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Performance Prediction of High-Entropy Perovskites
La0.8Sr0.2MnxCoyFezO3 with Automated High-Throughput
Characterization of Combinatorial Libraries and Machine
Learning

Carlota Bozal-Ginesta,* Juande Sirvent, Giulio Cordaro, Sarah Fearn, Sergio Pablo-García,
Francesco Chiabrera, Changhyeok Choi, Lisa Laa, Marc Núñez, Andrea Cavallaro,
Fjorelo Buzi, Ainara Aguadero, Guilhem Dezanneau, John Kilner, Alex Morata,
Federico Baiutti, Alán Aspuru-Guzik,* and Albert Tarancón*

Perovskite oxides form a large family of materials with applications across vari-
ous fields, owing to their structural and chemical flexibility. Efficient exploration
of this extensive compositional space is now achievable through automated
high-throughput experimentation combined with machine learning. In this
study, we investigate the composition–structure–performance relationships
of high-entropy La0.8Sr0.2MnxCoyFezO3±𝞭 perovskite oxides (0 < x, y, z <1;
x+y+z≈1) for application as oxygen electrodes in Solid Oxide Cells. Following
the deposition of a continuous compositional map using thin-film combinato-
rial pulsed laser deposition, compositional, structural, and performance proper-
ties are characterized using six different techniques with mapping capabilities.
Random forests effectively model electrochemical performance, consistently
identifying Fe-rich oxides as optimal compounds with the lowest area-specific
resistance values for oxygen electrodes at 700 °C. Additionally, the models
identify a statistical correlation between oxygen sublattice distortion—derived
from spectral analysis of Raman-active modes—and enhanced performance.
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1. Introduction

Mixed ionic electronic conductors (MIECs),
such as certain perovskite oxides (ABO3),
are essential for achieving high ca-
thodic oxygen reduction in intermediate-
temperature solid oxide fuel cells (IT-
SOFCs, T < 700 °C).[1–4] Due to their high
ionic conductivity and the consequent
increase in the active area, these MIEC
materials have progressively replaced elec-
trodes based on noble metals and electron-
conducting oxides like La1xSrxMnO3
(LSM),[5,6] which were originally employed
at higher operating temperatures. Cur-
rently, lanthanum strontium perovskite
oxide MIECs containing cobalt and iron in
the B-site, La1-xSrx(CoxFey)O3±𝞭 (0 < x, y <1;
x+y ≈1), are the most established cathode
material for IT-SOFC applications.[7–10]
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The electrochemical performance of MIEC electrodes toward oxy-
gen reduction is mainly governed by the oxide-ion diffusivity
through the lattice (D*) and the oxygen surface exchange coef-
ficient (k*). More precisely, Adler et al.[11] proposed the product
D*·k* as a figure of merit for porous MIEC electrodes operating
as cathodes in SOFCs, based on the solution to the continuum
model for one-dimensional electrodes. This model directly corre-
lates higher values of D*,·k* with lower area-specific resistances
(ASRs), which indicate better performance. However, the funda-
mental relationship between these two parameters (D*, k*) and
the intrinsic properties of the materials remains poorly under-
stood. Some theoretical studies relate D* and k* to the formation
energy of oxygen vacancies,[12] which in turn is related to the B─O
bond strength and the electron exchange driving forces in transi-
tion metals.[13] In particular, the ASR and k* of perovskites were
found to be strongly correlated to the oxygen p-band center,[7,14]

while the number of d electrons, the charge-transfer energy and
the eg occupancy, among other factors, were identified as rele-
vant descriptors of the oxygen evolution reaction activity in aque-
ous media.[15,16] Notwithstanding the efforts to understand these
phenomena, the obtained correlations are not always quantitative
or measurable, and thus not sufficient for guiding the design of
new materials and identifying the optimal composition within a
family of materials. The main difficulty is most likely the mul-
tidimensional and non-linear nature of these relationships. For
such complex relationships, machine learning techniques repre-
sent a promising and well-suited tool for performance modeling
and prediction.

To effectively apply machine learning models in materials sci-
ence, it is essential to have sufficiently large and consistent ex-
perimental datasets, where data for each composition is ide-
ally measured under identical conditions.[17] In materials re-
search, large theoretical datasets can be generated through high-
throughput ab initio simulations, but these are often constrained
to simplistic models.[18–21] In the extensive field of perovskite
oxides and materials for SOFC oxygen electrodes, the applica-
tion of machine learning is further limited by the lack of co-
herence in the reported experimental results, due to the vari-
ety of synthesis methods, measurement conditions, and figures
of merit.[4,22–24] Combinatorial synthesis methods[22,25] can help
overcome this problem by enabling the generation of mate-
rial libraries consisting of continuous compositional maps fab-
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ricated in a single process. In particular, combinatorial pulsed
laser deposition has been previously used to prepare thin-
film perovskite-based cathode materials,[26,27] including binary li-
braries of LSMC[28] and La0.8Sr0.2MnxO3.[6,29] The resulting com-
positional maps can then be more rapidly and consistently char-
acterized with high-throughput techniques under similar ex-
perimental conditions.[30–32] For example, the seminal work by
Papac et al. reported the electrochemical characterization of a
Ba(Co,Fe,Zr,Y)O3-𝛿 library for protonic ceramic fuel cells utiliz-
ing automated impedance spectroscopy measurements and dis-
tribution of relaxation times processing.[33–35] However, com-
plete and systematic experimental characterization datasets re-
main rare, and include only a small variety of characterization
techniques.[18,36–43] As a result, it is difficult to gain a comprehen-
sive insight into the intrinsic properties of the materials and their
relationship to the electrochemical performance.

Herein, we delve deeper into the experimental composition-
structure-performance relationships of La0.8Sr0.2MnxCoyFezO3±𝞭

(LSMCF) (0 < x, y, z <1; x+y+z ≈1) using big data and ma-
chine learning. In particular, we prepared a compositional map of
LSMCF (Figure 1a) through combinatorial thin-film deposition.
This map was then characterized through a high-throughput ap-
proach, employing multiple techniques: synchrotron X-ray flu-
orescence (XRF), X-ray diffraction (XRD), Raman spectroscopy
and ellipsometry, electrochemical impedance spectroscopy (EIS),
and isotopic exchange depth profiling coupled to secondary
ion mass spectrometry (IEDP-SIMS) (Figure 1b). The follow-
ing physicochemical information was obtained from these tech-
niques: cationic stoichiometry from XRF, crystal orientation and
unit cell dimensions from XRD, structural symmetry from Ra-
man spectroscopy, electronic transitions and film thickness from
ellipsometry, and the electrochemical performance from EIS and
IEDP-SIMS. We first processed the raw data to derive characteris-
tic features and developed a solution to match the samples from
different measurements. After feature extraction, a variety of ma-
chine learning methods with uncertainty quantification were ap-
plied to build highly generalizable models correlating experimen-
tal features and electrochemical performance properties of the
materials.

2. Results and Discussion

2.1. High Throughput Characterization of the
La0.8Sr0.2MnxCoyFezO3±𝞭 Materials Library

Thin film compositional maps of LSMCF (Figure 1a) were
prepared by combinatorial pulsed laser deposition on 4 inch
Si (100) and 3 inch 8% mol YSZ (100) wafer substrates cov-
ered with Ce0.8Gd0.2O2 (CGO) buffer layer. The parent com-
pounds of La0.8Sr0.2MnO3±𝞭 (LSM), La0.8Sr0.2FeO3±𝞭 (LSF) and
La0.8Sr0.2CoO3±𝞭 (LSC) were sequentially ablated in spatially sep-
arated layers with low thickness, allowing for the rearrangement
of the B-cation into a single perovskite phase (Figure S1 and
Section S1, Supporting Information).[44] The LSMCF library was
then comprehensively characterized with high-throughput char-
acterization methodologies (Experimental Section, Table S1, Sup-
porting Information). Figure 2 provides an overview of the com-
positional, structural, and functional properties analyzed for this
material library.
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Figure 1. a) La0.8Sr0.2MnxCoyFezO3±𝞭 combinatorial 4” wafer with different Mn:Co:Fe ratios. b) Data analysis workflow.

To evaluate the composition of the LSMCF system, XRF mea-
surements were performed at the SOLEIL synchrotron. The re-
sulting B-cation distribution is presented in Figure 2a, which
shows the normalized proportion of Mn, Co, and Fe obtained
from fitting the XRF spectra (Figure S2a, Supporting Informa-
tion). The distribution of these elements on the Si wafer substrate
is representative of the contribution of LSM, LSF, and LSC dur-
ing the deposition and agrees with the thickness distribution ob-
served (Figure S1, Supporting Information). Note that none of
the B-cation stoichiometry reaches a value of 1, indicating that
a degree of B-cation intermixing is always present. The distribu-
tion of Mn, Co, and Fe cations allowed the correlation of each
sample position on the Si wafer substrate with a specific LSMCF
composition.

The crystallographic structure of the combinatorial LSMCF
thin film was characterized by XRD in an automatized diffrac-
tometer. The diffraction patterns confirmed the presence of a
single perovskite phase all along the compositional space, with
the absence of secondary phases (Figure S2b, Supporting In-
formation). The XRD patterns of the perovskite phase could be
indexed in the cubic ideal perovskite phase, with well-defined
single peaks, but deviations from the cubic phase or widen-
ing of diffraction peaks like those observed in the rhombohe-
dral form of the perovskite phase could not be resolved. The
pseudo-cubic lattice parameter of the materials was calculated
from the diffractograms measured along the sample. Figure 2b
shows the variation of the pseudo-cubic lattice parameter of
the perovskite phase in the 3.85–3.96 Å range. The smallest
lattice parameter, a = 3.85 Å, is found in the Co-rich region,
as expected from the lower ionic radius of Co3+ when com-
pared to the other two cations, and in line with the literature
on Sr-doped and undoped cobaltite thin films.[45,46] A progres-
sive increase of the lattice parameter is observed with the addi-
tion of Mn, reaching a relative maximum at a = 3.93 Å, as ex-
pected for LSM.[47,48] Finally, the largest lattice parameter in the
LSMCF film corresponds to the Fe-rich region, reaching a value
of ≈3.96 Å, in agreement with values found in other LSF thin film
studies.[49,50]

To provide additional insight into the structural properties in-
fluenced by the B-cation distribution, the LSMCF sample was fur-
ther analyzed by Raman spectroscopy. Figure 2c shows all the

Raman spectra obtained from LSMCF. The peaks observed at
300, 520, and 940–970 cm−1 are characteristic of the Si(100) sub-
strate (Figure S3, Supporting Information).[46,47] It is evident that
the region more susceptible to changes throughout the mapping
lies within the 550–700 cm−1 range (Figure S2c, Supporting In-
formation). The Mn-rich portion presents a characteristic peak
centered at 630 cm−1, which shifts toward 650 cm−1 when the
Fe content in the LSMCF film increases. Finally, transitioning to
the Co-rich region results in a further shift of the Raman peak to-
ward ≈665 cm−1, while exhibiting a small shoulder at ≈620 cm−1.
This peak in the 630–650 cm−1 range has been typically assigned
to the Ag–type mode in the distorted rhombohedral symmetry

D6
3d (R3c) of Sr-doped lanthanum-based perovskites[51–54] and, in

iron- and cobalt-doped manganites, it is related to the stiffness
of the breathing mode of the oxygen octahedra (B′─O─B motif
in AB1-xB′xO3).[55,56] According to atomistic simulations,[13] the
strength of this bond seems to be directly related to the forma-
tion of oxygen vacancies in perovskites, which, in turn, drives the
oxygen mass transport properties of a material.

Since optical properties relate to redox reactions, as previ-
ously demonstrated for some parent compounds of the LSMCF
family,[49,50] the optical properties of the combinatorial LSMCF
thin film were also studied by means of spectroscopic ellipsom-
etry. Figure 2d shows all the optical absorption spectra obtained
during the mapping acquisition (see Figure S2d, Supporting In-
formation for individual spectra in the Mn, Co, and Fe-rich re-
gions). The Co-rich area dominantly absorbs in the low energy
range below 3 eV with a band at around 2.7 eV, while the Mn-
and Fe-rich regions have greater absorption in the high energy
range. In the case of the Mn-rich region, a low-intensity absorp-
tion band is present below 1.5 eV, in agreement with previous
studies on Sr-doped LSM.[57] The Fe-rich spectra also show a par-
tial increase of the optical absorption coefficient around 1.5 eV,
related to Sr-doping but less evident than in the Mn-rich region.
In addition, an optical feature is observed at ≈3 eV, which is re-
lated to the relevant electronic transition O 2p-Fe t2g.[49,50]

Regarding the functional properties of the LSMCF family, an
unprecedented study of the oxygen mass transport properties of
a complete ternary compositional map was carried out by us-
ing isotope exchange depth profiling – secondary ion mass spec-
trometry (IEDP-SIMS). In this study, the LSMCF sample was
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Figure 2. Characterization of the LSMCF combinatorial film. Composition: a) normalized B-site stoichiometry (B-cation ratio distribution) obtained by
XRF. Structure: b) Pseudo-cubic lattice parameter obtained from the XRD analysis; c) Raman spectra measured along the combinatorial sample; d) optical
absorption spectra from ellipsometry mapping. Performance: e,f) oxygen mass transport parameter maps from IEDP-SIMS at 400 °C; e) oxygen diffusion
coefficient D*; f) oxygen surface exchange coefficient k*. g,h) Electrochemical characterization resulting from the EIS mapping after the conditioning
period: g) activation energy and h) ASR calculated at 700 °C.
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exposed to an atmosphere enriched with ≈90% 18O isotopes at
400 °C for 30 min before measuring the corresponding isotope
exchange and induced diffusion profiles by SIMS. A collection of
18O fraction self-diffusion profiles is represented in Figure S2e
(Supporting Information). In this figure, two oxygen isotope dif-
fusion regimes can be differentiated along the compositional
map. In regions with high manganese content, the profile ex-
hibits an exponential-like decay in the 18O fraction along the z-
direction. This behavior is characteristic of mixed ionic electronic
conductors with poor ionic conduction, and it is often observed
in chromite-[58,59] and manganite-based[6,60] perovskites. On the
other hand, in the Fe- and Co-rich regions, the 18O concentra-
tion profile appears flat. This behavior is characteristic of trans-
port mechanisms dominated by surface exchange with no lim-
itation on oxygen diffusion through the film. After fitting these
isotopic oxygen diffusion profiles (Section S2, Supporting Infor-
mation), the most important magnitudes determining the oxy-
gen reactivity and mass transport properties of a material, the
oxygen diffusion coefficient (D*) and surface exchange coeffi-
cient (k*), were obtained for the complete library of materials
(Figure 2e,f; Figure S4, Supporting Information). The values of
D* fall within the range of 10−13–10−17 cm2 s−1, while the k*
varies from values on the order of 10−12 cm s−1 for the Mn-
rich compounds to 2 × 10−9 cm s−1 for both the Co- and Fe-
rich regions. The k*·D* product, a figure of merit of the elec-
trochemical performance,[61,11] thus varies in several orders of
magnitude from a lower limit of 10−28 cm3 s−2 for the Mn-rich
region until a maximum value of 4 × 10−22 cm3 s−2 for higher
amounts of Co and Fe. Estimated values of k*·D* on parent com-
pounds are higher than the ones reported in the literature for
bulk materials in the same temperature range. For example, the
Mn-rich region of our combinatorial map presents values of ca.
10−28 cm3 s−2 while LSM reported in the literature is typically be-
low 10−33 cm3 s−2.[62] Similarly, k*·D* values of 10−22 cm3 s−2

are calculated here for Co-rich regions while the ones reported
in the literature for LSC (20% Sr doping)62 are in the range of
10−25 cm3 s−2. This substantial enhancement of several orders
of magnitude in the activity of the thin film LSMCF library is
likely attributable to the presence of significant contributions to
the oxygen mass transport along highly diffusive defective grain
boundaries.[29,44,47,63,64] The origin of this enhancement was elu-
cidated in our previous works[29,44,49,65] for specific compositions
and can now be generalized with this work to the whole LSMCF
family.

Finally, the electrochemical performance was mapped using
a realistic electrochemical cell where LSMCF serves as the work-
ing electrode, the YSZ substrate acts as an electrolyte and a highly
performing silver layer is the counter electrode. The electrochem-
ical activity as a function of temperature was measured for the
whole LSMCF library in an automated probe station capable of
controlling the temperature and atmosphere while spatially scan-
ning the library. It is important to note that final measurements
were carried out after a conditioning period of 10 h at 750 °C to
avoid the evolution of these materials in the initial stages.[65,66]

The most relevant parameter of an electrode operating in a solid
oxide cell is the associated area-specific polarization resistance
(ASR), which can be obtained from EIS spectra using equiva-
lent circuit fitting. In this work, all the impedance spectra were
fitted with a single generalized modified Jamnik–Maier equiva-

lent circuit (Figure S5, Supporting Information) irrespective of
the composition. The temperature dependence of the resulting
values of ASR showed a typical Arrhenius behavior, which al-
lowed us to derive the preexponential factor (ASR0) and the acti-
vation energy (Ea) as temperature-independent performance de-
scriptors (Figure 2g; Figure S6, Supporting Information respec-
tively) from fitting ASR = ASR0·T -1·exp(Ea·k−1·T -1), where T and
k are the temperature and the Boltzmann constant, respectively.
Moreover, using the Arrhenius relation, the ASR at the specific
temperature of 700 °C was also calculated (Figure 2h) to facilitate
a direct comparison of the relative performance of the materi-
als compiled in this study while avoiding the observed variability
of temperatures along the library at fixed conditions (Figure S7,
Supporting Information). According to these results, the polar-
ization resistance is overall larger in Mn-rich regions than in
the Co,Fe-rich regions, consistent with Mn-rich perovskites poor
ionic conductivity and sluggish oxygen exchange at the surface,
even in thin-film form.[26] Nonetheless, the ASR values observed
in the Mn-rich regions are not as high as that of bulk LSM,[26,67]

probably due to the presence of Co and Fe, even at relatively low
amounts ((Co+Fe)min. = 0.3). The Mn and Co-rich regions ex-
hibit Ea values in the 1.6–2.1 eV range, while compositions with
higher cation intermixing show lower Ea values, approximately
in the 1.1–1.50 eV range. These values are considerably lower
than those found for the parent materials (i.e., 1.60, 1.72, and
2.35 eV for LSC, LSF, and LSM, respectively). The lowest ASR val-
ues down to ≈ 2Ω cm2 are localized in the Fe-rich region, with rel-
ative B-cation compositions in the ranges of 12–27% Mn, 12–25%
Co and 50–75% Fe. Increasing the content of Co and Mn leads to
progressively higher ASR, with the highest values observed in the
Mn-rich compounds. Despite these valuable general guidelines,
it is clear from the reduced number of electrochemical measure-
ments (limited by the complexity and duration of the automated
tests) that an adequate material optimization is not completely
possible only based on such direct and discrete measurements.

2.2. Machine Learning Modelling

2.2.1. Feature Extraction

After the compositional map of LSMCF was synthesized
and characterized using high-throughput methods (Figures S8
and S9, Supporting Information for a summary of the dataset),
we extracted several parameters from the raw data to use as fea-
tures in machine learning models. These features were grouped
into three sets called Composition, Structure, and Performance
(Table 1). The main goal of the work was to model the Perfor-
mance group of features, used as output parameters. The models
used either the Composition or the Structure group of features as
input parameters, labeled as Performance (Composition) and Per-
formance (Structure) models, respectively.

Regarding the Composition set, stoichiometries of Mn, Fe, and
Co from XRF synchrotron measurements were employed as the
only compositional parameters. Regarding the Structure set, four
types of features were extracted from XRD, Raman, and ellipsom-
etry measurements. We employed the lattice parameter derived
from the XRD measurements described above. With respect to
Raman, we employed parameters from Gaussians fitted to the
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Table 1. Summary of the characterization techniques used, the features extracted from the raw data, the number of features per sample, and the number
of samples with different compositions measured.

Group Characterization technique Extracted features Number of
features

Samples

Composition X-Ray Fluorescence (XRF) • Stoichiometry of Co, Fe and Mg 3 850

Structure X-Ray Diffraction (XRD) • Lattice Parameter 1 178

Raman • Fitted Gaussians
(Area, FWHM & Raman shift at Imax.)

36 139

Ellipsometry • Thickness and Roughness
• Absorption coefficient at Fixed Photon Energies

6 321

Performance Electrochemical Impedance Spectroscopy
(EIS)

• Activation Energy (Ea)
• Preexponential Factor

2 28

Exchange Depth Profiling – Secondary Ion
Mass Spectrometry (IEDP-SIMS)

• Oxygen Diffusion Coefficient (D*)
• Surface Exchange Coefficient (k*)

2 482

spectra (Figure 2c). A combination of twelve Gaussians was nec-
essary to satisfactorily fit each Raman spectra, with five Gaussians
being fitted in the 50–483 cm−1 range and seven Gaussians be-
ing fitted in the 569–1071 cm−1 range (Section S3, Figure S10,
and Table S2, Supporting Information). The 483–569 cm−1 shift
range containing the peak belonging to the Si substrate was omit-
ted because its larger intensity and contribution to the fitting er-
ror disrupted the correct fitting of the smaller peaks. The total
area, the full width at maximum intensity (FWHM), and the Ra-
man shift corresponding to the maximum intensity were calcu-
lated within the fitting range for each fitted Gaussian, resulting in
36 features. Finally, we employed two types of features from ellip-
sometry. From the absorption spectra (Figure 2d), the absorption
coefficient at photon energies of 1.6, 2.7, 3.5, and 4.4 eV, where
broad bands were observed, was obtained for further modeling
(Section S3, Figure S11, and Table S2, Supporting Information).
The thickness and the roughness of the film were also obtained
from the ellipsometer raw data (see Experimental Section). As a
result, a total of six features were extracted from Ellipsometry.
Regarding the Performance, four different parameters were ob-
tained from IEDP-SIMS and EIS measurements. In particular,
IEDP-SIMS delivered the oxygen diffusion and oxygen surface
exchange coefficient at 400 °C, while EIS measurements at differ-
ent temperatures were represented by the preexponential factor
and the activation energy characteristic of the observed Arrhenius
behavior (Figure 2e,f). The extracted feature groups, summarized
in Table 1, were then used either as input or target output param-
eters in machine learning models.

2.2.2. Machine Learning Method Screening

After the feature extraction, we subsequently evaluated the ac-
curacy of different machine learning methods in modeling dif-
ferent combinations of Composition, Structure, and Performance
relationships. Due to variations in the samples measured with
the different techniques across the wafer (Figure S9, Supporting
Information), the analysis focused on the data from the 321 co-
ordinates measured by ellipsometry, and the missing data was
calculated as a weighted average of the closest samples (see Meth-
ods). Seven supervised machine learning methods known for
their effectiveness with small datasets were tested, including k-

nearest neighbors (KNN), least absolute shrinkage and selection
operator regression (LassoR), kernel ridge regression (KRR), a
support vector machine (SVM), a random forest (RF), a multi-
ple layer perceptron (MLP) neural network and Gaussian Pro-
cesses (GP).[68–70] The average prediction score and uncertainty,
calculated via five-fold cross-validation on the training set and
representing the prediction capacity on unseen data,[71] are sim-
ilar to the score against a test set comprising 10% of the dataset
(Figure S12, Supporting Information, Experimental Section), in-
dicating limited overfitting.

Among all the ML methods, random forests exhibit some of
the best scores and robustness across various models, similar to
KNNs, and closely followed by SVMs (Figure S12, Supporting In-
formation). The good performance of KNNs, which rely on prox-
imity to make predictions, may stem from the continuous na-
ture of the compositional map and the similarity between the ML
method and the approach applied to merge data from different
techniques. The Performance (Composition) model display strong
prediction and generalization capacities, facilitating the estima-
tion of the performance for any composition, and the identifi-
cation of compositions with optimal performance. Notably, the
Structure feature group is also shown to reliably model Perfor-
mance, which will enable the correlation of the functional features
with the intrinsic properties of the materials. Random forests
were then selected for further investigation based on their good
prediction errors and their interpretability. The prediction accu-
racy of Random forests was further improved by exploring dif-
ferent Structure parameters, including three approaches to pro-
cess Raman and Ellipsometry spectra, different combinations of
features, and various scaling treatments (Sections S3 and S5,
Figures S13 and S14, Supporting Information). We proceeded
with random forests and the Structure features yielding the best
scores: fitted Gaussians from the Raman spectra and the absorp-
tion coefficient at fixed photon energies from the Ellipsometry
spectra.

2.2.3. Performance Prediction ML Models

The performance of the whole LSCMF family was predicted by
a Random Forest model using the B-cation stoichiometry as the
sole input, i.e., labeled as the Performance (Composition) model.
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Figure 3. Prediction by the Performance (Composition) random forest model. The output parameters of the model are the Performance features k*, D*,
Ea, and preexponential factor, separately, while the input parameters are the Co, Fe, and Mn ratios. a) Experimental values versus the values predicted
by the model. ML-predicted b) log(k*) at 400 °C, c) area-specific polarization resistance (ASR) at 700 °C, and d) log(D*) at 400 °C, starting from the
B-cation elemental stoichiometry as input. The star in (b–d) corresponds to the composition La0.8Sr0.2Mn0.09Fe0.75Co0.16O3±𝞭 with the optimal ASR700°C
of 3. Ω cm2, as predicted by the model.

The output parameters of the model were the Performance fea-
tures k*, D*, Ea, and preexponential factor, separately, while the
input parameters were the Co, Fe, and Mn ratios. The R2 of the
model is 0.959 ± 0.006, showing an excellent match between
the predicted and the experimental values (see Figure 3a for the
figure-of-merit k*·D*). Despite the good fitting, the divergence
of the predicted values with respect to the experimental values is
larger than with respect to the training data due to the coordinate
merging (Figures S15 and S16, Supporting Information). The
mean absolute error of the model for the experimental values is
0.2 eV, 101.2 Ω cm2 K−1, 100.6 cm s−1 , and 100.9 cm2 s−1, for the ac-
tivation energy, the preexponential factor, k* and D*, respectively.
Nevertheless, this does not prevent the Performance (Composi-
tion) from successfully identifying the composition range with
the best electrochemical performance and providing an insight
into the trends across the LSCMF compositional space.

Using this model, ternary continuous maps covering the full
range of Co:Fe:Mn ratios with infinitesimal resolution were pre-
dicted for k*400 °C (Figure 3b), D*400 °C (Figure 3d), the activa-
tion energy and the preexponential factor (Figure S15a,b, Sup-

porting Information). Additionally, the predicted ASR at the rel-
evant operation temperatures of 700 and 600 °C calculated from
Ea and the preexponential factor were also plotted (Figure 3c;
Figure S15c, Supporting Information respectively). All the pre-
dicted and experimental datasets have been made available to the
scientific community in an open repository.

Regarding the oxygen mass transport properties of the LSMCF
family, predicted values for k* and D* indicate that the best per-
formances (green areas in Figure 3b,d) are reached across the en-
tire range of Fe concentration (z ≈ 0.1–0.9), for moderate contents
of Mn (x < 0.4) combined with values of Co higher than Mn (y >
x). This highlights that manganese strongly decreases the oxy-
gen mass transport properties of the LSMCF compounds, espe-
cially those based on Co. Interestingly, this trend is not preserved
in electrochemical measurements (i.e., ASR after 10 h of stabi-
lization in Figure 3d), where better performances correspond to
materials with relevant amounts of Mn (up to x = 0.4). Indeed,
contrary to k*·D*, an excess of Co (x > 0.3) represents a penalty
for the ASR. This behavior is likely related to the deleterious sur-
face evolution of Co-rich compounds due to Sr segregation often

Adv. Mater. 2024, 2407372 2407372 (7 of 12) © 2024 The Author(s). Advanced Materials published by Wiley-VCH GmbH

 15214095, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/adm

a.202407372 by C
ochraneItalia, W

iley O
nline L

ibrary on [05/11/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

http://www.advancedsciencenews.com
http://www.advmat.de
https://onlinelibrary.wiley.com/action/rightsLink?doi=10.1002%2Fadma.202407372&mode=


www.advancedsciencenews.com www.advmat.de

Figure 4. Performance (Structure) random forest models. The output parameters of the model are the Performance features k* and D*, separately, while
the input parameters correspond to the Gaussian fitting of the Raman spectra, the lattice parameter, the thickness, the roughness, and the absorption
coefficient at fixed photon energies in the ellipsometry spectra. a) Experimental values versus the values predicted by the model and b) the corresponding
feature importance. c) Performance features log (k*·D*) as a function of key Structure features: the Gaussian Raman shift at Imax. around 𝜈 ≈650 cm−1,
the FWHM at 𝜈 ≈ 570 cm−1 and at 𝜈 ≈ 480 cm−1, and the Gaussian Raman shift at Imax. around 𝜈 ≈ 300 cm−1. The labels of the features in (b),
corresponding to the Gaussian fit of the Raman spectra, are calculated as the average wavenumber of the nth Gaussian across all the samples, where
n represents the position of the Gaussian when ordered according to the average wavenumber at Imax. The star in c corresponds to the composition
La0.8Sr0.2Mn0.08Fe0.84Co0.09O3±𝞭 within the optimal ASR700°C range of 3.4 ± 0.5 Ω cm2.

reported in the literature,[72–74] which could be partially compen-
sated by adding manganese according to our model. The optimal
ASR values at 700 °C correspond to compositions with x = 0–
0.4, y = 0–0.3, and z = 0.4–0.9, following a similar trend to that
at 600° (Figure S15, Supporting Information). The best ASR700 °C
performance values of 3.4 ± 0.5 Ω cm2 correspond to the com-
position range La0.8Sr0.2Mn0.08±0.04Fe0.84±0.07Co0.09±0.05O3±𝞭 with
log(k*·D*) of−23.5± 0.7 cm3 s−2, while the composition with the
best predicted performance is La0.8Sr0.2Mn0.09Fe0.75Co0.16O3±𝞭.

Similarly to the Performance (Composition) model, the accuracy
of Performance (Structure) random forest models was very high
(see the scores and the excellent matching between experimen-
tal and predicted values in Figure 4a, and Figures S17–S21, Sup-
porting Information). In this model, the output parameters of the
model are the Performance features k* and D*, separately, while
the input parameters correspond to the Gaussian fitting of the Ra-
man spectra, the lattice parameter, the thickness, the roughness,
and the absorption coefficient at fixed photon energies in the el-
lipsometry spectra. The relative importance of the different input
features in the final prediction is shown in Figure 4b. As observed
in the plot, the input features from the Raman spectra have the

largest relative importance. Eventually, it is possible to predict the
performance of the LSMCF family with R2 of 0.962 ± 0.004 using
models trained with Raman features as the only input features, as
opposed to an R2 of 0.63 ± 0.05 when the features from the ellip-
sometry spectra are used instead. In this Performance (Structure)
model, the Raman features were extracted from the Gaussian
functions fitted to the Raman spectra and yielded a similar fea-
ture importance distribution as Raman features extracted from
another approach based on the detection of Raman peak maxima
(Figure S22, Supporting Information). In parallel, the lattice pa-
rameter is observed to display a secondary role in the prediction,
as it represents the long-range structure but fails to capture the
short-range distortions. Other features, such as the thickness of
the layer at each composition or the peaks observed in ellipsom-
etry, do not govern the prediction accuracy of the model either.

According to Figure 4b, Raman bands in the regions of 200–
300, 450–500, and 600–700 cm−1 are especially relevant for
the electrochemical performance, which agrees with the results
of the correlation analysis (Figures S23–S24, Supporting In-
formation). For instance, the peak at ≈280–300 cm−1 shifts to
lower Raman shifts with increasing k*·D* and Co concentration
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(Figure 4c), which could be due to the appearance of a vibra-
tion mode <290 cm−1 overlapping with the Si substrate mode
at 300 cm−1 (Figure S3, Supporting Information). In parallel, the
peak at ≈650 cm−1 shifts to larger Raman shifts, and the peaks at
≈570 and ≈200 cm−1 become wider (Figure 4c). These Raman re-
gions have been previously assigned in the literature to lattice dis-
tortions present in nearly cubic Sr-doped lanthanum transition-
metal perovskites such as La1-xSrxMnO3 and La1-xSrxFeO3.[51–56,75]

These Raman-active modes in La1-xSrxMO3 (x < 0.3, M = Fe, Mn,
and Co) have been associated to disorder and distortions in the
oxygen sublattice (tilting, bending, and stretching of the oxygen
octahedra) due to a different ionic radius of the mixed-valence
B-site substituents and their specific electronic properties.[76]

For instance, the peak at 630–650 cm−1 has been previously as-
signed to the oxygen stretching in the extended B′─O─B mo-
tif of AB1-xB′xO3 in iron- and cobalt-doped lanthanum stron-
tium manganites, as described above.[49–54] Therefore, the Per-
formance (Structure) model presents an unambiguous statisti-
cal correlation between the distortions of the oxygen sublattice
and the electrochemical performances. These distortions can
be linked to mass transport properties using theoretical mod-
els that correlate the formation energy of oxygen vacancies with
the B─O bond strength and electron exchange driving forces.[13]

However, previous works were not able to quantify the impact
of the different transition metals on the oxygen sublattice dis-
tortions by establishing monotonic relations between the Ra-
man shifts/intensities and relevant physical magnitudes of the
B-cation, e.g. B─O bond distance and stiffness or the covalency
of the bond. Despite remarkable efforts dedicated to establishing
such relationships,[75–79] the link between vibrational modes and
oxygen mass transport properties has remained unclear, hinder-
ing the use of Raman spectroscopy for straightforwardly antici-
pating performance in perovskite oxides. In this work, we were
able to overcome this barrier and capture the relevant informa-
tion contained in the Raman spectra of the LSMCF family to pre-
dict the final performance of highly complex materials using ma-
chine learning models.

3. Conclusion

Following a high-throughput approach, this study integrates var-
ious experimental techniques with distinct limitations to com-
prehensively characterize a thin film compositional map of
La0.8Sr0.2MnxCoyFezO3±𝞭 perovskite oxides deposited via combi-
natorial pulsed laser deposition. Compositional, structural, and
functional properties were retrieved through XRF, XRD, Raman
spectroscopy, ellipsometry, IEDP-SIMS, and EIS mapping. Spec-
tral deconvolution techniques in tandem with machine learn-
ing methods, particularly Random Forest, enable excellent pre-
diction of mass transport properties (oxygen diffusion and sur-
face exchange coefficients) and electrochemical performance of
the whole family of materials while offering novel insights into
the significance of individual spectral features. In this regard,
we conclude that Raman spectra alone contain all the relevant
information for the prediction of electrochemical properties of
LSMCF perovskites. Additionally, the application of machine
learning has facilitated the creation of unprecedented continuous
functional property maps that effectively capture trends in exper-
imental samples despite the inherent variability in experimental

conditions, delivering optimal compositions for relevant SOFC
applications. To boost further development, we have made the
complete dataset available to the research community. Our inte-
grative approach not only advances the understanding of LSMCF
compounds themselves but also offers a promising framework
for optimizing the electrochemical properties of alternative sets
of materials, thereby accelerating the identification and develop-
ment of novel high-performance compositions.

4. Experimental Section
Thin Film Deposition: Thin film libraries of

La0.8Sr0.2MnxCoyFe1-x-yO3±𝞭 were prepared by combinatorial pulsed
laser deposition on a Si (100) (Siegert Wafer) and yttria-stabilized zir-
conia (YSZ) 8YSZ (100) (MSE Supplies) wafer substrates using a large
area pulsed laser deposition equipment (model 5000 PVD Products)
with a 248 nm KrF excimer laser (Lambda Physik, COMPex PRO 205).
Commercial targets (Kceracell) of La0.8Sr0.2CoO3, La0.8Sr0.2FeO3, and
La0.8Sr0.2MnO3 were employed for the deposition of the thin films. The
oxygen partial pressure was set to 0.007 mbar and the temperature was
700 °C. Depositions were done with an ablation frequency of 10 Hz, a
laser fluency of ≈0.8 J·cm─2 and a target-substrate distance of 90 mm.
The total number of pulses applied to each target in a single cycle was
adjusted to deposit a ≈1 nm layer of each parent compound. After the
ablation of each parent compound, the substrate holder was rotated
by 120°. The final thickness of the film was controlled by adjusting the
number of deposition cycles. The sample deposited on YSZ included a
Ce0.8Gd0.2O2 (CGO) interlayer deposited by large area PLD. During the
CGO deposition, the substrate was rotated at 10 rpm and the position of
the laser spot on the target was rastered to obtain a homogeneous layer.
The rest of the deposition parameters remained unchanged.

Compositional, Structural, and Optical Characterization: The compo-
sition of the films was analyzed by X-ray Fluorescence performed using
synchrotron radiation at the DiffAbs beamline of the SOLEIL facility. XY-
resolved XRF elemental characterization was carried out using a primary
beam energy of 12 keV and an incident angle of 10° between the source
beam and the sample surface. The beam spot was a 0.3 × 0.3 mm2 square,
but the projected area onto the sample surface increased to 1.25 mm in
the vertical direction due to the incident angle. The fluorescence signal
was collected with a 4-element silicon drift detector placed 50 cm away
from the sample. The acquisition was performed within a coordinate sys-
tem consisting of a 110 × 110 mm2 squared mesh with 1 mm lateral steps
in both the horizontal and vertical directions. Each XRF spectrum was col-
lected with an integration time of 0.2 s, and the entire map acquisition
took ≈40 min. A total of 6305 XRF patterns were obtained on the sam-
ple. To enhance the signal/noise ratio of the XRF data, binning with 3 mm
intervals was applied, resulting in ≈850 patterns to study. A Matlab code
was developed to analyze each XRF spectrum and calculate the elemental
Mn:Fe:Co ratio. The composition of the samples characterized by Raman
and Electrochemical Impedance Spectroscopies was analyzed by Energy-
dispersive X-ray spectroscopy (EDX) with a Carl ZEISS Auriga scanning
electron microscope operating at 18 kV.

In-plane (XY) resolved structural characterization was performed using
a Panalytical X’pert MRD X-ray diffractometer in the 𝜔-2𝜃 Bragg-Brentano
configuration. The instrument was equipped with a copper X-ray tube in
line-focus mode and a PIXcel3D detector in scanning-line mode, with an
active length of 2.511°2𝜃. The incident beam was modulated through 1/8°

divergence, 4 mm vertical, and 0.02 rad Soller slits, leading to a spot size of
≈2 mm2. Data acquisition was carried out within a coordinate system con-
sisting of a 90 × 90 mm2 squared mesh with 5 mm lateral steps both in the
horizontal and vertical directions, resulting in a total of 289 diffractograms.
Each XRD pattern was collected with a 1.1° tilt angle (𝜔0) to reduce the in-
tensity of the YSZ (200) and (400) reflections over the 20–80° 2𝜃 range
with 0.02° step and 140 s/step. The acquisition of each diffractogram took
≈30 min, resulting in a total measurement time of about 142 h. A cus-
tom Matlab code was developed to efficiently analyze the large number
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of diffractograms and obtain a sample map with the lattice parameters
of LSMCF. The code identifies the presence of LSMCF and CGO peaks in
each XRD pattern. All the identified peaks are fitted using a function com-
posed of two pseudo-Voigt profiles, simulating the K𝛼1 (1.5405929 Å) and
K𝛼2 (1.5444274 Å) Cu lines. The angular position in °2𝜃 is calculated for
each peak and used in a minimization routine to determine the sample
displacement and the lattice parameter of the LSMCF deposition.

Raman spectroscopy measurements were carried out in films deposited
on Si (100) with an XploRA Nano instrument (Horiba). A x100 objective, a
grating of 1800 (450–850 nm range), a 638 nm laser with a power filter of
25%, a slit of 200 μm, and a hole of 500 μm were used. Spectra were mea-
sured with an acquisition time of 2–5 s and 15–30 accumulations. Sam-
ples in the combinatorial films on Si (100) were measured with a spacing
of 7 mm. The Raman spectra were smoothed with a Savitzky-Golay filter
(savgol_filter from scipy) with a 3rd order polynomial. Filter window lengths
of 21 and 11 were used in the identification of maxima and in the Gaus-
sian fitting, respectively. Spectroscopic ellipsometry was carried out with
a multiwavelength light source (UVISEL, Horiba) and an automatized XY
stage. Within the combinatorial films on Si (100), 321 points distributed in
a cartesian grid were measured in the 1.5–5 eV energy range. The absorp-
tion spectra and the thickness were obtained by fitting four oscillators to
the raw data with a batch processing functionality of the DeltaPsi2 analysis
software (Horiba).

Functional Characterization: IEDP-SIMS was employed for studying
the oxygen kinetics of the LSMCF combinatorial library. A combinatorial
LSMCF film grown directly on a 3″ diameter Si (100) substrate was selected
for the analysis. The sample was enclosed in a quartz tube and pumped
down to 10−7 mbar. A first annealing was performed at 400 °C in 200 mbar
of pure oxygen (99.999%) with 18O2 in the normal isotopic abundance. Af-
ter the annealing, the tube was pumped down and re-filled with a ≈90%
18O2 enriched gas (200 mbar). The sample was quenched to room tem-
perature once the exchange was completed. The conditions selected for
the isotope exchange were 400 °C and 30 min. The 18O diffusion profile
signal was recorded using a TOF-SIMS 5 instrument (IONTOF GmbH).
The mapping was carried out by scanning the sample with a 3 mm spac-
ing between the measured points. A total of 480 points were measured by
the end of the experiment.

A large-size high-temperature probe station (MicroXact CPS-HT) was
employed to carry out electrochemical impedance spectroscopy (EIS)
mappings. The chamber remained closed during the measurements and
synthetic air flowed through at 500 mL min−1. A low impedance silver
paste electrode (Sigma-Aldrich) was brushed on the bottom of the YSZ
wafer, while a layer of gold paste (Fuel Cell Materials) was applied on top of
the combinatorial film to improve the electrical contact. A platinum wire
and a gold-plated tip were then used to connect to the bottom and top
parts, respectively. To electrically isolate individual spots of the films, the
thin films were scribed into 3 × 3 mm2 squared samples with a custom-
made diamond cutter coupled to an automatized robocasting equipment.
The films were immobilized on a hot plate with a stainless-steel metallic
ring and clamps together with alumina felt insulators to improve the ho-
mogeneity of the thermal distribution. EIS measurements were performed
with a Novocontrol impedance spectrometer in the 1 MHz–0.2 Hz fre-
quency range, at open circuit potential and with 50 mV of amplitude. A to-
tal of 50 frequency points were measured in each impedance spectra. The
wafers were kept under constant temperature for at least 15 min. prior to
the measurement, and several impedance spectra were measured in each
sample to confirm the absence of thermal drift. The impedance spectra
were fitted with a modified Jamnik-Maier equivalent circuit model, allowing
the extraction of the series resistance (Rs) and the area-specific polariza-
tion resistance (ASRp). The activation energy Ea and preexponential factor
ASR0 of a reference YSZ substrate were calculated by fitting the Arrhenius
equation (ASR = ASR0·T −1·exp(Ea·k−1·T −1), where T and k are the tem-
perature and the Boltzmann constant) to temperature-dependance mea-
surements in a ProboStat furnace setup with precise temperature control.
The real temperature of each spot in the wafer was obtained by measur-
ing the ASR of the reference YSZ in the same probe station as LSMCF at
different temperatures. Once the calculated temperature distribution was
mapped along the wafer at each temperature set, a linear fit was obtained

(Treal vs Tset) to correct for artifacts coming from parasitic resistances in
the setup. With this analysis, the preexponential factors and activation en-
ergies across the LSCMCF film were extracted from fitting the Arrhenius
equation.

Machine Learning Modelling: Before the modeling, the data from the
different techniques was merged based on either the wafer coordinates if
the data corresponding to the same batch (Table S1, Supporting Informa-
tion) or the stoichiometry. The weighted average of each property in the
closest neighbors was calculated, with the weights being inversely pro-
portional to the sum of the absolute differences in stoichiometry or wafer
coordinates. The datasets used in all the models are built based on wafer
coordinates measured by ellipsometry unless otherwise stated.

To train and test the machine learning models, the dataset was split
using train_test_split from scikit-learn, saving 10% as test set and with
the random state set to 42. The prediction performance of the models
was evaluated in two main ways: through 5-fold cross-validation on the
training set (289 datapoints), and against the test set (32 datapoints). The
optimal hyperparameters for each machine learning model were identi-
fied using a Bayesian optimization approach (BayesSearchCV from scikit-
optimize) on the training set, with a five-fold cross-validation and the ran-
dom state equal to 42. The supervised machine learning models tested
were:KNeighborsRegressor, Lasso, KernelRidge, SVR, RandomForestRegres-
sor, MLPRegressor, and GaussianProcessRegressor (all from scikit-learn). The
hyperparameters optimized in each method are listed in Table S3 (Sup-
porting Information). The input data used in the method screening
(Figure S12, Supporting Information) were scaled using the MinMaxScaler
from scikit-learn; no scaling was applied during the rest of the modeling.
The performance scores in the training set and their uncertainty were cal-
culated as the average score across the five cross-validation folds and the
standard deviation, respectively. Finally, principal component analysis was
carried out with PCA from scikit-learn, while the correlation matrix was cal-
culated using the functionality.Dataframe.corr from pandas.

Supporting Information
Supporting Information is available from the Wiley Online Library or from
the author.
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[76] A. Dubroka, J. Humlíček, M. V. Abrashev, Z. V. Popovíc, F. Sapiña, A.

Cantarero, Phys. Rev. B 2006, 73, 224401.
[77] M. Bouzayen, R. Dhahri, A. Benali, S. Chaabouni, K. Khirouni, B. F.

Costa, J. Mater. Sci.: Mater. Electron. 2021, 32, 13000.
[78] F. B. Abdallah, A. Benali, M. Triki, E. Dhahri, K. Nomenyo, G. Lerondel,

J. Mater. Sci: Mater. Electron. 2019, 30, 3349.
[79] W. Rativa-Parada, J. A. Gómez-Cuaspud, M. Schmal, A. F. Cruz-

Pacheco, E. Vera-López, J. Aust. Ceram Soc. 2021, 57, 767.

Adv. Mater. 2024, 2407372 2407372 (12 of 12) © 2024 The Author(s). Advanced Materials published by Wiley-VCH GmbH

 15214095, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/adm

a.202407372 by C
ochraneItalia, W

iley O
nline L

ibrary on [05/11/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

http://www.advancedsciencenews.com
http://www.advmat.de
https://onlinelibrary.wiley.com/action/rightsLink?doi=10.1002%2Fadma.202407372&mode=

