the true global minimizer(s) might lie). Hence, he

suggests that a constrained formulation, such as the one of Problem (2.72), should be preferred.

Constrained EGO with Support Vector Machines [9]. All the methods that we have seen so far for

constrained black-box optimization assume that the measures of the black-box constraints functions

𝒈Ξ (𝒙), in CΞ (2.12), are available. Instead, the algorithm in [9] assumes that the only information

at our disposal on the black-box constraints is the set UΞ in (2.11). In this setting, we can build a

classification problem to predict whether or not a sample 𝒙 ∈ R𝑛 is Ξ-feasible (𝑢Ξ (𝒙) = 1) or not

(𝑢Ξ (𝒙) = 0) based on the data in X (2.9) and UΞ (2.11). In particular, the authors use a modified

Probabilistic Support Vector Machine (PSVM) [15, 106] classifier to estimate the probability of

Ξ-feasibility6:

𝑝𝑁 (𝒙 ∈ Ξ) = 𝑝
(
𝒙 ∈ Ξ

��UΞ,X, 𝒙
)
.

The advantages of the classification approach over the Gaussian process regression one (in (2.69)) are

[9]:

1. It can easily handle optimization problems with discontinuous or binary black-box constraints;

2. Only a fraction of the black-box constraints might need to be evaluated (if, for any 𝒙 ∈

R𝑛, ∃𝑔( 𝑗)
Ξ

(𝒙) > 0, 𝑗 ∈ {1, . . . , 𝑞Ξ}, then 𝑢Ξ (𝒙) = 0), possibly reducing the amount of ex-

pensive simulations/experiments;

6We use the notation 𝑝
(
𝒙 ∈ Ξ

��UΞ,X, 𝒙
)
instead of 𝑝

(
𝒙 ∈ Ξ

��CΞ,X, 𝒙
)
(as in (2.69)) to highlight the fact that the estimated

probability of Ξ-feasibility is obtained without using the information brought by the measures of the black-box constraints
functions in CΞ (2.12), but only using the 0/1 (not Ξ-feasible/Ξ-feasible) information in UΞ (2.11).
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3. PSVMs can address dependent constraints without explicit knowledge of their correlation.

At the same time, we point out one major disadvantage: if no Ξ-feasible samples are available after

the initial experimental design, then we can only look for one by thoroughly exploring Ω (e.g. by

minimizing a suitable exploration function such as (2.56a)), instead of solving Problem (2.71). This

can make the initial search for a Ξ-feasible sample particularly inefficient (as we will see in Chapter

6). In any case, the algorithm in [9] assumes that, after the initial experimental design, ∃𝒙𝑖 ∈ X in

(2.9) such that 𝒙𝑖 ∈ Ξ. Then, the new candidate sample 𝒙𝑁+1 is obtained either by maximizing the

constrained expected improvement, defined as:

𝑎𝑁 (𝒙) = 𝐶𝐸𝐼𝑁 (𝒙)

= 𝑝𝑁 (𝒙 ∈ Ξ) · 𝐸𝐼𝑁 (𝒙) , (2.73)

where, differently from (2.70), the probability of Ξ-feasibility is obtained from the PSVM classifier

instead of (2.69), or by solving:

𝒙𝑁+1 = arg max
𝒙
𝐸𝐼𝑁 (𝒙) (2.74)

s.t. 𝒙 ∈ Ω

𝑝𝑁 (𝒙 ∈ Ξ) ≥ 𝛾.

In [9], the authors propose to set 𝛾 = 0.5 for Problem (2.74), a common value used when defining the

decision boundary of a classifier. The algorithm in [9] also includes a sampling phase aimed towards

refining the decision boundary of the PSVM classifier.
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Chapter 3. Preference-based optimization

This Chapter delves into Preference-Based Optimization (PBO), a particular branch of optimization

tasked with finding the decision vector that is most preferred by a human Decision-Maker (DM). In this

context, there is no way to objectively quantify the “degree of goodness” of a certain sample. Instead,

the optimization must be carried out by querying the DM, who makes comparisons between different

decision vectors and states which of them he/she prefers. As pointed out in [11] (and referenced

articles), it is best to let the individual compare only two samples at a time, instead of giving him/her

multiple options, to avoid the “choice overload” effect and achieve a more reliable response. Given

two points 𝒙𝑖, 𝒙 𝑗 ∈ R𝑛, the human decision-maker can either state that 𝒙𝑖 is “better than” 𝒙 𝑗 , 𝒙𝑖 is

“worse than” 𝒙 𝑗 or that both are “equally as good”.

On the surface, it might seem like preference-based optimization is quite different from black-box (or

global) optimization. However, we might ask ourselves:

Can an arbitrary criterion of a human-decision maker be “translated” into a mathematical function

𝑓 (𝒙) such that solving the GOP (1.1) leads to finding his/her most preferred decision vector?

If that were the case, then some of the results and algorithms that we have seen so far for GO (Chapter 1)

and BBO (Chapter 2) could also be adapted for preference-based optimization. From a mathematical

point of view, the preferences of the DM can be modeled using the utility theory framework [104].

Most importantly, we will see how, under some assumptions, the (subjective) criterion used by the

human decision-maker when comparing the samples can be described by a continuous utility function

whose maximizer is none other than the decision vector that is most preferred by the DM. Hence, we

can adapt the surrogate-based methods that we have seen in Chapter 2 to the preference-based setting.

This time, instead of approximating the black-box cost function, we need to derive a surrogate model

for the utility function of the decision-maker. Furthermore, the latter needs to be estimated using only

the preferences expressed by the DM, since there is no way of measuring the “degree of goodness” of

a sample.

The surrogate-based optimization scheme described in Algorithm 5 still holds in the preference-based

framework, although the concept of sample evaluation is different (see Definition 1.1). Similarly to

BBO, performing sample evaluations in the preference-based optimization framework is expensive

(cf. Assumption 2.1). For example, suppose that we want to calibrate the controller of some

industrial process. It is common in industrial practice to follow a trial-and-error approach: an expert

calibrator (DM) tries several different tunings of the regulator by performing a certain number of
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closed-loop experiments; then, he/she selects the calibration that behaved the best, based on his/her

subjective criterion. A better alternative (from an efficiency standpoint) is to employ preference-based

optimization to drive the search for the best calibration. An evaluation of a calibration 𝒙𝑖 ∈ Ω in the

preference-based framework is to be interpreted as follows: 𝒙𝑖, a tuning that has never been tried, is

compared by the DM to a previously seen calibration, 𝒙 𝑗 ∈ Ω, to produce a preference (e.g. 𝒙𝑖 is

“better than” 𝒙 𝑗 ). At the same time, the human decision-maker can express his/her judgment on the

Ξ-feasibility of 𝒙𝑖, e.g. “calibration 𝒙𝑖 shows unsatisfactory performances” (i.e. it is Ξ-infeasible).

Clearly, the evaluation of 𝒙𝑖 might involve one or multiple simulations/experiments. Therefore, we

are only interested in those PBO procedures that minimize the number of sample evaluations (such as

surrogate-based methods).

Overall, preference-based optimization is more niche than black-box optimization. In the context of

control systems, PBO has been successful in controller calibration tasks, see for example [120, 155,

156].

This Chapter is organized as follows. Section 3.1 provides the notions of utility theory that are

necessary for the definition of the preference-based optimization problem, which we present in Section

3.2. In particular, we show how the PBO problem is related to the BBO problem. Then, Section 3.3

describes the data resulting from sample evaluations in the preference-based optimization framework.

We focus on surrogate-based methods for PBO and follow the same scheme adopted in Chapter 2: in

Section 3.4, we show how to adapt the surrogate models reviewed in Section 2.5 to the preference-

based setting; then, in Section 3.5, we report the most popular infill sampling criteria. Lastly, Section

3.6 is devoted to summarizing the GO, BBO and PBO frameworks that we have seen so far in this

book.

3.1 Notions of (ordinal) utility theory

Utility theory [104] is a framework that models the rationale behind the choices made by individuals.

It is widely used in economics to describe consumer behavior. In this book, we will use some notions

of (ordinal) utility theory to define the preference-based optimization problem. In PBO, we consider

the set Ω of the GOP (1.1) as a set of alternatives among which a decision-maker can choose from.

All the tastes of an individual are embedded in a binary relation ≿ on Ω (see Appendix A.1), called

the (weak) preference relation. Given two alternatives 𝒙𝑖, 𝒙 𝑗 ∈ Ω, if 𝒙𝑖 ≿ 𝒙 𝑗 holds, then the decision-

maker deems 𝒙𝑖 “at least as good as” 𝒙 𝑗 . The preference relation ≿ is usually “split” into two transitive

binary relations:
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• The strict preference relation ≻ on Ω, i.e. 𝒙𝑖 ≻ 𝒙 𝑗 if and only if 𝒙𝑖 ≿ 𝒙 𝑗 but not 𝒙 𝑗 ≿ 𝒙𝑖 (𝒙𝑖 is

“better than” 𝒙 𝑗 or, equivalently, 𝒙 𝑗 is “worse than” 𝒙𝑖), and

• The indifference relation ∼ on Ω, i.e. 𝒙𝑖 ∼ 𝒙 𝑗 if and only if 𝒙𝑖 ≿ 𝒙 𝑗 and 𝒙 𝑗 ≿ 𝒙𝑖 (𝒙𝑖 is “as good

as” 𝒙 𝑗 ).

From an economics standpoint, a decision-maker is rational if his/her preference relation satisfies

certain properties, as highlighted by the following Definition.

Definition 3.1: Rational decision-maker [104]. Consider a decision-maker with preference

relation ≿ on Ω. We say that the DM is rational (from an economics standpoint) if ≿ is a

reflexive, transitive and complete binary relation on Ω.

We now give some insights on why such properties characterize the rationality of an individual:

• Reflexivity of ≿ on Ω implies that, for the DM, any alternative is as good as itself, i.e. 𝒙𝑖 ≿ 𝒙𝑖,

for each 𝒙𝑖 ∈ Ω;

• A decision-maker whose preference relation ≿ on Ω is transitive is able to express his/her

preferences in a coherent manner since, if 𝒙𝑖 ≿ 𝒙 𝑗 and 𝒙 𝑗 ≿ 𝒙𝑘 hold, then 𝒙𝑖 ≿ 𝒙𝑘 , for any

𝒙𝑖, 𝒙 𝑗 , 𝒙𝑘 ∈ Ω;

• Completeness of ≿ on Ω implies that the DM is able to express a preference between any two

alternatives in Ω, i.e. either 𝒙𝑖 ≿ 𝒙 𝑗 or 𝒙 𝑗 ≿ 𝒙𝑖 hold for each 𝒙𝑖, 𝒙 𝑗 ∈ Ω.

The transitivity assumption in Definition 3.1 is motivated by the so called money pump argument.
Example 3.1: The money pump argument [104]

Let 𝑥1, 𝑥2, 𝑥3 be three different goods. Suppose that a decision-maker with preference relation

≿ ranks the goods in a non-transitive manner as follows:

𝑥1 ≻ 𝑥2, 𝑥2 ≿ 𝑥3, 𝑥3 ∼ 𝑥1.

The transitivity assumption is violated by the third preference, which should be 𝑥1 ≻ 𝑥3 to be

coherent with the former two. Now, suppose that the decision-maker owns 𝑥1 and is willing

to exchange a good for any other that is weakly preferred. Moreover, the DM is willing to

trade a good and pay a fee for another commodity that is strictly preferred. Then, due to the

non-transitivity of ≿, the decision-maker can be exploited into forfeiting an arbitrary amount of

money. For example:

1. The DM trades 𝑥1 with 𝑥3 for free (indifference);
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2. Then, 𝑥3 is exchanged with 𝑥2 for free (weak preference);

3. Finally, the decision-maker trades 𝑥2 with 𝑥1 and pays a fee (strict preference).

4. The same process can be repeated from Step 1, until the DM runs out of money.

Clearly, this is not a rational behavior.

At the same time, we could make an argument against transitivity for rational decision-makers as

follows.
Example 3.2: Just noticeable differences and transitivity [39]

Let 𝑥1 be a cup of coffee with a grain of sugar in it, 𝑥2 be a cup of coffee with two grains of

sugar in it, and so on for any 𝑥𝑘 , 𝑘 ∈ N. Surely, a decision-maker cannot taste the difference

between 𝑥𝑘 and 𝑥𝑘+1 for any 𝑘 ∈ N, therefore 𝑥𝑘 ∼ 𝑥𝑘+1. Then, due to the transitive property of

∼, we have:

𝑥1 ∼ 𝑥2 ∼ . . . ∼ 𝑥1000000 ∼ . . .

which is clearly not true for a rational decision-maker.

Problems of this type arise from the transitivity of the indifference relation ∼ and are related to

the concept of just-noticeable differences. In particular, consider any experiment that involves a

sensory evaluation performed by an individual (such as tasting a cup of coffee) and that depends

on some parameter (e.g. the grains of sugar). Then, the individual requires a minimum level of

stimulation (or, rather, a minimum rate of change on the parameter) to discern between any two

experiments (e.g. it might take at least a hundred grains of sugar to taste the difference between

two cups of coffee). See [19] for a more detailed example.

Among the three properties required by Definition 3.1, completeness is the strongest assumption and

might not necessarily describe a decision-maker that is rational (“in a moral sense”).

Example 3.3: Completeness and rationality [39]

A man is given the choice between shooting his dog or shooting his cat. Clearly, even if the

decision-maker is rational, he might not be able to choose.

Incomplete preference relations often arise when making decisions over highly hypothetical

situations (which might never happen in real life) or when the DM is asked to make very

complex choices, too complex for “intuitive insight” [7].

Even though there are a few caveats on the properties required by Definition 3.1, for the remainder of

80



Preference-based optimization

this book we will assume that the decision-maker who expresses the preferences in PBO is rational in

that regard.

Reflexivity, transitivity and completeness of ≿ on Ω play a key role when describing the preference

relation through a so-called utility function. An utility function is a function 𝑢≿ : Ω → R that assigns

to an alternative 𝒙𝑖 a (strictly) higher value than that of an alternative 𝒙 𝑗 if and only if 𝒙𝑖 is ranked

(strictly) above 𝒙 𝑗 by the preference relation. More formally:

Definition 3.2: Representability of ≿ and utility function [104]. Let Ω be a nonempty set and

≿ be a preference relation on Ω. We say that 𝑢≿ : Ω → R represents ≿ on Ω if 𝑢≿ (·) is an

order-preserving function, that is if:

𝒙𝑖 ≿ 𝒙 𝑗 if and only if 𝑢≿ (𝒙𝑖) ≥ 𝑢≿
(
𝒙 𝑗

)
, (3.1a)

𝒙𝑖 ≻ 𝒙 𝑗 if and only if 𝑢≿ (𝒙𝑖) > 𝑢≿
(
𝒙 𝑗

)
, (3.1b)

𝒙𝑖 ∼ 𝒙 𝑗 if and only if 𝑢≿ (𝒙𝑖) = 𝑢≿
(
𝒙 𝑗

)
, (3.1c)

for any 𝒙𝑖, 𝒙 𝑗 ∈ Ω. If such a function exists, then ≿ is said to be representable, and 𝑢≿ (·) is

called an utility function for ≿ on Ω.

Remark 3.1 (Uniqueness of the utility function [104]). Let ≿ be a representable preference relation

on Ω ≠ ∅ and 𝑢≿ (·) be its corresponding utility function. Then, 𝑢≿ (·) is unique up to any strictly

increasing transformation.

There are a lot of results in the literature concerning the representability of the preference relation,

which differ on the assumptions made on Ω, see for example [31, 40, 104]. Some theorems assume

Ω to be either finite, countable or, in general, any metric space. For PBO, we restrict ourselves to the

case Ω ⊂ R𝑛. Before actually stating the representability theorem of interest, we introduce the notion

of continuity of preference relations in metric spaces (such as Ω).

Definition 3.3: ≿-contour sets [104]. Let ≿ be a preference relation on Ω. For any 𝒙 ∈ Ω, the

weak and strict upper ≿-contour sets of 𝒙 are defined as:

U≿ (𝒙) = {𝒙̃ : 𝒙̃ ∈ Ω, 𝒙̃ ≿ 𝒙} , (3.2a)

U≻ (𝒙) = {𝒙̃ : 𝒙̃ ∈ Ω, 𝒙̃ ≻ 𝒙} , (3.2b)

respectively. The weak and strict lower ≿-contour sets of 𝒙 are defined analogously:

L≿ (𝒙) = {𝒙̃ : 𝒙̃ ∈ Ω, 𝒙 ≿ 𝒙̃} , (3.3a)

L≻ (𝒙) = {𝒙̃ : 𝒙̃ ∈ Ω, 𝒙 ≻ 𝒙̃} . (3.3b)
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Definition 3.4: Continuity of a preference relation [104]. Let Ω be a metric space and ≿ be a

preference relation on Ω. We say that:

• ≿ is upper semi-continuous if L≻ (𝒙) is an open subset of Ω for each 𝒙 ∈ Ω,

• ≿ is lower semi-continuous if U≻ (𝒙) is an open subset of Ω for each 𝒙 ∈ Ω,

• ≿ is continuous if it is both upper and lower semi-continuous.

Intuitively speaking, if ≿ is an upper semi-continuous preference relation on a metric space Ω and if

𝒙𝑖 ≻ 𝒙 𝑗 , then an alternative 𝒙𝑘 which is “very close” to 𝒙 𝑗 should also be deemed strictly worse than

𝒙𝑖, i.e. 𝒙𝑖 ≻ 𝒙𝑘 . Similarly for the other continuity definitions. In some sense, there are “no jumps”

between the preferences expressed by the DM.

We are now ready to state Debreu’s utility representation Theorem for R𝑛.
Theorem 3.1: Debreu’s utility representation Theorem for R𝑛 [31]

Let Ω be any nonempty subset of R𝑛 and ≿ be a preference relation on Ω of a rational decision-

maker. There exists a continuous (respectively, upper semi-continuous) utility representation

for ≿ if and only if ≿ is continuous (upper semi-continuous).

Theorem 3.1 is quite powerful; basically, it states that the (subjective) criterion used by any rational

decision-maker (as in Definition 3.1) when making choices among alternatives can be described using

a continuous mathematical function 𝑢≿ (𝒙).

As a final remark, note that there also exist representations for preference relations that are not complete

and/or transitive, see for example [99, 103].

3.2 The preference-based optimization problem

In this Section, we use the notions of utility theory that we have just reviewed to define the preference-

based optimization problem. Recall that the goal of PBO is to find the decision vector that is most

preferred by a human decision-maker. Let ≿ be the preference relation on Ω associated to the DM.

Similarly to BBO methods, most preference-based optimization algorithms assume that Ω is either

defined as in (1.3) or in (1.5) (no equality constraints). We can state the preference-based optimization

problem as follows:

find 𝒙∗ ∈ Ω such that 𝒙∗ ≿ 𝒙,∀𝒙 ∈ Ω. (3.4)

𝒙∗ in (3.4) is referred to as a ≿-maximum of Ω (see Appendix 3.1 for more thorough definitions of

maxima, minima, suprema and infima of Ω ordered by ≿). In practice, there could be more than one
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≿-maximum of Ω1. Therefore, we define the set of all the alternatives that are “optimal” from the

decision-maker’s point of view as:

X∗ =
{
𝒙∗𝑖 : 𝒙∗𝑖 ∈ Ω, �𝒙 ∈ Ω s.t. 𝒙 ≻ 𝒙∗𝑖

}
, (3.5)

which plays the same role as the set of global minimizers of the GOP (1.1) in (1.2). In economics, the

problem of finding X∗ in (3.5) is often referred to as a choice problem [104]. Concerning the existence

of a ≿-maximum of Ω, we can state the following Proposition, which can be seen as a generalization

of the Extreme Value Theorem 1.1 for preference relations.

Proposition 3.1: Existence of a ≿-maximum of Ω [104]. A ≿-maximum of Ω is guaranteed to

exist if Ω is a compact subset of a metric space (in our case Ω ⊂ R𝑛) and ≿ is a continuous

preference relation on Ω of a rational decision-maker (as in Definition 3.1).

Instead of maximizing a binary relation≿ onΩ, we would rather build a more “traditional” optimization

problem in such a way that its solutions are those decision vectors that are the most preferred by the

DM, see (3.5). To do so, note that the conditions which guarantee the existence of a ≿-maximum of

Ω in Proposition 3.1 also make the preference relation representable by Theorem 3.1. Therefore, by

Definition 3.2, Problem (3.4) is equivalent to maximizing the utility function of the decision-maker

over Ω:

X∗ = arg max
𝒙
𝑢≿(𝒙) (3.6)

s.t. 𝒙 ∈ Ω.

In practice, the latter problem is equivalent to the global optimization problem proposed in Section

1.1, as pointed out by the following Remark.

Remark 3.2 (Relationship to the global optimization problem and scoring function). Problem (3.6)

can be re-written as the GOP (1.1) by taking 𝑓 (𝒙) = −𝑢≿ (𝒙). We refer to 𝑓 (𝒙) in the PBO framework

as the scoring function (of the decision-maker).

Formally, 𝑓 (𝒙) in the GOP (1.1) and 𝑢≿ (𝒙) obtained by Definition 3.2 have different domains (R𝑛

and Ω respectively). However, assuming that 𝑢≿ (𝒙) is continuous and Ω is a compact subset of R𝑛

(which are either results or assumptions of Proposition 3.1 and Theorem 3.1), by Tietze Extension

Theorem (Theorem A.6), there exists a continuous extension of 𝑢≿ (𝒙) with domain R𝑛.

1A slight clarification: consider a partially ordered set (poset) (A,R), where R is a generic binary relation (formally, a
partial order) on A, see Definition A.4. In Appendix A.1, we have reported that any nonempty subset of a poset can have
at most one R-maximum (see Definition A.7). However, (Ω,≿) is not necessarily a partially ordered set since ≿ on Ω need
not be antisymmetric. Hence, if (Ω,≿) is a preordered set instead of a poset, there could be multiple ≿-maxima of Ω.
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Now that we have defined the preference-based optimization problem in detail, we highlight the

assumptions made by PBO methods when solving the GOP (1.1).

Assumption 3.1 (Assumptions for preference-based optimization). Consider the global optimization

problem in (1.1) with Ω defined as in (1.5). In the context of preference-based optimization, the

cost function and (possibly) some of the constraints functions of the GOP (1.1) are assumed to be

black-boxes (see Assumption 2.1). In particular, in the PBO setting, the cost function is actually the

scoring function (see Remark 3.2) of a human decision-maker with preference relation ≿ on Ω, for

which no analytical formulation is available. Furthermore, there is no way to objectively quantify

𝑓 (𝒙). Instead, the optimization must be carried out by asking the DM to compare couples of different

samples. Given two samples 𝒙𝑖, 𝒙 𝑗 ∈ Ω, the only information that we can extract on the cost function

in the PBO framework is which among the following statements holds: 𝒙𝑖 ≻ 𝒙 𝑗 , 𝒙𝑖 ∼ 𝒙 𝑗 or 𝒙 𝑗 ≻ 𝒙𝑖.

The previous Assumption shows how preference-based optimization can be interpreted as a particular

instance of black-box optimization where the cost function is both a black-box and cannot be quantified

objectively (cf. Assumption 2.1). Furthermore, Assumption 3.1 points out that a PBO problem could

also include some black-box constraints which, consistently with Chapter 2, are described by the set

Ξ in (2.2). Hence, the preference-based optimization problem is none other than:

X∗ = arg min
𝒙
𝑓 (𝒙)

s.t. 𝒙 ∈ Ω ∩ Ξ,

which is mathematically equivalent to the black-box optimization problem in (2.1), but this time 𝑓 (𝒙)

is the scoring function of the DM and not a measurable black-box function.

Similarly to BBO, we differentiate between unconstrained and constrained preference-based optimiza-

tion problems as follows (cf. Definition 2.1).

Definition 3.5: Unconstrained and constrained BBO. Regardless of the structure of Ω for the

GOP (2.1), we say that a method belongs to the unconstrained preference-based optimization

framework if it assumes that Ξ = R𝑛. Vice-versa, whenever Ξ is defined as in (2.2), we speak of

constrained preference-based optimization.

In the context of constrained PBO, we also highlight a particular type of black-box constraints, which

we refer to as decision-maker-based constraints.

Definition 3.6: Decision-maker-based constraint. A decision-maker-based constraint 𝑔̃Ξ (𝒙) ≤

0, 𝑔̃Ξ : R𝑛 → {0, 1} , is a binary, relaxable, black-box and known constraint (according to the

QRAK taxonomy in Definition 2.3) which is completely defined by a human decision-maker. A
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DM-based constraint works as follows: given a sample 𝒙𝑖 ∈ R𝑛, the decision-maker states

whether it is feasible (𝑔̃Ξ (𝒙𝑖) = 0) or not (𝑔̃Ξ (𝒙𝑖) = 1), depending on his/her subjective

criterion.

A decision-maker-based constraint can be seen as asking the DM a “yes/no question”, which is different

from expressing a preference between two alternatives. For example, decision-maker-based constraints

have been included in [156] when tuning the Model Predictive Controller [110] for the lane-keeping and

obstacle-avoidance tasks in autonomous driving vehicles. In particular, after performing a simulation

using a certain decision vector, the calibrator assesses whether or not the tuning is acceptable and if

the controller achieves satisfactory performances. Acceptability and satisfiability can be seen as two

separate DM-based constraints.

We conclude this Section with an Example of a preference-based optimization problem in the context

of control systems. In the next Example, we also give some insights on the relationship between

preference-based optimization and multi-objective optimization.

Example 3.4: Preference-based optimization for control systems

We go back to the control systems example presented in Chapter 2 (i.e. Example 2.1). We

have seen how, by defining suitable performance indicators, we can employ a black-box opti-

mization procedure to calibrate the controller’s parameters, effectively driving the closed-loop

experiments on the control system.

In many cases, only qualitative control specifications are available, making the choice of 𝑓 (𝒙)

and Ξ for the GOP (2.1) less straightforward. Instead of going through the trouble of choosing

the most appropriate performance indicators, we rely on an expert calibrator, who knows

the system well and has a clear objective in mind. We use a preference-based optimization

procedure to help him/her with the tuning process. Consistently with Example 2.1, suppose that

the calibrator assesses the performances of a certain parametrization of the controller through a

step test. For instance, he/she could take a look at the output signal and control action resulting

from a calibration 𝒙𝑖 and compare it to the results of a previously tested tuning 𝒙 𝑗 , as depicted

in Figure 8. Clearly, if the decision-maker expresses his/her feedback purely by looking at the

curves in Figure 8, then there is no need to repeat the same experiment twice, we just have to

save the 𝑜𝑢𝑡𝑝𝑢𝑡 (𝑡; 𝒙𝑖) and 𝑐𝑜𝑛𝑡𝑟𝑜𝑙_𝑎𝑐𝑡𝑖𝑜𝑛 (𝑡; 𝒙𝑖) signals when the calibration 𝒙𝑖 is tested.
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In some sense, the criterion used by the DM could be (implicitly) a trade-off between the

performance indicators presented in Example 2.1, such as:

𝑓 (𝒙) = 𝜔𝑡𝑟𝑖𝑠𝑒 · 𝑡𝑟𝑖𝑠𝑒 (𝒙) + 𝜔𝑡𝑠𝑣 · 𝑡𝑠𝑣(𝒙), (3.7)

where 𝜔𝑡𝑟𝑖𝑠𝑒 , 𝜔𝑡𝑠𝑣 ∈ R>0 are two positive weights for the settling time and the total square

variation respectively. Clearly, 𝜔𝑡𝑟𝑖𝑠𝑒 and 𝜔𝑡𝑠𝑣 are unknown and practically depend on the DM

who expresses the preferences. Going back to Figure 8, a calibrator who prioritizes the rise

time (𝜔𝑡𝑟𝑖𝑠𝑒 ≫ 𝜔𝑡𝑠𝑣) would say that 𝒙𝑖 ≻ 𝒙 𝑗 . Vice-versa, a decision-maker that prefers moderate

control actions (𝜔𝑡𝑠𝑣 ≫ 𝜔𝑡𝑟𝑖𝑠𝑒) deems 𝒙 𝑗 ≻ 𝒙𝑖.

The derivation of the cost function 𝑓 (𝒙) in (3.7) is closely related to Multi-Objective Optimiza-

tion (MOO) [84]. As a matter of fact, it is a way of scalarizing a multi-objective optimization

problem. Decision-makers also play a key-role in MOO. For example, they choose which solu-

tion, among a set of Pareto optimal ones, is the most suited for the task at hand. Alternatively,

DMs can specify the weights 𝜔𝑡𝑟𝑖𝑠𝑒 , 𝜔𝑡𝑠𝑣 for 𝑓 (𝒙) in (3.7). Although both preference-based op-

timization and multi-objective optimization rely on decision-makers, we stress that, differently

from MOO, in PBO there is no explicit cost function to be minimized.

Lastly, we point out that a possible decision-maker-based constraint could be something like:

“the output signals must not show pronounced oscillations”. If that were the case, then calibra-

tion 𝒙𝑖 in Figure 8 would be deemed as Ξ-infeasible while 𝑢Ξ
(
𝒙 𝑗

)
= 1.

3.3 Data available for preference-based optimization

In the previous Section, we have seen how preference-based optimization shares many similarities

with black-box optimization, the only difference being the information available on the cost function

𝑓 (𝒙) of the GOP (2.1). In particular, the set of cost function measures Y in (2.10) is not available.

Instead, we must rely on the preferences expressed by the human decision-maker which, for the sake

of simplicity, are described by a so-called preference function defined as follows.

Definition 3.7: Preference function [11]. Let ≿ be a preference relation on Ω of a human

decision-maker and 𝑓 (𝒙) be its corresponding scoring function. We define the preference
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Figure 8: Query window for preference-based optimization. The decision-maker is presented with the
output and control action signals achieved by two different calibrations, 𝒙𝑖 (left) and 𝒙 𝑗 (right).

function 𝜋≿ : R𝑛 × R𝑛 → {−1, 0, 1} asa:

𝜋≿
(
𝒙𝑖, 𝒙 𝑗

)
=


−1 if 𝒙𝑖 ≻ 𝒙 𝑗 ⇔ 𝑓 (𝒙𝑖) < 𝑓

(
𝒙 𝑗

)
0 if 𝒙𝑖 ∼ 𝒙 𝑗 ⇔ 𝑓 (𝒙𝑖) = 𝑓

(
𝒙 𝑗

)
1 if 𝒙 𝑗 ≻ 𝒙𝑖 ⇔ 𝑓 (𝒙𝑖) > 𝑓

(
𝒙 𝑗

) . (3.8)

aWe stick to the definition of the preference function in [11], where it is derived without any notion of utility theory.
Therein, the authors simply assume that there exists a scoring function 𝑓 : R𝑛 → R that ranks the alternatives in
Ω as a decision-maker with preference relation ≿ on Ω would. Formally, to be precise, we should assume Ω to be
a closed subset of R𝑛 (due to Tietze Extension Theorem A.6), the DM to be rational and ≿ on Ω to be continuous
in order to ensure the existence of 𝑓 (𝒙) in (3.8) (see Section 3.1 and Section 3.2).

In preference-based optimization, the data resulting from 𝑁 sample evaluations is composed of:

1. The set of samples X in (2.9),

2. The preferences expressed by the human decision-maker. In particular, we use two sets to

describe them:

B = {𝑏ℎ : ℎ = 1, . . . , 𝑀, 𝑏ℎ ∈ {−1, 0, 1}} , (3.9)

where 𝑏ℎ is the ℎ-th preference obtained by comparing a certain couple of samples, and:

S =

{
(ℓ(ℎ), 𝜅(ℎ)) : ℎ = 1, . . . , 𝑀, ℓ(ℎ), 𝜅(ℎ) ∈ N,

𝑏ℎ = 𝜋≿
(
𝒙ℓ(ℎ) , 𝒙𝜅(ℎ)

)
, (3.10)
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𝑏ℎ ∈ B, 𝒙ℓ(ℎ) , 𝒙𝜅(ℎ) ∈ X
}
.

S in (3.10) is a mapping set that highlights which samples in X (2.9) have been compared to

obtain the preferences in B (3.9). In particular, ℓ : N → N and 𝜅 : N → N are two mapping

functions that associate the indexes of the samples in X to the preferences in B. Note that a

total of 𝑀 ∈ N preferences have been expressed on the 𝑁 samples in X.

3. The information on the black-box constraints in Ξ, i.e. either the set UΞ in (2.11), which only

highlights whether the samples in X are Ξ-feasible or not, or the set of measures CΞ in (2.12).

The cardinalities of the aforementioned sets are |X| = |CΞ | = |UΞ | = 𝑁 and |B| = |S| = 𝑀 , with

1 ≤ 𝑀 ≤ ©­«
𝑁

2
ª®¬.

The data that we have just covered in this Section is used by surrogate-based methods to solve the

preference-based optimization problem, i.e. the GOP (2.1). PBO procedures follow the same scheme

reported in Algorithm 5 but, in this case, they rely on a surrogate model for the scoring function of

the decision-maker, which is estimated from the preferences reported in sets B (3.9) and S (3.10).

3.4 Surrogate models

The problem of estimating predictive models from the preferences expressed by a human decision-

maker, namely preference learning, has received much attention in the machine learning community.

In [46], the authors distinguish between learning preference relations and learning utility functions,

pointing out their applications to different machine learning tasks. Preference learning has also been

applied in the field of reinforcement learning to take into account qualitative feedback provided by

experts (decision-makers) [13, 47]. Going back to the preference-based optimization framework,

most procedures use a predictive (surrogate) model for the latent utility function of the DM although,

differently from preference learning, its prediction accuracy is not the main concern. In practice, we

only need a surrogate model that is expressive enough to locate the global minimizers of the GOP

(2.1) and not necessarily accurate on the whole constraint set Ω [11, 21]. At the moment, compared

to black-box optimization, very few preference-based optimization algorithms exist. Most procedures

use a surrogate model that relies on Gaussian processes [12, 21, 52]. Conversely, in [11], the authors

propose an approximation of the latent scoring function that is based on radial basis functions.

Remark 3.3. In what follows, consistently with Section 2.5, we denote the surrogate models for the

scoring function as 𝑓𝑁 (𝒙), possibly highlighting their hyper-parameters. Formally, a more proper

notation in the preference-based setting would be 𝑓𝑀 (𝒙), since 𝑁 sample evaluations produce 𝑀
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preferences (see B in (3.9) and S in (3.10)), from which the surrogate models are estimated. However,

as we will see later on in this book, most PBO algorithms are such that 𝑀 = 𝑁 − 1. That is because,

often, the decision-maker is asked to compare the current best candidate 𝒙𝒃𝒆𝒔𝒕 (𝑁) with one, and only

one, other sample 𝒙𝑁+1 ≠ 𝒙𝒃𝒆𝒔𝒕 (𝑁). Hence, at each iteration of Algorithm 5, we evaluate only one

sample and observe only one preference.

On a side note, we also point out that the notation 𝑓𝑁 (𝒙) better captures the fact that the surrogate

models are linear combinations of 𝑁 basis functions, as we will see shortly.

3.4.1 Surrogate scoring function based on RBFs

Consider the radial basis function expansion surrogate model in (2.20). When dealing with the problem

of learning the latent scoring function of a human decision-maker, we cannot compute the vector of

weights 𝜷 𝑓 for 𝑓𝑁
(
𝒙; 𝜷 𝑓 , 𝜖 𝑓

)
in (2.20) by enforcing the interpolation conditions in (2.25), since the

measures of the cost function are not available. Instead, in the context of PBO, we are interested

in a surrogate model that correctly describes the preferences expressed by the DM. We consider the

surrogate preference function 𝜋̂≿𝑁 : R𝑛 × R𝑛 → {−1, 0, 1} defined in [11]:

𝜋̂≿𝑁

(
𝒙𝑖, 𝒙 𝑗 ; 𝜷 𝑓 , 𝜖 𝑓

)
=


−1 if 𝑓𝑁

(
𝒙𝑖; 𝜷 𝑓 , 𝜖 𝑓

)
− 𝑓𝑁

(
𝒙 𝑗 ; 𝜷 𝑓 , 𝜖 𝑓

)
≤ −𝜎𝜋

0 if
��� 𝑓𝑁 (

𝒙𝑖; 𝜷 𝑓 , 𝜖 𝑓
)
− 𝑓𝑁

(
𝒙 𝑗 ; 𝜷 𝑓 , 𝜖 𝑓

)��� ≤ 𝜎𝜋
1 if 𝑓𝑁

(
𝒙𝑖; 𝜷 𝑓 , 𝜖 𝑓

)
− 𝑓𝑁

(
𝒙 𝑗 ; 𝜷 𝑓 , 𝜖 𝑓

)
≥ 𝜎𝜋

. (3.11)

Differently from 𝜋≿(𝒙𝑖, 𝒙 𝑗 ) in (3.8), 𝜋̂≿𝑁 (𝒙𝑖, 𝒙 𝑗 ; 𝜷 𝑓 , 𝜖 𝑓 ) in (3.11) uses a tolerance 𝜎𝜋 ∈ R>0 to avoid

strict inequalities and equalities and replaces 𝑓 (𝒙) with the surrogate model for the scoring function.

𝜋̂≿𝑁

(
𝒙𝑖, 𝒙 𝑗 ; 𝜷 𝑓 , 𝜖 𝑓

)
in (3.11) correctly describes the preferences in B (3.9) and S (3.10) if:

𝑏ℎ = 𝜋̂≿𝑁

(
𝒙ℓ(ℎ) , 𝒙𝜅(ℎ); 𝜷 𝑓 , 𝜖 𝑓

)
, ∀𝑏ℎ ∈ B, (ℓ(ℎ), 𝜅(ℎ)) ∈ S, ℎ = 1, . . . , 𝑀.

This, in turn, translates into some constraints on the surrogate model 𝑓𝑁
(
𝒙; 𝜷 𝑓 , 𝜖 𝑓

)
in (2.20), which

can be used to find 𝜷 𝑓 . In order to do so, in [11], the authors define the following convex optimization

problem:

arg min
𝜺 𝑓 ,𝜷 𝑓

𝜆 𝑓

2
· 𝜷⊤

𝑓 · 𝜷 𝑓 + 𝒓⊤𝑓 · 𝜺 𝑓 (3.12)

s.t. 𝑓𝑁

(
𝒙ℓ(ℎ); 𝜷 𝑓 , 𝜖 𝑓

)
− 𝑓𝑁

(
𝒙𝜅(ℎ); 𝜷 𝑓 , 𝜖 𝑓

)
≤ −𝜎𝜋 + 𝜀(ℎ)𝑓 ∀ℎ : 𝑏ℎ = −1��� 𝑓𝑁 (

𝒙ℓ(ℎ); 𝜷 𝑓 , 𝜖 𝑓
)
− 𝑓𝑁

(
𝒙𝜅(ℎ); 𝜷 𝑓 , 𝜖 𝑓

)��� ≤ 𝜎𝜋 + 𝜀(ℎ)𝑓 ∀ℎ : 𝑏ℎ = 0

𝑓𝑁

(
𝒙ℓ(ℎ); 𝜷 𝑓 , 𝜖 𝑓

)
− 𝑓𝑁

(
𝒙𝜅(ℎ); 𝜷 𝑓 , 𝜖 𝑓

)
≥ 𝜎𝜋 − 𝜀(ℎ)𝑓 ∀ℎ : 𝑏ℎ = 1
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𝜀
(ℎ)
𝑓

≥ 0

ℎ = 1, . . . , 𝑀,

where:

• 𝜺 𝑓 =
[
𝜀
(1)
𝑓

. . . 𝜀
(𝑀)
𝑓

]⊤
∈ R𝑀≥0 is a vector of slack variables (one for each preference) which

takes into consideration that: (i) there might be some outliers inB (3.9) andS (3.10) if the human

decision-maker expresses the preferences in an inconsistent way, and (ii) the selected radial

function and/or shape parameter for 𝑓𝑁
(
𝒙; 𝜷 𝑓 , 𝜖 𝑓

)
in (2.20) do not allow a proper approximation

of the scoring function 𝑓 (𝒙);

• 𝒓 𝑓 =
[
𝑟
(1)
𝑓

. . . 𝑟
(𝑀)
𝑓

]⊤
∈ R𝑀

>0 is a vector of weights which can be used to penalize more some

slacks related to the most important preferences;

• 𝜆 𝑓 ∈ R≥0 plays the role of a regularization parameter. It is easy to see that, for 𝜆 𝑓 = 0, Problem

(3.12) is a Linear Program (LP) while, for 𝜆 𝑓 > 0, it is a Quadratic Program (QP).

Note that Problem (3.12) ensures that, at least approximately, 𝑓𝑁
(
𝒙; 𝜷 𝑓 , 𝜖 𝑓

)
in (2.20) is a suitable

representation of the unknown preference relation ≿ on Ω which generated the data (see Theorem 3.1).

As a final remark, as we have seen in Section 2.5.1, the quality of the surrogate model depends on the

choice of the shape parameter 𝜖 𝑓 . In [11], the authors recalibrate 𝜖 𝑓 through grid search leave-one-out

cross-validation. We will cover Problem (3.12) and the recalibration of the shape parameter in greater

detail in Chapter 4.

3.4.2 Surrogate scoring function based on GPs

Gaussian processes have been widely used in the context of preference learning. The most popular

GP-based surrogate model for the scoring function of a human decision-maker is the one proposed in

[25]. Therein, the authors consider only the strict preference relation ≻ instead of ≿ (the indifference

relation ∼ is not handled explicitly). Under this assumption, it is possible to define the mapping

functions ℓ(ℎ), 𝜅(ℎ) in (3.10) so that:

𝒙ℓ(ℎ) ≻ 𝒙𝜅(ℎ) , ∀ℎ = 1, . . . , 𝑀,

making the set B in (3.9) redundant.

Similarly to what we have seen in Section 2.5.2, we impose a GP prior on the scoring function 𝑓 (𝒙)

of the GOP (2.1) as in (2.34). Hence, the probability distribution of 𝒇 in (2.36) is the same as the one
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in (2.38), namely:

𝑝
(
𝒇 ; 𝜽 𝑓

)
= N

(
𝝁 𝒇 , Σ 𝒇

)
, (3.13a)

𝝁 𝒇 = 0𝑁 , (3.13b)

Σ 𝒇 = 𝐾 𝑓

(
𝜽 𝑓

)
. (3.13c)

Coherently with Assumption 2.5, the scoring function 𝑓 (𝒙) is assumed to be affected by zero-mean

Gaussian noise noise such that:

𝑦ℓ(ℎ) = 𝑓
(
𝒙ℓ(ℎ)

)
+ 𝜂 𝑓ℓ (ℎ)

= 𝑓ℓ(ℎ) + 𝜂 𝑓ℓ (ℎ) , 𝜂 𝑓ℓ (ℎ)
𝑖.𝑖.𝑑.∼ N

(
0, 𝜎2

𝑓

)
,∀ℎ = 1, . . . , 𝑀,

and similarly for those measures indexed by 𝜅(ℎ). However, in the preference-based setting, the

measures 𝑦ℓ(ℎ) , 𝑦𝜅(ℎ) , ℎ = 1, . . . , 𝑀, are not available. Instead, we only observe the preferences

expressed by the decision-maker which, consistently with 𝜋≿
(
𝒙𝑖, 𝒙 𝑗

)
in (3.8), we assume to be such

that:

𝒙ℓ(ℎ) ≻ 𝒙𝜅(ℎ) if and only if 𝑦ℓ(ℎ) < 𝑦𝜅(ℎ) .

The addition of the noise serves to capture possible inconsistencies in the preferences expressed by

the DM (similarly to the role of the slacks in Problem (3.12)). Thus, the probability of 𝒙ℓ(ℎ) being

strictly preferred to 𝒙𝜅(ℎ) is:

𝑝
(
𝒙ℓ(ℎ) ≻ 𝒙𝜅(ℎ)

�� 𝑓ℓ(ℎ) , 𝑓𝜅(ℎ) , 𝒙ℓ(ℎ) , 𝒙𝜅(ℎ) ) = 𝑝 (
𝑦ℓ(ℎ) < 𝑦𝜅(ℎ)

�� 𝑓ℓ(ℎ) , 𝑓𝜅(ℎ) , 𝒙ℓ(ℎ) , 𝒙𝜅(ℎ) )
= 𝑝

(
𝜂 𝑓ℓ (ℎ)−𝜂 𝑓𝜅 (ℎ) < 𝑓𝜅(ℎ)− 𝑓ℓ(ℎ)

�� 𝑓ℓ(ℎ) , 𝑓𝜅(ℎ) , 𝒙ℓ(ℎ) , 𝒙𝜅(ℎ)) .
Notice that 𝜂 𝑓ℓ (ℎ) − 𝜂 𝑓𝜅 (ℎ) is a zero-mean normally distributed random variable with variance 2 · 𝜎2

𝑓
.

Therefore, by standardizing 𝜂 𝑓ℓ (ℎ) − 𝜂 𝑓𝜅 (ℎ) , we obtain:

𝑝
(
𝒙ℓ(ℎ) ≻ 𝒙𝜅(ℎ)

�� 𝑓ℓ(ℎ) , 𝑓𝜅(ℎ) , 𝒙ℓ(ℎ) , 𝒙𝜅(ℎ) ) = 𝑝 (
𝜂 𝑓ℓ (ℎ)−𝜂 𝑓𝜅 (ℎ)√

2 · 𝜎 𝑓
<
𝑓𝜅(ℎ)− 𝑓ℓ(ℎ)√

2 · 𝜎 𝑓

�� 𝑓ℓ(ℎ) , 𝑓𝜅(ℎ) , 𝒙ℓ(ℎ) , 𝒙𝜅(ℎ))
= ΦN

(
𝑓𝜅(ℎ) − 𝑓ℓ(ℎ)√

2 · 𝜎 𝑓

)
.

Thus, the preference information brought by the set S in (3.10) is encapsulated in the following

likelihood:

𝑝
(
S

�� 𝒇 ,X)
=

𝑀∏
ℎ=1

𝑝
(
𝒙ℓ(ℎ) ≻ 𝒙𝜅(ℎ)

�� 𝑓ℓ(ℎ) , 𝑓𝜅(ℎ) , 𝒙ℓ(ℎ) , 𝒙𝜅(ℎ) )
=

𝑀∏
ℎ=1

ΦN

(
𝑓𝜅(ℎ) − 𝑓ℓ(ℎ)√

2 · 𝜎 𝑓

)
. (3.14)
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Next, we need to compute the posterior distribution 𝑝
(
𝒇
��S,X; 𝜽 𝑓

)
. However, this time, the posterior

distribution is not Gaussian since the likelihood in (3.14) is not Gaussian. In [25], the authors find the

Laplace approximation [15] of 𝑝
(
𝒇
��S,X; 𝜽 𝑓

)
as follows. From Bayes’ theorem, we have:

𝑝
(
𝒇
��S,X; 𝜽 𝑓

)
=
𝑝

(
S

�� 𝒇 ,X)
· 𝑝

(
𝒇 ; 𝜽 𝑓

)
𝑝

(
S

��X; 𝜽 𝑓
)

∝ 𝑝
(
S

�� 𝒇 ,X)
· 𝑝

(
𝒇 ; 𝜽 𝑓

)
.

Define 𝑠
(
𝒇 ; 𝜽 𝑓

)
= 𝑝

(
S

�� 𝒇 ,X)
· 𝑝

(
𝒇 ; 𝜽 𝑓

)
and take its natural logarithm:

ln 𝑠
(
𝒇 ; 𝜽 𝑓

)
=

𝑀∑︁
ℎ=1

ln

[
ΦN

(
𝑓𝜅(ℎ) − 𝑓ℓ(ℎ)√

2 · 𝜎 𝑓

)]
+ ln


1√︃

(2 · 𝜋)𝑁 · det𝐾 𝑓

(
𝜽 𝑓

)
 +

− 1
2
· 𝒇⊤ · 𝐾 𝑓

(
𝜽 𝑓

)−1 · 𝒇 .

Now, let 𝑠
(
𝒇 ; 𝜽 𝑓

)
= − ln 𝑠

(
𝒇 ; 𝜽 𝑓

)
, neglecting the term that does not depend on 𝒇 , i.e.:

𝑠
(
𝒇 ; 𝜽 𝑓

)
=

1
2
· 𝒇⊤ · 𝐾 𝑓

(
𝜽 𝑓

)−1 · 𝒇 −
𝑀∑︁
ℎ=1

ln

[
ΦN

(
𝑓𝜅(ℎ) − 𝑓ℓ(ℎ)√

2 · 𝜎 𝑓

)]
.

We compute the Maximum A Posteriori (MAP) estimate of 𝒇 in (2.36) by solving the following

optimization problem:

𝒇𝑀𝐴𝑃 = arg max
𝒇 ∈R𝑁

𝑝
(
𝒇
��S,X; 𝜽 𝑓

)
= arg max

𝒇 ∈R𝑁
ln 𝑠

(
𝒇 ; 𝜽 𝑓

)
= arg min

𝒇 ∈R𝑁
𝑠
(
𝒇 ; 𝜽 𝑓

)
. (3.15)

Problem (3.15) is convex [25]; furthermore, the Hessian of 𝑠
(
𝒇 ; 𝜽 𝑓

)
is equal to:

∇2
𝒇 𝒇 𝑠

(
𝒇 ; 𝜽 𝑓

)
= 𝐾 𝑓

(
𝜽 𝑓

)−1 + Λ ( 𝒇 ) ,

where Λ ( 𝒇 ) = −∑𝑀
ℎ=1 ∇2

𝒇 𝒇 lnΦN

(
𝑓𝜅 (ℎ)− 𝑓ℓ (ℎ)√

2·𝜎 𝑓

)
. Finally, we approximate the posterior distribution as:

𝑝
(
𝒇
��S,X; 𝜽 𝑓

)
≈ N

(
𝝁

𝒇
��S,X , Σ 𝒇

��S,X)
, (3.16a)

𝝁
𝒇
��S,X = 𝒇𝑀𝐴𝑃, (3.16b)

Σ
𝒇
��S,X =

[
𝐾 𝑓

(
𝜽 𝑓

)−1 + Λ ( 𝒇𝑀𝐴𝑃)
]−1

, (3.16c)

and the marginal likelihood as:

𝑝
(
S

�� 𝜽 𝑓 ) ≈ exp {−𝑠 ( 𝒇𝑀𝐴𝑃)} ·
1√︃

det
[
𝐼𝑁 + 𝐾 𝑓

(
𝜽 𝑓

)
· Λ ( 𝒇𝑀𝐴𝑃)

] . (3.17)
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The latter can be used to estimate the hyper-parameters 𝜽 𝑓 of the kernel through maximum likelihood

estimation, i.e. by solving Problem (2.41).

Similarly to Gaussian process regression (in Section 2.5.2), we are interested in predicting the value

of the scoring function 𝑓 (𝒙) of the GOP (2.1) at a point that has not been previously evaluated,

i.e. we want to estimate 𝑓 = 𝑓 (𝒙̃) for some 𝒙̃ ∉ X. To do so, we define the prior on the random

vector
[
𝒇⊤ 𝑓

]⊤
as in (3.13). Then, we find the joint posterior distribution 𝑝

(
𝒇 , 𝑓

��S,X, 𝒙̃; 𝜽 𝑓
)

by

considering the Laplace approximation of 𝑝
(
𝒇
��S,X; 𝜽 𝑓

)
in (3.16), which is Gaussian. Lastly, we

marginalize with respect to 𝑓 , obtaining the predictive distribution:

𝑝
(
𝑓
�� 𝒇 ,S,X, 𝒙̃; 𝜽 𝑓

)
≈ N

(
𝜇
𝑓

�� 𝒇 ,S,X,𝒙̃ , Σ 𝑓

�� 𝒇 ,S,X,𝒙̃) , (3.18a)

𝜇
𝑓

�� 𝒇 ,S,X,𝒙̃ = 𝒌 𝑓
(
𝒙̃; 𝜽 𝑓

)⊤ · 𝐾 𝑓

(
𝜽 𝑓

)−1 · 𝒇𝑀𝐴𝑃, (3.18b)

Σ
𝑓

�� 𝒇 ,S,X,𝒙̃ = 𝑘 𝑓
(
𝒙̃, 𝒙̃; 𝜽 𝑓

)
− 𝒌 𝑓

(
𝒙̃; 𝜽 𝑓

)⊤ ·
[
𝐾 𝑓

(
𝜽 𝑓

)
+ Λ ( 𝒇𝑀𝐴𝑃)−1]−1 · 𝒌 𝑓

(
𝒙̃; 𝜽 𝑓

)
, (3.18c)

where 𝒌 𝑓
(
𝒙̃; 𝜽 𝑓

)
is defined as in (2.45). Finally, the surrogate model of the scoring function 𝑓 (𝒙) of

the GOP (2.1) is the mean of the predictive distribution:

𝑓𝑁

(
𝒙; 𝜷 𝑓 , 𝜽 𝑓

)
= 𝒌 𝑓

(
𝒙; 𝜽 𝑓

)⊤ · 𝜷 𝑓 , (3.19)

where 𝜷 𝑓 = 𝐾 𝑓

(
𝜽 𝑓

)−1 · 𝒇𝑀𝐴𝑃.

As an alternative to the surrogate scoring function proposed in [25], recently the authors of [12] have

derived an approximation of 𝑓 (𝒙) based on Skew Gaussian processes. One of the advantages of the

method in [12] is that the posterior distribution can be computed in closed form, without the need for

the Laplace approximation.

3.4.3 Surrogate preference function based on GPs

In a recent article on preference-based optimization [52], the authors propose three acquisition func-

tions that are not based on a surrogate of the scoring function but rather on a probabilistic model of the

preference relation ≿ on Ω. In particular, instead of considering the deterministic preference function

𝜋≿
(
𝒙𝑖, 𝒙 𝑗

)
in (3.8), they model the probability of a sample 𝒙𝑖 ∈ Ω being preferred to another 𝒙 𝑗 ∈ Ω

using a Bernoulli distribution:

𝑝
(
𝒙𝑖 ≻ 𝒙 𝑗

�� 𝑓 (𝒙𝑖) , 𝑓 (
𝒙 𝑗

)
, 𝒙𝑖, 𝒙 𝑗

)
= 𝜋̃≿

(
𝒙𝑖, 𝒙 𝑗

)
, (3.20a)

𝑝
(
𝒙 𝑗 ≿ 𝒙𝑖

�� 𝑓 (𝒙𝑖) , 𝑓 (
𝒙 𝑗

)
, 𝒙𝑖, 𝒙 𝑗

)
= 1 − 𝜋̃≿

(
𝒙𝑖, 𝒙 𝑗

)
. (3.20b)
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In (3.20), 𝑓 (·) is the scoring function and 𝜋̃≿ : R𝑛 ×R𝑛 → [0, 1] is an inverse link function. A typical

choice is the sigmoid function:

𝜋̃≿
(
𝒙𝑖, 𝒙 𝑗

)
=

1
1 + exp

{
𝑓≿

(
𝒙𝑖, 𝒙 𝑗

)} , (3.21)

where 𝑓≿ : R𝑛 × R𝑛 → R is simply the difference between the two scores, namely 𝑓≿
(
𝒙𝑖, 𝒙 𝑗

)
=

𝑓 (𝒙𝑖)− 𝑓
(
𝒙 𝑗

)
. Intuitively, if 𝒙𝑖 ≻ 𝒙 𝑗 , then 𝑓 (𝒙𝑖) < 𝑓

(
𝒙 𝑗

)
and 𝑓≿

(
𝒙𝑖, 𝒙 𝑗

)
< 0, making 𝜋̃≿

(
𝒙𝑖, 𝒙 𝑗

)
> 1

2 .

The relationship between the preference function 𝜋≿
(
𝒙𝑖, 𝒙 𝑗

)
in (3.8) and 𝜋̃≿

(
𝒙𝑖, 𝒙 𝑗

)
in (3.21) is the

following:

𝜋≿(𝒙𝑖, 𝒙 𝑗 ) =


−1 if 𝜋̃≿

(
𝒙𝑖, 𝒙 𝑗

)
> 1

2

0 if 𝜋̃≿
(
𝒙𝑖, 𝒙 𝑗

)
= 1

2

1 if 𝜋̃≿
(
𝒙𝑖, 𝒙 𝑗

)
< 1

2

.

A surrogate model for the probabilistic preference function in (3.21) can be obtained by means of

Gaussian process classification. Here, we forego an in-depth dissertation, the interested reader is

referred [52, 60, 153]. Intuitively, given two samples 𝒙𝑖, 𝒙 𝑗 ∈ Ω, we can define two classes as in

(3.20), which we call the “is preferred to” class (𝒙𝑖 ≻ 𝒙 𝑗 , 𝑓≿
(
𝒙𝑖, 𝒙 𝑗

)
< 0) and the “is not preferred

to” class (𝒙 𝑗 ≻ 𝒙𝑖, 𝑓≿
(
𝒙𝑖, 𝒙 𝑗

)
≥ 0). The basic idea behind Gaussian process classification is to place

a GP prior over the latent 𝑓≿ (·, ·), which is considered as a generic function in 2 · 𝑛 variables that

captures the membership of the data to the two classes. Then, similarly to Section 3.4.2, we obtain the

predictive distribution of 𝑓≿ (·, ·), namely

𝑝
(
𝑓≿

�� 𝒇≿,S,X, 𝒙̃1, 𝒙̃2; 𝜽 𝑓≿
)
,

where 𝑓≿ = 𝑓≿ (𝒙̃1, 𝒙̃2), 𝒙̃1, 𝒙̃2 ∉ X, 𝒇≿ is the vector of function evaluations of 𝑓≿ (·, ·) (analogously

to (2.36)) and 𝜽 𝑓≿ is a vector of hyper-parameters for the chosen kernel. Lastly, the surrogate model

for the probabilistic preference function in (3.21), namely ˆ̃𝜋≿𝑁 : R𝑛 × R𝑛 → [0, 1], is obtained by

“squashing” the GP predictions of 𝑓≿ (·, ·) through the sigmoid function in (3.21). More formally:

ˆ̃𝜋≿𝑁
(
𝒙̃1 ≻ 𝒙̃2; 𝜽 𝑓≿

)
= 𝑝

(
𝒙̃1 ≻ 𝒙̃2

�� 𝒇≿,S,X, 𝒙̃1, 𝒙̃2; 𝜽 𝑓≿
)

(3.22)

=

∫
1

1 + exp
{
𝑓≿
} · 𝑝

(
𝑓≿

�� 𝒇≿,S,X, 𝒙̃1, 𝒙̃2; 𝜽 𝑓≿
)
𝑑 𝑓≿.

In general, the computation of the posterior 𝑝
(
𝑓≿

�� 𝒇≿,S,X, 𝒙̃1, 𝒙̃2; 𝜽 𝑓≿
)

and of the integral in (3.22)

might be analytically intractable, hence suitable approximations are needed [153].
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3.5 Infill sampling criteria

Similarly to black-box optimization, surrogate-based methods for preference-based optimization look

for new candidate samples using proper infill sampling criteria, following the rationale described in

Section 2.6. The new point 𝒙𝑁+1 ∈ Ω is found by solving an additional global optimization problem,

such as Problem (2.48a) or Problem (2.48b). In the preference-based framework, the acquisition

functions rely on a surrogate model of the latent scoring function instead of an approximation of the

black-box cost function of the GOP (2.1). Once 𝒙𝑁+1 has been found, we ask the decision-maker to

compare it to the current best candidate, 𝒙𝒃𝒆𝒔𝒕 (𝑁), obtaining the preference:

𝑏𝑀+1 = 𝜋≿ (𝒙𝑁+1, 𝒙𝒃𝒆𝒔𝒕 (𝑁)) .

The black-box constraints at 𝒙𝑁+1 are also assessed (if any are present). Alternatively, there exist

PBO procedures whose infill sampling criteria actually return more than one candidate sample for

evaluation. For example, in [52] the authors propose three different strategies that return two points,

𝒙𝑁+1, 𝒙𝑁+2 ∈ Ω, among which the DM is asked to express a preference.

As of now, in the literature there exist very few articles that derive surrogate-based PBO procedures,

when compared to their black-box counterpart. Most of them only tackle the unconstrained preference-

based optimization case, although it is straightforward to extend the methods to the constrained

PBO framework since the black-box constraints can be handled in the same way as in constrained

BBO (see Section 2.6). On a side note, in preference-based optimization, the black-box constraints

might be handled implicitly by the decision-maker. For example, if Ξ in (2.2) includes only DM-

based constraints (Definition 3.6) and the decision-maker who assess the Ξ-feasibility is also the one

expressing the preferences, then surely a Ξ-feasible sample is preferred to any Ξ-infeasible one.

The most popular surrogate-based PBO algorithms follow the Bayesian Optimization rationale, adapted

to the case where only preference information is available. In what follows, we refer to the latter as

Preferential Bayesian Optimization (PrefBayesOpt) [52] methods.

The goal of finding the most preferred choice (of a decision-maker) among a set of alternatives has

also been tackled in the multi-armed bandit literature. In particular, the survey in [13] presents an

exhaustive review of different active learning algorithms for multi-armed dueling bandit problems.

Typically, these methods assume that the DM can only express preferences among a finite number of

options. Furthermore, the black-box constraints are not considered. In this book, we only focus on

surrogate-based methods and now review the most popular infill sampling criteria in the preference-

based setting.
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In what follows, we assume to have performed 𝑁 ∈ N sample evaluations, resulting in 1 ≤ 𝑀 ≤ ©­«
𝑁

2
ª®¬

preferences and 𝑁 black-box constraints assessments, as described by the sets X in (2.9), B in (3.9),

S in (3.10), UΞ in (2.11) and (possibly but not necessarily) CΞ in (2.12). Similarly to Section 2.6, we

use a more concise notation for the surrogates, refraining from indicating their hyper-parameters.

3.5.1 Infill sampling criteria for methods based on deterministic surrogates

GLISp [11]. GLISp [11] is an extension of the black-box optimization algorithm GLIS [10] (reviewed

in Section 2.6.1) to the unconstrained preference-based framework. The method uses the surrogate

scoring function 𝑓𝑁 (𝒙) in (2.20), which is based on radial basis functions, with the vector of weights

𝜷 𝑓 computed as in Section 3.4.1. The acquisition function 𝑎𝑁 (𝒙) of GLISp [11] is quite similar to

that of GLIS [10], in (2.58), but the IDW variance function, 𝑠𝑁 (𝒙) in (2.56b), is omitted since the

measures of 𝑓 (𝒙) are not available in the preference-based setting. Hence, 𝑎𝑁 (𝒙) of GLISp [11]

amounts to:

𝑎𝑁 (𝒙) = 𝑓𝑁 (𝒙)
Δ𝐹̂

+ 𝛿 · 𝑧𝑁 (𝒙) , (3.23)

where 𝛿 ∈ R≥0 is a (fixed) exploration-exploitation trade-off weight that is selected by the user, 𝑧𝑁 (𝒙)

is the IDW distance function in (2.56a) and Δ𝐹̂ = max𝒙𝑖∈X 𝑓𝑁 (𝒙𝑖) − min𝒙𝑖∈X 𝑓𝑁 (𝒙𝑖). The new

candidate sample 𝒙𝑁+1 is found by minimizing 𝑎𝑁 (𝒙) in (3.23), i.e. by solving Problem (2.48a).

GLISp [11] has been extended to the constrained preference-based optimization framework, giving

rise to C-GLISp [156], which we now cover.

C-GLISp [156]. In [156], the authors consider two separate decision-maker-based constraints: ac-

ceptability (which they refer to as “feasibility”) and satisfaction. In practice, this is the same as

considering two separate sets, Ξ𝐴 and Ξ𝑆 for the two criteria respectively, and defining the black-box

constraint set as Ξ = Ξ𝐴 ∩ Ξ𝑆. Here, we stay consistent to our definition of the GOP (2.1) and simply

consider a sample to be Ξ-feasible whenever it is both acceptable and satisfactory. C-GLISp [156]

follows a rationale that is similar to that of Bayesian optimization algorithms in the constrained BBO

framework: at each iteration, an approximation of the probability of Ξ-feasibility, 𝑝𝑁 (𝒙 ∈ Ξ), is

derived from the data at hand; the latter is then used to penalize some of the regions of Ω when looking

for the next candidate sample 𝒙𝑁+1. 𝑝𝑁 (𝒙 ∈ Ξ) is approximated using an interpolation method, called
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inverse distance weighting interpolation, obtaining:

𝑝𝑁 (𝒙 ∈ Ξ) = 𝑝
(
𝒙 ∈ Ξ

��UΞ,X, 𝒙
)

=

𝑁∑︁
𝑖=1

𝑣𝑖 (𝒙) · 𝑢𝑖 . (3.24)

In (3.24), 𝑢𝑖 ∈ {0, 1} is the feasibility information contained inside the set UΞ in (2.11), while

𝑣 : R𝑛 → R is defined as in (2.57). The acquisition function for C-GLISp [156] is2:

𝑎𝑁 (𝒙) = 𝑓𝑁 (𝒙)
Δ𝐹̂

+ 𝛿 · 𝑧𝑁 (𝒙) + 𝛿Ξ · [1 − 𝑝𝑁 (𝒙 ∈ Ξ)] . (3.25)

In (3.25), 𝛿, 𝛿Ξ ∈ R≥0 are the weights for the exploration and penalization terms respectively. Moreover,

𝑧𝑁 (𝒙) in (3.25) is a revisitation of the IDW exploration function in (2.56a) that is better suited for

escaping local minima of the GOP (2.1).

We point out that, as of now, to the best of our knowledge, C-GLISp [156] is the only preference-based

optimization algorithm in the literature which also handles black-box constraints (that are assumed

to be DM-based constraints). The same way of penalizing the black-box constraints violations has

also been implemented in C-GLIS, which is used for constrained black-box optimization. C-GLIS

is an extension of GLIS [10] that relies on an acquisition function defined as the sum of 𝑎𝑁 (𝒙) in

(2.58) (unconstrained BBO) and the penalty term 𝛿Ξ · [1 − 𝑝𝑁 (𝒙 ∈ Ξ)] in (3.25). Formally, there are

no articles that describe the latter method, although it is supplied in the same software package of

C-GLISp [156].

GLIS [10], GLISp [11], C-GLIS and C-GLISp [156] will be covered in greater detail in Chapter 4.

Furthermore, in Chapter 5 and Chapter 6, we will propose an extension for each method.

3.5.2 Infill sampling criteria for preferential Bayesian optimization methods

PrefBayesOpt with scoring function surrogates. The definition of acquisition functions for prefer-

ential Bayesian optimization procedures based on the surrogate scoring function described in Section

3.4.2 is straightforward. In practice, all the criteria that we have seen in Section 2.6.2 for BayesOpt,

namely the probability of improvement in (2.64), the expected improvement in (2.67) and the lower

confidence bound in (2.68), are still valid for PBO, provided that we use the mean and the variance of

the predictive distribution in (3.18) instead of those in (2.44). Moreover, the measure of the black-box

cost function at 𝒙𝒃𝒆𝒔𝒕 (𝑁), i.e. 𝑦𝑏𝑒𝑠𝑡 (𝑁), is not available in the preference-based setting and it is

2In [156], the authors approximate both the probability of acceptability and the probability of satisfiability, including two
penalization terms inside 𝑎𝑁 (𝒙) instead of only 𝑝𝑁 (𝒙 ∈ Ξ).
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replaced by:

𝑦𝑏𝑒𝑠𝑡 (𝑁) = arg min
𝒙𝑖∈X

𝑓𝑁 (𝒙𝑖)

in the aforementioned acquisition functions. One of the first surrogate-based PrefBayesOpt algorithms

is presented in [21]. The latter method uses 𝑎𝑁 (𝒙) in (2.67) to drive the search towards those samples

that are the most preferred by the human decision-maker. Notably, in [12], the authors define

the “dueling” versions of some popular infill sampling criteria for BayesOpt, which are acquisition

functions based on the difference 𝑓 (𝒙) − 𝑓 (𝒙𝒃𝒆𝒔𝒕 (𝑁)) instead of only 𝑓 (𝒙).

PrefBayesOpt with preference function surrogates. Next, we consider the preference-based opti-

mization algorithm proposed in [52], which relies on the probabilistic interpretation of the preference

function 𝜋̃≿ (·, ·) in (3.20) (Section 3.4.3). In this setting, the global minimizers of the GOP (2.1) can

be sought by maximizing the soft-Copeland score:

𝑐≿ (𝒙) = Vol (Ω)−1 ·
∫
Ω

𝜋̃≿ (𝒙, 𝒙̃) 𝑑𝒙̃, (3.26)

where Vol (Ω)−1 =
∫
Ω
𝑑𝒙̃ is a normalization constant. 𝑐≿ (𝒙) in (3.26) is the “averaged” probability of

𝒙 being preferred over all the other samples in Ω. We say that a sample 𝒙 ∈ Ω is a Condorcet winner

if its corresponding soft-Copeland score is maximal. In practice, any Condorcet winner is a solution

of the GOP (2.1).

The authors of [52] propose three different infill sampling criteria, all based on the surrogate preference

function ˆ̃𝜋≿𝑁 (·, ·) in (3.22). Here, we only review the best performing one, called Dueling-Thompson

sampling, which works as follows. At each iteration, the algorithm produces two candidate samples

(instead of just one), 𝒙𝑁+1, 𝒙𝑁+2 ∈ Ω, among which the decision-maker is asked to state his/her

preference:

1. The first point is selected by maximizing the soft-Copeland score in (3.26), using the surrogate
ˆ̃𝜋≿𝑁 (·, ·) in (3.22) instead of 𝜋̃≿ (·, ·) in (3.21), i.e.:

𝒙𝑁+1 = arg max
𝒙

∫
Ω

ˆ̃𝜋≿𝑁 (𝒙, 𝒙̃) 𝑑𝒙̃ (3.27)

s.t. 𝒙 ∈ Ω.

In particular, 𝒙𝑁+1 in (3.27) is selected through Thompson sampling [122].

2. The second sample is selected as the one for which the output of the comparison between 𝒙𝑁+1

and 𝒙𝑁+2 is the most uncertain. To do so, we maximize the variance of the sigmoid function
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𝑠
(
𝑓≿
)
= 1

1+exp{ 𝑓≿} in (3.22), keeping the first sample fixed. Formally, the resulting acquisition

function is:

𝑎𝑁+1 (𝒙) =
∫ {

𝑠
(
𝑓≿
)
− E

[
𝑠
(
𝑓≿
) ]}2 · 𝑝

(
𝑓≿

�� 𝒇≿,S,X, 𝒙𝑁+1, 𝒙; 𝜽 𝑓≿
)
𝑑 𝑓≿.

In practice, the latter integral is approximated by Monte Carlo integration.

Overall, the Dueling-Thompson sampling criterion selects a point 𝒙𝑁+1 that is likely to be a Condorcet

winner (exploitation) and a sample 𝒙𝑁+2 for which the result of the comparison with the former is the

most uncertain (exploration).

3.6 Summary of global, black-box and preference-based optimization

This last Section is devoted to summarizing what we have seen so far on global (Chapter 1), black-box

(Chapter 2) and preference-based (Chapter 3) optimization. Regardless of the framework, it all boils

down to solving the following global optimization problem:

X∗ = arg min
𝒙
𝑓 (𝒙)

s.t. 𝒙 ∈ Ω ∩ Ξ,

where Ω is a set of completely known constraints (most often, bounds on the decision variables).

Global, black-box and preference-based optimization differ on the information available on the cost

function 𝑓 (𝒙) and the constraints functions in Ξ, as well as on how the samples are evaluated

(see Definition 1.1). In global optimization, we assume that the analytical expressions of 𝑓 (𝒙)

and of all the constraints functions are available (Ξ = R𝑛). A sample evaluation in GO simply

amounts to computing the latter functions at a given point. Instead, in black-box and preference-based

optimization, we assume that information on 𝑓 (𝒙) and (possibly but not necessarily) on the constraints

in Ξ can only be acquired by running time-consuming computer simulations or performing expensive

real-world experiments. Even though we do not know a-priori the mathematical relationship between

the decision vector 𝒙 and the cost function 𝑓 (𝒙), in BBO we assume to be able to measure the latter

at any given point 𝒙𝑖 ∈ Ω, obtaining 𝑦𝑖 = 𝑓 (𝒙𝑖). The measures could also be affected by noise

although, in this book, we restrict ourselves to the noiseless case (see Assumption 2.4). Instead, in

preference-based optimization, 𝑓 (𝒙) cannot be measured in any way: the optimization must be carried

out by relying only on the preferences expressed by a human decision-maker. From an utility theory

standpoint, we have seen how finding the calibration that is most preferred by a DM is equivalent to

minimizing a latent scoring function, 𝑓 (𝒙), that ranks the samples in Ω as the decision-maker would
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(see Section 3.1 and Section 3.2). Lastly, whenever black-box constraints are present (Ξ ⊂ R𝑛), both

in BBO and in PBO we assume that, given a sample 𝒙𝑖 ∈ Ω, we can either measure the constraints

functions 𝒈Ξ (·) in (2.2) at 𝒙𝑖 or, at least, assess if the point is Ξ-feasible or not through the Ξ-feasibility

function 𝑢Ξ (·) in (2.4). In preference-based optimization, we have also highlighted a particular type

of black-box constraints, i.e. decision-maker-based constraints (see Definition 3.6), which can be seen

as asking the DM a “yes/no question” (such as “is 𝒙𝑖 acceptable?”).

In summary, we can view black-box optimization as a specific instance of global optimization where the

cost function and (possibly but not necessarily) some of the constraints functions are unknown (black-

boxes) but can be measured in some way. Similarly, preference-based optimization is a particular

case of BBO wherein 𝑓 (𝒙) is a black-box whose values are inaccessible. Instead, information on

the scoring function comes only in the form of comparisons between samples made by the human

decision-maker.

The exploration-exploitation dilemma is a recurrent topic in global, black-box and preference-based

optimization. Exploiting means to take advantage of the information acquired on the global opti-

mization problem at hand to drive the search towards its global solution(s). Instead, exploring simply

means to probe the feasible region Ω ∩ Ξ in the hope of finding more promising zones that have

yet to be examined. In global optimization, we have seen that there are several ways of tackling the

exploration-exploitation dilemma (cf. the taxonomy in Section 1.2). In particular, for what concerns

black-box and preference-based optimization, the de facto standard procedures are surrogate-based

methods (or response surface techniques, see Section 2.2), whose main objective is to minimize the

number of sample evaluations required to find a “sufficiently optimal” solution (at the cost of higher

computational times). In surrogate-based methods, the exploration-exploitation dilemma is addressed

by infill sampling criteria, of which there are plenty (see Section 2.6 and Section 3.5).

Finally, we conclude this Chapter with Figure 9, which sums up the three optimization frameworks

and reports all the algorithms that we have reviewed so far in this book. Moreover, we also include the

procedures that we will propose in Chapter 5 and Chapter 6, highlighting to which framework they

belong.
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Chapter 4. The GLIS, GLISp, C-GLIS and C-GLISp algorithms

This Chapter is devoted to reviewing four recent algorithms: GLobal minimum using Inverse distance

weighting and Surrogate radial basis functions (GLIS [10]) for unconstrained BBO, GLISp [11] for

unconstrained PBO, C-GLIS for constrained BBO, and C-GLISp [156] for constrained PBO. All

methods use the radial basis function surrogate model 𝑓𝑁 (𝒙) in (2.20) to approximate either the black-

box cost function or the latent scoring function of a human decision-maker. Compared to Bayesian

and preferential Bayesian optimization methods, GLIS [10], GLISp [11], C-GLIS and C-GLISp [156]

are more computationally efficient and show similar and, in some cases, better performances. In

the original articles, the matter of convergence to the global minimizer(s) of the global optimization

problem in (2.1) is not addressed. In Chapter 5, we present extensions of GLIS [10] and GLISp [11]

that are globally convergent. We also revisit C-GLIS and C-GLISp [156] in Chapter 6, proposing a

different surrogate for the black-box constraints functions and alternative infill sampling criteria.

The remainder of this Chapter is organized as follows. Section 4.1 gives a detailed review of the

surrogate models used by GLIS [10], GLISp [11], C-GLIS and C-GLISp [156]. Then, Section 4.2

addresses the matter of exploration, which is particularly relevant for the infill sampling criteria of the

four procedures, described in Section 4.3. Section 4.4 is devoted to examining additional algorithmic

aspects, such as the rescaling of the decision variables and the recalibration of the shape parameter of

𝑓𝑁 (𝒙) in (2.20). Lastly, Section 4.5 provides the pseudocode for GLIS [10], GLISp [11], C-GLIS and

C-GLISp [156], while Section 4.6 reports a brief summary of this Chapter.

4.1 Surrogate models

In this Section, we review the surrogate models used by algorithms GLIS [10], GLISp [11], C-GLIS

and C-GLISp [156], which drive the search towards the global minimizer(s) of the GOP (2.1). The

black-box cost function and the latent scoring function of the human-decision maker are approximated

by the radial basis function expansion model in (2.20), which we report here:

𝑓𝑁

(
𝒙; 𝜷 𝑓 , 𝜖 𝑓

)
= 𝝓 𝑓

(
𝒙; 𝜖 𝑓

)⊤ · 𝜷 𝑓 . (4.1)

𝝓 𝑓

(
𝒙; 𝜖 𝑓

)
∈ R𝑁 in (4.1) is defined as in (2.21), i.e.:

𝝓 𝑓

(
𝒙; 𝜖 𝑓

)
=

[
𝜑 𝑓

(
𝜖 𝑓 · ∥𝒙 − 𝒙1∥2

)
. . . 𝜑 𝑓

(
𝜖 𝑓 · ∥𝒙 − 𝒙𝑁 ∥2

) ]⊤
.
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Recall also the symmetric matrix in (2.26), Φ 𝑓

(
𝜖 𝑓

)
∈ R𝑁×𝑁 , which originates from the samples in X

(2.9):

Φ 𝑓

(
𝜖 𝑓

)
=


𝝓 𝑓

(
𝒙1; 𝜖 𝑓

)⊤
...

𝝓 𝑓

(
𝒙𝑁 ; 𝜖 𝑓

)⊤


; (4.2)

its (𝑖, 𝑗)-th entry is Φ
(𝑖, 𝑗)
𝑓

(
𝜖 𝑓

)
= 𝜑 𝑓

(
𝜖 𝑓 ·



𝒙𝑖 − 𝒙 𝑗




2

)
. Matrix Φ 𝑓

(
𝜖 𝑓

)
plays a key role in the com-

putation of the weights 𝜷 𝑓 ∈ R𝑁 in (4.1), as we will review shortly in Section 4.1.1 and Section

4.1.2.

For what concerns C-GLIS and C-GLISp [156], the authors propose to use a surrogate model for the

black-box constraints functions that is based on inverse distance weighting functions, as we will see

in Section 4.1.3.

4.1.1 Surrogate model for the black-box cost function

In the context of black-box optimization, as we have seen in Section 2.5, the vector of weights 𝜷 𝑓 in

(4.1) is obtained by enforcing the interpolation conditions:

Φ 𝑓

(
𝜖 𝑓

)
· 𝜷 𝑓 = 𝒚, (4.3)

where 𝒚 ∈ R𝑁 are the measures of the cost function that are contained in Y (2.10). In practice, the

linear system in (4.3) admits a unique solution if and only if matrix Φ 𝑓

(
𝜖 𝑓

)
in (4.2) is non-singular.

Some of the radial basis functions reported in Definition 2.6 guarantee that Φ 𝑓

(
𝜖 𝑓

)
is positive definite

(see Theorem 2.1 and Proposition 2.2). However, as claimed in [10], there are unavoidable numerical

issues when the distances between the samples in X (2.9) get close to zero, which can easily happen

as the surrogate-based optimization algorithm approaches the global minimizer(s) of the GOP (2.1).

Furthermore, the shape parameter 𝜖 𝑓 as well as the number and the distribution of the samples in X

affect the condition number of Φ 𝑓

(
𝜖 𝑓

)
[38, 119]. To compensate for these shortcomings, in [10] the

author proposes to solve the linear system in (4.3) using a low-rank approximation of Φ 𝑓

(
𝜖 𝑓

)
in (4.2)

as follows:

1. Calculate the Singular Value Decomposition (SVD) [51] of Φ 𝑓

(
𝜖 𝑓

)
,

Φ 𝑓

(
𝜖 𝑓

)
= 𝑈 · Σ · 𝑉⊤,

where𝑈, Σ, 𝑉 ∈ R𝑁×𝑁 . Σ is the diagonal matrix containing the singular values,

Σ = diag {𝜎1, . . . , 𝜎𝑁 } ,
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𝜎1 ≥ 𝜎2 ≥ . . . ≥ 𝜎𝑁 ≥ 0, while 𝑈 and 𝑉 are two orthogonal matrices whose columns are the

singular vectors;

2. Choose a threshold 𝜖𝑆𝑉𝐷 ∈ R>0 and take a low-rank approximation of Φ 𝑓

(
𝜖 𝑓

)
by:

a) Removing all singular values lower than 𝜖𝑆𝑉𝐷 , obtaining the matrix:

Σ̂ = diag
{
𝜎1, . . . , 𝜎𝑁̂

}
∈ R𝑁̂×𝑁̂ ,

where 𝑁̂ ≤ 𝑁 and 𝜎1 ≥ . . . ≥ 𝜎𝑁̂ ≥ 𝜖𝑆𝑉𝐷 ;

b) Extracting the first 𝑁̂ columns of𝑈 and 𝑉 , obtaining the matrices 𝑈̂, 𝑉̂ ∈ R𝑁×𝑁̂ ;

c) The low-rank approximation Φ̂ 𝑓

(
𝜖 𝑓

)
∈ R𝑁×𝑁 of Φ 𝑓

(
𝜖 𝑓

)
in (4.2) is equal to:

Φ̂ 𝑓

(
𝜖 𝑓

)
= 𝑈̂ · Σ̂ · 𝑉̂⊤.

3. Finally, solve the linear system in (4.3) by taking advantage of the low-rank approximation

Φ̂ 𝑓

(
𝜖 𝑓

)
as follows:

𝜷 𝑓 = Φ 𝑓

(
𝜖 𝑓

)−1 · 𝒚

=
(
𝑈 · Σ · 𝑉⊤)−1 · 𝒚

=
(
𝑉⊤)−1 · Σ−1 ·𝑈−1 · 𝒚

𝑈 and 𝑉 are orthogonal matrices, i.e. 𝑈−1 = 𝑈⊤ and 𝑉−1 = 𝑉⊤

= 𝑉 · Σ−1 ·𝑈⊤ · 𝒚

Substitute the low-rank approximation of Φ 𝑓

(
𝜖 𝑓

)
≈ 𝑉̂ · Σ̂−1 · 𝑈̂⊤ · 𝒚. (4.4)

Note that, by construction, Σ̂ is always invertible.

When solving the linear system in (4.3) through a low-rank approximation of Φ 𝑓

(
𝜖 𝑓

)
in (4.2), an issue

might arise: 𝑓𝑁
(
𝒙; 𝜷 𝑓 , 𝜖 𝑓

)
in (4.1) might not interpolate all the points in

D = {(𝒙𝑖, 𝑦𝑖) : 𝒙𝑖 ∈ X, 𝑦𝑖 ∈ Y, 𝑖 = 1, . . . , 𝑁} .

Moreover, the shape parameter 𝜖 𝑓 , as well as the choice of the radial function 𝜑 𝑓 (·), influence the

quality of the approximation provided by the surrogate model and the successful interpolation of the

points in D. However, by taking a low rank approximation of (4.2), we ensure the existence of a unique

𝜷 𝑓 and avoid numerical problems linked to a possibly high condition number for Φ 𝑓

(
𝜖 𝑓

)
. Also, as
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noted in [10], this approach can be particularly useful when the measures of 𝑓 (𝒙) are affected by

noise.

The following Example shows that computing 𝜷 𝑓 as in (4.4) can lead to a non-interpolating 𝑓𝑁
(
𝒙; 𝜷 𝑓 , 𝜖 𝑓

)
in (4.1).

Example 4.1: Interpolating and non-interpolating surrogates

Consider the gramacy and lee [53] benchmark function defined as:

𝑓 (𝑥) =
sin

(
10 · 𝜋 · 𝑥 (1)

)
2 · 𝑥 (1)

+
(
𝑥 (1) − 1

)4
.

We generate a set X in (2.9) of 𝑁 = 20 samples, using a latin hypercube design (see Section

2.4), and measure 𝑓 (𝑥) at those points. Then, we fit four surrogates 𝑓𝑁
(
𝑥; 𝜷 𝑓 , 𝜖 𝑓

)
following

the aforementioned approach, with 𝜖𝑆𝑉𝐷 = 10−6 and with the following hyper-parameters:

1. 𝜑 𝑓 (·) inverse quadratic and 𝜖 𝑓 = 1,

2. 𝜑 𝑓 (·) inverse quadratic and 𝜖 𝑓 = 10,

3. 𝜑 𝑓 (·) thin plate spline and 𝜖 𝑓 = 1,

4. 𝜑 𝑓 (·) linear and 𝜖 𝑓 = 1.

Figure 10 compares 𝑓 (𝑥) with 𝑓𝑁

(
𝑥; 𝜷 𝑓 , 𝜖 𝑓

)
in the four cases. Notice how the latter three

models interpolate all the points in D whereas the first one does not.

We conclude this Section with another Example that shows the performances of the surrogate model

in (4.1), with 𝜷 𝑓 computed as in (4.4), when used to approximate two-dimensional cost functions.

Example 4.2: Examples of two-dimensional surrogates

Consider the camel six humps [62] and the adjiman [62] benchmark functions, defined

respectively as:

𝑓 (𝒙) =
4 − 2.1 ·

(
𝑥 (1)

)2
+

(
𝑥 (1)

)4

3

 ·
(
𝑥 (1)

)2
+ 𝑥 (1) · 𝑥 (2)+

+
[
4 ·

(
𝑥 (2)

)2
− 4

]
·
(
𝑥 (2)

)2
and

𝑓 (𝒙) = cos
(
𝑥 (1)

)
· sin

(
𝑥 (2)

)
− 𝑥 (1)(

𝑥 (2)
)2 + 1

.

We generate a set X in (2.9) of 𝑁 = 100 samples, using a latin hypercube design (see Section
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Figure 10: Comparison between the real function 𝑓 (𝑥) (black line), which is the one-dimensional gramacy
and lee [53] function, and the surrogate model 𝑓𝑁

(
𝑥; 𝜷 𝑓 , 𝜖 𝑓

)
(dashed blue line), estimated as described

in Example 4.1.

2.4), and measure 𝑓 (𝒙) at those points. Then, for each 𝑓 (𝒙), we fit a surrogate as described in

this Section, with 𝜖𝑆𝑉𝐷 = 10−6, 𝜑 𝑓 (·) inverse quadratic and 𝜖 𝑓 = 1. Figure 11 compares 𝑓 (𝒙)

with 𝑓𝑁

(
𝑥; 𝜷 𝑓 , 𝜖 𝑓

)
and reports the Root Mean Square Error (RMSE),

𝑅𝑀𝑆𝐸 =

√√√
1
𝑁

·
𝑁∑︁
𝑖=1

[
𝑓𝑁

(
𝒙𝑖; 𝜷 𝑓 , 𝜖 𝑓

)
− 𝑦𝑖

]2
,

obtained by the approximations. Notice that the RMSEs are not exactly zero, which means that

the surrogates do not interpolate all the points in D. However, in both cases, 𝑓𝑁
(
𝑥; 𝜷 𝑓 , 𝜖 𝑓

)
capture the shape of 𝑓 (𝒙) quite well.

4.1.2 Surrogate model for the preference function and the scoring function

In the preference-based optimization framework, there are no interpolation conditions to be enforced.

Instead, in GLISp [11], the weight vector 𝜷 𝑓 in (4.1) is selected so that the surrogate preference
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camel six humps [62] adjiman [62]
𝑅𝑀𝑆𝐸 12.2 · 10−5 1.71 · 10−5

Figure 11: Comparison between the real function 𝑓 (𝒙) (continuous line), respectively the camel six
humps [62] function on the left and the adjiman [62] function on the right, and the surrogate model
𝑓𝑁

(
𝒙; 𝜷 𝑓 , 𝜖 𝑓

)
(dashed line), estimated as described in Example 4.2. We also report the RMSEs of both

approximations.

function 𝜋̂≿𝑁 (𝒙𝑖, 𝒙 𝑗 ; 𝜷 𝑓 , 𝜖 𝑓 ) in (3.11), namely:

𝜋̂≿𝑁 (𝒙𝑖, 𝒙 𝑗 ; 𝜷 𝑓 , 𝜖 𝑓 ) =


−1 if 𝑓𝑁

(
𝒙𝑖; 𝜷 𝑓 , 𝜖 𝑓

)
− 𝑓𝑁

(
𝒙 𝑗 ; 𝜷 𝑓 , 𝜖 𝑓

)
≤ −𝜎𝜋

0 if
��� 𝑓𝑁 (

𝒙𝑖; 𝜷 𝑓 , 𝜖 𝑓
)
− 𝑓𝑁

(
𝒙 𝑗 ; 𝜷 𝑓 , 𝜖 𝑓

)��� ≤ 𝜎𝜋
1 if 𝑓𝑁

(
𝒙𝑖; 𝜷 𝑓 , 𝜖 𝑓

)
− 𝑓𝑁

(
𝒙 𝑗 ; 𝜷 𝑓 , 𝜖 𝑓

)
≥ 𝜎𝜋

, (4.5)

correctly describes the preferences inside the sets B (3.9) and S (3.10), resulting in the following

optimization problem (see Section 3.4.1):

arg min
𝜺 𝑓 ,𝜷 𝑓

𝜆 𝑓

2
· 𝜷⊤

𝑓 · 𝜷 𝑓 + 𝒓⊤𝑓 · 𝜺 𝑓 (4.6)

s.t. 𝑓𝑁

(
𝒙ℓ(ℎ); 𝜷 𝑓 , 𝜖 𝑓

)
− 𝑓𝑁

(
𝒙𝜅(ℎ); 𝜷 𝑓 , 𝜖 𝑓

)
≤ −𝜎𝜋 + 𝜀(ℎ)𝑓 ∀ℎ : 𝑏ℎ = −1��� 𝑓𝑁 (

𝒙ℓ(ℎ); 𝜷 𝑓 , 𝜖 𝑓
)
− 𝑓𝑁

(
𝒙𝜅(ℎ); 𝜷 𝑓 , 𝜖 𝑓

)��� ≤ 𝜎𝜋 + 𝜀(ℎ)𝑓 ∀ℎ : 𝑏ℎ = 0

𝑓𝑁

(
𝒙ℓ(ℎ); 𝜷 𝑓 , 𝜖 𝑓

)
− 𝑓𝑁

(
𝒙𝜅(ℎ); 𝜷 𝑓 , 𝜖 𝑓

)
≥ 𝜎𝜋 − 𝜀(ℎ)𝑓 ∀ℎ : 𝑏ℎ = 1

𝜀
(ℎ)
𝑓

≥ 0

ℎ = 1, . . . , 𝑀.

Recall that the goal of preference-based optimization is not to approximate the scoring function of

the human decision-maker, 𝑓 (𝒙), in the best way possible but to converge to a global minimizer of

the GOP (2.1) with the least amount of queries to the DM. Therefore, the preferences related to the

best-found candidate at a certain iteration of the PBO procedure, namely 𝒙𝒃𝒆𝒔𝒕 (𝑁), are more relevant

than the others, making us interested in satisfying them without any slack. In order to do so, in GLISp
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[11], vector 𝒓 𝑓 is defined as:

𝑟
(ℎ)
𝑓

= 1, ∀ℎ : (ℓ(ℎ), 𝜅(ℎ)) ∈ S, 𝒙ℓ(ℎ) ≠ 𝒙𝒃𝒆𝒔𝒕 (𝑁) and 𝒙𝜅(ℎ) ≠ 𝒙𝒃𝒆𝒔𝒕 (𝑁), (4.7a)

𝑟
(ℎ)
𝑓

= 10, ∀ℎ : (ℓ(ℎ), 𝜅(ℎ)) ∈ S, 𝒙ℓ(ℎ) = 𝒙𝒃𝒆𝒔𝒕 (𝑁) or 𝒙𝜅(ℎ) = 𝒙𝒃𝒆𝒔𝒕 (𝑁), (4.7b)

penalizing more the slacks associated to the preferences expressed on the current best candidate.

Now, we show that Problem (4.6) is a Quadratic Program (QP) for 𝜆 𝑓 ∈ R>0 and a Linear Program

(LP) for 𝜆 𝑓 = 0. Consider the terms:

𝑓𝑁

(
𝒙ℓ(ℎ); 𝜷 𝑓 , 𝜖 𝑓

)
− 𝑓𝑁

(
𝒙𝜅(ℎ); 𝜷 𝑓 , 𝜖 𝑓

)
,

that are on the left side of the inequalities that concern the preferences in Problem (4.6). By substituting

(4.1), we have that:

𝑓𝑁

(
𝒙ℓ(ℎ); 𝜷 𝑓 , 𝜖 𝑓

)
− 𝑓𝑁

(
𝒙𝜅(ℎ); 𝜷 𝑓 , 𝜖 𝑓

)
= 𝝓 𝑓

(
𝒙ℓ(ℎ); 𝜖 𝑓

)⊤ · 𝜷 𝑓 − 𝝓 𝑓

(
𝒙𝜅(ℎ); 𝜖 𝑓

)⊤ · 𝜷 𝑓

=
[
𝝓 𝑓

(
𝒙ℓ(ℎ); 𝜖 𝑓

)
− 𝝓 𝑓

(
𝒙𝜅(ℎ); 𝜖 𝑓

) ]⊤ · 𝜷 𝑓 . (4.8)

Let us consider the preferences belonging to a certain category, for example all the preferences

in B (3.9) which are such that 𝑏ℎ = −1. Denote as 𝑀−1 ∈ N ∪ {0} , 𝑀−1 ≤ 𝑀, 𝑀 = |B|, the

number of preferences expressed by the DM that pertain to that category. We define the matrix

Φ 𝑓−1

(
𝜖 𝑓

)
∈ R𝑀−1×𝑁 as:

Φ 𝑓−1

(
𝜖 𝑓

)
=


{
𝝓 𝑓

(
𝒙ℓ(1); 𝜖 𝑓

)
− 𝝓 𝑓

(
𝒙𝜅(1); 𝜖 𝑓

)}⊤
...{

𝝓 𝑓

(
𝒙ℓ(𝑀−1); 𝜖 𝑓

)
− 𝝓 𝑓

(
𝒙𝜅(𝑀−1); 𝜖 𝑓

)}⊤

, (4.9)

whose (ℎ, 𝑗)-th entry is:

Φ
(ℎ, 𝑗)
𝑓−1

(
𝜖 𝑓

)
= 𝜑 𝑓

(
𝜖 𝑓 ·



𝒙ℓ(ℎ) − 𝒙 𝑗




2

)
− 𝜑 𝑓

(
𝜖 𝑓 ·



𝒙𝜅(ℎ) − 𝒙 𝑗




2

)
.

In (4.9), for the sake of simplicity and without loss of generality, we have assumed that 𝑏ℎ = −1

for ℎ = 1, . . . , 𝑀−1 in B (3.9), although it need not be the case. In practice, matrix Φ 𝑓−1

(
𝜖 𝑓

)
is

built by subtracting the rows of matrix Φ 𝑓

(
𝜖 𝑓

)
in (4.2) indexed by those elements of S (3.10) that

are associated to the preferences in B (3.9) which are such that 𝑏ℎ = −1. We can define matrices

Φ 𝑓0

(
𝜖 𝑓

)
∈ R𝑀0×𝑁 and Φ 𝑓1

(
𝜖 𝑓

)
∈ R𝑀1×𝑁 , 𝑀0, 𝑀1 ∈ N ∪ {0}, associated to the other two categories

of preferences, in the same fashion. Similarly, we can split the vector of slack variables 𝜺 𝑓 ∈ R𝑀≥0 into

three separate vectors, 𝜺 𝑓−1 ∈ R
𝑀−1
≥0 , 𝜺 𝑓0 ∈ R

𝑀0
≥0 and 𝜺 𝑓1 ∈ R

𝑀1
≥0 , which correspond to the different types
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of preferences. Now, using (4.8) and (4.9), we can re-write Problem (4.6) as:

arg min
𝜺 𝑓 ,𝜷 𝑓

𝜆 𝑓

2
· 𝜷⊤

𝑓 · 𝜷 𝑓 + 𝒓⊤𝑓 · 𝜺 𝑓

s.t. Φ 𝑓−1

(
𝜖 𝑓

)
· 𝜷 𝑓 − 𝜺 𝑓−1 ≤ −𝜎𝜋 · 1𝑀−1

Φ 𝑓0

(
𝜖 𝑓

)
· 𝜷 𝑓 − 𝜺 𝑓0 ≤ 𝜎𝜋 · 1𝑀0

Φ 𝑓0

(
𝜖 𝑓

)
· 𝜷 𝑓 + 𝜺 𝑓0 ≥ −𝜎𝜋 · 1𝑀0

Φ 𝑓1

(
𝜖 𝑓

)
· 𝜷 𝑓 + 𝜺 𝑓1 ≥ 𝜎𝜋 · 1𝑀1

𝜺 𝑓 ≥ 0𝑀 .

Finally, by considering the augmented vector 𝝃 𝑓 =
[
𝜷⊤
𝑓 𝜺⊤

𝑓

]⊤
∈ R(𝑁+𝑀) , we can formulate Problem

(4.6) in standard QP form:

arg min
𝝃 𝑓

1
2
· 𝝃⊤𝑓 · 𝐻𝑄𝑃 · 𝝃 𝑓 + 𝒓𝑸𝑷

⊤ · 𝝃 𝑓 (4.10)

s.t. 𝐴𝑄𝑃 · 𝝃 𝑓 ≤ 𝒃𝑸𝑷,

where:

𝐻𝑄𝑃 =


𝜆 𝑓 · 𝐼𝑁×𝑁 0𝑁×𝑀

0𝑀×𝑁 0𝑀×𝑀

 ∈ R(𝑁+𝑀)×(𝑁+𝑀) ,

𝒓𝑸𝑷 =


0𝑁
𝒓 𝑓

 ∈ R(𝑁+𝑀) ,

𝐴𝑄𝑃 =



Φ 𝑓−1

(
𝜖 𝑓

)
Φ 𝑓0

(
𝜖 𝑓

)
−Φ 𝑓0

(
𝜖 𝑓

)
−Φ 𝑓1

(
𝜖 𝑓

)
−𝐼𝑀−1×𝑀−1 0𝑀−1×𝑀0 0𝑀−1×𝑀1

0𝑀0×𝑀−1 −𝐼𝑀0×𝑀0 0𝑀0×𝑀1

0𝑀0×𝑀−1 −𝐼𝑀0×𝑀0 0𝑀0×𝑀1

0𝑀1×𝑀−1 0𝑀1×𝑀0 −𝐼𝑀1×𝑀1

0𝑀×𝑁 −𝐼𝑀×𝑀


∈ R(2·𝑀+𝑀0)×(𝑁+𝑀) ,

𝒃𝑸𝑷 =



−𝜎𝜋 · 1𝑀−1

𝜎𝜋 · 1𝑀0

𝜎𝜋 · 1𝑀0

−𝜎𝜋 · 1𝑀1

0𝑀


∈ R(2·𝑀+𝑀0) .

We can easily prove the following Proposition concerning Problem (4.10).

Proposition 4.1. Problem (4.10) is convex for any 𝜆 𝑓 ∈ R≥0.
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Proof. In the case 𝜆 𝑓 = 0, Problem (4.10) is a LP and thus convex by construction [18]. Instead, for

𝜆 𝑓 ∈ R>0, Problem (4.10) is a QP, hence we need to check if 𝐻𝑄𝑃 is positive semidefinite [18]. In

this case, 𝐻𝑄𝑃 is a diagonal matrix,

𝐻𝑄𝑃 = diag
{
𝜆 𝑓 , . . . , 𝜆 𝑓 , 0, . . . , 0

}
,

with 𝑁 positive eigenvalues and 𝑀 zero-valued eigenvalues. Therefore, 𝐻𝑄𝑃 is positive semidefinite

[51] and Problem (4.10) is convex. □

To conclude this Section, we show two examples of surrogate models in (4.1) with 𝜷 𝑓 computed

by solving Problem (4.10).
Example 4.3: Preference ordering

Consider the following preference ordering:

𝑥3 ≻ 𝑥1 ≻ 𝑥2,

which results in a scoring function such that:

𝑓 (𝑥3) < 𝑓 (𝑥1) < 𝑓 (𝑥2) .

Suppose that:

X = {𝑥1 = 1, 𝑥2 = 4, 𝑥3 = 3}

and consider the set of preferences and the mapping set originated from the previous ordering:

B = {𝑏1 = −1, 𝑏2 = 1, 𝑏3 = 1} ,

S = {(1, 2) , (2, 3) , (1, 3)} .

We estimate four surrogate models with:

1. 𝜑 𝑓 (·) inverse quadratic and 𝜖 𝑓 = 0.1,

2. 𝜑 𝑓 (·) inverse quadratic and 𝜖 𝑓 = 1,

3. 𝜑 𝑓 (·) inverse quadratic and 𝜖 𝑓 = 10,

4. 𝜑 𝑓 (·) linear and 𝜖 𝑓 = 1.

The hyper-parameters for Problem (4.6) are: 𝜆 𝑓 = 10−6, 𝜎𝜋 = 1 and 𝒓 𝑓 = 13. Figure 12 depicts

the obtained surrogate models. Notice how all 𝑓𝑁
(
𝑥; 𝜷 𝑓 , 𝜖 𝑓

)
capture the order imposed by the

preferences. Furthermore, increasing the value of the shape parameter 𝜖 𝑓 results in surrogates

which show “more local” behaviors (cf. Figure 6).
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Figure 12: Surrogate models obtained as described in Example 4.3. For ease of comparison, all the
surrogates have been shifted so that their minimum values are zero.

Example 4.4: Examples of two-dimensional surrogates

Consider the camel six humps [62] and the adjiman [62] benchmark functions defined as in

Example 4.2. We use the same sets of samples X (2.9) generated in Example 4.2 to estimate the

surrogate model in (4.1) but in the preference-based setting. To that end, we express 𝑀 = 𝑁 −1

preferences following Algorithm 7, which exploits the transitive property of preference relations

(see Section 3.1) to keep track of the best candidate. Then, we compute the vector of weights

𝜷 𝑓 by solving Problem (4.10) and with hyper-parameters: 𝜑 𝑓 (·) inverse quadratic, 𝜖 𝑓 = 1,

𝜆 𝑓 = 10−6, 𝜎𝜋 = 10−2 and 𝒓 𝑓 = 1𝑀 . Figure 13 compares the obtained surrogate models with

the real scoring functions. Clearly, 𝑓𝑁
(
𝒙; 𝜷 𝑓 , 𝜖 𝑓

)
in the PBO setting are not as accurate as their

BBO counterparts (cf. Figure 11). However, at least roughly, they capture the most promising

regions of 𝑓 (𝒙).

4.1.3 Surrogate model for the black-box constraints functions

C-GLIS and C-GLISp [156] rely on inverse distance weighting interpolation [10] to estimate the

probability of a sample being Ξ-feasible. We start by defining what inverse distance weighting

functions are.
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Algorithm 7: Initial queries for preference-based optimization
Input: (i) Initial set of samples X, |X| = 𝑁𝑖𝑛𝑖𝑡 , 𝑁𝑖𝑛𝑖𝑡 ≥ 2, in (2.9).
Output: (i) Set of preferences B in (3.9); (ii) Mapping set S in (3.10); (iii) Initial best sample 𝒙𝒃𝒆𝒔𝒕 (𝑁𝑖𝑛𝑖𝑡 ).
1: Initialize the best candidate as 𝒙𝒃𝒆𝒔𝒕 (1) = 𝒙1, 𝑖𝑏𝑒𝑠𝑡 = 1
2: Initialize the sets B and S: B = ∅ and S = ∅
3: for 𝑖 = 2 to |X| = 𝑁𝑖𝑛𝑖𝑡 do
4: Let the human decision-maker express a preference between 𝒙𝒃𝒆𝒔𝒕 (𝑖 − 1) and 𝒙𝑖 , obtaining 𝑏 =

𝜋≿ (𝒙𝒃𝒆𝒔𝒕 (𝑖 − 1) , 𝒙𝑖)
5: Update the sets B and S: B = B ∪ {𝑏} and S = S ∪ {(𝑖𝑏𝑒𝑠𝑡 , 𝑖)}
6: if 𝑏 = 1 (i.e. 𝒙𝑖 ≻ 𝒙𝒃𝒆𝒔𝒕 (𝑖 − 1)) then
7: Update the best candidate, 𝒙𝒃𝒆𝒔𝒕 (𝑖) = 𝒙𝑖 and 𝑖𝑏𝑒𝑠𝑡 = 𝑖
8: else
9: Keep the best candidate unaltered, 𝒙𝒃𝒆𝒔𝒕 (𝑖) = 𝒙𝒃𝒆𝒔𝒕 (𝑖 − 1)

Figure 13: Comparison between the real function 𝑓 (𝒙) (continuous line), respectively the camel six
humps [62] function on the left and the adjiman [62] function on the right, and the surrogate model
𝑓𝑁

(
𝒙; 𝜷 𝑓 , 𝜖 𝑓

)
(dashed line), estimated as described in Example 4.4. The surrogate models and the

scoring functions are made comparable by rescaling them to the [0, 1] range.

Definition 4.1: Inverse distance weighting functions [132]. Given a sample 𝒙𝑖 ∈ X in (2.9),

we define its corresponding Inverse Distance Weighting (IDW) function 𝑤𝑖 : R𝑛 \ {𝒙𝑖} → R>0

as:

𝑤𝑖 (𝒙) =
1

∥𝒙 − 𝒙𝑖∥2
2
. (4.11)

We also define an alternative weighting function as [69]:

𝑤̃𝑖 (𝒙) =
exp

{
− ∥𝒙 − 𝒙𝑖∥2

2
}

∥𝒙 − 𝒙𝑖∥2
2

. (4.12)

Compared to 𝑤𝑖 (𝒙) in (4.11), 𝑤̃𝑖 (𝒙) in (4.12) tends to zero faster for ∥𝒙 − 𝒙𝑖∥2
2 → ∞, see Figure 14.

We can easily prove the following Proposition concerning inverse distance weighting functions.

Proposition 4.2: Differentiability of IDW functions. Both 𝑤𝑖 (𝒙) in (4.11) and 𝑤̃𝑖 (𝒙) in (4.12)

are differentiable on R𝑛 \ {𝒙𝑖}.
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Figure 14: One-dimensional comparison between the two different definitions of the IDW functions,
namely 𝑤𝑖 (𝒙) in (4.11) (blue line) and 𝑤̃𝑖 (𝒙) in (4.12) (dashed red line), defined starting from a sample
𝑥1 = 1.5.

Proof. We know that the squared Euclidean norm ∥𝒙 − 𝒙𝑖∥2
2 is differentiable ∀𝒙 ∈ R𝑛 (see Example

2.4). Furthermore, we have that:

∥𝒙 − 𝒙𝑖∥2
2 ≠ 0, ∀𝒙 ∈ R𝑛 \ {𝒙𝑖} .

Therefore, due to the reciprocal rule, 𝑤𝑖 (𝒙) in (4.11) is differentiable ∀𝒙 ∈ R𝑛 \ {𝒙𝑖}. We can reach

the same conclusion for 𝑤̃𝑖 (𝒙) in (4.12), since it is the composition of functions that are differentiable

∀𝒙 ∈ R𝑛 \ {𝒙𝑖}. □

Now, consider a generic multivariable function ℎ : R𝑛 → R and suppose that we measure its values at

the samples in X (2.9), obtaining:

H = {ℎ𝑖 : ℎ𝑖 = ℎ (𝒙𝑖) , 𝒙𝑖 ∈ X} . (4.13)

We define the inverse distance weighting interpolation function as follows.

Definition 4.2: Inverse distance weighting interpolation function [69]. Consider the set of

samples X in (2.9) and define the weighting functions 𝑣𝑖 : R𝑛 → R as:

𝑣𝑖 (𝒙) =


1 if 𝒙 = 𝒙𝑖

0 if 𝒙 = 𝒙 𝑗 , 𝑗 ≠ 𝑖

𝑤̃𝑖 (𝒙)∑𝑁
𝑗=1 𝑤̃ 𝑗 (𝒙)

otherwise

. (4.14)
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The Inverse Distance Weighting Interpolation (IDWI) function, ℎ̂𝑁 : R𝑛 → R, is defined as the

linear combination of the 𝑣𝑖 (𝒙)’s in (4.14) with the measures of ℎ (𝒙) in (4.13), namely:

ℎ̂𝑁 (𝒙) =
𝑁∑︁
𝑖=1

𝑣𝑖 (𝒙) · ℎ𝑖 . (4.15)

The next Proposition highlights the properties of the IDWI function in (4.15).

Proposition 4.3: Properties of the IDWI function [10]. The inverse distance weighting inter-

polation function ℎ̂𝑁 (𝒙) in (4.15) exhibits the following properties:

1. ℎ̂𝑁 (𝒙𝑖) = ℎ𝑖,∀𝑖 = 1, . . . , 𝑁 (interpolation),

2. minℎ𝑖∈H ℎ𝑖 ≤ ℎ̂𝑁 (𝒙) ≤ maxℎ𝑖∈H ℎ𝑖,∀𝒙 ∈ R𝑛 (bounded range),

3. ℎ̂𝑁 (𝒙) is differentiable everywhere and ∇𝒙 ℎ̂𝑁 (𝒙𝑖) = 0𝑛,∀𝑖 = 1, . . . , 𝑁 .

Now, consider the Ξ-feasibility information contained inside the set UΞ in (2.11). Proposition 4.3

highlights how the IDWI function in (4.15) can be used as a surrogate for the probability ofΞ-feasibility

as follows:

𝑝𝑁 (𝒙 ∈ Ξ) = 𝑝
(
𝒙 ∈ Ξ

��UΞ,X, 𝒙
)

=

𝑁∑︁
𝑖=1

𝑣𝑖 (𝒙) · 𝑢𝑖 . (4.16)

From Property 1 of Proposition 4.3, the IDWI function associates to samples 𝒙𝑖 ∈ X that are Ξ-

feasible (𝑢𝑖 = 1) a probability 𝑝𝑁 (𝒙 ∈ Ξ) = 1 (and vice-versa for the Ξ-infeasible ones). Furthermore,

Property 2 of Proposition 4.3 ensures that 𝑝𝑁 (𝒙 ∈ Ξ) in (4.16) has range [0, 1], as it should be for

any probability.

We conclude this Section with some examples on the surrogate probability of Ξ-feasibility in (4.16).
Example 4.5: Examples of two-dimensional surrogates

Consider the following Ξ-feasible regions defined for 𝒙 ∈ R2:

1. Ξ1 =

{
𝒙 :

[
−0.25 −0.25

]⊤
≤ 𝒙 ≤

[
0.9 0.4

]⊤}
;

2. Ξ2 defined as the black-box constraint set of the camel six humps constrained [156]

benchmark optimization problem in Appendix B;

3. Ξ3 =
{
𝒙 : ∥𝒙 − 𝒙𝒄∥2

2 ≥ 𝑟2
𝑖𝑛
, ∥𝒙 − 𝒙𝒄∥2

2 ≤ 𝑟2
𝑜𝑢𝑡

}
, where 𝒙𝒄 = 0.5 · 12, 𝑟𝑖𝑛 = 0.25 · 𝑟, 𝑟𝑜𝑢𝑡 =

0.65 · 𝑟 and 𝑟 = 0.5 · ∥12∥2;
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4. Ξ4 =

{
𝒙 :



𝒙 − 𝒙𝒄1



2
2 ≤ 𝑟2

1

}
∪

{
𝒙 :



𝒙 − 𝒙𝒄2



2
2 ≤ 𝑟2

2

}
∪ {𝒙 : 0.25 · 12 ≤ 𝒙 ≤ 0.75 · 12},

where 𝒙𝒄1 =

[
−0.5 0.5

]⊤
, 𝑟1 = 0.5, 𝒙𝒄2 =

[
0.75 −0.75

]⊤
and 𝑟2 = 0.6.

For each of the above Ξ-feasible regions, we generate a set X (2.9) of 𝑁 = 200 samples, using a

latin hypercube design (see Section 2.4), and evaluate the Ξ-feasibility of each point, obtaining

the set UΞ in (2.11). Then, we estimate the probability of Ξ-feasibility as in (4.16). As it is

common in machine learning, we define a threshold 𝛾 = 0.5 to classify between Ξ-feasible and

Ξ-infeasible samples. In particular, if 𝑝𝑁 (𝒙 ∈ Ξ) ≥ 𝛾, we deem 𝒙 as Ξ-feasible and vice-versa

if 𝑝𝑁 (𝒙 ∈ Ξ) < 𝛾. Figure 15 depicts the obtained results. Notice how the IDWI function is

able to approximate even disconnected feasible regions.

Figure 15: Probability of Ξ-feasibility estimated by the IDWI function in (4.16) for different Ξ-feasible
regions, described in Example 4.5. The Ξ-feasible samples are depicted as black circles whereas the
Ξ-infeasible ones are black crosses. The shaded red areas denote the Ξ-infeasible regions. Finally, the red
lines are the decision boundaries, i.e. 𝑝𝑁 (𝒙 ∈ Ξ) = 𝛾, with 𝛾 = 0.5.

4.2 Exploration functions

Exploration plays a key role in any global optimization procedure (see Chapters 1, 2 and 3). As a

matter of fact, GLIS [10], GLISp [11], C-GLIS and C-GLISp [156] use acquisition functions that are

weighted sums between the surrogate models in Section 4.1 and one or more exploration functions
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(see 𝑎𝑁 (𝒙) in (2.58), (3.23) and (3.25)). In this Section, we review each exploration function in detail,

starting from the IDW distance function.

Definition 4.3: Inverse distance weighting distance function [10]. Consider the set of samples

X in (2.9). In GLIS [10] and GLISp [11], the inverse distance weighting distance function,

𝑧𝑁 : R𝑛 → (−1, 0], is defined as followsa:

𝑧𝑁 (𝒙) =


0 if 𝒙 ∈ X

− 2
𝜋
· arctan

(
1∑𝑁

𝑖=1 𝑤𝑖 (𝒙)

)
otherwise

. (4.17)

C-GLIS and C-GLISp [156] use an alternative IDW distance function. In particular, consider

the case 𝒙 ∈ R𝑛 \ X, then 𝑧𝑁 : R𝑛 → R is defined as:

𝑧𝑁 (𝒙) =
(
𝑁

𝑁𝑚𝑎𝑥
− 1

)
· arctan

(∑𝑁
𝑖=1,𝑖≠𝑖𝑏𝑒𝑠𝑡 (𝑁) 𝑤𝑖 (𝒙𝒃𝒆𝒔𝒕 (𝑁))∑𝑁

𝑖=1 𝑤𝑖 (𝒙)

)
+ (4.18)

− 𝑁

𝑁𝑚𝑎𝑥
· arctan

(
1∑𝑁

𝑖=1 𝑤𝑖 (𝒙)

)
,

while 𝑧𝑁 (𝒙) = 0,∀𝒙 ∈ X. Differently from 𝑧𝑁 (𝒙) in (4.17), 𝑧𝑁 (𝒙) in (4.18) also takes into

account the best candidate 𝒙𝒃𝒆𝒔𝒕 (𝑁) (whose index is 𝑖𝑏𝑒𝑠𝑡 (𝑁) ∈ N, 1 ≤ 𝑖𝑏𝑒𝑠𝑡 (𝑁) ≤ 𝑁) as well

as the budget 𝑁𝑚𝑎𝑥 ≥ 𝑁 .

aTo be precise, the multiplicative constant 2
𝜋

of 𝑧𝑁 (𝒙) in (4.17) is not considered in GLISp [11], although it is
present for GLIS [10].

Both 𝑧𝑁 (𝒙) in (4.17) and 𝑧𝑁 (𝒙) in (4.18) promote the exploration of the feasible region Ω of the GOP

(2.1) based only on the locations of the samples in X (2.9). The rationale behind the IDW distance

function in (4.18) is that, in the early iterations of C-GLIS and C-GLISp [156], it encourages the

exploration of those regions of Ω further away from the current best candidate. Furthermore, at least

empirically, 𝑧𝑁 (𝒙) in (4.18) is better suited for escaping local minima of the GOP (2.1) compared to

𝑧𝑁 (𝒙) in (4.17) [156]. Figure 16 compares the two different formulations in Definition 4.3.

In this book, we will thoroughly analyze the IDW distance function in (4.17). In particular, in Section

5.1, we will study its shortcomings whereas, in Section 5.2, we will propose a revisited infill sampling

criterion that improves the exploratory capabilities of 𝑧𝑁 (𝒙) in (4.17).

Next, we report the differentiability result shown in [10].

Proposition 4.4: Differentiability of the IDW distance function [10]. The IDW distance function

𝑧𝑁 (𝒙) in (4.17) is differentiable everywhere.
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Figure 16: One-dimensional comparison between the two different formulations of the IDW distance
function, namely 𝑧𝑁 (𝒙) in (4.17) (blue line) and 𝑧𝑁 (𝒙) in (4.18) (dashed red line). The samples in
X, |X| = 𝑁 = 5, are denoted using black circles, the only exception being the best candidate 𝑥𝑏𝑒𝑠𝑡 (𝑁),
which is reported in magenta. The budget for 𝑧𝑁 (𝒙) in (4.18) is 𝑁𝑚𝑎𝑥 = 100.

Proof. Let us consider the case 𝒙 ∈ R𝑛 \ X. We have that:

𝑁∑︁
𝑖=1

𝑤𝑖 (𝒙) ≠ 0, ∀𝒙 ∈ R𝑛 \ X,

since all inverse distance weighting functions 𝑤𝑖 (𝒙) in (4.11) are defined on that domain and only

assume positive values. Furthermore, by Proposition 4.2, 𝑤𝑖 (𝒙) , 𝑖 = 1, . . . , 𝑁 , are differentiable

∀𝒙 ∈ R𝑛 \ X and so is their summation. Hence, due to the reciprocal rule, 𝑧𝑁 (𝒙) in (4.17) is

differentiable ∀𝒙 ∈ R𝑛 \ X, being the composition of functions that are differentiable on that domain.

Now, consider the case 𝒙 ∈ X. Let us compute the partial derivatives of 𝑧𝑁 (𝒙) in (4.17) at any 𝒙𝑖 ∈ X:

𝜕

𝜕𝑥 ( 𝑗)
𝑧𝑁 (𝒙𝑖) = lim

𝑡→0

𝑧𝑁
(
𝒙𝑖 + 𝑡 · 𝒆 𝑗

)
− 𝑧𝑁 (𝒙𝑖)

𝑡

= lim
𝑡→0

𝑧𝑁
(
𝒙𝑖 + 𝑡 · 𝒆 𝑗

)
− 0

𝑡

= −2
𝜋
· lim
𝑡→0

1
𝑡
· arctan

(
1∑𝑁

𝑘=1 𝑤𝑘
(
𝒙𝑖 + 𝑡 · 𝒆 𝑗

) )
= −2

𝜋
· lim
𝑡→0

1
𝑡
· arctan

(
1

𝑤𝑖
(
𝒙𝑖 + 𝑡 · 𝒆 𝑗

)
+ ∑𝑁

𝑘=1,𝑘≠𝑖 𝑤𝑘
(
𝒙𝑖 + 𝑡 · 𝒆 𝑗

) )

= −2
𝜋
· lim
𝑡→0

1
𝑡
· arctan

©­­«
1

1
∥�𝒙𝑖+𝑡·𝒆 𝑗−�𝒙𝑖∥2

2

+ ∑𝑁
𝑘=1,𝑘≠𝑖 𝑤𝑘

(
𝒙𝑖 + 𝑡 · 𝒆 𝑗

) ª®®¬
= −2

𝜋
· lim
𝑡→0

1
𝑡
· arctan

(
1

1
𝑡2
+ ∑𝑁

𝑘=1,𝑘≠𝑖 𝑤𝑘
(
𝒙𝑖 + 𝑡 · 𝒆 𝑗

) )
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= −2
𝜋
· lim
𝑡→0

1
𝑡
· arctan

(
𝑡2

1 + 𝑡2 · ∑𝑁
𝑘=1,𝑘≠𝑖 𝑤𝑘

(
𝒙𝑖 + 𝑡 · 𝒆 𝑗

) )

= −2
𝜋
· lim
𝑡→0

1
𝑡
· arctan

©­­­­­­­­«
𝑡2

1 + 𝑡2 · ∑𝑁
𝑘=1,𝑘≠𝑖

1
∥𝒙𝑖+𝑡·𝒆 𝑗−𝒙𝑘 ∥2

2︸         ︷︷         ︸
>0 for 𝑡→0,𝒙𝑖≠𝒙𝑘

ª®®®®®®®®¬
= 0.

Next, define the first-order approximation of 𝑧𝑁 (𝒙) in (4.17) near 𝒙𝑖 ∈ X (see Appendix A.3 and in

particular (A.13)) as:

𝐿′ (𝒙) = 𝑧𝑁 (𝒙𝑖) + 𝒅𝑧𝑁 (𝒙𝑖)⊤ · (𝒙 − 𝒙𝑖) ,

with:

𝒅𝑧𝑁 (𝒙𝑖) =
[

𝜕

𝜕𝑥 (1)
𝑧𝑁 (𝒙𝑖) . . . 𝜕

𝜕𝑥 (𝑛)
𝑧𝑁 (𝒙𝑖)

]⊤
= 0𝑛,

resulting in 𝐿′ (𝒙) = 𝑧𝑁 (𝒙𝑖) = 0. To prove the differentiability of 𝑧𝑁 (𝒙) in (4.17) at 𝒙𝑖 ∈ X, we need

check whether:

lim
𝒙→𝒙𝑖

|𝑧𝑁 (𝒙) − 𝐿′ (𝒙) |
∥𝒙 − 𝒙𝑖∥2

= 0

holds (see Definition A.25). By substituting to each function its expression we get:

lim
𝒙→𝒙𝑖

|𝑧𝑁 (𝒙) − 𝐿′ (𝒙) |
∥𝒙 − 𝒙𝑖∥2

= lim
𝒙→𝒙𝑖

|𝑧𝑁 (𝒙) |
∥𝒙 − 𝒙𝑖∥2

= lim
𝒙→𝒙𝑖

���− 2
𝜋
· arctan

(
1∑𝑁

𝑘=1 𝑤𝑘 (𝒙)

)���
∥𝒙 − 𝒙𝑖∥2

=

����−2
𝜋

���� · lim
𝒙→𝒙𝑖

���������
≥0,∀𝒙∈R𝑛︷                 ︸︸                 ︷

arctan
(

1∑𝑁
𝑘=1 𝑤𝑘 (𝒙)

)���������
∥𝒙 − 𝒙𝑖∥2

=
2
𝜋
· lim
𝒙→𝒙𝑖

arctan
(

1∑𝑁
𝑘=1 𝑤𝑘 (𝒙)

)
∥𝒙 − 𝒙𝑖∥2

.

Consider the case X = {𝒙1}, then it is easy to see that:

lim
𝒙→𝒙1

arctan
(

1
𝑤1 (𝒙)

)
∥𝒙 − 𝒙1∥2

= lim
𝒙→𝒙1

arctan
(
∥𝒙 − 𝒙1∥2

2

)
∥𝒙 − 𝒙1∥2

= lim
𝑡→0

arctan
(
𝑡2

)
𝑡

= 0.
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Similarly, for any X = {𝒙1, . . . , 𝒙𝑁 }, we have:

lim
𝒙→𝒙𝑖

arctan
(

1∑𝑁
𝑘=1 𝑤𝑘 (𝒙)

)
∥𝒙 − 𝒙𝑖∥2

= lim
𝒙→𝒙𝑖

arctan

(
1∑𝑁

𝑘=1
1

∥𝒙−𝒙𝑘 ∥2
2

)
∥𝒙 − 𝒙𝑖∥2

= lim
𝒙→𝒙𝑖

arctan

(
1

1
∥𝒙−𝒙𝑖 ∥2

2
+∑𝑁

𝑘=1,𝑘≠𝑖
1

∥𝒙−𝒙𝑘 ∥2
2

)
∥𝒙 − 𝒙𝑖∥2

= lim
𝒙→𝒙𝑖

arctan
 1

1
∥𝒙−𝒙𝑖 ∥2

2
·
(
1+∑𝑁

𝑘=1,𝑘≠𝑖
∥𝒙−𝒙𝑖 ∥2

2
∥𝒙−𝒙𝑘 ∥2

2

) 
∥𝒙 − 𝒙𝑖∥2

= lim
𝒙→𝒙𝑖

arctan

©­­­­­­­­«
∥𝒙−𝒙𝑖 ∥2

2

1+
∑𝑁
𝑘=1,𝑘≠𝑖

∥𝒙−𝒙𝑖 ∥2
2

∥𝒙−𝒙𝑘 ∥2
2︸              ︷︷              ︸

→0 for 𝒙→𝒙𝑖 ,𝒙𝑖≠𝒙𝑘

ª®®®®®®®®¬
∥𝒙 − 𝒙𝑖∥2

= 0.

We have proven that the condition in Definition A.25 is satisfied. Therefore, 𝑧𝑁 (𝒙) in (4.17) is

differentiable at each 𝒙𝑖 ∈ X.

In conclusion, by combining the results achieved for 𝒙 ∈ R𝑛 \ X and 𝒙 ∈ X, we can state that 𝑧𝑁 (𝒙)

in (4.17) is differentiable everywhere. □

Algorithms GLIS [10] and C-GLIS, which are used for black-box optimization, also consider an

additional exploration function that relies on the measures of the cost function in Y (2.10).

Definition 4.4: Inverse distance weighting variance function [10]. Consider the set of samples

X in (2.9), the set of cost function measures Y in (2.10) and the surrogate model 𝑓𝑁 (𝒙) in

(4.1) obtained as described in Section 4.1.1. The inverse distance weighting variance function,

𝑠𝑁 : R𝑛 → R, is defined as follows:

𝑠𝑁 (𝒙) = −

√√√
𝑁∑︁
𝑖=1

𝑣𝑖 (𝒙) ·
(
𝑦𝑖 − 𝑓𝑁 (𝒙)

)2
, (4.19)

where 𝑣𝑖 (𝒙) is defined as in (4.14).
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𝑠𝑁 (𝒙) in (4.19) represents the confidence intervals (with a negative sign) for the IDW interpolation

function in (4.15) (i.e. if 𝑓𝑁 (𝒙) in (4.1) were to be replaced by (4.15)), see [69]. In GLIS [10] and

C-GLIS, the IDW variance function is used to estimate the uncertainty of the RBF surrogate model

in (4.1) at a point 𝒙 ∈ R𝑛. Figure 17 depicts the confidence intervals for an interpolating and a

non-interpolating surrogate (see Section 4.1.1). In the former case 𝑠𝑁 (𝒙𝑖) = 0,∀𝒙𝑖 ∈ X, whereas in

the latter case we can have 𝑠𝑁 (𝒙𝑖) ≠ 0 for some 𝒙𝑖 ∈ X.

Figure 17: Confidence intervals for the surrogate model 𝑓𝑁
(
𝑥; 𝜷 𝑓 , 𝜖 𝑓

)
in (4.1) (blue area), namely

𝑓𝑁

(
𝑥; 𝜷 𝑓 , 𝜖 𝑓

)
± 𝑠𝑁 (𝒙), defined using an inverse quadratic radial basis function with 𝜖 𝑓 = 1 (left) and

𝜖 𝑓 = 10 (right). The real function 𝑓 (𝒙) (black) is the one-dimensional gramacy and lee [53] function.
The samples are generated as in Example 4.1.

The differentiability of the IDW variance function in (4.19) is addressed by the following Proposition.

Proposition 4.5: Differentiability of the IDW variance function [10]. The IDW variance func-

tion 𝑠𝑁 (𝒙) in (4.19) is differentiable everywhere.

We omit the proof of the previous Proposition since it is not needed for the surrogate-based methods

that we will propose in Chapter 5; the interested reader is referred to [10].

4.3 Infill sampling criteria

In this Section, we review the infill sampling criteria used by GLIS [10], GLISp [11], C-GLIS and

C-GLISp [156]. All procedures look for new candidate samples by minimizing acquisition functions

that are weighted sums between the surrogate models in Section 4.1 and the exploration functions in

Section 4.2.

Definition 4.5: Acquisition functions for GLIS [10], GLISp [11], C-GLIS and C-GLISp [156].

The aforementioned methods adopt infill sampling criteria that are based on the following
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acquisition functions 𝑎𝑁 : R𝑛 → R:

GLIS [10] 𝑎𝑁 (𝒙) = 𝑓𝑁 (𝒙) + Δ𝑌 · 𝛿1 · 𝑧𝑁 (𝒙) + 𝛿2 · 𝑠𝑁 (𝒙) , (4.20a)

GLISp [11] 𝑎𝑁 (𝒙) = 𝑓𝑁 (𝒙)
Δ𝐹̂

+ 𝛿 · 𝑧𝑁 (𝒙) , (4.20b)

C-GLIS 𝑎𝑁 (𝒙) = 𝑓𝑁 (𝒙) + Δ𝑌 · 𝛿1 · 𝑧𝑁 (𝒙) + 𝛿2 · 𝑠𝑁 (𝒙) + (4.20c)

+ 𝛿Ξ · [1 − 𝑝𝑁 (𝒙 ∈ Ξ)] ,

C-GLISp [156] 𝑎𝑁 (𝒙) = 𝑓𝑁 (𝒙)
Δ𝐹̂

+ 𝛿 · 𝑧𝑁 (𝒙) + 𝛿Ξ · [1 − 𝑝𝑁 (𝒙 ∈ Ξ)] . (4.20d)

𝑎𝑁 (𝒙) in (4.20a) and in (4.20b) use the IDW distance function in (4.17) while the acqui-

sition functions in (4.20c) and (4.20b) adopt 𝑧𝑁 (𝒙) in (4.18). 𝛿1, 𝛿2, 𝛿, 𝛿Ξ ∈ R≥0 are

non-negative weights that define the exploration-exploitation trade-off as well as the penal-

ization of those regions of Ω which are likely to contain Ξ-infeasible samples. Finally,

Δ𝑌 = max
{
max𝑦𝑖∈Y 𝑦𝑖 − min𝑦𝑖∈Y 𝑦𝑖, 𝜖Δ𝑌

}
(where 𝜖Δ𝑌 ∈ R>0 is a small tolerance) and

Δ𝐹̂ = max𝒙𝑖∈X 𝑓𝑁 (𝒙𝑖) − min𝒙𝑖∈X 𝑓𝑁 (𝒙𝑖) are two scaling constants which ease the definition of

the weights.

We point out that the exploration-explotation trade-off weights 𝛿1, 𝛿2, 𝛿 are kept fixed throughout the

whole optimization processes of GLIS [10], GLISp [11], C-GLIS and C-GLISp [156]. In Section

5.2, we will propose a revisited infill sampling criterion that alternates between different values

of the exploration-exploitation trade-off weights, giving rise to globally convergent unconstrained

optimization procedures. Parameter 𝛿Ξ in (4.20c) and (4.20d) is recalibrated based on the standard

deviation of the misclassification error of 𝑝𝑁 (𝒙 ∈ Ξ) = 𝑝
(
𝒙 ∈ Ξ

��UΞ,X, 𝒙
)
, denoted as 𝛿Ξ ∈ R≥0

and estimated through Leave-One-Out Cross-Validation (LOOCV) [58] as follows:

𝛿Ξ = min
1,

√︄∑𝑁
𝑖=1

[
𝑝

(
𝒙𝑖 ∈ Ξ

��UΞ \ {𝑢𝑖} ,X \ {𝒙𝑖} , 𝒙𝑖
)
− 𝑢𝑖

]2

𝑁 − 1

 . (4.21)

Then, at each iteration of C-GLIS and C-GLISp [156], 𝛿Ξ in (4.20c) and (4.20d) is updated as:

𝛿Ξ =
(
1 − 𝛿Ξ

)
· 𝛿Ξ,𝑑𝑒 𝑓 𝑎𝑢𝑙𝑡 , (4.22)

where 𝛿Ξ,𝑑𝑒 𝑓 𝑎𝑢𝑙𝑡 ∈ R≥0 is a default value for the weight 𝛿Ξ chosen by the user.

The following Proposition covers the differentiability of the acquisition functions in (4.20a), (4.20b),

(4.20c) and (4.20d).
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Proposition 4.6: Differentiability of the acquisition functions in (4.20a), (4.20b), (4.20c) and

(4.20d). The acquisition functions 𝑎𝑁 (𝒙) in (4.20a), (4.20b), (4.20c) and (4.20d) are differen-

tiable everywhere if and only if the chosen radial basis function 𝜙 𝑓𝑖
(
𝒙; 𝜖 𝑓

)
= 𝜑 𝑓

(
𝜖 𝑓 · ∥𝒙 − 𝒙𝑖∥2

)
for the surrogate model 𝑓𝑁

(
𝒙; 𝜷 𝑓 , 𝜖 𝑓

)
in (4.1) is differentiable everywhere.

Proof. The aforementioned result follows immediately from the application of Propositions 2.1, 4.3,

4.4 and 4.5, which cover the differentiability of each term that appears in the weighted sums in (4.20a),

(4.20b), (4.20c) and (4.20d). □

For the sake of completeness, we stress that, in any case, the new candidate samples 𝒙𝑁+1 ∈ Ω

are obtained by solving the following global optimization problem:

𝒙𝑁+1 = arg min
𝒙
𝑎𝑁 (𝒙) (4.23)

s.t. 𝒙 ∈ Ω.

4.4 Miscellaneous

There are other minor algorithmic details that characterize the GLIS [10], GLISp [11], C-GLIS and

C-GLISp [156] procedures. In particular, the authors suggest to rescale all the decision variables of

the GOP (2.1) so that they assume the same range. Furthermore, algorithms GLISp [11] and C-GLISp

[156] also include a recalibration phase devoted to tuning the shape parameter 𝜖 𝑓 of the RBF surrogate

model in (4.1) (cf. Algorithm 5).

4.4.1 Rescaling of the decision vector

In [10], the author proposes to rescale the decision vector 𝒙 ∈ R𝑛 of the GOP (2.1) so that all its

entries 𝑥 ( 𝑗) , 𝑗 = 1, . . . , 𝑛, assume the range [−1, 1] (at least inside the feasible region Ω). Hereafter,

we denote the rescaled decision vector as 𝒙̄ ∈ R𝑛. The rescaling procedure can be summarized as

follows:

1. Obtain the upper and lower bounds 𝒖𝒄, 𝒍𝒄 ∈ R𝑛 for the bounding box of the constraint set Ω of

the GOP (2.1) by solving the following 2 · 𝑛 optimization problems:

𝑙
( 𝑗)
𝑐 = min

𝒙
𝒆⊤𝑗 · 𝒙 (4.24a)

s.t. 𝒙 ∈ Ω and
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𝑢
( 𝑗)
𝑐 = max

𝒙
𝒆⊤𝑗 · 𝒙 (4.24b)

s.t. 𝒙 ∈ Ω,

for 𝑗 = 1, . . . , 𝑛.

If Ω contains only linear equality and inequality constraints, then Problem (4.24a) and Problem

(4.24b) are simple LPs.

2. Rescale each component 𝑥 ( 𝑗) , 𝑗 = 1, . . . , 𝑛, of 𝒙 as:

𝑥 ( 𝑗) = 𝑟 ( 𝑗)𝒙→𝒙̄

(
𝑥 ( 𝑗)

)
=

2 · 𝑥 ( 𝑗) −
(
𝑢
( 𝑗)
𝑐 + 𝑙 ( 𝑗)𝑐

)
𝑢
( 𝑗)
𝑐 − 𝑙 ( 𝑗)𝑐

, (4.25)

where 𝑟 ( 𝑗)𝒙→𝒙̄ : R → R is the 𝑗-th rescaling function. To make the notation more compact, we

define the vector-valued function 𝒓𝒙→𝒙̄ : R𝑛 → R𝑛,

𝒓𝒙→𝒙̄ (𝒙) =
[
𝑟
(1)
𝒙→𝒙̄

(
𝑥 (1)

)
. . . 𝑟

(𝑛)
𝒙→𝒙̄

(
𝑥 (𝑛)

)]⊤
,

and obtain the rescaled decision vector as:

𝒙̄ = 𝒓𝒙→𝒙̄ (𝒙) .

It is easy to prove that:

−1𝑛 ≤ 𝒓𝒙→𝒙̄ (𝒙) ≤ 1𝑛, ∀𝒙 ∈ Ω.

3. Rescale the constraint set Ω in (1.4) as:

Ω̄ =

{
𝒙̄ : 𝒍 ≤ 𝒙̄ ≤ 𝒖̄, 𝐴̄𝑖𝑛𝑒𝑞 · 𝒙̄ ≤ 𝒃̄ 𝒊𝒏𝒆𝒒, 𝐴̄𝑒𝑞 · 𝒙̄ = 𝒃̄𝒆𝒒,

𝒈̄𝒊𝒏𝒆𝒒 (𝒙̄) ≤ 0𝑞3 , 𝒈̄𝒆𝒒 (𝒙̄) = 0𝑞4

}
,

where:

• The bounds are simply 𝒍̄ = −1𝑛 and 𝒖̄ = 1𝑛;

• Matrices and vectors related to the linear constraints (both equality and inequality), say 𝐴

and 𝒃, are rescaled as:

𝐴̄ = 𝐴 · diag

{
𝑢
(1)
𝑐 − 𝑙 (1)𝑐

2
, . . . ,

𝑢
(𝑛)
𝑐 − 𝑙 (𝑛)𝑐

2

}
,

𝒃̄ = 𝒃 − 1
2
· 𝐴 · (𝒖𝒄 + 𝒍𝒄) ;
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• The nonlinear constraints functions become 𝒈̄ (𝒙̄) = 𝒈 (𝒓 𝒙̄→𝒙 (𝒙̄)), where 𝒓 𝒙̄→𝒙 : R𝑛 → R𝑛

is a vector-valued function that scales 𝒙̄ back to the original range, as opposed to (4.25).

In particular, 𝒓 𝒙̄→𝒙 (𝒙̄) is defined as:

𝒓 𝒙̄→𝒙 (𝒙̄) =
[
𝑟
(1)
𝒙̄→𝒙

(
𝑥 (1)

)
. . . 𝑟

(𝑛)
𝒙̄→𝒙

(
𝑥 (𝑛)

)]⊤
,

where:

𝑟
( 𝑗)
𝒙̄→𝒙

(
𝑥 ( 𝑗)

)
=

𝑥 ( 𝑗) ·
(
𝑢
( 𝑗)
𝑐 − 𝑙 ( 𝑗)𝑐

)
+

(
𝑢
( 𝑗)
𝑐 + 𝑙 ( 𝑗)𝑐

)
2

, 𝑗 = 1, . . . , 𝑛. (4.26)

The rescaling of the optimization problem is carried out only once, at the start of the GLIS [10], GLISp

[11], C-GLIS and C-GLISp [156] procedures. The rescaled GOP (2.1) is:

X̄∗ = arg min
𝒙̄
𝑓 (𝒙̄) (4.27)

s.t. 𝒙̄ ∈ Ω̄ ∩ Ξ̄,

where:

• The black-box cost function (or the scoring function of the human decision-maker) is 𝑓 (𝒙̄) =

𝑓 (𝒓 𝒙̄→𝒙 (𝒙̄)). Furthermore, in the preference-based optimization framework, the preference

function in (3.8) becomes:

𝜋̄≿(𝒙̄𝑖, 𝒙̄ 𝑗 ) =


−1 if 𝑓 (𝒙̄𝑖) < 𝑓

(
𝒙̄ 𝑗

)
0 if 𝑓 (𝒙̄𝑖) = 𝑓

(
𝒙̄ 𝑗

)
1 if 𝑓 (𝒙̄𝑖) > 𝑓

(
𝒙̄ 𝑗

) .
• The Ξ-feasibility function in (2.4) becomes 𝑢̄Ξ̄ (𝒙̄) = 𝑢Ξ (𝒓 𝒙̄→𝒙 (𝒙̄)) and, consequently, we can

define the Ξ-feasible region as Ξ̄ =
{
𝒙̄ : 𝑢̄Ξ̄ (𝒙̄) = 1

}
. Similarly, if the black-box constraints

functions in (2.2) are measurable, we define 𝒈̄Ξ̄ (𝒙̄) = 𝒈Ξ (𝒓 𝒙̄→𝒙 (𝒙̄)) and specify Ξ̄ accordingly.

• The global minimizers of the GOP (2.1), i.e. 𝒙∗
𝑖
∈ X∗ in (2.3), are rescaled, obtaining:

X̄∗ =
{
𝒙̄∗𝑖 : 𝒙̄∗𝑖 = 𝒓𝒙→𝒙̄

(
𝒙∗𝑖

)
, 𝒙∗𝑖 ∈ X∗, 𝑖 = 1, . . . , 𝑁∗} .

Clearly, if the rescaling is performed, then the surrogates in Section 4.1 and the exploration functions

in Section 4.2 are built considering the rescaled set of samples,

X̄ = {𝒙̄𝑖 : 𝑖 = 1, . . . , 𝑁, 𝒙̄𝑖 = 𝒓𝒙→𝒙̄ (𝒙𝑖) , 𝒙𝑖 ∈ X} ,

instead of X in (2.9).
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We conclude this Section by pointing out the relationship between the rescaling in (4.25) and automatic

relevance determination, a strategy that is widely used in Gaussian process regression to weigh

differently the variables 𝑥 ( 𝑗) , 𝑗 = 1, . . . , 𝑛, in order to improve the quality of the surrogate model in

(2.46) [15, 153].

Remark 4.1 (Relationship to automatic relevance determination). Many of the radial basis functions

in Definition 2.6 depend on the squared distance between two points. To analyze the effects of the

rescaling in (4.25), consider the squared Euclidean distance between a point 𝒙̄ ∈ Ω̄ and a sample

𝒙̄𝑖 ∈ X̄. We have:

∥𝒙̄ − 𝒙̄𝑖∥2
2 = (𝒙̄ − 𝒙̄𝑖)𝑇 (𝒙̄ − 𝒙̄𝑖)

=

𝑛∑︁
𝑗=1

(
𝑥 ( 𝑗) − 𝑥 ( 𝑗)

𝑖

)2

=

𝑛∑︁
𝑗=1

©­­«
2 · 𝑥 ( 𝑗) −

(
𝑢
( 𝑗)
𝑐 + 𝑙 ( 𝑗)𝑐

)
𝑢
( 𝑗)
𝑐 − 𝑙 ( 𝑗)𝑐

−
2 · 𝑥 ( 𝑗)

𝑖
−

(
𝑢
( 𝑗)
𝑐 + 𝑙 ( 𝑗)𝑐

)
𝑢
( 𝑗)
𝑐 − 𝑙 ( 𝑗)𝑐

ª®®¬
2

=

𝑛∑︁
𝑗=1

[
2

𝑢
( 𝑗)
𝑐 − 𝑙 ( 𝑗)𝑐

·
(
𝑥 ( 𝑗) − 𝑥 ( 𝑗)

𝑖

)]2

. (4.28)

We can see that the distances 𝑥 ( 𝑗)−𝑥 ( 𝑗)
𝑖

are scaled by constant terms, namely 𝜃 ( 𝑗)
𝑓

= 2
𝑢
( 𝑗 )
𝑐 −𝑙 ( 𝑗 )𝑐

, 𝜃
( 𝑗)
𝑓

∈ R>0.

Similarly, in Gaussian process regression, a commonly used kernel is the squared exponential kernel,

which can be defined as [153]:

𝑘
(
𝒙, 𝒙𝑖; 𝜽 𝑓

)
= 𝜃

(0)
𝑓

· exp
−1

2
·
𝑛∑︁
𝑗=1

[
𝜃
( 𝑗)
𝑓

·
(
𝑥 ( 𝑗) − 𝑥 ( 𝑗)

𝑖

)2
] , (4.29)

where 𝜽 𝑓 =

[
𝜃
(0)
𝑓

𝜃
(1)
𝑓

. . . 𝜃
(𝑛)
𝑓

]⊤
∈ R𝑛+1. With a slight abuse of notation, 𝜃 (0)

𝑓
is an additional

hyper-parameter that is not related to a specific dimension of the variable 𝒙. Typically, in the GP

framework, 𝜽 𝑓 is computed by maximizing the marginal likelihood as in Problem (2.41). Clearly, if 𝜃 ( 𝑗)
𝑓

is small for any 𝑗 = 1, . . . , 𝑁 , then the surrogate in (2.46) with the kernel in (4.29) becomes relatively

insensitive to the variable 𝑥 ( 𝑗) . For the latter reason, this approach is called automatic relevance

determination [15, 153]. Vice-versa, selecting 𝜃 ( 𝑗)
𝑓
, 𝑗 = 1, . . . , 𝑁, as in (4.28) is computationally

lighter and makes each variable 𝑥 ( 𝑗) , 𝑗 = 1, . . . , 𝑛, equally as relevant.

4.4.2 Recalibration of the surrogate models

The quality of the surrogate model 𝑓𝑁
(
𝒙; 𝜷 𝑓 , 𝜖 𝑓

)
in (4.1) depends on the choice of the radial function

𝜑 𝑓 (·) as well as on the value of the shape parameter 𝜖 𝑓 , which need to be properly selected. A common
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way to tune these hyper-parameters in the machine learning framework is to use cross-validation [58].

In particular, we employ 𝐾-fold grid search cross-validation to choose the best model among a set of

alternatives. Consider the set of 𝑁𝑚𝑜𝑑𝑒𝑙𝑠 ∈ N models:

M 𝑓 =

{
𝜑 𝑓1 (·) , . . . , 𝜑 𝑓𝑁𝑚𝑜𝑑𝑒𝑙𝑠 (·)

}
, (4.30)

where each model 𝜑 𝑓𝑚 (·) , 𝑚 = 1, . . . , 𝑁𝑚𝑜𝑑𝑒𝑙𝑠, is associated to a certain radial function (such as the

ones in Definition 2.6) and shape parameter 𝜖 𝑓𝑚 . Usually, as it has been done in GLISp [11], the

radial function is kept constant and the only varying parameter is 𝜖 𝑓 . However, we cover this topic

more generally, allowing 𝜑 𝑓𝑚 (·) to vary as well. Furthermore, in [11], the authors only address the

recalibration of the shape parameter for PBO. In this Section, we also give some insights on how to

tune 𝜖 𝑓 for BBO, see [24, 119].

𝐾-fold grid search cross-validation operates as follows:

1. Build the dataset D which, in the black-box optimization framework, is equal to (see (2.9) and

(2.10)):

D = {(𝒙𝑖, 𝑦𝑖) : 𝒙𝑖 ∈ X, 𝑦𝑖 ∈ Y, 𝑖 = 1, . . . , 𝑁} , (4.31)

while, in the preference-based case, it amounts to (see (2.9), (3.9) and (3.10)):

D =

{ (
𝒙ℓ(ℎ) , 𝒙𝜅(ℎ) , 𝑏ℎ

)
: 𝒙ℓ(ℎ) , 𝒙𝜅(ℎ) ∈ X, 𝑏ℎ ∈ B, (ℓ(ℎ), 𝜅(ℎ)) ∈ S,

𝑏ℎ = 𝜋≿
(
𝒙ℓ(ℎ) , 𝒙𝜅(ℎ)

)
, ℎ = 1, . . . , 𝑀

}
. (4.32)

We also define the number of elements in D as 𝑁D = |D|, which are 𝑁 for BBO and 𝑀 for

PBO.

2. Rather than explicitly defining the number of folds, 𝐾 ∈ N, which D needs to be split into, we

choose a ratio 𝑅 𝑓 ∈ [0, 1]. Then, the maximum number of elements for each fold is selected as:

𝑁D 𝑓 𝑜𝑙𝑑
= max

{⌊
𝑅 𝑓 · 𝑁D

⌋
, 1

}
,

whereas the number of folds is:

𝐾 =

⌈
𝑁D
𝑁D 𝑓 𝑜𝑙𝑑

⌉
.

Notice that 𝑅 𝑓 = 1 equates to not performing any cross-validation while 𝑅 𝑓 = 0 results in

leave-one-out cross-validation.

3. Randomly partition D into 𝐾 (almost) equally-sized subsets (folds) D (1) , . . . ,D (𝐾) , i.e. such

that:

D =

𝐾⋃
𝑘=1

D (𝑘) , D (𝑖) ∩ D ( 𝑗) = ∅,∀𝑖, 𝑗 = 1, ..., 𝐾, 𝑖 ≠ 𝑗 ,
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and
��D (𝑘) �� ≤ 𝑁D 𝑓 𝑜𝑙𝑑

,∀𝑘 = 1, . . . , 𝐾 .

4. For each model 𝜑 𝑓𝑚 (·) ∈ M 𝑓 , build 𝐾 surrogates 𝑓 (𝑘)𝑚 (·)1, 𝑘 = 1, . . . , 𝐾 , by computing 𝜷 𝑓

using either (4.4) (BBO) or (4.10) (PBO) and starting from the training sets D (𝑘)
𝑡𝑟𝑎𝑖𝑛

=
⋃
𝑗≠𝑘 D ( 𝑗) .

5. Assess the quality of each surrogate on the validation sets D (𝑘)
𝑣𝑎𝑙

= D (𝑘) , i.e. the folds not used

during the training phase (D (𝑘)
𝑡𝑟𝑎𝑖𝑛

∩ D (𝑘)
𝑣𝑎𝑙

= ∅,D (𝑘)
𝑡𝑟𝑎𝑖𝑛

∪ D (𝑘)
𝑣𝑎𝑙

= D,∀𝑘 = 1, . . . , 𝐾). To do so, a

proper figure of merit or cost function, 𝐽𝑅 𝑓
(
𝑓
(𝑘)
𝑚 (·) ,D (𝑘)

𝑣𝑎𝑙

)
, needs to be used:

• For black-box optimization, a common choice is the Root Mean Square Error (RMSE)

[24, 119], i.e.:

𝐽𝑅 𝑓

(
𝑓
(𝑘)
𝑚 (·) ,D (𝑘)

𝑣𝑎𝑙

)
=

√√√ 1���D (𝑘)
𝑣𝑎𝑙

��� · ∑︁
(𝒙𝑖 ,𝑦𝑖)∈D (𝑘 )

𝑣𝑎𝑙

[
𝑓
(𝑘)
𝑚 (𝒙𝑖) − 𝑦𝑖

]2
. (4.33)

• In the context of preference-based optimization, the authors of GLISp [11] propose to use

the number of correctly classified preferences, which is defined as:

𝐽𝑅 𝑓

(
𝑓
(𝑘)
𝑚 (·) ,D (𝑘)

𝑣𝑎𝑙

)
=

∑︁
(𝒙ℓ (ℎ) ,𝒙𝜅 (ℎ) ,𝑏ℎ)∈D (𝑘 )

𝑣𝑎𝑙

I
(
𝜋̂
(𝑘)
≿𝑚

(
𝒙ℓ(ℎ) , 𝒙𝜅(ℎ)

)
= 𝑏ℎ

)
, (4.34)

where 𝜋̂(𝑘)≿𝑚 (·, ·) is the surrogate preference function defined from 𝑓
(𝑘)
𝑚 (·) (see (4.5)) and

I (·) is the indicator function (which assumes value one whenever the preference 𝑏ℎ is

classified correctly by 𝜋̂(𝑘)≿𝑚 (·, ·) and zero otherwise).

6. Compute the average performances of each model 𝜑 𝑓𝑚 (·) ∈ M 𝑓 , i.e.:

𝐽
𝑎𝑣𝑔

𝑅 𝑓

(
𝜑 𝑓𝑚 (·)

)
=

∑𝐾
𝑘=1 𝐽𝑅 𝑓

(
𝑓
(𝑘)
𝑚 (·) ,D (𝑘)

𝑣𝑎𝑙

)
𝐾

. (4.35)

7. Select the best model among the ones in M 𝑓 , i.e. 𝜑 𝑓𝑚 (·) that either minimizes the average

RMSE or maximizes the average number of correctly classified preferences.

Concerning the black-box optimization case, or rather the more general context of approximating an

unknown function 𝑓 (𝒙) using the radial basis function expansion in (4.1), there are alternative ways

of selecting the shape parameter 𝜖 𝑓 . For example, in [24, 119], 𝜖 𝑓 is chosen by solving an optimization

problem whose cost function is a norm of the vector whose entries are the RMSEs in (4.33) obtained

via LOOCV.

1For ease of notation and clarity, we use 𝑚 (i.e. the index of the model in M 𝑓 ) as the subscript of 𝑓 (𝑘 )𝑚 (·) instead of the
number of samples used for its construction, which are

���D (𝑘 )
𝑡𝑟𝑎𝑖𝑛

���.
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In the preference-based framework, as pointed out in [11], we are mostly interested in correctly

predicting those preferences that concern the current best candidate 𝒙𝒃𝒆𝒔𝒕 (𝑁). Therefore, all the

preferences associated to such sample should always be present in the training sets and never in the

validation sets. This is also necessary to properly build the weight vector 𝒓𝑸𝑷 of Problem (4.10) as in

(4.7). Thus, we define the set:

D𝑏𝑒𝑠𝑡 =
{(
𝒙ℓ(ℎ) , 𝒙𝜅(ℎ) , 𝑏ℎ

)
∈ D : 𝒙ℓ(ℎ) = 𝒙𝒃𝒆𝒔𝒕 (𝑁) or 𝒙𝜅(ℎ) = 𝒙𝒃𝒆𝒔𝒕 (𝑁)

}
(4.36)

and obtain the 𝐾 folds from D \ D𝑏𝑒𝑠𝑡 instead of D in (4.32). Finally, set D𝑏𝑒𝑠𝑡 is always included

inside the training sets D (𝑘)
𝑡𝑟𝑎𝑖𝑛

, 𝑘 = 1, . . . , 𝐾 .

The whole 𝐾-fold grid search cross-validation procedure for BBO and PBO is formalized in Algorithm

8.

Finally, we show an Example where we apply Algorithm 8 to select both the radial function and the

shape parameter of 𝑓𝑁
(
𝒙; 𝜷 𝑓 , 𝜖 𝑓

)
in (4.1).

Example 4.6: Recalibration of the surrogate of 𝑓 (𝒙)

Consider the camel six humps [62] benchmark function defined as in Example 4.2. We use

the same set of samples X (2.9) generated in Example 4.2 to recalibrate the hyper-parameters of

the surrogate model 𝑓𝑁
(
𝒙; 𝜷 𝑓 , 𝜖 𝑓

)
in (4.1), both in the black-box and in the preference-based

frameworks. We consider two different sets of models M 𝑓 in (4.30):

• The first one is built by keeping the radial function 𝜑 𝑓𝑚 (·) fixed (inverse quadratic) and

varying the shape parameter 𝜖 𝑓 uniformly, in a logarithmically spaced grid, between

𝜖 𝑓 = 10−2 and 𝜖 𝑓 = 101 (including also 𝜖 𝑓 = 1). The total number of models is

𝑁𝑚𝑜𝑑𝑒𝑙𝑠 = 21;

• The second one is aimed at evaluating the performances of different RBFs, keeping

the shape parameter constant and equal to 𝜖 𝑓 = 1. The selection is made between the

𝑁𝑚𝑜𝑑𝑒𝑙𝑠 = 8 radial basis functions in Definition 2.6.

The remaining hyper-parameters are selected as:

• BBO: 𝜖𝑆𝑉𝐷 = 10−6 for the low-rank approximation in (4.4);

• PBO: 𝜆 𝑓 = 10−6, 𝜎𝜋 = 10−2 for Problem (4.10);

• 𝑅 𝑓 = 0, i.e. we perform leave-one-out grid search cross-validation.
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Figure 18 shows the average performances of each model in M 𝑓 , i.e. 𝐽𝑎𝑣𝑔
𝑅 𝑓

(
𝜑 𝑓𝑚 (·)

)
in (4.35), as

well as the best models found by Algorithm 8. Notice how all the resulting surrogates capture

where the most promising region of 𝑓 (𝒙) is located, which is roughly −0.5 ≤ 𝑥 (1) ≤ 0.5.

Furthermore, we can see that, at least in the BBO framework, the shape parameter 𝜖 𝑓 has a

higher impact on the performances compared to the choice of the RBF.

Algorithm 8: 𝐾-fold grid search cross-validation for RBF surrogates of 𝑓 (𝒙)
Input: (i) Dataset D defined as in (4.31) or (4.32); (ii) Set of models M 𝑓 in (4.30); (iii) Ratio 𝑅 𝑓 ∈ [0, 1]
which defines the dimension of the folds of D.
Output: (i) Best model 𝜑 𝑓𝑏𝑒𝑠𝑡 (·).
1: In the preference-based case, obtain the dataset D𝑏𝑒𝑠𝑡 as in (4.36), while for the black-box case simply set

D𝑏𝑒𝑠𝑡 = ∅
2: (Possibly) remove the preferences associated to 𝒙𝒃𝒆𝒔𝒕 (𝑁) in D: D = D \ D𝑏𝑒𝑠𝑡

3: Get the cardinality of D: 𝑁D = |D|
4: Compute the maximum number of elements for each fold: 𝑁D 𝑓 𝑜𝑙𝑑

= max
{⌊
𝑅 𝑓 · 𝑁D

⌋
, 1

}
5: Compute the number of folds: 𝐾 =

⌈
𝑁D

𝑁D 𝑓 𝑜𝑙𝑑

⌉
6: Randomly divide the datasetD into𝐾 (nearly equally-sized) disjoint subsets (folds), namelyD (1) , . . . ,D (𝐾 )

7: for 𝑘 = 1 to 𝐾 do
8: Build the training set as D (𝑘 )

𝑡𝑟𝑎𝑖𝑛
=

[⋃
𝑗≠𝑘 D ( 𝑗 ) ] ∪ D𝑏𝑒𝑠𝑡

9: Select the validation set as D (𝑘 )
𝑣𝑎𝑙

= D (𝑘 )

10: for 𝑚 = 1 to 𝑁𝑚𝑜𝑑𝑒𝑙𝑠 do
11: Fit the surrogate 𝑓 (𝑘 )𝑚 (·) in (4.1), associated to the model 𝜑 𝑓𝑚 (·) ∈ M 𝑓 , on the training data D (𝑘 )

𝑡𝑟𝑎𝑖𝑛

by computing 𝜷 𝑓 either using (4.4) (BBO) or (4.10) (PBO)
12: Evaluate the performances of 𝑓 (𝑘 )𝑚 (·) on the validation set D (𝑘 )

𝑣𝑎𝑙
, i.e. compute 𝐽𝑅 𝑓

(
𝑓
(𝑘 )
𝑚 (·) ,D (𝑘 )

𝑣𝑎𝑙

)
as in (4.33) (BBO) or in (4.34) (PBO)

13: Compute the average performances 𝐽𝑎𝑣𝑔
𝑅 𝑓

(
𝜑 𝑓𝑚 (·)

)
,∀𝑚 = 1, . . . , 𝑁𝑚𝑜𝑑𝑒𝑙𝑠, as in (4.35)

14: Select the best model, 𝜑 𝑓𝑏𝑒𝑠𝑡 (·), as the one that minimizes (BBO) or maximizes (PBO) 𝐽𝑎𝑣𝑔
𝑅 𝑓

(
𝜑 𝑓𝑚 (·)

)

4.5 Algorithms

Algorithms 10, 11 and 12 describe, respectively, the GLIS [10], GLISp [11] and C-GLISp [156]

procedures in detail. We do not report the C-GLIS method since it can easily be obtained by

“combining” Algorithm 10 with Algorithm 12, keeping in mind that the acquisition function is the

one in (4.20c) instead of (4.20a)/(4.20d). All the procedures follow the surrogate-based scheme

described by Algorithm 5, although they include an additional phase devoted to rescaling the GOP

(2.1) (as proposed in Section 4.4.1). In Algorithm 9, we formalize what it means for a new candidate

sample 𝒙𝑁+1 ∈ Ω, obtained as described in Section 4.3, to improve upon the current best candidate

𝒙𝒃𝒆𝒔𝒕 (𝑁). We point out that no recalibration of the surrogate model 𝑓𝑁 (𝒙) in (4.1) is performed by

the GLIS [10] and C-GLIS procedures. Instead, algorithms GLISp [11] and C-GLISp [156] recalibrate
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only the shape parameter 𝜖 𝑓 of 𝑓𝑁 (𝒙) in (4.1) through𝐾-fold grid search cross-validation, as described

in Section 4.4.2. In practice, 𝜖 𝑓 is tuned only at certain iterations of the GLISp [11] and C-GLISp

[156] algorithms, as highlighted by the set K𝑅 𝑓 ⊆ {1, . . . , 𝑁𝑚𝑎𝑥 − 𝑁𝑖𝑛𝑖𝑡}.

4.6 Chapter summary

In this Chapter, we have thoroughly analyzed the GLIS [10], GLISp [11], C-GLIS and C-GLISp [156]

procedures. All methods use the radial basis function expansion surrogate to approximate either the

black-box cost function or the scoring function of the human decision-maker. The weights for the latter

model are either estimated by imposing the interpolation conditions (BBO), solving the corresponding

linear system using a low-rank approximation of the interpolation matrix, or by solving a convex

quadratic program, which ensures that the surrogate model “captures” the preferences expressed by the

decision-maker (PBO). For what concerns the black-box constraints functions, C-GLIS and C-GLISp

[156] rely on the inverse distance weighting interpolation function to approximate the probability of

Ξ-feasibility, using only the information contained inside the sets X in (2.9) and UΞ in (2.11). All

methods look for new candidate samples by minimizing acquisition functions that are weighted sums

between the surrogate models and, at most, two exploration functions. At the moment, no proofs of

global convergence are available for any of the aforementioned algorithms. In Chapter 5, we will

propose globally convergent extensions of GLIS [10] and GLISp [11]. Instead, in Chapter 6, we will

extend algorithms C-GLIS and C-GLISp [156] to make them more sample efficient.

Algorithm 9: Check for improvement of 𝒙𝒃𝒆𝒔𝒕 (𝑁)
Input: (i) Current best candidate 𝒙𝒃𝒆𝒔𝒕 (𝑁) ∈ Ω (ii) New candidate sample 𝒙𝑁+1 ∈ Ω; (iii) Information obtained
by the sample evaluations of 𝒙𝒃𝒆𝒔𝒕 (𝑁) and 𝒙𝑁+1: (BBO) measures of the black-box cost function at 𝒙𝒃𝒆𝒔𝒕 (𝑁) and
at 𝒙𝑁+1, namely 𝑦𝑏𝑒𝑠𝑡 (𝑁) and 𝑦𝑁+1, (PBO) preference expressed by the DM, i.e. 𝑏𝑀+1 = 𝜋≿ (𝒙𝑁+1, 𝒙𝒃𝒆𝒔𝒕 (𝑁)),
(BBO and PBO) Ξ-feasibility information 𝑢𝑏𝑒𝑠𝑡 (𝑁) = 𝑢Ξ (𝒙𝒃𝒆𝒔𝒕 (𝑁)) and 𝑢𝑁+1 = 𝑢Ξ (𝒙𝑁+1). If no black-box
constraints are present, then 𝑢𝑏𝑒𝑠𝑡 (𝑁) = 𝑢𝑁+1 = 1.
Output: (i) Flag ℎ𝑎𝑠𝐼𝑚𝑝𝑟𝑜𝑣𝑒𝑑, which indicates whether or not 𝒙𝑁+1 improves upon 𝒙𝒃𝒆𝒔𝒕 (𝑁).
1: if 𝑢𝑏𝑒𝑠𝑡 (𝑁) = 𝑢𝑁+1 then
2: if either 𝑦𝑁+1 < 𝑦𝑏𝑒𝑠𝑡 (𝑁) (in BBO) or 𝒙𝑁+1 ≻ 𝒙𝒃𝒆𝒔𝒕 (𝑁) (i.e. 𝑏𝑀+1 = −1, in PBO) then
3: ℎ𝑎𝑠𝐼𝑚𝑝𝑟𝑜𝑣𝑒𝑑 = true
4: else
5: ℎ𝑎𝑠𝐼𝑚𝑝𝑟𝑜𝑣𝑒𝑑 = false
6: else
7: if 𝒙𝑁+1 ∈ Ξ and 𝒙𝑏𝑒𝑠𝑡 (𝑁) ∉ Ξ (i.e. 𝑢𝑁+1 = 1, 𝑢𝑏𝑒𝑠𝑡 (𝑁) = 0) then
8: ℎ𝑎𝑠𝐼𝑚𝑝𝑟𝑜𝑣𝑒𝑑 = true ⊲ A Ξ-feasible sample is always better than a Ξ-infeasible one
9: else

10: ℎ𝑎𝑠𝐼𝑚𝑝𝑟𝑜𝑣𝑒𝑑 = false
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Algorithm 10: GLIS [10]
Input: (i) A-priori known constraint set Ω of the GOP (2.1); (ii) Number of initial samples 𝑁𝑖𝑛𝑖𝑡 ∈ N;
(iii) Budget 𝑁𝑚𝑎𝑥 ∈ N, 𝑁𝑚𝑎𝑥 > 𝑁𝑖𝑛𝑖𝑡 ; (iv) Hyper-parameters for the surrogate model 𝑓𝑁 (𝒙) in (4.1), namely
shape parameter 𝜖 𝑓 ∈ R>0, radial function 𝜑 𝑓 (·) and threshold 𝜖𝑆𝑉𝐷 ∈ R>0; (v) Exploration-exploitation
trade-off weights 𝛿1, 𝛿2 ∈ R≥0 for the acquisition function 𝑎𝑁 (𝒙) in (4.20a); (vi) Safeguard threshold 𝜖Δ𝑌 ∈ R>0
for Δ𝑌 in (4.20a).
Output: (i) Best cost obtained by the procedure 𝑦𝑏𝑒𝑠𝑡 (𝑁𝑚𝑎𝑥); (ii) Best sample obtained by the procedure
𝒙𝒃𝒆𝒔𝒕 (𝑁𝑚𝑎𝑥).
1: Rescale the GOP (2.1) as proposed in Section 4.4.1, obtaining Problem (4.27)
2: Generate a set X in (2.9) of 𝑁𝑖𝑛𝑖𝑡 starting points using a LHD (see Section 2.4)
3: Measure the black-box cost function 𝑓 (·) at each 𝒙𝑖 ∈ X, obtaining the set Y in (2.10)
4: Set 𝑁 = 𝑁𝑖𝑛𝑖𝑡
5: for 𝑘 = 1, 2, . . . , 𝑁𝑚𝑎𝑥 − 𝑁𝑖𝑛𝑖𝑡 do
6: Build the surrogate model for the cost function, 𝑓𝑁 (𝒙) in (4.1), from X and Y as in (4.4)
7: Look for the next candidate sample 𝒙𝑁+1 by solving Problem (4.23) with 𝑎𝑁 (𝒙) in (4.20a)
8: Measure the black-box cost function 𝑓 (·) at 𝒙𝑁+1, obtaining 𝑦𝑁+1
9: Update the set of samples X and the set of measures Y

10: Check if 𝒙𝑁+1 improves upon 𝒙𝒃𝒆𝒔𝒕 (𝑁), as highlighted by the flag ℎ𝑎𝑠𝐼𝑚𝑝𝑟𝑜𝑣𝑒𝑑 from Algorithm 9
11: if ℎ𝑎𝑠𝐼𝑚𝑝𝑟𝑜𝑣𝑒𝑑 then set 𝒙𝒃𝒆𝒔𝒕 (𝑁 + 1) = 𝒙𝑁+1 else keep 𝒙𝒃𝒆𝒔𝒕 (𝑁 + 1) = 𝒙𝒃𝒆𝒔𝒕 (𝑁)
12: Set 𝑁 = 𝑁 + 1

Algorithm 11: GLISp [11]
Input: (i) A-priori known constraint set Ω of the GOP (2.1); (ii) Number of initial samples 𝑁𝑖𝑛𝑖𝑡 ∈ N;
(iii) Budget 𝑁𝑚𝑎𝑥 ∈ N, 𝑁𝑚𝑎𝑥 > 𝑁𝑖𝑛𝑖𝑡 ; (iv) Hyper-parameters for the surrogate model 𝑓𝑁 (𝒙) in (4.1), namely
shape parameter 𝜖 𝑓 ∈ R>0, radial function 𝜑 𝑓 (·), regularization parameter 𝜆 𝑓 ∈ R≥0 and tolerance 𝜎𝜋 ∈ R>0;
(v) Exploration-exploitation trade-off weight 𝛿 ∈ R≥0 for the acquisition function 𝑎𝑁 (𝒙) in (4.20b); (vi) Set of
models M 𝑓 in (4.30) for the recalibration of the surrogate model 𝑓𝑁 (𝒙) in (4.1); (vii) Set of indexes for the
recalibration of the surrogate model 𝑓𝑁 (𝒙) in (4.1), K𝑅 𝑓

⊆ {1, . . . , 𝑁𝑚𝑎𝑥 − 𝑁𝑖𝑛𝑖𝑡 }, and folds ratio 𝑅 𝑓 ∈ [0, 1].
Output: (i) Best sample obtained by the procedure 𝒙𝒃𝒆𝒔𝒕 (𝑁𝑚𝑎𝑥).
1: Rescale the GOP (2.1) as proposed in Section 4.4.1, obtaining Problem (4.27)
2: Generate a set X in (2.9) of 𝑁𝑖𝑛𝑖𝑡 starting points using a LHD (see Section 2.4)
3: Evaluate the samples in X by querying the decision-maker as in Algorithm 7, obtaining the sets B (3.9)

and S (3.10), as well as the best candidate 𝒙𝒃𝒆𝒔𝒕 (𝑁𝑖𝑛𝑖𝑡 )
4: Set 𝑁 = 𝑁𝑖𝑛𝑖𝑡 , 𝑀 = |B|
5: for 𝑘 = 1, 2, . . . , 𝑁𝑚𝑎𝑥 − 𝑁𝑖𝑛𝑖𝑡 do
6: if 𝑘 ∈ K𝑅 𝑓

then recalibrate the surrogate model 𝑓𝑁 (𝒙) in (4.1) as in Algorithm 8
7: Build the surrogate model for the scoring function, 𝑓𝑁 (𝒙) in (4.1), from X,B and S by solving Problem

(4.10)
8: Look for the next candidate sample 𝒙𝑁+1 by solving Problem (4.23) with 𝑎𝑁 (𝒙) in (4.20b)
9: Let the human decision-maker express a preference between 𝒙𝑁+1 and 𝒙𝒃𝒆𝒔𝒕 (𝑁), obtaining 𝑏𝑀+1 =

𝜋≿ (𝒙𝑁+1, 𝒙𝒃𝒆𝒔𝒕 (𝑁))
10: Update the set of samples X, the set of preferences B and the mapping set S
11: Check if 𝒙𝑁+1 improves upon 𝒙𝒃𝒆𝒔𝒕 (𝑁), as highlighted by the flag ℎ𝑎𝑠𝐼𝑚𝑝𝑟𝑜𝑣𝑒𝑑 from Algorithm 9
12: if ℎ𝑎𝑠𝐼𝑚𝑝𝑟𝑜𝑣𝑒𝑑 then set 𝒙𝒃𝒆𝒔𝒕 (𝑁 + 1) = 𝒙𝑁+1 else keep 𝒙𝒃𝒆𝒔𝒕 (𝑁 + 1) = 𝒙𝒃𝒆𝒔𝒕 (𝑁)
13: Set 𝑁 = 𝑁 + 1, 𝑀 = 𝑀 + 1
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(a) Black-box optimization surrogates.

(b) Preference-based optimization surrogates.

Figure 18: Results of the recalibration procedure in Algorithm 8 applied as described in Example 4.6.
On the left: performances of each model in M 𝑓 , both for BBO and PBO; the star in magenta denotes the
best one. On the right: comparison between the real function 𝑓 (𝒙) (continuous line) and the surrogate
𝑓𝑁 (𝒙) (dashed line) with shape parameter and RBF obtained by the recalibration procedure. The circles
denote all 𝑁 = 100 available samples; the best candidate 𝒙𝒃𝒆𝒔𝒕 (𝑁) is highlighted in magenta.
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Algorithm 12: C-GLISp [156]
Input: (i) A-priori known constraint set Ω of the GOP (2.1); (ii) Number of initial samples 𝑁𝑖𝑛𝑖𝑡 ∈ N;
(iii) Budget 𝑁𝑚𝑎𝑥 ∈ N, 𝑁𝑚𝑎𝑥 > 𝑁𝑖𝑛𝑖𝑡 ; (iv) Hyper-parameters for the surrogate model 𝑓𝑁 (𝒙) in (4.1), namely
shape parameter 𝜖 𝑓 ∈ R>0, radial function 𝜑 𝑓 (·), regularization parameter 𝜆 𝑓 ∈ R≥0 and tolerance 𝜎𝜋 ∈ R>0;
(v) Exploration-exploitation trade-off weight 𝛿 ∈ R≥0 and default penalty weight 𝛿Ξ,𝑑𝑒 𝑓 𝑎𝑢𝑙𝑡 ∈ R≥0 for the
acquisition function 𝑎𝑁 (𝒙) in (4.20d); (vi) Set of models M 𝑓 in (4.30) for the recalibration of the surro-
gate model 𝑓𝑁 (𝒙) in (4.1); (vii) Set of indexes for the recalibration of the surrogate model 𝑓𝑁 (𝒙) in (4.1),
K𝑅 𝑓

⊆ {1, . . . , 𝑁𝑚𝑎𝑥 − 𝑁𝑖𝑛𝑖𝑡 }, and folds ratio 𝑅 𝑓 ∈ [0, 1].
Output: (i) Best sample obtained by the procedure 𝒙𝒃𝒆𝒔𝒕 (𝑁𝑚𝑎𝑥).
1: Rescale the GOP (2.1) as proposed in Section 4.4.1, obtaining Problem (4.27)
2: Generate a set X in (2.9) of 𝑁𝑖𝑛𝑖𝑡 starting points using a LHD (see Section 2.4)
3: Evaluate the samples in X by querying the decision-maker as in Algorithm 7, obtaining the sets B (3.9)

and S (3.10), as well as the best candidate 𝒙𝒃𝒆𝒔𝒕 (𝑁𝑖𝑛𝑖𝑡 )
4: Evaluate the Ξ-feasibility of each 𝒙𝑖 ∈ X, obtaining the set UΞ in (2.11)
5: Set 𝑁 = 𝑁𝑖𝑛𝑖𝑡 , 𝑀 = |B|
6: for 𝑘 = 1, 2, . . . , 𝑁𝑚𝑎𝑥 − 𝑁𝑖𝑛𝑖𝑡 do
7: if 𝑘 ∈ K𝑅 𝑓

then recalibrate the surrogate model 𝑓𝑁 (𝒙) in (4.1) as in Algorithm 8
8: Build the surrogate model for the scoring function, 𝑓𝑁 (𝒙) in (4.1), from X,B and S by solving Problem

(4.10)
9: Build the surrogate model for the black-box constraints functions in Ξ, i.e. estimate the probability of

Ξ-feasibility 𝑝𝑁 (𝒙 ∈ Ξ) as in (4.16) from X and UΞ

10: Recalibrate 𝛿Ξ as in (4.22)
11: Look for the next candidate sample 𝒙𝑁+1 by solving Problem (4.23) with 𝑎𝑁 (𝒙) in (4.20d)
12: Let the human decision-maker express a preference between 𝒙𝑁+1 and 𝒙𝒃𝒆𝒔𝒕 (𝑁), obtaining 𝑏𝑀+1 =

𝜋≿ (𝒙𝑁+1, 𝒙𝒃𝒆𝒔𝒕 (𝑁))
13: Evaluate the Ξ-feasiblity of 𝒙𝑁+1, obtaining 𝑢𝑁+1 = 𝑢Ξ (𝒙𝑁+1)
14: Update the sets X,B,S and UΞ

15: Check if 𝒙𝑁+1 improves upon 𝒙𝒃𝒆𝒔𝒕 (𝑁), as highlighted by the flag ℎ𝑎𝑠𝐼𝑚𝑝𝑟𝑜𝑣𝑒𝑑 from Algorithm 9
16: if ℎ𝑎𝑠𝐼𝑚𝑝𝑟𝑜𝑣𝑒𝑑 then set 𝒙𝒃𝒆𝒔𝒕 (𝑁 + 1) = 𝒙𝑁+1 else keep 𝒙𝒃𝒆𝒔𝒕 (𝑁 + 1) = 𝒙𝒃𝒆𝒔𝒕 (𝑁)
17: Set 𝑁 = 𝑁 + 1, 𝑀 = 𝑀 + 1
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Theoretical contributions





Chapter 5. Globally convergent extensions of GLIS and GLISp

This Chapter presents two contributions of this book in the context of unconstrained black-box

and preference-based optimization. The former is the extension of the GLIS [10] and GLISp [11]

procedures, while the latter is the derivation of a unified surrogate-based scheme that can be employed

both for BBO and PBO. We argue that black-box and preference-based optimization should be treated

in a unified fashion, the only difference being the definition of the surrogate model 𝑓𝑁 (𝒙), obtained

either from the measures of 𝑓 (𝒙) or the preferences expressed by the decision-maker. Hence, many

of the strategies followed by black-box optimization methods (in Chapter 2), such as cycling the

exploration-exploitation trade-off weights, can also be used for PBO. Furthermore, we can even

address the convergence of preference-based optimization algorithms by leveraging the results in

Section 3.1. Notably, to the best of our knowledge, no proofs of convergence are available for any

of the surrogate-based PBO methods reviewed in Chapter 3. Instead, in this book, we will prove the

global convergence of all the algorithms proposed in this Chapter.

The rest of this Chapter is organized as follows. Section 5.1 thoroughly analyzes the IDW distance

function in (4.17), highlighting its shortcomings when it comes to the exploration of the feasible

region Ω of the GOP (2.1). Then, in Section 5.2, we propose a revisited infill sampling criterion that

addresses the limitations of 𝑧𝑁 (𝒙) in (4.17). Section 5.3 reports our extensions of the GLIS [10] and

GLISp [11] procedures, which we refer to as GLIS-r [108] and GLISp-r [109] respectively. We also

address their convergence to the global minima of the GOP (2.1). In Section 5.4, we describe a globally

convergent unified surrogate-based scheme for black-box and preference based optimization. We refer

to the latter as generalized Metric Response Surface (gMRS [108]), since it is closely related to the

popular MSRS [116] scheme used for black-box optimization and from which MSRBF [116] originates

(see Section 2.6). Finally, Section 5.5 summarizes the results presented in this Chapter.

5.1 In-depth analysis of the IDW distance function

In this Section, we analyze the IDW distance function 𝑧𝑁 (𝒙) in (4.17) in great detail. In short, we

have empirically observed that the exploratory capabilities of 𝑧𝑁 (𝒙) diminish rapidly as the number

of samples, 𝑁 , increases. Furthermore, the scaling constants Δ𝑌 and Δ𝐹̂ in (4.20a) and (4.20b) are

often not sufficient to make the surrogate model 𝑓𝑁 (𝒙) in (4.1) comparable to the latter exploration

function. This, in turn, can result in GLIS [10] and GLISp [11] missing the global minima of the GOP

(2.1). In practice, GLIS [10] is less affected by the shortcomings of 𝑧𝑁 (𝒙) in (4.17), since it also
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includes an additional exploration function, namely the IDW variance function in (4.19). Instead, as

we will see in Chapter 7, GLISp [11] is more prone to getting stuck on local minima of 𝑓 (𝒙) compared

to its BBO counterpart. This is due to the fact that the acquisition function in (4.20b) relies heavily

on 𝑧𝑁 (𝒙) in (4.17).

5.1.1 Shortcomings of the IDW distance function

There are two main shortcomings of 𝑧𝑁 (𝒙) in (4.17) that can make its contribution negligible in

𝑎𝑁 (𝒙) in (4.20a) and (4.20b) and complicate the selection of the trade-off weights 𝛿1 (GLIS [10]) and

𝛿 (GLISp [11]):

1. Even though the range of 𝑧𝑁 (𝒙) is (−1, 0] (see Definition 4.3), what we are really interested

in when solving Problem (4.23) and, ultimately, the GOP (2.1), are the values that it assumes

for 𝒙 ∈ Ω and not on its whole domain R𝑛. In particular, there are some situations for which

|𝑧𝑁 (𝒙) | ≪ 1,∀𝒙 ∈ Ω, making its contribution in the acquisition functions (4.20a) and (4.20b)

negligible. Consider, for example, the case X = {𝒙1} (𝑁 = 1); then, ∀𝒙 ∈ R𝑛 \ X, the IDW

distance function simply becomes:

𝑧1 (𝒙) = −2
𝜋
· arctan

(
∥𝒙 − 𝒙1∥2

2

)
.

Suppose that the GOP (2.1) is only bound constrained, i.e. Ω = {𝒙 : 𝒍 ≤ 𝒙 ≤ 𝒖}. Then, 𝑧1 (𝒙)

assumes its lowest value at one (or more) of the vertices of the box defined by the constraints inΩ.

Define 𝒗Ω ∈ Ω as one of such vertices, if ∥𝒗Ω − 𝒙1∥2 is close to zero, then |𝑧1 (𝒙) | ≪ 1,∀𝒙 ∈ Ω.

Thus, unless 𝛿1 ≫ 1 in (4.20a) or 𝛿 ≫ 1 in (4.20b), 𝑓𝑁 (𝒙) and 𝑧𝑁 (𝒙) might not be comparable.

2. The (absolute) values assumed by the IDW distance function tend to decrease as the number of

samples increases. To clarify this, consider two sets of samples:

X′ = {𝒙1, . . . , 𝒙𝑁 } , |X′| = 𝑁,

X′′ = X′ ∪ {𝒙𝑁+1} , |X′′| = 𝑁 + 1.

Given any point 𝒙̃ ∈ R𝑛 \ X′′, the IDW distance functions obtained from the previously defined

sets are:

𝑧𝑁 (𝒙̃) = −2
𝜋
· arctan

(
1∑𝑁

𝑖=1 𝑤𝑖 (𝒙̃)

)
,

𝑧𝑁+1 (𝒙̃) = −2
𝜋
· arctan

(
1∑𝑁+1

𝑖=1 𝑤𝑖 (𝒙̃)

)
.
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Note that 𝑤𝑖 (𝒙̃) > 0,∀𝒙̃ ∈ R𝑛 \ X′′ and 𝑖 = 1, . . . , 𝑁 + 1 (see Definition 4.1). Hence:

|𝑧𝑁 (𝒙̃) | > |𝑧𝑁+1 (𝒙̃) | > 0,

proving the above point. In practice this means that, unless 𝛿1 in (4.20a) and 𝛿 in (4.20b) are

progressively increased as the iterations go on, GLIS [10] and (mostly) GLISp [11] will explore

the feasible setΩ of the GOP (2.1) less as the number of samples increases, regardless of whether

a region which contains the global minimizer(s) in X∗ (2.3) has been located.

A visualization of these two shortcomings is presented in Figure 19.

Figure 19: Examples of the IDW distance function 𝑧𝑁 (𝑥) in (4.17) for different numbers of points (𝑁 = 2
on the left, 𝑁 = 6 on the right) and −3 = 𝑙 ≤ 𝑥 ≤ 𝑢 = 3. Notice how 𝑧𝑁 (𝑥) does not cover its whole range
(−1, 0], at least inside the domain imposed by the bound constraints, and its absolute values decrease as
the number of samples increases.

The limitations of 𝑧𝑁 (𝒙) in (4.17) also highlight how a simple acquisition function defined as:

𝑎𝑁 (𝒙) = 𝛿 · 𝑓𝑁 (𝒙) + (1 − 𝛿) · 𝑧𝑁 (𝒙) ,

where 𝛿 ∈ [0, 1] is a exploration-exploitation trade-off weight, is not suitable for the search of the

next candidate sample as in Problem (4.23). That is because: (i) 𝑓𝑁 (𝒙) in (4.1) and 𝑧𝑁 (𝒙) in (4.17)

likely assume different ranges and (ii) the absolute values assumed by the IDW distance function tend

to decrease as 𝑁 increases. For this reason, in the acquisition functions used by GLIS [10] and GLISp

[11], the contributions are rescaled by two constants, Δ𝑌 = max
{
max𝑦𝑖∈Y 𝑦𝑖 − min𝑦𝑖∈Y 𝑦𝑖, 𝜖Δ𝑌

}
and

Δ𝐹̂ = max𝒙𝑖∈X 𝑓𝑁 (𝒙𝑖) −min𝒙𝑖∈X 𝑓𝑁 (𝒙𝑖) (see (4.20a) and (4.20b)). However, as we will see in Section

5.2, it might still not be enough to make 𝑓𝑁 (𝒙) in (4.1) and 𝑧𝑁 (𝒙) in (4.17) assume similar ranges.

In this book, we propose to rescale the surrogate model and the IDW distance function through min-

max rescaling, using some insights on the stationary points of 𝑧𝑁 (𝒙) in (4.17). Min-max rescaling

has also been successfully applied in algorithm MSRS [116] to make the contributions of 𝑓𝑁 (𝒙) in

(2.29) and 𝑧𝑁 (𝒙) in (2.51) comparable (see the acquisition function 𝑎𝑁 (𝒙) in (2.52)), although the

samples used for the rescaling are generated randomly, regardless of 𝑓𝑁 (𝒙) and 𝑧𝑁 (𝒙).
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5.1.2 Stationary points of the IDW distance function

In order to gain some insights on the stationary points of 𝑧𝑁 (𝒙) in (4.17), we first compute its gradient.

Recall that the IDW distance function is differentiable everywhere, see Proposition 4.4. The following

Lemma reports its gradient.

Lemma 5.1: Gradient of the IDW distance function. The gradient of 𝑧𝑁 (𝒙) in (4.17) is:

∇𝒙𝑧𝑁 (𝒙) =


0𝑛 if 𝒙 ∈ X

− 4
𝜋
·

∑𝑁
𝑖=1 (𝒙−𝒙𝑖)·𝑤𝑖 (𝒙)

2

1+[∑𝑁
𝑖=1 𝑤𝑖 (𝒙)]2 otherwise

. (5.1)

Proof. Consider the case 𝒙 ∈ R𝑛 \ X. We compute the gradient of the IDW distance function in

(4.17) by repeatedly applying the chain rule. Recall that the gradient of the squared Euclidean norm

is (see (2.24)):

∇𝒙 ∥𝒙 − 𝒙𝑖∥2
2 = 2 · (𝒙 − 𝒙𝑖) , ∀𝒙 ∈ R𝑛.

Consider now the IDW function𝑤𝑖 (𝒙) in (4.11), which is differentiable∀𝒙 ∈ R𝑛\{𝒙𝑖} (see Proposition

4.2). We can easily compute its gradient:

∇𝒙𝑤𝑖 (𝒙) =
𝑑

𝑑𝑡

1
𝑡

�����
𝑡=∥𝒙−𝒙𝑖 ∥2

2

· ∇𝒙 ∥𝒙 − 𝒙𝑖∥2
2

= − 1
𝑡2

�����
𝑡=∥𝒙−𝒙𝑖 ∥2

2

· 2 · (𝒙 − 𝒙𝑖)

= −2 · 𝒙 − 𝒙𝑖

∥𝒙 − 𝒙𝑖∥4
2

= −2 · (𝒙 − 𝒙𝑖) · 𝑤𝑖 (𝒙)2 , ∀𝒙 ∈ R𝑛 \ {𝒙𝑖} .

Now, let us focus on the argument of the arctan (·) function in 𝑧𝑁 (𝒙), which is (see (4.17)):

ℎ (𝒙) = 1∑𝑁
𝑖=1 𝑤𝑖 (𝒙)

, ∀𝒙 ∈ R𝑛 \ X.

We have that:

∇𝒙ℎ (𝒙) =
𝑑

𝑑𝑡

1
𝑡

�����
𝑡=

∑𝑁
𝑖=1 𝑤𝑖 (𝒙)

·
𝑁∑︁
𝑖=1

∇𝒙𝑤𝑖 (𝒙)

= − 1
𝑡2

�����
𝑡=

∑𝑁
𝑖=1 𝑤𝑖 (𝒙)

·
[
−2 ·

𝑁∑︁
𝑖=1

(𝒙 − 𝒙𝑖) · 𝑤𝑖 (𝒙)2

]
= 2 ·

∑𝑁
𝑖=1 (𝒙 − 𝒙𝑖) · 𝑤𝑖 (𝒙)2[∑𝑁

𝑖=1 𝑤𝑖 (𝒙)
]2 , ∀𝒙 ∈ R𝑛 \ X.
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Finally, using the chain rule one last time, we can compute the gradient of 𝑧𝑁 (𝒙) in (4.17) for all

𝒙 ∈ R𝑛 \ X:

∇𝒙𝑧𝑁 (𝒙) = 𝑑

𝑑𝑡

[
−2
𝜋
· arctan (𝑡)

] �����
𝑡=ℎ(𝒙)

· ∇𝒙ℎ (𝒙)

= −2
𝜋
· 1

1 + 𝑡2

�����
𝑡=ℎ(𝒙)

· 2 ·
∑𝑁
𝑖=1 (𝒙 − 𝒙𝑖) · 𝑤𝑖 (𝒙)2[∑𝑁

𝑖=1 𝑤𝑖 (𝒙)
]2

= −4
𝜋
· 1

1 +
[

1∑𝑁
𝑖=1 𝑤𝑖 (𝒙)

]2 ·
∑𝑁
𝑖=1 (𝒙 − 𝒙𝑖) · 𝑤𝑖 (𝒙)2[∑𝑁

𝑖=1 𝑤𝑖 (𝒙)
]2

= −4
𝜋
· ��������[∑𝑁

𝑖=1 𝑤𝑖 (𝒙)
]2

1 +
[∑𝑁

𝑖=1 𝑤𝑖 (𝒙)
]2 ·

∑𝑁
𝑖=1 (𝒙 − 𝒙𝑖) · 𝑤𝑖 (𝒙)2

��������[∑𝑁
𝑖=1 𝑤𝑖 (𝒙)

]2

= −4
𝜋
·
∑𝑁
𝑖=1 (𝒙 − 𝒙𝑖) · 𝑤𝑖 (𝒙)2

1 +
[∑𝑁

𝑖=1 𝑤𝑖 (𝒙)
]2 , ∀𝒙 ∈ R𝑛 \ X. (5.2)

Now, let us consider the case 𝒙𝑖 ∈ X. In the Proof of Proposition 4.4, we have shown that the partial

derivatives of 𝑧𝑁 (𝒙) in (4.17) are zero at each 𝒙𝑖 ∈ X, i.e.

∇𝒙𝑧𝑁 (𝒙𝑖) = 0𝑛, ∀𝒙𝑖 ∈ X. (5.3)

Lastly, combining (5.2) and (5.3), we obtain the expression for the gradient of the IDW distance

function ∀𝒙 ∈ R𝑛, as reported in (5.1). □

The locations of the global maximizers of 𝑧𝑁 (𝒙) in (4.17) can be deduced immediately from Definition

4.3 and Lemma 5.1.

Proposition 5.1: Global maximizers of the IDW distance function. Each 𝒙𝑖 ∈ X in (2.9) is a

global maximizer of 𝑧𝑁 (𝒙) in (4.17).

Proof. Recall that:

(i) ∇𝒙𝑧𝑁 (𝒙𝑖) = 0𝑛,∀𝒙𝑖 ∈ X, see (5.1);

(ii) 𝑧𝑁 (𝒙) < 0,∀𝒙 ∈ R𝑛 \ X, see (4.17);

(iii) 𝑧𝑁 (𝒙𝑖) = 0,∀𝒙𝑖 ∈ X, see (4.17).

From Item (i) we deduce that each 𝒙𝑖 ∈ X is a stationary point of 𝑧𝑁 (𝒙). Item (ii), in conjunction with

Item (iii), implies that such samples are local maximizers of the IDW distance function in (4.17) since

there exists a neighborhood of 𝒙𝑖 ∈ X, N (𝒙𝑖), such that 𝑧𝑁 (𝒙) ≤ 𝑧𝑁 (𝒙𝑖) ,∀𝒙 ∈ N (𝒙𝑖). Moreover,
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due to Item (ii), 𝑧𝑁 (𝒙) ≤ 𝑧𝑁 (𝒙𝑖) ,∀𝒙 ∈ R𝑛 and not just in a neighborhood of 𝒙𝑖 ∈ X. Hence, each

𝒙𝑖 ∈ X is a global maximizer of 𝑧𝑁 (𝒙) in (4.17). □

Reaching similar conclusions for the minimizers of 𝑧𝑁 (𝒙) in (4.17) is much harder; however, we

can consider some simplified situations. Note that we are not necessarily interested in finding the

minimizers of the IDW distance function in (4.17) with high accuracy, but rather to gain some insights

on where they are likely to be located so that we can rescale both 𝑧𝑁 (𝒙) in (4.17) and 𝑓𝑁 (𝒙) in (4.1)

sufficiently enough to make them comparable. Moreover, their approximate locations can be used to

solve the following optimization problem (pure exploration):

𝒙𝑁+1 = arg min
𝒙
𝑧𝑁 (𝒙) (5.4)

s.t. 𝒙 ∈ Ω

by using a multi-start derivative-based optimization method (see Section 1.2.4). Problem (5.4) is quite

relevant for the convergence of the algorithms that we will propose in Section 5.3.

Remark 5.1. In the following Paragraphs, we analyze where the local minimizers of 𝑧𝑁 (𝒙) in (4.17),

as well as the solution(s) of the simplified problem:

𝒙𝑁+1 = arg min
𝒙
𝑧𝑁 (𝒙) (5.5)

s.t. 𝒍 ≤ 𝒙 ≤ 𝒖,

are located in some specific cases. In practice, since {𝒙 : 𝒍 ≤ 𝒙 ≤ 𝒖} ⊇ Ω, the global minimum

𝑧𝑁 (𝒙𝑁+1) of Problem (5.5) is lower or at most equal to the global minimum of Problem (5.4).

Therefore, the minimizers of Problem (5.5) are better suited to perform min-max rescaling of 𝑧𝑁 (𝒙)

in (4.17) than those of Problem (5.4).

Case X = {𝒙1} (𝑁 = 1). The IDW distance function and its gradient ∀𝒙 ∈ R𝑛 \ X are:

𝑧𝑁 (𝒙) = −2
𝜋
· arctan

(
∥𝒙 − 𝒙1∥2

2

)
,

∇𝒙𝑧𝑁 (𝒙) = −4
𝜋
· (𝒙 − 𝒙1) ·

𝑤1 (𝒙)2

1 + 𝑤1 (𝒙)2 .

Clearly, ∀𝒙 ∈ R𝑛 \ X, the gradient is never zero since 𝑤1 (𝒙) > 0. Therefore, the only stationary point

is the global maximizer 𝒙1 ∈ X (see Proposition 5.1). However, if we were to consider Problem (5.5),

then its solution would be located at one of the vertices of the box defined by the bound constraints

𝒍 ≤ 𝒙 ≤ 𝒖.
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Case X = {𝒙1, 𝒙2} (𝑁 = 2). The gradient of the IDW distance function ∀𝒙 ∈ R𝑛 \ X is:

∇𝒙𝑧𝑁 (𝒙) = −4
𝜋
· (𝒙 − 𝒙1) · 𝑤1 (𝒙)2 + (𝒙 − 𝒙2) · 𝑤2 (𝒙)2

1 + [𝑤1 (𝒙) + 𝑤2 (𝒙)]2 .

We calculate the stationary points of 𝑧𝑁 (𝒙) in (4.17) by setting the gradient equal to zero:

∇𝒙𝑧𝑁 (𝒙) = 0𝑛

−4
𝜋
· (𝒙 − 𝒙1) · 𝑤1 (𝒙)2 + (𝒙 − 𝒙2) · 𝑤2 (𝒙)2

1 + [𝑤1 (𝒙) + 𝑤2 (𝒙)]2︸                  ︷︷                  ︸
>0,∀𝒙∈R𝑛\X

= 0𝑛

(𝒙 − 𝒙1) · 𝑤1 (𝒙)2 + (𝒙 − 𝒙2) · 𝑤2 (𝒙)2 = 0𝑛.

Let us consider the midpoint 𝒙𝝁 =
𝒙1+𝒙2

2 , that is such that


𝒙𝝁 − 𝒙1




2 =



𝒙𝝁 − 𝒙2




2 and for which

𝑤1
(
𝒙𝝁

)
= 𝑤2

(
𝒙𝝁

)
. If we substitute it in the previous expression, we obtain:

(
𝒙𝝁 − 𝒙1

)
· 𝑤1

(
𝒙𝝁

)2 +
(
𝒙𝝁 − 𝒙2

)
·

=𝑤1(𝒙𝝁)2︷    ︸︸    ︷
𝑤2

(
𝒙𝝁

)2
= 0𝑛

𝑤1
(
𝒙𝝁

)2 ·
(
𝒙𝝁 − 𝒙1 + 𝒙𝝁 − 𝒙2

)
= 0𝑛

2 · 𝒙𝝁 − 𝒙1 − 𝒙2 = 0𝑛

��2 · 𝒙1 + 𝒙2

��2
− 𝒙1 − 𝒙2 = 0𝑛

0𝑛 = 0𝑛.

Hence,

∇𝒙𝑧𝑁
(
𝒙𝝁

)
= 0𝑛,

which means that 𝒙𝝁 is a stationary point for 𝑧𝑁 (𝒙) in (4.17). It is easy to see by visual inspection

that such point is actually a local minimizer for the IDW distance function (see for example Figure

20). However, note that 𝒙𝝁 is not necessarily the global solution of Problem (5.5), it might just be a

local one.

CaseX = X (1)∪X (2) (𝑁 > 2). Suppose now that the samples contained inX (2.9) can be partitioned

into two clusters:

• X (1) =
{
𝒙1, . . . , 𝒙𝑁1

}
(
��X (1) �� = 𝑁1),

• X (2) =
{
𝒙𝑁1+1, . . . , 𝒙𝑁

}
(
��X (2) �� = 𝑁 − 𝑁1),
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(a) X = {𝑥1}. (b) X = {𝑥1, 𝑥2}.

(c) X = X (1) ∪ X (2) . (d) X = X (1) ∪ X (2) ∪ X (3) ∪ X (4) ∪ X (5) .

Figure 20: One-dimensional examples of the IDW distance function 𝑧𝑁 (𝑥) in (4.17) and its gradient
∇𝑥𝑧𝑁 (𝑥) in (5.1) in the four analyzed cases. The red boxes mark the different clusters while the red
dashed line highlights the values of 𝑥 for which the first derivative of 𝑧𝑁 (𝑥) is zero. Finally, the black
vertical lines mark the midpoints (either between points or centroids of the clusters). Only a portion of all
possible midpoints between centroids has been reported in the general case. Notice that the midpoints in
Figure 20c and Figure 20d are quite close to the local minimizers of 𝑧𝑁 (𝒙), while the midpoint in Figure
20b is exactly a local solution of Problem (5.5).

such that X (1) ∩ X (2) = ∅ and X (1) ∪ X (2) = X. Consider the midpoint between the centroids of each

cluster:

𝒙𝝁 =
1
2
·
[∑

𝒙𝑖∈X (1) 𝒙𝑖

𝑁1
+

∑
𝒙𝑖∈X (2) 𝒙𝑖

𝑁 − 𝑁1

]
. (5.6)

We make the simplifying assumption that all the points contained inside each cluster are quite close

to each other, i.e. 

𝒙𝑖 − 𝒙 𝑗




2 ≈ 0, ∀𝒙𝑖, 𝒙 𝑗 ∈ X (1) , 𝑖 ≠ 𝑗 , (5.7)

and similarly for the points in X (2) . In turn, we have that 𝒙1 ≈ 𝒙2 ≈ . . . ≈ 𝒙𝑁1 and 𝒙𝑁1+1 ≈ 𝒙𝑁1+2 ≈

. . . ≈ 𝒙𝑁 . Then, the midpoint in (5.6) is approximately equal to:

𝒙𝝁 =

∑
𝒙𝑖 ∈X(1) 𝒙𝑖

𝑁1
+

∑
𝒙𝑖 ∈X(2) 𝒙𝑖

𝑁−𝑁1

2

≈
��𝑁1·𝒙1

��𝑁1
+ ����(𝑁−𝑁1)·𝒙𝑁

���𝑁−𝑁1

2
=
𝒙1 + 𝒙𝑁

2
.
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Now, consider any point 𝒙 𝑗1 ∈ X (1) and 𝒙 𝑗2 ∈ X (2) . We have that:

𝒙𝝁 − 𝒙 𝑗1




2 ≈



𝒙1 + 𝒙𝑁

2
− 𝒙 𝑗1





2

Using the assumption 𝒙1 ≈ . . . ≈ 𝒙 𝑗1 ≈ . . . ≈ 𝒙𝑁1

=




𝒙1 + 𝒙𝑁
2

− 𝒙1





2

=




𝒙𝑁 − 𝒙1
2





2
.

Similarly, 

𝒙𝝁 − 𝒙 𝑗2




2 ≈



𝒙1 − 𝒙𝑁

2





2
,

and thus by applying the properties of any norm (see Appendix A.2.1, Definition A.10):

𝒙𝝁 − 𝒙 𝑗1




2 ≈


𝒙𝝁 − 𝒙 𝑗2




2 ≈ 1

2
· ∥𝒙𝑁 − 𝒙1∥2 , ∀𝒙 𝑗1 ∈ X (1) , 𝒙 𝑗2 ∈ X (2) .

Therefore, all the IDW functions 𝑤𝑖 (·) , 𝑖 = 1, . . . , 𝑁, in (4.11) approximately assume the same value

at 𝒙𝝁, since they only depend on the distances


𝒙𝝁 − 𝒙𝑖




2, namely:

𝑤1
(
𝒙𝝁

)
≈ . . . ≈ 𝑤𝑁1

(
𝒙𝝁

)
≈ 𝑤𝑁1+1

(
𝒙𝝁

)
≈ . . . ≈ 𝑤𝑁

(
𝒙𝝁

)
.

Finally, let us evaluate the gradient of the IDW distance function ∇𝒙𝑧𝑁 (·) in (5.1) at 𝒙𝝁:

∇𝒙𝑧𝑁
(
𝒙𝝁

)
= −4

𝜋
·
∑𝑁
𝑖=1

(
𝒙𝝁 − 𝒙𝑖

)
· 𝑤𝑖

(
𝒙𝝁

)2

1 +
[∑𝑁

𝑖=1 𝑤𝑖
(
𝒙𝝁

) ]2

As we have just seen, 𝑤𝑖
(
𝒙𝝁

)
≈ 𝑤1

(
𝒙𝝁

)
,∀𝑖 = 1, . . . , 𝑁

≈ −4
𝜋
·
∑

𝒙𝑖∈X (1)

𝒙1≈...≈𝒙𝑁1︷     ︸︸     ︷(
𝒙𝝁 − 𝒙𝑖

)
·𝑤1

(
𝒙𝝁

)2 + ∑
𝒙𝑖∈X (2)

𝒙𝑁1+1≈...≈𝒙𝑁︷     ︸︸     ︷(
𝒙𝝁 − 𝒙𝑖

)
·𝑤1

(
𝒙𝝁

)2

1 +
[
𝑁 · 𝑤1

(
𝒙𝝁

) ]2

≈ −4
𝜋
·
𝑤1

(
𝒙𝝁

)2 ·
[
𝑁1 ·

(
𝒙𝝁 − 𝒙1

)
+ (𝑁 − 𝑁1) ·

(
𝒙𝝁 − 𝒙𝑁

) ]
1 +

[
𝑁 · 𝑤1

(
𝒙𝝁

) ]2

≈ −4
𝜋
·
𝑤1

(
𝒙𝝁

)2 ·
[
𝑁 · 𝒙𝝁 − 𝑁1 · 𝒙1 − (𝑁 − 𝑁1) · 𝒙𝑁

]
1 +

[
𝑁 · 𝑤1

(
𝒙𝝁

) ]2

≈ −4
𝜋
·
𝑤1

(
𝒙𝝁

)2 ·
[
𝑁 · 𝒙1+𝒙𝑁

2 − 𝑁1 · 𝒙1 − (𝑁 − 𝑁1) · 𝒙𝑁
]

1 +
[
𝑁 · 𝑤1

(
𝒙𝝁

) ]2

≈ −4
𝜋
·

𝑤1
(
𝒙𝝁

)2

1 +
[
𝑁 · 𝑤1

(
𝒙𝝁

) ]2 ·
[(
𝑁

2
− 𝑁1

)
· 𝒙1 +

(
−𝑁

2
+ 𝑁1

)
· 𝒙𝑁

]
.

Clearly, if the clusters are nearly equally sized, i.e.

𝑁1 ≈ 𝑁 − 𝑁1 ≈ 𝑁

2
, (5.8)
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then:

∇𝒙𝑧𝑁
(
𝒙𝝁

)
≈ 0𝑛.

Therefore, in this case, a stationary point for the IDW distance function 𝑧𝑁 (𝒙) in (4.17) is approximately

located at the midpoint between the centroids of the two clusters. The quality of this approximation

depends on whether the assumptions in (5.7) and (5.8) are satisfied or not (and to what degree).

General case (𝑁 > 2). Any set of samples X in (2.9) can be partitioned into an arbitrary number of

disjoint clusters, say 𝐾 ∈ N, 𝐾 ≤ |X| = 𝑁 , i.e.:

X = X (1) ∪ X (2) ∪ . . . ∪ X (𝐾) , such that X (𝑖) ∩ X ( 𝑗) = ∅,∀𝑖 ≠ 𝑗 .

In this case, finding the local solutions of Problem (5.5) explicitly, or even approximately, is quite

complex. Heuristically speaking, if the clusters are “well spread” (i.e. all the points contained inside

each cluster X (𝑖) are sufficiently far away from the other ones in X ( 𝑗) , 𝑗 = 1, . . . , 𝐾, 𝑗 ≠ 𝑖), then we can

approximately deduce where the local minimizers of 𝑧𝑁 (𝒙) in (4.17) are located. For instance, Figure

21 depicts a set of samples X that has been partitioned into three clusters, X (1) ,X (2) and X (3) , and for

which the former hypothesis is satisfied. Let us write 𝑧𝑁 (𝒙) in (4.17) by considering the contribution

𝒳(1)

𝒳(2)

𝒳(3)

𝒙𝝁

𝒙10

𝒙9

Ω

𝒙𝒄
(1)

𝒙𝒄
(3)

𝒙𝒄
(2)

Figure 21: Two-dimensional example of “well spread” clusters, highlighted with different colors. The
circles denote the points contained in X while the crosses represent the centroids of X (1) ,X (2) and X (3) .
𝒙𝝁 is the midpoint between the centroids of clusters X (1) and X (2) . Finally, the blue lines highlight the
distances between the samples of cluster X (3) and 𝒙𝝁.

of each cluster explicitly and in the case 𝒙 ∈ R𝑛 \ X:

𝑧𝑁 (𝒙)=−2
𝜋
·arctan

©­«
∑︁

𝒙𝑖∈X (1)

1
∥𝒙 − 𝒙𝑖∥2

2
+

∑︁
𝒙𝑖∈X (2)

1
∥𝒙 − 𝒙𝑖∥2

2
+

∑︁
𝒙𝑖∈X (3)

1
∥𝒙 − 𝒙𝑖∥2

2

ª®¬
−1 .
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In the general case, given the clusters X (𝑖) and X ( 𝑗) , with a slight abuse of notation, we define their

centroids 𝒙 (𝑖)𝒄 , 𝒙 ( 𝑗)𝒄 , and the corresponding midpoint 𝒙𝝁 between them as:

𝒙 (𝑘)𝒄 =

∑
𝒙𝑖∈X (𝑘 ) 𝒙𝑖��X (𝑘)

�� centroid of the 𝑘-th cluster, (5.9a)

𝒙𝝁 =
𝒙 (𝑖)𝒄 + 𝒙 ( 𝑗)𝒄

2
midpoint. (5.9b)

Going back to the example depicted in Figure 21, if we consider the midpoint 𝒙𝝁 between the centroids

of X (1) and X (2) , due to the “well spread” hypothesis we can say that


𝒙𝝁 − 𝒙𝑖




2 ≫ 0,∀𝒙𝑖 ∈ X (3) ,

making the contributions of the points inside the third cluster negligible when evaluating 𝑧𝑁 (𝒙) in

(4.17) at 𝒙𝝁. Formally:

𝑧𝑁
(
𝒙𝝁

)
≈ −2

𝜋
· arctan

©­«
∑︁

𝒙𝑖∈X (1)

1

𝒙𝝁 − 𝒙𝑖


2

2

+
∑︁

𝒙𝑖∈X (2)

1

𝒙𝝁 − 𝒙𝑖


2

2

ª®¬
−1 .

Similarly, its gradient at 𝒙𝝁 is approximately equal to:

∇𝒙𝑧𝑁
(
𝒙𝝁

)
≈ −4

𝜋
·

∑
𝒙𝑖∈X (1)

𝒙𝝁−𝒙𝑖
∥𝒙𝝁−𝒙𝑖∥4

2

+ ∑
𝒙𝑖∈X (2)

𝒙𝝁−𝒙𝑖
∥𝒙𝝁−𝒙𝑖∥4

2

1 +
[∑

𝒙𝑖∈X (1)
1

∥𝒙𝝁−𝒙𝑖∥2
2

+ ∑
𝒙𝑖∈X (2)

1
∥𝒙𝝁−𝒙𝑖∥2

2

]2 .

In general, given 𝐾 clusters, if these are “well spread”, then we can consider each possible couple of

clusters separately and neglect the contributions of the remaining ones. Approximately speaking, we

could split the general case into ©­«
𝐾

2
ª®¬ distinct problems that read as follows: find the stationary points

of the IDW distance function 𝑧𝑁𝑖∪ 𝑗 (𝒙) in (4.17) defined from the set of samples X (𝑖) ∪ X ( 𝑗) , 𝑖 ≠ 𝑗

and 𝑁𝑖∪ 𝑗 =
��X (𝑖) ∪ X ( 𝑗) ��. Hence, rough locations of the stationary points of 𝑧𝑁𝑖∪ 𝑗 (𝒙) can be found by

following the same rationale proposed for the previously analyzed cases.

The following Remark summarizes the results obtained in this Section.

Remark 5.2. Consider the IDW distance function 𝑧𝑁 (𝒙) in (4.17) defined from a set of samples X in

(2.9), |X| = 𝑁 . We have that:

1. The stationary points of 𝑧𝑁 (𝒙) are approximately located at the midpoints between the centroids

of different clusters of X. In case X = {𝒙1, 𝒙2} , 𝑁 = 2, then the midpoint 𝒙𝝁 =
𝒙1+𝒙2

2 is an

exact stationary point for the IDW distance function. Vice-versa, if 𝑁 > 2, the quality of

this approximation depends on: (i) the distance between the points inside each cluster, (ii) the

number of samples which constitute each subset of X and (iii) how “well” the clusters are

spread on Ω (i.e. the points inside each cluster must be sufficiently far away from the samples

contained in the other subsets of X).
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2. The solutions of Problem (5.5) might be located at the vertices of the box defined by the

constraints {𝒙 : 𝒍 ≤ 𝒙 ≤ 𝒖}.

Some scalar examples of all the previously analyzed situations are reported in Figure 20. Note that,

although the approximate locations of the stationary points of 𝑧𝑁 (𝒙) in (4.17) described in Remark

5.2 seem to depend on many simplifying assumptions, this information is sufficient to make 𝑓𝑁 (𝒙) in

(4.1) and the IDW distance function in (4.17) assume comparable ranges (after min-max rescaling),

as we will see in the next Section.

5.2 A revisited infill sampling criterion

In this Section, we take advantage of the results summarized in Remark 5.2 to revisit the infill sampling

criteria of GLIS [10] and GLISp [11]. In particular, we build an augmented sample set X𝑎𝑢𝑔 ⊃ X

based on the approximate locations of the solutions of Problem (5.5) and use it to rescale the surrogate

model 𝑓𝑁 (𝒙) in (4.1) and the IDW distance function 𝑧𝑁 (𝒙) in (4.17). We propose an acquisition

function that is a weighted sum between these two contributions. Furthermore, differently from GLIS

[10] and GLISp [11], we suggest to cycle the exploration-exploitation trade-off weight. The same infill

sampling criteria is used both for BBO and PBO.

5.2.1 Min-max rescaling and augmented sample set

We start by defining how min-max rescaling operates.

Definition 5.1: Min-max rescaling [56]. Given a set of samples:

X = {𝒙𝑖 : 𝑖 = 1, . . . , 𝑁, 𝒙𝑖 ∈ R𝑛}

and a generic multivariable function ℎ : R𝑛 → R, min-max rescaling (or min-max normaliza-

tion) rescales ℎ (𝒙) to ℎ̄ : R𝑛 → R, defined as:

ℎ̄ (𝒙;X) = ℎ (𝒙) − ℎ𝑚𝑖𝑛 (X)
Δ𝐻 (X) , (5.10)

wherea:

ℎ𝑚𝑖𝑛 (X) = min
𝒙𝑖∈X

ℎ(𝒙𝑖), (5.11a)

ℎ𝑚𝑎𝑥 (X) = max
𝒙𝑖∈X

ℎ(𝒙𝑖), (5.11b)

Δ𝐻 (X) = ℎ𝑚𝑎𝑥 (X) − ℎ𝑚𝑖𝑛 (X) . (5.11c)

aNote that, to avoid dividing by zero in (5.10), Δ𝐻 (X) can be set to ℎ𝑚𝑎𝑥 (X) or 1 whenever ℎ𝑚𝑖𝑛 (X) =

ℎ𝑚𝑎𝑥 (X) ≠ 0 or ℎ𝑚𝑖𝑛 (X) = ℎ𝑚𝑎𝑥 (X) = 0 respectively.
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The objective of min-max rescaling is to obtain a function with range [0, 1], i.e. we would like to have

ℎ̄ : R𝑛 → [0, 1]. Clearly, the quality of the normalization depends on the information brought by the

samples contained inside X, as pointed out in the following Remark.

Remark 5.3 (Quality of min-max rescaling). We can observe that:

1. If X contains the global minimizer(s) and maximizer(s) of ℎ (𝒙), then ℎ̄ (𝒙) defined as in (5.10)

effectively has range [0, 1],

2. Otherwise, we can only ensure that 0 ≤ ℎ̄ (𝒙𝑖) ≤ 1,∀𝒙𝑖 ∈ X.

3. In general, if we increase the number of distinct samples in X, then the rescaling of ℎ (𝒙) gets

better (or, worst case, stays the same).

Going back to the problem of rescaling the IDW distance function 𝑧𝑁 (𝒙) in (4.17), if we were to apply

(5.10) using the set of previously evaluated samples X in (2.9), then it would not be effective since

𝑧𝑁 (𝒙𝑖) = 0,∀𝒙𝑖 ∈ X (see Proposition 5.1). Instead, we have opted to generate a sufficiently expressive

augmented sample set X𝑎𝑢𝑔 ⊃ X and perform min-max normalization using X𝑎𝑢𝑔 instead of X.

Consider the general case described in Section 5.1.2. Then, the augmented sample set X𝑎𝑢𝑔 can be

built in the following fashion (see Remark 5.2):

1. Partition the points in X (2.9) into different clusters. Here, for simplicity, we fix a-priori

the number 𝐾𝑎𝑢𝑔 ∈ N of clusters and apply 𝐾-means clustering [15, 58] to obtain the sets

X (1) , . . . ,X (𝐾𝑎𝑢𝑔);

2. Compute the centroids of each cluster, using (5.9a), and group them inside the set X𝑐 ={
𝒙 (1)𝒄 , . . . , 𝒙

(𝐾𝑎𝑢𝑔)
𝒄

}
;

3. Calculate all the midpoints 𝒙𝝁 between each possible couple of centroids 𝒙 (𝑖)𝒄 , 𝒙
( 𝑗)
𝒄 ∈ X𝑐, 𝒙 (𝑖)𝒄 ≠

𝒙 ( 𝑗)𝒄 , using (5.9b);

4. Build the augmented sample set as X𝑎𝑢𝑔 = X ∪ X𝜇, where X𝜇 is the set which groups all the

previously computed midpoints.

Clearly, as highlighted by (5.10) and Remark 5.3, if X𝑎𝑢𝑔 contains points that are close (or equal) to

the global minimizers and maximizers of 𝑧𝑁 (𝒙) in (4.17), then the quality of the min-max rescaling

of the IDW distance function improves.

Algorithm 13 formalizes the aforementioned steps while also taking into consideration the case

|X| ≤ 𝐾𝑎𝑢𝑔 (for which no clustering is performed). Note that we also include the bounds 𝒍 and 𝒖
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inside X𝑐 and X𝑎𝑢𝑔 for two reasons: (i) 𝒍 or 𝒖 might actually be the solutions of Problem (5.5) (see

Remark 5.2)1 and (ii) given that we also want to rescale 𝑓𝑁 (𝒙) in (4.1), adding additional points to the

augmented sample set improves the overall quality of the min-max normalization (see Remark 5.3).

Notice that the number of points contained inside X𝑎𝑢𝑔 obtained from Algorithm 13 is:

��X𝑎𝑢𝑔�� = |X| + ©­«
𝐾𝑎𝑢𝑔 + 2

2
ª®¬ + 2.

Therefore, to avoid excessively large augmented sample sets, 𝐾𝑎𝑢𝑔 needs to be chosen appropriately.

Empirically, after many tests, we have found out that 𝐾𝑎𝑢𝑔 = 5 gets the job done for most optimization

problems (see Chapter 7).

Algorithm 13: Computation of X𝑎𝑢𝑔 for min-max rescaling
Input: (i) Set of samples X in (2.9); (ii) Number of clusters 𝐾𝑎𝑢𝑔 ∈ N; (iii) Lower bounds 𝒍 ∈ R𝑛 and upper
bounds 𝒖 ∈ R𝑛 of the GOP (2.1).
Output: (i) Augmented sample set X𝑎𝑢𝑔 ⊃ X.
1: if |X| > 𝐾𝑎𝑢𝑔 then
2: Perform 𝐾-means clustering [15, 58] to group the samples in X into 𝐾𝑎𝑢𝑔 clusters X (1) , . . . ,X (𝐾𝑎𝑢𝑔 )

3: Compute the set of centroids X𝑐 using (5.9a):

X𝑐 =
{
𝒙 (𝑘 )
𝒄 : 𝒙 (𝑘 )

𝒄 =

∑
𝒙𝑖∈X (𝑘) 𝒙𝑖��X (𝑘 )

�� , 𝑘 = 1, . . . , 𝐾𝑎𝑢𝑔

}
4: else
5: Set X𝑐 = X
6: Add the bounds to X𝑐: X𝑐 = X𝑐 ∪ {𝒍, 𝒖}
7: Group all possible couples of X𝑐 (without repetition):

X𝑐𝑜𝑢𝑝𝑙𝑒𝑠 =
{(
𝒙 (𝑖)
𝒄 , 𝒙 ( 𝑗 )

𝒄

)
: 𝒙 (𝑖)

𝒄 , 𝒙 ( 𝑗 )
𝒄 ∈ X𝑐, 𝒙 (𝑖)

𝒄 ≠ 𝒙 ( 𝑗 )
𝒄

}
8: Calculate the midpoints between all the couples inside X𝑐𝑜𝑢𝑝𝑙𝑒𝑠, obtaining the set:

X𝜇 =

{
𝒙𝝁 : 𝒙𝝁 =

𝒙 (𝑖)
𝒄 + 𝒙 ( 𝑗 )

𝒄

2
,

(
𝒙 (𝑖)
𝒄 , 𝒙 ( 𝑗 )

𝒄

)
∈ X𝑐𝑜𝑢𝑝𝑙𝑒𝑠

}
9: Build the augmented sample set as X𝑎𝑢𝑔 = X ∪ X𝜇 ∪ {𝒍, 𝒖}

As a final remark, we point out that we could perform min-max normalization in (5.10) by using

the real minima and maxima of 𝑧𝑁 (𝒙) in (4.17) and 𝑓𝑁 (𝒙) in (4.1), which can be obtained by

solving four additional global optimization problems. However, we have preferred to stick with the

proposed heuristic way since we are not interested in an extremely accurate rescaling and, also, to

avoid potentially high overhead times due to solving additional optimization problems.

1We could add all 2𝑛 vertices of the box defined by the bound constraints {𝒙 : 𝒍 ≤ 𝒙 ≤ 𝒖}. However, we have preferred
to include only 𝒍 and 𝒖 to avoid increasing the cardinality of the augmented sample set, especially in the case of high-
dimensional problems.
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5.2.2 Definition of the acquisition function

We propose to use the same acquisition function both for black-box and preference-based optimization.

In particular, we define 𝑎𝑁 (𝒙) as a weighted sum between the surrogate model 𝑓𝑁 (𝒙) in (4.1) and

the IDW distance function 𝑧𝑁 (𝒙) in (4.17). The two contributions are rescaled using min-max

normalization (see Definition 5.1), based on the augmented sample set X𝑎𝑢𝑔 generated by Algorithm

13. We refer to the resulting surrogate-based methods as GLIS-r [108] and GLISp-r [109], since

they use the surrogate models and the exploration function of GLIS [10] and GLISp [11] respectively,

but adopt a different acquisition function based on min-max rescaling (hence the -r).

Definition 5.2: Acquisition function forGLIS-r [108] andGLISp-r [109]. The aforementioned

methods adopt an infill sampling criterion that is based on the following acquisition function

𝑎𝑁 : R𝑛 → R:

𝑎𝑁 (𝒙) = 𝛿 · ˆ̄𝑓𝑁
(
𝒙;X𝑎𝑢𝑔

)
+ (1 − 𝛿) · 𝑧𝑁

(
𝒙;X𝑎𝑢𝑔

)
, (5.12)

where 𝑓𝑁 (𝒙) in (4.1) and 𝑧𝑁 (𝒙) in (4.17) have been rescaled using min-max normalization as in

(5.10) and X𝑎𝑢𝑔 is generated by Algorithm 13. Finally, 𝛿 ∈ [0, 1] is the exploration-exploitation

trade-off weight.

Analogously to GLIS [10] and GLISp [11], GLIS-r [108] and GLISp-r [109] look for new candidate

samples by minimizing the acquisition function 𝑎𝑁 (𝒙) in (5.12), i.e.:

𝒙𝑁+1 = arg min
𝒙
𝑎𝑁 (𝒙) (5.13)

s.t. 𝒙 ∈ Ω.

Note that setting 𝛿 = 0 for 𝑎𝑁 (𝒙) in (5.12) corresponds to pure exploration, while fixing 𝛿 = 1 results

in pure exploitation.

The next Proposition and Lemma address the differentiability of 𝑎𝑁 (𝒙) in (5.12).

Proposition 5.2: Differentiability of the acquisition function in (5.12). The acquisition function

𝑎𝑁 (𝒙) in (5.12) is differentiable everywhere if and only if the chosen radial basis function

𝜙 𝑓𝑖
(
𝒙; 𝜖 𝑓

)
= 𝜑 𝑓

(
𝜖 𝑓 · ∥𝒙 − 𝒙𝑖∥2

)
for the surrogate model 𝑓𝑁

(
𝒙; 𝜷 𝑓 , 𝜖 𝑓

)
in (4.1) is differentiable

everywhere.

Proof. The aforementioned result follows immediately from the application of Propositions 2.1 and

4.4, which cover the differentiability of each term that appears in the weighted sum in (5.12). □
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Lemma 5.2: Gradient of the acquisition function in (5.12). Suppose that 𝑎𝑁 (𝒙) in (5.12) is

differentiable everywhere (see Proposition 5.2). Then, its gradient is:

∇𝒙𝑎𝑁 (𝒙) = 𝛿

Δ𝐹̂𝑁
(
X𝑎𝑢𝑔

) · ∇𝒙 𝑓𝑁 (𝒙) + 1 − 𝛿
Δ𝑍𝑁

(
X𝑎𝑢𝑔

) · ∇𝒙𝑧𝑁 (𝒙) , (5.14)

where ∇𝒙 𝑓𝑁 (𝒙) and ∇𝒙𝑧𝑁 (𝒙) are defined respectively as in (2.22) and (5.1).

Proof. The Proof is straightforward. 𝑎𝑁 (𝒙) in (5.12) is a weighted sum of differentiable functions,

𝑓𝑁 (𝒙) in (4.1) and 𝑧𝑁 (𝒙) in (4.17), hence its gradient is simply the weighted sum of their gradients. □

The proposed acquisition function in Definition 5.2 is similar to 𝑎𝑁 (𝒙) of MSRS [116] (cf. (2.52))

but here we use an ad-hoc augmented sample set X𝑎𝑢𝑔 (instead of a randomly generated one XΩ) and

a different exploration function. Furthermore, MSRS [116] is used only for black-box optimization,

whereas we employ the acquisition function 𝑎𝑁 (𝒙) in (5.12) both for BBO and PBO (we simply need

to “change” the surrogate model).

Table 1: Comparison of the acquisition functions of the GLIS [10], GLISp [11], GLIS-r [108] and GLISp-r
[109] algorithms.

GLIS [10] and GLISp [11] GLIS-r [108] and GLISp-r [109]
BBO 𝑓𝑁 (𝒙) + Δ𝑌 · 𝛿1 · 𝑧𝑁 (𝒙) + 𝛿2 · 𝑠𝑁 (𝒙)
PBO

(
Δ𝐹̂

)−1 · 𝑓𝑁 (𝒙) + 𝛿 · 𝑧𝑁 (𝒙) 𝛿 · ˆ̄𝑓𝑁
(
𝒙;X𝑎𝑢𝑔

)
+ (1 − 𝛿) · 𝑧𝑁

(
𝒙;X𝑎𝑢𝑔

)
Δ𝑌 =max

{
max𝑦𝑖∈Y 𝑦𝑖 − min𝑦𝑖∈Y 𝑦𝑖 , 𝜖Δ𝑌

}
X𝑎𝑢𝑔 generated by Algorithm 13

Δ𝐹̂=max𝒙𝑖∈X 𝑓𝑁 (𝒙𝑖) − min𝒙𝑖∈X 𝑓𝑁 (𝒙𝑖) ˆ̄𝑓𝑁 (·) and 𝑧𝑁 (·) rescaled as in (5.10)
𝛿1, 𝛿2, 𝛿 ∈ R≥0, 𝜖Δ𝑌 ∈ R>0 𝛿 ∈ [0, 1]

Table 1 compares the acquisition functions of GLIS [10], GLISp [11], GLIS-r [108] and GLISp-r

[109]. A visual comparison of each term of 𝑎𝑁 (𝒙) in (4.20a), (4.20b) and (5.12) is presented in Figure

22. Notice how, even though either the surrogate model in (4.1) or the IDW distance function in (4.17)

are rescaled by Δ𝑌 (GLIS [10]) or Δ𝐹̂ (GLISp [11]), their ranges differ by one or even two orders of

magnitudes. Hence, unless 𝛿1 in (4.20a) or 𝛿 in (4.20b) are properly chosen, 𝑧𝑁 (𝒙) and 𝑓𝑁 (𝒙) are not

directly comparable. Furthermore, as we have proven in Section 5.1.1, the values assumed by the IDW

distance function in (4.17) tend to decrease as the number of samples, 𝑁 , increases. Therefore, 𝛿1 and

𝛿 of GLIS [10] and GLISp [11] should be iteratively varied to compensate for this shortcoming. Recall

that the convergence of any global optimization algorithm is strictly related to how the exploration

is performed (see Chapters 1, 2 and 3). As we will see in Chapter 7, compared to GLISp-r [109],

algorithm GLISp [11] is more prone to getting stuck on the local minima of several benchmark GOPs

(2.1), due to the shortcomings of 𝑧𝑁 (𝒙) in (4.17), discussed in Section 5.1.1. Instead, GLIS [10] is
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less affected by the limitations of the IDW distance function in (4.17), since most of the exploration is

carried out by 𝑠𝑁 (𝒙) in (4.19).

(a) GLIS [10] vs GLIS-r [108] (black-box optimization).

(b) GLISp [11] vs GLISp-r [109] (preference-based optimization).

Figure 22: Comparison between the terms in the acquisition functions reported in Table 1 (left: original
acquisition functions, right: proposed one). The one-dimensional examples are obtained from the
gramacy and lee [53] function and 𝑁 = 10, while the two-dimensional examples result from the adjiman
[62] function and 𝑁 = 20 (see Appendix B). For GLIS-r [108] and GLISp-r [109], the number of centroids
used to build X𝑎𝑢𝑔 through Algorithm 13 is 𝐾𝑎𝑢𝑔 = 5.

We conclude this Section by pointing out that the selection of 𝛿 ∈ [0, 1] for the proposed acquisition
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function 𝑎𝑁 (𝒙) in (5.12) is more intuitive compared to the choice of the exploration-exploitation

trade-off weights for GLIS [10] and GLISp [11] (see Table 1). That is due to the fact that ˆ̄𝑓𝑁
(
𝒙;X𝑎𝑢𝑔

)
and 𝑧𝑁

(
𝒙;X𝑎𝑢𝑔

)
in (5.12) roughly share the same range, which is [0, 1]. In the following Section, we

address the selection of 𝛿 much more in detail.

5.2.3 Greedy 𝛿-cycling

As highlighted in Section 2.6, many black-box optimization methods iteratively vary the exploration-

exploitation trade-off weights for their respective infill sampling criteria. In the original formulations

of GLIS [10] and GLISp [11], hyper-parameters 𝛿1 and 𝛿2 for 𝑎𝑁 (𝒙) in (4.20a), as well as 𝛿 for 𝑎𝑁 (𝒙)

in (4.20b), are kept constant throughout the whole optimization process. Also, defining some form

of cycling for such coefficients can be quite complex given that, as previously seen in Section 5.2.2,

the additive terms in 𝑎𝑁 (𝒙) are not always comparable. In this book, we suggest to cycle 𝛿 for the

acquisition function in (5.12) following a strategy that is in between that of MSRS [116] and SO-SA

[151]. We refer to the proposed strategy as greedy 𝛿-cycling, which operates as follows. We define a

set of 𝑁𝑐𝑦𝑐𝑙𝑒 ∈ N weights to cycle (cycling set):

Δ𝑐𝑦𝑐𝑙𝑒 = ⟨𝛿0, . . . , 𝛿𝑁𝑐𝑦𝑐𝑙𝑒−1⟩, 𝛿 𝑗 ∈ [0, 1] ,∀𝛿 𝑗 ∈ Δ𝑐𝑦𝑐𝑙𝑒 . (5.15)

The set Δ𝑐𝑦𝑐𝑙𝑒 should contain values that are well spread within the [0, 1] range as to properly alternate

between local and global search. As long as the best candidate sample 𝒙𝒃𝒆𝒔𝒕 (𝑁) found by GLIS-r

[108] or GLISp-r [109] improves from an iteration to the other (see Algorithm 9), hyper-parameter

𝛿 in (5.12) is kept unchanged. Vice-versa, whenever GLIS-r [108] or GLISp-r [109] produce a new

candidate sample 𝒙𝑁+1 (by solving Problem (5.13)) that does not improve upon 𝒙𝒃𝒆𝒔𝒕 (𝑁), the weight

is cycled following the order proposed in Δ𝑐𝑦𝑐𝑙𝑒. More formally, suppose that, at iteration 𝑘 , we have

at our disposal |X| = 𝑁 samples and denote the trade-off parameter 𝛿 in (5.12) as 𝛿 (𝑘) to highlight

the iteration number. Furthermore, assume 𝛿 (𝑘) = 𝛿 𝑗 ∈ Δ𝑐𝑦𝑐𝑙𝑒, which has been used to find the new

candidate sample 𝒙𝑁+1 at iteration 𝑘 by solving Problem (5.13). Then, at iteration 𝑘 + 1, we select

𝛿 (𝑘 + 1) ∈ Δ𝑐𝑦𝑐𝑙𝑒 as:

𝛿 (𝑘 + 1) =


𝛿 (𝑘) if 𝑦𝑁+1 < 𝑦𝑏𝑒𝑠𝑡 (𝑁) (BBO) or 𝒙𝑁+1 ≻ 𝒙𝒃𝒆𝒔𝒕 (𝑁) (PBO)

𝛿( 𝑗+1)mod𝑁𝑐𝑦𝑐𝑙𝑒 otherwise
. (5.16)

Note that, in unconstrained BBO and PBO, a new candidate sample 𝒙𝑁+1 improves upon 𝒙𝑏𝑒𝑠𝑡 (𝑁)

either if it achieves a lower cost or if it is preferred to the latter (cf. Algorithm 9). Instead, in

constrained BBO and PBO, we should also consider the Ξ-feasibility of 𝒙𝑏𝑒𝑠𝑡 (𝑁) and 𝒙𝑁+1 (as we

will see in Section 6.2.1).
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The convergence of GLIS-r [108] and GLISp-r [109] is strictly related to the choice of the cycling

set Δ𝑐𝑦𝑐𝑙𝑒 in (5.15) and will be covered in the next Section.

5.3 Algorithms and convergence

Algorithm 14 formalizes theGLIS-r [108] andGLISp-r [109] procedures. We use the same Algorithm

to describe black-box and preference-based optimization jointly. The only difference between the two

is the information available on 𝑓 (𝒙) of the GOP (2.1) and, consequently, how the surrogate models

are estimated. GLIS-r [108] and GLISp-r [109] use the same infill sampling criteria, based on the

acquisition function 𝑎𝑁 (𝒙) in (5.12) and greedy 𝛿-cycling (described in Section 5.2.3). For the sake

of clarity, in Algorithm 14 we highlight in grey how GLIS-r [108] and GLISp-r [109] differ from

GLIS [10] (Algorithm 10) and GLISp [11] (Algorithm 11).

The next Example highlights the advantages of the greedy 𝛿-cycling strategy (in Section 5.2.3) over

the non-greedy alternative (used by most BBO methods, cf. Section 2.6).
Example 5.1: Advantages of the greedy 𝛿-cycling strategy

Consider the adjiman [62] benchmark optimization problem in Appendix B. We perform

black-box optimization using Algorithm 14 (GLIS-r [108]) with hyper-parameters:

• Number of initial samples 𝑁𝑖𝑛𝑖𝑡 = 4,

• Budget 𝑁𝑚𝑎𝑥 = 20,

• Hyper-parameters for the surrogate model 𝑓𝑁 (𝒙) in (4.1): 𝜖 𝑓 = 0.5378, 𝜑 𝑓 (·) inverse

quadratic, 𝜖𝑆𝑉𝐷 = 10−6,

• Cycling set Δ𝑐𝑦𝑐𝑙𝑒 = ⟨0.95, 0.5, 0⟩,

• Number of clusters for X𝑎𝑢𝑔: 𝐾𝑎𝑢𝑔 = 5,

• No recalibration of 𝑓𝑁 (𝒙) in (4.1), i.e. K𝑅 𝑓 = ∅,M 𝑓 = ∅.

Problem (5.13) is solved by the PSWARM [72] algorithm (see Section 1.2.5). We compare the

performances of the greedy 𝛿-cycling strategy (Section 5.2.3) with the more traditional approach

of alternating the exploration-exploitation trade-off weight at each iteration, regardless of the

improvement. Figure 23 depicts the results obtained by Algorithm 14 with and without greedy

𝛿-cycling. Notice how the greedy approach converges to the global minimizer of the GOP (2.1)

faster than the non-greedy alternative, since it keeps exploiting the surrogate model (𝛿 = 0.95)

as long as there is an improvement.
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Figure 23: Comparison of the performances of GLIS-r [108] equipped with the greedy 𝛿-cycling strategy
versus the non-greedy approach, as described in Example 5.1. The top row displays the samples obtained
by the BBO procedures (circles). The red circles are the 𝑁𝑖𝑛𝑖𝑡 initial samples, whereas the ones in black
are obtained by solving Problem (5.13). The star in grey is the global minimizer of the GOP (2.1). On
the bottom left: performances achieved by GLIS-r [108] with and without greedy 𝛿-cycling. The dashed
black-line is the global minima of the GOP (2.1). The black vertical line denotes 𝑁𝑖𝑛𝑖𝑡 . On the bottom
right: parameter 𝛿 used to find each 𝒙𝑁 , 𝑁 > 𝑁𝑖𝑛𝑖𝑡 , when solving Problem (5.13).

Next, we compare the performances of GLIS-r [108] and GLISp-r [109] for different choices of the

cycling set Δ𝑐𝑦𝑐𝑙𝑒 in (5.15).

Example 5.2: Performances for different Δ𝑐𝑦𝑐𝑙𝑒’s

Consider the camel six humps [62] function defined in Example 4.2. We perform its min-

imization over the constraint set Ω = {𝒙 : 𝒍 ≤ 𝒙 ≤ 𝒖} , 𝒍 =
[
−2 −1

]⊤
, 𝒖 =

[
2 1

]⊤
, using

GLIS-r [108] and GLISp-r [109] with the following hyper-parameters:

• Number of initial samples 𝑁𝑖𝑛𝑖𝑡 = 4,

• Budget 𝑁𝑚𝑎𝑥 = 100,

• Hyper-parameters for the surrogate model 𝑓𝑁 (𝒙) in (4.1):

– (BBO) 𝜖 𝑓 = 0.5378, 𝜑 𝑓 (·) inverse quadratic, 𝜖𝑆𝑉𝐷 = 10−6,

– (PBO) 𝜖 𝑓 = 1, 𝜑 𝑓 (·) inverse quadratic, 𝜆 𝑓 = 10−6, 𝜎𝜋 = 10−2.
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• We compare three different cycling sets:

– Δ𝑐𝑦𝑐𝑙𝑒 = ⟨0⟩ (pure exploration),

– Δ𝑐𝑦𝑐𝑙𝑒 = ⟨1⟩ (pure exploitation),

– Δ𝑐𝑦𝑐𝑙𝑒 = ⟨0.95, 0.7, 0.35, 0⟩. The rationale behind this cycling set is to “equally”

alternate between exploitation and exploration, starting from higher 𝛿’s so that, at

the first iterations of GLIS-r [108] and GLISp-r [109], the surrogate models are

exploited to find promising regions of Ω. Then, we switch to exploration in order

to avoid missing the other local/global minimizers of the GOP (2.1).

• Number of clusters for X𝑎𝑢𝑔: 𝐾𝑎𝑢𝑔 = 5,

• No recalibration of 𝑓𝑁 (𝒙) in (4.1), i.e. K𝑅 𝑓 = ∅,M 𝑓 = ∅.

Problem (5.13) is solved by the PSWARM [72] algorithm (see Section 1.2.5). The considered

GOP (2.1) has two global solutions: 𝒙∗
1 =

[
0.0898 −0.7126

]⊤
and 𝒙∗

2 = −𝒙∗
1. Figure 24

depicts the results obtained by GLIS-r [108] and GLISp-r [109] for the different Δ𝑐𝑦𝑐𝑙𝑒𝑠’s.

Notice how the cycling set Δ𝑐𝑦𝑐𝑙𝑒 = ⟨0.95, 0.7, 0.35, 0⟩ is able to (approximately) locate both

global minimizers of the considered GOP (2.1). Instead, at least in this Example, the pure

exploitation approach is able to find only 𝒙∗
2 but converges faster than the other two strategies.

In general, setting Δ𝑐𝑦𝑐𝑙𝑒 = ⟨1⟩ for GLIS-r [108] and GLISp-r [109] does not guarantee that

the procedures converge to a global minimizer of the GOP (2.1) (see Section 5.3.1). Lastly, the

pure exploration approach is quite slower than the other two choices of Δ𝑐𝑦𝑐𝑙𝑒. That is to be

expected, although exploration is a “necessary evil” for ensuring the convergence of any global

optimization procedure.
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(a) Performances of GLIS-r [108] (black-box optimization).

(b) Performances of GLISp-r [109] (preference-based optimization).

Figure 24: Comparison of the performances achieved by GLIS-r [108] and GLISp-r [109] when equipped
with different cycling sets, as described in Example 5.2. In the level curves graphs, the red circles are the
𝑁𝑖𝑛𝑖𝑡 initial samples, whereas the ones in black are obtained by solving Problem (5.13). The stars in grey
are the global minimizers of the GOP (2.1). We also report the convergence plots of GLIS-r [108] and
GLISp-r [109] for the different Δ𝑐𝑦𝑐𝑙𝑒’s. Therein, the dashed black-line is the global minima of the GOP
(2.1). Instead, the black vertical line denotes 𝑁𝑖𝑛𝑖𝑡 .
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Algorithm 14: GLIS-r [108] and GLISp-r [109]
Input: (i) A-priori known constraint set Ω of the GOP (2.1); (ii) Number of initial samples 𝑁𝑖𝑛𝑖𝑡 ∈ N;
(iii) Budget 𝑁𝑚𝑎𝑥 ∈ N, 𝑁𝑚𝑎𝑥 > 𝑁𝑖𝑛𝑖𝑡 ; (iv) Hyper-parameters for the surrogate model 𝑓𝑁 (𝒙) in (4.1): shape
parameter 𝜖 𝑓 ∈ R>0 and radial function 𝜑 𝑓 (·) (BBO and PBO), threshold 𝜖𝑆𝑉𝐷 ∈ R>0 (BBO), regularization
parameter 𝜆 𝑓 ∈ R≥0 and tolerance 𝜎𝜋 ∈ R>0 (PBO); (v) Cycling set Δ𝑐𝑦𝑐𝑙𝑒 in (5.15) for the acquisition function
𝑎𝑁 (𝒙) in (5.12); (vi) Number of clusters 𝐾𝑎𝑢𝑔 ∈ N for the augmented sample set X𝑎𝑢𝑔 generated by Algorithm
13; (vii) Set of models M 𝑓 in (4.30) for the recalibration of the surrogate model 𝑓𝑁 (𝒙) in (4.1); (viii) Set of
indexes for the recalibration of the surrogate model 𝑓𝑁 (𝒙) in (4.1), K𝑅 𝑓

⊆ {1, . . . , 𝑁𝑚𝑎𝑥 − 𝑁𝑖𝑛𝑖𝑡 }, and folds
ratio 𝑅 𝑓 ∈ [0, 1].
Output: (i) Best cost obtained by the procedure 𝑦𝑏𝑒𝑠𝑡 (𝑁𝑚𝑎𝑥) (only for BBO); (ii) Best sample obtained by the
procedure 𝒙𝒃𝒆𝒔𝒕 (𝑁𝑚𝑎𝑥).
1: Rescale the GOP (2.1) as proposed in Section 4.4.1, obtaining Problem (4.27)
2: Generate a set X in (2.9) of 𝑁𝑖𝑛𝑖𝑡 starting points using a LHD (see Section 2.4)
3: Evaluate the samples in X either by measuring the values of 𝑓 (·), obtaining the set Y in (2.10) (BBO), or

by querying the decision-maker as in Algorithm 7, obtaining the sets B (3.9) and S (3.10), as well as the
best candidate 𝒙𝒃𝒆𝒔𝒕 (𝑁𝑖𝑛𝑖𝑡 )

4: Set 𝑁 = 𝑁𝑖𝑛𝑖𝑡 (and 𝑀 = |B| for PBO)
5: Set 𝛿 = 𝛿0 ∈ Δ𝑐𝑦𝑐𝑙𝑒 and 𝑗 = 0
6: for 𝑘 = 1, 2, . . . , 𝑁𝑚𝑎𝑥 − 𝑁𝑖𝑛𝑖𝑡 do
7: if 𝑘 ∈ K𝑅 𝑓

then recalibrate the surrogate model 𝑓𝑁 (𝒙) in (4.1) as in Algorithm 8
8: Build the surrogate model for 𝑓 (𝒙) using the information at hand: in BBO, find 𝜷 𝑓 as in (4.4) whereas,

for PBO, select 𝜷 𝑓 as the solution of Problem (4.10)
9: Generate the augmented sample set X𝑎𝑢𝑔 through Algorithm 13

10: Look for the next candidate sample 𝒙𝑁+1 by solving Problem (5.13) with 𝑎𝑁 (𝒙) in (5.12)
11: Evaluate the new candidate sample, obtaining either 𝑦𝑁+1 = 𝑓 (𝒙𝑁+1) (in BBO) or 𝑏𝑀+1 =

𝜋≿ (𝒙𝑁+1, 𝒙𝒃𝒆𝒔𝒕 (𝑁)) (in PBO)
12: Update the set of samples X and either the set of measures of 𝑓 (·), Y (BBO), or the preference

information in the sets B and S (PBO)
13: Check if 𝒙𝑁+1 improves upon 𝒙𝒃𝒆𝒔𝒕 (𝑁), as highlighted by the flag ℎ𝑎𝑠𝐼𝑚𝑝𝑟𝑜𝑣𝑒𝑑 from Algorithm 9
14: if ℎ𝑎𝑠𝐼𝑚𝑝𝑟𝑜𝑣𝑒𝑑 then
15: Set 𝒙𝒃𝒆𝒔𝒕 (𝑁 + 1) = 𝒙𝑁+1
16: else
17: Keep 𝒙𝒃𝒆𝒔𝒕 (𝑁 + 1) = 𝒙𝒃𝒆𝒔𝒕 (𝑁)
18: Set 𝛿 = 𝛿 ( 𝑗+1)mod𝑁𝑐𝑦𝑐𝑙𝑒

∈ Δ𝑐𝑦𝑐𝑙𝑒 (greedy 𝛿-cycling) and 𝑗 = 𝑗 + 1
19: Set 𝑁 = 𝑁 + 1 (and 𝑀 = 𝑀 + 1 for PBO)

5.3.1 Convergence

In this Section, we prove the convergence of the GLIS-r [108] and GLISp-r [109] algorithms to the

global minima of the GOP (2.1). We point out that, at the moment, no proof of convergence is available

for GLIS [10] and GLISp [11]. Before proceeding, recall that, in BBO, we assume the measures of

the black-box cost function to be noiseless (see Assumption 2.4). The previous Assumption is needed

to prove the asymptotic convergence to the exact global minima of the GOP (2.1) (although it does not

preclude the denseness of the sequences of iterates produced by GLIS-r [108] and GLISp-r [109],

required by Theorem 1.2).
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First of all, we need to ensure that the GOP (2.1) admits at least a solution. Theorem 1.1 and

Proposition 3.1 give us sufficient conditions to guarantee that the set of global minimizers of the GOP

(2.1) is nonempty, i.e. X∗ ≠ ∅. To summarize:

1. The constraint set Ω of the GOP (2.1) must be compact,

2. In BBO, the black-box cost function 𝑓 (𝒙) must be continuous. Instead, in PBO, the preference

relation ≿ on Ω of the human decision-maker must be continuous (see Definition 3.4) and the

DM must be rational (see Definition 3.1). Recall that, by Theorem 3.1, if the conditions in

Proposition 3.1 hold, then ≿ can be represented by a continuous utility function 𝑢≿ (𝒙). In

turn, this makes the cost function of the GOP (2.1) in PBO, which is the scoring function

𝑓 (𝒙) = −𝑢≿ (𝒙) of the DM, continuous (cf. Remark 3.2).

If the GOP (2.1) admits a solution, then any global optimization algorithm that produces a sequence

of iterates, ⟨𝒙𝑖⟩𝑖≥1, that is dense in Ω is guaranteed to (ultimately) find it, see Theorem 1.2. For the

remainder of this Chapter, we use the following notation.

Notation and conventions. Consider the sequence of iterates ⟨𝒙𝑖⟩𝑖≥1 produced by a global optimization

algorithm. We define:

• X∞ as the set containing all the elements of ⟨𝒙𝑖⟩𝑖≥1,

• X𝑘 ⊆ X∞ as the set containing all the elements of ⟨𝒙𝑖⟩𝑘𝑖=1, which is a subsequence of ⟨𝒙𝑖⟩𝑖≥1

composed of its first 𝑘 ∈ N entries.

The following Theorem gives us a sufficient condition that ensures the denseness of X∞.
Theorem 5.1: A sufficient condition for the denseness of X∞ [115]

Let Ω be a compact subset of R𝑛 and let ⟨𝒙𝑖⟩𝑖≥1 be the sequence of iterates generated by an

algorithm A (when run indefinitely). Suppose that there exists a strictly increasing sequence

of positive integers ⟨𝑖𝑡⟩𝑡≥1, 𝑖𝑡 ∈ N, such that ⟨𝒙𝑖⟩𝑖≥1 satisfies the following condition for some

𝛼 ∈ (0, 1]:

min
1≤𝑖≤𝑖𝑡−1



𝒙𝑖𝑡 − 𝒙𝑖




2 ≥ 𝛼 · 𝑑Ω
(
X𝑖𝑡−1

)
, ∀𝑡 ∈ N, (5.17)

where:

𝑑Ω
(
X𝑖𝑡−1

)
= max

𝒙∈Ω
min

1≤𝑖≤𝑖𝑡−1
∥𝒙 − 𝒙𝑖∥2 . (5.18)

Then, X∞ generated by A is dense in Ω. Hence, A converges to the global minimum of any

continuous function 𝑓 : R𝑛 → R over Ω.
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Proof. Define the sequence ⟨𝑑𝑡⟩𝑡≥1 of minimum distances between the points 𝒙𝑖𝑡 (indexed by the

elements of ⟨𝑖𝑡⟩𝑡≥1) and the samples in X𝑖𝑡−1 (which does not include 𝒙𝑖𝑡 ) as:

𝑑𝑡 = min
1≤𝑖≤𝑖𝑡−1



𝒙𝑖𝑡 − 𝒙𝑖




2 . (5.19)

Now, suppose that X∞ is not dense in Ω. Then, there exists a point 𝒙̃ ∈ Ω and a constant 𝜖 ∈ R>0 such

that the open ball centered at 𝒙̃ ∈ Ω and with radius 𝜖 (namely B (𝒙̃; 𝜖)) does not contain any element

of X∞, i.e.:

∥𝒙̃ − 𝒙𝑖∥2 ≥ 𝜖, ∀𝒙𝑖 ∈ X∞. (5.20)

From (5.17), (5.19) and (5.20) we have that:

𝑑𝑡 ≥ 𝛼 · 𝑑Ω
(
X𝑖𝑡−1

)
≥ 𝛼 · 𝜖 > 0, ∀𝑡 ∈ N. (5.21)

Let 𝜖 = 𝛼 · 𝜖 . Since 𝑑𝑡 ≥ 𝜖,∀𝑡 ∈ N, we have that:

𝒙𝑖𝑡′ − 𝒙𝑖𝑡′′




2 ≥ 𝜖, for any 𝑡′ > 𝑡′′. (5.22)

Ω is a compact subset of R𝑛 and hence it is bounded (see Theorem A.2). Therefore, we can build a

hypercube Ω𝐻 which contains Ω, i.e. Ω ⊆ Ω𝐻 . Define the side length of Ω𝐻 as 𝑟 ·𝜖
2·
√
𝑛

for some positive

integer 𝑟 ∈ N. Partition Ω𝐻 into 𝑟𝑛 equally-sized hypercubes,

Ω
(1)
𝐻
, . . . ,Ω

(𝑟𝑛)
𝐻
, (5.23)

where each Ω
(ℎ)
𝐻
, ℎ = 1, . . . , 𝑟𝑛, has side length 𝜖

2·
√
𝑛
< 𝜖 and the length of its main diagonal is

𝜖
2 . Clearly, 𝒙̃ must lie in one of the hypercubes in (5.23). Now, from (5.22), any two elements of

the sequence ⟨𝒙𝑖𝑡 ⟩𝑡≥1, say 𝒙𝑖𝑡′ and 𝒙𝑖𝑡′′ with 𝑡′ > 𝑡′′, must belong to different hypercubes in (5.23),

since


𝒙𝑖𝑡′ − 𝒙𝑖𝑡′′




2 is greater than the length of the main diagonal of any Ω

(ℎ)
𝐻
, ℎ = 1, . . . , 𝑟𝑛. But

this is a contradiction because ⟨𝒙𝑖𝑡 ⟩𝑡≥1 is an infinite sequence of distinct points (see (5.22)) whereas

Ω
(1)
𝐻
, . . . ,Ω

(𝑟𝑛)
𝐻

is only a finite partition of Ω. Consequently, ∃𝒙𝑖𝑡 in the sequence ⟨𝒙𝑖𝑡 ⟩𝑡≥1 such that

𝒙𝑖𝑡 ∈ B (𝒙̃; 𝜖). Thus, X∞, which contains all the elements of the sequence ⟨𝒙𝑖𝑡 ⟩𝑡≥1, must be dense in

Ω. Finally, by Theorem 1.2, algorithm A converges to the global minima of the GOP (2.1). □

Theorem 5.1 has been used to prove the convergence of the CORS [115] algorithm (see Section

2.6). We could interpret the previous Theorem as follows: in order to guarantee the convergence of

an algorithm A, we must ensure that, infinitely often, it produces samples 𝒙𝑖𝑡 (indexed by the elements

of ⟨𝑖𝑡⟩𝑡≥1) that are at least 𝜖 = 𝛼 · 𝑑Ω
(
X𝑖𝑡−1

)
> 0 away from the previously evaluated ones. Intuitively,

𝑑Ω
(
X𝑖𝑡−1

)
in (5.18) is the maximum distance between any point contained inside the constraint set Ω

and its closest sample in X𝑖𝑡−1.
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Now, consider a compact constraint set Ω and a continuous acquisition function 𝑎𝑁 (𝒙). Coherently

with most surrogate-based methods (see Section 2.6), all elements of the sequence ⟨𝒙𝑖𝑡 ⟩𝑡≥1 are obtained

by solving:

𝒙𝑖𝑡 = arg min
𝒙
𝑎𝑖𝑡−1 (𝒙)

s.t. 𝒙 ∈ Ω,

hence 𝒙𝑖𝑡 ∈ Ω,∀𝑡 ∈ N. Therefore, we could extend the condition in (5.17) to:

𝛼 · 𝑑Ω
(
X𝑖𝑡−1

)
≤ min

1≤𝑖≤𝑖𝑡−1



𝒙𝑖𝑡 − 𝒙𝑖




2 ≤ 𝑑Ω
(
X𝑖𝑡−1

)
, ∀𝑡 ∈ N. (5.24)

We are now ready to state the convergence Theorem for GLIS-r [108] and GLISp-r [109].
Theorem 5.2: Convergence of GLIS-r [108] and GLISp-r [109]

Let Ω ⊂ R𝑛 be a compact set and either:

• 𝑓 : R𝑛 → R be a continuous function (BBO) or

• ≿ be a continuous preference relation on Ω of a rational (as in Definition 3.1) human

decision-maker (PBO).

Then, provided that ∃𝛿 𝑗 ∈ Δ𝑐𝑦𝑐𝑙𝑒 in (5.15) such that 𝛿 𝑗 = 0 and 𝑁𝑚𝑎𝑥 → ∞, Algorithm

14 converges to the global minima of the GOP (2.1) for any choice of its remaining hyper-

parametersa.

aFormally, we should also ensure that the surrogate model 𝑓𝑁 (𝒙) in (4.1) is continuous. However, that is the case
for any of the radial basis functions reported in Definition 2.6.

Proof. Compactness of Ω, continuity of 𝑓 (𝒙) or ≿ and rationality of the DM are conditions that

ensure the existence of a solution for the GOP (2.1).

Consider the sequence of iterates ⟨𝒙𝑖⟩𝑖≥1 produced by Algorithm 14. The first 𝑁𝑖𝑛𝑖𝑡 ∈ N elements

of ⟨𝒙𝑖⟩𝑖≥1 are obtained by the LHD. Instead, each 𝒙𝑖 ∈ X∞, 𝑖 > 𝑁𝑖𝑛𝑖𝑡 , is selected as the solution of

Problem (5.13).

Now, suppose that 𝛿 in (5.12) is cycled regardless of the improvement that the new candidate samples

might bring (non-greedy cycling). Denote the exploration-exploitation trade-off weight at iteration 𝑘

of Algorithm 14 as 𝛿 (𝑘) and assume that 𝛿(𝑘) = 𝛿 𝑗 ∈ Δ𝑐𝑦𝑐𝑙𝑒. Then, the cycling is performed as:

𝛿 (𝑘 + 1) = 𝛿( 𝑗+1)mod𝑁𝑐𝑦𝑐𝑙𝑒 , ∀𝑘 ∈ N, (5.25)

instead of (5.16). Without loss of generality, suppose that Δ𝑐𝑦𝑐𝑙𝑒 in (5.15) is defined as:

𝛿 𝑗 ≠ 0,∀ 𝑗 = 0, . . . , 𝑁𝑐𝑦𝑐𝑙𝑒 − 2, and 𝛿𝑁𝑐𝑦𝑐𝑙𝑒−1 = 0.
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Then, every 𝑁𝑐𝑦𝑐𝑙𝑒 iterations Algorithm 14 looks for a new candidate sample by minimizing the

(min-max rescaled) IDW distance function in (4.17), regardless of the surrogate model in (4.1), see

𝑎𝑁 (𝒙) in (5.12) and Problem (5.13). We define the following strictly increasing sequence of positive

integers:

⟨𝑖𝑡′⟩𝑡′≥1 = ⟨𝑁𝑖𝑛𝑖𝑡 + 𝑡′ · 𝑁𝑐𝑦𝑐𝑙𝑒⟩𝑡′≥1, (5.26)

that is such that:

𝒙𝑖𝑡′ = arg min
𝒙
𝑧𝑖𝑡′−1

(
𝒙;X𝑎𝑢𝑔

)
, ∀𝑡′ ∈ N (5.27)

s.t. 𝒙 ∈ Ω.

Problem (5.27) is equivalent to:

𝒙𝑖𝑡′ = arg min
𝒙
𝑧𝑖𝑡′−1 (𝒙) , ∀𝑡′ ∈ N (5.28)

s.t. 𝒙 ∈ Ω,

since scaling and shifting the IDW distance function in (4.17) does not change its minimizers [100].

Now, recall from Proposition 5.1 that each 𝒙𝑖 ∈ X𝑖𝑡′−1 is a global maximizer of Problem (5.28).

Furthermore, 𝑧𝑖𝑡′−1 (𝒙) in (4.17) is differentiable everywhere and thus continuous (see Proposition

4.4). Then, by the Extreme Value Theorem 1.1, Problem (5.28) admits at least a solution. Hence, we

can conclude that:

𝒙𝑖𝑡′ ∉ X𝑖𝑡′−1 =⇒ ∃𝜖′ ∈ R>0 such that min
1≤𝑖≤𝑖𝑡′−1



𝒙𝑖𝑡′ − 𝒙𝑖




2 ≥ 𝜖′, ∀𝑡′ ∈ N. (5.29)

Clearly, from (5.24), we have that:

𝜖′ ≤ 𝑑Ω
(
X𝑖𝑡′−1

)
, ∀𝑡′ ∈ N. (5.30)

By combining (5.29) and (5.30), we get:

0 < 𝜖′ ≤ 𝑑Ω
(
X𝑖𝑡′−1

)
, ∀𝑡′ ∈ N. (5.31)

Therefore, ∃𝛼′ ∈ (0, 1] such that 𝜖′ = 𝛼′ · 𝑑Ω
(
X𝑖𝑡′−1

)
,∀𝑡′ ∈ N. The condition (5.17) of Theorem 5.1

is satisfied and thus Algorithm 14 with 𝛿 cycled as in (5.25) converges to the global minima of the

GOP (2.1).

Next, consider the greedy 𝛿-cycling strategy proposed in Section 5.2.3 and for an arbitrary choice of

Δ𝑐𝑦𝑐𝑙𝑒 in (5.15). Let us examine the case in (5.16) when 𝛿 is kept unchanged from an iteration of

Algorithm 14 to the other. Denote as ⟨𝑖𝑡′′⟩𝑡
′′
𝑚𝑎𝑥

𝑡′′=1, 𝑡
′′
𝑚𝑎𝑥 ∈ N, the sequence of indexes of those samples
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that improve upon the current best candidate, resulting in no change in the exploration-exploitation

trade-off weight. We have that:

𝑦𝑖𝑡′′ < 𝑦𝑏𝑒𝑠𝑡 (𝑖𝑡′′ − 1) (BBO) or 𝒙𝑖𝑡′′ ≻ 𝒙𝒃𝒆𝒔𝒕 (𝑖𝑡′′ − 1) (PBO), ∀𝑡′′ : 1 ≤ 𝑡′′ ≤ 𝑡′′𝑚𝑎𝑥 . (5.32)

Clearly, 𝒙𝑖𝑡′′ ∉ X𝑖𝑡′′−1 since it either achieves a lower value of 𝑓 (·) or it is strictly preferred to all the

other samples. Thus, we could define a positive constant 𝜖′′ ∈ R>0 as in (5.29). The caveat is that the

sequence ⟨𝑖𝑡′′⟩𝑡
′′
𝑚𝑎𝑥

𝑡′′=1 might be finite if Δ𝑐𝑦𝑐𝑙𝑒 in (5.15) does not include a zero entry. That is because we

have no guarantee that the solution of:

𝒙𝑁+1 = arg min
𝒙
𝑎𝑁 (𝒙) , ∀𝑁 : 𝑁 ≠ 𝑖𝑡′′ − 1, 1 ≤ 𝑡′′ ≤ 𝑡′′𝑚𝑎𝑥 (5.33)

s.t. 𝒙 ∈ Ω,

with 𝑎𝑁 (𝒙) defined as in (5.12), is not already present in X𝑁 . Also note that Problem (5.33) always

admits a solution since 𝑎𝑁 (𝒙) in (5.12) is continuous and Ω is compact. Alternatively speaking, if

�𝛿 𝑗 ∈ Δ𝑐𝑦𝑐𝑙𝑒 such that 𝛿 𝑗 = 0, then we have no guarantee that Algorithm 14 improves its current best

candidate infinitely often. Hence, the result in Theorem 5.1 does not apply for ⟨𝑖𝑡′′⟩𝑡
′′
𝑚𝑎𝑥

𝑡′′=1, since the

sequence is finite2.

Finally, let us consider the greedy 𝛿-cycling strategy in (5.16) as whole and assume, as in Theorem 5.2,

that ∃𝛿 𝑗 ∈ Δ𝑐𝑦𝑐𝑙𝑒 in (5.15) such that 𝛿 𝑗 = 0. We can build a strictly increasing sequence of positive

integers ⟨𝑖𝑡⟩𝑡≥1 by merging:

• The elements of the sequence ⟨𝑖𝑡′′⟩𝑡
′′
𝑚𝑎𝑥

𝑡′′=1, which are the indexes of those samples that improve

upon the best candidates 𝒙𝒃𝒆𝒔𝒕 (𝑖𝑡′′ − 1) ,∀𝑡′′ : 1 ≤ 𝑡′′ ≤ 𝑡′′𝑚𝑎𝑥;

• The elements of the sequence ⟨𝑖𝑡′⟩𝑡′≥1, which constitute the indexes of those samples found by

solving the pure exploration Problem (5.28). Note that, unless Algorithm 14 always improves

upon its current best candidate (in which case ⟨𝑖𝑡′′⟩𝑡
′′
𝑚𝑎𝑥

𝑡′′=1 is actually infinite, and hence X∞ is

dense in Ω), Problem (5.13) is solved with 𝛿 = 0 for the acquisition function 𝑎𝑁 (𝒙) in (5.12)

infinitely often, although not necessarily every 𝑁𝑐𝑦𝑐𝑙𝑒 iterations as in (5.26).

Hence, we can select a positive constant 𝜖 ∈ R>0 as 𝜖 = min {𝜖 ′, 𝜖′′} which, analogously to (5.31), is

such that:

0 < 𝜖 ≤ 𝑑Ω
(
X𝑖𝑡−1

)
, ∀𝑡 ∈ N. (5.34)

2Note that finiteness of ⟨𝑖𝑡 ′′⟩𝑡
′′
𝑚𝑎𝑥

𝑡 ′′=1 does not necessarily preclude the global convergence of Algorithm 14 for all possible
GOPs (2.1). For example, if 𝑓 (𝒙) is a constant function then, after we evaluate the first sample 𝒙1, any other point brings
no improvement. However, finiteness of ⟨𝑖𝑡 ′′⟩𝑡

′′
𝑚𝑎𝑥

𝑡 ′′=1 implies that X∞ is not dense in Ω, hence we cannot guarantee the
converge of Algorithm 14 for any continuous 𝑓 (𝒙) over Ω.
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Therefore, ∃𝛼 ∈ (0, 1] such that 𝜖 = 𝛼 · 𝑑Ω
(
X𝑖𝑡−1

)
,∀𝑡 ∈ N. The condition (5.17) of Theorem 5.1

is satisfied and thus Algorithm 14 with 𝛿 in (5.12) cycled following the greedy 𝛿-cycling strategy in

(5.16) converges to the global minima of the GOP (2.1). □

We end this Section with some concluding Remarks.

Remark 5.4 (A note on the convergence in the preference-based framework). Most

preference-based response surface techniques, such as the ones reviewed in Section 3.5, do not

address their convergence to the global minima of the GOP (2.1). In this book, we have shown that, by

leveraging some results from the utility theory framework (see Section 3.1 and Section 3.2), we can find

sufficient conditions on the preference relation of the human decision-maker (≿ on Ω) that guarantee

the existence of a solution for the GOP (2.1) and allow us to analyze the convergence of any PBO

procedure as we would in BBO. In particular, if the DM is rational and ≿ on Ω is continuous, then

denseness of the sequence of iterates ⟨𝒙𝑖⟩𝑖≥1 produced by a preference-based optimization algorithm

A guarantees the convergence of A to the ≿-maxima of Ω.

Remark 5.5 (Choice of the cycling set). Theorem 5.2 guarantees that, under some hypotheses, GLIS-r

[108] and GLISp-r [109] converge to the global minima of the GOP (2.1), however it does not give any

indication on their convergence rates. In particular, if Δ𝑐𝑦𝑐𝑙𝑒 is actually ⟨0⟩, Algorithm 14 amounts to

performing an exhaustive search without considering the information on 𝑓 (𝒙) brought by the samples

in X (2.9), which is quite inefficient. Therefore, it is best to include some 𝛿 𝑗 ’s in Δ𝑐𝑦𝑐𝑙𝑒 that allow

the surrogate model to be taken into consideration. For this reason, we suggest including terms that

are well spread within the [0, 1] range, including a zero entry to ensure the result in Theorem 5.2.

Intuitively, the rates of convergence will be dependent on how well 𝑓𝑁 (𝒙) in (4.1) approximates 𝑓 (𝒙)

as well as on the choice of Δ𝑐𝑦𝑐𝑙𝑒 in (5.15).

5.4 A general surrogate-based scheme for unconstrained BBO and PBO

In this Section, we generalize Algorithm 14 so that it can handle any (continuous) surrogate model as

well as any (proper) exploration function. In the unconstrained black-box optimization literature, there

exist some surrogate-based methods, such as MSRS [116] and CORS [115], which make no specific

assumptions on 𝑓𝑁 (𝒙) as to let the user select the one that is best suited for the application at hand.

There exist alternative surrogate models to the ones based on RBFs or GPs, reviewed in Chapter 2 and

Chapter 3. In black-box optimization, polynomials, Support Vector Machines (SVMs) for regression

and neural networks have also been used to approximate the black-box cost function of the GOP (2.1)
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[65, 149]. Instead, in surrogate-based PBO, fewer surrogate models have been tried (see Section 3.4),

although alternatives exist. For example, in [141], the author proposes a neural network architecture

to estimate the utility function of a human decision-maker.

In what follows, we define a general surrogate-based scheme which we refer to as generalized Metric

Response Surface (gMRS [108]), since it can be seen as an extension of the MSRS [116] scheme that

can handle both black-box and preference-based optimization. gMRS [108] adopts the same infill

sampling criterion proposed in Section 5.2 but takes into account that different surrogate models

𝑓𝑁 (𝒙) and exploration functions 𝑧𝑁 (𝒙) can be employed for the definition of the acquisition function

in (5.12). Similarly, the exploration-exploitation dilemma is addressed by the greedy 𝛿-cycling strategy

in Section 5.2.3. Here, we give sufficient conditions on 𝑓𝑁 (𝒙) and 𝑧𝑁 (𝒙) which, combined with the

inclusion of a zero entry in Δ𝑐𝑦𝑐𝑙𝑒 in (5.15), guarantee the global convergence of gMRS [108]. In

practice, GLIS-r [108] and GLISp-r [109] are two implementations of the gMRS [108] scheme that

use the surrogate model in (4.1) and the exploration function in (4.17).

5.4.1 Infill sampling criterion

As previously pointed out, gMRS [108] relies on the acquisition function 𝑎𝑁 (𝒙) in (5.12) to drive the

search for new candidate samples, although 𝑓𝑁 (𝒙) and 𝑧𝑁 (𝒙) need not be, respectively, the ones in

(4.1) and (4.17). Moreover, the augmented sample set X𝑎𝑢𝑔 in (5.12) can be generated differently from

Algorithm 13, since the latter is tailored for the IDW distance function in (4.17). Formally:

Definition 5.3: Acquisition function for gMRS [108]. The aforementioned scheme adopts an

infill sampling criterion that is based on the following acquisition function 𝑎𝑁 : R𝑛 → R:

𝑎𝑁 (𝒙) = 𝛿 · ˆ̄𝑓𝑁
(
𝒙;X𝑎𝑢𝑔

)
+ (1 − 𝛿) · 𝑧𝑁

(
𝒙;X𝑎𝑢𝑔

)
, (5.35)

where:

• 𝑓𝑁 : R𝑛 → R is a continuous surrogate model,

• 𝑧𝑁 : R𝑛 → R is a proper exploration function (see Section 5.4.2),

• The latter two functions have been rescaled using min-max normalization (see Definition

5.1),
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• X𝑎𝑢𝑔 =
{
𝒙𝒂𝒖𝒈𝑖 : 𝑖 = 1, . . . , 𝑁𝑎𝑢𝑔, 𝒙𝒂𝒖𝒈𝑖 ∈ Ω

}
, 𝑁𝑎𝑢𝑔 ∈ N, is the augmented sample set,

which needs to be defined so that:

𝑓𝑁𝑚𝑖𝑛
(
X𝑎𝑢𝑔

)
≈ min

𝒙∈Ω
𝑓𝑁 (𝒙), (5.36a)

𝑓𝑁𝑚𝑎𝑥
(
X𝑎𝑢𝑔

)
≈ max

𝒙∈Ω
𝑓𝑁 (𝒙), (5.36b)

𝑧𝑁𝑚𝑖𝑛
(
X𝑎𝑢𝑔

)
≈ min

𝒙∈Ω
𝑧𝑁 (𝒙), (5.36c)

𝑧𝑁𝑚𝑎𝑥
(
X𝑎𝑢𝑔

)
≈ max

𝒙∈Ω
𝑧𝑁 (𝒙). (5.36d)

• 𝛿 ∈ [0, 1] is the exploration-exploitation trade-off weight.

Analogously to GLIS-r [108] and GLISp-r [109], gMRS [108] looks for new candidate samples by

minimizing the acquisition function 𝑎𝑁 (𝒙) in (5.35), i.e.:

𝒙𝑁+1 = arg min
𝒙
𝑎𝑁 (𝒙) (5.37)

s.t. 𝒙 ∈ Ω.

The exploration-exploitation trade-off weight 𝛿 in (5.35) is cycled following the greedy 𝛿-cycling

paradigm described in Section 5.2.3. Concerning the augmented sample set, an adequate choice

of X𝑎𝑢𝑔 for 𝑎𝑁 (𝒙) in (5.35) makes the surrogate model 𝑓𝑁 (𝒙) and the exploration function 𝑧𝑁 (𝒙)

comparable, as we have seen in Section 5.2. Alternatively to Algorithm 13, X𝑎𝑢𝑔 can be selected as

follows:

• Set X𝑎𝑢𝑔 = X. This is not recommended since each 𝒙𝑖 ∈ X in (2.9) might maximize the

exploration function 𝑧𝑁 (𝒙). That is the case for the IDW distance function in (4.17) (see

Proposition 5.1). Alternatively, we could use a GP surrogate model and the (negative) standard

deviation of the predictive distribution as the exploration function, i.e. 𝑧𝑁 (𝒙) = −
√︁
Σ 𝑓𝑁 (𝒙) (see

Section 2.5.2 and Section 3.4.2). The same rationale is followed by the lower confidence bound

acquisition function in (2.68) for Bayesian optimization, although the terms 𝑓𝑁 (𝒙) = 𝜇 𝑓𝑁 (𝒙)

and 𝑧𝑁 (𝒙) are not rescaled in any way. In practice, the standard deviation of the predictive

distribution is minimal at the samples in X (respectively, maximal for 𝑧𝑁 (𝒙)), hence selecting

X𝑎𝑢𝑔 = X does not constitute the best course of action.

• Generate X𝑎𝑢𝑔 by randomly sampling Ω. This rationale is followed by MSRS [116], see the

acquisition function in (2.52).
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• Find the global minimizer(s) and maximizer(s) of both 𝑓𝑁 (𝒙) and 𝑧𝑁 (𝒙) in (5.35) and build

X𝑎𝑢𝑔 from them. Clearly, among the proposed strategies for selecting X𝑎𝑢𝑔, this is the most

computationally expensive, but also the most precise: the conditions in (5.36) become exact

equalities. In practice, it is often not required to rescale 𝑓𝑁 (𝒙) and 𝑧𝑁 (𝒙) in (5.35) so accurately,

see for example the results in Section 5.2, Figure 22.

5.4.2 Proper exploration functions

The aim of 𝑧𝑁 (𝒙) in (5.35) is to drive the optimization procedure towards those regions of Ω of the

GOP (2.1) where few samples are present. To do so, the exploration function must use the information

available at the current iteration, i.e. X in (2.9) and, possibly but not necessarily, either the measures

of the cost function Y in (2.10) or the preferences in B (3.9) and S (3.10). We provide the following

Definition to highlight which functions 𝑧𝑁 (𝒙) are suitable to be used as exploration functions for the

acquisition function in (5.35).

Definition 5.4: Proper exploration function. Let Ω be a compact subset of R𝑛 and X be defined

as in (2.9). Then, a function 𝑧𝑁 : R𝑛 → R is said to be a proper exploration function if it is

continuous and the solution of the pure exploration problem, i.e.:

𝒙𝑁+1 = arg min
𝒙
𝑧𝑁 (𝒙) (5.38)

s.t. 𝒙 ∈ Ω,

is not already present in X, that is 𝒙𝑁+1 ∉ Xa.

aIn practice, Problem (5.38) could have multiple solutions. When that is the case, we simply require that at least
one of them is not in X and select the latter as the new candidate sample 𝒙𝑁+1.

We remark that, in the previous Definition, compactness of Ω and continuity of 𝑧𝑁 (𝒙) are technical

assumptions that ensure the existence of a solution of Problem (5.38).

Some examples of proper exploration functions are:

• The IDW distance function in (4.17),

𝑧𝑁 (𝒙) =


0 if 𝒙 ∈ X

− 2
𝜋
· arctan

{[∑𝑁
𝑖=1 ∥𝒙 − 𝒙𝑖∥−2

2
]−1} otherwise

, (5.39)

which is differentiable everywhere (see Proposition 4.4) and thus continuous. Furthermore, as

proven by Proposition 5.1, every 𝒙𝑖 ∈ X is a global maximizer of (5.39). Hence, 𝒙𝑁+1 obtained

by Problem (5.38) is not already contained in X.

168



Globally convergent extensions of GLIS and GLISp

• The exploration function used by MSRS [116], in (2.51):

𝑧𝑁 (𝒙) = −min
𝒙𝑖∈X

∥𝒙 − 𝒙𝑖∥2 . (5.40)

Clearly, 𝑧𝑁 (𝒙) in (5.40) is continuous since it is the composition of continuous functions.

Furthermore, it holds that 𝑧𝑁 (𝒙𝑖) = 0,∀𝒙𝑖 ∈ X and 𝑧𝑁 (𝒙) < 0,∀𝒙 ∈ R𝑛 \ X. Hence, 𝑧𝑁 (𝒙) in

(5.40) is a proper exploration function.

• Consider a surrogate model of 𝑓 (𝒙) for the GOP (2.1) that is based on Gaussian processes

(see Section 2.5.2 and Section 3.4.2). We can use the (negative) standard deviation of the

predictive distribution as a proper exploration function. For example, in BBO, keeping in mind

the predictive distribution of 𝑓 (𝒙) in (2.44), we define:

𝑧𝑁 (𝒙) = −
√︃
Σ 𝑓𝑁 (𝒙)

= −
√︂
𝑘 𝑓

(
𝒙, 𝒙; 𝜽 𝑓

)
− 𝒌 𝑓

(
𝒙; 𝜽 𝑓

)⊤ ·
[
𝐾 𝑓

(
𝜽 𝑓

)
+ 𝜎2

𝑓
· 𝐼𝑁

]−1
· 𝒌 𝑓

(
𝒙; 𝜽 𝑓

)
, (5.41)

where:

– 𝑘 𝑓
(
·, ·; 𝜽 𝑓

)
is the chosen kernel and 𝜽 𝑓 is a vector of hyper-parameters (see Theorem 2.2),

– 𝒌 𝑓
(
·; 𝜽 𝑓

)
is the kernel vector defined in (2.45),

– 𝐾 𝑓

(
𝜽 𝑓

)
is the Gram matrix in (2.37),

– 𝜎2
𝑓
∈ R≥0 is the variance of the Gaussian noise which affects the measures of the black-box

cost function (see Assumption 2.5).

Note that, if 𝑘 𝑓
(
·, ·; 𝜽 𝑓

)
is continuous, then so is 𝑧𝑁 (𝒙) in (5.41). We also give an intuitive

explanation as to why the minimization of 𝑧𝑁 (𝒙) in (5.41) leads to new candidate samples that

are not already contained in X. Roughly speaking, the GP predictions are the least uncertain

in the neighborhoods of the observations in:

D = {(𝒙𝑖, 𝑦𝑖) : 𝒙𝑖 ∈ X, 𝑦𝑖 ∈ Y, 𝑖 = 1, . . . , 𝑁} .

Formally, in [148], the author proves that the predictive variance at a sample 𝒙 ∈ R𝑛, namely

Σ 𝑓𝑁 (𝒙), cannot increase by adding points to X, i.e.:

Σ 𝑓𝑁 (𝒙) ≤ Σ 𝑓𝑁−1 (𝒙) , ∀𝑁 ∈ N, 𝑁 > 1.

Furthermore, since Σ 𝑓𝑁 (𝒙) is the variance of a Gaussian distribution, we have that:

0 ≤ Σ 𝑓𝑁 (𝒙) ≤ Σ 𝑓𝑁−1 (𝒙) , ∀𝑁 ∈ N, 𝑁 > 1.
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It follows that:

Σ 𝑓𝑁 (𝒙) ≤ Σ 𝑓1 (𝒙) = 𝑘 𝑓
(
𝒙, 𝒙; 𝜽 𝑓

)
−

𝑘 𝑓
(
𝒙1, 𝒙; 𝜽 𝑓

)2

𝑘 𝑓
(
𝒙1, 𝒙1; 𝜽 𝑓

)
+ 𝜎2

𝑓

, ∀𝑁 ∈ N, 𝑁 > 1.

Now, let us evaluate the variance at 𝒙1 ∈ X and suppose that the measures of 𝑓 (𝒙) are not

affected by noise (i.e. 𝜎2
𝑓
= 0), then:

Σ 𝑓𝑁 (𝒙1) ≤ Σ 𝑓1 (𝒙1) = 𝑘 𝑓
(
𝒙1, 𝒙1; 𝜽 𝑓

)
−
𝑘 𝑓

(
𝒙1, 𝒙1; 𝜽 𝑓

)�2
((((((((
𝑘 𝑓

(
𝒙1, 𝒙1; 𝜽 𝑓

) = 0, ∀𝑁 ∈ N, 𝑁 > 1.

Thus, Σ 𝑓𝑁 (𝒙1) must be zero, since it is a non-negative quantity. In conclusion, if𝜎2
𝑓
= 0 (and the

Gram matrix 𝐾 𝑓

(
𝜽 𝑓

)
in (2.37) is positive-definite), then the GP surrogate model interpolates

the samples in D, resulting in Σ 𝑓𝑁 (𝒙𝑖) = 0,∀𝒙𝑖 ∈ X and Σ 𝑓𝑁 (𝒙) ≥ 0,∀𝒙 ∈ R𝑛 \ X. Then,

the solutions of Problem (5.38) for 𝑧𝑁 (𝒙) in (5.41) are not already contained in X, making it a

proper exploration function. In practice, even if the measures of 𝑓 (𝒙) are not affected by noise,

the term 𝜎2
𝑓
· 𝐼𝑁 is often added to the Gram matrix 𝐾 𝑓

(
𝜽 𝑓

)
to guarantee its invertibility and/or

avoid ill-conditioning [153]. Hence, Σ 𝑓𝑁 (·) might not necessarily be zero at 𝒙𝑖 ∈ X but surely

it does not assume its maximal value there.

Figure 25 compares the proper exploration functions in (5.39), (5.40) and (5.41). The global maximizer

of both 𝑧𝑁 (𝒙) in (5.39) and in (5.40) is (approximately) 𝑥 = 1.5, whereas 𝑧𝑁 (𝒙) in (5.41) assumes its

maximal value at 𝑥 = 0.5.

5.4.3 General scheme and convergence

The gMRS [108] optimization scheme is described in Algorithm 15. Due to its general nature, we

have opted to keep the description of the procedure more abstract, omitting some minor algorithmic

details such as the rescaling of the optimization problem and the recalibration of the surrogate model,

although these can be easily included. Notice how the GLIS-r [108] and GLISp-r [109] methods, in

Algorithm 14, follow the gMRS [108] scheme.

Convergence

The global convergence of the gMRS [108] scheme can be addressed in a similar fashion to the Proof

of Theorem 5.2 for algorithms GLIS-r [108] and GLISp-r [109]. In what follows, we use the

same notation of Section 5.3.1 and, consistently with Assumption 2.4, we suppose that, in BBO,

the measures of the black-box cost function are not affected by noise. We start by proving that any

algorithm that solves the pure exploration Problem (5.38) infinitely often and with a proper 𝑧𝑁 (𝒙)

generates a sequence of iterates that is dense in Ω.
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Figure 25: One-dimensional comparison between the proper exploration functions in (5.39), (5.40)
and (5.41) for 𝑁 = 10. Concerning 𝑧𝑁 (𝒙) in (5.41), we have used the squared exponential kernel:

𝑘 𝑓
(
𝒙, 𝒙̃; 𝜽 𝑓

)
=

(
𝜃
(1)
𝑓

)2
· exp

{
− 1

2 ·
(
∥𝒙− 𝒙̃∥2

𝜃
(2)
𝑓

)2
}

. In particular, we have fixed 𝜎 𝑓 = 10−6 for (5.41), while the

hyper-parameters 𝜽 𝑓 are computed through maximum likelihood estimation (i.e. as in Problem (2.41)).
All 𝑧𝑁 (𝒙)’s have been rescaled using min-max normalization (see Definition 5.1 and 𝑎𝑁 (𝒙) in (5.35)),
with X𝑎𝑢𝑔 generated by Algorithm 13 using 𝐾𝑎𝑢𝑔 = 5, 𝑙 = 0.5, 𝑢 = 2.5.

Proposition 5.3. Let Ω be a compact subset of R𝑛 and let ⟨𝒙𝑖⟩𝑖≥1 be the sequence of iterates

generated by an algorithm A (when run indefinitely). Consider a proper exploration function

𝑧𝑁 (𝒙) (as in Definition 5.4) and suppose that there exists a strictly increasing sequence of

positive integers ⟨𝑖𝑡⟩𝑡≥1, 𝑖𝑡 ∈ N, such that the samples 𝒙𝑖𝑡 ∈ X∞, 𝑡 ∈ N, are found by solving the

following optimization problem (pure exploration):

𝒙𝑖𝑡 = arg min
𝒙
𝑧𝑖𝑡−1(𝒙), ∀𝑡 ∈ N (5.42)

s.t. 𝒙 ∈ Ω.

Then, X∞ generated by A is dense in Ω.

Proof. This Proposition can be proven by applying the definition of proper exploration function and

following the same rationale used in the Proof of Theorem 5.2.

From Definition 5.4, we have that Problem (5.42) admits at least a solution that is not already contained

in X𝑖𝑡−1. Select 𝒙𝑖𝑡 ∈ Ω as one of such solutions, then:

𝒙𝑖𝑡 ∉ X𝑖𝑡−1 =⇒ ∃𝜖 ∈ R>0 such that min
1≤𝑖≤𝑖𝑡−1



𝒙𝑖𝑡 − 𝒙𝑖




2 ≥ 𝜖, ∀𝑡 ∈ N. (5.43)
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By combining (5.24) and (5.43), we get:

0 < 𝜖 ≤ 𝑑Ω
(
X𝑖𝑡−1

)
, ∀𝑡 ∈ N. (5.44)

Therefore, ∃𝛼 ∈ (0, 1] such that 𝜖 = 𝛼 · 𝑑Ω
(
X𝑖𝑡−1

)
,∀𝑡 ∈ N. The condition (5.17) of Theorem 5.1 is

satisfied and thus algorithm A produces a sequence of iterates that is dense in Ω. □

Finally, we state the convergence Theorem for the gMRS [108] scheme.
Theorem 5.3: Convergence of gMRS [108]

Let Ω ⊂ R𝑛 be a compact set and either:

• 𝑓 : R𝑛 → R be a continuous function (BBO) or

• ≿ be a continuous preference relation on Ω of a rational (as in Definition 3.1) human

decision-maker (PBO).

If 𝑧𝑁 (𝒙) for the acquisition function in (5.35) is a proper exploration function (as in Definition

5.4) and ∃𝛿 𝑗 ∈ Δ𝑐𝑦𝑐𝑙𝑒 in (5.15) such that 𝛿 𝑗 = 0, then, for 𝑁𝑚𝑎𝑥 → ∞, Algorithm 15 converges

to the global minima of the GOP (2.1) for any continuous surrogate model 𝑓𝑁 (𝒙).

Proof. Compactness of Ω, continuity of 𝑓 (𝒙) or ≿ and rationality of the DM are conditions that

ensure the existence of a solution for the GOP (2.1). Furthermore, continuity of 𝑓𝑁 (𝒙) and 𝑧𝑁 (𝒙)

guarantee that Problem (5.37) always admits a solution.

Consider the sequence of iterates ⟨𝒙𝑖⟩𝑖≥1 produced by Algorithm 15. The first 𝑁𝑖𝑛𝑖𝑡 ∈ N elements

of ⟨𝒙𝑖⟩𝑖≥1 are obtained by the experimental design. Instead, each 𝒙𝑖 ∈ X∞, 𝑖 > 𝑁𝑖𝑛𝑖𝑡 , is selected

as the solution of Problem (5.37), cycling 𝛿 in (5.35) as proposed in Section 5.2.3. Following the

same rationale adopted in the Proof of Theorem 5.2, we consider two strictly increasing sequences of

positive integers:

• ⟨𝑖𝑡′′⟩𝑡
′′
𝑚𝑎𝑥

𝑡′′=1, 𝑡
′′
𝑚𝑎𝑥 ∈ N, which represents the indexes of those samples that improve upon the best

candidates 𝒙𝒃𝒆𝒔𝒕 (𝑖𝑡′′ − 1) ,∀𝑡′′ : 1 ≤ 𝑡′′ ≤ 𝑡′′𝑚𝑎𝑥 , see (5.32).

• ⟨𝑖𝑡′⟩𝑡′≥1, which represents the indexes of those samples found by solving the pure exploration

problem in (5.38) (i.e. for 𝛿 = 0 in (5.35)).

We distinguish two cases: (i) if Algorithm 15 always improves upon its current best candidate, then

⟨𝑖𝑡′′⟩𝑡
′′
𝑚𝑎𝑥

𝑡′′=1 is actually an infinite sequence; (ii) otherwise, due to the greedy 𝛿-cycling in (5.16), the pure

exploration problem in (5.38) is solved infinitely often. In any of the aforementioned cases, X∞ is
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dense in Ω, see the Proof of Theorem 5.2 and Proposition 5.3. Hence, by Theorem 1.2, Algorithm 15

converges to the global minima of the GOP (2.1). □

Clearly, since gMRS [108] is globally convergent, then so are GLIS-r [108] and GLISp-r [109],

as proven in Section 5.3.1.

Algorithm 15: gMRS [108]
Input: (i) A-priori known constraint setΩ of the GOP (2.1); (ii) Number of initial samples 𝑁𝑖𝑛𝑖𝑡 ∈ N; (iii) Budget
𝑁𝑚𝑎𝑥 ∈ N, 𝑁𝑚𝑎𝑥 > 𝑁𝑖𝑛𝑖𝑡 ; (iv) Continuous surrogate model 𝑓𝑁 (𝒙) with, possibly, its hyper-parameters;
(v) Proper exploration function 𝑧𝑁 (𝒙) (see Definition 5.4); (vi) Cycling set Δ𝑐𝑦𝑐𝑙𝑒 in (5.15) for the acquisition
function 𝑎𝑁 (𝒙) in (5.35).
Output: (i) Best cost obtained by the procedure 𝑦𝑏𝑒𝑠𝑡 (𝑁𝑚𝑎𝑥) (only for BBO); (ii) Best sample obtained by the
procedure 𝒙𝒃𝒆𝒔𝒕 (𝑁𝑚𝑎𝑥).
1: Generate a set X in (2.9) of 𝑁𝑖𝑛𝑖𝑡 starting points using a suitable experimental design (see Section 2.4)
2: Evaluate the samples in X either by measuring the values of 𝑓 (·), obtaining the set Y in (2.10) (BBO), or

by querying the decision-maker as in Algorithm 7, obtaining the sets B (3.9) and S (3.10), as well as the
best candidate 𝒙𝒃𝒆𝒔𝒕 (𝑁𝑖𝑛𝑖𝑡 )

3: Set 𝑁 = 𝑁𝑖𝑛𝑖𝑡 (and 𝑀 = |B| for PBO)
4: Set 𝛿 = 𝛿0 ∈ Δ𝑐𝑦𝑐𝑙𝑒 and 𝑗 = 0
5: for 𝑘 = 1, 2, . . . , 𝑁𝑚𝑎𝑥 − 𝑁𝑖𝑛𝑖𝑡 do
6: Build the surrogate model 𝑓𝑁 (𝒙) from X and the information on 𝑓 (𝒙) at hand
7: Generate the augmented sample set X𝑎𝑢𝑔
8: Look for the next candidate sample 𝒙𝑁+1 by solving Problem (5.37) with 𝑎𝑁 (𝒙) in (5.35)
9: Evaluate the new candidate sample, obtaining either 𝑦𝑁+1 = 𝑓 (𝒙𝑁+1) (in BBO) or 𝑏𝑀+1 =

𝜋≿ (𝒙𝑁+1, 𝒙𝒃𝒆𝒔𝒕 (𝑁)) (in PBO)
10: Update the set of samples X and either the set of measures of 𝑓 (·), Y (BBO), or the preference

information in the sets B and S (PBO)
11: Check if 𝒙𝑁+1 improves upon 𝒙𝒃𝒆𝒔𝒕 (𝑁), as highlighted by the flag ℎ𝑎𝑠𝐼𝑚𝑝𝑟𝑜𝑣𝑒𝑑 from Algorithm 9
12: if ℎ𝑎𝑠𝐼𝑚𝑝𝑟𝑜𝑣𝑒𝑑 then
13: Set 𝒙𝒃𝒆𝒔𝒕 (𝑁 + 1) = 𝒙𝑁+1
14: else
15: Keep 𝒙𝒃𝒆𝒔𝒕 (𝑁 + 1) = 𝒙𝒃𝒆𝒔𝒕 (𝑁)
16: Set 𝛿 = 𝛿 ( 𝑗+1)mod𝑁𝑐𝑦𝑐𝑙𝑒

∈ Δ𝑐𝑦𝑐𝑙𝑒 (greedy 𝛿-cycling) and 𝑗 = 𝑗 + 1
17: Set 𝑁 = 𝑁 + 1 (and 𝑀 = 𝑀 + 1 for PBO)

5.5 Chapter summary

In this Chapter, we have described the second and third contributions of this book, namely the

extension of the GLIS [10] and GLISp [11] procedures, resulting in the GLIS-r [108] and GLISp-r

[109] algorithms, and the derivation of a general surrogate-based scheme for unconstrained black-

box and preference-based optimization, which we have called gMRS [108]. The main novelty in this

dissertation is the assessment of the global convergence of the proposed PBO methods (and not just

the BBO ones). Notably, to the best of our knowledge, no proof of convergence is available for any

of the preference-based response surface techniques described in Chapter 3. Here, we have seen how,
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by leveraging some results taken from the utility theory framework (Section 3.1 and Section 3.2), it

is possible to address the convergence of a PBO procedure as we would for any global optimization

method.

For what concerns GLIS [10] and GLISp [11] specifically, we have identified two shortcomings of

the IDW distance function in (4.17). In GLIS-r [108] and GLISp-r [109], we have addressed the

limitations of 𝑧𝑁 (𝒙) in (4.17) through the definition of a revisited infill sampling criterion. Moreover,

we have also proposed a novel way of alternating between exploration and exploitation, namely the

greedy 𝛿-cycling approach, which is aimed at making GLIS-r [108] and GLISp-r [109] more sample

efficient. The proposed extensions will be compared toGLIS [10] andGLISp [11] on several benchmark

optimization problems in Chapter 7. Therein, we will show that the modifications suggested in this

Chapter can make GLIS-r [108] and GLISp-r [109] more robust than the original methods, especially

in the preference-based setting.
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Chapter 6. Handling black-box constraints in GLIS-r and

GLISp-r

This Chapter is devoted to describing the fourth contribution of this book, which is the extension of

the GLIS-r [108] and GLISp-r [109] procedures (see Chapter 5) to the constrained black-box and

preference-based optimization frameworks. We refer to the proposed extensions as C-GLIS-r and

C-GLISp-r respectively. Similarly to Chapter 5, we treat BBO and PBO in a unified fashion.

In what follows, we assume that the black-box constraints functions of the GOP (2.1) are not measur-

able, i.e. the set CΞ in (2.12) is not available. Instead, we only have at our disposal the set UΞ in (2.11),

which discerns the Ξ-feasible samples in X (2.9) from the Ξ-infeasible ones. The rationale behind this

choice is that, in PBO, if only decision-maker-based constraints are present (see Definition 3.6), then

CΞ and UΞ carry the same information. We build a surrogate model for the black-box constraints func-

tions in a similar fashion to the algorithm proposed in [9]: X and UΞ are used to train a Probabilistic

Support Vector Machine (PSVM) classifier [15, 106], which estimates the probability of Ξ-feasibility,

𝑝𝑁 (𝒙 ∈ Ξ) = 𝑝
(
𝒙 ∈ Ξ

��UΞ,X, 𝒙
)
, of new candidate samples. Support Vector Machines (SVMs)

[15] have also been employed in [3] to approximate the feasible region of the GOP (2.1). Instead,

C-GLIS and C-GLISp [156] estimate the probability of a sample being Ξ-feasible by means of IDW

interpolation (see Section 4.1.3). Here, we propose a slight modification to the probabilistic support

vector machine classifier that makes it better suited for black-box and preference-based optimization.

The infill sampling criterion of C-GLIS-r and C-GLISp-r combines ideas taken from multiple BBO

algorithms (in Section 2.6):

1. We use different strategies based on whether a Ξ-feasible sample is available or not (cf. the

two-phase approach of COBRA [112]);

2. We look for new candidate samples as in SuperEGO [125] and Constrained EGO with Support

Vector Machines [9], i.e. by optimizing some acquisition function subject to the constraint

𝑝𝑁 (𝒙 ∈ Ξ) ≥ 𝛾, where 𝛾 ∈ [0, 1] is a user-defined threshold on the estimated probability of

Ξ-feasibility, see Problem (2.72) and Problem (2.74).

3. We satisfy the constraint 𝑝𝑁 (𝒙 ∈ Ξ) ≥ 𝛾 with some slack, since 𝑝𝑁 (𝒙 ∈ Ξ) ≥ 𝛾 is only an

approximation of the probability of Ξ-feasibility. This rationale is different from that of COBRA

[112], which looks for new candidate samples by solving Problem (2.63), wherein a margin is
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added to each black-box constraint to make it less likely to find a Ξ-infeasible point, achieving

a more conservative procedure.

4. We modify the greedy 𝛿-cycling strategy of GLIS-r [108] and GLISp-r [109] to take into

account that the improvement also depends on the Ξ-feasibility, see Algorithm 9.

The remainder of this Chapter is organized as follows. Section 6.1 briefly reviews how PSVMs

work and presents a novel way of making these classifiers more suited for constrained black-box and

preference-based optimization. We also discuss how to calibrate their hyper-parameters. Section 6.2

describes the infill sampling criterion of C-GLIS-r and C-GLISp-r. Then, Section 6.3 reports the

pseudocode for the proposed methods and gives some remarks on their global convergence. Lastly,

Section 6.4 summarizes the results presented in this Chapter.

6.1 Probabilistic support vector machines revisited

Before introducing the proposed revisitation of the PSVM classifier, which is tailored for constrained

black-box and preference-based optimization, it is best to review some basic concepts. In Section

6.1.1, we discuss how Support Vector Machines (SVMs) [15] work. Off-the-shelf, SVMs are binary

classifiers that do not return the probability of a point belonging either to one or the other class.

In [106], the author gives them a probabilistic interpretation, obtaining the so-called Probabilistic

Support Vector Machine (PSVM) classifier, which we review in Section 6.1.2. Finally, in Section

6.1.3, we describe the proposed revisitation of the PSVM classifier. We conclude our dissertation on

PSVMs by discussing the calibration of their hyper-parameters, in Section 6.1.4.

6.1.1 Support vector machines

SVMs assume that the samples 𝒙𝑖 ∈ X in (2.9) either belong to a positive or a negative class, denoted

by the labels 𝑡𝑖 = 1 and 𝑡𝑖 = −1 respectively. Therefore, instead of using the set UΞ in (2.11), we

define the set of labels TΞ as:

TΞ = {𝑡𝑖 = I (𝑢𝑖 = 1) − I (𝑢𝑖 = 0) , 𝑢𝑖 ∈ UΞ, 𝑖 = 1, . . . , 𝑁} (6.1)

and the corresponding vector of labels as 𝒕 =
[
𝑡1 . . . 𝑡𝑁

]⊤
∈ {−1, 1}𝑁 .

In the context of constrained BBO and PBO, support vector machines can be used to estimate the

boundary of the setΞ of the GOP (2.1). From a machine learning perspective, this boundary is referred

to as the decision boundary and it separates the points belonging to the positive class (Ξ-feasible)

from those of the negative class (Ξ-infeasible). In order to describe even highly nonlinear decision
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boundaries, SVM classifiers are equipped with kernels (see Theorem 2.2). We restrict our analysis

to those kernels that rely on radial basis functions. Note that not all RBFs in Definition 2.6 can

be used for that purpose, we must consider only the ones that satisfy Mercer’s Theorem 2.2. For

example, the Gaussian RBF is a popular choice. We consider a radial basis function expansion model

𝑚Ξ𝑁 : R𝑛 → R which, differently from (2.20), also includes the intercept 𝛽(0)
Ξ

∈ R:

𝑚Ξ𝑁

(
𝒙; 𝜷̃Ξ, 𝜖Ξ

)
= 𝛽

(0)
Ξ

+
𝑁∑︁
𝑖=1

𝛽
(𝑖)
Ξ

· 𝜑Ξ (𝜖Ξ · ∥𝒙 − 𝒙𝑖∥2)

= 𝛽
(0)
Ξ

+
𝑁∑︁
𝑖=1

𝛽
(𝑖)
Ξ

· 𝜙Ξ𝑖 (𝒙; 𝜖Ξ) (6.2)

= 𝝓̃Ξ (𝒙; 𝜖Ξ)⊤ · 𝜷̃Ξ.

In (6.2), with a slight abuse of notation, we have defined 𝜷̃Ξ =

[
𝛽
(0)
Ξ

𝜷Ξ

]⊤
∈ R𝑁+1 and 𝝓̃Ξ (𝒙; 𝜖Ξ) =[

1 𝝓Ξ (𝒙; 𝜖Ξ)
]⊤

∈ R𝑁+1. As always, 𝜑Ξ : R≥0 → R denotes the chosen radial function and 𝜖Ξ ∈ R>0

is the shape parameter (see Definition 2.4 and Definition 2.5). The decision boundary of the SVM

classifier is described by the following equation:

𝑚Ξ𝑁

(
𝒙; 𝜷̃Ξ, 𝜖Ξ

)
= 0. (6.3)

Furthermore, we can predict the class of a point 𝒙̃ ∈ R𝑛 as:

ˆ̃𝑡 = sign
{
𝑚Ξ𝑁

(
𝒙̃; 𝜷̃Ξ, 𝜖Ξ

)}
. (6.4)

Clearly, different choices of the vector of weights 𝜷̃Ξ in (6.2) result in different decision boundaries

(which might not even correctly separate the two classes). In practice, support vector machine

classifiers compute 𝜷̃Ξ so that the margin, i.e. the smallest distance between the decision boundary

and any of the samples in X (2.9), is maximized. For this reason, SVMs are often referred to as

maximum margin classifiers. Hard margin support vector machines compute the weights 𝜷̃Ξ in (6.2)

so that all the training samples are classified correctly, i.e.

sign
{
𝑚Ξ𝑁

(
𝒙𝑖; 𝜷̃Ξ, 𝜖Ξ

)}
= 𝑡𝑖, ∀𝑡𝑖 ∈ TΞ, 𝒙𝑖 ∈ X,

or, equivalently,

𝑡𝑖 · 𝑚Ξ𝑁

(
𝒙𝑖; 𝜷̃Ξ, 𝜖Ξ

)
≥ 1, ∀𝑡𝑖 ∈ TΞ, 𝒙𝑖 ∈ X. (6.5)

In practice, there might not exist a choice of 𝜷̃Ξ in (6.2) for which (6.5) holds. Soft margin support

vector machines compensate for this shortcoming by allowing some training samples to be misclassi-

fied. To do so, we introduce one slack variable 𝜀(𝑖)
𝑆𝑉𝑀

∈ R≥0, 𝑖 = 1, . . . , 𝑁, for each constraint in (6.5),

obtaining:

𝑡𝑖 · 𝑚Ξ𝑁

(
𝒙𝑖; 𝜷̃Ξ, 𝜖Ξ

)
≥ 1 − 𝜀(𝑖)

𝑆𝑉𝑀
, ∀𝑡𝑖 ∈ TΞ, 𝒙𝑖 ∈ X. (6.6)
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In this case, we are interested in a classifier that maximizes the margin but, at the same time, penalizes

the misclassification of the data in:

D = {(𝒙𝑖, 𝑡𝑖) : 𝒙𝑖 ∈ X, 𝑡𝑖 ∈ TΞ, 𝑖 = 1, . . . , 𝑁} . (6.7)

Soft margin SVMs boil down to solving the following optimization problem:

arg min
𝜶Ξ

𝐽𝑆𝑉𝑀 (𝜶Ξ) (6.8)

s.t. 0𝑁 ≤ 𝜶Ξ ≤ 𝐶𝑆𝑉𝑀 · 1𝑁

𝒕⊤ · 𝜶Ξ = 0.

The objective function 𝐽𝑆𝑉𝑀 : R𝑁 → R is:

𝐽𝑆𝑉𝑀 (𝜶Ξ) =
1
2
·
𝑁∑︁
𝑖=1

𝑁∑︁
𝑗=1
𝛼
(𝑖)
Ξ

· 𝛼( 𝑗)
Ξ

· 𝑡𝑖 · 𝑡 𝑗 · 𝜑Ξ
(
𝜖Ξ ·



𝒙𝑖 − 𝒙 𝑗




2

)
−

𝑁∑︁
𝑖=1

𝛼
(𝑖)
Ξ

(6.9)

=
1
2
· 𝜶⊤

Ξ ·
[ (
𝒕 · 𝒕⊤

)
⊙ ΦΞ (𝜖Ξ)

]
· 𝜶Ξ − 1⊤𝑁 · 𝜶Ξ,

where ⊙ denotes the Hadamard product operator and ΦΞ (𝜖Ξ) is defined as in (2.26). In Problem

(6.8), 𝜶Ξ ∈ R𝑁 are the Lagrange multipliers (one for each point 𝒙𝑖 ∈ X in (2.9)) associated to the

constraints in (6.6). The weight 𝐶𝑆𝑉𝑀 ∈ R>0 penalizes the misclassification of the training samples.

In particular, low values of𝐶𝑆𝑉𝑀 may lead to a lower accuracy of the classifier on D in (6.7) but better

performances on out-of-sample data. Vice-versa, for 𝐶𝑆𝑉𝑀 → ∞, we go back to the hard margin

formulation of SVMs. The derivation of Problem (6.8) is quite long and out of scope of this book, the

interested reader is referred to [15, 29]. Here, we simply point out the following Proposition.

Proposition 6.1. Problem (6.8) is a convex QP.

Proof. Clearly, Problem (6.8) is a quadratic program since the objective function in (6.9) is a

quadratic function of 𝜶Ξ while all the constraints functions are linear in 𝜶Ξ. Concerning its convexity,

we need to prove that the matrix [( 𝒕 · 𝒕⊤) ⊙ ΦΞ (𝜖Ξ)] in (6.9) is positive semidefinite [18]. Note that

( 𝒕 · 𝒕⊤) is positive semidefinite by construction while ΦΞ (𝜖Ξ) is so under the assumption that 𝜑Ξ (·)

is a proper kernel (see Mercer’s Theorem 2.2). Then, by Schur Product Theorem [129], the matrix

[( 𝒕 · 𝒕⊤) ⊙ ΦΞ (𝜖Ξ)] is also positive semidefinite. □

The weights 𝛽(𝑖)
Ξ
, 𝑖 = 1, . . . , 𝑁, in (6.2) can be computed directly from the Lagrange multipliers

𝜶Ξ obtained from solving Problem (6.8):

𝛽
(𝑖)
Ξ

= 𝑡𝑖 · 𝛼(𝑖)
Ξ
, 𝑖 = 1, . . . , 𝑁. (6.10)
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Note that, due to the KKT conditions (see Theorem A.11), some of the constraints in (6.6) hold with

equality (active constraints), in which case 𝛼(𝑖)
Ξ
> 0, while others hold with inequality and thus their

corresponding Lagrange multipliers are zero, i.e. 𝛼(𝑖)
Ξ

= 0. In particular, we have that:

• If 𝛼(𝑖)
Ξ

= 0, then the sample 𝒙𝑖 ∈ X does not contribute to the predictive model in (6.2) (see

(6.10));

• The remaining points 𝒙𝑖 ∈ X, for which 0 < 𝛼(𝑖)
Ξ

≤ 𝐶𝑆𝑉𝑀 , constitute the support vectors. We

highlight them through the following set of indexes:

I𝑠𝑣 =
{
𝑖 : 0 < 𝛼(𝑖)

Ξ
≤ 𝐶𝑆𝑉𝑀

}
, |I𝑠𝑣 | = 𝑁𝑠𝑣, 𝑁𝑠𝑣 ∈ N. (6.11)

In particular, we remark that those support vectors indexed by 𝑖′𝑠𝑣 ∈ I′
𝑠𝑣,

I′
𝑠𝑣 =

{
𝑖 : 0 < 𝛼(𝑖)

Ξ
< 𝐶𝑆𝑉𝑀

}
, I′

𝑠𝑣 ⊆ I𝑠𝑣, (6.12)

are such that the slacks in (6.6) are zero, resulting in 𝑡𝑖′𝑠𝑣 · 𝑚Ξ𝑁

(
𝒙𝑖′𝑠𝑣 ; 𝜷̃Ξ, 𝜖Ξ

)
= 1,∀𝑖′𝑠𝑣 ∈ I′

𝑠𝑣.

Therefore, the distance between the points 𝒙𝑖′𝑠𝑣 ∈ X, 𝑖′𝑠𝑣 ∈ I′
𝑠𝑣, and the decision boundary of

the classifier is exactly the margin. Lastly, those samples 𝒙𝑖 ∈ X for which 𝛼(𝑖)
Ξ

= 𝐶𝑆𝑉𝑀 are

associated to positive slacks in (6.6), 𝜖 (𝑖)
𝑆𝑉𝑀

∈ R>0, and can either be correctly classified, if

𝜖
(𝑖)
𝑆𝑉𝑀

≤ 1, or misclassified, if 𝜖 (𝑖)
𝑆𝑉𝑀

> 1. See Figure 26 for an example.

𝜀𝑆𝑉𝑀
(6)

= 0

𝜀𝑆𝑉𝑀
(3)

= 0

𝜀𝑆𝑉𝑀
(1)

= 0

𝜀𝑆𝑉𝑀
(2)

= 0

𝜀𝑆𝑉𝑀
(7)

= 0

𝒙1

𝒙2

𝒙3

𝒙4

𝒙5

𝒙6
𝒙7

𝜀𝑆𝑉𝑀
(8)

= 0
𝒙8

ℝ2

Figure 26: Two-dimensional example of a SVM classifier for 𝑁 = 8 training samples. The red line denotes
the decision boundary, the margin is highlighted with a black double arrow. The points belonging to the
positive class are depicted with circles whereas the ones of the negative class are the crosses. The support
vectors (in magenta) are the points 𝒙3, 𝒙4, 𝒙5 and 𝒙6. For each sample 𝒙𝑖 , 𝑖 = 1, . . . , 8, we report its slack
𝜀
(𝑖)
𝑆𝑉𝑀

. Note that the point 𝒙4 is misclassified.
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One of the main advantages of SVMs is that, once 𝜷Ξ for (6.2) has been computed by solving

Problem (6.8), the points that are not support vectors can be “discarded” from the predictive model

𝑚Ξ𝑁

(
𝒙; 𝜷̃Ξ, 𝜖Ξ

)
since 𝛽(𝑖)

Ξ
= 0,∀𝑖 ∈ {1, . . . , 𝑁} \ I𝑠𝑣. Thus, we can consider:

𝑚Ξ𝑁

(
𝒙; 𝜷̃Ξ, 𝜖Ξ

)
= 𝛽

(0)
Ξ

+
∑︁
𝑖𝑠𝑣∈I𝑠𝑣

𝛽
(𝑖𝑠𝑣)
Ξ

· 𝜑Ξ
(
𝜖Ξ ·



𝒙 − 𝒙𝑖𝑠𝑣




2

)
(6.13)

instead of (6.2). Lastly, the intercept 𝛽(0)
Ξ

can be computed as [15]:

𝛽
(0)
Ξ

=
1

|I′
𝑠𝑣 |

·
∑︁
𝑖′𝑠𝑣∈I′

𝑠𝑣

𝑡𝑖′𝑠𝑣 −
∑︁
𝑗𝑠𝑣∈I𝑠𝑣

𝛼
( 𝑗𝑠𝑣)
Ξ

· 𝑡 𝑗𝑠𝑣 · 𝜑Ξ
(
𝜖Ξ ·



𝒙𝑖′𝑠𝑣 − 𝒙 𝑗𝑠𝑣




2

) . (6.14)

Now, suppose that we want to classify a point 𝒙̃ ∈ R𝑛. SVMs produce an “uncalibrated” value

𝑚Ξ𝑁

(
𝒙̃; 𝜷̃Ξ, 𝜖Ξ

)
and predict the label of 𝒙̃ as in (6.4).

6.1.2 Probabilistic support vector machines

We are interested in converting the “uncalibrated” values returned by SVMs to the probabilities of

belonging to either the negative or the positive class. One way to do so is to employ Platt scaling [106],

giving rise to probabilistic support vector machines, which operate as follows. First of all, we still train

a SVM classifier as described in Section 6.1.1. Then, we fit a sigmoid model, 𝑠Ξ𝑁 : R𝑛 → [0, 1], on

the outputs of 𝑚Ξ𝑁

(
𝒙; 𝜷̃Ξ, 𝜖Ξ

)
in (6.13) using the data in X (2.9) and UΞ (2.11) (instead of the targets

TΞ in (6.1)). The result is a function that estimates the probability of a sample 𝒙 ∈ R𝑛 belonging to

the positive class (Ξ-feasibility):

𝑝𝑁 (𝒙 ∈ Ξ) = 𝑝
(
𝒙 ∈ Ξ

��UΞ,X, 𝒙
)

= 𝑠Ξ𝑁
(
𝒙; 𝝌Ξ, 𝜖Ξ

)
=

1

1 + exp
{
𝜒
(1)
Ξ

· 𝑚Ξ𝑁

(
𝒙; 𝜷̃Ξ, 𝜖Ξ

)
+ 𝜒(2)

Ξ

} . (6.15)

𝝌Ξ =

[
𝜒
(1)
Ξ

𝜒
(2)
Ξ

]⊤
∈ R2 in (6.15) is a vector of weights that is found through maximum likelihood

estimation. Similarly to logistic regression [58], we define the negative log-likelihood 𝐽𝑃𝑆𝑉𝑀 : R2 → R

as:

𝐽𝑃𝑆𝑉𝑀
(
𝝌Ξ

)
= −

𝑁∑︁
𝑖=1

[
𝑢𝑖 · ln 𝑠Ξ𝑁

(
𝒙𝑖; 𝝌Ξ, 𝜖Ξ

)
+ (1 − 𝑢𝑖) · ln

(
1 − 𝑠Ξ𝑁

(
𝒙𝑖; 𝝌Ξ, 𝜖Ξ

) ) ]
. (6.16)

Then, we compute 𝝌Ξ in (6.15) by solving the following unconstrained optimization problem:

arg min
𝝌Ξ

𝐽𝑃𝑆𝑉𝑀
(
𝝌Ξ

)
(6.17)

s.t. 𝝌Ξ ∈ R2.
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Note that we can use derivative-based optimization procedures to solve Problem (6.17), since

𝐽𝑃𝑆𝑉𝑀
(
𝝌Ξ

)
in (6.16) is twice differentiable everywhere. In particular, its gradient and Hessian

are [83]:

∇𝝌Ξ
𝐽𝑃𝑆𝑉𝑀

(
𝝌Ξ

)
=

𝑁∑︁
𝑖=1


𝑚Ξ𝑁

(
𝒙𝑖; 𝜷̃Ξ, 𝜖Ξ

)
1

 ·
{
𝑢𝑖 − 𝑠Ξ𝑁

(
𝒙𝑖; 𝝌Ξ, 𝜖Ξ

)}
, (6.18a)

∇2
𝝌Ξ𝝌Ξ

𝐽𝑃𝑆𝑉𝑀
(
𝝌Ξ

)
=

𝑁∑︁
𝑖=1


𝑚Ξ𝑁 (𝒙𝑖; —)2 𝑚Ξ𝑁 (𝒙𝑖; —)

𝑚Ξ𝑁 (𝒙𝑖; —) 1

 ·𝑠Ξ𝑁 (𝒙𝑖; —) ·
[
1−𝑠Ξ𝑁 (𝒙𝑖; —)

]
. (6.18b)

Although Problem (6.17) is nonlinear in 𝝌Ξ, it is possible to prove its convexity, as highlighted by the

following Proposition.

Proposition 6.2. The Hessian ∇2
𝝌Ξ𝝌Ξ

𝐽𝑃𝑆𝑉𝑀
(
𝝌Ξ

)
in (6.18b) is positive semidefinite. In addition,

∇2
𝝌Ξ𝝌Ξ

𝐽𝑃𝑆𝑉𝑀
(
𝝌Ξ

)
is positive definite if and only if:

min
𝒙𝑖∈X

𝑚Ξ𝑁

(
𝒙𝑖; 𝜷̃Ξ, 𝜖Ξ

)
≠ max

𝒙𝑖∈X
𝑚Ξ𝑁

(
𝒙𝑖; 𝜷̃Ξ, 𝜖Ξ

)
.

Therefore, Problem (6.17) is convex.

Proof. See [83]. □

We can predict the membership of a sample 𝒙̃ ∈ R𝑛 to either the positive or the negative class

by computing the probability in (6.15). In particular, we choose a threshold 𝛾 ∈ [0, 1] (typically

𝛾 = 0.5) and define the surrogate Ξ-feasibility function 𝑢̂Ξ𝑁 : R𝑛 → {0, 1} as follows:

𝑢̂Ξ𝑁 (𝒙) =


1 if 𝑝𝑁 (𝒙 ∈ Ξ) ≥ 𝛾

0 if 𝑝𝑁 (𝒙 ∈ Ξ) < 𝛾
. (6.19)

In practice, 𝑢̂Ξ𝑁 (𝒙) in (6.19) is an approximation of the Ξ-feasibility function 𝑢Ξ (𝒙) in (2.4). More-

over, note that the decision boundary of the PSVM classifier is described by the equation:

𝑝𝑁 (𝒙 ∈ Ξ) = 𝛾 (6.20)

instead of (6.3), which is related to the SVM classifier.

The next Remark gives some insights on how to improve the quality of the predictions returned by the

PSVM classifier on out-of-sample data.

Remark 6.1. When 𝝌Ξ is estimated by solving Problem (6.17), the resulting probability distribution

𝑝𝑁 (𝒙 ∈ Ξ) in (6.15) might be biased to the training data:

D = {(𝒙𝑖, 𝑢𝑖) : 𝒙𝑖 ∈ X, 𝑢𝑖 ∈ UΞ, 𝑖 = 1, . . . , 𝑁} , (6.21)
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leading to possibly “bad” out-of-sample predictions. That is due to the fact that the sigmoid

𝑠Ξ𝑁
(
𝒙; 𝝌Ξ, 𝜖Ξ

)
in (6.15) is fitted from the outputs of the model 𝑚Ξ𝑁

(
𝒙; 𝜷̃Ξ, 𝜖Ξ

)
in (6.13) which,

in turn, has already been trained on the same data. In [106], the author proposes two strategies to

mitigate this issue:

1. Fit the sigmoid 𝑠Ξ𝑁
(
𝒙; 𝝌Ξ, 𝜖Ξ

)
in (6.15) on a dataset that is different from the one used to train

the underlying SVM. One way to generate such dataset is through cross-validation [58];

2. In the case of unbalanced datasets, instead of using 𝑢𝑖 ∈ {0, 1} for the cost function 𝐽𝑃𝑆𝑉𝑀
(
𝝌Ξ

)
in (6.16), we can fit the sigmoid from the labels:

𝑢̃𝑖 =


𝑁++1
𝑁++2 if 𝑢𝑖 = 1

1
𝑁−+2 if 𝑢𝑖 = 0

,

where 𝑁+, 𝑁− ∈ N are, respectively, the number of samples belonging to the positive and the

negative class.

In practice, when using PSVMs to estimate the probability of Ξ-feasibility of a sample for BBO and

PBO, few observations are available to train the classifier. Moreover, in C-GLIS-r and C-GLISp-r,

we take into account that 𝑝𝑁 (𝒙 ∈ Ξ) in (6.15) is only an approximation of the real probability of

Ξ-feasibility and define an infill sampling criterion accordingly (see Section 6.2). For these reasons,

we are not particularly concerned about the (possibly) biased estimates returned by PSVMs and we

have opted to keep computing 𝝌Ξ by simply solving Problem (6.17), using the data in D (6.21). This

also avoids potential computational overheads due to performing cross-validation at each iteration of

the BBO and PBO procedures.

We conclude this Section by pointing out the following Proposition and Lemma, which deal with

the differentiability of 𝑠Ξ𝑁
(
𝒙; 𝝌Ξ, 𝜖Ξ

)
in (6.15) with respect to 𝒙. The latter becomes relevant when

dealing with the optimization problem associated to the infill sampling criterion of the C-GLIS-r and

C-GLISp-r algorithms (in Section 6.2).

Proposition 6.3: Differentiability of the sigmoid in (6.15). The sigmoid 𝑠Ξ𝑁
(
𝒙; 𝝌Ξ, 𝜖Ξ

)
in (6.15)

is differentiable everywhere with respect to 𝒙 if the chosen radial basis function 𝜙Ξ𝑖 (𝒙; 𝜖Ξ) =

𝜑Ξ (𝜖Ξ · ∥𝒙 − 𝒙𝑖∥2) for the model 𝑚Ξ𝑁

(
𝒙; 𝜷̃Ξ, 𝜖Ξ

)
in (6.2) is differentiable everywhere.
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Proof. The model 𝑚Ξ𝑁

(
𝒙; 𝜷̃Ξ, 𝜖Ξ

)
in (6.2) is differentiable everywhere if and only if 𝜙Ξ𝑖 (𝒙; 𝜖Ξ) =

𝜑Ξ (𝜖Ξ · ∥𝒙 − 𝒙𝑖∥2) is differentiable everywhere (see Proposition 2.1). If that is the case, then the com-

posite function exp
{
𝜒
(1)
Ξ

· 𝑚Ξ𝑁

(
𝒙; 𝜷̃Ξ, 𝜖Ξ

)
+ 𝜒(2)

Ξ

}
is also differentiable everywhere. Furthermore:

1 + exp
{
𝜒
(1)
Ξ

· 𝑚Ξ𝑁

(
𝒙; 𝜷̃Ξ, 𝜖Ξ

)
+ 𝜒(2)

Ξ

}
≠ 0, ∀𝒙 ∈ R𝑛.

Therefore, due to the reciprocal rule, 𝑠Ξ𝑁
(
𝒙; 𝝌Ξ, 𝜖Ξ

)
in (6.15) is differentiable everywhere. □

Lemma 6.1: Gradient of the sigmoid in (6.15). Suppose that the sigmoid 𝑠Ξ𝑁
(
𝒙; 𝝌Ξ, 𝜖Ξ

)
in

(6.15) is differentiable everywhere with respect to 𝒙 (see Proposition 6.3). Then, its gradient

is:

∇𝒙𝑠Ξ𝑁
(
𝒙; 𝝌Ξ, 𝜖Ξ

)
= −𝜒(1)

Ξ
·𝑠Ξ𝑁

(
𝒙; 𝝌Ξ, 𝜖Ξ

)
·
[
1 − 𝑠Ξ𝑁

(
𝒙; 𝝌Ξ, 𝜖Ξ

) ]
·∇𝒙𝑚Ξ𝑁

(
𝒙; 𝜷̃Ξ, 𝜖Ξ

)
, (6.22)

where:

∇𝒙𝑚Ξ𝑁

(
𝒙; 𝜷̃Ξ, 𝜖Ξ

)
=

𝑁∑︁
𝑖=1

𝛽
(𝑖)
Ξ

· ∇𝒙𝜙Ξ𝑖 (𝒙; 𝜖Ξ) .

Proof. We can compute the gradient of 𝑠Ξ𝑁
(
𝒙; 𝝌Ξ, 𝜖Ξ

)
in (6.15) by applying the chain rule:

∇𝒙𝑠Ξ𝑁
(
𝒙; 𝝌Ξ, 𝜖Ξ

)
=
𝑑

𝑑𝑡

1

1 + exp
{
𝜒
(1)
Ξ

· 𝑡 + 𝜒(2)
Ξ

} �����
𝑡=𝑚Ξ𝑁 (𝒙;𝜷̃Ξ,𝜖Ξ)

· ∇𝒙𝑚Ξ𝑁

(
𝒙; 𝜷̃Ξ, 𝜖Ξ

)
= −𝜒(1)

Ξ
·

exp
{
𝜒
(1)
Ξ

· 𝑡 + 𝜒(2)
Ξ

}
[
1 + exp

{
𝜒
(1)
Ξ

· 𝑡 + 𝜒(2)
Ξ

}]2

�����
𝑡=𝑚Ξ𝑁 (𝒙;𝜷̃Ξ,𝜖Ξ)

· ∇𝒙𝑚Ξ𝑁

(
𝒙; 𝜷̃Ξ, 𝜖Ξ

)
=−𝜒(1)

Ξ
· 1
1+exp {—} ·

[
1− 1

1+exp {—}

] �����
𝑡=𝑚Ξ𝑁 (𝒙;𝜷̃Ξ,𝜖Ξ)

·∇𝒙𝑚Ξ𝑁

(
𝒙; 𝜷̃Ξ, 𝜖Ξ

)
= −𝜒(1)

Ξ
· 𝑠Ξ𝑁

(
𝒙; 𝝌Ξ, 𝜖Ξ

)
·
[
1 − 𝑠Ξ𝑁

(
𝒙; 𝝌Ξ, 𝜖Ξ

) ]
· ∇𝒙𝑚Ξ𝑁

(
𝒙; 𝜷̃Ξ, 𝜖Ξ

)
.

□

6.1.3 PSVMs for black-box and preference-based optimization

In the context of constrained BBO and PBO, 𝑝𝑁 (𝒙 ∈ Ξ) in (6.15) is used to approximate theΞ-feasible

region of the GOP (2.1). New candidate samples 𝒙𝑁+1 ∈ Ω can be found by solving:

𝒙𝑁+1 = arg max
𝒙
𝑎𝑁 (𝒙) (6.23)
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s.t. 𝒙 ∈ Ω

𝑝𝑁 (𝒙 ∈ Ξ) ≥ 𝛾,

where 𝑎𝑁 (𝒙) is a suitable acquisition function, see for example Problem (2.72) and Problem (2.74).

Assume to have performed several iterations of a BBO or PBO procedure, obtaining the sets X in (2.9)

and UΞ in (2.11). Furthermore, suppose that X contains a combination of Ξ-feasible and Ξ-infeasible

samples. When using PSVMs (or any classifier with a probabilistic interpretation) for black-box and

preference-based optimization, a key issue might arise: the current best candidate 𝒙𝒃𝒆𝒔𝒕 (𝑁) of the

BBO or PBO method, which must be Ξ-feasible under the aforementioned assumptions, might be

misclassified. We can attribute this problem to (i) the soft margin formulation of the SVM classifier

(see Section 6.1.1) and (ii) the maximum likelihood estimation in Problem (6.17), which treats all

samples in X as “equals”. If 𝒙𝒃𝒆𝒔𝒕 (𝑁) is misclassified, then 𝑝𝑁 (𝒙𝒃𝒆𝒔𝒕 (𝑁) ∈ Ξ) < 𝛾, making it less

likely for a BBO or PBO procedure that looks for 𝒙𝑁+1 by solving Problem (6.23) to explore in a

neighborhood of 𝒙𝒃𝒆𝒔𝒕 (𝑁). In turn, this can lead the optimization method to miss a global (or even

local) minimizer of the GOP (2.1). This issue is especially relevant when the global minimizer(s) are

located on the boundary of Ξ of the GOP (2.1), in which case finding them with high accuracy can

prove to be particularly hard. Figure 27 depicts an example of the previously described shortcoming

of PSVMs.

Ω

𝒙∗
𝒙𝒃𝒆𝒔𝒕 𝑁

Ω ∖ Ξ

Figure 27: Representation of one of the issues that can affect BBO and PBO procedures which rely on
a classifier to estimate the Ξ-feasible region of the GOP (2.1). The black circles denote the Ξ-feasible
samples available to the optimization procedure whereas the black crosses are the Ξ-infeasible ones. The
current best candidate is colored in magenta. The shaded red area depicts the Ξ-infeasible region of the
GOP (2.1) while the red curve is the decision boundary of the classifier, trained from the samples at hand.
Finally, the grey star is the global minimizer of the global optimization problem (which is yet to be found
by the BBO or PBO procedure).
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One way to make it more likely that 𝒙𝒃𝒆𝒔𝒕 (𝑁) is correctly classified is to weigh each sample differently

in 𝐽𝑃𝑆𝑉𝑀
(
𝝌Ξ

)
in (6.16), such as1:

𝐽𝑃𝑆𝑉𝑀
(
𝝌Ξ

)
= −

𝑁∑︁
𝑖=1

𝜔𝑖 ·
[
𝑢𝑖 · ln 𝑠Ξ𝑁

(
𝒙𝑖; 𝝌Ξ, 𝜖Ξ

)
+ (1 − 𝑢𝑖) · ln

(
1 − 𝑠Ξ𝑁

(
𝒙𝑖; 𝝌Ξ, 𝜖Ξ

) ) ]
, (6.24)

where 𝜔𝑖 ∈ R≥0, 𝑖 = 1, . . . , 𝑁, are the weights associated to each sample 𝒙𝑖 ∈ X. For example, we

could associate higher 𝜔𝑖’s to those points that are closest to 𝒙𝒃𝒆𝒔𝒕 (𝑁), with a maximum at exactly the

current best candidate, and decrease the weights as the distance from 𝒙𝒃𝒆𝒔𝒕 (𝑁) increases. However,

we would still have no guarantee that 𝑝𝑁 (𝒙𝒃𝒆𝒔𝒕 (𝑁) ∈ Ξ) ≥ 𝛾 for Problem (6.23). In this book, we

propose a simple yet effective fix to the issue: enforce the Ξ-feasibility of 𝒙𝒃𝒆𝒔𝒕 (𝑁) explicitly when

solving Problem (6.17). Formally, we find 𝝌Ξ for the sigmoid 𝑠Ξ𝑁
(
𝒙; 𝝌Ξ, 𝜖Ξ

)
in (6.15) by solving:

arg min
𝝌Ξ

𝐽𝑃𝑆𝑉𝑀
(
𝝌Ξ

)
(6.25)

s.t. 𝑠Ξ𝑁
(
𝒙𝒃𝒆𝒔𝒕 (𝑁) ; 𝝌Ξ, 𝜖Ξ

)
≥ 𝛾

instead of Problem (6.17). The constraint 𝑠Ξ𝑁
(
𝒙𝒃𝒆𝒔𝒕 (𝑁) ; 𝝌Ξ, 𝜖Ξ

)
≥ 𝛾 ensures that the current best

candidate is deemed as Ξ-feasible by 𝑢̂Ξ𝑁 (·) in (6.19). Moreover, the addition of the latter constraint

does not compromise the convexity of Problem (6.25) (see Proposition 6.2), as claimed by the following

Proposition.

Proposition 6.4. Problem (6.25) is a convex nonlinear program.

Proof. Both the cost function and the constraint function of Problem (6.25) are nonlinear in 𝝌Ξ,

making it a nonlinear program. In Proposition 6.2, we have seen that 𝐽𝑃𝑆𝑉𝑀
(
𝝌Ξ

)
in (6.16) is a convex

function. Hence, to prove the convexity of Problem (6.25), we only need to check if the function:

ℎ(𝝌Ξ) = 𝛾 − 𝑠Ξ𝑁
(
𝒙𝒃𝒆𝒔𝒕 (𝑁) ; 𝝌Ξ, 𝜖Ξ

)
, (6.26)

associated to the inequality constraint, is also convex with respect to 𝝌Ξ [18]. It is possible to prove

that the sigmoid 𝑠Ξ𝑁
(
𝒙𝒃𝒆𝒔𝒕 (𝑁) ; 𝝌Ξ, 𝜖Ξ

)
in (6.15) is (logarithmically) concave with respect to 𝝌Ξ, see

[96]. Then, −𝑠Ξ𝑁
(
𝒙𝒃𝒆𝒔𝒕 (𝑁) ; 𝝌Ξ, 𝜖Ξ

)
must be convex, making the function ℎ(𝝌Ξ) in (6.26) convex as

well. □

Problem (6.25) can be solved using derivative-based optimization procedures. The gradient and
1The rationale of minimizing the cost function in (6.24) is often referred to as Maximum Weighted Likelihood Estimation
(MWLE), see [74, 150]. Typically, MWLE is used for classification problems with highly unbalanced datasets, i.e. when
the observations associated to either the positive or the negative class are scarce. In such cases, the weights 𝜔𝑖 in (6.24)
assume statistical meaning and are defined based on prior information on the distributions of the two classes.
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the Hessian of 𝐽𝑃𝑆𝑉𝑀
(
𝝌Ξ

)
are reported in (6.18), while the gradient of constraint function in (6.26)

is:

∇𝝌Ξ

[
𝛾 − 𝑠Ξ𝑁

(
𝒙𝒃𝒆𝒔𝒕 (𝑁) ; 𝝌Ξ, 𝜖Ξ

) ]
= (6.27)

=


𝑚Ξ𝑁

(
𝒙𝒃𝒆𝒔𝒕 (𝑁) ; 𝜷̃Ξ, 𝜖Ξ

)
1

 · 𝑠Ξ𝑁
(
𝒙𝒃𝒆𝒔𝒕 (𝑁) ; 𝝌Ξ, 𝜖Ξ

)
·
[
1 − 𝑠Ξ𝑁

(
𝒙𝒃𝒆𝒔𝒕 (𝑁) ; 𝝌Ξ, 𝜖Ξ

) ]
.

The expression in (6.27) can be derived similarly to the gradient in Lemma 6.1, by differentiating the

sigmoid in (6.15) with respect to 𝝌Ξ instead of 𝒙.

The example depicted in Figure 28 compares the decision boundary of the PSVM classifier (described

in Section 6.1.2) against the one of the revisited classifier (proposed in this Section) . Notice how the

former fails to guarantee the Ξ-feasibility of the best candidate 𝒙𝒃𝒆𝒔𝒕 (𝑁). In practice, this behavior

depends quite a lot on the choice of the hyper-parameters of the classifier, namely the shape parameter

𝜖Ξ, the radial function 𝜑Ξ (·) and the trade-off weight 𝐶𝑆𝑉𝑀 .

Remark 6.2 (What about IDWI?). C-GLIS and C-GLISp [156] use the inverse distance weighting

interpolant to approximate the probability of Ξ-feasibility (see Definition 4.2). An advantage of the

latter, as opposed to the traditional PSVMs in Section 6.1.2, is that 𝑝𝑁 (𝒙 ∈ Ξ) in (4.16) is such that:

𝑝𝑁 (𝒙𝑖 ∈ Ξ) = 1, ∀𝒙𝑖 ∈ X such that 𝑢𝑖 = 1, 𝑢𝑖 ∈ UΞ.

Hence, the best candidates of C-GLIS and C-GLISp [156] are always deemed as Ξ-feasible by the

IDWI function. In practice, we have tested the performances of the proposed methods, C-GLIS-r and

C-GLISp-r, when equipped with either the PSVM classifier described in this Section or the IDWI

one in (4.16). Empirically, as we will see in Chapter 7, we have found out that both 𝑝𝑁 (𝒙 ∈ Ξ) in

(4.16) and in (6.15) can perform well on different benchmark optimization problems and often result

in similar performances. However, we argue that if noise were to be present during the evaluation of

the black-box constraints (i.e. some of the 𝑢𝑖 ∈ UΞ in (2.11) might be mislabeled), then PSVMs would

be better suited for the task at hand as opposed to an interpolation method.

We conclude this Section with some examples on the proposed classifier.
Example 6.1: Examples on the revisited PSVM classifier

Consider the four Ξ-feasible regions defined in Example 4.5. For each Ξ 𝑗 , 𝑗 = 1, . . . , 4, we

use the same 𝑁𝑖𝑛𝑖𝑡 = 200 samples generated in the latter Example to train PSVM classifiers as

proposed in this Section. We use the following hyper-parameters:

• 𝜖Ξ = 1 and 𝜑Ξ (·) Gaussian for 𝑚Ξ𝑁 (·) in (6.2);
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(a) PSVM classifier. (b) PSVM classifier revisited.

(c) PSVM classifier (zoom). (d) PSVM classifier revisited (zoom).

Figure 28: Comparison between the traditional PSVM classifier and the proposed one, tailored for
constrained BBO and PBO. The decision boundaries are the red curves and are defined as in (6.20) with
𝛾 = 0.5. When training the SVM classifier, we have chosen 𝜑Ξ (·) for 𝑚Ξ𝑁

(
𝒙; 𝜷̃Ξ, 𝜖Ξ

)
in (6.2) to be a

Gaussian RBF while the shape parameter is set to 𝜖Ξ = 0.25. Furthermore, 𝐶𝑆𝑉𝑀 = 106 for Problem
(6.8). The Ξ-feasible region (positive class) is Ξ =

{
𝒙 :

[
−0.25 −0.25

]⊤ ≤ 𝒙 ≤
[
0.9 0.4

]⊤}
. The shaded

red area denotes the Ξ-infeasible region. The classifiers are trained from 𝑁 = 200 samples. We depict
the Ξ-feasible ones with black circles, whereas the Ξ-infeasible ones are the black crosses. The current
best candidate is highlighted in magenta. Finally, we assume that the global minimizer of the GOP (2.1)
is located at

[
0.25 0.25

]⊤, as depicted by the grey star.

• 𝐶𝑆𝑉𝑀 = 106 for Problem (6.8);

• 𝛾 = 0.5 for the decision boundary of the PSVM classifier in (6.20).

Figure 29 depicts 𝑝𝑁 (𝒙 ∈ Ξ) for each Ξ-feasible region. Compared to the results obtained with

IDWI, in Figure 15, the decision boundaries of the proposed PSVMs are more similar to the

boundaries of the sets Ξ 𝑗 , 𝑗 = 1, . . . , 4.

6.1.4 Recalibration of the classifier’s hyper-parameters

There are three tuning knobs for the PSVM classifier described in Section 6.1.2: the radial function

𝜑Ξ (·) and the shape parameter 𝜖Ξ for 𝑚Ξ𝑁 (·) in (6.2), but also the trade-off weight 𝐶𝑆𝑉𝑀 of Problem
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Figure 29: Probability of Ξ-feasibility estimated by the revisited PSVM classifier for different Ξ-feasible
regions, defined in Example 6.1. The Ξ-feasible samples are depicted as black circles whereas the Ξ-
infeasible ones are black crosses. The current best candidate is colored in magenta. The shaded red areas
denote the Ξ-infeasible regions. Finally, the red lines are the decision boundaries, i.e. 𝑝𝑁 (𝒙 ∈ Ξ) = 𝛾,
with 𝛾 = 0.5.

(6.8). In practice, we could select them in a similar fashion to Section 4.4.2, where we have employed

𝐾-fold grid search cross-validation [58] to recalibrate the surrogate model of the cost function of the

GOP (2.1). However, at this point of the book, we have a much better alternative: algorithm GLIS-r

[108].

In what follows, we do not consider the recalibration of the radial function 𝜑Ξ (·), although it could

be handled by adding a discrete decision variable that can only assume a finite number of values (one

for each possible choice). Thus, we define the decision vector for the purpose of recalibrating the

hyper-parameters of the PSVM classifier as:

𝒙Ξ =

[
𝜖Ξ 𝐶𝑆𝑉𝑀

]⊤
, 𝒙Ξ ∈ R2

>0. (6.28)

We are interested in minimizing the out-of-sample misclassification rate, which is a common measure

of performance for classifiers. The latter can be estimated by means of 𝐾-fold cross-validation [58].

Hence, we can build a suitable black-box cost function for the optimization of 𝒙Ξ in (6.28) as follows:

1. Build the dataset:

D = {(𝒙𝑖, 𝑢𝑖) : 𝒙𝑖 ∈ X, 𝑢𝑖 ∈ UΞ, 𝑖 = 1, . . . , 𝑁} (6.29)
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from the data at hand (see (2.9) and (2.11)).

2. Remove the entry in D (6.29) that is associated to 𝒙𝒃𝒆𝒔𝒕 (𝑁):

D = D \ {(𝒙𝒃𝒆𝒔𝒕 (𝑁) , 1)} . (6.30)

Note that it only makes sense to train a classifier when X in (2.9) contains both Ξ-feasible and

Ξ-infeasible samples, hence 𝑢Ξ (𝒙𝒃𝒆𝒔𝒕 (𝑁)) = 1. Furthermore, the current best candidate must

always be present in the training set for the revisited PSVM in Section 6.1.3, due to how we

estimate the probability of Ξ-feasibility for the proposed classifier (see Problem (6.25)). For

this reason, we remove (𝒙𝒃𝒆𝒔𝒕 (𝑁) , 1) from D in (6.29) and add it back when needed, as we will

see shortly. Thus, the cardinality of D in (6.30) is 𝑁D = 𝑁 − 1.

3. Choose a ratio 𝑅Ξ ∈ [0, 1] and compute the maximum number of elements for each fold as:

𝑁D 𝑓 𝑜𝑙𝑑
= max {⌊𝑅Ξ · 𝑁D⌋, 1} .

The resulting number of folds is:

𝐾 =

⌈
𝑁D
𝑁D 𝑓 𝑜𝑙𝑑

⌉
.

4. Randomly partition D into 𝐾 (almost) equally-sized subsets (folds) D (1) , . . . ,D (𝐾) , i.e. such

that:

D =

𝐾⋃
𝑘=1

D (𝑘) , D (𝑖) ∩ D ( 𝑗) = ∅,∀𝑖, 𝑗 = 1, ..., 𝐾, 𝑖 ≠ 𝑗

and
��D (𝑘) �� ≤ 𝑁D 𝑓 𝑜𝑙𝑑

,∀𝑘 = 1, . . . , 𝐾 . In particular, we suggest using stratified 𝐾-fold cross-

validation [20], i.e. the dataset D is partitioned into 𝐾 folds such that each class is uniformly

distributed among all subsets of D.

5. Generate all possible training sets:

D (𝑘)
𝑡𝑟𝑎𝑖𝑛

=


⋃
𝑗≠𝑘

D ( 𝑗)
 ∪ {(𝒙𝒃𝒆𝒔𝒕 (𝑁) , 1)} , 𝑘 = 1, . . . , 𝐾,

and validation sets:

D (𝑘)
𝑣𝑎𝑙

= D (𝑘) , 𝑘 = 1, . . . , 𝐾.

6. The cost function for the recalibration of 𝒙Ξ in (6.28) is computed as follows. Consider a

decision vector 𝒙̃Ξ =

[
𝜖Ξ 𝐶̃𝑆𝑉𝑀

]⊤
∈ R2

>0, then:

a) Train 𝐾 PSVM classifiers with hyper-parameters 𝜖Ξ and 𝐶̃𝑆𝑉𝑀 as proposed in Section

6.1.3, starting from the training sets D (𝑘)
𝑡𝑟𝑎𝑖𝑛

, 𝑘 = 1, . . . , 𝐾;
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b) Build the surrogate Ξ-feasibility functions 𝑢̂(𝑘)
Ξ𝑁̃

(·) , 𝑘 = 1, . . . , 𝐾, in (6.19), where 𝑁̃ =���D (𝑘)
𝑡𝑟𝑎𝑖𝑛

���;
c) Compute the misclassification rates of each classifier on the validation sets:

𝐽𝑅Ξ

(
𝑢̂
(𝑘)
Ξ𝑁̃

(·) ,D (𝑘)
𝑣𝑎𝑙

)
=

∑︁
(𝒙𝑖 ,𝑢𝑖)∈D (𝑘 )

𝑣𝑎𝑙

I
(
𝑢̂
(𝑘)
Ξ𝑁̃

(𝒙𝑖) ≠ 𝑢𝑖
)���D (𝑘)

𝑣𝑎𝑙

��� , 𝑘 = 1, . . . , 𝐾. (6.31)

d) The value of the black-box cost function associated to the decision vector 𝒙̃Ξ is the average

out-of-sample misclassification rate:

𝑓 (𝒙̃Ξ) =

∑𝐾
𝑘=1 𝐽𝑅Ξ

(
𝑢̂
(𝑘)
Ξ𝑁̃

(·) ,D (𝑘)
𝑣𝑎𝑙

)
𝐾

. (6.32)

GLIS-r [108] (Algorithm 14) evaluates 𝑁𝑚𝑎𝑥 ∈ N different calibrations of 𝒙Ξ in (6.28) and returns the

one which achieves the lowest value of 𝑓 (𝒙Ξ) in (6.32). The same training sets D (𝑘)
𝑡𝑟𝑎𝑖𝑛

and validation

sets D (𝑘)
𝑣𝑎𝑙
, 𝑘 = 1, . . . , 𝐾, are used throughout the whole optimization process, hence they need to be

generated only once. We impose box constraints on the hyper-parameters of the PSVM classifier:

ΩΞ = {𝒙Ξ : 𝒍Ξ ≤ 𝒙Ξ ≤ 𝒖Ξ} ,

where 𝒍Ξ, 𝒖Ξ ∈ R2
>0, 𝒍Ξ ≤ 𝒖Ξ. The corresponding unconstrained black-box optimization problem,

solved by GLIS-r [108], is:

arg min
𝒙Ξ

𝑓 (𝒙Ξ) (6.33)

s.t. 𝒙Ξ ∈ ΩΞ.

Typically, 𝜖Ξ and 𝐶𝑆𝑉𝑀 can span multiple orders of magnitudes, hence it is better to consider 𝒙Ξ =[
log10 𝜖Ξ log10𝐶𝑆𝑉𝑀

]⊤
instead of (6.28).

Remark 6.3 (On the computational burden of the recalibration procedure). GLIS-r [108] (approx-

imately) solves Problem (6.33) by performing 𝑁𝑚𝑎𝑥 sample evaluations, resulting in the estimation

of 𝑁𝑚𝑎𝑥 · 𝐾 surrogate Ξ-feasibility functions in (6.19). Alternatively, to reduce the computational

burden, we could employ hold-out validation [61] instead of 𝐾-fold cross-validation. D in (6.30) is

simply split into two subsets, the training set D𝑡𝑟𝑎𝑖𝑛, containing 𝑁𝑡𝑟𝑎𝑖𝑛 = (𝑁 − 1) ·𝑅Ξ elements, and the

validation set D𝑣𝑎𝑙 , composed of 𝑁𝑣𝑎𝑙 = 𝑁 − 1− 𝑁𝑡𝑟𝑎𝑖𝑛 entries. When hold-out validation is employed

for the recalibration of 𝒙Ξ in (6.28), the PSVM classifier is only trained 𝑁𝑚𝑎𝑥 times, reducing the

computational overhead, but the estimates of the out-of-sample misclassification rates might be less

accurate [61].
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Example 6.2: Recalibration of PSVM by means of GLIS-r [108]

Consider the black-box constraint set:

Ξ =

{
𝒙 :



𝒙−𝒙𝒄1



2
2 ≤ 𝑟2

1

}
∪

{
𝒙 :



𝒙−𝒙𝒄2



2
2 ≤ 𝑟2

2

}
∪ {𝒙 : 0.25·12 ≤ 𝒙 ≤ 0.75·12} ,

where 𝒙𝒄1 =

[
−0.5 0.5

]⊤
, 𝑟1 = 0.5, 𝒙𝒄2 =

[
0.75 −0.75

]⊤
and 𝑟2 = 0.6. We generate a set

X (2.9) of 𝑁 = 100 samples, using a latin hypercube design (see Section 2.4), and evaluate

the Ξ-feasibility of each point, obtaining the set UΞ in (2.11). Then, we calibrate the hyper-

parameters of the PSVM classifier described in Section 6.1.3. For the sake of simplicity, we

only tune the shape parameter 𝜖Ξ for the model 𝑚Ξ𝑁 (·) in (6.2). The radial function 𝜑Ξ (·)

is Gaussian whereas the last hyper-parameter is set to 𝐶𝑆𝑉𝑀 = 106. Hence, 𝑥Ξ = 𝜖Ξ and, in

particular, we consider 𝑙Ξ = 10−3 and 𝑢Ξ = 10. Lastly, the threshold 𝛾 for the decision boundary

in (6.20) is set to 𝛾 = 0.5.

We employ GLIS-r [108] (Algorithm 14) to solve Problem (6.33) as proposed in this Section.

We use the following hyper-parameters for GLIS-r [108]:

• Number of initial samples 𝑁𝑖𝑛𝑖𝑡 = 6,

• Budget 𝑁𝑚𝑎𝑥 = 30,

• Hyper-parameters for the surrogate model 𝑓𝑁Ξ
(𝒙Ξ) in (4.1): 𝜖 𝑓 = 1, 𝜑 𝑓 (·) inverse

quadratic, 𝜖𝑆𝑉𝐷 = 10−6,

• Cycling set Δ𝑐𝑦𝑐𝑙𝑒 = ⟨0.95, 0.7, 0.35, 0⟩,

• Number of clusters for X𝑎𝑢𝑔: 𝐾𝑎𝑢𝑔 = 5,

• No recalibration of 𝑓𝑁Ξ
(𝒙Ξ) in (4.1), i.e. K𝑅 𝑓 = ∅,M 𝑓 = ∅.

Problem (5.13) is solved by the PSWARM [72] algorithm (see Section 1.2.5). Figure 30 shows the

performances of GLIS-r [108] and compares the initial PSVM classifier (𝜖Ξ = 0.1, 𝑓 (·) = 0.26)

to the recalibrated one (𝜖Ξ ≈ 1.8, 𝑓 (·) = 0.05). To avoid confusion, we refer to the samples

related to Problem (6.33) using the subscript Ξ; similarly for their number, which is 𝑁Ξ. Notice

how the recalibrated PSVM classifier is able to identify the three disconnected regions which

constitute Ξ, whereas the initial one is not successful in doing so.
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Figure 30: Results obtained in Example 6.2. On the top left: performances of the GLIS-r [108] algorithm.
On the top right: surrogate model of the cost function in (6.32) for 𝑁Ξ = 𝑁𝑚𝑎𝑥 − 1 = 29 (i.e. at the last
iteration of the optimization procedure). The tried calibrations are represented as circles; in particular,
the red ones are obtained from the initial experimental design whereas the black ones are found by
solving Problem (5.13). The best calibration is highlighted in magenta. Notice how 𝑓𝑁Ξ

(𝑥Ξ) is not able
to interpolate all the calibrations due to the erratic behavior of the average misclassification rate. On
the bottom row: comparison of the initial PSVM classifier against the recalibrated one. The decision
boundaries are the red curves and are defined as in (6.20), with 𝛾 = 0.5. The Ξ-feasible samples in X
are depicted with black circles whereas the Ξ-infeasible ones are the black crosses. The shaded red area
denotes the Ξ-infeasible region. The current best candidate is colored in magenta.

6.2 Infill sampling criterion

Now, we cover the infill sampling criterion employed by algorithms C-GLIS-r and C-GLISp-r when

looking for new candidate samples. We make no assumptions on the samples obtained by the initial

experimental design, which could all be Ξ-infeasible. Similarly to COBRA [112], we use different

strategies depending on whether a Ξ-feasible sample is available or not. Suppose to be at the 𝑘-th

iteration of either the C-GLIS-r or the C-GLISp-r procedure. We have at our disposal the set of

samplesX, |X| = 𝑁, in (2.9), the sets which contain the information on 𝑓 (𝒙) of the GOP (2.1), namely

Y (BBO) or B and S (PBO) in (2.10), (3.9) and (3.10) respectively, and the Ξ-feasibility data in UΞ

(2.11). We distinguish three possible situations.

No Ξ-feasible samples are available (X∩Ξ = ∅). In this case, there is no need to build the surrogate

model for 𝑓 (𝒙) since we still have not found a point belonging to the Ξ-feasible region of the GOP
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(2.1). At the same time, we are unable to train a PSVM classifier (as described in Section 6.1.3)

because we only have at our disposal samples belonging to one class. We are left with only one option:

explore Ω in the hope of finding a Ξ-feasible sample. To do so, we use the IDW distance function

𝑧𝑁 (𝒙) in (4.17) to drive the search. We look for new candidate samples 𝒙𝑁+1 ∈ Ω as:

𝒙𝑁+1 = arg min
𝒙
𝑧𝑁 (𝒙) (6.34)

s.t. 𝒙 ∈ Ω.

We have already seen how performing pure exploration can be quite inefficient, at least when it comes

to looking for the global minimizer(s) of the GOP (2.1), see Example 5.2. However, we have no other

alternatives if we assume the black-box constraints functions to not be measurable. Furthermore, if

we were to use the information on the cost function 𝑓 (𝒙) to drive the search, we could mislead the

optimization procedure into searching in those regions of Ω that are likely to have lower costs but with

no guarantee of Ξ-feasibility. For example, in the context of control systems, aggressive controller

tunings might lead to good closed-loop performances (low 𝑓 (·)) at the cost of stressing the actuators

too much (Ξ-infeasibility). PBO is a bit of an exception: if the same decision-maker were to both

express the preferences (information on 𝑓 (𝒙)) and assess the Ξ-feasibility (decision-maker-based

constraint), then he/she is likely to penalize those calibrations that are Ξ-infeasible, resulting in higher

scores (higher 𝑓 (·)’s).

The next Example shows the performances of the proposed strategy (described by Problem (6.34)) for

different dimensionalities, 𝑛, of the decision vector. We also give some insights on how to improve

the performances in case the measures of the black-box constraints functions are available (i.e. when

the set CΞ in (2.12) is available).

Example 6.3: Pure exploration for finding Ξ-feasible samples

Consider a GOP (2.1) with feasible region described by the following sets:

Ω = {𝒙 : 0𝑛 ≤ 𝒙 ≤ 1𝑛} ,

Ξ = {𝒙 : 𝑔Ξ (𝒙) ≤ 0} ,

where:

𝑔Ξ (𝒙) = ∥𝒙 − 𝒙𝑐∥2 − 𝑟,

𝒙𝑐 =
3
4 · 1𝑛 and 𝑟 = 0.25.
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We want to assess the number of samples required by the proposed infill sampling criterion

(Problem (6.34)) to find a Ξ-feasible sample, starting from only one sample,

X = {𝒙1} , 𝒙1 =
1
4
· 1𝑛,

such that 𝒙1 ∉ Ξ and for different dimensionalities

𝑛 ∈ {1, 2, 3, 5, 8, 10} .

We compare the performances of the pure exploration approach (Problem (6.34)) to another

one which uses the (noiseless) measures of the black-box constraint function in:

CΞ = {𝑐𝑖 : 𝑐𝑖 = 𝑔Ξ (𝒙𝑖) , 𝒙𝑖 ∈ X} .

The latter method operates as follows. At each iteration:

1. Estimate the surrogate model 𝑔̂Ξ𝑁 (𝒙) of 𝑔Ξ (𝒙) as proposed in Section 4.1.1. In particular,

we have used 𝜑𝑔Ξ (·) inverse quadratic, 𝜖𝑔Ξ = 1 and 𝜖𝑆𝑉𝐷 = 10−6.

2. Build the surrogate quadratic penalty function 𝜌̂𝑁 : R𝑛 → R≥0 as in (1.21) but with

𝑔̂Ξ𝑁 (𝒙) instead of 𝑔Ξ (𝒙), i.e.:

𝜌̂𝑁 (𝒙) =
(
max

{
0, 𝑔̂Ξ𝑁 (𝒙)

})2
.

3. Look for a new candidate sample by solving the following global optimization problem:

𝒙𝑁+1 = arg min
𝒙

[
𝛿 · ˆ̄𝜌𝑁

(
𝒙;X𝑎𝑢𝑔

)
+ (1 − 𝛿) · 𝑧𝑁

(
𝒙;X𝑎𝑢𝑔

) ]
(6.35)

s.t. 𝒙 ∈ Ω.

The acquisition function of Problem (6.35) is the same as the one of GLIS-r [108] and

GLISp-r [109], in (5.12), but with the surrogate quadratic penalty function instead of the

surrogate model of 𝑓 (𝒙). In particular, for the sake of simplicity, we have fixed 𝛿 = 0.65

(no greedy 𝛿-cycling). Lastly, 𝐾𝑎𝑢𝑔 = 5 for the generation of X𝑎𝑢𝑔 as in Algorithm 13.

We compare the two approaches with respect to the number of samples required to find a

Ξ-feasible point. In particular, in this Example, we can easily compute the minimum distance

between a Ξ-feasible point and its closest sample in X (2.9):

min
𝒙𝑖∈X

min
𝒙∈Ξ

∥𝒙𝑖 − 𝒙∥2 = min
𝒙𝑖∈X

max {∥𝒙𝑖 − 𝒙𝑐∥2 − 𝑟, 0}

= min
𝑐𝑖∈CΞ

max {𝑐𝑖, 0} .
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We use both methods to generate 99 additional samples, obtaining a total of 𝑁𝑚𝑎𝑥 = 100 points.

Figure 31 depicts the results. Notice how the approach based on the surrogate quadratic penalty

function (Problem (6.35)) is able to find a Ξ-feasible sample quite faster than its IDW-based

counterpart (Problem (6.34)). Intuitively, higher-dimensional problems require more points for

that purpose. In particular, as 𝑛 increases, the ratio between the volumes of Ξ (hypersphere)

and Ω (hypercube) drastically decreases. Hence, it becomes progressively harder to find a

Ξ-feasible sample as the dimensionality of the problem increases. Lastly, we point out that the

IDW-based approach tends to be more space-filling in Ω while the penalty one focuses more

on a neighborhood of the Ξ-feasible region.

OnlyΞ-feasible samples are available (X∩Ξ = X). Whenever onlyΞ-feasible samples are available,

we simply proceed as we would in the unconstrained BBO or PBO framework. In particular, we adopt

the infill sampling criterion of GLIS-r [108] and GLISp-r [109], namely we look for new candidate

samples by solving the following optimization problem:

𝒙𝑁+1 = arg min
𝒙
𝑎𝑁 (𝒙) (6.36)

s.t. 𝒙 ∈ Ω,

where 𝑎𝑁 (𝒙) is defined as in (5.12), i.e.:

𝑎𝑁 (𝒙) = 𝛿 · ˆ̄𝑓𝑁
(
𝒙;X𝑎𝑢𝑔

)
+ (1 − 𝛿) · 𝑧𝑁

(
𝒙;X𝑎𝑢𝑔

)
,

and 𝛿 cycled following the 𝛿-cycling strategy (Section 5.2.3).

Both Ξ-feasible and Ξ-infeasible samples are available (∅ ⊂ X ∩ Ξ ⊂ X). In this case, we must

still look for new candidate samples by trading off exploration and exploitation but, at the same

time, penalize the search in those zones of Ω that are likely to contain Ξ-infeasible points. To do

so, we rely on: (i) the surrogate model 𝑓𝑁 (𝒙) in (4.1) (Section 4.1), (ii) the IDW distance function

𝑧𝑁 (𝒙) in (4.17) (Section 4.2) and (iii) the probability of Ξ-feasibility obtained by the PSVM classifier

𝑝𝑁 (𝒙 ∈ Ξ) in (6.15) (Section 6.1.3). We propose to look for new candidate samples by solving the
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Figure 31: Results obtained in Example 6.3. On the top left: minimum distance between a Ξ-feasible
point and its closest sample in X as 𝑁 = |X| increases and for different 𝑛’s. The IDW approach (Problem
(6.34)) is depicted in blue while the penalty method (Problem (6.35)) is shown in red. On the top right:
ratio of the volumes of Ξ (hypersphere) and Ω (hypercube) as 𝑛 increases. On the bottom row: samples
obtained by the two approaches when 𝑛 = 2. The Ξ-feasible samples in X are depicted with black circles
whereas the Ξ-infeasible ones are the black crosses. The initial sample 𝒙1 is the red cross. The shaded
red area denotes the Ξ-infeasible region.

following optimization problem:

𝒙𝑁+1 = arg min
𝒙,𝜀Ξ

𝑎𝑁 (𝒙, 𝜀Ξ) (6.37)

s.t. 𝒙 ∈ Ω

𝑝𝑁 (𝒙 ∈ Ξ) ≥ 𝛾 · (1 − 𝜀Ξ)

0 ≤ 𝜀Ξ ≤ 1,

where the acquisition function 𝑎𝑁 : R𝑛 × R→ R is defined as (cf. (5.12)):

𝑎𝑁 (𝒙, 𝜀Ξ) = 𝛿 · ˆ̄𝑓𝑁
(
𝒙;X𝑎𝑢𝑔

)
+ (1 − 𝛿) · 𝑧𝑁

(
𝒙;X𝑎𝑢𝑔

)
+ 𝜀Ξ. (6.38)
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The rationale behind Problem (6.37) is as follows. We drive the search towards those regions of Ω

that are likely to contain Ξ-feasible points by including the constraint:

𝑝𝑁 (𝒙 ∈ Ξ) ≥ 𝛾, (6.39)

which is consistent with the surrogate Ξ-feasibility function 𝑢̂Ξ𝑁 (𝒙) in (6.19). To take into account

that the decision boundary of the PSVM classifier, 𝑝𝑁 (𝒙 ∈ Ξ) = 𝛾, is only an approximation of the

boundary of the set Ξ of the GOP (2.1), we add a slack variable 𝜀Ξ ∈ [0, 1] and re-write the constraint

in (6.39) as:

𝑝𝑁 (𝒙 ∈ Ξ) ≥ 𝛾 · (1 − 𝜀Ξ) . (6.40)

In particular:

• If 𝜀Ξ = 0, then the constraint in (6.40) amounts to the one in (6.39);

• If 𝜀Ξ = 1, then the constraint in (6.40) becomes:

𝑝𝑁 (𝒙 ∈ Ξ) ≥ 0,

which is satisfied ∀𝒙 ∈ R𝑛. Therefore, in this case, Problem (6.37) is equivalent to Problem

(6.36) and is not concerned with the set Ξ of the GOP (2.1).

To penalize the violation of the constraint in (6.39), we add the slack 𝜀Ξ to the acquisition function

in (6.38). Instead, the first two terms of 𝑎𝑁 (𝒙, 𝜀Ξ) in (6.38), which match the ones of the acquisition

function of GLIS-r [108] and GLISp-r [109] in (5.12), address the exploration-exploitation dilemma.

Note that, due to min-max rescaling (Section 5.2.1), ˆ̄𝑓𝑁
(
𝒙;X𝑎𝑢𝑔

)
and 𝑧𝑁

(
𝒙;X𝑎𝑢𝑔

)
roughly assume

the range [0, 1] and are therefore comparable to 𝜀Ξ, which shares those bounds.

The definition of Problem (6.37) has been inspired by the infill sampling criteria of several BBO

algorithms. First of all, the constraint in (6.39) is used by algorithms SuperEGO [125] and Constrained

EGO with Support Vector Machines [9] (see Problem (2.72) and Problem (2.74)) to penalize the

exploration in those zones of Ω which are likely to contain Ξ-infeasible samples. Next, let us

consider the COBRA [112] algorithm, which assumes that all the black-box constraints functions, i.e.

𝑔
( 𝑗)
Ξ

(𝒙) , 𝑗 = 1, . . . , 𝑞Ξ, in (2.2), are measurable. The latter method builds a surrogate model 𝑔̂( 𝑗)
Ξ𝑁

(𝒙)

(defined as in (2.29)) for each of them, as proposed in Section 2.5.1. Problem (2.63) describes the

infill sampling strategy of COBRA [112] when ∅ ⊂ X ∩ Ξ ⊂ X; the latter includes the constraints:

𝑔̂
( 𝑗)
Ξ𝑁

(𝒙) + 𝜍 ( 𝑗)
Ξ

≤ 0, 𝑗 = 1, . . . , 𝑞Ξ. (6.41)
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In the previous expression, 𝜍 ( 𝑗)
Ξ

is a positive margin that is increased or decreased based on the number

of subsequent successful or failed iterations (in a sense that they lead to Ξ-feasible or Ξ-infeasible

samples)2. In practice, the slack 𝜀Ξ of Problem (6.37) (C-GLIS-r and C-GLISp-r) and the margins

𝜍
( 𝑗)
Ξ
, 𝑗 = 1, . . . , 𝑞Ξ, of Problem (2.63) (COBRA [112]) constitute two different ways of addressing a

common problem: the set Ξ of the GOP (2.1) is not available, we can only approximate it in some

way. In particular, we approximate Ξ either as:

Ξ̂ = {𝒙 : 𝑝𝑁 (𝒙 ∈ Ξ) ≥ 𝛾} , (6.42)

in the former case, or:

Ξ̂ =

{
𝒙 : 𝑔̂( 𝑗)

Ξ𝑁
(𝒙) ≤ 0, 𝑗 = 1, . . . , 𝑞Ξ

}
, (6.43)

in the latter case. COBRA [112] is more conservative in a sense that it tends to sample far away from

the boundary of Ξ̂ in (6.43) due to the constraints in (6.41). Instead, C-GLIS-r and C-GLISp-r allow

sampling outside Ξ̂ in (6.42), when 0 < 𝜀Ξ ≤ 1 for Problem (6.37). We argue that the proposed slack

formulation, albeit less conservative, can be helpful whenever the global minimizer(s) of the GOP

(2.1) are on the boundary of Ξ. Roughly speaking, the proposed infill sampling criterion allows us

to get closer to the global minimizer(s) of the considered global optimization problem at the cost (if

needed) of a sufficiently small violation of the constraint in (6.39). More formally, suppose that the

current best candidate 𝒙𝒃𝒆𝒔𝒕 (𝑁) ∈ Ξ of either C-GLIS-r or C-GLISp-r is quite close to a minimizer

𝒙∗
𝑖
∈ X∗ of the GOP (2.1), i.e.



𝒙𝒃𝒆𝒔𝒕 (𝑁) − 𝒙∗
𝑖




2 < 𝜖 with 𝜖 ∈ R>0 small. We prove that, in some

cases, Problem (6.37) can return a sample

𝒙𝑁+1 ∈ B (𝒙𝒃𝒆𝒔𝒕 (𝑁) ; 𝜖) ∩Ω ∩ Ξ

such that


𝒙𝑁+1 − 𝒙∗

𝑖




2 <



𝒙𝒃𝒆𝒔𝒕 (𝑁) − 𝒙∗
𝑖




2 < 𝜖 , even if 𝒙𝑁+1 ∉ Ξ̂ in (6.42). Assume that 𝒙∗

𝑖
∉ Ξ̂

(although, clearly, 𝒙∗
𝑖
∈ Ξ) and 𝑓𝑁

(
𝒙∗
𝑖

)
< 𝑓𝑁 (𝒙𝒃𝒆𝒔𝒕 (𝑁)) (i.e. the surrogate model of the cost function

captures that 𝒙∗
𝑖

improves upon the current best candidate). Due to how the revisited PSVM classifier

works, 𝒙𝒃𝒆𝒔𝒕 (𝑁) ∈ Ξ̂, see Section 6.1.3 and in particular Problem (6.25). We expect 𝑝𝑁
(
𝒙∗
𝑖
∈ Ξ

)
to

be close to 𝑝𝑁 (𝒙𝒃𝒆𝒔𝒕 (𝑁) ∈ Ξ), since the two points are close to each other, although

𝑝𝑁
(
𝒙∗
𝑖 ∈ Ξ

)
< 𝛾

2COBRA [112] initializes all the margins to 𝜍Ξ𝑖𝑛𝑖𝑡
∈ R. The procedure keeps track of the number of subsequent successful or

failed iterations through two counters,𝐶Ξ− 𝑓 𝑒𝑎𝑠, 𝐶Ξ−𝑖𝑛 𝑓 𝑒𝑎𝑠 ∈ N∪{0}. Whenever aΞ-feasible sample is found,𝐶Ξ−𝑖𝑛 𝑓 𝑒𝑎𝑠 is
set to zero; vice-versa, when Problem (2.63) returns aΞ-infeasible point,𝐶Ξ− 𝑓 𝑒𝑎𝑠 is reset. Once𝐶Ξ− 𝑓 𝑒𝑎𝑠 ≥ 𝑇Ξ− 𝑓 𝑒𝑎𝑠, where
𝑇Ξ− 𝑓 𝑒𝑎𝑠 ∈ N is a threshold, COBRA [112] sets 𝜍 ( 𝑗 )

Ξ
= 𝜍

( 𝑗 )
Ξ

/2,∀ 𝑗 = 1, . . . , 𝑞Ξ. Vice-versa, when 𝐶Ξ−𝑖𝑛 𝑓 𝑒𝑎𝑠 ≥ 𝑇Ξ−𝑖𝑛 𝑓 𝑒𝑎𝑠 ,
𝑇Ξ−𝑖𝑛 𝑓 𝑒𝑎𝑠 ∈ N, the margins are set to 𝜍 ( 𝑗 )

Ξ
= max

{
2 · 𝜍 ( 𝑗 )

Ξ
, 𝜍Ξ𝑚𝑎𝑥

}
,∀ 𝑗 = 1, . . . , 𝑞Ξ, where 𝜍Ξ𝑚𝑎𝑥

∈ R>0 is an upper bound
on the margins. 𝜍Ξ𝑖𝑛𝑖𝑡

, 𝜍Ξ𝑚𝑎𝑥
, 𝑇Ξ− 𝑓 𝑒𝑎𝑠 and 𝑇Ξ−𝑖𝑛 𝑓 𝑒𝑎𝑠 are all hyper-parameters of the COBRA [112] algorithm.
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under the assumption that 𝒙∗
𝑖

is classified as Ξ-infeasible. We also consider an additional point,

𝒙̃ ∈ B (𝒙𝒃𝒆𝒔𝒕 (𝑁) ; 𝜖) ∩Ω, 𝒙̃ ∉ Ξ̂, (6.44)

such that:

0 < 𝑝𝑁
(
𝒙∗
𝑖 ∈ Ξ

)
≤ 𝑝𝑁 (𝒙̃ ∈ Ξ) < 𝛾 ≤ 𝑝𝑁 (𝒙𝒃𝒆𝒔𝒕 (𝑁) ∈ Ξ) , (6.45a)

0 =


𝒙∗

𝑖 − 𝒙∗
𝑖




2 ≤



𝒙̃ − 𝒙∗
𝑖




2 <



𝒙𝒃𝒆𝒔𝒕 (𝑁) − 𝒙∗
𝑖




2 < 𝜖, (6.45b)

𝑓𝑁
(
𝒙∗
𝑖

)
≤ 𝑓𝑁 (𝒙̃) < 𝑓𝑁 (𝒙𝒃𝒆𝒔𝒕 (𝑁)) , (6.45c)

𝑓 ∗ = 𝑓
(
𝒙∗
𝑖

)
≤ 𝑓 (𝒙̃) < 𝑓 (𝒙𝒃𝒆𝒔𝒕 (𝑁)) . (6.45d)

In (6.45), we have assumed that the surrogate model 𝑓𝑁 (·) in (4.1) orders 𝒙∗
𝑖
, 𝒙̃ and 𝒙𝒃𝒆𝒔𝒕 (𝑁) in the

same way as the cost function 𝑓 (·) of the GOP (2.1). If 𝑓 (·) and 𝑓𝑁 (·) are Lipschitz continuous, then

(6.45b), (6.45c) and (6.45d) are closely related. Figure 32 depicts the situation described by (6.45).

𝒙𝒃𝒆𝒔𝒕 𝑁

𝒙𝑖
∗ ෥𝒙

𝜖

𝑝𝑁 𝒙 ∈ Ξ = 𝛾

Ω ∖ Ξ

ℬ 𝒙𝒃𝒆𝒔𝒕 𝑁 ; 𝜖

Ω

Figure 32: Representation of the situation in (6.45). The black circles denote the Ξ-feasible samples
available to the optimization procedure whereas the black crosses are the Ξ-infeasible ones. The current
best candidate is colored in magenta. Similarly, we depict the open ball B (𝒙𝒃𝒆𝒔𝒕 (𝑁) ; 𝜖) using a dashed
line in magenta. The shaded red area depicts the Ξ-infeasible region of the GOP (2.1) while the red
curve is the decision boundary of the PSVM classifier, trained from the samples at hand. The grey star
is a global minimizer of the global optimization problem (which is yet to be found by the BBO or PBO
procedure). We also show the level curves of the surrogate model 𝑓𝑁 (𝒙) to better grasp (6.45c). Lastly,
the sample 𝒙̃ ∈ B (𝒙𝒃𝒆𝒔𝒕 (𝑁) ; 𝜖) ∩Ω, 𝒙̃ ∉ Ξ̂, is the green circle.

Now, suppose that we look for the new candidate sample 𝒙𝑁+1 by solving Problem (6.37) following a

pure exploitation approach (i.e. 𝛿 = 1). The acquisition function in (6.38) simply becomes:

𝑎𝑁 (𝒙, 𝜀Ξ) = ˆ̄𝑓𝑁
(
𝒙;X𝑎𝑢𝑔

)
+ 𝜀Ξ. (6.46)
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Note that the constraint in (6.40) can be re-written as:

𝜀Ξ ≥ 𝛾 − 𝑝𝑁 (𝒙 ∈ Ξ)
𝛾

. (6.47)

Clearly, if 𝒙 ∈ Ξ̂ (i.e. 𝑝𝑁 (𝒙 ∈ Ξ) ≥ 𝛾), then the inequality in (6.47) holds ∀𝜀Ξ ∈ [0, 1]. Vice-versa,

if 𝒙 ∉ Ξ̂ (i.e. 𝑝𝑁 (𝒙 ∈ Ξ) < 𝛾), then the slack 𝜀Ξ must be greater than zero in order to satisfy the

aforementioned inequality. By substituting (6.47) in (6.46), taking into account that the slack 𝜀Ξ is

constrained to be in the segment [0, 1], we get:

𝑎𝑁 (𝒙, 𝜀Ξ) ≥ 𝑎̃𝑁 (𝒙) = ˆ̄𝑓𝑁
(
𝒙;X𝑎𝑢𝑔

)
+ max

{
0,
𝛾 − 𝑝𝑁 (𝒙 ∈ Ξ)

𝛾

}
. (6.48)

Consider 𝒙̃′ ∈ Ω to be a potential solution of Problem (6.37) with 𝑎𝑁 (𝒙, 𝜀Ξ) in (6.46). Due to the

minimization of the acquisition function, we select the lowest possible value for the slack 𝜀Ξ, i.e. the

expression in (6.48) holds with equality at 𝒙̃′:

𝑎𝑁 (𝒙̃′, ·) = 𝑎̃𝑁 (𝒙̃′) = ˆ̄𝑓𝑁
(
𝒙̃′;X𝑎𝑢𝑔

)
+ max

{
0,
𝛾 − 𝑝𝑁 (𝒙̃′ ∈ Ξ)

𝛾

}
. (6.49)

Now, let us go back to the situation described by (6.45) and consider the point 𝒙̃ in (6.44). Clearly,

due to (6.45c), 𝒙̃ is also a potential solution of Problem (6.37) when 𝑎𝑁 (𝒙, 𝜀Ξ) is defined as in (6.46).

In particular, 𝒙̃ is selected as the new candidate sample (i.e. 𝒙𝑁+1 = 𝒙̃) over the point 𝒙̃′ ∈ Ξ̂, even if

it is deemed as Ξ-infeasible by the PSVM classifier, whenever:

𝑎̃𝑁 (𝒙̃) < 𝑎̃𝑁 (𝒙̃′)

𝒙̃ ∉ Ξ̂ =⇒ 𝜀Ξ > 0 𝒙̃′ ∈ Ξ̂ =⇒ 𝜀Ξ = 0

ˆ̄𝑓𝑁
(
𝒙̃;X𝑎𝑢𝑔

)
+ 𝛾 − 𝑝𝑁 (𝒙̃ ∈ Ξ)

𝛾
< ˆ̄𝑓𝑁

(
𝒙̃′;X𝑎𝑢𝑔

)
ˆ̄𝑓𝑁

(
𝒙̃′;X𝑎𝑢𝑔

)
− ˆ̄𝑓𝑁

(
𝒙̃;X𝑎𝑢𝑔

)
>
𝛾 − 𝑝𝑁 (𝒙̃ ∈ Ξ)

𝛾

𝑓𝑁 (𝒙̃′)− 𝑓𝑁𝑚𝑖𝑛
(
X𝑎𝑢𝑔

)
Δ𝐹̂𝑁

(
X𝑎𝑢𝑔

) −
𝑓𝑁 (𝒙̃)− 𝑓𝑁𝑚𝑖𝑛

(
X𝑎𝑢𝑔

)
Δ𝐹̂𝑁

(
X𝑎𝑢𝑔

) >
𝛾 − 𝑝𝑁 (𝒙̃ ∈ Ξ)

𝛾

𝑓𝑁 (𝒙̃′) − 𝑓𝑁 (𝒙̃) >
Δ𝐹̂𝑁

(
X𝑎𝑢𝑔

)
𝛾

· [𝛾 − 𝑝𝑁 (𝒙̃ ∈ Ξ)] . (6.50)

Therefore, if 𝒙̃ improves upon 𝒙̃′ (for what concerns the surrogate model 𝑓𝑁 (·) in (4.1)) by more than
Δ𝐹̂𝑁 (X𝑎𝑢𝑔)

𝛾
· [𝛾 − 𝑝𝑁 (𝒙̃ ∈ Ξ)], then Problem (6.37) returns 𝒙𝑁+1 = 𝒙̃ ∉ Ξ̂. Vice-versa, 𝒙𝑁+1 = 𝒙̃′ ∈ Ξ̂ if

(6.50) does not hold. Note that, from (6.45), 𝒙̃ could even be the global minimizer 𝒙∗
𝑖

of the GOP (2.1).

Some similar considerations can be made in the case 𝛿 ≠ 1 for the acquisition function 𝑎𝑁 (𝒙, 𝜀Ξ) in

(6.38).

So far, we have implicitly assumed that Problem (6.37) always admits a solution. In practice, we

can prove that, under mild assumptions on the models 𝑓𝑁 (𝒙) in (4.1) and 𝑚Ξ𝑁 (𝒙) in (6.2), both
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the acquisition function 𝑎𝑁 (𝒙, 𝜀Ξ) in (6.38) and the constraint function in (6.40) are differentiable

everywhere (and hence continuous). The latter result can then be used to address the existence of a

solution for Problem (6.37), as we will see later on in this Section.

Proposition 6.5: Differentiability of the functions of Problem (6.37). The acquisition func-

tion 𝑎𝑁 (𝒙, 𝜀Ξ) in (6.38) is differentiable everywhere with respect to
[
𝒙 𝜀Ξ

]⊤
if and only

if the chosen radial basis function 𝜙 𝑓𝑖
(
𝒙; 𝜖 𝑓

)
= 𝜑 𝑓

(
𝜖 𝑓 · ∥𝒙 − 𝒙𝑖∥2

)
for the surrogate model

𝑓𝑁

(
𝒙; 𝜷 𝑓 , 𝜖 𝑓

)
in (4.1) is differentiable everywhere.

Instead, the function associated to the constraint in (6.40), namely:

ℎ (𝒙, 𝜀Ξ) = 𝛾 · (1 − 𝜀Ξ) − 𝑝𝑁 (𝒙 ∈ Ξ) , (6.51)

is differentiable everywhere with respect to
[
𝒙 𝜀Ξ

]⊤
if the chosen radial basis function

𝜙Ξ𝑖 (𝒙; 𝜖Ξ) = 𝜑Ξ (𝜖Ξ · ∥𝒙 − 𝒙𝑖∥2) for the model 𝑚Ξ𝑁

(
𝒙; 𝜷̃Ξ, 𝜖Ξ

)
in (6.2) is differentiable ev-

erywhere.

Proof. Both 𝑎𝑁 (𝒙, 𝜀Ξ) in (6.38) and ℎ (𝒙, 𝜀Ξ) in (6.51) are the sum of multiple terms, some of which

depend only on 𝒙 and others only on 𝜀Ξ. Therefore, we simply need to assess the differentiability of

each addend. Clearly, the terms 𝜀Ξ in (6.38) and 𝛾 · (1 − 𝜀Ξ) in (6.38) are differentiable everywhere

with respect to
[
𝒙 𝜀Ξ

]⊤
since they are linear in 𝜀Ξ and do not depend on 𝒙. Instead, the differentia-

bility of ˆ̄𝑓𝑁
(
𝒙;X𝑎𝑢𝑔

)
, 𝑧𝑁

(
𝒙;X𝑎𝑢𝑔

)
in (6.38) and 𝑝𝑁 (𝒙 ∈ Ξ) in (6.51) are addressed, respectively, in

Propositions 2.1, 4.4 and 6.3. □

Lemma 6.2: Gradients of the functions of Problem (6.37). Suppose that 𝑎𝑁 (𝒙, 𝜀Ξ) in (6.38)

and ℎ (𝒙, 𝜀Ξ) in (6.51) are differentiable everywhere (see Proposition 6.5). Then, their gradients

are:

∇𝒙,𝜀Ξ𝑎𝑁 (𝒙, 𝜀Ξ) =

∇𝒙𝑎𝑁 (𝒙, 𝜀Ξ)
𝜕
𝜕𝜀Ξ
𝑎𝑁 (𝒙, 𝜀Ξ)


=


𝛿

Δ𝐹̂𝑁 (X𝑎𝑢𝑔) · ∇𝒙 𝑓𝑁 (𝒙) + 1−𝛿
Δ𝑍𝑁 (X𝑎𝑢𝑔) · ∇𝒙𝑧𝑁 (𝒙)

1

 , (6.52a)

∇𝒙,𝜀Ξℎ (𝒙, 𝜀Ξ) =

∇𝒙ℎ (𝒙, 𝜀Ξ)
𝜕
𝜕𝜀Ξ
ℎ (𝒙, 𝜀Ξ)


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=


−∇𝒙𝑠Ξ𝑁 (𝒙)

−𝛾

 . (6.52b)

In particular, ∇𝒙 𝑓𝑁 (𝒙) ,∇𝒙𝑧𝑁 (𝒙) and ∇𝒙𝑠Ξ𝑁 (𝒙) are defined respectively as in (2.22), (5.1)

and (6.22).

Proof. The Proof is straightforward due to the fact that the addends of 𝑎𝑁 (𝒙, 𝜀Ξ) in (6.38) and

ℎ (𝒙, 𝜀Ξ) in (6.51) either depend on 𝒙 or on 𝜀Ξ. The differentiation of the two functions with respect

to 𝒙 yields the same results reported in Lemma 5.2 and in Lemma 6.1. Instead, the partial derivative

of 𝑎𝑁 (𝒙, 𝜀Ξ) in (6.38) and ℎ (𝒙, 𝜀Ξ) in (6.51) with respect to 𝜀Ξ are easy to to compute since both

functions are linear in the slack. □

We now go back to addressing the existence of a solution for Problem (6.37)

Proposition 6.6. Suppose that the completely known constraint set Ω of the GOP (2.1) is

compact. Then, provided that the conditions in Proposition 6.5 are verified, Problem (6.37)

always admits a solution.

Proof. The constraint set of Problem (6.37) is the intersection of two sets,{[
𝒙 𝜀Ξ

]⊤
: 𝒙 ∈ Ω, 𝜀Ξ ∈ [0, 1]

}
(6.53)

and {[
𝒙 𝜀Ξ

]⊤
: 𝒙 ∈ R𝑛, 𝜀Ξ ∈ R, 𝛾 · (1 − 𝜀Ξ) − 𝑝𝑁 (𝒙 ∈ Ξ) ≤ 0

}
, (6.54)

resulting in: {[
𝒙 𝜀Ξ

]⊤
: 𝒙 ∈ Ω, 𝜀Ξ ∈ [0, 1] , (6.55)

𝛾 · (1 − 𝜀Ξ) − 𝑝𝑁 (𝒙 ∈ Ξ) ≤ 0
}
.

Clearly, if Ω is compact, then so is the set in (6.53). The set in (6.54) is also compact since the con-

straint function in (6.51) is differentiable everywhere, due to Proposition 6.5, and hence continuous

[114]. Thus, the constraint set in (6.55) is compact being the intersection of two compact sets (see

Proposition A.5 in Appendix A.2). Finally, by Proposition 6.5, the acquisition function 𝑎𝑁 (𝒙, 𝜀Ξ) in

(6.38) is continuous and thus Problem (6.37) admits a solution due to the Extreme Value Theorem

1.1. □
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We conclude this Section by pointing out that, as an alternative to the slack formulation in Problem

(6.37), we could look for new candidate samples by solving:

𝒙𝑁+1 = arg min
𝒙
𝑎𝑁 (𝒙) (6.56)

s.t. 𝒙 ∈ Ω

𝑝𝑁 (𝒙 ∈ Ξ) ≥ 𝛾,

where 𝑎𝑁 (𝒙) is defined as in (5.12). Then, we could cycle the threshold 𝛾 (which defines the decision

boundary of the PSVM classifier, see (6.20)) in a similar fashion to the greedy 𝛿-cycling strategy in

Section 5.2.3. To do so, analogously to (5.15), we would need to define a cycling set:

Γ𝑐𝑦𝑐𝑙𝑒 = ⟨𝛾0, . . . , 𝛾𝑁̃𝑐𝑦𝑐𝑙𝑒−1
⟩, 𝑁̃𝑐𝑦𝑐𝑙𝑒 ∈ N, 𝛾 𝑗 ∈ [0, 1] ,∀𝛾 𝑗 ∈ Γ𝑐𝑦𝑐𝑙𝑒,

and keep 𝛾 of Problem (6.56) unaltered as long as there is an improvement (see Algorithm 9). However,

we claim that the proposed Problem (6.37) better captures the exploration-exploitation-penalization

rationale. At the same time, Problem (6.56) can be useful for high-dimensional GOPs (2.1) and/or

in the case we want to avoid sampling outside Ξ (e.g. if the sample evaluations involve real-world

experiments and Ξ-infeasible tunings might damage the equipment). For example, we could simply

set Γ𝑐𝑦𝑐𝑙𝑒 = ⟨𝛾0⟩ with 𝛾0 ≫ 0.5 (no cycling) to obtain a more conservative constrained black-box

or preference-based optimization procedure. Furthermore, for high-dimensional constrained BBO or

PBO problems, a more realistic goal is to find good local solutions of the GOP (2.1), starting from at

least one Ξ-feasible sample (see Remark 2.1), favoring Problem (6.56) over Problem (6.37).

6.2.1 A note on greedy 𝛿-cycling

In the constrained BBO and PBO frameworks, compared to the greedy 𝛿-cycling approach in the un-

constrained case (Section 5.2.3), new candidate samples 𝒙𝑁+1 might not improve upon the current best

candidate 𝒙𝒃𝒆𝒔𝒕 (𝑁) even if they achieve lower costs or are strictly preferred to the latter. Consequently,

we must update the cycling rule in (5.16) to make it consistent with the definition of improvement

in Algorithm 9. Suppose that, at iteration 𝑘 , we have at our disposal |X| = 𝑁 samples and denote

the trade-off parameter 𝛿 in (6.38) as 𝛿 (𝑘) to highlight the iteration number. Furthermore, assume

𝛿 (𝑘) = 𝛿 𝑗 ∈ Δ𝑐𝑦𝑐𝑙𝑒 in (5.15), which has been used to find the new candidate sample 𝒙𝑁+1 at iteration

𝑘 by solving Problem (6.37). Then, at iteration 𝑘 + 1, we select 𝛿 (𝑘 + 1) ∈ Δ𝑐𝑦𝑐𝑙𝑒 as:

𝛿 (𝑘 + 1) =


𝛿 (𝑘) if 𝒙𝒃𝒆𝒔𝒕 (𝑁) , 𝒙𝑁+1 ∈ Ξ and

𝑦𝑁+1 < 𝑦𝑏𝑒𝑠𝑡 (𝑁) (BBO) or 𝒙𝑁+1 ≻ 𝒙𝒃𝒆𝒔𝒕 (𝑁) (PBO)

𝛿( 𝑗+1)mod𝑁𝑐𝑦𝑐𝑙𝑒 otherwise

. (6.57)
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Note that we do not need to explicitly address the case 𝒙𝒃𝒆𝒔𝒕 (𝑁) ∉ Ξ. That is because, whenever

the current best candidate is Ξ-infeasible, then so are all the samples in X; therefore, new candidate

samples are sought by solving Problem (6.34) instead of Problem (6.37). The greedy 𝛿-cycling in

(6.57) starts as soon as ∅ ⊂ X ∩ Ξ ⊆ X. Moreover, any Ξ-infeasible point does not improve upon

𝒙𝒃𝒆𝒔𝒕 (𝑁) ∈ Ξ, even if it achieves a lower cost or is strictly preferred to the current best candidate,

resulting in 𝛿 (𝑘 + 1) = 𝛿( 𝑗+1)mod𝑁𝑐𝑦𝑐𝑙𝑒 . Lastly, whenever 𝒙𝒃𝒆𝒔𝒕 (𝑁) , 𝒙𝑁+1 ∈ Ξ, the cycling rule in

(6.57) is equivalent to the one in (5.16). Hence, the same considerations also hold for Problem (6.36)

with 𝑎𝑁 (𝒙) in (5.12).

6.3 Algorithms

Algorithm 16 describes each step of the C-GLIS-r and C-GLISp-r procedures in detail. Similarly to

what we did in Section 5.3, where we formalized algorithms GLIS-r [108] and GLISp-r [109], we

analyze BBO and PBO jointly. Furthermore, due to how we estimate the probability of Ξ-feasibility

(i.e. through a PSVM classifier), Algorithm 16 is able to handle both measurable black-box constraints

functions and decision-maker-based constraints. In the former case, i.e. when the set CΞ in (2.12)

is available, we can easily obtain UΞ in (2.11) from CΞ. Similarly to Algorithm 14, we propose to

perform the recalibration of the hyper-parameters of the surrogate model 𝑢̂Ξ𝑁 (𝒙) in (6.19) (Section

6.1.4) only at certain iterations of the C-GLIS-r and C-GLISp-r procedures, as highlighted by the set

K𝑅Ξ ⊆ {1, . . . , 𝑁𝑚𝑎𝑥 − 𝑁𝑖𝑛𝑖𝑡}.

C-GLIS (respectively, C-GLISp [156], in Algorithm 12) and C-GLIS-r (C-GLISp-r, in Algorithm 16)

differ from each other on several aspects. Other than the modifications introduced by GLIS-r [108] and

GLISp-r [109] (see Algorithm 14), the main differences between the latter methods are: (i) the black-

box constraint set Ξ of the GOP (2.1) is handled by different surrogates, (ii) C-GLIS-r/C-GLISp-r

adopt an infill sampling criterion that depends on how many Ξ-feasible samples are present in X (2.9)

while C-GLIS/C-GLISp [156] do not and, consequently, (iii) the methods rely on different acquisition

functions/infill sampling criteria. Furthermore, we point out that we still use the original IDW distance

function 𝑧𝑁 (𝒙) in (4.17) instead of the revisited one in (4.18). In any case, in Algorithm 16, we explicit

in grey the differences between C-GLIS/C-GLISp [156] and C-GLIS-r/C-GLISp-r.

As final remark, note that Algorithm 16 (C-GLIS-r and C-GLISp-r) is equivalent to Algorithm 14

(GLIS-r [108] and GLISp-r [109]) whenever no black-box constraints are present (i.e. when Ξ = R𝑛

for the GOP (2.1)).
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Algorithm 16: C-GLIS-r and C-GLISp-r
Input: (i) A-priori known constraint set Ω of the GOP (2.1); (ii) Number of initial samples 𝑁𝑖𝑛𝑖𝑡 ∈ N;
(iii) Budget 𝑁𝑚𝑎𝑥 ∈ N, 𝑁𝑚𝑎𝑥 > 𝑁𝑖𝑛𝑖𝑡 ; (iv) Hyper-parameters for the surrogate model 𝑓𝑁 (𝒙) in (4.1): shape
parameter 𝜖 𝑓 ∈ R>0 and radial function 𝜑 𝑓 (·) (BBO and PBO), threshold 𝜖𝑆𝑉𝐷 ∈ R>0 (BBO), regularization
parameter 𝜆 𝑓 ∈ R≥0 and tolerance 𝜎𝜋 ∈ R>0 (PBO); (v) Hyper-parameters for the surrogate model 𝑢̂Ξ𝑁

(𝒙) in
(6.19), namely shape parameter 𝜖Ξ ∈ R>0, radial function 𝜑Ξ (·), trade-off weight 𝐶𝑆𝑉𝑀 ∈ R>0 and threshold
𝛾 ∈ [0, 1]; (vi) Cycling setΔ𝑐𝑦𝑐𝑙𝑒 in (5.15) for the infill sampling criterion; (vii) Number of clusters𝐾𝑎𝑢𝑔 ∈ N for
the augmented sample setX𝑎𝑢𝑔 generated by Algorithm 13; (viii) Set of modelsM 𝑓 in (4.30) for the recalibration
of the surrogate model 𝑓𝑁 (𝒙) in (4.1); (ix) Set of indexes for the recalibration of the surrogate model 𝑓𝑁 (𝒙)
in (4.1), K𝑅 𝑓

⊆ {1, . . . , 𝑁𝑚𝑎𝑥 − 𝑁𝑖𝑛𝑖𝑡 }, and folds ratio 𝑅 𝑓 ∈ [0, 1]; (x) Bounds on the hyper-parameters of the
PSVM classifier 𝒍Ξ, 𝒖Ξ ∈ R2

>0; (xi) Set of indexes for the recalibration of the surrogate model 𝑢̂Ξ𝑁
(𝒙) in (6.19),

K𝑅Ξ
⊆ {1, . . . , 𝑁𝑚𝑎𝑥 − 𝑁𝑖𝑛𝑖𝑡 }, and folds ratio 𝑅Ξ ∈ [0, 1].

Output: (i) Best cost obtained by the procedure 𝑦𝑏𝑒𝑠𝑡 (𝑁𝑚𝑎𝑥) (only for BBO); (ii) Best sample obtained by the
procedure 𝒙𝒃𝒆𝒔𝒕 (𝑁𝑚𝑎𝑥).
1: Rescale the GOP (2.1) as proposed in Section 4.4.1, obtaining Problem (4.27)
2: Generate a set X in (2.9) of 𝑁𝑖𝑛𝑖𝑡 starting points using a LHD (see Section 2.4)
3: Evaluate the samples in X either by measuring the values of 𝑓 (·), obtaining the set Y in (2.10) (BBO), or

by querying the decision-maker as in Algorithm 7, obtaining the sets B (3.9) and S (3.10), as well as the
best candidate 𝒙𝒃𝒆𝒔𝒕 (𝑁𝑖𝑛𝑖𝑡 )

4: Evaluate the Ξ-feasibility of each 𝒙𝑖 ∈ X, obtaining the set UΞ in (2.11)
5: Set 𝑁 = 𝑁𝑖𝑛𝑖𝑡 (and 𝑀 = |B| for PBO)
6: Set 𝛿 = 𝛿0 ∈ Δ𝑐𝑦𝑐𝑙𝑒 and 𝑗 = 0
7: for 𝑘 = 1, 2, . . . , 𝑁𝑚𝑎𝑥 − 𝑁𝑖𝑛𝑖𝑡 do
8: if 𝑘 ∈ K𝑅 𝑓

then recalibrate the surrogate model 𝑓𝑁 (𝒙) in (4.1) as in Algorithm 8
9: if 𝑘 ∈ K𝑅Ξ

then recalibrate the surrogate model 𝑢̂Ξ𝑁
(𝒙) in (6.19) as in Section 6.1.4

10: if ∃𝑢𝑖 ∈ UΞ such that 𝑢𝑖 = 1 then build the surrogate model for 𝑓 (𝒙) using the information at hand: in
BBO, find 𝜷 𝑓 as in (4.4) whereas, for PBO, select 𝜷 𝑓 as the solution of Problem (4.10)

11: if ∃𝑢𝑖 , 𝑢 𝑗 ∈ UΞ such that 𝑢𝑖 = 1, 𝑢 𝑗 = 0, 𝑖 ≠ 𝑗 then estimate the probability of Ξ-feasibility 𝑝𝑁 (𝒙 ∈ Ξ)
in (6.15) as proposed in Section 6.1.3

12: Generate the augmented sample set X𝑎𝑢𝑔 through Algorithm 13
13: Look for the next candidate sample 𝒙𝑁+1:

a: if 𝑢𝑖 = 0,∀𝑢𝑖 ∈ UΞ then solve Problem (6.34) with 𝑧𝑁 (𝒙) in (4.17)
b: if 𝑢𝑖 = 1,∀𝑢𝑖 ∈ UΞ then solve Problem (6.36) with 𝑎𝑁 (𝒙) in (5.12)
c: if ∃𝑢𝑖 , 𝑢 𝑗 ∈ UΞ such that 𝑢𝑖 = 1, 𝑢 𝑗 = 0, 𝑖 ≠ 𝑗 then solve Problem (6.37) with 𝑎𝑁 (𝒙, 𝜀Ξ) in (6.38)
and 𝑝𝑁 (𝒙 ∈ Ξ) in (6.15)

14: Evaluate the new candidate sample, obtaining either 𝑦𝑁+1 = 𝑓 (𝒙𝑁+1) (in BBO) or 𝑏𝑀+1 =

𝜋≿ (𝒙𝑁+1, 𝒙𝒃𝒆𝒔𝒕 (𝑁)) (in PBO)
15: Evaluate the Ξ-feasibility of 𝒙𝑁+1, obtaining 𝑢𝑁+1 = 𝑢Ξ (𝒙𝑁+1)
16: Update the set of samples X and either the set of measures of 𝑓 (·), Y (BBO), or the preference

information in the sets B and S (PBO)
17: Update the Ξ-feasibility information in the set UΞ

18: Check if 𝒙𝑁+1 improves upon 𝒙𝒃𝒆𝒔𝒕 (𝑁), as highlighted by the flag ℎ𝑎𝑠𝐼𝑚𝑝𝑟𝑜𝑣𝑒𝑑 from Algorithm 9
19: if ℎ𝑎𝑠𝐼𝑚𝑝𝑟𝑜𝑣𝑒𝑑 then
20: Set 𝒙𝒃𝒆𝒔𝒕 (𝑁 + 1) = 𝒙𝑁+1
21: else
22: Keep 𝒙𝒃𝒆𝒔𝒕 (𝑁 + 1) = 𝒙𝒃𝒆𝒔𝒕 (𝑁)
23: if ∃𝑢𝑖 ∈ UΞ such that 𝑢𝑖 = 1 then set 𝛿 = 𝛿 ( 𝑗+1)mod𝑁𝑐𝑦𝑐𝑙𝑒

∈ Δ𝑐𝑦𝑐𝑙𝑒 (greedy 𝛿-cycling) and 𝑗 = 𝑗 + 1
24: Set 𝑁 = 𝑁 + 1 (and 𝑀 = 𝑀 + 1 for PBO)

6.3.1 A note on the convergence

Algorithm 16 does not guarantee its convergence to a global solution of the GOP (2.1) if Ξ ≠ R𝑛 (i.e.
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whenever we are actually dealing with constrained BBO or PBO). As long as no Ξ-feasible samples

are available, C-GLIS-r and C-GLISp-r look for new candidate samples 𝒙𝑁+1 ∈ Ω by solving

Problem (6.34). In Section 5.3.1, we have seen that, if Ω is compact, then selecting 𝒙𝑁+1 through

the minimization of the IDW distance function 𝑧𝑁 (𝒙) in (4.17) over Ω makes the set of samples X

in (2.9) progressively more space-filling. Moreover, if Problem (6.34) (pure exploration) were to be

solved infinitely often, then the sequence of iterates generated by Algorithm 16 would be dense in Ω.

However, in this case, we do not guarantee that Problem (6.34) is solved infinitely often. In fact, as

soon as a Ξ-feasible sample is found, we look for the minimizers of Problem (6.37) instead of those of

Problem (6.34). Even if 𝛿 = 0 for the acquisition function 𝑎𝑁 (𝒙, 𝜀Ξ) in (6.38), the exploration of Ω

is penalized by the constraint in (6.40). For example, let us go back to the situation in (6.45) but this

time consider 𝛿 = 0 instead of 𝛿 = 1. Similarly to Section 6.2, let 𝒙̃, 𝒙̃′ ∈ Ω be two potential solutions

of Problem (6.37) such that 𝒙̃ ∉ Ξ̂ and 𝒙̃′ ∈ Ξ̂, with Ξ̂ defined as in (6.42). Then 𝒙̃ is selected over 𝒙̃′

if (see the derivation of (6.50)):

𝑧𝑁 (𝒙̃′) >
Δ𝑍𝑁

(
X𝑎𝑢𝑔

)
𝛾

· [𝛾 − 𝑝𝑁 (𝒙̃ ∈ Ξ)] + 𝑧𝑁 (𝒙̃) . (6.58)

Therefore, in this case, Algorithm 16 might select new candidate samples that are deemed as Ξ-

infeasible by the PSVM classifier if they provide good exploratory capabilities (low 𝑧𝑁 (𝒙̃)) but, at the

same time, do not violate the constraint in (6.39) by too much
(
Δ𝑍𝑁 (X𝑎𝑢𝑔)

𝛾
· [𝛾 − 𝑝𝑁 (𝒙̃ ∈ Ξ)] small

)
.

The easiest way to ensure the asymptotic global convergence of C-GLIS-r and C-GLISp-r is to

perform pure unpenalized exploration infinitely often. For example, whenever 𝛿 = 0 for the acquisition

function 𝑎𝑁 (𝒙, 𝜀Ξ) in (6.38), we could solve:

𝒙𝑁+1 = arg min
𝒙
𝑧𝑁 (𝒙) (6.59)

s.t. 𝒙 ∈ Ω

instead of Problem (6.37). Assume that both Ξ and Ω are compact, then the constraint set of the GOP

(2.1), namely Ω ∩ Ξ, is also compact (and nonempty due to Assumption 2.2). If the conditions in
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Theorem 5.2 are verified3, then, by solving Problem (6.59) infinitely often, the optimization procedures

produce sequences of iterates ⟨𝒙𝑖⟩𝑖≥1 that are dense in Ω (this can be demonstrated using the same

arguments in the Proof of Theorem 5.2). Consequently, ⟨𝒙𝑖⟩𝑖≥1 must also be dense in Ω ∩ Ξ. Hence,

the C-GLIS-r and C-GLISp-r algorithms which perform pure unpenalized exploration (when 𝛿 = 0)

converge to the global minimum of the GOP (2.1). The next Example compares the performances

achieved by Algorithm 16 against its variant equipped with the just described pure unpenalized

exploration approach.
Example 6.4: Pure unpenalized exploration

Consider the sasena 2 [125] benchmark optimization problem in Appendix B, which has one

global minimizer 𝒙∗ =

[
0.2017 0.8332

]⊤
and one local minimizer 𝒙+ =

[
0.2616 0.1216

]⊤
( 𝑓 (𝒙∗) < 𝑓 (𝒙+)). Its black-box constraint set Ξ defines two disconnected regions, one contains

𝒙∗ and the other 𝒙+. We perform constrained black-box optimization using Algorithm 16

(C-GLIS-r) with the following hyper-parameters:

• Number of initial samples 𝑁𝑖𝑛𝑖𝑡 = 12,

• Budget 𝑁𝑚𝑎𝑥 = 100,

• Hyper-parameters for the surrogate model 𝑓𝑁 (𝒙) in (4.1): 𝜖 𝑓 = 0.5378, 𝜑 𝑓 (·) inverse

quadratic, 𝜖𝑆𝑉𝐷 = 10−6,

• Hyper-parameters for the surrogate model 𝑢̂Ξ𝑁 (𝒙) in (6.19): 𝜖Ξ = 1, 𝜑Ξ (·) Gaussian,

𝐶𝑆𝑉𝑀 = 106, 𝛾 = 0.5,

• Cycling set Δ𝑐𝑦𝑐𝑙𝑒 = ⟨0.95, 0.7, 0.35, 0⟩,

• Number of clusters for X𝑎𝑢𝑔: 𝐾𝑎𝑢𝑔 = 5,

• No recalibration of 𝑓𝑁 (𝒙) in (4.1), i.e. K𝑅 𝑓 = ∅,M 𝑓 = ∅,

• No recalibration of 𝑢̂Ξ𝑁 (𝒙) in (6.19), i.e. K𝑅Ξ = ∅.

We consider two different formulations of the C-GLIS-r algorithm. One is the original for-

mulation of the procedure, the other performs pure unpenalized exploration (Problem (6.59))

whenever 𝛿 = 0 for the acquisition function 𝑎𝑁 (𝒙, 𝜀Ξ) in (6.38). We refer to the former as safe

while the latter as unpenalized. Both safe-C-GLIS-r and unpenalized-C-GLIS-r are started

3Formally, we should also ensure that the surrogate model 𝑓𝑁 (𝒙) in (4.1) and the probability of Ξ-feasibility 𝑝𝑁 (𝒙 ∈ Ξ)
in (6.15) are continuous. However, that is always the case when 𝜑 𝑓 (·) and 𝜑Ξ (·) for the latter functions are selected as
any of the radial functions reported in Definition 2.6.
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from the same X𝑖𝑛𝑖𝑡1 ,
��X𝑖𝑛𝑖𝑡1 �� = 𝑁𝑖𝑛𝑖𝑡 , samples. For the safe formulation, we also consider an

additional set of initial samples X𝑖𝑛𝑖𝑡2 ,
��X𝑖𝑛𝑖𝑡2 �� = 𝑁𝑖𝑛𝑖𝑡 , generated by a LHD (Section 2.4) with

a different random seed. In any case, the optimization problems related to the infill sampling

criteria of the methods (Section 6.2) are solved by the PSWARM [72] algorithm (see Section

1.2.5).

Figure 33 depicts the results. Notice how Ξ̂ in (6.42) of unpenalized-C-GLIS-r is able to

roughly capture both disconnected regions defined by Ξ of the sasena 2 [125] benchmark

optimization problem. That is due to the fact that the method explores Ω more. For this reason,

it returns a point 𝒙𝒃𝒆𝒔𝒕 (𝑁𝑚𝑎𝑥) that is close to 𝒙∗. Instead, safe-C-GLIS-r gets stuck on the

local minimizer 𝒙+, when started from X𝑖𝑛𝑖𝑡1 . However, when the latter procedure begins from

X𝑖𝑛𝑖𝑡2 (which contains a point located in the region of Ξ where the global minimizer is located),

it favors sampling in a neighborhood of 𝒙∗. In any case, at least in this Example, Ξ̂ in (6.42)

estimated by safe-C-GLIS-r only captures one of the two disconnected regions of Ξ of the

GOP (2.1). The global convergence of unpenalized-C-GLIS-r comes at a cost: several more

Ξ-infeasible points are evaluated compared to safe-C-GLIS-r.

Although global convergence is a desirable property for any BBO or PBO algorithm, when black-box

constraints are present it is often better to minimize the number of Ξ-infeasible samples tried by the

optimization procedure. In particular, as 𝑛 increases, exploration becomes exponentially harder and

hence it is best to limit our search only within a region of Ω where it is more likely to find Ξ-feasible

samples (see Remark 2.1). In practice, we would rather find a suboptimal Ξ-feasible calibration (e.g.

a local minimizer of the GOP (2.1)) instead of wasting many sample evaluations surveying Ω in the

hope of finding a better promising Ξ-feasible region.

6.3.2 A note on the generalization

Algorithm 16 can easily be generalized to handle any surrogate model of the cost function 𝑓 (𝒙) of

the GOP (2.1), any exploration function 𝑧𝑁 (𝒙) and any adequate classifier that returns the probability

of Ξ-feasibility 𝑝𝑁 (𝒙 ∈ Ξ) = 𝑝
(
𝒙 ∈ Ξ

�� —, 𝒙
)
4. Following the same rationale of gMRS [108] (Section

5.4, Algorithm 15), we only require 𝑓𝑁 (𝒙) and 𝑝𝑁 (𝒙 ∈ Ξ) to be continuous, while 𝑧𝑁 (𝒙) must be

proper (see Definition 5.4). The latter conditions ensure that Problems (6.34), (6.36) and (6.37) always

admit a solution. For example, in Chapter 7, we will test the C-GLIS-r and C-GLISp-r procedures

4In practice, the probability of Ξ-feasibility could be estimated from X in (2.9) and CΞ in (2.12) instead of X and UΞ in
(2.11), hence the — in the above expression.
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Figure 33: Comparison of the performances achieved by the two formulations of C-GLIS-r described in
Example 6.4. The top and middle rows display the samples obtained by C-GLIS-r. The shaded red area
denotes the Ξ-infeasible region. The Ξ-feasible samples are depicted with circles whereas the Ξ-infeasible
ones are the crosses. We distinguish the 𝑁𝑖𝑛𝑖𝑡 initial points (in red) from those obtained by the infill
sampling criteria (in black). The best candidates are colored in magenta. The stars in grey are the global
and local minimizers of the sasena 2 [125] GOP (2.1). Lastly, the red lines are the decision boundaries
of the PSVM classifiers. On the bottom left: performances achieved by the different formulations of
C-GLIS-r. We depict 𝑓 (𝒙𝒃𝒆𝒔𝒕 (𝑁)) as a dashed line as long as 𝒙𝒃𝒆𝒔𝒕 (𝑁) is Ξ-infeasible and switch to a
continuous line when the latter becomes Ξ-feasible. The dashed black-line is the global minimum of the
GOP (2.1). The black vertical line denotes 𝑁𝑖𝑛𝑖𝑡 . On the bottom right: number of Ξ-feasible samples
when 𝑁 = 𝑁𝑚𝑎𝑥 for the different formulations of C-GLIS-r.

with 𝑝𝑁 (𝒙 ∈ Ξ) estimated through inverse distance weighting interpolation, i.e. as in (4.16). Note

that 𝑝𝑁 (𝒙 ∈ Ξ) in (4.16) is differentiable everywhere (see Proposition 4.3), making it continuous and

thus suitable for the task at hand.
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6.4 Chapter summary

In this Chapter, we have presented the fourth contribution of this book, which is the extension of

the GLIS-r [108] and GLISp-r [109] procedures to the constrained black-box and preference-based

optimization frameworks, giving rise to C-GLIS-r and C-GLISp-r respectively. The latter methods

estimate the probability of Ξ-feasibility, 𝑝𝑁 (𝒙 ∈ Ξ), through a probabilistic support vector machine

classifier and use it to penalize the search in those regions of Ω of the GOP (2.1) that are likely

to contain Ξ-infeasible samples. We have designed a PSVM classifier that is specifically tailored

for constrained BBO and PBO. In particular, we guarantee that, whenever 𝒙𝒃𝒆𝒔𝒕 (𝑁) is Ξ-feasible,

then it is classified as such by the proposed PSVM classifier. C-GLIS-r and C-GLISp-r employ

an infill sampling criterion that behaves differently based on how many Ξ-feasible are present in X

(2.9): (i) if none are available, then we explore Ω in the hope of finding a Ξ-feasible region; (ii) if

𝒙𝑖 ∈ Ξ,∀𝒙𝑖 ∈ X, then we adopt the same infill sampling criterion of GLIS-r [108] and GLISp-r

[109]; (iii) if ∃𝒙𝑖, 𝒙 𝑗 ∈ X, 𝒙𝑖 ≠ 𝒙 𝑗 , such that 𝒙𝑖 ∈ Ξ and 𝒙 𝑗 ∉ Ξ, then C-GLIS-r and C-GLISp-r

look for new candidate samples by trading off exploration and exploitation but, at the same time,

penalize the search in those regions of Ω that are likely to contain Ξ-infeasible samples (as predicted

by 𝑝𝑁 (𝒙 ∈ Ξ)). The main difference between the proposed infill sampling criterion and the strategies

used by the most popular constrained BBO methods is the addition of a slack variable, which allows

the violation of the constraint 𝑝𝑁 (𝒙 ∈ Ξ) ≥ 𝛾 when there exist very promising calibrations on the

other side of the decision boundary of the PSVM classifier.

Formally, C-GLIS-r and C-GLISp-r are not globally convergent by design, although they can easily

be made so by letting the procedures perform pure unpenalized exploration (whenever needed). In

practice, the latter approach is not recommended since it can lead to trying more Ξ-infeasible samples

than we are willing to evaluate.

C-GLIS-r and C-GLISp-r will be compared to C-GLIS and C-GLISp [156] in Chapter 7. Therein,

we will show that the proposed methods can be more sample efficient than the original methods, both

in constrained BBO and PBO.
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Chapter 7. Empirical results

In this Chapter, we analyze the performances of the proposed algorithms, namely GLIS-r [108],

GLISp-r [109] (Chapter 5, Algorithm 14), C-GLIS-r and C-GLISp-r (Chapter 6, Algorithm 16),

on several benchmark optimization problems, reported in Appendix B. We compare the proposed

procedures against the original methods: GLIS [10], GLISp [11], C-GLIS and C-GLISp [156] (Chapter

4, Algorithms 10, 11 and 12).

In the unconstrained BBO and PBO frameworks, we compare GLIS-r [108] (respectively, GLISp-r

[109]) to both GLIS [10] (GLISp [11]) and C-GLIS (C-GLISp [156]), even if no black-box constraints

are present. That is because C-GLIS and C-GLISp [156] use the IDW distance function 𝑧𝑁 (𝒙) in

(4.18) instead of the one in (4.17) which, as claimed in [156], is better suited for escaping local minima

of the GOP (2.1).

In the constrained BBO and PBO frameworks, we test both the PSVM classifier described in Section

6.1.3 and the IDWI function in (4.16) as estimators of the probability of Ξ-feasibility for C-GLIS-r

and C-GLISp-r. Recall that both C-GLIS and C-GLISp [156] use the IDWI function in (4.16) to

penalize the search in those regions of Ω which are likely to contain Ξ-infeasible samples, see the

acquisition functions in (4.20c) and (4.20d); hence, it is interesting to compare the methods when they

all use the same surrogates but different infill sampling criteria.

The rest of this Chapter is organized as follows. Section 7.1 describes the experimental setup used for

all benchmark optimization problems. In particular, we address the selection of the hyper-parameters

for each method and the criteria used when comparing the optimization procedures. Section 7.2 reports

the results achieved by GLIS [10], GLISp [11], C-GLIS, C-GLISp [156], GLIS-r [108] and GLISp-r

[109] in the unconstrained BBO and PBO frameworks. Instead, Section 7.3 shows the performances

of C-GLIS, C-GLISp [156], C-GLIS-r and C-GLISp-r in the constrained BBO and PBO frameworks.

Lastly, Section 7.4 gives some concluding remarks.

7.1 Experimental setup

All benchmark optimization problems have been solved on a machine with two Intel Xeon E5-2687W

@3.00GHz CPUs and 128GB of RAM. GLIS-r [108], GLISp-r [109], C-GLIS-r and C-GLISp-r

have been implemented in MATLAB. Similarly, we have used the MATLAB code for GLIS [10] and

GLISp [11] provided by the authors (formally, version 2.4 of the software package) and the MATLAB
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code for C-GLIS and C-GLISp [156] supplied in version 3.0 of the same software package1. All the

global optimization problems associated to the infill sampling criteria of the procedures have been

solved using the PSWARM [72] algorithm (see Section 1.2.5) and with the same settings. In particular,

we have used the MATLAB implementation of PSWARM [72] provided by [80, 146, 147]2. Whenever

completely known constraints are present (for example, in Problem (6.37)), we have equipped the

PSWARM [72] procedure with a quadratic penalty function as described in Section 1.2.6.

7.1.1 Hyper-parameters for the procedures

One of the main difficulties when comparing (fairly) surrogate-based methods is the choice of their

respective hyper-parameters, which are often many. In this case, we argue that GLIS [10], GLIS-r

[108], GLISp [11], GLISp-r [109], C-GLIS, C-GLIS-r, C-GLISp [156] and C-GLISp-r are relatively

easy to compare (as opposed to, e.g., a Bayesian optimization procedure) since they rely on the same

surrogate model for the cost function 𝑓 (𝒙) of the GOP (2.1). In our benchmarks, we have chosen

the same hyper-parameters for all the methods, whenever possible. This applies, for example, to

the shape parameter 𝜖 𝑓 and the radial function 𝜑 𝑓 (·) of the surrogate model 𝑓𝑁 (𝒙) in (4.1). Vice-

versa, for those algorithm-specific hyper-parameters (such as the trade-off weights of the several infill

sampling criteria), we have used the settings suggested in the respective articles for GLIS [10], GLISp

[11] and C-GLISp [156]. Concerning the cycling set Δ𝑐𝑦𝑐𝑙𝑒 in (5.15) for GLIS-r [108], GLISp-r

[109], C-GLIS-r and C-GLISp-r, we have mostly used Δ𝑐𝑦𝑐𝑙𝑒 = ⟨0.95, 0.7, 0.35, 0⟩ since we have

empirically found out that it results in a good compromise between exploration and exploitation (see

Example 5.2). Δ𝑐𝑦𝑐𝑙𝑒 also includes a zero term in compliance with the convergence result in Theorem

5.2. For unconstrained BBO and PBO, we also show the results obtained by setting Δ𝑐𝑦𝑐𝑙𝑒 = ⟨0.95⟩

(“pure” exploitation) and Δ𝑐𝑦𝑐𝑙𝑒 = ⟨0⟩ (pure exploration). Concerning the hyper-parameters of the

PSVM classifier (in Section 6.1.3), we have used a Gaussian 𝜑Ξ (·) and a unitary shape parameter 𝜖Ξ
for the model 𝑚Ξ𝑁 (𝒙) in (6.2), which are common choices (at least for machine learning problems

[15, 153]). The threshold on the probability of Ξ-feasibility is set to 𝛿 = 0.5 as in [9]. The last hyper-

parameter, i.e. 𝐶𝑆𝑉𝑀 for Problem (6.8), has been set to a relatively high value (that is 𝐶𝑆𝑉𝑀 = 106)

since no noise is present (see Assumption 2.4), making a classifier that behaves quite similarly to a

hard margin SVM satisfactory. In BBO, no recalibration is performed for the surrogate model 𝑓𝑁 (𝒙)

in (4.1) since neither GLIS [10] nor C-GLIS do so in their original formulation. Instead, in PBO,

GLISp [11], GLISp-r [109], C-GLISp [156] and C-GLISp-r perform the recalibration at the same

1The software package is provided at http://cse.lab.imtlucca.it/~bemporad/glis/.
2Available at http://www.norg.uminho.pt/aivaz/pswarm/.
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iterations and consider the same models M 𝑓 (see Section 4.4.2). In particular, as proposed in [11],

we only tune the shape parameter 𝜖 𝑓 and not the radial function 𝜑 𝑓 (·) for 𝑓𝑁 (𝒙) in (4.1). Lastly, for

what concerns the PSVM classifier used by C-GLIS-r and C-GLISp-r, no recalibration is performed

since, at least empirically, the chosen hyper-parameters already behave quite well.

All the settings for the considered optimization procedures are reported in Appendix C.

7.1.2 Starting samples, budget and sample evaluations

For what concerns the number of samples generated by the initial experimental design (which is a

LHD, see Section 2.4), i.e. 𝑁𝑖𝑛𝑖𝑡 , we have selected it as follows:

• 𝑁𝑖𝑛𝑖𝑡 = 2 · 𝑛 for unconstrained BBO;

• 𝑁𝑖𝑛𝑖𝑡 = 4 · 𝑛 for unconstrained PBO;

• 𝑁𝑖𝑛𝑖𝑡 = 6 · 𝑛 for constrained BBO and PBO.

Note that 𝑁𝑖𝑛𝑖𝑡 depends on the dimensionality 𝑛 of the decision vector due to the fact that the exploration

of the feasible region of the GOP (2.1) becomes progressively harder as 𝑛 increases. Furthermore,

for the unconstrained benchmarks, we start the preference-based optimization procedures from more

samples than those used to initialize their black-box counterparts. That is because the preferences

contained in B (3.9) and S (3.10) carry less information than the measures of 𝑓 (𝒙) in Y (2.10);

hence, we require more of the former to build an initial surrogate model3. Moreover, the number of

initial samples for the constrained procedures is greater than 𝑁𝑖𝑛𝑖𝑡 used by the unconstrained methods

so that it is more likely to find a Ξ-feasible sample through the experimental design.

We point out that, in order to make the comparisons fair, all the procedures are started from the

same sets of samples. Moreover, each benchmark optimization problem is solved 𝑁𝑡𝑟𝑖𝑎𝑙 = 100 times,

starting from different sets of points, to collect statistically significant results. Lastly, the budget for

all the algorithms is set to 𝑁𝑚𝑎𝑥 = 200.

Overall, a total of 14400 trials have been performed, divided between the different benchmark optimiza-

tion problems, the unconstrained/constrained BBO/PBO frameworks and the considered algorithms.

The next Remark clarifies how sample evaluations are carried out in the unconstrained and constrained

PBO frameworks.

3For example, consider 𝑛 = 1 and suppose 𝑁𝑖𝑛𝑖𝑡 = 2 · 𝑛 = 2 for the PBO procedures. Generate B in (3.9) and S in (3.10)
from Algorithm 7. Then, at the first iteration of the PBO methods, only 𝑀 = 𝑁𝑖𝑛𝑖𝑡 − 1 = 1 preference is available to build
the surrogate model 𝑓𝑁 (𝒙) in (4.1).
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Remark 7.1 (Sample evaluations in the preference-based setting). In this Chapter, which is purely

devoted to comparing the proposed methods against the original ones, we do not consider a “real”

decision-maker. Instead, the preferences are expressed directly from the cost functions 𝑓 (𝒙) of the

GOPs (2.1) and the Ξ-feasibility functions 𝑢Ξ (𝒙) in (2.4). Consider two samples 𝒙𝑖, 𝒙 𝑗 ∈ Ω. In

unconstrained PBO, we express a preference using the preference function 𝜋≿
(
𝒙𝑖, 𝒙 𝑗

)
in (3.8), which

we report here:

𝜋≿
(
𝒙𝑖, 𝒙 𝑗

)
=


−1 if 𝑓 (𝒙𝑖) < 𝑓

(
𝒙 𝑗

)
0 if 𝑓 (𝒙𝑖) = 𝑓

(
𝒙 𝑗

)
1 if 𝑓 (𝒙𝑖) > 𝑓

(
𝒙 𝑗

) . (7.1)

Instead, in the constrained PBO setting, we express preferences by also penalizing the Ξ-infeasibility

[156]:

𝜋≿
(
𝒙𝑖, 𝒙 𝑗

)
=



−1 if either 𝑢Ξ (𝒙𝑖) = 𝑢Ξ
(
𝒙 𝑗

)
and 𝑓 (𝒙𝑖) < 𝑓

(
𝒙 𝑗

)
or 𝑢Ξ (𝒙𝑖) = 1, 𝑢Ξ

(
𝒙 𝑗

)
= 0

0 if 𝑢Ξ (𝒙𝑖) = 𝑢Ξ
(
𝒙 𝑗

)
and 𝑓 (𝒙𝑖) = 𝑓

(
𝒙 𝑗

)
1 if either 𝑢Ξ (𝒙𝑖) = 𝑢Ξ

(
𝒙 𝑗

)
and 𝑓 (𝒙𝑖) > 𝑓

(
𝒙 𝑗

)
or 𝑢Ξ (𝒙𝑖) = 0, 𝑢Ξ

(
𝒙 𝑗

)
= 1

. (7.2)

By proceeding as in (7.1) and (7.2), the preferences are always expressed consistently, allowing for a

fair comparison of the PBO methods.

Clearly, preference-based optimization procedures are designed to handle “real” decision-makers,

which might not always be consistent in their choices. For this reason, in Chapter 8, we will show the

performances of GLISp-r [109] and C-GLISp-r on a control systems case study and for which the

author of this book plays the role of the DM.

7.1.3 Comparison criteria

We compare the performances of the optimization procedures on each benchmark optimization prob-

lem by means of convergence plots and data profiles [5]. Convergence plots depict the median, best

and worst case performances over the 𝑁𝑡𝑟𝑖𝑎𝑙 trials and with respect to the cost function values achieved

by 𝒙𝒃𝒆𝒔𝒕 (𝑁), as 𝑁 increases. Data profiles show, for 1 ≤ 𝑁 ≤ 𝑁𝑚𝑎𝑥 , how many among the 𝑁𝑡𝑟𝑖𝑎𝑙 trials

of a benchmark optimization problem have been solved to a prescribed relative accuracy4, defined as

4We refer to the indicator in (7.3) as relative accuracy instead of simply accuracy to avoid confusion with Definition 1.3.
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[5]:

𝑎𝑐𝑐 (𝑁) = 𝑓 (𝒙𝒃𝒆𝒔𝒕 (𝑁)) − 𝑓 (𝒙1)
𝑓 ∗ − 𝑓 (𝒙1)

· 100. (7.3)

We point out that, typically, data profiles are used to visualize the performances of several algorithms

on multiple benchmark optimization problems simultaneously. However, due to the stochastic nature

of LHDs [91], here we will depict the data profiles for each method on each benchmark optimization

problem, highlighting how the algorithms behave when started from different samples.

A benchmark optimization problem is said to be solved to a prescribed accuracy 𝑡 ∈ [0%, 100%] by

some algorithm when 𝑎𝑐𝑐 (𝑁) > 𝑡. Clearly, if 𝒙𝒃𝒆𝒔𝒕 (𝑁) = 𝒙∗
𝑖
, 𝒙∗

𝑖
∈ X∗ in (2.3), then 𝑎𝑐𝑐 (𝑁) = 100%.

We denote the number of samples required to reach a relative accuracy 𝑡 as:

𝑁𝑎𝑐𝑐>𝑡 = min
1≤𝑁≤𝑁𝑚𝑎𝑥

𝑁 such that 𝑎𝑐𝑐 (𝑁) > 𝑡. (7.4)

Note that it only makes sense to evaluate the relative accuracy 𝑎𝑐𝑐 (𝑁) in (7.3) when 𝒙𝒃𝒆𝒔𝒕 (𝑁) is

actually Ξ-feasible. That is because we could have 𝑓 (𝒙𝒃𝒆𝒔𝒕 (𝑁)) < 𝑓 ∗ for some 𝒙𝒃𝒆𝒔𝒕 (𝑁) ∉ Ξ.

Therefore, when black-box constraints are present, we have re-defined the relative accuracy in (7.3)

to5:

𝑎𝑐𝑐 (𝑁) =
𝑓 (𝒙𝒃𝒆𝒔𝒕 (𝑁)) − 𝑓

(
𝒙𝑖

)
𝑓 ∗ − 𝑓

(
𝒙𝑖

) · 100, 𝑁 ≥ 𝑖, (7.5)

𝑖 = min
𝑖∈N

𝑖 such that 𝒙𝑖 ∈ Ξ.

Differently from (7.3), the relative accuracy in (7.5) cannot exceed the value 100% (when 𝑓 (𝒙𝒃𝒆𝒔𝒕 (𝑁)) <

𝑓 ∗ for some 𝒙𝒃𝒆𝒔𝒕 (𝑁) ∉ Ξ) and is better suited for the case Ξ ≠ R𝑛. Then, 𝑁𝑎𝑐𝑐>𝑡 in (7.4) can be

re-written by using (7.5) instead of (7.3), obtaining:

𝑁𝑎𝑐𝑐>𝑡 = min
𝑖≤𝑁≤𝑁𝑚𝑎𝑥

𝑁 such that 𝑎𝑐𝑐 (𝑁) > 𝑡. (7.6)

Overall, convergence plots and data profiles allow us to discern which algorithms are the most efficient

and which are the most robust on the selected benchmark optimization problems. An algorithm A

is efficient if it exhibits fast convergence speeds, i.e. it is able to find a candidate sample 𝒙𝒃𝒆𝒔𝒕 (𝑁)

for which | 𝑓 (𝒙𝒃𝒆𝒔𝒕 (𝑁)) − 𝑓 ∗ | is sufficiently small and 𝑁 is low (cf. Definition 1.4). If A is efficient

on some benchmark optimization problem then, in its corresponding convergence plot, the curve

associated to the median values of 𝑓 (𝒙𝒃𝒆𝒔𝒕 (𝑁)) approaches the global minimum 𝑓 ∗ quite quickly.

Similarly, its respective data profile is a curve that raises rapidly. When it comes to robustness, we

analyze how many among the 𝑁𝑡𝑟𝑖𝑎𝑙 trials for a given benchmark optimization problem are solved to
5Note that, due to how surrogate-based methods work, 𝒙𝑖 ∈ Ω,∀𝑖 : 1 ≤ 𝑖 ≤ 𝑁𝑚𝑎𝑥 . Hence, we do not need to specify
explicitly that 𝒙𝑖 ∈ Ξ ∩Ω in (7.5). Similarly, for unconstrained BBO and PBO, we always have 𝒙1 ∈ Ξ ∩Ω in (7.3).
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a prescribed relative accuracy 𝑡 ∈ [0%, 100%]. This can be easily seen in the data profiles of A: if,

for 𝑁 → 𝑁𝑚𝑎𝑥 , the algorithm is able to solve most of the considered 𝑁𝑡𝑟𝑖𝑎𝑙 trials, then A is robust.

Usually, when A fails to reach 𝑎𝑐𝑐 (𝑁) > 𝑡 on at least one among the 𝑁𝑡𝑟𝑖𝑎𝑙 trials, the worst case values

of 𝑓 (𝒙𝒃𝒆𝒔𝒕 (𝑁)) shown in the corresponding convergence plots of A are much higher than the median

values of the cost function achieved by the best candidates. Typically, no optimization algorithm is

both efficient and robust on all optimization problems. Rather, a trade-off between these two properties

must be made when designing A [142]. For example, the Grid Search algorithm (Section 1.2.2) is

quite robust (since it is bound to explore the whole feasible set Ω) but extremely inefficient. At the

same time, assuming that the gradients of the cost function and (possibly) the constraints functions

of the GOP (2.1) are available, a derivative-based procedure, such as the Newton algorithm, is more

likely to be efficient but less robust (in a sense that it converges rapidly to a solution that might just be a

local minimizer of the GOP (2.1)). That is because the solutions found by derivative-based procedures

depend highly on their starting points (see the definition of basin of attraction, i.e. Definition 1.5).

We also consider an additional indicator, 𝑑𝑟𝑒𝑙 (𝑁𝑚𝑎𝑥), which corresponds to the relative distance

between the global minimizer(s) of the GOP (2.1) and the solution found by an optimization algorithm

A:

𝑑𝑟𝑒𝑙 (𝑁𝑚𝑎𝑥) =
min𝒙∗

𝑖
∈X∗



𝒙𝒃𝒆𝒔𝒕 (𝑁𝑚𝑎𝑥) − 𝒙∗
𝑖




2

∥𝒖 − 𝒍 ∥2
· 100. (7.7)

Note that, differently from 𝑎𝑐𝑐 (𝑁) in (7.3), 𝑑𝑟𝑒𝑙 (·) in (7.7) is not monotonic and therefore it only

makes sense to evaluate it when the budget is exhausted.

Lastly, the black-box and preference-based optimization procedures are compared based on the average

computational times required to generate and evaluate 𝑁𝑚𝑎𝑥 samples. We remark that, in this case, the

computational overheads linked to the sample evaluations are negligible. That is due to the fact that

the considered benchmark global optimization problems only include analytical functions, i.e. there

is no need to run any expensive simulation to measure 𝑓 (·) or 𝑢Ξ (·). Therefore, the reported average

computational times are practically the execution times of the optimization procedures.

7.2 Unconstrained black-box and preference-based optimization

Figure 34 and Figure 35 depict the convergence plots and the data profiles (𝑎𝑐𝑐 (𝑁) > 95%) of GLIS

[10], C-GLIS and GLIS-r [108] on the unconstrained black-box optimization problems. Instead,

Figure 36 and Figure 37 show the convergence plots and the data profiles (𝑎𝑐𝑐 (𝑁) > 95%) of

GLISp [11], C-GLISp [156] and GLISp-r [109] on the unconstrained preference-based optimization

problems. The results achieved by GLIS-r [108] and GLISp-r [109] for the “pure” exploitation
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(Δ𝑐𝑦𝑐𝑙𝑒 = ⟨0.95⟩) and the pure exploration (Δ𝑐𝑦𝑐𝑙𝑒 = ⟨0⟩) hyper-parameter settings are reported only

in the data profiles, to make the graphs more readable.

Table 2 reports the number of samples required to reach a median (over the 𝑁𝑡𝑟𝑖𝑎𝑙 trials) relative

accuracy 𝑎𝑐𝑐 (𝑁) of 95% (as in (7.3) and (7.4)). Instead, Table 3 shows the performances of the

algorithms with respect to the 𝑑𝑟𝑒𝑙 (𝑁𝑚𝑎𝑥) indicator in (7.7) (median-wise). Lastly, Table 4 reports

the average computational times required by the optimization procedures to generate and evaluate

𝑁𝑚𝑎𝑥 = 200 samples.

From these benchmarks we gather that:

• In the black-box framework, GLIS-r [108] (Δ𝑐𝑦𝑐𝑙𝑒 = ⟨0.95, 0.7, 0.35, 0⟩) achieves similar

performances to GLIS [10] on several benchmark optimization problems, without relying on

the IDW variance function 𝑠𝑁 (𝒙) in (4.19). That is the case for the bemporad [10], levi 13

[92], adjiman [62], rosenbrock [62] and step 2 [62] benchmarks. Instead, GLIS-r [108]

is the clear winner (both in terms of efficiency and robustness) for the gramacy and lee [53]

problem, while GLIS [10] outperforms all the other procedures on the bukin 6 [62] benchmark.

Lastly, the ackley [62] and the salomon [62] benchmarks prove to be quite hard for all the

considered algorithms. For what concerns C-GLIS, in our trials it is often slower than GLIS

[10] and GLIS-r [108] (Δ𝑐𝑦𝑐𝑙𝑒 = ⟨0.95, 0.7, 0.35, 0⟩) since it prioritizes exploration quite a lot

during its early iterations (due to how 𝑧𝑁 (𝒙) in (4.18) is defined).

• In the preference-based framework, GLISp-r [109] (Δ𝑐𝑦𝑐𝑙𝑒 = ⟨0.95, 0.7, 0.35, 0⟩) can be notably

more robust than GLISp [11] without excessively compromising its convergence speed. On

several occasions, the latter algorithm gets stuck on local minima of the benchmark GOPs (2.1).

That is particularly evident on the bemporad [10] and gramacy and lee [53] benchmarks, in

which cases GLISp [11] solves, respectively, only 70% and 31% of the 𝑁𝑡𝑟𝑖𝑎𝑙 trials. Instead,

GLISp-r [109] (Δ𝑐𝑦𝑐𝑙𝑒 = ⟨0.95, 0.7, 0.35, 0⟩) is able to solve all of them to the prescribed relative

accuracy. As further proof, the best candidates found by all the considered procedures when

solving the gramacy and lee [53] benchmark are depicted in Figure 38. In this case, 𝑓 (𝒙)

is highly multimodal and GLISp [11] often fails to find the global minimizer 𝒙∗. That is due

to the shortcomings of 𝑧𝑁 (𝒙) in (4.17) (see Section 5.1), which compromise the exploratory

capabilities of the method. As a matter of fact, on the gramacy and lee [53] benchmark,

even GLISp-r [109] with Δ𝑐𝑦𝑐𝑙𝑒 = ⟨0⟩ (pure exploration) converges to 𝒙∗ relatively quickly.

Conversely, GLISp [11] shines when exploitation is better suited for the benchmark GOP (2.1) at

hand. That is particularly relevant for the bukin 6 [62] problem, on which both GLISp [11] and
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GLISp-r [109] with Δ𝑐𝑦𝑐𝑙𝑒 = ⟨0.95⟩ (“pure” exploitation) perform quite well. When it comes to

unconstrained PBO, C-GLISp [156] is as robust as GLISp-r [109] (Δ𝑐𝑦𝑐𝑙𝑒 = ⟨0.95, 0.7, 0.35, 0⟩)

but it is the least efficient among the analyzed procedures. Lastly, the ackley [62] and the

salomon [62] benchmarks, which were already quite hard for the BBO procedures, prove to be

even more challenging in the PBO framework.

• Both in BBO and PBO, the pure exploration strategy (i.e. GLIS-r [108] and GLISp-r [109]

with Δ𝑐𝑦𝑐𝑙𝑒 = ⟨0⟩) performs poorly, even for 𝑛 = 2. When 𝑛 = 5, it is unable solve any problem

(in fact, the data profiles stay flat after the initial experimental design). Only for 𝑛 = 1 the pure

exploration strategy is quite robust and relatively efficient.

• Vice-versa, a pure exploitatory approach (i.e. GLIS-r [108] and GLISp-r [109] with Δ𝑐𝑦𝑐𝑙𝑒 =

⟨0.95⟩), although not necessarily globally convergent (see Theorem 5.2), can actually be suc-

cessful on some benchmark GOPs (2.1), both in BBO and PBO. Often, such strategy exhibits

a slightly lower 𝑁𝑎𝑐𝑐>95% (median-wise) than the other procedures, see Table 2. Notably, the

data profiles of GLISp-r [109] (Δ𝑐𝑦𝑐𝑙𝑒 = ⟨0.95⟩) can be quite similar to those of GLISp [11].

Therefore, we could say that GLISp [11] often amounts to pure exploitation. Even the best

candidate samples returned by GLISp-r [109] (Δ𝑐𝑦𝑐𝑙𝑒 = ⟨0.95⟩) and GLISp [11] when solving

the gramacy and lee [53] benchmark are alike, see Figure 38.

• Overall, if we take a look only atGLIS-r [108] andGLISp-r [109] withΔ𝑐𝑦𝑐𝑙𝑒 = ⟨0.95, 0.7, 0.35, 0⟩,

we can see that, if the preferences are expressed consistently (as in Remark 7.1), PBO methods

can achieve similar results to those of their BBO counterparts despite using less information on

the cost function 𝑓 (𝒙) of the GOP (2.1). This is highlighted both by 𝑁𝑎𝑐𝑐>95% in Table 2 and

𝑑𝑟𝑒𝑙 (𝑁𝑚𝑎𝑥) in Table 3.

• The main disadvantage of GLIS-r [108] and GLISp-r [109] compared to the original pro-

cedures is the increased computational time, as reported in Table 4. That is due to the com-

putational overhead of Algorithm 13, which generates the augmented sample set X𝑎𝑢𝑔 for the

proposed procedures by performing𝐾-means clustering6. The difference in computational times

is quite pronounced for the BBO procedures; instead, for PBO, the run times of GLISp [11],

C-GLISp [156] and GLISp-r [109] become more similar, mostly due to the LOOCV performed

to recalibrate the shape parameter 𝜖 𝑓 of the surrogate model 𝑓𝑁 (𝒙) in (4.1) (see Section 4.4.2).

6Also, we have written the code for GLIS-r [108] and GLISp-r [109] from scratch, obtaining a software package that
is quite different from that of GLIS [10], GLISp [11], C-GLIS and C-GLISp [156], and (possibly) less computationally
efficient.
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Figure 34: Performances achieved by the different unconstrained black-box optimization algorithms on
the benchmark GOPs (2.1): convergence plots on the left and data profiles (𝑎𝑐𝑐 (𝑁) > 95%) on the right.
GLIS-r [108] (with Δ𝑐𝑦𝑐𝑙𝑒 = ⟨0.95, 0.7, 0.35, 0⟩) is depicted in red, GLIS [10] in blue and C-GLIS in green.
The dashed black-line in the convergence plots represents 𝑓 ∗. We also show the number of initial samples,
𝑁𝑖𝑛𝑖𝑡 , with a black vertical line. The results obtained by GLIS-r [108] with Δ𝑐𝑦𝑐𝑙𝑒 = ⟨0.95⟩ (dashed red
line) and GLIS-r [108] with Δ𝑐𝑦𝑐𝑙𝑒 = ⟨0⟩ (dotted red line) are shown only in the data profiles.
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Figure 35: Figure 34 cont’d (unconstrained BBO).
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Figure 36: Performances achieved by the different unconstrained preference-based optimization algo-
rithms on the benchmark GOPs (2.1): convergence plots on the left and data profiles (𝑎𝑐𝑐 (𝑁) > 95%)
on the right. GLISp-r [109] (with Δ𝑐𝑦𝑐𝑙𝑒 = ⟨0.95, 0.7, 0.35, 0⟩) is depicted in red, GLISp [11] in blue and
C-GLISp [156] in green. The dashed black-line in the convergence plots represents 𝑓 ∗. We also show the
number of initial samples, 𝑁𝑖𝑛𝑖𝑡 , with a black vertical line. The results obtained by GLISp-r [109] with
Δ𝑐𝑦𝑐𝑙𝑒 = ⟨0.95⟩ (dashed red line) and GLISp-r [109] with Δ𝑐𝑦𝑐𝑙𝑒 = ⟨0⟩ (dotted red line) are shown only in
the data profiles.
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Figure 37: Figure 36 cont’d (unconstrained PBO).
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Figure 38: Best samples found by the unconstrained preference-based optimization procedures on the
gramacy and lee [53] benchmark. Each point in magenta represents 𝑥𝑏𝑒𝑠𝑡 (𝑁𝑚𝑎𝑥) for the corresponding
trial. The grey star depicts the global minimizer of the GOP (2.1).
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7.3 Constrained black-box and preference-based optimization

Figure 39 and Figure 40 depict the convergence plots and the data profiles (𝑎𝑐𝑐 (𝑁) > 95%) of

the constrained black-box optimization procedures, namely C-GLIS and C-GLIS-r. For the latter

method, we compare the performances of the revisited PSVM classifier (Section 6.1.3) and those

of the IDWI function in (4.16), when used to approximate the Ξ-feasibility function 𝑢Ξ (𝒙) in (2.4).

For the sake of clarity, we refer to these two formulations as C-GLIS-r PSVM and C-GLIS-r IDWI

respectively. Instead, Figure 41 and Figure 42 show the convergence plots and the data profiles

(𝑎𝑐𝑐 (𝑁) > 95%) of the constrained preference-based optimization algorithms, namely C-GLISp

[156] and the two formulations of C-GLISp-r (i.e. C-GLISp-r PSVM and C-GLISp-r IDWI). To

make the convergence plots easier to read, we use a dashed line whenever an algorithm has yet to find

a Ξ-feasible sample in all the 𝑁𝑡𝑟𝑖𝑎𝑙 trials. Then, as as soon as all the best candidates for the 𝑁𝑡𝑟𝑖𝑎𝑙
trials are Ξ-feasible, we switch to a continuous line. Note that, at each 𝑁 such that 1 ≤ 𝑁 ≤ 𝑁𝑚𝑎𝑥 ,

the median, best and worst case values of 𝑓 (𝒙𝒃𝒆𝒔𝒕 (𝑁)) are computed only from those 𝒙𝒃𝒆𝒔𝒕 (𝑁) ∈ Ξ,

otherwise we could have 𝑓 (𝒙𝒃𝒆𝒔𝒕 (𝑁)) < 𝑓 ∗ for some 𝒙𝒃𝒆𝒔𝒕 (𝑁) ∉ Ξ, making the convergence plots

unreliable. However, we remark that as long as an algorithm has yet to find a Ξ-feasible candidate in

all 𝑁𝑡𝑟𝑖𝑎𝑙 trials, the median, best and worst case values of 𝑓 (𝒙𝒃𝒆𝒔𝒕 (𝑁)) are not necessarily monotone

decreasing (see for example the camel six humps constrained benchmark GOP in Figure 40).

For what concerns the data profiles, we point out that we deem a problem solved when 𝑎𝑐𝑐 (𝑁) > 95%

and 𝒙𝒃𝒆𝒔𝒕 (𝑁) ∈ Ξ, consistently with (7.5).

Table 5 reports the number of samples required to reach a median (over the 𝑁𝑡𝑟𝑖𝑎𝑙 trials) relative

accuracy 𝑎𝑐𝑐 (𝑁) of 95%. 𝑎𝑐𝑐 (𝑁) and 𝑁𝑎𝑐𝑐>95% are defined, respectively, in (7.5) and (7.6). We

have chosen to report 𝑁𝑎𝑐𝑐>95% ≥ 𝑁̃ , where 𝑁̃ is the number of samples required by an algorithm A

to make 𝒙𝒃𝒆𝒔𝒕 (𝑁) ∈ Ξ,∀𝑁 : 𝑁̃ ≤ 𝑁 ≤ 𝑁𝑚𝑎𝑥 and for all 𝑁𝑡𝑟𝑖𝑎𝑙 trials of a benchmark optimization

problem. Roughly speaking, we start evaluating the indicator 𝑁𝑎𝑐𝑐>95% only when A finds a Ξ-feasible

best candidate on all 𝑁𝑡𝑟𝑖𝑎𝑙 trials. The rationale behind this choice is that it makes the results reported

in Table 5 more statistically significant. If that were not the case, 𝑁𝑎𝑐𝑐>95% might be computed only

on a fraction of the 𝑁𝑡𝑟𝑖𝑎𝑙 trials (only those for which 𝒙𝒃𝒆𝒔𝒕 (𝑁) ∈ Ξ), preventing the indicator from

capturing the overall behavior of A on the chosen benchmark optimization problem.

Table 6 shows the performances of the algorithms with respect to the 𝑑𝑟𝑒𝑙 (𝑁𝑚𝑎𝑥) indicator in (7.7)

(median-wise). Similarly to 𝑁𝑎𝑐𝑐>95%, for constrained BBO and PBO we only consider those

𝒙𝒃𝒆𝒔𝒕 (𝑁𝑚𝑎𝑥) ∈ Ξ when computing 𝑑𝑟𝑒𝑙 (𝑁𝑚𝑎𝑥) and report the latter indicator if and only if A has

found a Ξ-feasible sample on all 𝑁𝑡𝑟𝑖𝑎𝑙 trials. Lastly, Table 7 reports the average computational times

required by the optimization procedures to generate and evaluate 𝑁𝑚𝑎𝑥 = 200 samples.
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We now discuss the results achieved by the procedures on the benchmark GOPs (2.1):

• Both in constrained BBO and PBO, the proposed methods C-GLIS-r and C-GLISp-r, equipped

with either the PSVM classifier or the IDW interpolant, are more robust and efficient than

C-GLIS and C-GLISp [156] on the lower-dimensional benchmark GOPs (2.1) (𝑛 = 1 and

𝑛 = 2). Instead, on the welded beam design [78] (𝑛 = 4) and the himmelblau [78] (𝑛 = 5)

benchmarks, C-GLIS (respectively, C-GLISp [156]) achieves performances that are similar to

either C-GLIS-r (C-GLISp-r) PSVM or C-GLIS-r (C-GLISp-r) IDWI. The only exception

is the black-box optimization of the himmelblau [78] problem, on which C-GLIS-r IDWI

underperforms (both in terms of robustness and efficiency), while C-GLIS-r PSVM is the

fastest, albeit being slightly less robust than C-GLIS. Instead, as we will see shortly, the step

2 constrained (𝑛 = 5) benchmark requires a more extensive discussion.

• For what concerns the townsend [1] benchmark, it seems like, apart from C-GLIS-r IDWI in

the BBO framework, all the other methods are unable to find good solutions for the problem.

As a matter of fact, the median values of the cost function in the convergence plots “flatline”

while the curves reported in the data profiles stay below 10%. In reality, we have empirically

found out that even if we were to employ the PSWARM [72] algorithm to solve the benchmark

GOP (2.1) directly, it would not always be successful. Therefore, it is quite unlikely that any of

the considered surrogate-based methods (which rely on the PSWARM [72] procedure) are able to

solve the townsend [1] benchmark.

• The camel six humps constrained [156] benchmark proves to be quite hard for all the

analyzed algorithms. That is because the size of the Ξ-feasible region of the GOP (2.1) is

small compared to Ω. As a matter of fact, the algorithms take many iterations to find an initial

Ξ-feasible sample. In Figure 40, we can see that C-GLIS takes (roughly) 𝑁 = 85 sample

evaluations to gain Ξ-feasibility on all 𝑁𝑡𝑟𝑖𝑎𝑙 trials. Instead, C-GLIS-r PSVM and C-GLIS-r

IDWI, although more efficient, can require more than half of the budget to find an 𝒙𝒃𝒆𝒔𝒕 (𝑁) ∈ Ξ.

In the constrained PBO framework, C-GLISp [156] fails to find a Ξ-feasible sample on 2/100

trials, as depicted in Figure 43. That is not the case for C-GLISp-r PSVM and C-GLISp-r

IDWI, which are always successful in doing so.

• The sasena 2 [125] benchmark is also challenging but for a different reason: the problem has

a local and a global minimizer located in separate, disconnected regions of Ξ (see Example

6.4). In many trials, depending on the locations of the initial samples, the algorithms get stuck
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in a neighborhood of the local minimizer, hence why the convergence plots “flatline”. Notably,

in BBO, C-GLIS-r IDWI is able to get close to the global minimizer of the sasena 2 [125]

benchmark on more than half of the 𝑁𝑡𝑟𝑖𝑎𝑙 trials.

• The behaviors of the several optimization procedures on the step 2 constrained benchmark

are quite interesting. The proposed methods are unable to find a Ξ-feasible candidate on all

trials (more precisely, only 63/100 trials are successful), but when they do C-GLIS-r PSVM

(respectively, C-GLISp-r PSVM) and C-GLIS-r IDWI (C-GLISp-r IDWI) are more efficient

than C-GLIS (C-GLISp [156]), as highlighted by their respective convergence plots and data

profiles. Vice-versa, C-GLIS and C-GLISp [156] return an 𝒙𝒃𝒆𝒔𝒕 (𝑁𝑚𝑎𝑥) ∈ Ξ on all 𝑁𝑡𝑟𝑖𝑎𝑙 trials,

as depicted in Figure 44, but are much slower. Figure 44 also shows the level curves of the cost

function for the step 2 constrained benchmark when 𝑛 = 2. We motivate the behaviors of

the algorithms as follows:

– Regardless of the choice of the surrogate model for the probability of Ξ-feasibility, when-

ever no Ξ-feasible samples are present, C-GLIS-r and C-GLISp-r follow a pure explo-

ration approach, proposing new candidate samples by solving Problem (6.34). In Example

6.3, we have already seen how, as 𝑛 increases, minimizing 𝑧𝑁 (𝒙) in (4.17) can be quite

inefficient in seeking Ξ-feasible candidates, hence why the proposed methods find an

𝒙𝒃𝒆𝒔𝒕 (𝑁) ∈ Ξ only on 63/100 trials.

– C-GLIS and C-GLISp [156] do not vary their infill sampling criteria based on how many

Ξ-feasible/Ξ-infeasible samples are present in X (2.9). However, in practice, when 𝒙𝑖 ∉

Ξ,∀𝒙𝑖 ∈ X, resulting in 𝑢𝑖 = 0,∀𝑢𝑖 ∈ UΞ, the IDW interpolant in (4.16) does not penalize

any region of Ω. That is because, due to Property 2 in Proposition 4.3, we have:

𝑝𝑁 (𝒙 ∈ Ξ) = 0, ∀𝒙 ∈ Ω.

Therefore, the acquisition functions in (4.20c) and (4.20d) respectively amount to 𝑎𝑁 (𝒙)

in (4.20a) and (4.20b), which are those of GLIS [10] and GLISp [11] (unconstrained BBO

and PBO), but with 𝑧𝑁 (𝒙) in (4.18) instead of (4.17). When dealing with the step 2

constrained benchmark, this approach proves to be successful since the unconstrained

minimization of 𝑓 (𝒙) can lead C-GLIS and C-GLISp [156] to sample inside the Ξ-feasible

region. That is because 𝑓 (𝒙) is convex and it assumes lower values at some 𝒙 ∈ Ξ (see

the level curves in Figure 44). However, in general, we could have the complete opposite

effect, for example if 𝑓 (𝒙) is still convex but arg min𝒙∈Ω 𝑓 (𝒙) ⊄ Ξ.
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• Overall, all methods can perform quite well even when the global minimizers of the benchmark

GOPs (2.1) are located on the boundary of Ξ (or close to it). That is the case for the gramacy

and lee constrained, sasena 1 [125], townsend [1], camel six humps constrained

[156], sasena 2 [125] and step 2 constrained benchmarks (at least, that we know of). As

a matter of fact, in Table 6 and for BBO, at least one of the considered algorithms achieves

a 𝑑𝑟𝑒𝑙 (𝑁𝑚𝑎𝑥) < 2% on the aforementioned problems (except for the step 2 constrained

benchmark).

• Similarly to what we have seen in Section 7.2, the empirical results presented in this Section

can help us compare the performances of the BBO methods with those achieved by their PBO

counterparts. In particular, if we consider only C-GLIS-r and C-GLISp-r, we can conclude

that, in both frameworks, the methods attain similar results on several occasions (see 𝑁𝑎𝑐𝑐>95%

in Table 5 and 𝑑𝑟𝑒𝑙 (𝑁𝑚𝑎𝑥) in Table 6), although C-GLIS-r (BBO) is slightly more efficient than

C-GLISp-r (PBO).

• Lastly, for what concerns the average execution times in Table 7, the proposed methods, i.e.

C-GLIS-r and C-GLISp-r, are usually more computationally expensive than C-GLIS and

C-GLISp [156] although, surprisingly, they are faster than the latter methods on some of the

higher-dimensional benchmark problems.

Next, we compare C-GLIS-r PSVM with C-GLIS-r IDWI and C-GLISp-r PSVM with C-GLISp-r

IDWI more in detail:

• If we consider only the convergence plots and the data profiles, we can see that, on several

occasions, the robustness and efficiency of C-GLIS-r and C-GLISp-r are not particularly

affected by the choice of the surrogate model for the probability of Ξ-feasibility. See for

example the gramacy and lee constrained, sasena 1 [125], mishra’s bird [156] and

sasena 2 [125] benchmarks.

• Overall, there is no clear winner between C-GLIS-r PSVM (respectively, C-GLISp-r PSVM)

and C-GLIS-r IDWI (C-GLISp-r IDWI). In some cases, the former can be more efficient, see for

example the values of 𝑁𝑎𝑐𝑐>95% for the gramacy and lee constrained problem (reported

in Table 5). Instead, C-GLIS-r IDWI and C-GLISp-r IDWI can be slightly more robust, as

highlighted by the data profiles for the camel six humps constrained [156] benchmark.

For what concerns the higher-dimensional problems, C-GLIS-r PSVM performs better than

232



Empirical results

C-GLIS-r IDWI on the himmelblau [78] and welded beam design [78] benchmarks (mostly

in BBO), while on the step 2 constrained problem the opposite is true.

• In practice, in the constrained framework, the robustness of an algorithm also depends on how

fast it is able to find aΞ-feasible candidate. In practice, when noΞ-feasible samples are available,

both C-GLIS-r and C-GLISp-r proceed by minimizing the IDW distance function 𝑧𝑁 (𝒙) in

(4.17) (pure exploration, see Section 6.2), without using the PSVM classifier nor the IDWI

function in (4.16). Surprisingly, on the camel six humps constrained [156] benchmark,

C-GLIS-r PSVM and C-GLIS-r IDWI, as well as C-GLISp-r PSVM and C-GLISp-r IDWI,

require different amounts of samples to gain Ξ-feasibility on all 𝑁𝑡𝑟𝑖𝑎𝑙 trials. We attribute this

behavior to the PSWARM [72] algorithm employed for the infill sampling criteria of the methods,

which includes some form of randomization (see Section 1.2.5).

• Lastly, in Table 7, the two approaches show comparable execution times, although these are

slightly more in favor of C-GLIS-r PSVM and C-GLISp-r PSVM.
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Figure 39: Performances achieved by the different constrained black-box optimization algorithms on the
benchmark GOPs (2.1): convergence plots on the left and data profiles (𝑎𝑐𝑐 (𝑁) > 95%) on the right.
C-GLIS-r PSVM is depicted in blue, C-GLIS-r IDWI is shown in red and, lastly, C-GLIS in green. For
what concerns the convergence plots, we use a dashed line for 𝑓 (𝒙𝒃𝒆𝒔𝒕 (𝑁)) as long as the corresponding
algorithm has not found a Ξ-feasible sample in all 𝑁𝑡𝑟𝑖𝑎𝑙 trials; when 𝒙𝒃𝒆𝒔𝒕 (𝑁) ∈ Ξ in all trials, we switch
to a continuous line. The global minimum 𝑓 ∗ is represented with a dashed black line. We also show the
number of initial samples, 𝑁𝑖𝑛𝑖𝑡 , with a black vertical line.

234



Empirical results

Figure 40: Figure 39 cont’d (constrained BBO).
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Figure 41: Performances achieved by the different constrained preference-based optimization algorithms
on the benchmark GOPs (2.1): convergence plots on the left and data profiles (𝑎𝑐𝑐 (𝑁) > 95%) on the
right. C-GLISp-r PSVM is depicted in blue, C-GLISp-r IDWI is shown in red and, lastly, C-GLISp [156]
in green. For what concerns the convergence plots, we use a dashed line for 𝑓 (𝒙𝒃𝒆𝒔𝒕 (𝑁)) as long as the
corresponding algorithm has not found a Ξ-feasible sample in all 𝑁𝑡𝑟𝑖𝑎𝑙 trial; when 𝒙𝒃𝒆𝒔𝒕 (𝑁) ∈ Ξ in all
trials, we switch to a continuous line. The global minimum 𝑓 ∗ is represented with a dashed black line.
We also show the number of initial samples, 𝑁𝑖𝑛𝑖𝑡 , with a black vertical line.
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Figure 42: Figure 41 cont’d (constrained PBO).
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Figure 43: Best samples found by the constrained preference-based optimization procedures when
solving the camel six humps constrained [156] benchmark. The shaded red area depicts the Ξ-
infeasible region. Each point in magenta represents 𝒙𝒃𝒆𝒔𝒕 (𝑁𝑚𝑎𝑥) for the corresponding trial. We use
a circle to highlight those samples that are Ξ-feasible and a cross for those that are not. The grey star
depicts the global minimizer of the GOP (2.1). Notice how 2/100 trials performed by C-GLISp [156]
return Ξ-infeasible samples, as highlighted by the arrow in magenta.

Figure 44: On the left: level curves of the cost function 𝑓 (𝒙) of the step 2 constrained benchmark
for 𝑛 = 2 (instead of 𝑛 = 5). The shaded red area denotes the Ξ-infeasible region. The global minimizer
is shown as a grey star. On the right: number of Ξ-feasible solutions found by the BBO (continuous line)
and PBO (dashed line) procedures on the actual step 2 constrained benchmark (𝑛 = 5).
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7.4 Chapter summary

In this Chapter, we have thoroughly compared the original methods, GLIS [10], GLISp [11], C-GLIS

and C-GLISp [156], with the proposed extensions, GLIS-r [108], GLISp-r [109], C-GLIS-r and

C-GLISp-r.

In the unconstrained preference-based optimization framework, algorithm GLISp-r [109] is more

robust than GLISp [11] (i.e. it is able to locate the global minima of the GOP (2.1) more frequently,

regardless of the starting points) due to the proposed modifications, namely the min-max rescaling of

the terms of the acquisition function in (5.12) and the greedy 𝛿-cycling strategy (in Section 5.2.3).

Instead, GLISp [11] is often able to find a good solution slightly faster than the proposed extension,

although it might just be a local one. In practice, the latter method behaves quite similarly to a

pure exploitatory (“greedy”) procedure. As matter of fact, GLISp [11] is comparable to GLISp-r

[109] when equipped with Δ𝑐𝑦𝑐𝑙𝑒 = ⟨0.95⟩ (“pure” exploitation). Instead, in the unconstrained black-

box optimization framework, GLIS [10] and GLIS-r [108] exhibit similar performances on several

occasions. Due to the presence of the IDW variance function 𝑠𝑁 (𝒙) in (4.19), the original method

does not appear so prone to getting stuck on local minima of the GOP (2.1) (as it happens for GLISp

[11], in PBO), surely less so than if only the IDW distance function 𝑧𝑁 (𝒙) in (4.17) were to be the sole

exploratory contribution for the acquisition function 𝑎𝑁 (𝒙) in (4.20a) (e.g. if 𝛿2 = 0). Lastly, C-GLIS

and C-GLISp [156] are often as robust as GLIS-r [108] and GLISp-r [109] but notably slower.

In the constrained black-box and preference-based optimization frameworks, C-GLIS-r andC-GLISp-r,

equipped with either the revisited PSVM classifier in Section 6.1.3 or the IDWI function in (4.16),

are remarkably more efficient than C-GLIS and C-GLISp [156] on most of the considered benchmark

GOPs (2.1) (especially the lower-dimensional ones) while being at least as robust as the latter methods.

The only exception is the step 2 constrained benchmark which, due to its definition, favors the

infill sampling criteria of C-GLIS and C-GLISp [156]. For what concerns C-GLIS-r and C-GLISp-r,

we have shown that both the revisited PSVM classifier in Section 6.1.3 and the IDWI function in (4.16)

are viable surrogates for the probability of Ξ-feasibility.

The only disadvantage of the proposed procedures is the increased computational time, which is due

to the computational overhead of Algorithm 13 (used for the generation of the augmented sample set

X𝑎𝑢𝑔). However, we argue that the observed computational overhead is negligible when compared to

the time spent on performing simulations or experiments, i.e. when the surrogate-based procedures

are actually applied to real problems (see Assumption 2.3), as we will see in the next Chapter.

As a final remark, the empirical results reported in this Chapter are also particularly useful for

comparing BBO and PBO procedures. Our results show that preference-based optimization methods
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are able to achieve similar (or slightly worse) performances to those obtained by their black-box

counterparts, despite using less information on the cost function 𝑓 (𝒙) of the GOP (2.1).
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Chapter 8. Case study: calibration of the position controller of a

hydraulic forming press

This Chapter is devoted to the application of the proposed black-box and preference-based optimization

algorithms to a control systems case study. We consider the task of calibrating the position controller

of a hydraulic forming press. Consistently with the surrogate-based method rationale in Section 2.2

(Figure 4), we have at our disposal a simulator of the system under study, which we use to tune the

regulator’s parameters.

The remainder of this Chapter is organized as follows. In Section 8.1, we give a brief introduction

of the control systems application at hand. After that, the hydraulic press under study is described in

detail in Section 8.2. Then, in Section 8.3, we formalize the control specifications and translate them

into suitable cost functions and black-box constraints that can be used for black-box optimization of

the regulator’s parameters. For what concerns preference-based optimization, the author of this book

plays the role of the calibrator, who states preferences and assesses which tunings are acceptable and

which are not (decision-maker-based constraint, see Definition 3.6). The performances of GLIS-r

[108], GLISp-r [109], C-GLIS-r and C-GLISp-r are analyzed in detail in Section 8.4. Lastly, Section

8.5 is devoted to some concluding remarks.

8.1 Introduction and motivation

Press forming [63, 105, 140] is a mechanical process wherein a material undergoes deformations to

achieve a desired shape. The press forming process can be summarized as follows (see Figure 45):

1. A sheet of plastic or metallic material is clamped on a die through blank holders;

2. A punch is attached to the mobile plane of the forming press, directly above the die;

3. The mobile plane is lowered towards the sheet of material in a controlled manner;

4. Once the punch reaches the work-piece, a force is applied to it and the sheet of material is

deformed to achieve the desired shape;

5. The mobile plane of the forming press is raised, separating the punch from the die;

6. The work-piece is extracted.
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Blank holders

Pressing force

Punch

Mobile plane

Sheet of materialDie

Figure 45: The press forming process and its components.

Hydraulic presses are widely used in heavy-duty forming processes due to their high power-to-mass

ratios, high stiffnesses and high load capabilities [82, 133]. The pressing force is generated by

a pressurized fluid (usually oil) that causes the motion of one or several piston rods, which are

mechanically connected to the mobile plane of the press. The fluid is fed to the hydraulic cylinders,

which house the pistons, through pipes. The flow rates of the fluid going to the hydraulic cylinders

are regulated by electromechanical valves.

Typically, hydraulic presses are controlled in closed-loop and in two phases [133]: the lowering and

raising of the mobile plane are regulated by a position controller, while the pressing of the work-

piece (which starts once the punch reaches it) is handled by a force controller. The most commonly

used controllers for both tasks are Proportional-Integral-Derivative (PID) regulators [4], due to their

simplicity and reliability. Suitable position and force profiles are defined based on the press forming

operation at hand. In any case, the regulators must be tuned so that several control specifications are

met, most importantly: (i) the mobile plane of the hydraulic press must not show any oscillations when

lowered or raised, (ii) the tracking of the position profile must be as accurate as possible, especially

when the punch is close to the work-piece, and (iii) in the pressing phase, during which the force

controller is active, overshoots must be limited to avoid damaging the sheet of material.

Traditional controller tuning strategies are model-based [43, 102]: the regulator’s parameters are

computed from a model of the system under study, following ad hoc tuning rules (see for example

[101] for PID controllers). Most calibration criteria in the model-based setting are designed for linear

systems and are the result of the optimization of some performance indicators (such as the ones

reviewed in [36]). However, hydraulic presses are complex systems which can exhibit nonsmooth

246



Controller calibration case study

and discontinuous nonlinearities [88, 140]. These nonlinearities can result, for example, from the

nonlinear relationship between the pressure inside the hydraulic cylinder’s chambers and the fluid flow

rate, the valve opening profiles (which can exhibit a dead-band) and friction. Physics-based modeling

of hydraulic presses is no easy task; even after deriving a model from first principles, many of its

parameters are unknown and must be estimated. These include, for example, the friction coefficients,

the parameters of the transfer functions which describe the electromechanical valves and the bulk

modulus of the fluid. To estimate the model parameters, we must carry out suitable open-loop and/or

closed-loop experiments on the hydraulic press and employ an identification procedure [86, 145]. In

practice, the identification-oriented experiments1 can be quite time-consuming or even impracticable

(e.g. if they involve an input signal that puts too much stress on the actuators). We also point out

that, even after we successfully estimate the model parameters and tune the controller of the hydraulic

press by means of a proper tuning rule, the resulting calibration might be subject to some (manual)

fine-tuning to better meet the control specifications. In practice, if the system is highly nonlinear, then

it is quite unlikely that there already exist off-the-shelf calibration criteria suited for it.

It is common in industrial practice to forego the hydraulic press modeling completely due to its

complexity. Instead of relying on a model-based tuning approach, a suitable controller tuning is

sought by an experienced calibrator (decision-maker), who performs several closed-loop experiments

on the system following a trial-and-error approach. This is where black-box and preference-based

optimization procedures shine (see Example 2.1 and Example 3.4). Instead of letting the DM choose

which tunings to try next, we guide him/her during the experiments by proposing new calibrations,

following the surrogate-based method rationale in Section 2.2. If the control specifications are well-

defined, we can derive a suitable cost function and employ a BBO procedure to drive the search;

otherwise, we can guide the calibrator based on his/her preferences (PBO). Compared to the trial-

and-error methodology, BBO and PBO algorithms are more structured and reduce the number of

experiments required to obtain an adequate controller calibration. Furthermore, differently from

the model-based approach, surrogate-based methods do not require a model of the hydraulic press

beforehand. Lastly, there is no need to run any identification-oriented experiment. Instead, the

1Most often, the identification-oriented experiments are quite different from the experiments used to assess the perfor-
mances of a calibration. The former involve input signals that are able to “excite” the system under study “well enough”
to produce output signals that are meaningful for the identification of its model (see [86, 145]). Instead, the latter only
use input signals that are suited for the task at hand. To clarify this concept, consider the hydraulic press described in this
Section and controlled in closed-loop. During the lowering phase, the input signal is the position reference signal that the
mobile plane of the press must follow. In a performance-oriented experiment, the input signal is selected as the position
profile that is commonly used during the material forming operation. Instead, good input signals for identification-oriented
experiments are white noise signals, pseudorandom binary sequences and multisines, which differ completely from the
signals used during normal working operation of the hydraulic press.
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experiments required to perform sample evaluations (i.e. to assess the performances of a given

controller calibration) are carried out in the same fashion as during normal working operation of the

hydraulic press.

8.2 System description

We consider the hydraulic press depicted in Figure 46. The mobile plane of the press is mechanically

connected to the piston rods of four hydraulic cylinders, which cause its motion. The inner cylinders

are single-acting whereas the outer ones are double-acting2. The force produced by each hydraulic

cylinder depends on the pressure inside its chambers and on its constructive parameters (such as the

area of the piston). The pressure inside the cylinders’ chambers is generated by pressurized oil, which

flows to the cylinders through several different pipes. The flow rates of the oil inside each pipe are

regulated by different electromechanical valves. The filling valves regulate the oil throughput from

the tank to the upper chambers of the hydraulic cylinders. These valves are either completely open

or completely closed and can handle high flow rates. Instead, the pressing valves and the balance

valves allow for a continuous regulation (between 0% and 100%) of the oil throughput but possess

lower nominal flow rates. In particular, the positions of the valves’ members, which obstruct the oil

flow, are controlled in closed-loop (using integrated PID controllers). In the system under study, the

pressing valves regulate the fluid flow rates to the upper chambers of the single-acting and double-

acting hydraulic cylinders, whereas the balance valves handle the lower chambers of the double-acting

hydraulic cylinders.

The working cycle of the hydraulic press in Figure 46 consists of several different phases:

1. The waiting phase, during which the mobile plane of the press is kept stable at a certain height,

waiting for the start command.

2. The closing phase, wherein the mobile plane is lowered towards the work-piece and must follow

a specific position profile. We can distinguish three stages: at first, we have the fast descent

phase, followed by the slow approach and the compression phases. The former stage adopts a

third-degree polynomial as the position profile to quickly approach the work-piece. Instead, the

latter two phases use a first-degree polynomial as the position profile and start when the mobile

plane is very close to the sheet of material.

2In a single-acting cylinder, the pressurized fluid extends the piston rod only in one direction. Then, its retraction is caused
either by an inbuilt spring or due to gravity. Instead, in a double-acting cylinder, both the extension and the retraction of
the piston rod are driven by the pressurized fluid.
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TANK

MOBILE PLANE

    

CONTROLLED 
VALVE

FILLING VALVE

CYLINDER

PUMP

bl br

pl pr

OIL TANK

PISTON

PISTON ROD

Left (l) side Right (r) side

Figure 46: Simplified hydraulic scheme of the system under study. We distinguish between the left and
the right side of the press. The cylinders highlighted by a dashed green rectangle are double-acting,
whereas the ones contained inside a dashed red rectangle are single-acting. Several different valves are
present: filling valves (blue), pressing valves (yellow) and balance valves (green). The acronyms pl, pr, bl
and br stand for pressing left, pressing right, balance left and balance right respectively.

3. The pressing phase, which is tasked with deforming the work-piece. In this stage, the mobile

plane must exert a proper force in order to correctly shape the sheet of material.

4. The opening phase, wherein the mobile plane of the press is raised to allow the extraction of the

formed work-piece.

Figure 47 depicts a possible position profile of the closing phase for the hydraulic press under study.

The opening phase typically follows a position profile that is specular to the one used in the closing

phase. During the opening and closing phases, the position of the mobile plane of the press is

regulated in closed-loop. In particular, we have a total of four PI controllers, one for each balance

and pressing valve, that regulate the valves’ opening percentages. The regulators of the balance valves

can be equipped with an additional Feed Forward (FF) action, which can make the controllers more

responsive. In the pressing phase, the PI (+ FF) controllers regulate the force exerted by the mobile

plane instead of its position. The tunings of the regulators vary at each stage since different control

specifications must be met. In Section 8.3, we will cover the control specifications and the calibration

strategies for the PI (+ FF) controllers used during the fast descent phase of the hydraulic press.
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Figure 47: Example of position profile of the closing phase for the hydraulic press under study. We
highlight the different stages: fast descent, slow approach and compression. We also include the waiting
and pressing phases, although the position controller is not active during such stages. The dashed red
line represents the position of the sheet of material with respect to the mobile plane of the press.

The position control scheme of the considered hydraulic press is shown in Figure 48. Several variables

and sub-systems are present:

• We use the variable 𝑡 to denote the time for the time-domain signals of interest (see Example

2.1);

• 𝑆𝑃 (𝑡) is the position reference signal (or setpoint), such as the one depicted in Figure 47;

• 𝑝𝑜𝑠(·) (𝑡) are the positions of the left and right sides of the mobile plane of the press, which

constitute the controlled variables. We use the subscript (·) to denote either the left, 𝑙, or

the right, 𝑟, side of the press. Furthermore, we also define the corresponding velocities and

accelerations as 𝑣𝑒𝑙(·) (𝑡) = 𝑑
𝑑𝑡
𝑝𝑜𝑠(·) (𝑡) and 𝑎𝑐𝑐(·) (𝑡) = 𝑑

𝑑𝑡
𝑣𝑒𝑙(·) (𝑡) respectively.

• 𝑒𝑟𝑟 (·) = 𝑆𝑃 (𝑡) − 𝑝𝑜𝑠(·) (𝑡) are the position tracking errors;

• Each PI controller has two parameters: the proportional gain 𝐾𝑃(◦·) and the integral gain 𝐾𝐼 (◦·) .

In the subscript (◦·), ◦ is either 𝑝 (pressing valve) or 𝑏 (balance valve), while · is either 𝑙 (left)

or 𝑟 (right).

• Each FF action depends only on one parameter, the feed forward gain, namely 𝐾𝐹𝐹𝑏𝑙 and 𝐾𝐹𝐹𝑏𝑟
for the left and right balance valves respectively;
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• The control actions generated by the PI (+ FF) regulators are the opening percentages for each

electromechanical valve, i.e. 𝑜𝑝 (◦·) (𝑡);

• 𝑓 𝑟 (◦·) (𝑡) are the flow rates of the pressurized oil inside the different pipes after the fluid has

been obstructed by the balance and pressing valves’ members. Note that the fluid coming from

the pressing valves is split between the upper chambers of the single-acting and double-acting

hydraulic cylinders by the distributors. Instead, the flow rates of the pressurized oil coming

from the four filling valves are denoted as 𝑓 𝑟 𝑓 ,1 (𝑡) , . . . , 𝑓 𝑟 𝑓 ,4 (𝑡).

• The pressures inside the hydraulic cylinders’ chambers, generated by the pressurized oil coming

from the different valves, cause the pistons’ rods to extend (or retract), exerting a force on the

mobile plane of the hydraulic press. We denote the force produced by each hydraulic cylinder

as 𝑓 𝑜𝑟1 (𝑡) , . . . , 𝑓 𝑜𝑟4 (𝑡).

• Lastly, the forces generated by the hydraulic cylinders set the mobile plane in motion. The

motion is affected by friction and depends on the inertia of all the components that compose the

hydraulic forming press.

Formally, each signal, except for the setpoint 𝑆𝑃 (𝑡), should also depend on the controllers’ parameters

and not only on the time 𝑡, as we will see in Section 8.3 and Section 8.4.
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Figure 48: Position control scheme of the system under study. The colors follow the same conventions of
Figure 46.

We have at our disposal a high-fidelity simulator of the hydraulic press depicted in Figure 46 and

controlled as in Figure 48. A model of the system under study has been derived by combining
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well-known physics laws [26, 55, 88] with the data provided in the datasheets of each component.

The unknown model parameters have been estimated by minimizing the deviation (in a Least Squares

[57] sense) between the signals simulated from the derived model and the signals coming from several

experiments on the real system.

8.3 Control specifications and calibration strategies

In this case study, we have focused on tuning the PI + FF controllers of the balance valves for

the fast descent phase of the hydraulic press, which is the most demanding stage performance-wise.

Throughout the fast descent phase, the pressing valves are left closed3 (i.e. they are not controlled);

therefore, we only need to calibrate the regulators of the balance valves. Consistently with industrial

practice, we assume the hydraulic press to be symmetric. Therefore, we use the same calibration for

both PI + FF controllers of the balance valves, i.e.:

𝐾𝑃 = 𝐾𝑃𝑏𝑟 = 𝐾𝑃𝑏𝑙 ,

𝐾𝐼 = 𝐾𝐼𝑏𝑟 = 𝐾𝐼𝑏𝑙 ,

𝐾𝐹𝐹 = 𝐾𝐹𝐹𝑏𝑟 = 𝐾𝐹𝐹𝑏𝑙 .

Hence, the decision vector simply amounts to:

𝒙 =

[
𝐾𝑃 𝐾𝐼 𝐾𝐹𝐹

]⊤
, 𝒙 ∈ R3

≥0. (8.1)

From now on, to highlight that the signals in Figure 48 depend on the controller calibration, we use the

notation 𝑝𝑜𝑠𝑙 (𝑡; 𝒙) for the position of the left side of the press and similarly for all the other signals

(except for the setpoint 𝑆𝑃 (𝑡), which does not depend on 𝒙).

The control specifications for the fast descent phase of the hydraulic press under study are:

1. The position trajectory tracking must be “good enough”;

2. The position tracking errors, 𝑒𝑟𝑟 (·) (𝑡; 𝒙), cannot be “too big”;

3. The downward motion of the mobile plane of the hydraulic press must be “as smooth as possible”.

In practice, the available control specifications only give us qualitative information on the desired

performances and must be translated into suitable indicators that can be employed for black-box

3As the name implies, the pressing valves are actuated only during the pressing phase. That is because whenever the oil
is let through the pressing valves, the pressures inside the upper chambers of the cylinders increase and thus the mobile
plane can exert a higher force, easing the deformation of the work-piece.
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optimization. We propose three indicators, one for each of the aforementioned control specifications,

and compute them from the signals produced by the simulator of the hydraulic press. Each signal is

sampled at a sampling time 𝑇𝑠 ∈ R>0, obtaining a total of 𝑇 ∈ N samples. The proposed indicators

are:

1. The trajectory tracking performances associated to a calibration 𝒙 ∈ R3
≥0 are described by the

position normalized mean absolute error, 𝑝𝑜𝑠_𝑛𝑚𝑎𝑒(·) : R3
≥0 → R≥0, defined as:

𝑝𝑜𝑠_𝑛𝑚𝑎𝑒(·) (𝒙) =
∑𝑇
𝑡=1

��𝑆𝑃(𝑡) − 𝑝𝑜𝑠(·) (𝑡; 𝒙)��∑𝑇
𝑡=1

��𝑆𝑃(𝑡) − avg𝑡 [𝑆𝑃(𝑡)]
�� · 100 (8.2)

=

∑𝑇
𝑡=1

��𝑒𝑟𝑟 (·) (𝑡; 𝒙)��∑𝑇
𝑡=1

��𝑆𝑃(𝑡) − avg𝑡 [𝑆𝑃(𝑡)]
�� · 100,

where

avg𝑡 [𝑆𝑃(𝑡)] =
1
𝑇
·
𝑇∑︁
𝑡=1

𝑆𝑃(𝑡)

is the sample mean of the setpoint signal. 𝑝𝑜𝑠_𝑛𝑚𝑎𝑒(·) (𝒙) = 0 if and only if the calibration 𝒙

achieves perfect tracking throughout the whole fast descent phase (i.e. 𝑝𝑜𝑠(·) (𝑡; 𝒙) = 𝑆𝑃(𝑡),∀𝑡 =

1, . . . , 𝑇), otherwise 𝑝𝑜𝑠_𝑛𝑚𝑎𝑒(·) (𝒙) > 0.

2. The maximum position tracking error obtained by a tuning 𝒙 ∈ R3
≥0, 𝑒𝑟𝑟_𝑚𝑎𝑥(·) : R3

≥0 → R≥0,

is:

𝑒𝑟𝑟_𝑚𝑎𝑥(·) (𝒙) = max
𝑡∈{1,...,𝑇}

��𝑆𝑃(𝑡) − 𝑝𝑜𝑠(·) (𝑡; 𝒙)�� (8.3)

= max
𝑡∈{1,...,𝑇}

��𝑒𝑟𝑟 (·) (𝑡; 𝒙)��.
Clearly, a good controller must exhibit a low 𝑒𝑟𝑟_𝑚𝑎𝑥(·) (𝒙). Moreover, similarly to 𝑝𝑜𝑠_𝑛𝑚𝑎𝑒(·) (𝒙)

in (8.2), if 𝑒𝑟𝑟_𝑚𝑎𝑥(·) (𝒙) = 0, then the controller with calibration 𝒙 achieves perfect tracking.

3. Smooth descent of the mobile plane of the hydraulic press results from smooth velocity signals,

i.e. 𝑣𝑒𝑙(·) (𝑡; 𝒙) must not show pronounced oscillations or abrupt changes. This means that their

derivatives, i.e. the accelerations 𝑎𝑐𝑐(·) (𝑡; 𝒙), must exhibit a small variance. Thus, one way

to quantify the smoothness of the descent of the mobile plane is by computing the standard

deviation of the acceleration signals, 𝑎𝑐𝑐_𝑠𝑡𝑑(·) : R3
≥0 → R≥0, namely:

𝑎𝑐𝑐_𝑠𝑡𝑑(·) (𝒙) = std𝑡
[
𝑎𝑐𝑐(·) (𝑡; 𝒙)

]
, (8.4)

where

std𝑡
[
𝑎𝑐𝑐(·) (𝑡; 𝒙)

]
=

√√√
1

𝑇 − 1
·
𝑇∑︁
𝑡=1

{
𝑎𝑐𝑐(·) (𝑡; 𝒙) − avg𝑡

[
𝑎𝑐𝑐(·) (𝑡; 𝒙)

]}2
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is the sample standard deviation of 𝑎𝑐𝑐(·) (𝑡; 𝒙). In practice, linear trends resulting from the spe-

cific position profile 𝑆𝑃(𝑡) must be removed from 𝑎𝑐𝑐(·) (𝑡; 𝒙) before computing 𝑎𝑐𝑐_𝑠𝑡𝑑(·) (𝒙)

in (8.4).

The proposed performance indicators are averaged between the left and right sides of the press. In

particular, we define:

𝑝𝑜𝑠_𝑛𝑚𝑎𝑒 (𝒙) = 𝑝𝑜𝑠_𝑛𝑚𝑎𝑒𝑙 (𝒙) + 𝑝𝑜𝑠_𝑛𝑚𝑎𝑒𝑟 (𝒙)
2

and similarly for 𝑒𝑟𝑟_𝑚𝑎𝑥(·) (𝒙) in (8.3) and 𝑎𝑐𝑐_𝑠𝑡𝑑(·) (𝒙) in (8.4). As an example, Figure 49 shows

the performances achieved by two different calibrations with respect to the proposed indicators.

Calibration 𝒙𝑖 𝐾𝑃 𝐾𝐼 𝐾𝐹𝐹 𝑝𝑜𝑠_𝑛𝑚𝑎𝑒 (𝒙𝑖) 𝑒𝑟𝑟_𝑚𝑎𝑥 (𝒙𝑖) [𝑚] 𝑎𝑐𝑐_𝑠𝑡𝑑 (𝒙𝑖)
[
𝑚

𝑠𝑒𝑐2

]
𝒙1 (blue) 0.736 2.154 0.046 1.689 0.016 0.350
𝒙2 (red) 2.000 5.738 0.023 1.323 0.008 0.742

Figure 49: Example of position, position tracking error and acceleration signals achieved by two different
calibrations, 𝒙1 and 𝒙2, of the PI + FF controllers. Only the signals related to the left side of the hydraulic
press are shown. Tuning 𝒙2 shows better tracking performances (lower 𝑝𝑜𝑠_𝑛𝑚𝑎𝑒 (𝒙) and 𝑒𝑟𝑟_𝑚𝑎𝑥 (𝒙))
but worse accelerations (higher 𝑎𝑐𝑐_𝑠𝑡𝑑 (𝒙)). Vice-versa for the calibration 𝒙1.

8.3.1 Calibration strategies

We employ algorithms GLIS-r [108], GLISp-r [109], C-GLIS-r and C-GLISp-r to calibrate the

parameters of the controllers. In particular, we consider the global optimization problem in (2.1),

namely:

X∗ = arg min
𝒙
𝑓 (𝒙)

s.t. 𝒙 ∈ Ω ∩ Ξ,
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where Ω is composed of simple bounds on the controllers’ parameters:

0.1 ≤𝐾𝑃 ≤ 2,

0.1 ≤𝐾𝐼 ≤ 10, (8.5)

0.01 ≤𝐾𝐹𝐹 ≤ 0.1,

while 𝑓 (𝒙) and Ξ will be defined shortly. The bounds in (8.5) have been derived from the cal-

ibrations used by several other hydraulic presses, which adopt the same position control scheme

in Figure 48 but are designed for different pressing loads. In practice, we consider a wide range

of values for 𝐾𝑃, 𝐾𝐼 and 𝐾𝐹𝐹 to make it more likely to find good tunings for the system under

study. Due to to the fact that the bounds in (8.5) span multiple orders of magnitudes, we optimize

𝒙 =

[
log10 𝐾𝑃 log10 𝐾𝐼 log10 𝐾𝐹𝐹

]⊤
instead of (8.1).

Black-box optimization. For black-box optimization, we use either 𝑝𝑜𝑠_𝑛𝑚𝑎𝑒 (𝒙) in (8.2) or

𝑎𝑐𝑐_𝑠𝑡𝑑 (𝒙) in (8.4) as the cost function 𝑓 (𝒙) of the GOP (2.1). We do not minimize 𝑒𝑟𝑟_𝑚𝑎𝑥 (𝒙)

in (8.3) directly due to the fact that (often) it is in agreement with 𝑝𝑜𝑠_𝑛𝑚𝑎𝑒 (𝒙) in (8.2). Roughly

speaking, calibrations that achieve good setpoint tracking performances also exhibit low tracking

errors (as we will see in Section 8.4). Instead, 𝑒𝑟𝑟_𝑚𝑎𝑥 (𝒙) in (8.3) is better suited for defining a

black-box constraint. In particular, in agreement with the industrial standards, we set a threshold of

0.02 meters on the maximum tolerated position tracking error and define Ξ in (2.2) as:

Ξ = {𝒙 : 𝑒𝑟𝑟_𝑚𝑎𝑥 (𝒙) ≤ 0.02} . (8.6)

As we will see in Section 8.4, by employing a constrained BBO algorithm with Ξ in (8.6) instead of

an unconstrained one (Ξ = R𝑛), we focus more on those regions of Ω that contain more promising

calibrations.

Preference-based optimization. For preference-based optimization, the author of this book plays

the role of the calibrator, who expresses the preferences by keeping in mind the control specifications

presented in this Section. At each iteration of the PBO procedures, the decision-maker is presented

with a query window, such as the one in Figure 50, and is asked to express a preference between two

calibrations. We have decided to omit the indicators and the controllers’ gains from the query window

(although these can easily be included) to avoid conditioning the decision-maker into choosing either

one of the two calibrations based only on the reported values. This rationale is also closer to industrial

practice where, often, the “goodness” of a tuning depends entirely on the judgement of a calibrator
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Figure 50: Query window for preference-based optimization. The decision-maker is presented with
the position, position tracking error and acceleration signals achieved by two different calibrations, 𝒙𝑖
(left) and 𝒙 𝑗 (right). In this case, tuning 𝒙 𝑗 is preferred to 𝒙𝑖 , i.e. 𝜋≿

(
𝒙𝑖 , 𝒙 𝑗

)
= 1, since it exhibits fewer

acceleration oscillations.

and not on some quantitative indicators. In this case study, we also rely on a decision-maker-

based constraint (see Definition 3.6): the calibrator assesses whether a tuning achieves acceptable

performances or not. The criteria followed when judging the acceptability of a calibration are: (i)

low maximum position tracking error (similarly to (8.6)) and (ii) the acceleration signals must show

few to no oscillations. For example, the calibration 𝒙𝑖 in Figure 50 is deemed as unacceptable by the

decision-maker (𝒙𝑖 ∉ Ξ), despite it being Ξ-feasible with respect to the black-box constraint in (8.6).

8.4 Experimental results

All the simulations for the hydraulic press under study as well as the black-box and preference-based

optimization procedures have been run on the same machine (Intel Core i7 6700HQ @3.50GHz CPU

and 32GB of RAM). The simulator of the hydraulic press described in Section 8.2 has been coded

in Simulink. Similarly, GLIS-r [108], GLISp-r [109] (Chapter 5, Algorithm 14), C-GLIS-r and

C-GLISp-r (Chapter 6, Algorithm 16) have been run in MATLAB interpreted code. All the global

optimization problems associated to the infill sampling criteria of the procedures have been solved

using the PSWARM [72] algorithm (see Section 1.2.5). In particular, we have used the MATLAB

implementation of PSWARM [72] provided by [80, 146, 147]4. Whenever completely known constraints

4Available at http://www.norg.uminho.pt/aivaz/pswarm/.
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are present (for example, in Problem (6.37)), we have equipped the PSWARM [72] procedure with a

quadratic penalty function, as described in Section 1.2.6.

8.4.1 Methodology

We take advantage of the simulator available for the hydraulic press under study to test multiple

scenarios and get a better glimpse at the performances that the proposed BBO and PBO methods can

achieve. We start by tuning PI controllers instead of PI + FF regulators to visualize the results better.

We carry out the following optimizations for both PI and PI + FF controllers:

1. Unconstrained (Ξ = R𝑛) BBO with 𝑓 (𝒙) = 𝑝𝑜𝑠_𝑛𝑚𝑎𝑒 (𝒙) in (8.2) (GLIS-r [108]);

2. Unconstrained (Ξ = R𝑛) BBO with 𝑓 (𝒙) = 𝑎𝑐𝑐_𝑠𝑡𝑑 (𝒙) in (8.4) (GLIS-r [108]);

3. Unconstrained (Ξ = R𝑛) PBO with preferences expressed as described in Section 8.3.1 (GLISp-r

[109]);

4. Constrained BBO with 𝑓 (𝒙) = 𝑝𝑜𝑠_𝑛𝑚𝑎𝑒 (𝒙) in (8.2) and Ξ in (8.6) (C-GLIS-r);

5. Constrained BBO with 𝑓 (𝒙) = 𝑎𝑐𝑐_𝑠𝑡𝑑 (𝒙) in (8.2) and Ξ in (8.6) (C-GLIS-r);

6. Constrained PBO with preferences expressed as described in Section 8.3.1 and Ξ in (8.6)

(C-GLISp-r);

7. Constrained PBO with preferences expressed as described in Section 8.3.1 and Ξ defined from

the decision-maker-based acceptability constraint (C-GLISp-r).

A total of 14 optimization problems have been solved. For what concerns preference-based optimiza-

tion, we point out the following Remark.

Remark 8.1 (Preferences expressed by the decision-maker). In this case study, since we are dealing

with a “real” decision-maker, we have no guarantee that the preferences are always expressed in a

consistent fashion. In these experiments, the decisions were taken as methodically as possible, keeping

in mind the control specifications described in Section 8.3. In any case, the surrogate model for 𝑓 (𝒙)

of the GOP (2.1) used by GLISp-r [109] and C-GLISp-r takes into account that human error might

be present in the data in B (3.9) (see Section 4.1.2). Thus, it is also interesting to see if the results

obtained by the calibrations found through PBO procedures are (somehow) similar. We expect that to

be the case if the calibrator has been consistent enough.

257



Davide Previtali

8.4.2 Hyper-parameters for the procedures

The hyper-parameters for the surrogate models and the infill sampling criteria of GLIS-r [108],

GLISp-r [109], C-GLIS-r and C-GLISp-r have been selected in the same fashion as in Chapter 7

(see the summary in Appendix C). In particular, we have used Δ𝑐𝑦𝑐𝑙𝑒 = ⟨0.95, 0.7, 0.35, 0⟩ for all

the procedures and employed the PSVM classifier (in Section 6.1.3) to estimate the probability of

Ξ-feasibility. The only difference from the settings described in Chapter 7 are the iterations at which

the shape parameter 𝜖 𝑓 for 𝑓𝑁
(
𝒙; 𝜷 𝑓 , 𝜖 𝑓

)
in (4.1) (PBO) is recalibrated. In particular, we have opted

to recalibrate 𝜖 𝑓 in (4.1) at each iteration of GLISp-r [109] and C-GLISp-r, i.e.:

K𝑅 𝑓 = {1, 2, . . . , 𝑁𝑚𝑎𝑥 − 𝑁𝑖𝑛𝑖𝑡} .

The rationale behind this choice is that: (i) we are not solving the same optimization problem

multiple times (like we did in Chapter 7, when benchmarking the different algorithms), hence we

are not particularly concerned with the computational overhead of the 𝐾-fold grid search LOOCV in

Algorithm 8; (ii) due to the presence of a “real” decision-maker, we expect the recalibration procedure

to help with possible inconsistencies. Instead, similarly to Chapter 7, the shape parameters 𝜖 𝑓 and

𝜖Ξ for 𝑓𝑁
(
𝒙; 𝜷 𝑓 , 𝜖 𝑓

)
in (4.1) (BBO) and 𝑚Ξ𝑁

(
𝒙; 𝜷̃Ξ, 𝜖Ξ

)
in (6.2), as well as the trade-off parameter

𝐶𝑆𝑉𝑀 of Problem (6.8), are not recalibrated.

8.4.3 Starting samples, budget and sample evaluations

All the optimization procedures carried out for tuning the parameters of the PI controllers (𝑛 = 2)

are started from 𝑁𝑖𝑛𝑖𝑡 = 4 samples. Instead, for the calibration of the PI + FF controllers (𝑛 = 3), we

set 𝑁𝑖𝑛𝑖𝑡 = 8. Differently from Algorithm 14 and Algorithm 16, we do not use a LHD to generate

the initial samples. Instead, we rely on a full factorial design (see Section 2.4) since it is closer to

industrial practice. Moreover, we use the same starting tunings for all the cases described in Section

8.4.1 to make the comparisons more meaningful.

We have chosen a very limited budget for the optimization procedures employed for the calibration of

both the PI and PI + FF controllers: 𝑁𝑚𝑎𝑥 = 50. That is because, if we were to carry out BBO or PBO

on the real hydraulic press instead of its simulator, then 50 sample evaluations would take (roughly)

between half a working day and a full working day. Nonetheless, we are also interested in seeing if

the proposed algorithms are able to find calibrations that are “good enough” even with such a small

budget.

Lastly, for the sake of clarity, we point out that the sample evaluations for the BBO and PBO procedures

are carried out as described in Section 8.3.1.
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8.4.4 Calibration of the PI controllers

In this Section, we present the results obtained by GLIS-r [108], GLISp-r [109], C-GLIS-r and

C-GLISp-r when calibrating the parameters of the PI controllers. Figure 51 shows the values of the

indicators proposed in Section 8.3 achieved by the best candidates 𝒙𝒃𝒆𝒔𝒕 (𝑁), 1 ≤ 𝑁 ≤ 𝑁𝑚𝑎𝑥 , found

by GLIS-r [108] and GLISp-r [109] (unconstrained optimization) when minimizing 𝑝𝑜𝑠_𝑛𝑚𝑎𝑒 (𝒙)

in (8.2) and 𝑎𝑐𝑐_𝑠𝑡𝑑 (𝒙) in (8.4) directly, as well as in the preference-based setting. We can deduce

that:

• Unsurprisingly, the curves are monotone decreasing if the corresponding indicator is minimized

directly;

• 𝑝𝑜𝑠_𝑛𝑚𝑎𝑒 (𝒙) in (8.2) and 𝑒𝑟𝑟_𝑚𝑎𝑥 (𝒙) in (8.3) are mostly in agreement: when minimizing

the former, a decrease in the position normalized mean absolute error often leads to a lower

maximum position tracking error. That is because one way to achieve tracking performances

that are good overall, as described by 𝑝𝑜𝑠_𝑛𝑚𝑎𝑒 (𝒙) in (8.2), is to have a small 𝑒𝑟𝑟 (·) (𝑡; 𝒙),∀𝑡 =

1, . . . , 𝑇 .

• Vice-versa, 𝑝𝑜𝑠_𝑛𝑚𝑎𝑒 (𝒙) in (8.2) and 𝑎𝑐𝑐_𝑠𝑡𝑑 (𝒙) in (8.4) are two (potentially) conflicting

criteria. In Figure 51, we can clearly see that a decrease in the latter indicator can lead to a notable

increase in the former (similarly for 𝑒𝑟𝑟_𝑚𝑎𝑥 (𝒙) in (8.3)). Situations like this often arise when

dealing with control systems for which multiple and often conflicting control specifications are

present [84].

• The values of the indicators for 𝒙𝒃𝒆𝒔𝒕 (𝑁), 1 ≤ 𝑁 ≤ 𝑁𝑚𝑎𝑥 , in the preference-based setting do not

strictly follow 𝑝𝑜𝑠_𝑛𝑚𝑎𝑒 (𝒙) in (8.2) nor 𝑎𝑐𝑐_𝑠𝑡𝑑 (𝒙) in (8.4). In some sense, the calibrator

implicitly makes a trade-off between the two when expressing his preferences.

The position, position tracking error and acceleration signals obtained by the best calibrations,

𝒙𝒃𝒆𝒔𝒕 (𝑁𝑚𝑎𝑥), found in the unconstrained and constrained BBO and PBO frameworks are depicted

in Figure 52. Furthermore, their corresponding values for the indicators are shown in Figure 53. In the

PI controller case, except for the calibrations found by minimizing 𝑎𝑐𝑐_𝑠𝑡𝑑 (𝒙) in (8.4), the tunings

obtained by the unconstrained formulations and their respective constrained counterparts are quite

similar. In particular:

• The minimization of 𝑝𝑜𝑠_𝑛𝑚𝑎𝑒 (𝒙) in (8.2) leads to tunings that show better tracking perfor-

mances (smaller 𝑒𝑟𝑟 (·) (𝑡; 𝒙)) but produce more aggressive accelerations 𝑎𝑐𝑐(·) (𝑡; 𝒙);
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Figure 51: Values of the indicators 𝑝𝑜𝑠_𝑛𝑚𝑎𝑒 (·) in (8.2), 𝑒𝑟𝑟_𝑚𝑎𝑥 (·) in (8.3) and 𝑎𝑐𝑐_𝑠𝑡𝑑 (·) in (8.4)
achieved by the best candidate samples 𝒙𝒃𝒆𝒔𝒕 (𝑁), 1 ≤ 𝑁 ≤ 𝑁𝑚𝑎𝑥 , found by the unconstrained BBO and
PBO procedures when calibrating the PI controllers. Red: indicators for the best candidates found by
GLIS-r [108] (BBO) when solving arg min𝒙∈Ω 𝑝𝑜𝑠_𝑛𝑚𝑎𝑒 (𝒙). Blue: 𝑓 (𝒙𝒃𝒆𝒔𝒕 (𝑁))’s obtained by GLIS-r
[108] (BBO) when solving arg min𝒙∈Ω 𝑎𝑐𝑐_𝑠𝑡𝑑 (𝒙). Grey: indicators for the best candidates found by
GLISp-r [109] (PBO). The black vertical line denotes the number of initial samples 𝑁𝑖𝑛𝑖𝑡 .

• Vice-versa, the PI calibrations found by solving arg min𝒙∈Ω∩Ξ 𝑎𝑐𝑐_𝑠𝑡𝑑 (𝒙) show less pro-

nounced accelerations 𝑎𝑐𝑐(·) (𝑡; 𝒙) but higher tracking errors 𝑒𝑟𝑟 (·) (𝑡; 𝒙). In particular, in

the unconstrained framework, the resulting tuning shows a maximum position tracking error

𝑒𝑟𝑟_𝑚𝑎𝑥 (𝒙𝒃𝒆𝒔𝒕 (𝑁𝑚𝑎𝑥)) > 0.02 meters. Instead, the calibration found in the constrained setting

satisfies the black-box constraint in (8.6) at the cost of a higher 𝑎𝑐𝑐_𝑠𝑡𝑑 (𝒙𝒃𝒆𝒔𝒕 (𝑁𝑚𝑎𝑥)) (0.310,

unconstrained, vs 0.331 meters per seconds squared, constrained).

• Lastly, the calibrations found by means of preference-based optimization achieve a good balance

between position setpoint tracking and moderate acceleration signals. To confirm this, look at the

values of the indicators for 𝒙𝒃𝒆𝒔𝒕 (𝑁𝑚𝑎𝑥) resulting from PBO in Figure 53, which are in-between

those obtained from minimizing 𝑝𝑜𝑠_𝑛𝑚𝑎𝑒 (𝒙) in (8.2) and 𝑎𝑐𝑐_𝑠𝑡𝑑 (𝒙) in (8.4) directly.

So far, it seems like adding the black-box constraint in (8.6) does not change the outcomes of the

optimization procedures by much. However, there is a “hidden” advantage to the constrained BBO

or PBO problems over the unconstrained ones: we test fewer calibrations that exhibit unsatisfactory

performances. That is because we limit the exploration of the whole feasible region Ω of the GOP

(2.1), focusing more on those zones that are likely to contain Ξ-feasible samples. In Figure 54, we

show the box plots related to the maximum position tracking errors achieved by all the tunings tested

by the BBO and PBO procedures. In the unconstrained framework, a good portion of the calibrations

lead to a 𝑒𝑟𝑟_𝑚𝑎𝑥 (𝒙𝑖) > 0.02 meters. Many even exceed 0.1 meters, which is clearly unacceptable

since the setpoint 𝑆𝑃 (𝑡) ranges between 0 and 1 meter (as in Figure 52). Instead, very few calibrations

tested by the constrained BBO and PBO procedures actually violate the black-box constraint in (8.6).
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Figure 52: Position 𝑝𝑜𝑠𝑙 (𝑡; ·), position error 𝑒𝑟𝑟𝑙 (𝑡; ·) and acceleration 𝑎𝑐𝑐𝑙 (𝑡; ·) signals obtained
by the best calibrations 𝒙𝒃𝒆𝒔𝒕 (𝑁𝑚𝑎𝑥) found by the unconstrained (left) and constrained (right) black-
box and preference-based optimization procedures when calibrating the PI controllers. The shaded
green area corresponds to |𝑒𝑟𝑟𝑙 (𝑡, 𝒙) | ≤ 0.02 meters and is related to the black-box constraint in (8.6).
Red: signals resulting from the calibrations found by GLIS-r [108] or C-GLIS-r (BBO) when solving
arg min𝒙∈Ω∩Ξ 𝑝𝑜𝑠_𝑛𝑚𝑎𝑒 (𝒙). Blue: performances of 𝒙𝒃𝒆𝒔𝒕 (𝑁𝑚𝑎𝑥) obtained by GLIS-r [108] or C-GLIS-r
(BBO) when solving arg min𝒙∈Ω∩Ξ 𝑎𝑐𝑐_𝑠𝑡𝑑 (𝒙). Grey: signals associated to the calibrations found by
GLISp-r [109] or C-GLISp-r (PBO); in the constrained case, we consider Ξ defined as in (8.6). Magenta:
signals resulting from 𝒙𝒃𝒆𝒔𝒕 (𝑁𝑚𝑎𝑥) obtained through C-GLISp-rwhen a decision-maker-based constraint
is present.

Figure 60 shows the surrogate models for the cost functions 𝑓 (𝒙) and the black-box constraints

functions of the GOPs (2.1) in the different settings described in Section 8.4.1. We can clearly

see that, in the unconstrained black-box optimization framework, GLIS-r [108] spends a lot of the

search effort on exploring the whole set Ω. The same can be said for GLISp-r [109] (unconstrained

PBO), although this behavior is much less pronounced. That is because GLISp-r [109] often returns

new candidate samples that improve upon the current best one when 𝛿 in (5.12) is high (exploitation).

Hence, due to the greedy 𝛿-cycling strategy (Section 5.2.3), the procedure spends more time exploiting

than exploring. Instead, in the constrained framework, exploration is limited and most tunings tend to

have proportional gains 𝐾𝑃 that are close to its corresponding upper bound in (8.5). That is because,

in order to satisfy the black-box constraint 𝑒𝑟𝑟_𝑚𝑎𝑥 (𝒙) ≤ 0.02 meters, we must lean towards more

aggressive controllers. However, the constraint on the maximum position tracking error does not take

into account that high 𝐾𝑃’s and 𝐾𝐼’s can lead to pronounced acceleration oscillations (which must be

avoided), see for example Figure 50 - tuning 𝒙𝑖. Yet, it is much harder to define a suitable constraint

for the latter objective. It is easier to let a decision-maker express whether a tuning is acceptable or

261



Davide Previtali

Figure 53: Values of the performance indicators achieved by the best calibrations 𝒙𝒃𝒆𝒔𝒕 (𝑁𝑚𝑎𝑥) of the PI
controllers found by the different strategies (unconstrained on the top and constrained on the bottom).
The colors follow the same scheme described in Figure 52.

Figure 54: Box plots that describe the maximum position tracking errors achieved by all the PI controllers’
calibrations tried by the unconstrained (left) and constrained (right) BBO and PBO procedures. The
colors follow the same scheme described in Figure 52.
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not, as we did in the context of PBO with the addition of the decision-maker-based constraint. As

a matter of fact, the green crosses in Figure 60 depict those calibrations that lead to unacceptable

acceleration oscillations, which are deemed as Ξ-infeasible by the DM; notice how all of them have

high 𝐾𝑃’s. Consequently, the decision boundaries of the PSVM classifiers for Ξ defined as in (8.6)

and when, instead, the Ξ-feasibility is determined by the calibrator, are different. As a final remark,

we point out that the surrogate models for the scoring function 𝑓 (𝒙) of the decision-maker in Figure

60 differ quite a lot in the three cases. That is due to the fact that, in the unconstrained framework,

at the last iteration of GLISp-r [109] the recalibration procedure selects 𝜖 𝑓 = 10, which results in a

“more local” 𝑓𝑁 (𝒙) in (4.1). Instead, the opposite can be said for the surrogates in the constrained

framework, where we have 𝜖 𝑓 = 0.1. In any case, most samples tried by the PBO procedures are such

that log10 𝐾𝑃 ≥ −0.1 (i.e. 𝐾𝑃 ≥ 0.8) and the best candidates are similar. Hence, we can conclude that

the calibrator has been sufficiently consistent with his choices (see Remark 8.1).

8.4.5 Calibration of the PI + FF controllers

Now, we address the performances achieved by the calibrations of the PI + FF controllers found by

GLIS-r [108], GLISp-r [109], C-GLIS-r and C-GLISp-r. We also report a summary table (Table 8)

that shows the best tunings obtained by the strategies proposed in Section 8.4.1, their corresponding

indicators’ values and the execution times required for performing BBO and PBO with a budget of

𝑁𝑚𝑎𝑥 = 50 sample evaluations.

We start by analyzing the signals associated to 𝒙𝒃𝒆𝒔𝒕 (𝑁𝑚𝑎𝑥) returned by the several optimization

procedures, which are depicted in Figure 55. Overall, compared to the results achieved by the PI

controllers (in Figure 52), the PI + FF regulators attain better setpoint tracking performances (lower

𝑒𝑟𝑟 (·) (𝑡; 𝒙𝒃𝒆𝒔𝒕 (𝑁𝑚𝑎𝑥))). That is to be expected since the feed forward action makes the regulators

more responsive and able to react quicker to setpoint changes. However, as a consequence, the control

actions tend to be less moderate, which could result in oscillatory accelerations. As a matter of fact, in

the unconstrained framework, the best calibrations found when minimizing 𝑝𝑜𝑠_𝑛𝑚𝑎𝑒 (𝒙) in (8.2) and

𝑎𝑐𝑐_𝑠𝑡𝑑 (𝒙) in (8.4) directly (BBO) obtain similar 𝑒𝑟𝑟 (·) (𝑡; 𝒙𝒃𝒆𝒔𝒕 (𝑁𝑚𝑎𝑥)) and 𝑎𝑐𝑐(·) (𝑡; 𝒙𝒃𝒆𝒔𝒕 (𝑁𝑚𝑎𝑥))

signals. In particular, both acceleration signals show comparable oscillations. Surprisingly, in Table 8,

we can see that the PI + FF controller achieves a lower 𝑎𝑐𝑐_𝑠𝑡𝑑 (𝒙𝒃𝒆𝒔𝒕 (𝑁𝑚𝑎𝑥)) than its PI counterpart

when the latter indicator is minimized directly in the unconstrained framework (0.310, PI, vs 0.288

meters per seconds squared, PI + FF), despite its corresponding 𝑎𝑐𝑐(·) (𝑡; 𝒙𝒃𝒆𝒔𝒕 (𝑁𝑚𝑎𝑥)) signals show

more oscillations. In practice, the indicator 𝑎𝑐𝑐_𝑠𝑡𝑑 (𝒙) in (8.4) might not be completely suited to

describe the third control specification presented in Section 8.3. That is because even an oscillatory
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signal can have a low standard deviation if the amplitude of the oscillations is small enough. This

is one of the main difficulties encountered by BBO procedures when applied to control systems

applications: translating qualitative control specifications into suitable performance indicators is

(often) not straightforward. PBO methods are not affected by this shortcoming since they rely only

on a calibrator who typically has a clear objective in mind. As a matter of fact, the performances

of the calibrations found through preference-based optimization, reported in Figure 55, better capture

the control specifications described in Section 8.3.

Figure 55: Position 𝑝𝑜𝑠𝑙 (𝑡; ·), position error 𝑒𝑟𝑟𝑙 (𝑡; ·) and acceleration 𝑎𝑐𝑐𝑙 (𝑡; ·) signals obtained by the
best calibrations 𝒙𝒃𝒆𝒔𝒕 (𝑁𝑚𝑎𝑥) found by the unconstrained (left) and constrained (right) black-box and
preference-based optimization procedures when calibrating the PI + FF controllers. The shaded green
area corresponds to |𝑒𝑟𝑟𝑙 (𝑡, 𝒙) | ≤ 0.02 meters and is related to the black-box constraint in (8.6). The
colors follow the same scheme described in Figure 52.

If we take a closer look at the best calibrations found when minimizing 𝑝𝑜𝑠_𝑛𝑚𝑎𝑒 (𝒙) in (8.2) directly,

in the unconstrained BBO framework, we notice in Table 8 that 𝑝𝑜𝑠_𝑛𝑚𝑎𝑒 (𝒙𝒃𝒆𝒔𝒕 (𝑁𝑚𝑎𝑥)) for the PI +

FF controller is higher than its PI regulator counterpart (1.241, PI + FF, vs 1.050, PI). The addition of

the feed forward action should improve the setpoint tracking performances; hence, we would expect the

opposite result. However, the issue here is that the budget 𝑁𝑚𝑎𝑥 = 50 is quite restrictive for the black-

box optimization of 𝑝𝑜𝑠_𝑛𝑚𝑎𝑒 (𝒙) in (8.2). As a matter of fact, we have tried increasing the budget

to 𝑁𝑚𝑎𝑥 = 200 sample evaluations and ran GLIS-r [108] once again, both for calibrating the PI and

the PI + FF controllers. The resulting convergence plots are depicted in Figure 56. In the PI regulator

case, GLIS-r [108] is able to find a tuning that minimizes 𝑝𝑜𝑠_𝑛𝑚𝑎𝑒 (𝒙) in (8.2) quite fast, in about

10 sample evaluations; the sample evaluations for 10 < 𝑁 ≤ 200 carry no improvement. Instead,
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when tuning the PI + FF controllers, the optimization proves to be much harder (partially because we

have to explore a three-dimensional space instead of a two-dimensional one). After roughly 80 sample

evaluations, the performances of the best PI + FF controller calibration are better than those of its PI

counterpart. Moreover, GLIS-r [108] keeps improving upon 𝑝𝑜𝑠_𝑛𝑚𝑎𝑒 (𝒙) in (8.2) as the iterations go

on, achieving, at last, 𝑝𝑜𝑠_𝑛𝑚𝑎𝑒 (𝒙𝒃𝒆𝒔𝒕 (𝑁𝑚𝑎𝑥)) = 0.934 against 𝑝𝑜𝑠_𝑛𝑚𝑎𝑒 (𝒙𝒃𝒆𝒔𝒕 (𝑁𝑚𝑎𝑥)) = 1.050

of the PI controller.

Figure 56: Convergence plots of GLIS-r [108] when minimizing the cost function 𝑝𝑜𝑠_𝑛𝑚𝑎𝑒 (𝒙) in (8.2)
directly, in the unconstrained BBO framework. We compare the performances achieved by the PI and
the PI + FF controllers when the budgets are 𝑁𝑚𝑎𝑥 = 50 and 𝑁𝑚𝑎𝑥 = 200 respectively.

Figure 57: Convergence plots of GLIS-r [108] and C-GLIS-r when minimizing the cost functions
𝑝𝑜𝑠_𝑛𝑚𝑎𝑒 (𝒙) in (8.2) (left) and 𝑎𝑐𝑐_𝑠𝑡𝑑 (𝒙) in (8.4) (right) directly, both in the unconstrained and
constrained BBO frameworks. For the latter case, Ξ is defined as in (8.6). The black vertical line
denotes the number of initial samples 𝑁𝑖𝑛𝑖𝑡 . As long as C-GLIS-r has not found a Ξ-feasible sample, the
corresponding curves 𝑓 (𝒙𝒃𝒆𝒔𝒕 (𝑁)) are depicted with dashed lines; we switch to continuous lines when
𝒙𝒃𝒆𝒔𝒕 (𝑁) ∈ Ξ. Note that, despite GLIS-r [108] and C-GLIS-r start from the same samples, 𝑓 (𝒙𝒃𝒆𝒔𝒕 (𝑁))
differ for 𝑁 ≤ 𝑁𝑖𝑛𝑖𝑡 . That is because, in the constrained framework, a Ξ-feasible sample always improves
upon a Ξ-infeasible one.
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Figure 58 depicts the indicators’ values for the best calibrations of the PI + FF regulators found by

the different strategies described in Section 8.4.1. Overall, compared to the results obtained by the

PI controllers in Figure 53, the setpoint tracking performances achieved by the PI + FF controllers

are better, as we would expect due to the addition of the feed forward action. As a matter of fact,

even when 𝑝𝑜𝑠_𝑛𝑚𝑎𝑒 (𝒙) in (8.2) is not minimized directly, the best calibrations found for the PI +

FF regulators mostly exhibit lower 𝑝𝑜𝑠_𝑛𝑚𝑎𝑒 (𝒙𝒃𝒆𝒔𝒕 (𝑁𝑚𝑎𝑥)) than those in Figure 53. Furthermore,

in any case, the resulting 𝑒𝑟𝑟_𝑚𝑎𝑥 (𝒙𝒃𝒆𝒔𝒕 (𝑁𝑚𝑎𝑥)) is lower for the PI + FF controllers, regardless

of whether the black-box constraint 𝑒𝑟𝑟_𝑚𝑎𝑥 (𝒙) < 0.02 meters is present or not. Lastly, for what

concerns 𝑎𝑐𝑐_𝑠𝑡𝑑 (𝒙) in (8.4), both regulators achieve comparable values.

When calibrating the PI + FF controllers, the addition of the black-box constraint on the maximum

position tracking error, in (8.6), brings two improvements:

1. Similarly to what we have seen in Section 8.4.4, fewer unsatisfactory calibrations are tried, as

depicted by the box plots of 𝑒𝑟𝑟_𝑚𝑎𝑥 (𝒙𝑖) in Figure 59;

2. By reducing the search effort in those regions of Ω that are likely to contain Ξ-infeasible

samples, the constrained BBO and PBO procedures can achieve similar (or even better) results

to those of their unconstrained counterparts in fewer sample evaluations. Figure 57 shows the

convergence plots of GLIS-r [108] and C-GLIS-r when minimizing 𝑝𝑜𝑠_𝑛𝑚𝑎𝑒 (𝒙) in (8.2)

and 𝑎𝑐𝑐_𝑠𝑡𝑑 (𝒙) in (8.4) directly. For the former indicator, C-GLIS-r is even able to reach a

value of 𝑝𝑜𝑠_𝑛𝑚𝑎𝑒 (𝒙𝒃𝒆𝒔𝒕 (𝑁𝑚𝑎𝑥)) that is comparable to that achieved by GLIS-r [108] when

𝑁𝑚𝑎𝑥 = 200 (cf. Figure 56). Instead, for the latter indicator, the best candidate found by

C-GLIS-r is slightly worse than that of GLIS-r [108]. That is because the black-box constraint

𝑒𝑟𝑟_𝑚𝑎𝑥 (𝒙) < 0.02 meters favors better setpoint tracking performances (small 𝑝𝑜𝑠_𝑛𝑚𝑎𝑒 (𝒙))

but does not necessarily drive the search towards those regions of Ω where 𝑎𝑐𝑐_𝑠𝑡𝑑 (𝒙) is low.

We conclude this Section by taking a look at the execution times of the optimization procedures

(reported in Table 8), which range between 18 and 40 minutes. These exceed the execution times

observed when solving the benchmark optimization problems in Chapter 7 by quite a lot (cf. Table

4 and Table 7). In fact, the computational overhead of the BBO and PBO procedures is practically

negligible when compared to time required to perform the simulations on the hydraulic press under

study. Moreover, if we were to perform the same experiments on the real system, the optimizations

would take far more than 40 minutes. This result is inline with the main assumption of surrogate-

based methods (Assumption 2.3), which says that sample evaluations are the most time-consuming

operations performed during the optimization procedure. As a final remark, note that the execution
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Figure 58: Values of the performance indicators achieved by the best calibrations 𝒙𝒃𝒆𝒔𝒕 (𝑁𝑚𝑎𝑥) of the
PI + FF controllers found by the different strategies (unconstrained on the top and constrained on the
bottom). The colors follow the same scheme described in Figure 52.

Figure 59: Box plots that describe the maximum position tracking errors achieved by all the PI +
FF controllers’ calibrations tried by the unconstrained (left) and constrained (right) BBO and PBO
procedures. The colors follow the same scheme described in Figure 52.
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times of the PBO algorithms exceed those of their BBO counterparts. That is because they must wait

for the responses of the decision-maker, who interacts with the procedures through the query window

in Figure 50.
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(a) Unconstrained (left) and constrained (right) BBO with 𝑓 (𝒙) = 𝑝𝑜𝑠_𝑛𝑚𝑎𝑒 (𝒙) in (8.2) (top) and
𝑓 (𝒙) = 𝑎𝑐𝑐_𝑠𝑡𝑑 (𝒙) in (8.4) (bottom).

(b) Unconstrained (left) and constrained (right) preference-based optimization. The bottom row shows the results
of PBO when equipped with the decision-maker-based constraint. The three surrogates are made comparable by
rescaling them to the

[
0, 1

]
range.

Figure 60: Comparison of the surrogate models for the cost functions 𝑓 (𝒙) of the GOPs (2.1) used to
to calibrate the PI controllers. The surrogate models 𝑓𝑁 (𝒙) in (4.1) are those at the last iterations of
the GLIS-r [108], GLISp-r [109], C-GLIS-r and C-GLISp-r procedures (𝑁 = 𝑁𝑚𝑎𝑥 − 1 = 49). The red
curves constitute the decision boundaries of the PSVM classifiers (Section 6.1.3). The tried calibrations
are depicted as circles (Ξ-feasible) or crosses (Ξ-infeasible). The red points are the 𝑁𝑖𝑛𝑖𝑡 initial samples.
Finally, the best candidates are highlighted in magenta.
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8.5 Concluding remarks

This case study has taught us many valuable lessons on black-box and preference-based optimization

procedures when applied to control systems applications. First and foremost, PBO can be particularly

useful when only qualitative control specifications are available, saving us the time of designing

suitable performance indicators. Similarly, decision-maker-based constraints prove to be quite handy

when dealing with requirements that are hard to define analytically.

Concerning the performances of the calibrations found by the strategies proposed in Section 8.4.1,

most of the time the PI + FF controllers outperform the PI regulators, when tuned properly. This is

not surprising since the former controllers are more complex and can react to setpoint changes much

quicker than the latter. However, tuning 𝑛 = 3 parameters instead of just 𝑛 = 2 might require more

experiments, especially in the unconstrained BBO and PBO frameworks. As we have seen in Chapter

1, finding the global solutions of an optimization problem becomes much harder as the dimensionality

of the decision vector increases. Hence, when the budget 𝑁𝑚𝑎𝑥 is quite restrictive, it might be a good

idea to include black-box constraints to limit the search of Ω or, alternatively, to spend more time

exploiting than exploring.

Lastly, we have seen that, even though surrogate-based methods are often computationally expensive,

the computational overhead added by the optimization procedures is practically negligible compared

to the time required to perform sample evaluations that involve computer simulations.

8.5.1 A note on preference-based and multi-objective optimization

As in many control systems applications, some of the control specifications presented in Section 8.3

are conflicting. In our case, there does not exist a calibration that simultaneously minimizes both

𝑝𝑜𝑠_𝑛𝑚𝑎𝑒 (𝒙) in (8.2) and 𝑎𝑐𝑐_𝑠𝑡𝑑 (𝒙) in (8.4). Instead of minimizing the two indicators separately,

we could define the following Multi-Objective Optimization (MOO) problem [84]:

X∗ = arg min
𝒙


𝑝𝑜𝑠_𝑛𝑚𝑎𝑒 (𝒙)

𝑎𝑐𝑐_𝑠𝑡𝑑 (𝒙)

 (8.7)

s.t. 𝒙 ∈ Ω ∩ Ξ.

In order to solve Problem (8.7), a black-box multi-objective optimization algorithm must be used, such

as the one proposed in [113]. Similarly to preference-based optimization, human decision-makers

also play a key role in MOO:

• A-priori MOO methods require that the decision-maker expresses sufficient “preference in-

formation” on the different objectives. For example, his/her “preferences” can be specified
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in the form of weights, 𝜔𝑛𝑚𝑎𝑒 ∈ R>0 and 𝜔𝑠𝑡𝑑 ∈ R>0, associated to 𝑝𝑜𝑠_𝑛𝑚𝑎𝑒 (𝒙) in (8.2)

and 𝑎𝑐𝑐_𝑠𝑡𝑑 (𝒙) in (8.4) respectively. Problem (8.7) is then scalarized into a single objective

optimization problem with cost function:

𝑓 (𝒙) = 𝜔𝑛𝑚𝑎𝑒 · 𝑝𝑜𝑠_𝑛𝑚𝑎𝑒 (𝒙) + 𝜔𝑠𝑡𝑑 · 𝑎𝑐𝑐_𝑠𝑡𝑑 (𝒙) . (8.8)

There also exist several other ways of scalarizing a multi-objective optimization problem, see

[84].

• A-posteriori MOO methods, such as the one in [113], return a set of Pareto-optimal solutions

for Problem (8.7). The decision-maker is then asked to choose a calibration among the ones

supplied by the optimization procedure.

The main advantages of preference-based optimization over black-box multi-objective optimization

are: (i) there is no need to explicitly define multiple cost functions since PBO methods estimate 𝑓 (𝒙)

directly from the preferences expressed by the DM; (ii) the conflicting criteria are implicitly taken into

account by the decision-maker without the need, for example, to choose the weights in (8.8).
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This book dealt with the problem of finding the global solution(s) of an optimization problem whose

cost function and (possibly but not necessarily) some of the constraints functions are unknown and

expensive to evaluate. The most suited algorithms for such task are surrogate-based methods, which

rely on approximations of the latent functions to drive the search towards the minimizer(s) of the

optimization problem. We have considered both the black-box and the preference-based optimization

frameworks, which make different assumptions on the information available on the cost function. In the

former case, the values assumed by the cost function can be measured by running computer simulations

or performing real-world experiments. Instead, in the latter framework, the optimization is carried out

using only the preferences expressed by a human decision-maker, who compares two tunings of the

decision vector at a time and states which he/she likes the most. Surrogate-based methods can also

handle black-box constraints (whose analytical formulations are unknown) by restricting the search

only to those regions of the decision space that are likely to contain feasible calibrations. In particular,

in the context of preference-based optimization, we have also highlighted a peculiar type of black-box

constraints: decision-maker-based constraints. The latter can be seen as asking the decision-maker a

“yes/no question” (such as “is this tuning acceptable?”).

Contributions

Overall, we have covered five optimization frameworks: global optimization (Chapter 1), black-box

optimization (unconstrained and constrained, Chapter 2) and preference-based optimization (uncon-

strained and constrained, Chapter 3). The first (minor) contribution of this book is the unified

dissertation on the aforementioned frameworks that, in the end, all aim to solve a global optimization

problem. Notably, we have shown that, by leveraging some results taken from the utility theory

literature [104], the task of finding the calibration(s) that is (are) the most preferred by a human

decision-maker is equivalent to solving a more traditional optimization problem. Hence, key results

from the GO literature, such as the convergence theorem in [143] (i.e. Theorem 1.2), can also be

applied to PBO.

The second contribution of this book is the derivation of globally convergent extensions for two recent

surrogate-based methods: GLIS [10] (unconstrained BBO) and GLISp [11] (unconstrained PBO),

giving rise to GLIS-r [108] and GLISp-r [109] (Chapter 5). We have addressed the shortcomings of

the exploration function used by the original methods through the definition of a revisited infill sampling
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criterion. Moreover, we have proposed the greedy 𝛿-cycling strategy, a simple yet effective way to

cycle between exploiting the surrogate models and exploring the feasible region of the optimization

problem. To the best of our knowledge, GLISp-r [109] is the first preference-based surrogate-based

method with a formal proof of convergence. Empirically, in Chapter 7, we have also highlighted the

robustness of GLISp-r [109] on several benchmark optimization problems, when compared to the

original GLISp [11] algorithm, which is achieved without particularly compromising its convergence

speed.

The third contribution of this book is the definition of a general unified surrogate-based scheme for

unconstrained black-box and preference-based optimization, namely gMRS [108] (Chapter 5). Its global

convergence is guaranteed for a wide variety of surrogate models of the cost function and exploration

functions. Moreover, we have shown that GLIS-r [108] and GLISp-r [109] are none other than two

specific implementations of the gMRS [108] scheme.

The fourth contribution of this book is the extension of GLIS-r [108] and GLISp-r [109] to the

constrained black-box and preference-based optimization frameworks (Chapter 6), giving rise to

C-GLIS-r and C-GLISp-r. To do so, we have proposed a slight modification to the probabilistic

support vector machine classifier [15, 106], tailored specifically for constrained BBO and PBO.

Moreover, we have derived a novel infill sampling criterion, which combines the probability of

feasibility returned by the PSVM classifier with a slack variable. Its goal is to drive the search towards

those regions of the decision space where the black-box constraints are likely to be satisfied but, at the

same time, allow sampling promising calibrations that are on the other side of the decision boundary

of the PSVM classifier. Empirically, in Chapter 7, we have shown that the proposed methods for

constrained BBO and PBO are more sample efficient than C-GLIS and C-GLISp [156].

The fifth and last contribution of this book is the application of GLIS-r [108], GLISp-r [109],

C-GLIS-r and C-GLISp-r to a control systems case study (Chapter 8). The proposed procedures

have been employed to calibrate the PI + FF controllers of a hydraulic forming press. We have shown

the usefulness of preference-based optimization methods when only qualitative control specifications

are available, allowing us to skip the definition of performance indicators entirely. Moreover, we have

highlighted the advantages of employing constrained BBO and PBO methods over the unconstrained

ones: fewer unsatisfactory calibrations have been tried and we have been able to find good tunings

using fewer sample evaluations. Lastly, decision-maker-based constraints have proven to be a powerful

tool when performance requirements are hard to define.
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Future work

The work presented in this book can be extended in several ways:

1. First of all, we would like to analyze the performances of the gMRS [108] scheme for several

different surrogate models and exploration functions (see Sections 2.5, 3.4 and 5.4.2).

2. Moreover, it could be interesting to test the proposed black-box optimization methods in the

presence of noisy measurements (i.e. when Assumption 2.4 does not hold).

3. Furthermore, in the preference-based setting, a compelling line of research could be the analysis

of the robustness of GLISp-r [109] and C-GLISp-r in the presence of inconsistent decision-

makers. From a theoretical perspective, inconsistent decision-makers could be seen as “ir-

rational” (in a sense that the conditions in Definition 3.1 do not hold). In the utility theory

literature, there already exist models for preference relations that are not complete and/or tran-

sitive, see [99, 103]. However, to the best of our knowledge, there are no preference-based

optimization methods that explicitly handle decision-makers that are not rational. From a prac-

tical perspective, we would need a surrogate model that is able to handle the answer “I do not

know” when the DM cannot decide which, among two calibrations, he/she prefers.

4. Similarly to the previous line of research, we would also like to delve into the topic of just

noticeable differences (see Example 3.2). In particular, it could be interesting to derive infill

sampling criteria that take such limitation into account. For example, it might be beneficial

to propose new candidate samples that are at least 𝜖-away from the previously evaluated ones,

making it possible for the decision-maker to always distinguish between the calibrations that

he/she is asked to compare.

5. In this book, we have only dealt with continuous decision variables. However, many engineering

applications also include categorical and integer parameters that need to be tuned, see [78].

Therefore, future extensions of the proposed algorithms should also address mixed-variable

optimization problems (see for example [17, 48]).

6. Last but not least, a future line of research is devoted to the derivation of a trust-region surrogate-

based method for preference-based optimization. Roughly speaking, instead of solving a global

optimization problem when proposing new candidate samples (see for example Section 5.2

and Section 6.2), we focus only in a neighborhood of the current best solution. In the context

of black-box optimization, trust-region methods already exist, see [117, 152]. However, such
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rationale has yet to be employed for preference-based optimization. Intuitively, a trust-region

approach could be particularly useful when bounds on the decision variables are hard to define

(such as in the case study presented in Chapter 8) or when a good initial calibration is already

available.
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Appendix A. Mathematical background

This Appendix is devoted to reviewing some mathematical concepts that are needed for this book.

The treatment is by no means complete, but it serves mainly to remind us of some key notions and to

set out our notation. In particular, we cover:

• Appendix A.1: binary relations and, in particular, notions of order theory that are required to

define the preference-based optimization problem. See [104, 127].

• Appendix A.2: metric spaces and their properties. Compact and dense subsets of metric spaces

play a key role in global optimization and are also relevant for the definition of the utility function

of a human decision-maker. The continuity of functions in metric spaces is also addressed. See

[71, 104, 127].

• Appendix A.3: differentiability theory for multivariable functions, which is relevant from an

optimization perspective. See [121, 130].

• Appendix A.4: basic optimization concepts related to unconstrained and constrained optimiza-

tion problems. See [18, 100].

A.1 Order theory

As the name suggests, order theory is a branch of mathematics that provides the notion of order,

making it possible to compare objects (elements) that pertain to the same category (set). This is

closely related to preference-based optimization, wherein a decision-maker ranks several calibrations

based on his/her personal tastes. Whenever the decision-maker states “calibration 𝒙𝑖 is better than

tuning 𝒙 𝑗”, he/she is actually ranking 𝒙𝑖 higher than 𝒙 𝑗 , effectively imposing an order between the

two.

The building blocks of order theory are ordered pairs. An ordered pair is an ordered list (𝑎, 𝑏)

consisting of two objects, 𝑎 and 𝑏. It is ordered in a sense that, given two ordered pairs (𝑎, 𝑏) and

(𝑐, 𝑑), we have (𝑎, 𝑏) = (𝑐, 𝑑) if and only if 𝑎 = 𝑐 and 𝑏 = 𝑑.

A set of ordered pairs can be obtained by taking the Cartesian product of two nonempty sets A and B:

A × B = {(𝑎, 𝑏) : 𝑎 ∈ A and 𝑏 ∈ B} . (A.1)

In order theory, we use binary relations to connect the elements of A to the members of B.
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Definition A.1: Binary relation. Let A and B be two nonempty sets. A subset R of A × B

is called a (binary) relation from A to B (R ⊆ A × B). If A = B, then we say that R is a

(binary) relation on A (R ⊆ A × A).

Notation and conventions. We denote the ordered pair (𝑎, 𝑏) ∈ R as 𝑎R𝑏.

Relations can exhibit several different properties.

Definition A.2: Properties of relations. A relation R on a nonempty set A is said to be:

• Reflexive if 𝑎R𝑎 for each 𝑎 ∈ A (otherwise, it is said to be irreflexive);

• Complete if either 𝑎R𝑏 or 𝑏R𝑎 holds for each 𝑎, 𝑏 ∈ A;

• Symmetric if, for any 𝑎, 𝑏 ∈ A, 𝑎R𝑏 implies 𝑏R𝑎;

• Asymmetric if, for any 𝑎, 𝑏 ∈ A, 𝑎R𝑏 implies that 𝑏R𝑎 does not hold (and vice-versa);

• Antisymmetric if, for any 𝑎, 𝑏 ∈ A, 𝑎R𝑏 and 𝑏R𝑎 hold then 𝑎 = 𝑏;

• Transitive if 𝑎R𝑏 and 𝑏R𝑐 imply 𝑎R𝑐 for any 𝑎, 𝑏, 𝑐 ∈ A.

Next, we give some remarks on the just defined properties of relations.

Remark A.1. It holds that:

• Every complete relation is reflexive;

• An asymmetric relation is a relation that is both antisymmetric and irreflexive;

Now, we define a particular relation called the equivalence relation.

Definition A.3: Equivalence relation. A relation∼ on a nonempty setA is called an equivalence

relation if it is reflexive, symmetric and transitive.

Example A.1: Equivalence relation

Consider the set of real numbers R and any three of its elements 𝑎, 𝑏, 𝑐 ∈ R. The relation “is

equal to”, denoted as =, is an equivalence relation on R since the following properties hold:

• 𝑎 = 𝑎 (reflexivity),

• If 𝑎 = 𝑏 then 𝑏 = 𝑎 (symmetry),

• If 𝑎 = 𝑏 and 𝑏 = 𝑐 then 𝑎 = 𝑐 (transitivity).
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Vice-versa, the relation “is greater than or equal to”, denoted as ≥, is not an equivalence relation

on R because it is not symmetric, i.e. if 𝑎 ≥ 𝑏 then it is not necessarily true that 𝑏 ≥ 𝑎. In

particular, we have that 𝑎 ≥ 𝑏 ⇒ 𝑏 ≥ 𝑎 if and only if 𝑎 = 𝑏; thus, ≥ is an antisymmetric

relation on R.

In practice, any transitive relation R on a set A can be used to define an order between some (but not

necessarily all) the elements of A. The relation R on A assumes different names based on which of

the properties in Definition A.2 hold.

Definition A.4: Order relations and ordered sets. A relation R on a nonempty set A is called:

• A preorder on A if it is transitive and reflexive,

• A partial order on A if it is an antisymmetric preorder on A,

• A linear order on A if it is a partial order on A which is complete.

Furthermore, (A,R) is said to be:

• A preordered set if R is a preorder on A,

• A poset (partially ordered set) if R is a partial order on A,

• A loset (linearly ordered set) if R is a linear order on A.

For the remainder of this Appendix, as well as for preference-based optimization, we use a more

expressive notation for preorders.

Notation and conventions. From now on, we will always refer to a generic preorder as ≿ instead of

R. Furthermore, we denote the asymmetric part of ≿ as ≻, and the symmetric part of ≿ as ∼.

Partially ordered sets play a key role in mathematics. Intuitively, if (A,≿) is a poset, then some of the

elements of A can be ordered in some sense (according to ≿). Therefore, we can define lower bounds,

upper bounds, suprema, infima, maxima and minima of partially ordered sets as follows.

Definition A.5: ≿-upper bound and ≿-lower bound of a poset. Let (A,≿) be a poset and

B ⊆ A. An element 𝑎 ∈ A is said to be:

• A ≿-upper bound of B if 𝑎 ≿ 𝑏,∀𝑏 ∈ B. We then say that B is bounded above.

• A ≿-lower bound of B if 𝑏 ≿ 𝑎,∀𝑏 ∈ B. We then say that B is bounded below.
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Furthermore, we say that a set is (order) bounded if and only if it is bounded both above and

below.

Definition A.6: ≿-supremum and ≿-infimum of a poset. Let (A,≿) be a poset and B ⊆ A.

An element 𝑎 ∈ A is said to be:

• A ≿-supremum of B if it is a ≿-upper bound of B such that, for all ≿-upper bounds 𝑎̃ ∈ A

of B, 𝑎̃ ≿ 𝑎. For this reason, the ≿-supremum is often referred to as the least ≿-upper

bound. We denote it as sup≿ B.

• A ≿-infimum of B if it is a ≿-lower bound of B such that, for all ≿-lower bounds 𝑎̃ ∈ A

of B, 𝑎 ≿ 𝑎̃. For this reason, the ≿-infimum is often referred to as the greatest ≿-lower

bound. We denote it as inf≿ B.

Note that there can be only one ≿-supremum and only one ≿-infimum of any subset of A.

Definition A.7: ≿-maximum and≿-minimum of a poset. Let (A,≿) be a poset and ∅ ≠ B ⊆ A.

An element 𝑎 ∈ B is said to be:

• A ≿-maximum of B, denoted as max≿ B, if 𝑎 ≿ 𝑏 for all 𝑏 ∈ B,

• A ≿-minimum of B, denoted as min≿ B, if 𝑏 ≿ 𝑎 for all 𝑏 ∈ B.

Note that any nonempty subset of a poset can have at most one≿-maximum and one≿-minimum.

We now give some remarks on the lower bounds, upper bounds, supremum, infimum, maximum and

minimum of a subset B of a poset (A,≿).

Remark A.2. We stress that:

• The ≿-supremum and the ≿-infimum of B, if they exist, need not be inside B. Instead, the

≿-maximum and the ≿-minimum of B, if they exist, must be elements of B.

• 𝑎 = max≿ B if and only if 𝑎 ∈ B and 𝑎 is a ≿-upper bound of B.

• 𝑎 = min≿ B if and only if 𝑎 ∈ B and 𝑎 is a ≿-lower bound of B.

• If max≿ B exists, then max≿ B = sup≿ B.

• If min≿ B exists, then min≿ B = inf≿ B.

• A is (order) bounded if and only if it has both a maximum and a minimum.
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Definition A.7 is particularly relevant for the derivation of the preference-based optimization problem.

In this context, ≿ is a relation that describes the tastes of a human decision-maker. The objective of

a preference-based optimization procedure is to find the ≿-maximum of some subset Ω of R𝑛, i.e. to

find the element of Ω that is most preferred by the decision-maker.

The next Example gives us an order theoretic perspective on Euclidean spaces.
Example A.2: Natural order of Euclidean spaces

Consider the 𝑛-dimensional Euclidean space R𝑛, 𝑛 ∈ N. It is easy to see that:

• (R𝑛, ≥) is a poset. The “greater than or equal to” relation ≥ on R𝑛 is defined component-

wise, i.e. given 𝒙1, 𝒙2 ∈ R𝑛, we say that 𝒙1 ≥ 𝒙2 if and only if 𝑥 (𝑖)1 ≥ 𝑥 (𝑖)2 ,∀𝑖 = 1, . . . , 𝑛;

• (R, ≥) is a loset.

Typically, whenever we talk about R𝑛, we implicitly assume that it is ordered by ≥ (for this

reason, ≥ is often referred to as the natural order of R𝑛). Furthermore, given any subset Ω of

R𝑛, we forego ≥ in the notation of the bounds, supremum, infimum, maximum and minimum.

Therefore, we simply write sup Ω instead of sup≥ Ω and similarly for all the other operators.

A.1.1 Functions as binary relations

Conceptually, a function can be seen as an operation that transforms inputs into outputs and is none

other than a binary relation. In particular, a function 𝑓 that maps A into B, denoted as 𝑓 : A → B,

is a relation 𝑓 ⊆ A × B such that:

• For every 𝑎 ∈ A, there exists a 𝑏 ∈ B such that 𝑎 𝑓 𝑏 holds,

• For every 𝑏1, 𝑏2 ∈ B and 𝑎 ∈ A such that 𝑎 𝑓 𝑏1 and 𝑎 𝑓 𝑏2, we have 𝑏1 = 𝑏2 (i.e. an element of

A has associated one and only one element of B).

Furthermore, A is called the domain of 𝑓 and B is the codomain of 𝑓 . Given any set C ⊆ A and a

function 𝑓 : A → B, it is convenient to introduce the following notation:

𝑓 [C] = {𝑏 : 𝑏 ∈ B, 𝑐 𝑓 𝑏 for some 𝑐 ∈ C} . (A.2)

Then, the range of 𝑓 : A → B is defined as:

range ( 𝑓 ) = 𝑓 [A] . (A.3)
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Notation and conventions. In practice, a more commonly used notation for 𝑎 𝑓 𝑏 is 𝑓 (𝑎) = 𝑏; 𝑏 is

referred to as the image (or value) of 𝑎 under 𝑓 . Furthermore, whenever we refer to the function “as a

whole”, for the sake of clarity we either use the notation 𝑓 (·) or 𝑓 (𝑎) instead of simply 𝑓 .

A.2 Metric spaces

Many properties of multivariable functions defined over the 𝑛-dimensional Euclidean space, i.e. such

that 𝑓 : R𝑛 → R, depend on the notion of distance between points in R𝑛. For example, intuitively

speaking, continuity of 𝑓 (𝒙) implies that if we take two points 𝒙1, 𝒙2 ∈ R𝑛 that are “close” to each

other (i.e. the distance between the two is small), then the images 𝑓 (𝒙1) , 𝑓 (𝒙2) must also be “close”.

Formally, the 𝑛-dimensional Euclidean space is a metric space, i.e. a set for which it is possible to

define a distance between any two of its elements. In general, metric spaces are defined as follows.

Definition A.8: Metric spaces. Let A be any nonempty set. A function 𝑑 : A ×A → R≥0 that

satisfies the following properties for any 𝑎, 𝑏, 𝑐 ∈ A:

1. 𝑑 (𝑎, 𝑏) = 0 if and only if 𝑎 = 𝑏,

2. 𝑑 (𝑎, 𝑏) = 𝑑 (𝑏, 𝑎) (symmetry),

3. 𝑑 (𝑎, 𝑐) ≤ 𝑑 (𝑎, 𝑏) + 𝑑 (𝑏, 𝑐) (triangle inequality)

is called a distance function (or metric) on A. If 𝑑 (·, ·) is a distance function on A, we say

that (A, 𝑑) is a metric space, and refer to the elements of A as points in (A, 𝑑).

Notation and conventions. Whenever the metric under consideration is apparent from the context, it

is customary to dispense the notation (A, 𝑑) and refer to A as a metric space.

If A is a metric space (with metric 𝑑 (·, ·)) and ∅ ≠ B ⊂ A, we can view B as a metric space in its

own right by using the distance function induced by 𝑑 (·, ·) on B. More precisely, we make B a metric

space by means of the distance function 𝑑′ : B × B → R≥0, 𝑑′ (𝑎, 𝑏) = 𝑑 (𝑎, 𝑏) ,∀𝑎, 𝑏 ∈ B. We then

say that (B, 𝑑′), or simply B, is a metric subspace of A.

The next Example shows some trivial metric spaces.

Example A.3: Discrete and Euclidean spaces

Some examples of metric spaces are:
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• Let A be any nonempty set. A trivial way of making A a metric space is to use the

metric 𝑑 : A ×A → R≥0 defined as:

𝑑 (𝑎, 𝑏) =


1 if 𝑎 ≠ 𝑏

0 if 𝑎 = 𝑏

.

(A, 𝑑) is a metric space called discrete space and 𝑑 (·, ·) is referred to as the discrete

metric on A.

•
(
R𝑛, 𝑑𝑝

)
is a metric space for each 1 ≤ 𝑝 ≤ ∞, where 𝑑𝑝 : R𝑛 × R𝑛 → R≥0 is defined as:

𝑑𝑝 (𝒙1, 𝒙2) =
(
𝑛∑︁
𝑖=1

���𝑥 (𝑖)1 − 𝑥 (𝑖)2

���𝑝) 1
𝑝

for 1 ≤ 𝑝 < ∞, (A.4)

𝑑𝑝 (𝒙1, 𝒙2) = max
𝑖∈{1,...,𝑛}

���𝑥 (𝑖)1 − 𝑥 (𝑖)2

��� for 𝑝 = ∞. (A.5)

In particular, (R𝑛, 𝑑2) is called the 𝑛-dimensional Euclidean space and is often denoted

simply as R𝑛 (implicitly metrized by 𝑑2 (·, ·)).

To be more precise, the 𝑛-dimensional Euclidean space is a normed vector space. Normed vector

spaces are subsets of metric spaces on which a norm is defined, as we will briefly review in the next

Appendix.

A.2.1 Normed vector spaces

Before introducing normed vector spaces, we need to define vector spaces.

Definition A.9: Vector spaces. A vector space over a field F is a set V endowed with two

operations:

1. Vector addition + : V ×V → V, i.e. 𝑣 + 𝑤 ∈ V,∀𝑣, 𝑤 ∈ V;

2. Scalar multiplication · : F ×V → V, i.e. 𝜆 · 𝑣 ∈ V,∀𝑣 ∈ V,∀𝜆 ∈ F .

The elements of V are referred to as vectors, while the elements of F are called scalars. We

denote the vector space as (V, F ).

Vector addition and scalar multiplication must satisfy the following axioms:

• 𝑣 + 𝑤 = 𝑤 + 𝑣,∀𝑣, 𝑤 ∈ V (additive commutativity);

• (𝑢 + 𝑣) + 𝑤 = 𝑢 + (𝑣 + 𝑤),∀𝑢, 𝑣, 𝑤 ∈ V (additive associativity);
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• ∃0 ∈ V : 𝑣 + 0 = 𝑣,∀𝑣 ∈ V (identity element of vector addition);

• For every 𝑣 ∈ V there exists a 𝑤 ∈ V such that 𝑣 + 𝑤 = 0 (existence of the additive

inverse). We denote 𝑤 as −𝑣;

• (𝜆1 + 𝜆2) · 𝑣 = 𝜆1 · 𝑣 + 𝜆2 · 𝑣,∀𝑣 ∈ V,∀𝜆1, 𝜆2 ∈ F (distributivity of scalar multiplication

with respect to scalar addition);

• 𝜆 · (𝑣 +𝑤) = 𝜆 · 𝑣 + 𝜆 · 𝑤,∀𝑣, 𝑤 ∈ V,∀𝜆 ∈ F (distributivity of scalar multiplication with

respect to vector addition);

• (𝜆1 · 𝜆2) · 𝑣 = 𝜆1 · (𝜆2 · 𝑣) ,∀𝑣 ∈ V,∀𝜆1, 𝜆2 ∈ F (multiplicative associativity);

• ∃1 ∈ F : 1 · 𝑣 = 𝑣,∀𝑣 ∈ V (identity element of scalar multiplication).

From the previous Definition, F can be an arbitrary field of scalars. Often, F = R or F = C and we

refer to (V,R) and (V,C) as a real vector space and a complex vector space respectively.

Remark A.3 (Metric spaces and vector spaces). A vector space with no additional structure is not

necessarily a metric space and vice-versa. For instance, a metric space might have no notion of

addition and, similarly, a vector space does not necessarily possess a metric.

We can link vector spaces to metric spaces by enriching the former with a norm, giving rise to normed

vector spaces.

Definition A.10: Normed vector spaces. Consider a real or complex vector space (V, F )

(F = R or F = C). A norm over V is a function ∥·∥ : V → R≥0 that satisfies the following

properties for any 𝑣, 𝑤 ∈ V, 𝜆 ∈ F :

1. ∥𝑣∥ = 0 if and only if 𝑣 = 0,

2. ∥𝜆 · 𝑣∥ = |𝜆 | · ∥𝑣∥,

3. ∥𝑣 + 𝑤∥ ≤ ∥𝑣∥ + ∥𝑤∥ (triangle inequality).

In this case, we say that (V, ∥·∥) is a normed vector space.

The next Remark shows the relationship between normed vector spaces and metric spaces.

Remark A.4 (Metric spaces and normed vector spaces). By enriching a real or complex vector space

with a norm, giving rise to the normed vector space (V, ∥·∥), we make V a metric space. That is

because the norm ∥·∥ induces the distance 𝑑 : V ×V → R≥0, called the (norm) induced metric over
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V, defined as:

𝑑 (𝑣, 𝑤) = ∥𝑣 − 𝑤∥ .

Then, (V, 𝑑) with 𝑑 (·, ·) defined as above is a metric space.

Example A.4: Norms for V = R𝑛

Consider the normed vector space (R𝑛, ∥·∥). The distances proposed in (A.4) and (A.5) are

(norm) induced metrics derived from the 𝑝-norm:

∥𝒙∥𝑝 =
(
𝑛∑︁
𝑖=1

���𝑥 (𝑖) ���𝑝) 1
𝑝

for 1 ≤ 𝑝 < ∞ (A.6)

and max norm:

∥𝒙∥∞ = max
𝑖=1,...,𝑛

���𝑥 (𝑖) ��� (A.7)

respectively. Moreover, the 2-norm is referred to as the Euclidean norm and can be written as:

∥𝒙∥2 =

√√
𝑛∑︁
𝑖=1

(
𝑥 (𝑖)

)2
. (A.8)

We can view the 𝑛-dimensional Euclidean space as:

• A normed vector space (R𝑛, ∥·∥2),

• A metric space (R𝑛, 𝑑2), where 𝑑2 (𝒙1, 𝒙2) = ∥𝒙1 − 𝒙2∥2 is the metric induced by the

Euclidean norm.

A.2.2 Sequences in metric spaces

Some of the concepts related to metric spaces that we are about to see are connected to the notion

of sequences. Let (A, 𝑑) be a nonempty metric space, we define a sequence in A as a function

ℎ : N→ A, represented as

⟨𝑎𝑖⟩𝑖≥1 = ⟨𝑎1, 𝑎2, . . .⟩,

such that 𝑎𝑖 = ℎ (𝑖) for each 𝑖 ∈ N. In practice, a sequence is an ordered list of elements of A. By a

subsequence of a sequence, we mean a sequence that is made up of the terms of ⟨𝑎𝑖⟩𝑖≥1 which appear in

the subsequence in the same order as they appear in ⟨𝑎𝑖⟩𝑖≥1. For example, we define the subsequence

of ⟨𝑎𝑖⟩𝑖≥1 composed of its first 𝑘 ∈ N elements as:

⟨𝑎𝑖⟩𝑘𝑖=1 = ⟨𝑎1, . . . , 𝑎𝑘⟩.

A sequence is said to be finite if it has limited number of terms and infinite if it does not.
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Convergent sequences are defined as follows.

Definition A.11: Convergent sequences. Let (A, 𝑑) be a nonempty metric space and let ⟨𝑎𝑖⟩𝑖≥1

be a sequence in A. We say that ⟨𝑎𝑖⟩𝑖≥1 converges to 𝑎̃ ∈ A if, for each 𝜖 ∈ R>0, there exists

an index 𝐾 ∈ N (that may depend on 𝜖) such that:

𝑑 (𝑎𝑘 , 𝑎̃) < 𝜖, ∀𝑘 ≥ 𝐾.

In this case, we say that ⟨𝑎𝑖⟩𝑖≥1 is convergent in A. 𝑎̃ is said to be the limit of ⟨𝑎𝑖⟩𝑖≥1 and it is

denoted as:

lim
𝑖→∞

𝑎𝑖 = 𝑎̃.

If ⟨𝑎𝑖⟩𝑖≥1 is not convergent in A, then it is said to be divergent in A.

Remark A.5. Any sequence in a metric space can converge to at most one limit.

A.2.3 Compactness and denseness of metric spaces

In this Appendix, we introduce some key properties for metric spaces, which are quite relevant

from an optimization perspective. We begin by defining an important metric subspace, namely the

neighborhood of a point in a metric space.

Definition A.12: 𝜖-neighborhood and neighborhood of a point. Let (A, 𝑑) be a metric space.

For any 𝑎 ∈ A and 𝜖 ∈ R>0, we define the 𝜖-neighborhood of 𝑎 as the set:

NA (𝑎; 𝜖) = {𝑏 : 𝑏 ∈ A, 𝑑 (𝑎, 𝑏) < 𝜖} . (A.9)

In turn, a neighborhood of 𝑎 in A, denoted as NA (𝑎), is any subset of A that contains at least

one 𝜖-neighborhood of 𝑎 ∈ A.

Remark A.6. The 𝜖-neighborhood of a point 𝑎 in a metric space A is never empty, it contains at least

𝑎.

Notation and conventions. Usually, when it is clear from the context, the dependency on the metric

space A is omitted and an 𝜖-neighborhood of 𝑎 is simply denoted as N (𝑎; 𝜖). Similarly for a

neighborhood of 𝑎.

𝜖-neighborhoods are used to define open and closed sets as follows.
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Definition A.13: Open and closed subsets of a metric space. Let A be a metric space. A subset

B of A is said to be open in A (or an open subset of A) if, for each 𝑏 ∈ B, there exists an

𝜖 ∈ R>0 such that NA (𝑏; 𝜖) ⊆ B.

A subset B of A is said to be closed in A (or a closed subset of A) if A \ B is open in A.

There also exist sets that are both open and closed, which are called clopen.

Alternatively, closed sets can be characterized using sequences.

Proposition A.1. A subset B of a metric space A is closed if and only if every sequence in B

that is convergent in A converges to a point in B.

The most commonly used neighborhoods forR𝑛 are open balls, as described in the following Example.

Example A.5: Open and closed balls

Consider the 𝑛-dimensional Euclidean space R𝑛. We define the open ball of radius 𝜖 ∈ R>0

around 𝒙̃ ∈ R𝑛 as:

B (𝒙̃; 𝜖) = {𝒙 : ∥𝒙 − 𝒙̃∥2 < 𝜖} . (A.10)

As the name suggest, an open ball is an open subset of R𝑛. Conversely, the closed ball is defined

as:

B̄ (𝒙̃; 𝜖) = {𝒙 : ∥𝒙 − 𝒙̃∥2 ≤ 𝜖} . (A.11)

In this case, B̄ (𝒙̃, 𝜖) is a closed subset of R𝑛.

Some important open and closed sets are the following.

Definition A.14: Interior, closure and boundary. Let A be a metric space and B ⊆ A. Then:

• The largest open set in A that is contained in B is called the interior of B (relative to A)

and is denoted by intA (B);

• The smallest closed set in A that contains B is called the closure of B (relative to A)

and is denoted by clA (B);

• The boundary of B (relative to A), denoted by bdA (B), is defined as:

bdA (B) = clA (B) \ intA (B) .

In Appendix A.1, Definition A.5, we have already seen the notion of boundedness for partially ordered

sets, which depends on the preorder ≿. In metric spaces, we can also define what it means for a metric
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subspace to be bounded, this time relying on the distance 𝑑 (·, ·) instead of the relation ≿.

Definition A.15: Bounded subsets of a metric space. A subset B of a metric space A is called

(metrically) bounded (in A) if there exists an 𝜖 ∈ R>0 such that B ⊆ NA (𝑏; 𝜖) for some 𝑏 ∈ B.

If B is not bounded, then it is said to be unbounded.

Remark A.7 (Boundedness in metric spaces and in order theory). In general, the concepts of order-

boundedness (i.e. for partially ordered sets) and metric-boundedness (i.e. for metric spaces) are not

necessarily linked.

A particular case is the setR, which can be seen either as a loset (R, ≥) or as a metric space (R, 𝑑2 (·, ·)).

The following Proposition holds.

Proposition A.2: Order-boundedness and metric-boundedness in R. A subset A of R is

bounded with respect to the metric 𝑑2 (·, ·) in (A.4) if and only if it is order-bounded with re-

spect to the preorder ≥. Therefore, the meanings of order-boundedness and metric-boundedness

coincide, at least for subsets of R.

Next, we cover the concept of denseness of a subset of a metric space. Dense sets are particularly

relevant for global optimization: a necessary condition for the global convergence of any optimization

algorithm A is that, ultimately, A must produce a sequence of iterates that is dense with respect to the

constraint set of the optimization problem.

Definition A.16: Dense subsets of a metric space. Let (A, 𝑑) be a metric space and B ⊆ A.

If clA (B) = A, then B is said to be dense in A (or a dense subset of A). Equivalently, B is

dense in A if, for every 𝑎 ∈ A and every 𝜖 ∈ R>0, there exists a 𝑏 ∈ B such that:

𝑑 (𝑎, 𝑏) < 𝜖.

The denseness of a subset of a metric space can also be assessed through sequences, as pointed out by

the following Lemma.

Lemma A.1. A subset B of a metric space A, B ⊆ A, is dense if and only if for any 𝑎 ∈ A

there exists a sequence in B, ⟨𝑏𝑖⟩𝑖≥1, such that:

lim
𝑖→∞

𝑏𝑖 = 𝑎.

Now, we introduce the concept of compactness of a subset of a metric space. Compact sets also play a

key role in optimization. In particular, as we will see later in this Appendix, any continuous function
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𝑓 : R𝑛 → R assumes a minimum and a maximum value over any compact subset of R𝑛. In some

sense, compactness provides a finite structure for infinite sets. In general, compact subsets of metric

spaces rely on the notion of open cover.

Definition A.17: Open cover of a subset of a metric space. LetA be a metric space andB ⊆ A.

A class O of subsets of A, i.e.

O =

{
O (1) ,O (2) , . . .

}
, O (𝑖) ⊆ A,∀O (𝑖) ∈ O,

is said to cover B if:

B ⊆
⋃

O (𝑖)∈O
O (𝑖) .

If all the members of O are open in A, then we say that O is an open cover of B.

Then, compact subsets of a metric space can be defined as follows.

Definition A.18: Compact subsets of a metric space. A metric space A is said to be compact

if every open cover of A has a finite subset that also covers A. A subset B of A is said to be

compact in A (or a compact subset of A) if every open cover of B has a finite subset that also

covers A.

Remark A.8. Note that:

• If C is a compact subset of a metric space B and B is a metric subspace of A, then C is compact

in A,

• A finite subset of any metric space is compact.

Compactness of a metric space can also be assessed using sequences.
Theorem A.1: Sequential compactness in metric spaces

A subset B of a metric space A is compact if and only if every sequence in B has a subsequence

that converges to a point in B.

The next Propositions link the notions of closedness (Definition A.13) and (metric) boundedness

(Definition A.15) of a subset of a metric space to its compactness.

Proposition A.3. Any closed subset of a compact metric space is compact.

Proposition A.4. Any compact subset of a metric space is closed and bounded.
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It is important to note that not all closed and bounded subsets of a metric space are compact. In general,

compactness is a stronger property than closedness and boundedness put together. An exception is the

𝑛-dimensional Euclidean space, for which the following Theorem holds.

Theorem A.2: Compactness of any subset of R𝑛

Given any 𝑛 ∈ N, a subset of R𝑛 is compact if and only if it is closed and bounded. This holds

for the metric space
(
R𝑛, 𝑑𝑝

)
and any 1 ≤ 𝑝 ≤ ∞.

Any 𝑛-dimensional cube (or hypercube) is compact in R𝑛, as claimed by the following Theorem.

Theorem A.3: Heine-Borel Theorem

For any 𝑢, 𝑙 ∈ R, 𝑙 ≤ 𝑢, the 𝑛-dimensional cube A = [𝑙, 𝑢]𝑛 is compact in R𝑛.

By combining Theorem A.3 and Proposition A.3, we obtain the following Lemma.

Lemma A.2: Compactness of a box. Any subset A of R𝑛 that is defined as a box, i.e.

A = {𝒙 : 𝒍 ≤ 𝒙 ≤ 𝒖} ,

where 𝒍, 𝒖 ∈ R𝑛, 𝑙 (𝑖) ≤ 𝑢(𝑖) ,∀𝑖 = 1, . . . , 𝑛, or, alternatively,

A =

[
𝑙 (1) , 𝑢(1)

]
× . . . ×

[
𝑙 (𝑛) , 𝑢(𝑛)

]
,

is a compact subset of R𝑛.

The previous Lemma is particularly relevant for this book since the feasible regions of most black-box

and preference-based optimization problems are boxes.

Lastly, the following Proposition gives us some insights on which set operations preserve compactness.

Proposition A.5: Set operations that preserve compactness. Let A be a metric space and B

and C be two compact subsets of A. Then, the sets B ∩ C and B ∪ C are also compact.

A.2.4 Continuity theory for metric spaces

In Appendix A.1, we have introduced functions as a particular case of binary relations. Here,

we analyze the continuity property for those functions whose domains and codomains are metric

spaces. Conceptually, if a function is continuous, then small perturbations on the inputs produce small

perturbations on the outputs. More formally:
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Definition A.19: Continuity of a function. Let (A, 𝑑A) and (B, 𝑑B) be two metric spaces. We

say that a function 𝑓 : A → B is continuous at 𝑎1 ∈ A if, for any 𝜖 ∈ R>0, there exists a

𝛿 ∈ R>0 (which may depend on both 𝜖 and 𝑎1) such that

𝑑A (𝑎1, 𝑎2) < 𝛿 ⇒ 𝑑B ( 𝑓 (𝑎1) , 𝑓 (𝑎2)) < 𝜖

for each 𝑎2 ∈ A, that is:

𝑑B ( 𝑓 (𝑎1) , 𝑓 (𝑎2)) < 𝜖, ∀𝑎2 ∈ NA (𝑎1; 𝛿) .

If 𝑓 (·) is not continuous at 𝑎1, then it is said to be discontinuous at 𝑎1.

𝑓 (·) is said to be continuous (or continuous everywhere) if it is continuous at each 𝑎1 ∈ A.

Remark A.9. The continuity of a function that maps a metric space to another depends intrinsically

on the involved metrics. In particular, it depends on the distance functions 𝑑A (·, ·) and 𝑑B (·, ·) used

to metrize A (domain) and B (codomain) respectively.

The previous notion of continuity is, inherently, a local one. In practice, if 𝑓 : A → B is continuous,

we have that, for any 𝑎 ∈ A, the images of the points “nearby” 𝑎 under 𝑓 (·) are “close” to 𝑓 (𝑎), but

we do not know if the word “nearby” depends on 𝑎 or not. A more global property is the following:

Definition A.20: Uniform continuity of a function. Let (A, 𝑑A) and (B, 𝑑B) be two metric

spaces. We say that a function 𝑓 : A → B is uniformly continuous if, for all 𝜖 ∈ R>0, there

exists a 𝛿 ∈ R>0 (which may depend on 𝜖) such thata:

𝑓 [NA (𝑎; 𝛿)] ⊆ NB ( 𝑓 (𝑎) ; 𝜖) , ∀𝑎 ∈ A.

aRecall the notation in (A.2).

Intuitively speaking, if a function is uniformly continuous, then given any 𝜖 ∈ R>0, it is possible to

find a 𝛿 ∈ R>0 such that, for any point 𝑎 ∈ A, the images of points at most 𝛿-away from 𝑎 under 𝑓 (·)

are at most 𝜖-away from 𝑓 (𝑎). Therefore, uniform continuity says something about the behavior of

𝑓 (·) on its entire domain. It is easy to see that any uniformly continuous function is continuous, but

the opposite does not necessarily hold.

Some other kinds of continuity that demand more regularity from a function are defined as follows.

Definition A.21: Other kinds of continuity. Let (A, 𝑑A) and (B, 𝑑B) be two metric spaces. A

function 𝑓 : A → B is said to be:
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• 𝛼-Hölder continuous, where 𝛼 ∈ R>0 is called the exponent of the Hölder condition, if

there exists a constant 𝐶 ∈ R>0 such that:

𝑑B ( 𝑓 (𝑎1) , 𝑓 (𝑎2)) ≤ 𝐶 · 𝑑A (𝑎1, 𝑎2)𝛼 , ∀𝑎1, 𝑎2 ∈ A.

Furthermore, a function is said to be Hölder continuous if it is 𝛼-Hölder continuous for

some 𝛼 ∈ R>0.

• Lipschitz continuous if it is 1-Hölder continuous, i.e.:

𝑑B ( 𝑓 (𝑎1) , 𝑓 (𝑎2)) ≤ 𝐶 · 𝑑A (𝑎1, 𝑎2) , ∀𝑎1, 𝑎2 ∈ A.

The smallest 𝐶 for which the above inequality holds is called the Lipschitz constant of

𝑓 (·).

• A contraction if there exists a 𝐶 ∈ (0, 1) such that:

𝑑B ( 𝑓 (𝑎1) , 𝑓 (𝑎2)) ≤ 𝐶 · 𝑑A (𝑎1, 𝑎2) , ∀𝑎1, 𝑎2 ∈ A.

• Nonexpansive if:

𝑑B ( 𝑓 (𝑎1) , 𝑓 (𝑎2)) ≤ 𝑑A (𝑎1, 𝑎2) , ∀𝑎1, 𝑎2 ∈ A.

As previously pointed out, continuous functions and compact metric spaces play a key role in op-

timization. First of all, the ranges of continuous functions defined over compact domains are also

compact, as claimed by the next Proposition.

Proposition A.6. Let A and B be two metric spaces, and 𝑓 : A → B be a continuous function.

Moreover, let C be a compact subset of A. Then, 𝑓 [C] is a compact subset of B.

Now, we can state the Extreme Value Theorem, which gives us sufficient conditions that ensure

the existence of a solution for any optimization problem. In particular, here we report its general

formulation.
Theorem A.4: Extreme Value Theorem

Let A be a compact metric space and 𝑓 : A → R be a continuous function. Then, there exist

𝑎1, 𝑎2 ∈ A such that 𝑓 (𝑎1) = sup 𝑓 [A] and 𝑓 (𝑎2) = inf 𝑓 [A].

Theorem A.4 says that any continuous function whose codomain is the real field R admits a maximum

and a minimum over any compact subset of a metric space. To see this, note that, from Proposition
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A.6, 𝑓 [A] is a compact subset of R. Therefore, using Proposition A.4, we can deduce that 𝑓 [A]

is also closed and bounded. Recall that metric-boundedness and order-boundedness coincide for

subspaces of R (see Proposition A.2), therefore 𝑓 [A] is order bounded. Finally, due to Remark A.2,

we can conclude that 𝑓 [A] contains a maximum and minimum, and these are respectively equal to

the supremum sup 𝑓 [A] and infimum inf 𝑓 [A].

In practice, continuity is only a sufficient condition for a function 𝑓 : A → R to assume its maximum

(or minimum) over a compact set. A less restrictive form of continuity is the following.

Definition A.22: Semi-continuity of a function. Let (A, 𝑑A) be any metric space and 𝑓 : A →

R. We say that 𝑓 (·) is upper semi-continuous at 𝑎1 ∈ A if, for any 𝜖 ∈ R>0, there exists a

𝛿 ∈ R>0 (which may depend on both 𝜖 and 𝑎1) such that:

𝑑A (𝑎1, 𝑎2) < 𝛿 ⇒ 𝑓 (𝑎2) ≤ 𝑓 (𝑎1) + 𝜖

for each 𝑎2 ∈ A. Similarly, if, for any 𝜖 ∈ R>0, there exists a 𝛿 ∈ R>0 such that:

𝑑A (𝑎1, 𝑎2) < 𝛿 ⇒ 𝑓 (𝑎2) ≥ 𝑓 (𝑎1) − 𝜖,

then 𝑓 (·) is said to be lower semi-continuous at 𝑎1.

The function 𝑓 (·) is said to be upper (lower) semi-continuous if it is upper (lower) semi-

continuous at each 𝑎1 ∈ A.

Intuitively speaking, if 𝑓 (·) is upper semi-continuous at 𝑎1, then the images of the points “nearby” 𝑎1

under 𝑓 (·) do not exceed 𝑓 (𝑎1) by “too much”, while there is no restriction about how “far” these

images can fall below 𝑓 (𝑎1). Vice-versa, if 𝑓 (·) is lower semi-continuous. The next Remark links

Definition A.19 with Definition A.22.

Remark A.10. Consider a metric space A and a function 𝑓 : A → R. Then, 𝑓 (·) is continuous if

and only if it is both upper and lower semi-continuous.

Having defined the semi-continuity of a function, we can generalize the Extreme Value Theorem A.4

as follows.

Theorem A.5: Baire’s Theorem on semi-continuous functions

Let A be a compact metric space and 𝑓 : A → R. We have that:

• If 𝑓 (·) is upper semi-continuous, then there exists an 𝑎 ∈ A with 𝑓 (𝑎) = sup 𝑓 [A],

• If 𝑓 (·) is lower semi-continuous, then there exists an 𝑎 ∈ A with 𝑓 (𝑎) = inf 𝑓 [A].
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In other words, an upper semi-continuous function always admits a maximum (but not necessarily a

minimum) over a compact set. Vice-versa, if 𝑓 (·) is lower semi-continuous.

Lastly, we conclude our dissertation on continuous functions by stating Tietze Extension Theorem,

which is needed for the definition of the preference-based optimization problem.

Theorem A.6: Tietze Extension Theorem

Let A be a metric space, B be a closed subset of A and

𝑓 : B → R

be a continuous function. Then, there exists a continuous extension of 𝑓 (·) to A, i.e. there

exists a function

𝑓 : A → R

that is continuous on A with 𝑓 (𝑏) = 𝑓 (𝑏) ,∀𝑏 ∈ B.

A.3 Differentiability of multivariable functions

This book is devoted to solving optimization problems whose objective and constraints functions are

multivariable functions, such as 𝑓 : R𝑛 → R. For this reason, we devote this Appendix to review

some important concepts related to multivariable functions defined over the 𝑛-dimensional Euclidean

space. In practice, R𝑛 is a metric space with distance 𝑑2 (𝒙1, 𝒙2) = ∥𝒙1 − 𝒙2∥2. Therefore, in what

follows, we will (implicitly) use many of the notions seen in Appendix A.2.

We start by reviewing the concept of continuity of a function (Definition A.19) under a different light,

using the notion of limit. The limit of a multivariable function can be defined analogously to the limit

of a sequence (in Appendix A.2.2, Definition A.11).

Definition A.23: Limit of a multivariable function and continuity. Let 𝑓 : A → R,A ⊆ R𝑛,

be a multivariable function and ⟨𝒙𝑖⟩𝑖≥1 be a sequence in A. 𝑓 (𝒙) is said to be continuous at

𝒙̃ ∈ A if, whenever ⟨𝒙𝑖⟩𝑖≥1 converges to 𝒙̃, the sequence ⟨ 𝑓 (𝒙𝑖)⟩𝑖≥1 converges to 𝑓 = 𝑓 (𝒙̃) ∈ R.

In that case, we say that 𝑓 is the limit of 𝑓 (𝒙) as 𝒙 → 𝒙̃ and denote it as:

lim
𝒙→𝒙̃

𝑓 (𝒙) = lim
𝑖→∞

𝑓 (𝒙𝑖)

= 𝑓

(
lim
𝑖→∞

𝒙𝑖
)

= 𝑓 .
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The function 𝑓 (·) is said to be continuous (or continuous everywhere) if it is continuous at each

𝒙̃ ∈ A.

Limits also play a key role in defining the derivatives of a function. Suppose 𝑓 : A → R,A ⊆ R𝑛,

then we can compute its partial derivatives at each point in the interior of A (see Definition A.14).

Definition A.24: Partial derivatives at a point. Let 𝑓 : A → R,A ⊆ R𝑛, be a multivariable

function, 𝒙̃ be an interior point of A, i.e. 𝒙̃ ∈ intA (A), and 𝒆 𝑗 be the 𝑗-th column of the

𝑛-dimensional identity matrix. If the limit

lim
𝑡→0

𝑓
(
𝒙̃ + 𝑡 · 𝒆 𝑗

)
− 𝑓 (𝒙̃)

𝑡
(A.12)

exists, then it is called the partial derivative of 𝑓 (𝒙) with respect to 𝑥 ( 𝑗) at 𝒙̃. We denote it as:

𝜕

𝜕𝑥 ( 𝑗)
𝑓 (𝒙̃) .

In the previous Definition, 𝒙̃ ∈ intA (A) to ensure that 𝒙̃ + 𝑡 · 𝒆 𝑗 in (A.12) lies inside A for 𝑡 → 0+

and 𝑡 → 0−, otherwise 𝑓
(
𝒙̃ + 𝑡 · 𝒆 𝑗

)
is not even defined.

If A is an open set (i.e. intA (A) = A) and all the partial derivates of 𝑓 (𝒙) exist at each 𝒙̃ ∈ A, then
𝜕

𝜕𝑥 ( 𝑗 )
𝑓 (·) , 𝑗 = 1, . . . , 𝑛, can be seen as multivariable functions in their own right:

𝜕

𝜕𝑥 ( 𝑗)
𝑓 : A → R.

To define the concept of differentiability for multivariable functions, we first need to introduce the

notion of linearization of a multivariable function. Consider a function 𝑓 : A → R,A ⊆ R𝑛; we

define a linear approximation (or first-order approximation) of 𝑓 (𝒙) near 𝒙̃ ∈ A as:

𝐿′ (𝒙) = 𝑓 (𝒙̃) + 𝒅 𝑓 (𝒙̃)⊤ · (𝒙 − 𝒙̃) , (A.13)

where 𝒅 𝑓 (𝒙̃) ∈ R𝑛 is an arbitrary vector which may depend on 𝒙̃.

Definition A.25: Differentiability of a multivariable function. A multivariable function 𝑓 :

A → R on an open set A ⊆ R𝑛 is said to be differentiable at 𝒙̃ ∈ A if there exists a linear

approximation 𝐿′ (𝒙) in (A.13) for which

lim
𝒙→𝒙̃

| 𝑓 (𝒙) − 𝐿′ (𝒙) |
∥𝒙 − 𝒙̃∥2

= 0 (A.14)

holds.

If 𝑓 (·) is differentiable at each 𝒙̃ ∈ A, then 𝑓 (·) is said to be differentiable (or differentiable

everywhere).
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Remark A.11. A linear approximation 𝐿′ (𝒙) in (A.13) of a multivariable function 𝑓 (𝒙) near a point

𝒙̃ that satisfies (A.14) is unique, if it exists.

When (A.14) holds, we refer to 𝒅 𝑓 (𝒙̃) in (A.13) as the gradient (or first derivative) of 𝑓 (·) at 𝒙̃,

denoted as ∇𝒙 𝑓 (𝒙̃) and defined as follows:

∇𝒙 𝑓 (𝒙̃) =


𝜕

𝜕𝑥 (1)
𝑓 (𝒙̃)
...

𝜕

𝜕𝑥 (𝑛)
𝑓 (𝒙̃)


. (A.15)

In the multivariable case, the relationship between continuity, differentiability and existence of partial

derivatives is more subtle than in the single variable case.

Proposition A.7. If 𝑓 : A → R,A ⊆ R𝑛, is differentiable at 𝒙̃ ∈ A, then it is continuous at 𝒙̃

and its partial derivatives exist at such point.

Next, we present some important remarks that connect the existence of the partial derivatives of 𝑓 (𝒙)

to its differentiability.

Remark A.12. Consider a function 𝑓 : A → R,A ⊆ R𝑛. We remark that:

• The existence of the partial derivatives 𝜕

𝜕𝑥 ( 𝑗 )
𝑓 (𝒙) , 𝑗 = 1, . . . , 𝑛, at a point 𝒙̃ ∈ A does not

generally imply the continuity of 𝑓 (𝒙) at that point,

• Necessary conditions for the differentiability of 𝑓 (𝒙) at a point 𝒙̃ ∈ A are: (i) existence of its

partial derivatives 𝜕

𝜕𝑥 ( 𝑗 )
𝑓 (𝒙) , 𝑗 = 1, . . . , 𝑛, at such point and (ii) continuity of 𝑓 (𝒙) at 𝒙̃.

The following Theorem establishes sufficient conditions for the differentiability of a multivariable

function.
Theorem A.7: Sufficient conditions for differentiability of a multivariable function

A multivariable function 𝑓 : A → R on an open set A ⊆ R𝑛 is differentiable if its partial

derivatives exist and are continuous functions.

The next Remark shows a useful tool to deal with the differentiation of composite functions.

Remark A.13 (Chain rule). Let 𝑔 : A → B,A ⊆ R𝑛,B ⊆ R, be a multivariable function that is

differentiable at a point 𝒙̃ ∈ A and let ℎ : B → R be a single variable function that is differentiable

at 𝑡 = 𝑔 (𝒙̃). Consider the composite function 𝑓 : A → R, 𝑓 (𝒙) = ℎ (𝑔 (𝒙)); we can use the chain

rule to compute the gradient of 𝑓 (𝒙) at 𝒙̃ as follows:

∇𝒙 𝑓 (𝒙̃) =
𝑑

𝑑𝑡
ℎ (𝑡)

�����
𝑡=𝑔(𝒙̃)

· ∇𝒙𝑔 (𝒙̃) .
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The second derivative of a multivariable function 𝑓 : A → R on an open set A ⊆ R𝑛 can be defined

analogously to the gradient. This time, we consider the second-order approximation of 𝑓 (𝒙) near

𝒙̃ ∈ A:

𝐿′′ (𝒙) = 𝑓 (𝒙̃) + 𝒅 𝑓 (𝒙̃)⊤ · (𝒙 − 𝒙̃) + 1
2
· (𝒙 − 𝒙̃)⊤ · 𝐷 𝑓 (𝒙̃) · (𝒙 − 𝒙̃) , (A.16)

where 𝐷 𝑓 (𝒙̃) ∈ R𝑛×𝑛 is an arbitrary matrix which may depend on 𝒙̃ and 𝒅 𝑓 (𝒙̃). Then, 𝑓 (𝒙) is twice

differentiable at 𝒙̃ if there exists a second-order approximation that satisfies:

lim
𝒙→𝒙̃

| 𝑓 (𝒙) − 𝐿′′ (𝒙) |
∥𝒙 − 𝒙̃∥2

2
= 0. (A.17)

When there exists an 𝐿′′ (𝒙) in (A.16) for which (A.17) holds, we refer to 𝒅 𝑓 (𝒙̃) as the gradient (or

first derivative) of 𝑓 (·) at 𝒙̃ (defined as in (A.15)), while 𝐷 𝑓 (𝒙̃) is the Hessian (or second derivative)

of 𝑓 (·) at 𝒙̃. In particular, the Hessian of 𝑓 (·) at 𝒙̃ is defined as follows:

∇2
𝒙𝒙 𝑓 (𝒙̃) =



𝜕2

𝜕(𝑥 (1))2 𝑓 (𝒙̃) 𝜕2

𝜕𝑥 (1)𝜕𝑥 (2)
𝑓 (𝒙̃) · · · 𝜕2

𝜕𝑥 (1)𝜕𝑥 (𝑛)
𝑓 (𝒙̃)

𝜕2

𝜕𝑥 (2)𝜕𝑥 (1)
𝑓 (𝒙̃) 𝜕2

𝜕(𝑥 (2))2 𝑓 (𝒙̃) · · · 𝜕2

𝜕𝑥 (2)𝜕𝑥 (𝑛)
𝑓 (𝒙̃)

...
...

. . .
...

𝜕2

𝜕𝑥 (𝑛)𝜕𝑥 (1)
𝑓 (𝒙̃) 𝜕2

𝜕𝑥 (𝑛)𝜕𝑥 (2)
𝑓 (𝒙̃) · · · 𝜕2

𝜕(𝑥 (𝑛))2 𝑓 (𝒙̃)


, (A.18)

where 𝜕2

𝜕𝑥 (𝑖)𝜕𝑥 ( 𝑗 )
𝑓 (𝒙̃) is the partial derivative of 𝜕

𝜕𝑥 (𝑖)
𝑓 (𝒙) with respect to 𝑥 ( 𝑗) at the point 𝒙̃ (second-

order partial derivative). If 𝑓 (·) is twice differentiable at each 𝒙̃ ∈ A, then 𝑓 (·) is said to be twice

differentiable.

Lastly, the next Definition generalizes the concepts seen in this Appendix to higher-order derivatives.

Definition A.26: Differentiability classes. Let 𝑘 ∈ N∪{0} and let 𝑓 : A → R be a multivariable

function on an open set A ⊆ R𝑛. 𝑓 (·) is said to be of differentiability class C𝑘 (A) if all its

partial derivatives
𝜕𝑘

𝜕
(
𝑥 (1)

) 𝑘1 𝜕
(
𝑥 (2)

) 𝑘2 · · · 𝜕
(
𝑥 (𝑛)

) 𝑘𝑛 𝑓 (𝒙̃)
exist and are continuous for every 𝑘1, . . . , 𝑘𝑛 ∈ N ∪ {0} such that 𝑘1 + . . . + 𝑘𝑛 ≤ 𝑘 , and for

each 𝒙̃ ∈ A. We denote it as 𝑓 (𝒙) ∈ C𝑘 (A).

Notably:

• C0 (A) is the class of all continuous functions;

• C1 (A) is the class of all continuously differentiable functions;

• C∞ (A) is the class of all infinitely differentiable functions (also called smooth functions

or infinitely smooth functions).
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A.4 Optimization concepts

This Appendix is devoted to reviewing some basic optimization concepts. Without loss of generality,

we only consider the minimization of some cost function (possibly) over some constraint set. The

unconstrained and constrained optimization problems are introduced; their minimizers/solutions are

identified. We report first-order and second-order necessary and sufficient conditions that characterize

both the local minimizers of unconstrained optimization problems and the local solutions of constrained

optimization problems. We also give some remarks on convexity.

Assumption A.1 (Assumptions on the cost function and constraints functions). In what follows, we

assume that the multivariable functions 𝑓 : R𝑛 → R and 𝑔(𝑖) : R𝑛 → R, 𝑖 = 1, . . . , 𝑞, 𝑞 ∈ N, are twice

differentiable.

A.4.1 Unconstrained optimization

The unconstrained optimization problem is defined as follows:

arg min
𝒙
𝑓 (𝒙) (A.19)

s.t. 𝒙 ∈ R𝑛,

where 𝒙 ∈ R𝑛 is the decision vector and 𝑓 : R𝑛 → R is the cost function.

A point 𝒙+ ∈ R𝑛 is said to be:

• A global minimizer of 𝑓 (𝒙) if 𝑓 (𝒙+) ≤ 𝑓 (𝒙) ,∀𝒙 ∈ R𝑛;

• A (weak) local minimizer of 𝑓 (𝒙) if there exists a neighborhood of 𝒙+, N (𝒙+), such that

𝑓 (𝒙+) ≤ 𝑓 (𝒙) ,∀𝒙 ∈ N (𝒙+);

• A strict local minimizer of 𝑓 (𝒙) if there exists a neighborhood of 𝒙+, N (𝒙+), such that

𝑓 (𝒙+) < 𝑓 (𝒙) ,∀𝒙 ∈ N (𝒙+) with 𝒙 ≠ 𝒙+;

• An isolated local minimizer of 𝑓 (𝒙) if there exists a neighborhood of 𝒙+, N (𝒙+), such that 𝒙+

is the only local minimizer in N (𝒙+).

Clearly, any global minimizer of 𝑓 (𝒙) is also a local minimizer of 𝑓 (𝒙) but the opposite is not

necessarily true.

Now, we review first-order and second-order conditions that characterize the local minimizers of

Problem (A.19). First-order conditions make use of the gradient of the cost function, ∇𝒙 𝑓 (𝒙),

whereas second-order conditions also consider its Hessian ∇2
𝒙𝒙 𝑓 (𝒙).
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Theorem A.8: First-order necesssary conditions for optimality

If 𝒙+ is a local minimizer of 𝑓 (𝒙) and 𝑓 (𝒙) is continuously differentiable in an open neighbor-

hood of 𝒙+, then:

∇𝒙 𝑓
(
𝒙+

)
= 0𝑛.

Theorem A.9: Second-order necesssary conditions for optimality

If 𝒙+ is a local minimizer of 𝑓 (𝒙) and ∇2
𝒙𝒙 𝑓 (𝒙) is continuous in an open neighborhood of 𝒙+,

then:

1. ∇𝒙 𝑓 (𝒙+) = 0𝑛,

2. ∇2
𝒙𝒙 𝑓 (𝒙+) is positive semidefinite.

Theorem A.10: Second-order sufficient conditions for optimality

Suppose that:

1. ∇𝒙 𝑓 (𝒙+) = 0𝑛,

2. ∇2
𝒙𝒙 𝑓 (𝒙) is continuous in an open neighborhood of 𝒙+,

3. ∇2
𝒙𝒙 𝑓 (𝒙+) is positive definite.

Then, 𝒙+ is a strict local minimizer of 𝑓 (𝒙).

A.4.2 Constrained optimization

The constrained optimization problem is defined as follows:

arg min
𝒙
𝑓 (𝒙) (A.20)

s.t. 𝑔(𝑖) (𝒙) ≤ 0 𝑖 ∈ I𝑖𝑛𝑒𝑞

𝑔(𝑖) (𝒙) = 0 𝑖 ∈ I𝑒𝑞,

where 𝑔(𝑖) : R𝑛 → R is the 𝑖-th constraint function, 𝑖 ∈ I𝑖𝑛𝑒𝑞 ∪ I𝑒𝑞 = {1, . . . , 𝑞} , 𝑞 ∈ N. The

inequalities 𝑔(𝑖) (𝒙) ≤ 0 and the equalities 𝑔(𝑖) (𝒙) = 0 constitute the constraints of the optimization

problem, of which there are a total of 𝑞. The constraints can be grouped inside a set Ω, called the

constraint set, defined as:

Ω =

{
𝒙 : 𝑔(𝑖) (𝒙) ≤ 0,∀𝑖 ∈ I𝑖𝑛𝑒𝑞, 𝑔(𝑖) (𝒙) = 0,∀𝑖 ∈ I𝑒𝑞

}
. (A.21)

301



Davide Previtali

Then, Problem (A.20) can be re-written as:

arg min
𝒙
𝑓 (𝒙) (A.22)

s.t. 𝒙 ∈ Ω.

A point 𝒙 ∈ R𝑛 is said to be feasible if 𝒙 ∈ Ω, otherwise it is infeasible. For this reason, Ω is also

referred to as the feasible set (or feasible region) of the optimization problem.

The distinction between the types of solutions of Problem (A.22) is analogous to the different types

of minimizers for the unconstrained optimization case, reported in Appendix A.4.1. Formally, a point

𝒙+ ∈ R𝑛 is said to be:

• A global solution of Problem (A.22) if 𝑓 (𝒙+) ≤ 𝑓 (𝒙) ,∀𝒙 ∈ Ω;

• A (weak) local solution of Problem (A.22) if 𝒙+ ∈ Ω and there exists a neighborhood of 𝒙+,

N (𝒙+), such that 𝑓 (𝒙+) ≤ 𝑓 (𝒙) ,∀𝒙 ∈ N (𝒙+) ∩Ω;

• A strict local solution of Problem (A.22) if 𝒙+ ∈ Ω and there exists a neighborhood of 𝒙+,

N (𝒙+), such that 𝑓 (𝒙+) < 𝑓 (𝒙) ,∀𝒙 ∈ N (𝒙+) ∩Ω with 𝒙 ≠ 𝒙+;

• An isolated local solution of Problem (A.22) if 𝒙+ ∈ Ω and there exists a neighborhood of 𝒙+,

N (𝒙+), such that 𝒙+ is the only local minimizer in N (𝒙+) ∩Ω.

Notation and conventions. Throughout this book, we will use the terms “minimizer” and “solution”

interchangeably. In particular, to be precise:

• A minimizer of 𝑓 (𝒙) is a solution of the unconstrained problem in (A.19),

• A minimizer of Problem (A.20) is a solution of the constrained optimization problem.

Furthermore, notation-wise, we will denote a global minimizer of an optimization problem as 𝒙∗ (or

𝒙∗
𝑖
) to distinguish it from a local optimizer 𝒙+.

In order to state necessary and sufficient conditions that characterize the local solutions of Problem

(A.20), we need to review several different concepts. First of all, we must distinguish between active

and inactive inequality constraints. Secondly, suitable “regularity” conditions on the constraints (often

referred to as constraint qualification conditions) are needed [50]. Lastly, we have to introduce the

Lagrangian function, which plays a key role in constrained optimization.

Definition A.27: Active set. At a feasible point 𝒙̃ ∈ Ω, the 𝑖-th inequality constraint, i.e.

𝑔(𝑖) (·) , 𝑖 ∈ I𝑖𝑛𝑒𝑞, is said to be:
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• Active if it holds with equality, i.e. 𝑔(𝑖) (𝒙̃) = 0,

• Inactive if the strict inequality 𝑔(𝑖) (𝒙̃) < 0 is satisfied.

The active set A (𝒙̃) ⊆ {1, . . . , 𝑞} at any feasible point 𝒙̃ ∈ Ω is defined as:

A (𝒙̃) = I𝑒𝑞 ∪
{
𝑖 : 𝑔(𝑖) (𝒙̃) = 0, 𝑖 ∈ I𝑖𝑛𝑒𝑞

}
. (A.23)

In practice, given a feasible point 𝒙̃ ∈ Ω, A (𝒙̃) contains the indices of those constraints which hold

with equality at 𝒙̃.

Definition A.28: LICQ. Given a feasible point 𝒙̃ ∈ Ω and the active set A (𝒙̃) in (A.23),

we say that the Linear Independence Constraint Qualification (LICQ) condition holds at 𝒙̃

if the gradients of the active constraints functions, namely ∇𝒙𝑔
(𝑖) (·) , 𝑖 ∈ A (𝒙̃), are linearly

independent at 𝒙̃.

Definition A.29: Lagrangian function. The Lagrangian function is defined as:

L (𝒙, 𝝀) = 𝑓 (𝒙) +
𝑞∑︁
𝑖=1

𝜆(𝑖) · 𝑔(𝑖) (𝒙) , (A.24)

where 𝝀 ∈ R𝑞 is the vector of Lagrange multipliers (one for each constraint).

We can finally state the widely known Karush-Kuhn-Tucker (KKT) conditions, which are the first-order

necessary conditions that characterize the local solutions of Problem (A.20).

Theorem A.11: First-order necessary conditions for optimality (KKT conditions)

Suppose that 𝒙+ is a local solution of Problem (A.20) and that the LICQ condition holds at 𝒙+.

Then, ∃𝝀+ ∈ R𝑞, 𝝀+ =

[
𝜆+

(1)
. . . 𝜆+

(𝑞)
]⊤
, such that:

∇𝒙L
(
𝒙+, 𝝀+

)
= 0𝑛 (A.25a)

𝑔(𝑖)
(
𝒙+

)
≤ 0 ∀𝑖 ∈ I𝑖𝑛𝑒𝑞 (A.25b)

𝑔(𝑖)
(
𝒙+

)
= 0 ∀𝑖 ∈ I𝑒𝑞 (A.25c)

𝜆+
(𝑖) ≥ 0 ∀𝑖 ∈ I𝑖𝑛𝑒𝑞 (A.25d)

𝜆+
(𝑖) · 𝑔(𝑖)

(
𝒙+

)
= 0 ∀𝑖 ∈ I𝑖𝑛𝑒𝑞 ∪ I𝑒𝑞 . (A.25e)

In particular, the condition in (A.25e) is referred to as complementary slackness condition.
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Remark A.14. From (A.25e), the Lagrange multipliers 𝜆+(𝑖) associated to the inactive constraints at

𝒙+, i.e. 𝑔(𝑖) (𝒙+) such that 𝑖 ∉ A (𝒙+), are zero. Then, the condition in (A.25a) becomes:

∇𝒙L
(
𝒙+, 𝝀+

)
= 0𝑛

∇𝒙 𝑓
(
𝒙+

)
+

𝑞∑︁
𝑖=1

𝜆+
(𝑖) · ∇𝒙𝑔

(𝑖) (
𝒙+

)
= 0𝑛

∇𝒙 𝑓
(
𝒙+

)
+

∑︁
𝑖∈A(𝒙+)

𝜆+
(𝑖) · ∇𝒙𝑔

(𝑖) (
𝒙+

)
= 0𝑛.

Thus, at a local solution 𝒙+ ∈ Ω of Problem (A.20) at which the LICQ condition holds, we have:

∇𝒙 𝑓
(
𝒙+

)
= −

∑︁
𝑖∈A(𝒙+)

𝜆+
(𝑖) · ∇𝒙𝑔

(𝑖) (𝒙+) . (A.26)

Remark A.15. When the LICQ condition holds at 𝒙+, 𝝀+ is unique.

Before stating the second-order conditions, further notions are required. First of all, we must define

the tangent cone to the feasible set at a point.

Definition A.30: Tangent cone to the feasible set at a point. Consider a point 𝒙̃ ∈ R𝑛 at which

the LICQ condition holds and with corresponding active set A (𝒙̃). The tangent cone to the

feasible set Ω in (A.21) at 𝒙̃ is defined as:

F1 (𝒙̃) =
{
𝛼 · 𝒅 : 𝛼 ∈ R>0, 𝒅 ∈ R𝑛, (A.27)

𝒅⊤ · ∇𝒙𝑔
(𝑖) (𝒙̃) = 0,∀𝑖 ∈ I𝑒𝑞,

𝒅⊤ · ∇𝒙𝑔
(𝑖) (𝒙̃) ≤ 0,∀𝑖 ∈ A (𝒙̃) ∩ I𝑖𝑛𝑒𝑞

}
.

In practice, F1 (𝒙̃) in (A.27) is a set which contains all feasible directions of Ω at 𝒙̃.

Let 𝒙+, 𝝀+ satisfy the KKT conditions in (A.25) and 𝒅 ∈ F1 (𝒙+). We multiply both sides of (A.26)

by 𝒅⊤, obtaining:

𝒅⊤ · ∇𝒙 𝑓
(
𝒙+

)
= −

∑︁
𝑖∈A(𝒙+)

𝜆+
(𝑖) · 𝒅⊤ · ∇𝒙𝑔

(𝑖) (𝒙+)
= −

∑︁
𝑖∈I𝑒𝑞

𝜆+
(𝑖) · 𝒅⊤ · ∇𝒙𝑔

(𝑖) (𝒙+)︸              ︷︷              ︸
=0

−
∑︁

𝑖∈A(𝒙+)∩I𝑖𝑛𝑒𝑞

𝜆+
(𝑖)︸︷︷︸

≥0

· 𝒅⊤ · ∇𝒙𝑔
(𝑖) (𝒙+)︸              ︷︷              ︸

≤0

= −
∑︁

𝑖∈A(𝒙+)∩I𝑖𝑛𝑒𝑞

𝜆+
(𝑖)︸︷︷︸

≥0

· 𝒅⊤ · ∇𝒙𝑔
(𝑖) (𝒙+)︸              ︷︷              ︸

≤0

≥ 0.

Therefore, two situations can arise: either 𝒅⊤ · ∇𝒙 𝑓 (𝒙+) > 0 or 𝒅⊤ · ∇𝒙 𝑓 (𝒙+) = 0. In the former case,

there is no move along 𝒅 that will decrease 𝑓 (𝒙). Instead, in the latter case, we cannot determine
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whether a move along 𝒅 will increase or decrease 𝑓 (𝒙) using only first derivative information. We

group all the directions for which 𝒅⊤ · ∇𝒙 𝑓 (𝒙+) = 0 holds inside the critical cone.

Definition A.31: Critical cone. Let 𝒙+, 𝝀+ satisfy the KKT conditions in (A.25). The critical

cone F2 (𝒙+, 𝝀+) is defined as:

F2
(
𝒙+, 𝝀+

)
=

{
𝒅 : 𝒅 ∈ F1

(
𝒙+

)
, 𝒅⊤ · ∇𝒙𝑔

(𝑖) (
𝒙+

)
= 0,

∀𝑖 ∈ A
(
𝒙+

)
∩ I𝑖𝑛𝑒𝑞 with 𝜆+

(𝑖)
> 0

}
,

or equivalently:

F2
(
𝒙+, 𝝀+

)
=

{
𝛼 · 𝒅 : 𝛼 ∈ R>0, 𝒅 ∈ R𝑛, (A.28)

𝒅⊤ · ∇𝒙𝑔
(𝑖) (

𝒙+
)
= 0,∀𝑖 ∈ I𝑒𝑞,

𝒅⊤ · ∇𝒙𝑔
(𝑖) (

𝒙+
)
= 0,∀𝑖 ∈ A

(
𝒙+

)
∩ I𝑖𝑛𝑒𝑞 with 𝜆+

(𝑖)
> 0,

𝒅⊤ · ∇𝒙𝑔
(𝑖) (

𝒙+
)
≤ 0,∀𝑖 ∈ A

(
𝒙+

)
∩ I𝑖𝑛𝑒𝑞 with 𝜆+

(𝑖)
= 0

}
.

Having defined the critical cone, we can finally state the second-order necessary and sufficient condi-

tions which characterize the local solutions of Problem (A.20).
Theorem A.12: Second-order necessary conditions for optimality

Suppose that 𝒙+ is a local solution of Problem (A.20) and let the LICQ condition hold at 𝒙+.

Moreover, let 𝝀+ be the vector of Lagrange multipliers that satisfies the KKT conditions in

(A.25). Then:

𝒅⊤ · ∇2
𝒙𝒙L

(
𝒙+, 𝝀+

)
· 𝒅 ≥ 0, ∀𝒅 ∈ F2

(
𝒙+, 𝝀+

)
.

Theorem A.13: Second-order sufficient conditions for optimality

Suppose that, for some feasible point 𝒙+ ∈ Ω, there exists a vector of Lagrange multipliers 𝝀+

that satisfies the KKT conditions in (A.25). Suppose also that:

𝒅⊤ · ∇2
𝒙𝒙L

(
𝒙+, 𝝀+

)
· 𝒅 > 0, ∀𝒅 ∈ F2

(
𝒙+, 𝝀+

)
, 𝒅 ≠ 0𝑛.

Then 𝒙+ is a strict local solution of Problem (A.20).

A.4.3 Convex optimization problems

Convexity is a desirable property for any optimization problem. There exist very efficient algorithms,

such as interior-point methods, that accurately solve convex optimization problems in polynomial time.
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To define convex optimization problems, we require the notion of convexity for sets and functions.

Definition A.32: Convex set. A set A ⊆ R𝑛 is said to be convex if, for any 𝒙1, 𝒙2 ∈ A and any

𝜃 ∈ [0, 1], we have:

𝜃 · 𝒙1 + (1 − 𝜃) · 𝒙2 ∈ A.

Alternatively, we could say that a subset A of an Euclidean space is convex if the line segment that

connects any two points in A lies in A. The next Example shows some commonly used convex sets.
Example A.6: Important convex sets

The following sets are convex:

• The empty set ∅;

• Any Euclidean space R𝑛;

• Any hyperplane A = {𝒙 : 𝒂⊤ · 𝒙 = 𝒃, 𝒙 ∈ R𝑛}, where 𝒂, 𝒃 ∈ R𝑛;

• Any open and closed ball in R𝑛, namely B (𝒙̃; 𝜖) in (A.10) and B̄ (𝒙̃; 𝜖) in (A.11).

Next, we define what is means for a function to be convex.

Definition A.33: Convex and concave functions. A function 𝑓 : A → R,A ⊆ R𝑛, is convex if

A is a convex set and if, for all 𝒙𝑖, 𝒙 𝑗 ∈ A and 𝜃 ∈ [0, 1], we have:

𝑓
(
𝜃 · 𝒙𝑖 + (1 − 𝜃) · 𝒙 𝑗

)
≤ 𝜃 · 𝑓 (𝒙𝑖) + (1 − 𝜃) · 𝑓

(
𝒙 𝑗

)
.

If the previous inequality holds whenever 𝒙𝑖 ≠ 𝒙 𝑗 and 𝜃 ∈ (0, 1), then 𝑓 (𝒙) is said to be strictly

convex.

We say that 𝑓 (𝒙) is (strictly) concave if − 𝑓 (𝒙) is (strictly) convex.

Geometrically, a convex function 𝑓 (𝒙) is such that the line segment between (𝒙𝑖, 𝑓 (𝒙𝑖)) and(
𝒙 𝑗 , 𝑓

(
𝒙 𝑗

) )
lies above the graph of 𝑓 (𝒙). There exist first-order and second-order conditions that let

us assess the convexity of a function.
Theorem A.14: First-order condition for convexity

Let 𝑓 : A → R,A ⊆ R𝑛, be a differentiable function. Then, 𝑓 (𝒙) is convex if and only if A is

a convex set and

𝑓
(
𝒙 𝑗

)
≥ 𝑓 (𝒙𝑖) + ∇𝒙 𝑓 (𝒙𝑖)⊤ ·

(
𝒙 𝑗 − 𝒙𝑖

)
holds for all 𝒙𝑖, 𝒙 𝑗 ∈ A.
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Theorem A.15: Second-order condition for convexity

Let 𝑓 : A → R,A ⊆ R𝑛, be a twice differentiable function. Then, 𝑓 (𝒙) is convex if and only

if A is a convex set and its Hessian ∇2
𝒙𝒙 𝑓 (𝒙) is positive semidefinite ∀𝒙 ∈ A.

We are now ready to define convex optimization problems.

Definition A.34: Convex optimization problem. An optimization problem, either unconstrained

as in Problem (A.19) or constrained as in Problem (A.20), is convex if and only if:

• The cost function 𝑓 (𝒙) is convex;

• The inequality constraints functions 𝑔(𝑖) (𝒙) , 𝑖 ∈ I𝑖𝑛𝑒𝑞, are convex;

• The equality constraints functions 𝑔(𝑖) (𝒙) , 𝑖 ∈ I𝑒𝑞, are affine, i.e. 𝑔(𝑖) (𝒙) = 𝒂⊤
𝑖
· 𝒙 − 𝒃𝑖

with 𝒂𝑖, 𝒃𝑖 ∈ R𝑛.

In particular, the last two conditions make the constraint set Ω in (A.21) convex.

The main advantage of convex optimization problems over non-convex ones is highlighted by the

following Proposition.

Proposition A.8: Global minimizers of convex optimization problems. If Problem (A.19) (or

Problem (A.20)) is convex, then any locally optimal solution is also globally optimal.

In practice, this means that if we know a-priori that we are dealing with a convex optimization problem,

it does not make sense to use a global optimization procedure to solve it. Instead, we should employ

an efficient local optimization procedure which, in this case, is guaranteed to find the global minima.
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This Appendix reports the benchmark global optimization problems used to compare the performances

of the surrogate-based methods proposed in this book against the original algorithms (see Chapter 7).

B.1 Unconstrained optimization problems

1. bemporad [10]:

dimensionality: 𝑛 = 1

cost function: 𝑓 (𝑥) =
[
1 + 𝑥 (1) ·sin(2·𝑥 (1)) ·cos(3·𝑥 (1))

1+(𝑥 (1))2

]2
+ (𝑥 (1))2

12 + 𝑥 (1)

10

constraints: Ω = {𝑥 : 𝑙 ≤ 𝑥 ≤ 𝑢}, Ξ = R𝑛

⊲ 𝑙 = −3, 𝑢 = 3

minimizer: 𝑥∗ = −0.9599

minimum: 𝑓 ∗ = 0.2795

2. gramacy and lee [53]:

dimensionality: 𝑛 = 1

cost function: 𝑓 (𝑥) = sin(10·𝜋·𝑥 (1))
2·𝑥 (1) +

(
𝑥 (1) − 1

)4

constraints: Ω = {𝑥 : 𝑙 ≤ 𝑥 ≤ 𝑢}, Ξ = R𝑛

⊲ 𝑙 = 0.5, 𝑢 = 2.5

minimizer: 𝑥∗ = 0.5486

minimum: 𝑓 ∗ = −0.8690

3. ackley [62]:

dimensionality: 𝑛 = 2

cost function: 𝑓 (𝒙) = −20 · exp
{
−0.02 ·

√︃
𝑛−1 · ∑𝑛

𝑖=1
(
𝑥 (𝑖)

)2
}

+

− exp
{
𝑛−1 · ∑𝑛

𝑖=1 cos
(
2 · 𝜋 · 𝑥 (𝑖)

)}
+ 20 + exp {1}

constraints: Ω = {𝒙 : 𝒍 ≤ 𝒙 ≤ 𝒖}, Ξ = R𝑛

⊲ 𝒍 = −35 · 1𝑛, 𝒖 = 35 · 1𝑛

minimizer: 𝒙∗ = 0𝑛
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minimum: 𝑓 ∗ = 0

4. bukin 6 [62]:

dimensionality: 𝑛 = 2

cost function: 𝑓 (𝒙) = 100 ·
√︂


𝑥 (2) − 0.01 ·

(
𝑥 (1)

)2





2
+ 0.01 ·



𝑥 (1) + 10




2

constraints: Ω = {𝒙 : 𝒍 ≤ 𝒙 ≤ 𝒖}, Ξ = R𝑛

⊲ 𝒍 =
[
−15 −5

]⊤
, 𝒖 =

[
−5 3

]⊤
minimizer: 𝒙∗ =

[
−10 1

]⊤
minimum: 𝑓 ∗ = 0

5. levi 13 [92]:

dimensionality: 𝑛 = 2

cost function: 𝑓 (𝒙) = sin
(
3 · 𝜋 · 𝑥 (1)

)2
+

(
𝑥 (1) − 1

)2
·

[
1 + sin

(
3 · 𝜋 · 𝑥 (2)

)2
]
+

+
(
𝑥 (2) − 1

)2
·
[
1 + sin

(
2 · 𝜋 · 𝑥 (2)

)2
]

constraints: Ω = {𝒙 : 𝒍 ≤ 𝒙 ≤ 𝒖}, Ξ = R𝑛

⊲ 𝒍 = −10 · 1𝑛, 𝒖 = 10 · 1𝑛

minimizer: 𝒙∗ = 1𝑛

minimum: 𝑓 ∗ = 0

6. adjiman [62]:

dimensionality: 𝑛 = 2

cost function: 𝑓 (𝒙) = cos
(
𝑥 (1)

)
· sin

(
𝑥 (2)

)
− 𝑥 (1)

(𝑥 (2))2+1

constraints: Ω = {𝒙 : 𝒍 ≤ 𝒙 ≤ 𝒖}, Ξ = R𝑛

⊲ 𝒍 =
[
−1 −1

]⊤
, 𝒖 =

[
2 1

]⊤
minimizer: 𝒙∗ =

[
2 0.10578

]⊤
minimum: 𝑓 ∗ = −2.02181

7. rosenbrock [62]:

dimensionality: 𝑛 = 5

cost function: 𝑓 (𝒙) = ∑𝑛−1
𝑖=1

{
100 ·

[
𝑥 (𝑖+1) −

(
𝑥 (𝑖)

)2
]2

+
[
𝑥 (𝑖) − 1

]2
}
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constraints: Ω = {𝒙 : 𝒍 ≤ 𝒙 ≤ 𝒖}, Ξ = R𝑛

⊲ 𝒍 = −30 · 1𝑛, 𝒖 = 30 · 1𝑛

minimizer: 𝒙∗ = 1𝑛

minimum: 𝑓 ∗ = 0

8. step 2 [62]:

dimensionality: 𝑛 = 5

cost function: 𝑓 (𝒙) = ∑𝑛
𝑖=1

⌊
𝑥 (𝑖) + 0.5

⌋2

constraints: Ω = {𝒙 : 𝒍 ≤ 𝒙 ≤ 𝒖}, Ξ = R𝑛

⊲ 𝒍 = −100 · 1𝑛, 𝒖 = 100 · 1𝑛

minimizer: 𝒙∗ = −0.5 · 1𝑛

minimum: 𝑓 ∗ = 0

9. salomon [62]:

dimensionality: 𝑛 = 5

cost function: 𝑓 (𝒙) = 1 − cos
[
2 · 𝜋 ·

√︃∑𝑛
𝑖=1

(
𝑥 (𝑖)

)2
]
+ 0.1 ·

√︃∑𝑛
𝑖=1

(
𝑥 (𝑖)

)2

constraints: Ω = {𝒙 : 𝒍 ≤ 𝒙 ≤ 𝒖}, Ξ = R𝑛

⊲ 𝒍 = −100 · 1𝑛, 𝒖 = 100 · 1𝑛

minimizer: 𝒙∗ = 0𝑛

minimum: 𝑓 ∗ = 0

B.2 Constrained optimization problems

1. gramacy and lee constrained (adapted from [53]):

dimensionality: 𝑛 = 1

cost function: 𝑓 (𝑥) = sin(10·𝜋·𝑥 (1))
2·𝑥 (1) +

(
𝑥 (1) − 1

)4

constraints: Ω = {𝑥 : 𝑙 ≤ 𝑥 ≤ 𝑢}, Ξ = {𝑥 : 𝑔Ξ (𝑥) ≤ 0}

⊲ 𝑙 = 0.5, 𝑢 = 2.5

⊲ 𝑔Ξ (𝑥) = sin
[
−2 ·

(
𝑥 (1)

)3
+ 8 · 𝑥 (1) − 3 ·

(
𝑥 (1)

)2
]

minimizer: 𝑥∗ = 0.5486
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minimum: 𝑓 ∗ = −0.8690

2. sasena 1 [125]:

dimensionality: 𝑛 = 2

cost function: 𝑓 (𝒙) = 2 +
[
𝑥 (2)−(𝑥 (1))2

]2

100 +
[
1 − 𝑥 (1)

]2 + 2 ·
[
2 − 𝑥 (2)

]2 +

+7 · sin
(
𝑥 (1)

2

)
· sin

(
7
10 · 𝑥 (1) · 𝑥 (2)

)
constraints: Ω = {𝒙 : 𝒍 ≤ 𝒙 ≤ 𝒖}, Ξ = {𝒙 : 𝑔Ξ (𝒙) ≤ 0}

⊲ 𝒍 = 0𝑛, 𝒖 = 5 · 1𝑛
⊲ 𝑔Ξ (𝒙) = − sin

(
𝑥 (1) − 𝑥 (2) − 𝜋

8

)
minimizer: 𝒙∗ =

[
2.7450 2.3523

]⊤
minimum: 𝑓 ∗ = −1.1743

3. townsend [1]:

dimensionality: 𝑛 = 2

cost function: 𝑓 (𝒙) = −
{
cos

[(
𝑥 (1) − 0.1

)
· 𝑥 (2)

]}2
− 𝑥 (1) · sin

(
3 · 𝑥 (1) + 𝑥 (2)

)
constraints: Ω = {𝒙 : 𝒍 ≤ 𝒙 ≤ 𝒖}, Ξ = {𝒙 : 𝑔Ξ (𝒙) ≤ 0}

⊲ 𝒍 =
[
−2.25 −2.5

]⊤
, 𝒖 =

[
2.5 1.75

]⊤
⊲ 𝑔Ξ (𝒙) =

(
𝑥 (1)

)2
+

(
𝑥 (2)

)2
−

[
2 · cos (𝑡) − cos (2·𝑡)

2 − cos (3·𝑡)
4 − cos (4·𝑡)

8

]2
− [2 · sin (𝑡)]2,

where 𝑡 = arctan2
(
𝑥 (1) , 𝑥 (2)

)
minimizer: 𝒙∗ =

[
2.0052938 1.1944509

]⊤
minimum: 𝑓 ∗ = −2.0240

4. mishra’s bird [156]:

dimensionality: 𝑛 = 2

cost function: 𝑓 (𝒙) = sin
(
𝑥 (2)

)
·exp

{[
1 − cos

(
𝑥 (1)

)]2
}
+cos

(
𝑥 (1)

)
·exp

{[
1 − sin

(
𝑥 (2)

)]2
}
+

+
[
𝑥 (1) − 𝑥 (2)

]2

constraints: Ω = {𝒙 : 𝒍 ≤ 𝒙 ≤ 𝒖}, Ξ = {𝒙 : 𝑔Ξ (𝒙) ≤ 0}

⊲ 𝒍 =
[
−10 −6.5

]⊤
, 𝒖 =

[
−2 0

]⊤
⊲ 𝑔Ξ (𝒙) =

[
𝑥 (1) + 9

]2 +
[
𝑥 (2) + 3

]2 − 9

minimizer: 𝒙∗ =

[
−9.367558 −1.628040

]⊤
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minimum: 𝑓 ∗ = −48.4060

5. camel six humps constrained [156]:

dimensionality: 𝑛 = 2

cost function: 𝑓 (𝒙) =

[
4 − 2.1 ·

(
𝑥 (1)

)2
+ (𝑥 (1))4

3

]
·

(
𝑥 (1)

)2
+ 𝑥 (1) · 𝑥 (2) +

+
[
4 ·

(
𝑥 (2)

)2
− 4

]
·
(
𝑥 (2)

)2

constraints: Ω = {𝒙 : 𝒍 ≤ 𝒙 ≤ 𝒖}, Ξ =

{
𝒙 : 𝑔(1)

Ξ
(𝒙) ≤ 0, 𝐴Ξ · 𝒙 ≤ 𝒃Ξ

}
⊲ 𝒍 =

[
−2 −1

]⊤
, 𝒖 =

[
2 1

]⊤
⊲ 𝑔

(1)
Ξ

(𝒙) =
(
𝑥 (1)

)2
+

[
𝑥 (2) + 0.1

]2 − 0.5

⊲ 𝐴Ξ =



1.6295 1

−1 4.4553

−4.3023 −1

−5.6905 −12.1374

17.6198 1


and 𝒃Ξ =



3.0786

2.7417

−1.4909

1

32.5198


minimizer: 𝒙∗ =

[
0.212640 0.575114

]⊤
minimum: 𝑓 ∗ = −0.5865

6. sasena 2 [125]:

dimensionality: 𝑛 = 2

cost function: 𝑓 (𝒙) = −
[
𝑥 (1) − 1

]2 −
[
𝑥 (2) − 0.5

]2

constraints: Ω = {𝒙 : 𝒍 ≤ 𝒙 ≤ 𝒖}, Ξ =
{
𝒙 : 𝒈Ξ (𝒙) ≤ 0𝑞Ξ

}
, 𝑞Ξ = 3

⊲ 𝒍 = 0𝑛, 𝒖 = 1𝑛
⊲ 𝑔

(1)
Ξ

(𝒙) =
{[
𝑥 (1) − 3

]2 +
[
𝑥 (2) + 2

]2
}
· exp

{
−

(
𝑥 (2)

)7
}
− 12

⊲ 𝑔
(2)
Ξ

(𝒙) = 10 · 𝑥 (1) + 𝑥 (2) − 7

⊲ 𝑔
(3)
Ξ

(𝒙) =
[
𝑥 (1) − 0.5

]2 +
[
𝑥 (2) − 0.5

]2 − 0.2

minimizer: 𝒙∗ =

[
0.2017 0.8332

]
minimum: 𝑓 ∗ = −0.7483

7. welded beam design [78]:

dimensionality: 𝑛 = 4
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cost function: 𝑓 (𝒙) = 0.04811 · 𝑥 (3) · 𝑥 (4) ·
[
𝑥 (2) + 14

]
+ 1.10471 ·

(
𝑥 (1)

)2
· 𝑥 (2)

constraints: Ω = {𝒙 : 𝒍 ≤ 𝒙 ≤ 𝒖}, Ξ =
{
𝒙 : 𝒈Ξ (𝒙) ≤ 0𝑞Ξ

}
, 𝑞Ξ = 5

⊲ 𝒍 =
[
0.125 0.1 0.1 0.1

]⊤
, 𝒖 =

[
2 10 10 2

]⊤
⊲ 𝑔

(1)
Ξ

(𝒙) = 𝑥 (1) − 𝑥 (4)

⊲ 𝑔
(2)
Ξ

(𝒙) = 𝛿 (𝒙) − 𝛿𝑚𝑎𝑥
⊲ 𝑔

(3)
Ξ

(𝒙) = 𝑃 − 𝑃𝑐 (𝒙)

⊲ 𝑔
(4)
Ξ

(𝒙) = 𝜏 (𝒙) − 𝜏𝑚𝑎𝑥
⊲ 𝑔

(5)
Ξ

(𝒙) = 𝜎 (𝒙) − 𝜎𝑚𝑎𝑥
⊲ 𝜏 (𝒙) =

√︃
(𝜏′ (𝒙))2 + (𝜏′′ (𝒙))2 + 2 · 𝜏′ (𝒙) · 𝜏′′ (𝒙) · 𝑥 (2)

2·𝑅(𝒙)

⊲ 𝜏′ (𝒙) = 𝑃√
2·𝑥 (2) ·𝑥 (1)

⊲ 𝜏′′ (𝒙) = 𝑅(𝒙)·𝑀 (𝒙)
𝐽 (𝒙)

⊲ 𝑀 (𝒙) = 𝑃 ·
(
𝑥 (2)

2 + 𝐿
)

⊲ 𝑅 (𝒙) =
√︂

(𝑥 (2))2

4 +
(
𝑥 (1)+𝑥 (3)

2

)2

⊲ 𝐽 (𝒙) = 2 ·
[(
(𝑥 (2))2

4 +
(
𝑥 (1)+𝑥 (3)

2

)2
)
·
√

2 · 𝑥 (1) · 𝑥 (2)
]

⊲ 𝜎 (𝒙) = 6·𝑃·𝐿
𝑥 (4) ·(𝑥 (3))2

⊲ 𝛿 (𝒙) = 6·𝑃·𝐿3

𝐸 ·(𝑥 (3))2·𝑥 (4)

⊲ 𝑃𝑐 (𝒙) =
4.013·𝐸 ·𝑥 (3) ·(𝑥 (4))3

6·𝐿2 ·
[
1 − 𝑥 (3)

2·𝐿 ·
√︃

𝐸
4·𝐺

]
⊲ 𝐿 = 14, 𝑃 = 6000, 𝐸 = 30 · 106, 𝜎𝑚𝑎𝑥 = 30000, 𝜏𝑚𝑎𝑥 = 13600, 𝐺 = 12 · 106, 𝜎𝑚𝑎𝑥 =

0.25

minimizer: 𝒙∗ =

[
0.20573 3.47049 9.03662 0.20573

]
(taken from [70])

minimum: 𝑓 ∗ = 1.7249

8. himmelblau [78]:

dimensionality: 𝑛 = 5

cost function: 𝑓 (𝒙) = 5.3578547 ·
(
𝑥 (3)

)2
+ 0.8356891 · 𝑥 (1) · 𝑥 (5) +

+37.293239 · 𝑥 (1) − 40792.141

constraints: Ω = {𝒙 : 𝒍 ≤ 𝒙 ≤ 𝒖}, Ξ =
{
𝒙 : 𝒈Ξ (𝒙) ≤ 0𝑞Ξ

}
, 𝑞Ξ = 6

⊲ 𝒍 =
[
78 33 27 27 27

]⊤
, 𝒖 =

[
102 45 45 45 45

]⊤
⊲ 𝑔

(1)
Ξ

(𝒙) = −𝐺1 (𝒙)

⊲ 𝑔
(2)
Ξ

(𝒙) = 𝐺1 (𝒙) − 92

⊲ 𝑔
(3)
Ξ

(𝒙) = 90 − 𝐺2 (𝒙)
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⊲ 𝑔
(4)
Ξ

(𝒙) = 𝐺2 (𝒙) − 110

⊲ 𝑔
(5)
Ξ

(𝒙) = 20 − 𝐺3 (𝒙)

⊲ 𝑔
(6)
Ξ

(𝒙) = 𝐺3 (𝒙) − 25

⊲ 𝐺1 (𝒙) = 85.334407 + 0.0056858 · 𝑥 (2) · 𝑥 (5) + 0.0006262 · 𝑥 (1) · 𝑥 (4) +

−0.0022053 · 𝑥 (3) · 𝑥 (5)

⊲ 𝐺2 (𝒙) = 80.51249 + 0.0071317 · 𝑥 (2) · 𝑥 (5) + 0.0029955 · 𝑥 (1) · 𝑥 (2) +

+0.0021813 ·
(
𝑥 (3)

)2

⊲ 𝐺3 (𝒙) = 9.300961 + 0.0047026 · 𝑥 (3) · 𝑥 (5) + 0.00125447 · 𝑥 (1) · 𝑥 (3) +

+0.0019085 · 𝑥 (3) · 𝑥 (4)

minimizer: 𝒙∗ =

[
78 33.002617891740300 30.023386693211926 45 36.712662729997280

]
(found by PSWARM [72])

minimum: 𝑓 ∗ = −30661

9. step 2 constrained:

dimensionality: 𝑛 = 5

cost function: 𝑓 (𝒙) = ∑𝑛
𝑖=1

⌊
𝑥 (𝑖) + 0.5

⌋2

constraints: Ω = {𝒙 : 𝒍 ≤ 𝒙 ≤ 𝒖}, Ξ =
{
𝒙 : 𝒈Ξ (𝒙) ≤ 0𝑞Ξ

}
, 𝑞Ξ = 𝑛 + 1

⊲ 𝒍 = −100 · 1𝑛, 𝒖 = 100 · 1𝑛
⊲ 𝑔

( 𝑗)
Ξ

(𝒙) = 𝑥 ( 𝑗) + 0.5, 𝑗 = 1, . . . , 𝑛

⊲ 𝑔
(𝑛+1)
Ξ

(𝒙) = ∥𝒙 − 𝒙𝒄∥2
2 − 𝑟2, where 𝒙𝒄 = 0𝑛 and 𝑟 = 3

8 · ∥𝒖 − 𝒍 ∥2

minimizer: 𝒙∗ = −0.5 · 1𝑛

minimum: 𝑓 ∗ = 0
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Appendix C. Hyper-parameters for the procedures

This Appendix reports the hyper-parameters and settings used by the procedures benchmarked in

Chapter 7, namely GLIS [10], GLISp [11], C-GLIS, C-GLISp [156], GLIS-r [108], GLISp-r [109],

C-GLIS-r and C-GLISp-r.
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List of Notations

Important sets of numbers

• N is the set of all natural numbers (zero not included);

• Z is the set of all integers;

• Q is the set of all rational numbers;

• R is the set of all real numbers;

• R≥0 is the set of all non-negative real numbers;

• R>0 is the set of all positive real numbers;

• R𝑛, 𝑛 ∈ N, is the 𝑛-dimensional Euclidean space.

Notation of other sets

• Generic sets are indicated with upper-case calligraphic letters, e.g. A;

• ∅ denotes the empty set;

• Given a set A, |A| is its cardinality;

• Generic classes (i.e. nonempty collections of sets) are also indicated with upper-case calligraphic

letters, e.g. C;

• Given a class C, we refer to the 𝑖-th set contained in C as C (𝑖);

• N (𝒙̃) is a neighborhood of a point 𝒙̃ ∈ R𝑛;

• B (𝒙̃; 𝜖) is an open ball of radius 𝜖 ∈ R>0 around a point 𝒙̃ ∈ R𝑛. Instead, B̄ (𝒙̃; 𝜖) is a closed

ball of radius 𝜖 ∈ R>0 around 𝒙̃ ∈ R𝑛.

Vectors and matrices

Let 𝑛, 𝑚 ∈ N, then:

• Apart from very few exceptions, generic scalars are indicated with lower-case letters, e.g. 𝑎;
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• Generic vectors are indicated with lower-case bold letters, e.g. 𝒙;

• Generic matrices are indicated with upper-case letters, e.g. 𝐴;

• All vectors are to be treated as column vectors, e.g. 𝒙 ∈ R𝑛 denotes an 𝑛-dimensional column

vector of real numbers;

• 𝑥 ( 𝑗) ∈ R is the 𝑗-th entry of vector 𝒙 ∈ R𝑛;

• 𝐴(𝑖, 𝑗) ∈ R is the (𝑖, 𝑗)-th element of matrix 𝐴 ∈ R𝑛×𝑚;

• 0𝑛 is an 𝑛-dimensional column vector of zeros;

• 0𝑛×𝑚 is an (𝑛 × 𝑚)-dimensional matrix of zeros;

• 1𝑛 is an 𝑛-dimensional column vector of ones;

• 1𝑛×𝑚 is an (𝑛 × 𝑚)-dimensional matrix of ones;

• R𝑛×𝑚 is the set of all real matrices with 𝑛 rows and 𝑚 columns;

• 𝐼𝑛 is the 𝑛 × 𝑛 identity matrix;

• 𝒆 𝑗 is the 𝑗-th column of the identity matrix. Its dimensionality is stated explicitly whenever it

is not clear from the context;

• The transpose of a matrix 𝐴 ∈ R𝑛×𝑚 is 𝐴⊤ and similarly for vectors;

• The inverse of an invertible square matrix 𝐴 ∈ R𝑛×𝑛 is 𝐴−1;

• The determinant of a square matrix 𝐴 ∈ R𝑛×𝑛 is det 𝐴;

• 𝐴 = diag {𝑎1, . . . , 𝑎𝑁 } , 𝐴 ∈ R𝑛×𝑛, is a diagonal matrix with entries 𝑎𝑖 ∈ R, 𝑖 = 1, . . . , 𝑛, on the

main diagonal;

• Consider two matrices 𝐴, 𝐵 ∈ R𝑛×𝑚, we denote their Hadamard product𝐶 ∈ R𝑛×𝑚 as𝐶 = 𝐴⊙𝐵,

where 𝐶 (𝑖, 𝑗) = 𝐴(𝑖, 𝑗) · 𝐵(𝑖, 𝑗) .

Functions

Let 𝑛, 𝑚 ∈ N, then:

• Apart from very few exceptions, generic scalar functions are indicated with lower-case letters,

e.g. ℎ : R𝑛 → R;
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• Generic vector-valued functions are indicated with bold lower-case letters, e.g. 𝒉 : R𝑛 → R𝑚;

• When referring to a function ℎ : R𝑛 → R “as a whole”, we either use the notation ℎ (·) or

ℎ (𝒙) (where 𝒙 is a generic argument for the function), as opposed to simply ℎ. Similarly for

vector-valued functions;

• Consider a vector-valued function 𝒉 (𝒙) , 𝒉 : R𝑛 → R𝑚, we denote the 𝑗-th function that

composes it as ℎ( 𝑗) (𝒙), where ℎ( 𝑗) : R𝑛 → R;

• Consider a scalar function ℎ (𝒙) , ℎ : R𝑛 → R:

– 𝜕

𝜕𝑥 ( 𝑗 )
ℎ (𝒙) , 𝜕

𝜕𝑥 ( 𝑗 )
ℎ : R𝑛 → R, is the partial derivative of ℎ (𝒙) with respect to 𝑥 ( 𝑗);

– ∇𝒙ℎ (𝒙) ,∇𝒙ℎ : R𝑛 → R𝑛, is the gradient of ℎ (𝒙);

– ∇2
𝒙𝒙ℎ (𝒙) ,∇2

𝒙𝒙ℎ : R𝑛 → R𝑛×𝑛, is the Hessian of ℎ (𝒙).

• Let ℎ (𝒙) be a scalar function, ℎ : R𝑛 → R, and A be a subset of R𝑛. We denote the range

assumed by ℎ (𝒙) over A as ℎ [A], i.e.

ℎ [A] =
{
ℎ̃ : ℎ̃ ∈ R, ℎ̃ = ℎ (𝒙̃) for some 𝒙̃ ∈ A

}
,

and similarly for vector-valued functions;

• Let 𝑘 ∈ N ∪ {0}, we denote the class of continuously differentiable functions of order 𝑘 on the

open set A ⊆ R𝑛 as C𝑘 (A);

• Whenever needed, if a function ℎ (·) depends on some additional parameters 𝜽 , we use a

semicolon notation to separate the parameters 𝜽 from the arguments 𝒙 as follows: ℎ (𝒙; 𝜽).

Statistics

Let 𝒙, 𝒚 ∈ R𝑛 be two (continuous) random vectors, then:

• 𝑝 (𝒙) is the (marginal) probability density function of 𝒙;

• 𝑝 (𝒙, 𝒚) is the joint probability density function of 𝒙 and 𝒚;

• 𝑝
(
𝒙
�� 𝒚) is the conditional probability density function of 𝒙 given 𝒚;

• E [·] is the expected value operator;

• The notation 𝒙 ∼ P is used to indicate that 𝒙 is distributed according to some probability

distribution P;
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• Consider a sequence of random vectors ⟨𝒙1, . . . , 𝒙𝑁⟩, 𝑁 ∈ N, we use the notation 𝒙𝑖
𝑖.𝑖.𝑑.∼ P

to indicate that all the terms of the sequence are independent and identically distributed with

distribution P;

• N (𝝁, Σ) is the Gaussian (or normal) probability distribution with mean 𝝁 ∈ R𝑛 and covariance

matrix Σ ∈ R𝑛×𝑛;

• 𝜙N (𝒙̃) and ΦN (𝒙̃) denote, respectively, the standard normal probability distribution and the

standard normal cumulative distribution evaluated at a point 𝒙̃ ∈ R𝑛;

• U ( 𝒍, 𝒖) is the (continuous) multivariate uniform distribution with bounds 𝒍, 𝒖 ∈ R𝑛 and 𝒍 ≤ 𝒖.

Optimization

We use the following notation for global, black-box and preference-based optimization:

• 𝑛 ∈ N is the dimensionality of the optimization problem;

• 𝒙 ∈ R𝑛 is the decision vector;

• 𝑥 ( 𝑗) is the 𝑗-th decision variable;

• 𝑓 : R𝑛 → R is the cost function (to be minimized);

• ≿ is the preference relation associated to a human decision-maker;

• Ω is a set of constraints that is a-priori known;

• Ξ is a set of constraints for which no mathematical formulation is available;

• 𝒙+ is a local solution for the optimization problem;

• 𝒙∗ or 𝒙∗
𝑖

is a global solution for the optimization problem;

• X∗ is the set containing all the global minimizers of the optimization problem;

• 𝑓 ∗ is the global minimum of the optimization problem;

• 𝑘 is the iteration counter of a generic optimization algorithm;

• 𝑁 is the number of evaluated samples (at a given iteration of an optimization procedure);
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• 𝒙𝒃𝒆𝒔𝒕 ∈ R𝑛 is the best solution found by an optimization procedure. In particular, 𝒙𝒃𝒆𝒔𝒕 (𝑘) ∈ R𝑛

and 𝒙𝒃𝒆𝒔𝒕 (𝑁) ∈ R𝑛 denote, respectively, the best candidate sample after 𝑘 iterations or when 𝑁

points have been evaluated;

• 𝑦𝑏𝑒𝑠𝑡 , 𝑦𝑏𝑒𝑠𝑡 (𝑘) , 𝑦𝑏𝑒𝑠𝑡 (𝑁) ∈ R denote, respectively, the best cost, the best cost after 𝑘 iterations

or when 𝑁 points have been evaluated by an optimization procedure.

Other notations

• ∥·∥ is a generic norm;

• ∥·∥𝑝 is the 𝑝-norm in R𝑛;

• ∥·∥2 is the Euclidean norm in R𝑛;

• ⟨𝒙𝑖⟩𝑖≥1 is an infinite sequence of points (from 𝑖 = 1 to ∞);

• ⟨𝒙𝑖⟩𝑘𝑖=1 is a finite sequence of points (from 𝑖 = 1 to 𝑘 ∈ N);

• I (𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛) is an indicator function which assumes value one whenever 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 is true and

zero otherwise;

• Given 𝑥 ∈ R, ⌊𝑥⌋ denotes the greatest integer less than or equal to 𝑥. Instead, ⌈𝑥⌉ is the lowest

integer greater than or equal to 𝑥;

• Given 𝑥 ∈ R, sign {𝑥} denotes the sign of 𝑥: sign {𝑥} = 1 if 𝑥 > 0, sign {𝑥} = −1 if 𝑥 < 0 and

sign {𝑥} = 0 if 𝑥 = 0;

• Acronyms for algorithms are reported in typewriter font, followed by a reference (if available),

e.g. GS [5];

• Benchmark optimization problems are also reported in typewriter font, followed by a reference

(if available), e.g. rosenbrock [62].
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GP Gaussian Process.

C-GLIS-r Extension of GLIS-r [108] for constrained BBO

proposed in this book.

C-GLISp-r Extension of GLISp-r [109] for constrained

PBO proposed in this book.

C-GLISp [156] GLobal minimum using Inverse distance weight-

ing and Surrogate radial basis functions for con-

strained PBO.

C-GLIS GLobal minimum using Inverse distance weight-

ing and Surrogate radial basis functions for con-

strained BBO.

COBRA [112] Constrained Optimization By RAdial basis func-

tion interpolation.

CORS-RBF [115] CORS [115] based on a RBF surrogate.

CORS [115] Constrained Optimization using Response Sur-

faces.

ConstrLMSRBF [111] Constrained Local MSRBF [116].

DIRECT [67] DIvide a hyper-RECTangle.

EGO [68] Efficient Global Optimization.

GLIS-r [108] Extension of GLIS [10], based on min-max

rescaling (r), proposed in this book.

GLISp-r [109] Extension of GLISp [11], based on min-max

rescaling (r), proposed in this book.

GLISp [11] GLobal minimum using Inverse distance weight-

ing and Surrogate radial basis functions for un-

constrained PBO.

GLIS [10] GLobal minimum using Inverse distance weight-

ing and Surrogate radial basis functions.

GS [5] Grid Search.
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Gutmann-RBF [54] Black-box optimization method based on RBFs

proposed in [54].

MSRBF [116] MSRS [116] based on a RBF surrogate.

MSRS [116] Metric Stochastic Response Surface method.

PSWARM [72] Particle SWARM.

SO-SA [151] Extension of MSRS [116] proposed in [151].

SuperEGO [125] Extension of the EGO [68] algorithm proposed in

[125].

gMRS [108] generalized Metric Response Surface.

BayesOpt Bayesian Optimization.

BBO Black-Box Optimization.

DM Decision-Maker.

FF Feed Forward (action).

GO Global Optimization.

GOP Global Optimization Problem.

IDW Inverse Distance Weighting.

IDWI Inverse Distance Weighting Interpolation.

KKT conditions Karush-Kuhn-Tucker conditions.

LHD Latin Hypercube Design.

LICQ Linear Independence Constraint Qualification.

LOOCV Leave-One-Out Cross-Validation.

LP Linear Program.
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