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In the present article, a model for penetrative convection in a fluid-saturated inclined porous medium is analyzed. 
Penetrative convection occurs when an unstably stratified fluid moves into a stably stratified region. In this study, 
it will be shown that the inclination of the layer plays a relevant role for the penetrative thermal convection of a 
fluid-saturated porous medium. The results reported in the literature for the limiting case of horizontal layer are 
recovered and the numerical results for the linear instability, obtained via the Chebyshev-𝜏 method, show that 
the most destabilizing perturbations are the longitudinal and, as expected, the transverse ones destabilize only up 
to a certain critical inclination angle of the layer. Moreover, in the numerical analysis of the three-dimensional 
perturbations, we show that the longitudinal perturbations are the most destabilizing not only with respect to 
the transverse but also with respect to any general perturbation. We also give nonlinear stability results for the 
longitudinal perturbations via the weighted energy method.
1. Introduction

Thermal instability of both clear fluids and fluid-saturated porous 
layers is a subject that has attracted much attention and has been in-

vestigated by many authors because of its numerous and remarkable 
applications (for a comprehensive problem framing, historical develop-

ment, and applications see [1–3, and references therein]). There are 
essentially two typical situations bringing thermal instability. The first 
is the heating from below mechanism, which is the phenomenon re-

sponsible for the activation of the so-called Rayleigh-Bénard convection

in a clear fluid at rest (see [1,4]). The corresponding mathematical 
problem, called the Bénard Problem after Henry Bénard [5], whose cru-

cial experimental investigations represent a milestone, was solved by 
Lord Rayleigh in 1916 [6]. Concerning fluid-saturated porous media, 
the Rayleigh-Bénard instability yields the formulation of the Horton-

Rogers-Lapwood problem [7,8], and the specific interests for geophys-

ical applications were highlighted in pioneering papers as those by 
Wooding [9] and Elder [10]. The second typical situation occurs when 
the fluid density attains a maximum in the interior of the porous layer. 
In this case, the process of thermal convection refers to the instabil-

ity of a part of the layer, which will then penetrate into an upper 
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stability-stratified region. This density inversion phenomenon, see [11], 
is indeed responsible for the activation of the so-called penetrative con-

vection. The mathematical formulation of this problem was addressed 
for the first time by Veronis [12]. Since then, considerable attention 
has been devoted to penetrative convection, in both frameworks of 
clear fluids [13,14] and porous media [15,16]; the latter, especially 
for its applications in geophysics [17,18]. In particular, in [13] the case 
of isothermal boundaries was considered, while in [14] the case of a 
given heat flux was investigated. Among all physical setups, the incli-

nation of the layer plays a relevant role in the thermal convection of 
fluid-saturated porous medium, and it applies in many environmental 
circumstances. In this regard, it has been noticed that thermal con-

vection has a role in the diffusion of pollutants in the underground 
[19,20] or in land deformation involving thermal gradient, see [21, 
and references therein]. Because of the aforementioned applications 
both experimental [22,23] and theoretical studies [24–30] have been 
conducted in recent years. The novelty of the present research is the 
development, as far as we know for the first time, of a theoretical inves-

tigation of penetrative convection in a fluid-saturated inclined porous 
medium, by assuming the validity of Darcy’s law [2,31]. The authors 
addressed the present study with the aim of a deep understanding of 
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the combined mechanism of penetrative convection and inclination of 
the porous layer, which gives an explanation of several phenomena like 
patterned ground formations [17] and thawing subsea permafrost [18]. 
The dimensionless governing parameter that describes the onset of ther-

mal convection is the Darcy-Rayleigh number, 𝖱𝖺. This parameter marks 
the threshold for the onset of convection. Namely, in the linear regime, a 
critical value 𝖱𝖺

𝐿
, such that thermal convection occurs for higher values 

of 𝖱𝖺, can be determined. Concerning the nonlinear stability analysis, 
the conditions for which a suitable energy functional is decreasing along 
the solution of the system (one usually refers to this methodology as the 
Lyapunov method, or energy method, see [32,31,33]) give rise a critical 
value 𝖱𝖺

𝐸
(≤ 𝖱𝖺

𝐿
) below which the conduction solution is asymptotically 

exponentially stable, i.e. we will not observe the onset of convection. 
The choice of a suitable energy functional is crucial for the nonlinear 
analysis and it is a delicate matter addressed by many authors, see e.g. 
[34–38]. Here we study the linear instability of the conduction solu-

tion for longitudinal (also called streamwise), transverse (also called 
spanwise), and full three-dimensional perturbations and the nonlinear 
stability analysis with respect to the longitudinal ones. In particular, the 
numerical results for the linear instability, obtained via the Chebyshev-𝜏

method, show that the most destabilizing perturbations are the longi-

tudinal ones and, as expected, the transverse ones exhibit a peculiar 
phenomenon: they destabilize only up to a certain critical inclination 
angle of the layer. This means, in other words, that above this criti-

cal angle, there will be a preferred orientation for the perturbations at 
the onset of the secondary flow. Indeed, from the numerical analysis of 
the three-dimensional perturbations, we show that the spanwise ones 
are the most destabilizing not only with respect to the streamwise but 
also with respect to any general roll perturbation. Hence, this numeri-

cally shows the validity of a Squire-like theorem [39–41]. Summing up, 
the paper is organized as follows. In Section 2 the mathematical model 
is introduced and the Darcy-Rayleigh number is defined in the non-

dimensional framework. Then, the steady-state solution is computed 
and the perturbed non-dimensional system is derived. Section 3 deals 
with the linear instability analysis. In particular, the longitudinal and 
transverse perturbations cases are analyzed separately. Moreover, for 
the former case, the principle of exchange of stabilities is proved and the 
linear critical Rayleigh numbers, for the onset of steady convection are 
found to be the same as those for the horizontal layer up to a scal-

ing factor. In Section 4 we give some nonlinear stability results of the 
longitudinal perturbations. More specifically, by introducing a suitable 
Lyapunov functional, we find the non-linear critical Rayleigh numbers 
be solving the Euler-Lagrange equations arising from a maximum prob-

lem. In Section 5, the employed numerical method (Chebyshev-𝜏) is 
explained, and the paper ends with a concluding Section 6 in which all 
the numerical results are shown and commented on and the obtained 
results are summarized.

Nomenclature

Symbol Unit Description

𝑑 𝑚 depth of the layer

𝑡 𝑠 time

𝑇𝐿 𝐾 lower temperature

𝑇𝑈 𝐾 upper temperature

𝑇0 𝐾 reference temperature

𝜇 𝑘𝑔∕(𝑚𝑠) dynamic fluid viscosity

𝜌 𝑘𝑔∕𝑚3 fluid density

𝛼 𝐾−2 thermal expansion coefficient

𝑔 𝑚∕𝑠2 modulus of gravitational acceleration

𝑘 𝑚2 permeability of the porous body

𝜅 𝑚2∕𝑠 thermal diffusivity

𝑝 𝑃𝑎 pressure field

v 𝑚∕𝑠 seepage velocity

𝑇 𝐾 temperature field

𝜑 layer inclination
2

𝖱𝖺 Rayleigh-Darcy number
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2. Formulation of the problem

2.1. Matematical model

Let 𝑂𝑥𝑦𝑧 be a Cartesian reference frame with fundamental unit 
vector i, j, k (the latter pointing vertically upwards) and let 𝐿 be an 
isotropic porous medium with thickness 𝑑 > 0, inclined of an angle 
𝜑 ∈

[
0, 𝜋2

]
with respect to the horizontal plane. The layer 𝐿 is saturated 

by a homogeneous incompressible Newtonian fluid confined between 
two parallel impermeable planes kept at uniform and constant temper-

atures 𝑇𝐿 and 𝑇𝑈 . As stated in the introduction, penetrative convection 
can occur when the fluid density attains a maximum in the interior of 
the porous layer and this is possible when the density of the fluid has 
the following quadratic dependence on the temperature [12]:

𝜌(𝑇 ) = 𝜌0[1 − 𝛼(𝑇 − 𝑇0)2], (1)

where 𝜌0 = 𝜌0(𝑇0) is a reference density at a reference temperature 
𝑇0 and 𝛼 is the thermal expansion coefficient. Among all fluids, wa-

ter exhibits this anomalous density-temperature relation, being near 
parabolic around 4◦𝐶 . In particular, see [12], the quadratic dependence 
(1), with 𝑇0 = 4◦𝐶 , 𝜌0 density of water at the density inversion point 
and 𝛼 ≃ 7.68 ×10−6∕(◦𝐶2), accurately represent the water’s density in its 
parabolic neighborhood and involves a 10% error at 14◦𝐶 . In this pa-

per, the above physical setup is assumed. We must emphasize the fact 
that perfectly incompressible media do not exist in nature. Nonetheless, 
they can be considered as a limit case of compressible one. Assuming 
as definition of incompressibility the independence of the constitutive 
equations from the pressure, Müller [42] proved that this definition is 
compatible with the entropy principle only if the density is a constant 
function. This statement, usually called Müller paradox, is in disagree-

ment with empirical observations, according to which fluids expand 
when heated, and the widely employed Boussinesq approximation, see 
[2,32]. Gouin et al., in [43] fixed this contradiction introducing the defi-

nition of quasi-thermal-incompressible fluids: media for which the density 
is the only equation independent of the pressure among all the con-

stitutive equations. Employing this definition the authors proved that 
a quasi-thermal-incompressible fluid tends to be perfectly incompress-

ible when 𝑝 ≪ 𝑝𝑐𝑟, being 𝑝𝑐𝑟 a critical pressure value below which the 
incompressibility assumption is thermodynamically consistent. The crit-

ical pressure value for the penetrative convection problem can be found 
in [16]. We assume that Darcy’s law models the momentum balance 
equation and we adopt the Boussinesq approximation scheme and the 
Veronis density law (1), namely:

𝜇

𝑘
v = −∇𝑝− 𝑔𝜌(𝑇 )r, (2)

where v, 𝑝 and 𝜌 are the seepage velocity, pressure and density respec-

tively, r = (sin𝜑, 0, cos𝜑)𝑇 , 𝑔 is the modulus of gravitational accelera-

tion, 𝜇 is the dynamic viscosity and 𝑘 the permeability of the porous 
medium. Equation (2), together with the mass conservation law and 
the energy balance equation governing the behavior of the tempera-

ture field in local thermal equilibrium, yields the following system of 
governing equations:

⎧⎪⎪⎨⎪⎪⎩

𝜇

𝑘
v = −∇�̃�− 2𝑔𝜌0𝛼𝑇0𝑇 r+ 𝑔𝜌0𝛼𝑇

2r,

∇ ⋅ v = 0,
𝜕𝑇

𝜕𝑡
+ v ⋅∇𝑇 = 𝜅Δ𝑇 ,

(3)

where 𝜅 is the thermal diffusivity and

�̃� = 𝑝+ 𝑔𝜌0(1 − 𝛼𝑇 2
0 )(𝑥 sin𝜑+ 𝑧 cos𝜑). (4)

For the sake of brevity, but without loss of generality, we omit the tilde 
on the pressure function 𝑝. We complete system (3) with the following 

boundary conditions:
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𝑇 (𝑥, 𝑦,0, 𝑡) = 𝑇𝐿, 𝑇 (𝑥, 𝑦, 𝑑, 𝑡) = 𝑇𝑈 , (5)

and

v ⋅ n = 0 on 𝑧 = 0, 𝑑, (6)

where n is the unit outward normal to the planes bounding the layer. 
In particular, for the problem under examination, we assume:

𝑇𝐿 = 0◦𝐶, 𝑇0 = 4◦𝐶, 𝑇𝑈 ≥ 4◦𝐶. (7)

2.2. Steady state solution and perturbation equations

In order to rewrite the system (3) in non-dimensional form let us 
introduce the following non-dimensional parameters:

x = 𝑑x∗, 𝑡 = 𝜏𝑡∗, v = 𝑉 v∗, 𝑝 = 𝑃𝑝∗, 𝑇 = 𝑇𝑈𝑇
∗, (8)

with

𝜏 = 𝑑2

𝜅
, 𝑉 = 𝜅

𝑑
, 𝑃 = 𝜇𝜅

𝑘
. (9)

Then the resulting non-dimensional equations of motion, omitting all 
the asterisks, are the following:

⎧⎪⎪⎨⎪⎪⎩
v = −∇𝑝−Ra

(
𝜁𝑇 − 𝑇 2

2

)
r,

∇ ⋅ v = 0,
𝜕𝑇

𝜕𝑡
+ v ⋅∇𝑇 =Δ𝑇 ,

(10)

where the dimensionless parameter 𝖱𝖺 (the thermal Darcy-Rayleigh 
number) and 𝜁 are respectively given by:

𝖱𝖺 =
2𝑔𝜌0𝛼𝑘𝑑𝑇 2

𝑈

𝜇𝜅
, 𝜁 =

𝑇0
𝑇𝑈

. (11)

Note that the boundary conditions on the temperature, in the non-

dimensional framework, are the following:

𝑇 (𝑥, 𝑦,0, 𝑡) = 0, 𝑇 (𝑥, 𝑦,1, 𝑡) = 1. (12)

We now seek stationary and laminar basic solutions

𝑚𝑏 = (v𝑏, 𝑝𝑏, 𝑇𝑏), (13)

with v𝑏 = (𝑣𝑏(𝑧), 0, 0), whose instability and stability are going to be the 
core of the present investigations. From (10)3 one easily finds:

𝑇𝑏(𝑧) = 𝑧. (14)

By substituting (14) in (10)1 we obtain

𝑣𝑏(𝑧) = −
𝜕𝑝𝑏
𝜕𝑥

− Ra
(
𝜁𝑧− 𝑧2

2

)
sin𝜑,

0 = −
𝜕𝑝𝑏
𝜕𝑦

,

0 = −
𝜕𝑝𝑏
𝜕𝑧

− Ra
(
𝜁𝑧− 𝑧2

2

)
cos𝜑.

(15)

Moreover, from equations (15)2,3 it follows that

𝑝𝑏 = 𝑝𝑏(𝑥, 𝑧) = 𝑔(𝑥) −Ra
(
𝜁
𝑧2

2
− 𝑧3

6

)
cos𝜑, (16)

and substituting in (15)1 we have

𝑣𝑏(𝑧) +Ra
(
𝜁𝑧− 𝑧2

2

)
sin𝜑 = − 𝑑

𝑑𝑥
𝑔(𝑥). (17)

The previous ordinary differential equation must be satisfied identically 
in ℝ × [0, 1]. As a consequence, that there exist a constant 𝜂, a pressure 
gradient along 𝑥 and a constant 𝑐, see [27], such that
3

𝑔(𝑥) = 𝜂𝑥+ 𝑐. (18)
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Hence

𝑣𝑏(𝑧) +Ra
(
𝜁𝑧− 𝑧2

2

)
sin𝜑 = −𝜂. (19)

For simplicity we set 𝜂 = 0, and, recalling (4), we have

𝑝𝑏(𝑥, 𝑧) = 𝐶 − Ra
(
𝜁
𝑧2

2
− 𝑧3

6

)
cos𝜑−𝐴(1 − 𝛼𝑇 2

0 )(𝑥 sin𝜑+ 𝑧 cos𝜑), (20)

with 𝐴 = 𝑔𝜌0𝑑𝑘
𝜇𝜅

a non-dimensional constant. Therefore, the complete 
steady state solution is fully computed

𝑚𝑏 =
((

−Ra
(
𝜁𝑧− 𝑧2

2

)
sin𝜑,0,0

)
,

𝑐 −Ra
(
𝜁
𝑧2

2
− 𝑧3

6

)
−𝐴(1 − 𝛼𝑇 2

0 )(𝑥 sin𝜑+ 𝑧 cos𝜑), 𝑧
)
.

(21)

Note that if 𝜑 = 0, 𝑚𝑏 coincides with the steady state motion for pene-

trative convection in a horizontal layer found in [16].

In order to study the stability of 𝑚𝑏, we introduce the following 
perturbation fields

v = v𝑏 + u, 𝑝 = 𝑝𝑏 + 𝜋, 𝑇 = 𝑇𝑏 + 𝜃, (22)

with u = (𝑢, 𝑣, 𝑤). Eventually, the resulting non-dimensional perturba-

tion equations are

⎧⎪⎪⎨⎪⎪⎩
u = −∇𝜋 − 𝖱𝖺𝑀(𝑧)𝜃r+ 𝖱𝖺

2
𝜃2r,

∇ ⋅ u = 0,
𝜕𝜃

𝜕𝑡
+ 𝑣𝑏(𝑧)𝜃𝑥 +𝑤+ u ⋅∇𝜃 =Δ𝜃,

(23)

with 𝑀(𝑧) = 𝜁 − 𝑧, together with initial conditions

u(x, 𝑡0) = u0(x), 𝜋(x, 𝑡0) = 𝜋0(x), 𝜃(x, 𝑡0) = 𝜃0(x) (24)

and boundary conditions

𝑢 = 𝑣 =𝑤 = 𝜃 = 0 on 𝑧 = 0,1. (25)

In the sequel, we will suppose that the u, 𝜋 and 𝜃 are periodic functions 
in 𝑥 and 𝑦 direction, of period 2𝜋

𝑎𝑥
and 2𝜋

𝑎𝑦
respectively, and denote by

𝑉 =
[
0, 2𝜋

𝑎𝑥

]
×
[
0, 2𝜋

𝑎𝑦

]
× [0,1] (26)

the periodicity cell. Finally, we will denote by ⟨ , ⟩ and ‖ ‖ the usual 
scalar product and the related norm, respectively, of the Lebesgue space 
𝐿2(𝑉 , ℂ).

3. Instability analysis of 𝒎𝒃

In order to investigate the linear instability of (21) let us consider 
the linear version of system (23)

⎧⎪⎨⎪⎩
u = −∇𝜋 − 𝖱𝖺𝑀(𝑧)𝜃r,

∇ ⋅ u = 0,
𝜕𝜃

𝜕𝑡
+ 𝑣𝑏(𝑧)𝜃𝑥 +𝑤 =Δ𝜃.

(27)

By taking the third component of the double curl of (27)1, one easily 
obtains⎧⎪⎨⎪⎩
Δ𝑤 = 𝖱𝖺

[
−sin𝜑𝜃𝑥 +𝑀(𝑧) sin𝜑𝜃𝑥𝑧 − cos𝜑𝑀(𝑧)Δ1𝜃

]
,

𝜕𝜃

𝜕𝑡
+ 𝑣𝑏(𝑧)𝜃𝑥 +𝑤 =Δ𝜃.

(28)

Now by virtue of the periodicity and the fact that the system is linear 
and autonomous, we are allowed to seek (normal mode) solutions of 
the form (see [4,44–46])

( ) ( )

𝑤(x, 𝑡) = 𝑒𝑖 𝑎𝑥𝑥+𝑎𝑦𝑦 𝑊 (𝑧)𝑒𝜎𝑡 and 𝜃(x, 𝑡) = 𝑒𝑖 𝑎𝑥𝑥+𝑎𝑦𝑦 Θ̃(𝑧)𝑒𝜎𝑡, (29)
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with 𝜎 ∈ℂ. By virtue of (29), (28) becomes

⎧⎪⎨⎪⎩
(𝐷2 − 𝑎2)𝑊 = 𝖱𝖺

[
−sin𝜑𝑖𝑎𝑥Θ̃ + (𝜁 − 𝑧) sin𝜑𝑖𝑎𝑥𝐷Θ̃ + (𝜁 − 𝑧) cos𝜑𝑎2Θ̃

]
,

(𝐷2 − 𝑎2 − 𝜎)Θ̃ −𝑊 = −𝖱𝖺
(
𝜁𝑧− 𝑧2

2

)
sin𝜑𝑖𝑎𝑥Θ̃,

(30)

where 𝐷 = 𝑑

𝑑𝑧
, together with boundary conditions 𝑊 = Θ̃ = 0, on 𝑧 =

0, 1.

3.1. Analysis of the longitudinal perturbations

If we assume that the perturbations are longitudinal this means that 
they do not depend on 𝑥 and from (30) we obtain{

(𝐷2 − 𝑎2𝑦)𝑊 = 𝖱𝖺(𝜁 − 𝑧) cos𝜑𝑎2𝑦Θ̃,

(𝐷2 − 𝑎2𝑦 − 𝜎)Θ̃ −𝑊 = 0.
(31)

It is not difficult to show that 𝜎 is a real number. Indeed, from (31)2, 
one has

(𝐷2 − 𝑎2𝑦)
2Θ̃ − 𝜎(𝐷2 − 𝑎2𝑦)Θ̃ − (𝐷2 − 𝑎2𝑦)𝑊 = 0, (32)

then, from (31)1, one gets

(𝐷2 − 𝑎2𝑦)
2Θ̃ − 𝜎(𝐷2 − 𝑎2𝑦)Θ̃ − 𝖱𝖺(𝜁 − 𝑧) cos𝜑𝑎2𝑦Θ̃ = 0. (33)

Multiplying (33) by the complex conjugate of Θ̃ and integrating on the 
periodicity cell 𝑉 , one obtains

𝜎

⎛⎜⎜⎝
1

∫
0

(𝐷Θ̃)2𝑑𝑧+ 𝑎2𝑦

1

∫
0

Θ̃2𝑑𝑧
⎞⎟⎟⎠= −

1

∫
0

(𝐷2Θ̃)2𝑑𝑧

− 2𝑎2𝑦

1

∫
0

(𝐷Θ̃)2𝑑𝑧− 𝑎4𝑦

1

∫
0

Θ̃2𝑑𝑧+ 𝖱𝖺 cos𝜑𝑎2𝑦

1

∫
0

(𝜁 − 𝑧)Θ̃2𝑑𝑧.

(34)

This shows that 𝜎 ∈ ℝ and the principle of exchange of stability holds, 
i.e. convection can occur only via a stationary motion. As a conse-

quence, we can set 𝜎 = 0 in (31){
(𝐷2 − 𝑎2𝑦)𝑊 = 𝖱𝖺(𝜁 − 𝑧) cos𝜑𝑎2𝑦Θ̃,

(𝐷2 − 𝑎2𝑦)Θ̃ −𝑊 = 0,
(35)

in order to find the critical linear Rayleigh number for the onset of 
stationary convective motions with respect to the longitudinal pertur-

bations, for any fixed inclination angle and upper layer temperature:

𝖱𝖺
𝐿
= min

𝑎2𝑦∈ℝ+
𝖱𝖺(𝑎2𝑦), (36)

where the superscript  stays for Longitudinal. Moreover, it turns out 
that:

𝖱𝖺
𝐿
(𝜑) =

𝖱𝖺
𝐿
(0)

cos𝜑
, (37)

with 𝖱𝖺
𝐿
(0) the critical linear Rayleigh number in the case of a horizon-

tal layer 𝜑 = 0, see [16].

3.2. Analysis of the transverse perturbations

The system of transverse perturbations, i.e. independent on 𝑦, is in-

troduced in this Section. Setting 𝑎𝑦 = 0 in (30) one obtains:

⎧⎪⎨⎪⎩
(𝐷2 − 𝑎2𝑥)𝑊 = 𝖱𝖺

[
−sin𝜑𝑖𝑎𝑥Θ̃ + (𝜁 − 𝑧) sin𝜑𝑖𝑎𝑥𝐷Θ̃ + (𝜁 − 𝑧) cos𝜑𝑎2𝑥Θ̃

]
,

(𝐷2 − 𝑎2𝑥 − 𝜎)Θ̃ −𝑊 = −𝖱𝖺
(
𝜁𝑧− 𝑧2

2

)
sin𝜑𝑖𝑎𝑥Θ̃.
4

(38)
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It is worth observing that system (38) constitutes an eigenvalue system 
of ordinary differential equations

𝐴x = 𝜎𝐵x, (39)

with

𝐴 =

⎛⎜⎜⎜⎜⎝
𝐷2 − 𝑎2𝑥

𝖱𝖺 sin𝜑𝑖𝑎𝑥 − 𝖱𝖺(𝜁 − 𝑧) sin𝜑𝑖𝑎𝑥𝐷
−𝖱𝖺(𝜁 − 𝑧) cos𝜑𝑎2𝑥

−𝐼 𝐷2 − 𝑎2𝑥 + 𝖱𝖺
(
𝜁𝑧− 𝑧2

2

)
sin𝜑𝑖𝑎𝑥

⎞⎟⎟⎟⎟⎠
(40)

and

𝐵 =
(
0 0
0 𝐼

)
. (41)

The determination of the critical linear Rayleigh numbers with respect 
to the transverse perturbations, 𝖱𝖺

𝐿
(where the superscript  stays for 

Transverse), and the related stability results are delegated to Section 6. 
In particular, the numerical method employed for the resolution of the 
generalized eigenvalue problem (39) is described in Section 5.

4. Nonlinear stability

In this Section, we perform the nonlinear stability analysis by ap-

plying the weighted energy method, see [47], to the system for non-

linear longitudinal perturbations in order to obtain the critical energy 
Rayleigh numbers from a maximum problem. Let us consider the system 
for nonlinear longitudinal perturbations

⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝑢 = −𝖱𝖺𝑀(𝑧)𝜃 sin𝜑+ 𝖱𝖺
2
𝜃2 sin𝜑

𝑣 = −𝜋𝑦
𝑤 = −𝜋𝑧 − 𝖱𝖺𝑀(𝑧)𝜃 cos𝜑+ 𝖱𝖺

2
𝜃2 cos𝜑

𝑣𝑦 +𝑤𝑧 = 0
𝜃𝑡 +𝑤+ 𝑣𝜃𝑦 +𝑤𝜃𝑧 =Δ𝜃

(42)

in particular we can reduce to study subsystem (42)2−5, see [27]. Mul-

tiplying (42)2 by 𝑣, (42)3 by 𝑤, integrate each over 𝑉 and adding the 
result, one obtains

‖𝑤‖2 = −𝖱𝖺 cos𝜑 ⟨𝑀(𝑧)𝜃,𝑤⟩+ 𝖱𝖺 cos𝜑
2

⟨
𝑤,𝜃2

⟩
, (43)

and similarly, multiplying (42)5 by 𝑔(𝑧)𝜃 (setting 𝑔(𝑧) = 𝖱𝖺 cos𝜑(𝜇−𝑧) in 
order to get rid of the cubic nonlinear terms, with 𝜇 > 1 being a coupling 
parameter) and integrating each, one obtains, adding the result with 
(43):

𝖱𝖺 cos𝜑
2

𝑑

𝑑𝑡

⟨
𝜇 − 𝑧, 𝜃2

⟩
= −‖𝑤‖2 − 𝖱𝖺 cos𝜑 ⟨(𝜇 + 𝜁 − 2𝑧)𝜃,𝑤⟩

− 𝖱𝖺 cos𝜑
⟨
𝜇 − 𝑧, |∇𝜃|2⟩ . (44)

Let us then consider the following weighted Lyapunov functional:

𝐸(𝑡) = 𝖱𝖺 cos𝜑
2

⟨
𝜇 − 𝑧, 𝜃2

⟩
(45)

and set

𝐼(𝑡) = −𝖱𝖺 cos𝜑 ⟨(𝜇 + 𝜁 − 2𝑧)𝜃,𝑤⟩ ,
𝐷(𝑡) = ‖𝑤‖2 + 𝖱𝖺 cos𝜑

⟨
𝜇 − 𝑧, |∇𝜃|2⟩ . (46)

Therefore, from (44) it follows that

𝑑𝐸

𝑑𝑡
= 𝐼 −𝐷 ≤𝐷(𝑚− 1), (47)

where

𝑚 =max
𝐼

𝐷
, (48)
and  is the space of kinematically admissible perturbations, namely
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 =
{
(𝑤,𝜃) ∈ [𝑊 1,2(𝑉 )]2 |𝑤 = 𝜃 = 0 on 𝑧 = 0,1, 𝑤𝑧 = 0,

periodic in 𝑦 direction with period 2𝜋∕𝑎𝑦
}
.

(49)

From Poincaré and weighted Poincaré inequalities, one obtains, see 
[47]

1
2
⟨
𝜇 − 𝑧, 𝜃2

⟩ ≤ 𝜉
⟨
𝜇 − 𝑧, |∇𝜃|2⟩ , (50)

where 𝜉 =max
{

𝑐𝑝

2 ,2
}

, and 𝑐𝑝 = 𝑐𝑝(𝑉 ) is the Poincaré constant and, as a 
consequence, 𝐷 ≥ 𝜉−1𝐸. Hence, if 𝑚 < 1 from (47) it follows

𝑑𝐸

𝑑𝑡
≤𝐷(𝑚− 1) ≤ 𝜉−1(𝑚− 1)𝐸, (51)

i.e.

𝐸(𝑡) ≤𝐸(0) exp
(
𝜉−1(𝑚− 1)𝑡

)
. (52)

The energy estimate (52) proves that, provided 𝑚 < 1, 𝐸 decreases at 
least exponentially to zero as time goes to infinity. Finally, by using the 
generalized Cauchy-Schwartz and triangular inequalities we have(
1 − 1

2𝜀1
−

𝜀2
2

)‖𝑤‖2 ≤ 𝖱𝖺2 cos2 𝜑
(
𝜀1
2
‖𝜃‖2 + 1

8𝜀2
‖𝜃2‖2) , (53)

and setting 𝜀1 = 2 and 𝜀2 =
1
2 , we get

1
2
‖𝑤‖2 ≤ 𝖱𝖺2 cos2 𝜑

(‖𝜃‖2 + 1
4
‖𝜃2‖2) . (54)

Estimate (54) implies that the condition 𝑚 < 1 guarantees the exponen-

tial decay of the third component of the perturbed seepage velocity and 
the global nonlinear stability of the conduction solution with respect to 
the 𝐸-norm (45) is provided.

Concerning the variational problem (48) the associated Euler-

Lagrange equations are the following{
2𝑚𝑤k+ 𝖱𝖺 cos𝜑(𝜇 + 𝜁 − 2𝑧)𝜃k =∇𝜛

−(𝜇 + 𝜁 − 2𝑥)𝑤−𝑚𝜃𝑧 +𝑚(𝜇 − 𝑧)Δ𝜃 = 0
(55)

where 𝜛 is a Lagrange multiplier. Let us remark that the nonlinear 
stability condition 𝑚 < 1 is equivalent to the condition 𝖱𝖺 < 𝖱𝖺𝐸 , where 
𝖱𝖺𝐸 is the critical nonlinear Rayleigh number. Therefore, the criticality 
is reached when 𝖱𝖺 = 𝖱𝖺𝐸 in system (55) in correspondence of 𝑚 = 1. 
Therefore, taking the third component of the double curl of (55)1 and 
employing normal modes representation in (55), we obtain:

⎧⎪⎨⎪⎩
(𝐷2 − 𝑎2𝑦)𝑊 − 𝖱𝖺 cos𝜑

(
𝜇

2
+ 𝜁

2
− 𝑧

)
𝑎2𝑦Θ= 0(

𝜇

2
+ 𝜁

2
− 𝑧

)
𝑊 +𝐷Θ− (𝜇 − 𝑧)(𝐷2 − 𝑎2𝑦)Θ = 0

(56)

together with boundary conditions 𝑊 =Θ = 0, on 𝑧 = 0, 1. System (56) is 
a fourth-order generalized eigenvalue problem for the critical Rayleigh 
number 𝖱𝖺

𝐸
, which is given by

𝖱𝖺
𝐸
=max

𝜇>1
min

𝑎2∈ℝ+
𝖱𝖺(𝑎2𝑦, 𝜇) (57)

Moreover, it turns out that:

𝖱𝖺
𝐸
(𝜑) =

𝖱𝖺
𝐸
(0)

cos𝜑
, (58)

with 𝖱𝖺
𝐸
(0) the critical non-linear Rayleigh number in the case of a 

horizontal layer 𝜑 = 0, see [16].

5. Numerical method

In this section the eigenvalue system (39)-(41) is solved using the 
Chebyschev-𝜏 method developed by Dongarra et al in [48]. In order 
to ensure a deeper comprehensibility and repeatability of the employed 
method, let us start by considering the following generalized eigenvalue 
5

problem with homogeneous boundary conditions
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⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝐿𝑢(𝑥) = 𝜎𝑀𝑢(𝑥) 𝑥 ∈ [−1,1]

𝐵1𝑢(1) = 0 𝐶1𝑢(−1) = 0

⋮ ⋮

𝐵 Γ
2
𝑢(1) = 0 𝐶 Γ

2
𝑢(−1) = 0

(59)

where 𝐿 and 𝑀 are two arbitrary differential operators of order Γ, and 
𝐵𝑖, 𝐶𝑖 are the operators defining the set of boundary conditions at 𝑥 = 1
and 𝑥 = −1, respectively.

On multiplying the equation and the boundary conditions in (59) by 
the i-th (𝑖 = 0, … , 𝑁) Chebyschev polynomial under the usual product 
∫ 1
−1 𝑓 (𝑥)𝑔(𝑥)

𝑑𝑥√
1−𝑥2

, one obtains:

𝑁∑
𝑘=0

𝑁+Γ∑
𝑗=0

𝐿𝑘𝑗𝑢𝑗 = 𝜎

𝑁∑
𝑘=0

𝑁+Γ∑
𝑗=0

𝑀𝑘𝑗𝑢𝑗 , (60)

𝐵𝑢(1) = 0 ⇒
𝑁+Γ∑
𝑘=0

𝑁+Γ∑
𝑗=0

𝐵𝑘𝑗𝑢𝑗 = 0,

𝐶𝑢(−1) = 0 ⇒
𝑁+Γ∑
𝑘=0

𝑁+Γ∑
𝑗=0

(−1)𝑘𝐶𝑘𝑗𝑢𝑗 = 0.

(61)

Therefore, the system can be written as

⎛⎜⎜⎝
𝐿

𝐛𝑇
𝑖

𝐜𝑇
𝑖

⎞⎟⎟⎠𝐮 = 𝜎

⎛⎜⎜⎝
𝑀

𝟎𝑇
𝑖

𝟎𝑇
𝑖

⎞⎟⎟⎠𝐮. (62)

Since the boundary conditions establish a relation between the last Γ
coefficients and the others, the last Γ rows of the left-side matrix can be 
used to erase the last Γ columns of the first 𝑁 + 1 row of the matrices 
belonging to the right and left side of the equation. The following form 
is now obtained

⎛⎜⎜⎝
𝐿′ 0 … 0

𝐛𝑇
𝑖

𝐜𝑇
𝑖

⎞⎟⎟⎠𝐮 = 𝜎

⎛⎜⎜⎝
𝑀 ′ 0 … 0

𝟎𝑇
𝑖

𝟎𝑇
𝑖

⎞⎟⎟⎠𝐮, (63)

where 𝐿′ and 𝑀 ′ are the operator matrices after this reduction. The 
equation can be now limited to the first 𝑁 + 1 coefficient

𝐿′𝐮′ = 𝜎𝑀 ′𝐮′, (64)

where 𝐮′ is the vector containing the first 𝑁 + 1 expansion coefficients. 
Since the matrix 𝑀 ′ is not singular, the problem can be reduced to a 
standard eigenvalue problem and it can be solved with standard meth-

ods.

In order to apply the above method to the eigenvalue prob-

lem (39)-(41), the equations and the boundary conditions need to 
be changed into a suitable framework. With this aim, applying the (
𝐷2 − 𝑎2

)
operator to (30)2 we obtain

(
𝐷2 − 𝑎2

)
𝑊 =

(
𝐷2 − 𝑎2

)2 Θ̃ − 𝜎
(
𝐷2 − 𝑎2

)
Θ̃

+ 𝖱𝖺 sin𝜑𝑖𝑎𝑥
[(

𝜁𝑧− 𝑧2

2

)(
𝐷2 − 𝑎2

)
+ 2(𝜁 − 𝑧)𝐷 − 1

]
Θ̃,

(65)

and, substituting it into (30)1, we get

{(
𝐷2 − 𝑎2

)2 +𝖱𝖺 sin𝜑𝑖𝑎𝑥[(𝜁𝑧− 𝑧2

2

)(
𝐷2 − 𝑎2

)
+ (𝜁 − 𝑧)𝐷

]
− 𝖱𝖺 cos𝜑𝑎2

}
Θ̃ = 𝜎

(
𝐷2 − 𝑎2

)
Θ̃.

(66)

Let us notice that, in order to change the boundaries from [0, 1] to [−1, 1]
the change of variable 𝑧 = 𝑧

2 + 1
2 is performed. Then, defining 𝖱𝖺 = 𝖱𝖺

4 , 

𝑎𝑥 =

𝑎𝑥
2 , 𝑎𝑦 =

𝑎𝑦

2 , �̂� = 𝑑

𝑑�̃�
, we have
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Table 1

Critical Rayleigh numbers for quoted values of the upper layer temperature and inclination angles.

𝜁 = 1(𝑇𝑈 = 4) 𝜁 ≃ 0.6 (𝑇𝑈 = 6) 𝜁 = 0.5 (𝑇𝑈 = 8)

𝖱𝖺
𝐸

𝖱𝖺
𝐿

𝖱𝖺
𝐿

𝖱𝖺
𝐸

𝖱𝖺
𝐿

𝖱𝖺
𝐿

𝖱𝖺
𝐸

𝖱𝖺
𝐿

𝖱𝖺
𝐿

𝜑(𝑑𝑒𝑔)

74.219 77.0797 77.0797 154.873 198.031 198.031 248.009 471.483 471.483 0

74.502 77.3741 77.8129 155.464 199.7874 199.617 248.956 473.284 475.651 5

75.364 78.2687 80.1363 157.262 201.0859 205.441 251.835 478.756 488.752 10

76.837 79.7987 84.4853 160.336 205.0167 215.832 256.758 488.115 512.864 15

78.982 82.0265 91.8193 164.812 210.7402 233.725 263.956 501.742 552.685 20

81.891 85.04804 104.945 170.883 218.5030 261.563 273.648 520.224 618.801 25

85.701 89.0039 135.478 178.832 228.6665 317.971 286.376 544.422 742.793 30

90.605 94.0969 * 189.065 241.7512 511.990 302.763 575.574 1115.460 35

Fig. 1. Sensitivity of eigenvalue calculations on number of polynomials.
⎧⎪⎨⎪⎩
𝐿Θ̃ = 𝜎

(
�̂�2 − 𝑎2

)
Θ̃

Θ̃(𝑧) = 0, 𝑧 = ±1,
�̂�2Θ̃(𝑧) = 0, 𝑧 = ±1,

(67)

with

𝐿 =
(
�̂�2 − 𝑎2

)
+ 𝖱𝖺 sin𝜑𝑖𝑎𝑥

[
𝑃2(𝑧)

(
�̂�2 − 𝑎2

)
+ 𝑃1(𝑧)�̂�

]
− 𝖱𝖺 cos𝜑𝑎2,

(68)

where we set

𝑃1(𝑧) = 𝜁 (𝑧+ 1) −
(
𝑧+ 1

)2
4

, 𝑃2(𝑧) = 𝜁 (𝑧+ 1) − 𝑧+ 1
2

. (69)

Since the problem has been reduced to a form like (59) the method 
can be employed in order to find the eigenvalues through Shur’s de-

composition. Indeed, in the spectrum of the found eigenvalues the one 
with the largest real part is selected, and, for every fixed wave num-

ber, the Rayleigh number is varied until its real part changes its sign. 
The range of the Rayleigh number and wave number has been cho-

sen for the purpose of individuating the locus of the minimum of the 
marginal stability curve. This sign changing from negative(positive) to 
positive(negative) marks the transition from stability(instability) to in-

stability(stability). The calculation has been then repeated for different 
inclination angles until none of this kind of point is found. This pro-

cedure has been repeated for several temperature values of the upper 
layer, 𝑇𝑈 = 4, 6, 8 ◦𝐶 as long as we want to investigate penetrative con-
6

vection in the parabolic neighborhood of the maximum density value. 
The linear critical Rayleigh numbers with respect to the transverse per-

turbations are reported in Table 1.

In conclusion, let us report that a preliminary study of the method’s 
performance has been conducted. First of all, a sensitivity analysis has 
been conducted to investigate the behavior of the solver on the em-

ployed number of polynomials. Moreover, simulations with different 
numbers of polynomials have been launched calculating the eigenval-

ues of the investigated equation for the following parameters:

𝑇𝑈 = 4◦𝐶, 𝑎𝑥 = 2, 𝑎𝑦 = 0, 𝖱𝖺 = 400, 𝜙 = 30◦

The results are shown in Fig. 1: the values of both imaginary and real 
part of the calculated most unstable eigenvalues are stable for a number 
of polynomials between 8 and 120. This kind of analysis is the same 
conducted by Orszag [49], showing the convergence of the Chebyschev 
𝜏-method for the penetrative convection problem discussed above. With 
a larger number of polynomials, the results are strongly unstable. This 
is due to the truncation error in the derivative matrices as stressed by 
Dongarra et al. [48]. From this analysis, the choice of 16 polynomials to 
perform the calculations seemed reasonable, ensuring desired precision 
and avoiding truncation errors and time-consuming simulations.

6. Numerical results and conclusions

In this section, we present the results from the numerical solution of 
the generalized eigenvalue problems (35), (38) and (56), arising from 
the linear analysis of longitudinal and transverse perturbations and the 

non-linear analysis of the longitudinal perturbations, respectively. To 
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Fig. 2. Marginal stability curves for quoted values of the upper layer temperature, related to the linear transverse perturbations.
evaluate the effect of the layer inclination and of the upper-layer tem-

perature on the onset of convective motions, we performed numerical 
simulations for quoted values of 𝜑 and 𝑇𝑈 , respectively.

Concerning the linear analysis of the transverse perturbations, in 
Fig. 2 we can observe the marginal stability curves for quoted values 
of the layer inclination and the upper-layer temperature, and the cor-

responding critical Rayleigh numbers are reported in Table 1. These 
curves are obtained by selecting, for a fixed wave number, the linear 
Rayleigh number at which the real part of the eigenvalue changes its 
sign. Fig. 2 shows clearly the stabilizing effect of inclination on the 
onset of penetrative convection. Moreover, regarding the upper-layer 
temperature, we can observe that:

• since 𝜁 =
𝑇0
𝑇𝑈

, with 𝑇0 = 4◦𝐶 , is inversely proportional to the tem-

perature of the upper layer, as the temperature of the upper layer 
increases, given a fixed inclination, instabilities arise at a higher 
Rayleigh number, showing the stabilizing effect of the upper layer 
temperature;

• on the other hand, higher temperature allows instability to arise at 
higher inclination.

The latter behavior can be seen in a clearer way in Fig. 3 (a), where the 
critical Rayleigh numbers are plotted against the inclination at differ-

ent temperatures. The continuous lines represent the critical Rayleigh 
numbers for longitudinal perturbations while the dashed ones represent 
7

the transverse ones. It can be noticed that the transversal perturbations 
Table 2

Critical values of 𝜑.

𝜁 = 1(𝑇𝑈 = 4) 𝜁 ≃ 0.6 (𝑇𝑈 = 6) 𝜁 = 0.5 (𝑇𝑈 = 8)
𝜑𝑐𝑟 33.16◦ 35.84◦ 36.30◦

are more stable than the longitudinal ones for all the inclinations. More-

over, temperature increases shift to higher values of the critical angle 
as it is shown in Table 2.

Let us remark that, as it is expected, in the case of a horizontal layer, 
i.e. 𝜑 = 0, the found critical thresholds coincide with the ones found in 
[16].

Moreover, from the analysis of the three-dimensional perturbations, 
see e.g. Fig. 4, we saw that the longitudinal perturbations are the most 
destabilizing not only with respect to the transversal perturbations but 
also with respect to any rolls in the plane (𝑎𝑥, 𝑎𝑦), proving a Squire-like 
theorem for the problem under examination. Lastly, nonlinear analysis 
of longitudinal perturbations has been performed with the weighted en-

ergy method and in Fig. 3(b) the critical thresholds are plotted against 
inclinations for quoted values of upper layer temperature, comparing 
them for the corresponding threshold obtained through the linear anal-

ysis.

In summary, our results show that:

• in the limit case 𝜑 → 0, i.e. horizontal layers, the instability thresh-
olds coincide with the ones found in [16], [32, pag. 383] and [50];
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Fig. 3. Comparison of marginal stability curves.
Fig. 4. Critical surface in correspondence of 𝜁 = 1(𝑇𝑈 = 4◦𝐶) and 𝜑 = 33◦ .

• the inclination of the layer has a stabilizing effect on the onset of 
convection;

• the most destabilizing perturbations are the longitudinal ones;

• a Squire’s-like theorem is numerically proved, which means that 
the longitudinal perturbations are the most dangerous with respect 
to any general roll perturbation;

• the principle of exchange of stabilities has been proved in the case 
of longitudinal perturbations;

• the transverse perturbations destabilize only up to a certain incli-

nation’s angle and the critical angles are found for quoted values 
of the upper plane temperature;

• the nonlinear stability analysis for the longitudinal perturbations, 
8

with the weighted energy method, is performed.
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