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Chapter 1

Introduction

The aviation industry has been characterized by a sharp growth in recent years, owing
mainly to the strong demand of both leisure and business travelers. This spectacular
growth in air traffic volumes has its roots in the increase in competition in the airline
market that is derived from the deregulation process in the United States, which started
in the 1970s, and from the more recent Open Sky agreement, also involving European
countries, which started in the early 1990s (Borenstein and Rose, 2014). The deregula-
tory process has been substantially more difficult in Europe than in the United States
because it had been necessary to dismantle several bilateral agreements among European
countries, differently from the process in the United States, which affected solely a mar-
ket composed of domestic operations. In particular, Europe had to replace all bilateral
agreements among its countries and replace them by the coordination of a supranational
organization such as the European Union over Member States. However, despite the fact
that deregulation has brought benefits to passengers in terms of lower fares and a wider
choice of new carriers to fly with (Kahn, 1988), such as low-cost carriers, this movement
has also introduced new potential sources of market distortion. Given the lack of coor-
dination among regulatory institutions, distorting components have the ability to spread
easily among airlines’ networks, fostering the difficulties of governments in developing ef-
ficient responses to disruptive events such as the recent COVID-19 pandemic or in finding
a common international climate agreement. This thesis contributes to the presentation
and evaluation of how distortions in the aviation market alter the competitive environ-
ment and how correcting policies that do not take them into account properly can end
up leading to unexpected outcomes.
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Externalities and distorting forces can assumes different forms within the aviation
industry. They encompass from competition inefficiencies to environmental damages.
Academics devoted much effort over the years to explore the impact of carriers market
power in the airline competitive industry. Market power arises in condition where the
market depart from be perfect competitive and lacks of enough competing firms. Several
reasons can lead to this situation in which incumbent firms are not able to serve the
market due to high entry-barriers or due to a monopoly and oligopoly condition. The
results of market power is a departure from the efficient fully-competitive output due to
fares higher than the social optimum.
Related to output distortions, the Mohring effect (Mohring, 1972) plays an important role
in the willingness of passengers to fly. This positive externality consists increasing return
to scale in passenger utility due to a higher service frequency. Specifically, an increase in
airline operations increase the demand of passengers willing to fly. This implies that to
serve the newly generated higher traffic volume, a higher service frequency is required,
generating a feedback loop process. The Mohring effect has been extensively studied in
the urban transport literature but is missing from aviation related analysis.
Airlines have continuously leveraged on their network structure in order to maximise their
profits. Two main paradigms of network configurations establish over the years: the point-
to-point and the hub-and-spoke structures. Point-to-point network relies on connecting
directly airports served by an airlines. This structure is typical of low-cost carriers. The
hub-and-spoke structure relies on an intermediate airport, the hub, which aggregate all
the traffic and connects remote airports, the spokes. This network structure leverage
on generating high economies of densities through the exploitation of hub airports. The
drawbacks of this network structures are that it is more prone to delays given the high
level of traffic in hub airports, and that it generates more pollution given the rerouting of
flight to the hub airport.
In particular, curbing aviation emissions is considered one of the current main challenge
of the industry. Some emission regulation mechanisms have been propose so far, but
their effectiveness is not clear yet. Furthermore, these policies are prone to free-riding
behaviours, emissions leakages to unregulated countries and to double marginalisation
from overlapping mechanisms. These regulatory shortcomings undermine schemes effi-
ciency. Most importantly, these schemes fall shortly in the case of all the aforementioned
distortions are not considered in the policy design process and may generated outcomes
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far from the expected ones.
The Covid-19 pandemic had represented an exogenous distorting shock that severely af-
fected the entire aviation industry. Specifically, the imposition of lockdown measures by
local governments resulted in a collapse of traffic volume, undermine the survivability of
airlines, most of them already burden in debts.

By presenting three papers, this thesis aims to investigate the distortions in the com-
peting aviation market and to highlight the principal sources of failure in effectively regu-
lating the industry. The papers presented in this thesis use a wide range of methodologies.
The first paper belongs to the econometrics domain with a focus on time series analysis
and forecasting practices. The second and third papers bridge optimization algorithms
with game-theoretic models, with a focus on finding a solution to complex games.

Chapter 2 presents the first paper of the thesis. This paper provides estimates of the
disruptive impact of the COVID-19 outbreak on air transport at the macroregional level.
To this end, weekly data on air service volumes are analyzed through an ITS SARIMA
model and a counterfactual analysis covering 2016-2020. This paper shows that the real
effect of COVID-19 was a reduction greater than 80% in all macroregions of the world in
May 2020, and still a decrease of approximately 70% at the end of summer 2020, with
the only exception of China and eastern Asia and North America, where the reductions
are, respectively, -29% and -54%. Empirical evidence confirms that the impact of the
pandemic crisis and subsequent lockdown has been dramatic, much more disruptive than
any previous crisis. This paper also finds that the impact is greater for intercontinental
connections and for legacy airlines, while low-cost carriers appear to be slightly more
resilient. These results confirm that airline economic sustainability is currently at high
risk and that the unequal resources of the various countries in subsidizing national airlines
could generate a competitive imbalance in the future.

Given the aforementioned situation during the COVID-19 pandemic, Chapter 3 of
this thesis models the impact of bailout schemes on the competitive airline market. By
blending game theory with operations research practices, this paper develops a Nash
single-stage, best-response game. Under this framework, airlines compete at a strategic
level by setting airfares, service frequencies, and the size of their fleet. Investigating
the European aviation market, served by both legacy and low-cost carriers, this paper
assesses how the form of aid offered during the COVID-19 outbreak may lead to changes in
market equilibrium outcomes over the coming years. The impact of government bailouts is
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addressed by identifying changes in social welfare, taking into account passengers, airlines,
and governments. The results suggest that the European Commission has likely distorted
the competition in aviation markets by allowing Member States to provide different types
of rescue packages. In addition, this paper shows that the most efficient solution would
have been to coordinate state aid uniquely in the form of loans. Furthermore, the proposed
methodology could be applied ex ante as a screening tool to rescue firms in a network-
based industry should exogenous shocks be an issue.

Using a similar approach to the one proposed in the previous chapter, Chapter 4 of
this thesis presents a game-theoretic model to analyze market equilibria in the presence
of environmental policies at national and supranational levels. In a two-stage game, reg-
ulators maximize social welfare over their jurisdiction by setting emission charges, whilst
airlines compete through frequencies, fares, and fleet choice. Consequently, airlines decide
whether to absorb the costs of the environmental charges, pass them on to consumers,
replace part of their fleet with new and less polluting and more fuel efficient aircraft,
redistribute the inefficient fleet to less regulated itineraries, or adapt their networks. The
equilibria outcomes suggest the presence of several distorting forces in the aviation market
that can undermine the effectiveness of environmental policies. To assess the robustness
of our results, the model is applied to North American and Western European markets
under different regulatory configurations, such as a global scope regulation under a single
regulator, a regulator duopoly, and a setting characterized by regulators with overlapping
jurisdictions. This paper shows that a reduction in the emissions produced comes at
the expense of welfare and that the effectiveness of the policy is limited when regulators
interact in their own interests in presence of market distortions.

Chapter 5 presents the conclusions summarizing the findings and results of this thesis.
This final chapter also provides a discussion of the implications of not properly evaluating
distorting forces in defining aviation policies.
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Chapter 2

The disruptive impact of COVID-19 on

air transportation: An ITS econometric

analysis

2.1 Introduction1

The air transportation industry has suddenly passed from a positive and flourishing sen-
timent regarding the industry and its future development to a shocking situation due to
the COVID-19 pandemic crisis, that has severely affected the sector. Up to the end of
year 2019 forecasts were extremely positive: Airbus (2019) and Boeing (2019) forecast, re-
spectively, +4.3% and +4.6% annual increase in air transportation demand for the period
2019-2038, new aircraft demand reaching about 39,000 and 44,000, confirming the re-
silience of the industry despite financial, economic, and geopolitical crises (Boeing (2019)
points out a +6.7% annual increase in passengers demand since year 2010). Eurocontrol
(2019) reports lower annual demand increase in Europe (+1.9% in the period 2019-2040),
but shares the same optimistic view.

These positive sentiment was literally destroyed by the COVID-19 pandemic crisis,
which started in China in January 2020 and then spread to Europe and all over the world
(currently involves 188 countries). Since the beginning of the crisis, the numbers have

1This chapter is based on the paper published as Andreana G., Gualini A., Martini G., Porta F., Scotti
D., The disruptive impact of COVID-19 on air transportation: An ITS econometric analysis. Research
in Transport Economics (2021)
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shown that the lockdown adopted in most countries with infections has had dramatic
effects in the industry. ICAO (2020) estimates for the full year 2020 an overall reduction
ranging from 32% to 59% of seats offered by the airlines, an overall reduction of 1,815 to
3,213 million passengers, and about USD 236 to 416 billion potential reduction of airlines’
gross operating revenues (if we take the central value of this range we get that airlines are
losing 1 billion USD a day). ICAO considers some scenarios relating to the easing period
and the end of the lockdown, i.e., V-shaped, U-shaped, or L-shaped. At the moment it is
not possible to say with certainty which of these scenarios is the prevailing one. However,
the latter scenario, at least for year 2020 and probably also for 2021, it is very likely to
prevail. Hence, it is highly likely that the air transport sector will not quickly return
to pre-crisis levels.2 Furthermore, the greater use of smart-working during the lockdown
could lead executives to severely limit business travels in the future, negatively impacting
long-distance business flights which represent the most profitable segment of the market.

Despite the above uncertainty about the future, it is now possible to provide esti-
mates of the impact of the COVID-19 crisis and the consequent lockdown on the air
transportation activities, and of the recovery taking place in the post-lockdown period.
Moreover, using an appropriate econometric method, it is possible to identify the real
effect of COVID-19. To this purpose, a simply intertermporal comparison of observed
data may be misleading. A proper estimate must rely on the comparison to a conterfac-
tual scenario, i.e., the levels that would have been observed in the absence of COVID-19.
It is also interesting to analyze whether the outbreak has had the same impact on the
different world’s macro-regions, and if full-service carriers (FSCs) and low-cost carriers
(LCCs) have been affected in the same way. These are precisely the goals of this pa-
per, namely (1) to estimate the impact of COVID-19 on the air transport sector using
a counterfactual analysis, and (2) to identify which macro-regions and airline business
models have been most penalized. In this sense, we aim to analyse the real downturn in
terms of airlines operations taking into account for industry growth trends across regions.
Without controlling for these trends, any comparison with pre-pandemic years results in
underestimate of the pandemic impact.

The COVID-19 pandemic is a recent phenomenon. The first official data for China
date back to the beginning of January 2020. Towards the end of February 2020, the

2IATA (IATA, 2020b) estimates that passenger traffic will not rebound to pre-crisis levels until at
least 2023.
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pandemic spread to Italy, and within a few weeks across Europe and the world. The
resulting lockdown was generally implemented since mid-March, and has forced about 4
billion people into their homes and stopped the vast majority of businesses, including air
transportation. After about two months the lockdown was gradually lifted, maintaining
more limited restrictions on the movement of people between some countries. This co-
incided with a general resumption of activities during the summer of 2020. Regarding
air transport, the recovery was partial, as will be seen below. In fact, many people have
not resumed flying, merely moving within national borders, and business travel is still
significantly reduced.

Being the COVID-19 a recent event there are not many contributions in the literature.
As far as we know, the majority of the few available studies have analyzed the impact of
the air travel ban on the spread of coronavirus. Chinazzi et al. (2020) study the impact
of lockdown on the COVID-19 contagion rate in the Wuhan area in China, and find that
the restrictions on flights from/to China delayed the progression of the epidemic in that
area but it didn’t have a big impact in limiting the spread all over the world. Lau et al.
(2020) investigate the same issue and find that the air travel ban and the consequent
lockdown have led to a significant decrease in the contagion rate, doubling the number of
infected people from 2 to 4 days. Gilbert et al. (2020) analyze the vulnerability of African
countries to the spread of the COVID-19 outbreak using the volume of air travel departing
from China and directed to Africa and find that aviation is a driver of contagion and this
exposes some countries more than others. Christidis and Christodoulou (2020) develop a
model to measure the risk, in the early months of 2020, of the disease spreading outside
China, and identify the countries most affected by the pandemic. The predictive model
identifies the passengers from the Hubei region as the main driver to explain the growth
of the first COVID-19 cases in many countries.

Some recent contributions have instead investigated the impact of COVID-19 on dif-
ferent dimensions of aviation. Sun et al. (2020) analyze the changes in the global aviation
network due to the pandemic, focusing on network metrics, number of O-D pairs, and
number of aircraft in operation. They find a stronger impact in the Southern hemisphere
and a more marked connectivity reduction in international flights compared to domestic
ones, especially in the US. Forsyth et al. (2020) examine the impact of COVID-19 on air-
ports’ performances, and highlight that, given the large decrease in passengers and traffic,
there is a need for public subsidization. Iacus et al. (2020), using historical data from the
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SABRE database, limited to October 2019, elaborate a predictive model of the effects of
the lockdown on the economy. Having no actual data on the post lockdown sector, they
assume hypothetical scenarios, and show how the lockdown leads to an estimated reduc-
tion of world GDP between 1.4% and 1.7% in the worst case scenario. Their estimates
are rather low, and also are not aimed only at the air transport sector, which is instead
the focus of this work.

Some other contributions have investigated the influence of other exogenous shocks on
air transport. Lai and Lu (2005) study the impact of the 11th September 2001 terrorist
attacks on US air travel demand, and find that both domestic and international air traffic
were significantly impacted, but only temporarily. After only one month following the
terrorist attack to the Twin Towers, the industry had recovered to pre-shock levels. Other
papers have exploited some quasi-natural experiments due to exogenous shocks to identify
either the contribution of air transportation to regional growth in the US (Blonigen and
Cristea (2015)), or to the international trade volumes in Italy (Brugnoli et al. (2018)).3

Conti et al. (2019) analyze, instead, the effects of a new European airport regulation on
aeronautical charges.4

Our contribution differs from the previous ones since it uses the COVID-19 outbreak as
an exogenous shock to estimate the impact on air transportation using a single interrupted
time series (ITS) model. The ITS model can be adopted when an exogenous shock affects
all the population and not only a treatment group (Baicker and Svoronos (2019)), i.e., it
is a quasi-experimental design that does not require data on a control group. As other
models estimating the effects of a shock (i.e., regression discontinuity design, difference–
in–differences model) ITS allows to compare the observed trend to a counterfactual one.
However, in a ITS model the counterfactual is estimated using the time series, as shown
by Baicker and Svoronos (2019) and Bernal et al. (2017). Hence, differently from Sun
et al. (2020), Iacus et al. (2020) and Forsyth et al. (2020), we do not assess the impact of
COVID-19 on aviation activity using observed data, but we estimate its causal effect by

3Blonigen and Cristea (2015) exploit the U.S. Air Deregulation Act (1978) and show, using data over
the 1969-91 period, that a +50% increase in aviation activity generates a +7.4% increase in real GDP over
20 years. Brugnoli et al. (2018) use the Alitalia’s de-hubbing from Milan Malpensa airport to estimate
an elasticity of aviation activity on international trade up to +0.13%.

4Conti et al. (2019) exploit the European airport regulation model introduced in 2009 and adopted by
EU member states between 2011 and 2014. This new setting was applied to all airports with more than
5 million passengers per year. Using data for the 2008-2017 period (air airports with less than 5 million
annual passenger as a control group), they find that the new regulation led to a reduction of about 2%
in airport charges.
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comparing the observed trend with a counterfactual, i.e., a trend that would be observed
in absence of an exogenous shock. This means that the counterfactual trend is generated
by using the data before the exogenous shock (the lockdown) in order to have a projection
after it (the post-period trend).5

We analyze the effects of COVID-19 and the subsequent lockdown on air transporta-
tion by applying a ITS framework with errors following a SARIMA model to a weekly data
set from the beginning of 2016 to 8th September 2020. The reference date chosen for the
lockdown is different among the world macro-regions, and it is identified using the share
of grounded scheduled seats due to the travel ban. Consequently, the lockdown started
in different weeks of March 2020. This means that our data set can be divided into two
sub-samples: several pre-lockdown weeks (ranging between 220 and 222) pre-lockdown
weeks and 24-26 post-lockdown weeks. Such a structure, combined to the utilization of
a ITS model with SARIMA errors, allows to study the observed trend of the industry
for the period before and after the lockdown, and to check the magnitude of the recovery
during the Summer 2020.6

Regarding aviation activity, we focus on three key supply-side variables of the air
transport industry: seats available on scheduled commercial flights around the world,
flight frequencies, and total ASKs.7 The data are extracted from the OAG archive and
are grouped by 10 world macro-areas: North America, Western Europe, Eastern Europe,
Latin America, Africa, Middle East, Oceania, Central Asia & India, South-East Asia, and
Eastern Asia & China.8 Clearly, it may be interesting to study other supply-side effects
due to the lockdown. For instance, many airlines have adopted a cancellation strategy
after the lockdown: flights are scheduled (and hence, seats are available), but then are
canceled if the load factor is too low. This cancellation policy may further reduce the

5ITS requires that two conditions are fulfilled: (1) a sufficiently long time interval before the shock,
and (2) the absence of concurrent changes to exogenous shock. We have weekly data for a 4-year period
before the lockdown, a sufficiently long time span with repeated seasonal effects. No other shocks have
the impact of the lockdown.

6As previously mentioned, we have enough information to build a counterfactual scenario representing
what it would have occurred in the absence of the COVID-19 outbreak and the subsequent lockdown,
during the year 2020. This extends the analysis from a comparison between observed and past data, to
an estimate of the “real” loss of traffic – i.e., the decrease in air service volume compared to the predicted
(and never observed due to the pandemic crisis) level of air traffic.

7Available seat kilometers (ASK) are a key variable in air transportation, given by seats multiplied by
flight distance.

8The lockdown date for China is 4th February 2020, earlier than the other macro-regions, since several
countries have imposed travel bans to flights to/from China before adopting themselves the lockdown.
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available seats during the recovery period. However, we have no data regarding offered
and then canceled seats.

Moreover, the COVID-19 outbreak has also exerted a strong effect on the demand for
air transportation. Both business and leisure travels have been dramatically reduced and
this may be a long-lasting effect, since the pandemic may have changed the willingness to
travel. We can observe some features of the demand side, since we have data regarding the
bookings up to June 2020, i.e., the first month of resumption of activity in air transport
after the lockdown. Hence, we can only look at some short-run effects regarding the
demand side, while the long-run impact on the willingness to travel, and on the interaction
with airlines capacity and supply strategies, might be explored when more data will be
available.

Last, the lockdown has affected cargo activities. The e-commerce market has exploded
because consumers, not being able to go to brick-and-mortar stores, have provided a
very strong impulse to online orders using channels such as Amazon, Alibaba, etc. This
significant push in demand for products transported by air has mainly turned towards
integrators (DHL, Fedex, UPS, etc.). In fact, full-service airlines carry out cargo services
mainly using the hold capacity on passenger aircraft. Bombelli (2020) find that integrators
capacities surpassed their nominal values in North-East Asia, North America and Europe
since March 2020. Suau-Sanchez et al. (2020) argue that the significance of air cargo has
been vindicated by the Covid-19 crisis. Shipments of food and medical supplies have been
protected by governments to ensure the supply of basic necessities. Li (2020) focus on the
China market and confirms that air cargo suffered a less severe depression than passengers
during the period December 2019-May 2020. The IATA cargo industry outlook (IATA,
2020a) points out that, despite an extra-utilization, freighters are insufficient. The ongoing
capacity crunch continues to be driven by the lack of international passenger traffic. In
July 2020, international belly cargo capacity was down by 70.5% on year-on-year base,
a modest progress from the peak of the crisis in April (-82.5%). All these contributions
highlight that the impact of COVID-19 on full-cargo traffic has been exactly the opposite
than the dramatic decrease occurred in passenger activity. However, we do not have data
on cargo volumes and focus only on the passenger segment effects, which is, in any case,
the most important one in the air transportation sector.

The paper is organized as follows: Section 2.2 presents the econometric model adopted
to estimate the effect of the lockdown and the counterfactuals in the absence of the
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COVID-19 pandemic crisis. Section 2.3 presents the data and provides a first descriptive
analysis of the impacts. Section 2.4 shows the results of the econometric analysis, while
Section 2.5 highlights the main evidence achieved. Some further estimates to test the
robustness of the results are given in the Appendix at the end of the paper.

2.2 Empirical methods

To estimate the effect of the lockdown on air transport, we use a weekly time series of
seats offered on scheduled flights, which consists of 246 observations from 29th Decem-
ber 2015 until 8th September 2020. We apply a ITS framework with errors following a
SARIMA(p, d, q)(P,D,Q)s model, i.e., the error term takes also into account for autore-
gressive (AR) and moving average (MA) components, differencing and seasonal effects
(Box et al. (2015)).9

The ITS SARIMA(p, d, q)(P,D,Q)s model is defined by the following two equations:

yt = α0 + α1 · t+ α2 · Lt + α3 · t · Lt + β · xt + ηt (2.1)

ηt = ϕ1ηt−1 + ...+ ϕpηt−p + ϵt + ...+ θ1ϵt−1 + ...+ θqϵt−q+

+Φ1ηt−s + ΦPηt−s−P +Θ1ϵt−s−1 + ...+ΘQϵt−s−Q.
(2.2)

In Eq. (2.1) the dependent variable yt is the weekly number of seats in scheduled
flight in a macro-region, while α0 + βxt represents its baseline level when there is no
lockdown. The latter is captured by the variable Lt, which is equal to 1 from the first
week of lockdown in each of the 10 macro-regions and 0 before. The lockdown did not
start at the same time around the world. Moreover, even within each macro-region, the
lockdown started at different dates. To take these differences into account we examined
the share of seats no longer available due to the forced cessation of airline activity on the
total number of seats offered in a given macro-region in the first week of January 2020.
We then assume as the lockdown date in a macro-region the week in which at least 50%
of the seats entered into lockdown. The coefficient α1 is the baseline trend slope (t is the
trend) when Lt = 0. When the lockdown is implemented the ITS model modifies both
the level and the trend slope: the former becomes α0 + α2 + βxt, the latter α1 + α3, i.e.,
α2 is the post-lockdown change in level, and α3 is the change in trend slope after the

9s indicate the number of time steps for a single seasonal period.
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restriction.

The regressor xt is given by the number of COVID-19 cases recorded in the 10 macro-
regions according to the John Hopkins University (JHU) database (Jonh Hopkins Uni-
versity, 2020).10. The use of this variable allows to disentangle the effect of imposed
restriction from the airline lower supply in the different phases of the pandemic not af-
fected by lockdowns. The cases of people infected with coronavirus start prior to the
lockdown date and represent in Eq. (2.1) the independent response, from the decisions of
the various national governments, of the air transport sector to the spread of COVID-19.
They are included in the model to separate the government block from the spread of the
disease. In most macro-regions the trend of cases is not influenced by the lockdown in the
period considered, since people confinement take time to show its effect on the contagion
rate.11 The estimated coefficient of the interaction term T ·Lt, i.e., α3, is a variable of in-
terest, since it captures the impact of lockdown on the air transportation sector obtained
by implementing a ITS design.

We estimate a log-linear model of Eq. (2.1), i.e., the dependent variable is the loga-
rithmic transformation of the response variable. To identify the percentage variation in
the volume of seats we can rewrite Eq. (2.1) (dropping the subscript t for simplicity) as
follows:

log(y) = α0 + α1 · t+ α2 · L+ α3 · t · L+ β · log(x) + η

Our aim is an estimate on the seats volume y; hence we can make the following exponential
transformation:

elog(y) = eα0+α1·t+α2·L+α3·t·L+β·log(x)+η,

and compute it when L = 1:

y(L = 1) = eα0+α1·t+α2·L+α3·t·L+β·log(x)+η,

and under L = 0:

10The cases recorded by the JHU database start from 22nd January 2020 in China.
11The exception is China that started the lockdown in the Wuhan region on 23rd January 2020 and

removed it on 8th April 2020.
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y(L = 0) = eα0+α1·t+β·log(x)+η

The relative variation is as follows:

y(L = 1)− y(L = 0)

y(L = 0)
=
eα0+α1·t+α2·L+α3·t·L+β·log(x)+η − eα0+α1·t+β·log(x)+η

eα0+α1·t+β·log(x)+η
,

which simplifies to:

eα2 · eα3·t,

so that the percentage variation is eα2 · eα3·t×100. By inspection, the impact of lockdown
depends on the period t. However, we need also an estimate of what is the trend before
and after the lockdown, i.e., what is the impact of time (the trend t) on y. The latter
depends if L = 0 or L = 1. Hence we need to compute y(t) and y(t + 1) when L = 0

and when L = 1. Start with L = 0. We have (for simplicity we assume that x = 0) the
following:

y(t)|L=0 = eα0+α1t

and

y(t+ 1)|L=0 = eα0+α1·(t+1)

so that

y(t+ 1)|L=0 − y(t)|L=0

y(t)|L=0

=
eα0+α1·(t+1) − eα0+α1t

eα0+α1t

i.e., eα1 − 1. Let us look now at the trend when L = 1

y(t)|L=1 = eα0+α2+(α1+α3)t

and

y(t+ 1)|L=1 = eα0+α2+(α1+α3)·(t+1)

so that
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y(t+ 1)|L=1 − y(t)|L=1

y(t)|L=1

=
eα0+α2+(α1+α3)·(t+1) − eα0+α2+(α1+α3)t

eα0+α2+(α1+α3)t

and we get that it is equal to eα1+α3 − 1. Hence, the percentage impact of the lockdown
on the industry is given by (eα1+α3 − 1) · 100. The number of COVID-19 cases is also
expressed in logarithm, i.e., the coefficient β is an elasticity. The model in Eqs. (2.1)–
(2.2) is estimated 10 times, one regression for each of the 10 investigated macro-regions.

Eq. (2.2) defines the error term ηt temporal structure, a SARIMA(p, d, q)(P,D,Q)s

process with autoregressive order p for the ARIMA component and P for the seasonal
one, moving average order q and Q, respectively, and the degree of differencing among
periods d and D. The seasonal lag is defined by the parameter s, and in our case is given
by 52, i.e., we consider a yearly seasonal effect. The model coefficients are ϕ1, . . . , ϕp,
θ1, . . . , θq, Φ1, . . . ,ΦP and Θ1, . . . ,ΘQ, whereas the innovation error term ϵt is assumed to
be normally distributed with zero-mean and variance σ2. The model is estimated with
maximum likelihood (Hyndman and Athanasopoulos, 2018).

We need to address some identification problems in order to have unbiased estimates
of the coefficients. First, we need to identify the SARIMA model with the best goodness
of fit, i.e., to specify the parameters of the autoregressive, and moving average orders, as
well as the degree of differencing. We control for this possible mis-specification by using
the Hyndman-Khandakar algorithm (Hyndman and Athanasopoulos (2018)) implemented
by the auto.arima() function in R, that combines unit root tests, minimization of the
Akaike Information Criterion (AIC) and MLE to obtain a SARIMA model.12 Second,
we need to check if the residuals from the selected SARIMA model are white noise. Our
post-estimation diagnostic analysis involves both a check of the residuals by plotting the
autocorrelation function (ACF) and by implementing a portmanteau test, i.e., a Liung-
Box test.

Last, we need to estimate the counterfactual time series, to have a complete outcome
of the ITS model. The counterfactual time series represents the predicted times series
under the hypothesis that the COVID-19 never happened and the lockdown did not take
place. The counterfactual time series is obtained by estimating the SARIMA model using
the Hyndman-Khandakar algorithm applied to a data set limited to the end of the year
2019, and then computing the forecasts for all weeks up to 8th September 2020 as shown

12The algorithm minimizes the corrected AIC, given by AIC + 2(p+q+k+1)(p+q+k+2)
T−p−q−k−2 , where k is the

parameter for the number of independent variables and T is the maximum time period.
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in Box et al. (2015) and in Hyndman and Athanasopoulos (2018). In this way, we control
for time varying confounding factors of the dependent variable, since the data for the year
2020 are clearly not representative of a normal trend. Furthermore, we control also for
the possible effect of some events that occurred before the COVID-19 outbreak that may
modify the counterfactual analysis, such as the grounding of the Boeing 737MAX during
the year 2019.

2.3 Data and descriptive analysis

In this Section we describe how we build a data set to estimate the impact of lockdown in
air transportation and present some descriptive statistics regarding the observed trends
in the 10 macro-regions. The data refer to the total number of seats available on com-
mercial flights scheduled for each week in the following 10 macro-regions: Africa (AF),
Central and Southern Asia–AS1 (including India and Pakistan), South Eastern Asia–
AS2, Central Eastern Asia–AS3 (including China, Japan and the two Korean republics),
Western Europe–EU1, Eastern Europe–EU2, Latin America–LA, Middle East–ME, North
America–NA and Oceania–OC. The macro-regions have different characteristics, shown
in Table 2.1. Africa (AF) and Central Eastern Asia (AS3) are the largest territories, while
South Eastern Asia (AS2) and Eastern Europe (EU2) are the smallest ones. However, the
two macro-regions with highest population density are Central and Southern Asia (AS1)
and South Eastern Asia (AS2), while Oceania has the smallest population density. The
macro-regions have been affected by the COVID-19 outbreak at different times and with
different intensities: the largest number of cases in May 2020 is in Western Europe and in
North America, while it is in Latin America and North America in September 2020. In
May 2020 the share of cases on the macro-region population was varying between 0.01%
in Africa, Central and Southern Asia (AS1) and South Eastern Asia (AS2), and 0.3%
(Western Europe). In September 2020 the same share varies between 0.07% (Central
Eastern Asia–AS3) and 1.95% (Latin America–LA). These data are important since they
highlight the role played in the diffusion of the contagion by the different population con-
centration. In fact, EU1 and NA result, as the richest macro-regions, among the most
affected (respectively 0.54% and 1.15% of the population at the beginning of September).

In addition to available seats in scheduled flights, we also consider the weekly dynamics
of flight frequencies and ASKs. Frequencies allow to analyze the effects of lockdown on
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Total Intra macro-region Extra macro-region
Macro-region Seats Frequency ASK Seats Frequency ASK Seats Frequency ASK
AF -72.8% -60.8% -84.6% -65.8% -55.0% -75.7% -83.7% -81.8% -88.9%
AS1 -57.3% -51.4% -71.4% -47.2% -43.6% -49.3% -86.7% -85.0% -88.7%
AS2 -70.1% -65.1% -81.5% -63.1% -59.3% -65.9% -91.3% -91.5% -91.1%
AS3 -50.2% -45.2% -63.7% -44.5% -40.8% -46.2% -88.8% -86.3% -90.1%
EU1 -92.5% -90.9% -93.5% -93.0% -91.0% -94.2% -91.1% -90.4% -93.0%
EU2 -79.6% -78.7% -79.9% -69.0% -70.6% -65.9% -86.7% -85.8% -84.9%
LA -83.9% -72.4% -89.9% -81.7% -69.1% -85.4% -92.6% -91.3% -94.5%
ME -67.7% -61.1% -81.4% -46.3% -43.5% -50.4% -85.7% -82.8% -87.0%
NA -67.0% -63.2% -76.8% -63.4% -61.1% -67.4% -92.1% -91.3% -92.9%
OC -88.5% -80.8% -91.5% -88.0% -79.9% -91.6% -90.9% -89.8% -91.4%

Table 2.1: Macro regions’ characteristics and COVID-19 impact

the intensity of the origin–destination network. ASKs instead show the dynamics relating
to the length of the scheduled flights; they allow, for example, to assess whether there has
been a greater reduction on short and medium-haul flights than on long-haul ones. These
data are taken from the Official Aviation Guide (OAG) Schedule Analyzer database. The
number of COVID-19 cases per countries are obtained from the JHU online database.
They are aggregated at the macro-region level.

The variations in seats, frequencies and ASKs are observed at two time periods: the
week beginning 21st April 2020, exactly in the middle of the lockdown time interval
(usually it lasted 2 months) and the week beginning 8th September 2020, i.e., in the
new normal period, with the lockdown ended about 3-4 months earlier and the restart of
economic activities, including aviation, but still some restrictions imposed on the people
mobility.13

Table 2.2 shows the percentage variations of seats, frequency and ASK in the 10 regions
in the week starting 21st April 2020 compared to the same week in year 2019. Similar
patterns are observed for available seats, frequencies and ASKs not only at the global
level, but also when looking at sub-samples of traffic flows (i.e., intra and extra-regional
ones). The highest reduction in total seats is in EU1 (-92.5%), followed by OC (-88.5%).
The smallest reduction is in AS3 (-50.2%) because at the end of April 2020 China had
already relaxed the restrictions on the movement of people and economic activities. The
reduction in total flight frequencies was lower as compared to what observed in total
available seats: again the highest reduction is in EU1 (-90.9%), followed by OC (-80.8%),
and the lowest reduction in AS3 (-45.2%). As for ASK, on the other hand, the largest

13For instance, in Europe during the summer 2020 people traveling from US by air were required a
quarantine period at the arrival in a European country.
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reduction are recorded: -93.5% in Western Europe (EU1), and -91.5% in Oceania. North
America (NA) has a reduction of -67% in seats, -63.2% in frequency, and -76.8% in ASK.

The middle columns of Table 2.2 shows the reductions to air services within the macro-
region. These are greater than the total ones for EU1 only: in all other macro-regions
the domestic seats negative variation has been lower than the total one. Looking instead
at the three columns to the right of Table 2.2, EU1 is the only macro-region exhibiting a
reduction in intercontinental flights lower than the total. The highest reduction is in LA
(-92.6%), and all other macro-regions have greater reductions in long-haul flights. Hence,
the observed variation in the middle of the lockdown period is extremely high, never
observed before worldwide in air transportation and above two-third in all macro-regions,
with a strong peak in Western Europe, where the activity has been decreased very close
to a complete stop. In general, frequencies have decreased less than seats while ASK have
decreased more.

Total Intra macro-region Extra macro-region
Macro-region Seats Frequency ASK Seats Frequency ASK Seats Frequency ASK
AF -72.8% -60.8% -84.6% -65.8% -55.0% -75.7% -83.7% -81.8% -88.9%
AS1 -57.3% -51.4% -71.4% -47.2% -43.6% -49.3% -86.7% -85.0% -88.7%
AS2 -70.1% -65.1% -81.5% -63.1% -59.3% -65.9% -91.3% -91.5% -91.1%
AS3 -50.2% -45.2% -63.7% -44.5% -40.8% -46.2% -88.8% -86.3% -90.1%
EU1 -92.5% -90.9% -93.5% -93.0% -91.0% -94.2% -91.1% -90.4% -93.0%
EU2 -79.6% -78.7% -79.9% -69.0% -70.6% -65.9% -86.7% -85.8% -84.9%
LA -83.9% -72.4% -89.9% -81.7% -69.1% -85.4% -92.6% -91.3% -94.5%
ME -67.7% -61.1% -81.4% -46.3% -43.5% -50.4% -85.7% -82.8% -87.0%
NA -67.0% -63.2% -76.8% -63.4% -61.1% -67.4% -92.1% -91.3% -92.9%
OC -88.5% -80.8% -91.5% -88.0% -79.9% -91.6% -90.9% -89.8% -91.4%

Table 2.2: Aviation industry percentage change compared to the same week of the previous
year, 21st April 2020

As mentioned before, the lockdown ended in almost all macro-regions in May 2020,
and since June 2020 the aviation activity restarted, exploiting the summer season for the
Northern hemisphere. Hence, we analyze the annual variations in seats, frequencies and
ASKs until the beginning of September 2020, shown in Table 2.3.

The post lockdown period shows a recovery in aviation activity in all macro-regions.
Regarding total seats, the highest reductions in September 2020 are in Oceania (OC,
-74.3%), Latin America (LA, -65.7%) and Africa (AF, -62.9%), with Central Eastern
Asia (AS3) having the smallest reduction (in comparison with the same week in the year
2019), i.e., only -21.9%. North America has recovered about half of available seats (-54.2%
reduction), as well as Central and Southern Asia (AS1, -55.9%). Western Europe (EU1),
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Total Intra macro-region Extra macro-region
Macro-region Seats Frequency ASKs Seats Frequency ASKs Seats Frequency ASKs
AF -62.9% -54.4% -67.0% -60.3% -51.1% -62.7% -67.0% -66.2% -69.1%
AS1 -55.9% -51.7% -60.9% -51.6% -47.8% -51.6% -68.9% -68.6% -68.3%
AS2 -59.6% -54.9% -72.8% -50.7% -47.7% -54.6% -86.2% -87.0% -84.1%
AS3 -21.9% -17.4% -41.5% -13.3% -10.9% -15.3% -79.5% -76.2% -80.9%
EU1 -59.1% -57.8% -65.6% -56.1% -55.5% -55.2% -69.2% -68.1% -74.5%
EU2 -41.8% -44.0% -47.7% -19.4% -28.8% -15.2% -57.0% -57.5% -59.9%
LA -65.7% -59.7% -69.3% -65.6% -59.0% -66.5% -66.1% -65.4% -72.7%
ME -60.4% -56.1% -66.1% -52.1% -48.5% -51.5% -67.1% -65.0% -68.7%
NA -54.2% -51.8% -62.2% -51.6% -50.5% -53.2% -73.2% -71.4% -76.6%
OC -74.3% -62.5% -82.8% -71.7% -60.5% -79.1% -85.5% -84.6% -85.4%

Table 2.3: Aviation industry percentage change compared to the same week of the previous
year, 8th September 2020

Middle East (ME) and South Eastern Asia (AS2) are still suffering a robust reduction,
respectively -59.1%, -60.4%, and -59.6%. Eastern Europe (EU2) has only a -41.8%, the
second-lowest reduction. If we compare the data between May 2020 (Table 2.2) and
September 2020 (Table 2.3), the strongest recovery has been in Europe (EU2 has a +38%
of minor reduction, EU1 +33%), and Central Eastern Asia (AS3, +28%). North America
has +13% in minor reduction regarding seats, Oceania +14%, Latin America +18%, Africa
and South Eastern Asia (AS2) +10%, Middle East +8% and Central Southern Asia (AS1)
only +2%. Regarding frequency, the recovery was more modest, but Central Eastern Asia
is almost returning to normal figures (-17.4%), while the other macro-regions are still at
more than 50% (EU2 -44%). Similarly for ASKs: even in Central Eastern Asia (AS3) the
reduction in September 2020 is still consistent (-41.5%). This means that the recovery
after the lockdown has been concentrated especially in short and medium-haul flights, and
in domestic flights, as shown by the data for intra macro-region and extra macro-region
in Table 2.3, with all the figures indicating greater reductions in intercontinental flights.
Hence, even in the recovery phase, COVID-19 is harming especially long-haul flights.

Figure 2.1 displays the index number of the total seats in the different regions taking
as reference equal to 100 the figure of 29th October 2019. This index number provides a
description of the most recent trends and of the impact of lockdown if compared to the
situation in the middle of Autumn 2019. The three vertical lines correspond to the starting
week of the lockdown period in the corresponding macro-regions. The lockdown date in a
macro-region is defined on the basis of the percentage ratio between the ”grounded seats”
due to the lockdown (i.e., the difference between the available seats at a specific week and
the available seats at the reference week of January 2020) and the total seats offered in
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that macro-region at the reference week of January 2020. More specifically, we assume
that the lockdown period in a macro-region starts during the week when this ratio reaches
the level of (at least) 50%. As shown by Table 2.4, this threshold is reached the week
beginning 17th March 2020 in AF, AS1, EU1, EU2, NA, and ME, the week beginning
24th March 2020 in LA and OC, and the week beginning 31st March 2020 in AS2 and
AS3.

Macro-region 10/03/2020 17/03/2020 24/03/2020 31/03/2020 07/04/2020
AF 2% 65% 87% 100% 100%
AS1 0% 92% 97% 97% 97%
AS2 0% 2% 48% 69% 100%
AS3 0% 16% 18% 93% 93%
EU1 0% 69% 73% 84% 84%
EU2 0% 76% 100% 100% 100%
LA 0% 38% 55% 100% 100%
NA 0% 55% 100% 100% 100%
ME 0% 93% 100% 100% 100%
OC 0% 0% 100% 100% 100%

Table 2.4: Share of grounded seats on January 2020 seats per macro-region
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Figure 2.1: Seats index number, base = 100 29th October 2019

It is evident, by inspection of Figure 2.1 that in all regions except Central Eastern
Asia (AS3) the reduction has been dramatic and has started just a little before than the
lockdown date, reaching the bottom at the end of March/beginning of April 2020. In
Central Eastern Asia (AS3) the reduction started well before the lockdown, for the ban
on aviation imposed in China. Eastern Europe (EU2) has the second strongest recovery
with an index quite close to the AS3 one at the end of the observed period. Figure 2.5
and Figure 2.6 in Appendix show, respectively, the frequency index number and the ASK
index number. The dynamics are similar to that described for seats.
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A further interesting aspect in the analysis of the impact of the lockdown is to in-
vestigate its effects on the two prevailing business models in aviation, namely FSCs and
LCCs.14 Table 2.5 shows the different annual percentage variations in available seats,
frequency and ASKs between LCCs and FSCs. Regarding seats, LCCs have a minor re-
duction than FSCs in all macro-regions, with the exception of Central Eastern Asia (AS3),
Eastern Europe (EU2), and Oceania. The reduction is much lower especially in West-
ern Europe (EU1), Latin America, Middle East, and North America. The comparison
gives mixed indications instead if we look at the frequencies: LCCs have larger reductions
than FSCs in some regions while they have lower decreases in South Eastern Asia (AS2),
Western Europe, Latin America, and Middle East. Last, the reduction in ASKs is always
lower for LCCs, with the exception of Oceania.

LCCs FSCs
Macro-region Seats Frequency ASK Seats Frequency ASK
AF -63.6% -62.3% -61.1% -68.3% -56.8% -72.8%
AS1 -56.1% -56.1% -57.8% -57.5% -48.0% -65.7%
AS2 -57.7% -53.6% -70.7% -64.3% -58.3% -76.4%
AS3 -28.1% -24.3% -43.7% -23.3% -19.1% -43.0%
EU1 -58.6% -58.7% -58.1% -67.4% -64.3% -74.4%
EU2 -47.3% -48.0% -45.5% -46.2% -48.3% -53.2%
LA -50.8% -55.3% -47.0% -75.7% -63.0% -79.2%
ME -48.3% -44.2% -54.2% -64.1% -59.3% -70.7%
NA -52.1% -54.2% -54.9% -59.0% -54.9% -66.9%
OC -86.1% -86.7% -85.5% -71.4% -59.3% -81.9%

Table 2.5: LCCs vs FSCs percentage change compared to the same week of the previous
year, 8th September 2020

This descriptive analysis shows a general disruptive effect of the lockdown on supply
side air services. Looking at specific macro-regions, such effect is particularly severe in
Europe and Oceania, while it has been slightly less intense in other economically advanced
areas such as North America and Central-East Asia. In developing areas the impact has
been very negative in Africa and Latin America, and a little lighter in Central and South
Asia. Last, LCCs seem to have been severely affected by the lockdown too, but to a
lesser extent than FSCs. The possible explanations might be lower operating costs and
concentration on internal networks, less affected by the bans imposed on long-haul flights.

In the post-lockdown period, Central Eastern Asia is the macro-region with the great-
est recovery, while Oceania is the one that lags furthest behind in this regard. Eastern

14Macário and Van de Voorde (2010) provide a description of the LCC business model and its differences
with the FSC model. Kwoka et al. (2016) find that LCCs charge fares 20% or more below FSCs. We
adopt the OAG classification for LCCs.
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Europe is also recovering a lot, while Western Europe and North America have a sim-
ilar pattern, and have reached in the post lockdown period more or less 50% of their
supply-side capacity.

COVID-19 outbreak has impacted also the demand side. During March, April, and
May 2020 passengers could not travel by flight for the ban on aviation activity. However,
our data show that in the post lockdown period passengers did not resume traveling with
the same intensity as before. Both the fear of contagion and the strong drive towards smart
working have changed the willingness to fly. We can observe these effects by investigating
the bookings obtained from OAG Traffic Analyzer, a database providing the data from
global distribution systems and an adjusted estimate of the total bookings, including the
online ones. We have monthly data, starting from January 2020 and up to June of the
same year.15 We compute the percentage changes in bookings compared to the same
month of 2019, reported in Table 2.6.

Macro-region Jan 2020 Feb 2020 Mar 2020 Apr 2020 May 2020 Jun 2020
AF 5.8% 4.4% -30.7% -84.4% -83.4% -87.2%
AS1 5.3% 7.8% -22.9% -84.0% -80.6% -79.6%
AS2 8.7% -4.8% -39.0% -84.3% -81.3% -77.5%
AS3 4.2% -49.3% -57.7% -71.9% -61.9% -54.1%
EU1 -2.5% -6.6% -44.6% -94.2% -90.7% -92.2%
EU2 4.3% 2.3% -31.6% -80.7% -82.1% -78.9%
LA 1.9% 2.1% -27.5% -90.7% -92.4% -88.0%
ME -1.0% -2.3% -40.8% -83.1% -88.0% -80.8%
NA 6.6% 11.3% -36.9% -90.0% -87.7% -78.1%
OC 0.0% -6.7% -30.6% -93.7% -93.4% -87.8%

Table 2.6: Percentage changes in bookings per macro-regions compared to the same month
of the previous year

All macro-regions have a positive variation in January 2020: North America, for in-
stance, has +6.6% increase in bookings in comparison to January 2020. The only two
exceptions are Western Europe (-2.5%) and Middle East (-1%). The lockdown in China
and the ban to flights to and from that country explain the 49.3% reduction in AS3 in
February 2020, while EU1 continues to lose bookings (-6.6%), as well as Oceania (-6.7%),
South Eastern Asia (-4.8%) and Middle East (-2.3%). In March 2020 all macro-regions
start to experience a strong reduction in bookings, while April and May 2020 are the
months where the huge booking reductions are almost totally explained by the lockdown.
In June 2020 the aviation activity restarted. However, bookings are still much lower than

15The OAG Traffic Analyzer booking data are adjusted by the data management company and they
are delivered with a 3-months delay.
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one year before, with the only exception of Central Eastern Asia, where the ticket sales
decreased only by 54.1%. This figure is interesting because that part of Asia is where
the aviation activity restarted a bit earlier than in the other macro-regions. Hence, it
is probably the only region where we can already appreciate that even if the reduction
in the available seats was only -34% in June 2020 with respect to the same month one
year before, bookings were still much lower, with a reduction of about 54% for the same
temporal variation. This means a lower load factor in the post-lockdown period. Figure
2.2 shows the booking dynamics in the different macro-regions.
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Figure 2.2: Bookings variations in macro-regions, reference month = June 2019

2.4 Econometric results

In this section we estimate the impact of the lockdown in the various macro-regions
using the ITS model described in Eqs (2.1)–(2.2). We also generate the counterfactual
time series, and we calculate the gap between the observed trend and the counterfactual
scenario. The time series of the dependent variable, the logarithm of seats (lseats),
shown in Figure 2.3, highlights the yearly seasonal pattern, with aa general positive trend
interrupted by a huge decrease due to the lockdown (Spring 2020) followed by a recovery
(Summer 2020).16

16The correlation among seats, frequency, and ASK is very high, ranging from 0.95 to 0.98; hence, we
limit the econometric analysis presented in the paper to the models having seats as the variable capturing
the volume of air transportation service. As mentioned before, the identification of the SARIMA model
parameters (i.e., autocorrelation and moving average orders, degree of differencing, and seasonal lag) is
performed by implementing the Hyndman-Khandakar algorithm (Hyndman and Athanasopoulos (2018))
in the auto.arima() function in R, that minimizes the AIC and selects the best fitting model.
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Figure 2.3: Seats time series in the macro-regions
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We present two sets of results to appreciate both the lockdown effect and the subse-
quent partial recovery after it. First, we describe the estimates obtained by considering
the sub-sample ending at April 2020; Second, we analyze the results of the ITS model
applied to the complete sample ending at the beginning of September 2020. The latter
analysis may capture the airlines’ reaction to the change in the passengers’ willingness to
travel only due to COVID-19.

The first set of results relating to the lockdown effect are shown in Table 2.7. The
Hyndman-Khandakar algorithm has identified the ARIMA coefficients of the error model
in the different macro-regions. The autoregressive seasonal order P is at most 1, the
moving average seasonal order Q as well. A certain degree of heterogeneity characterizes
the macro-regional combinations of autoregressive and moving average terms.

Concerning the ITS model’s coefficients, the estimated trend effect t before the lock-
down is positive and significant in almost all macro-regions, and equal to about a +0.1%
weekly percentage increase. A non-significant trend coefficient is observed for Western
Europe, Middle East, and Oceania. The estimated coefficient of variable L, capturing
the impact of lockdown, is always positive and statistically significant. This coefficient
represents the change in the trend level, i.e., t · L. This is always negative and statisti-
cally significant, and consistent as a magnitude, since it varies between 0.05 (AS3) and
0.53 (OC). The change in slope is drastic, while before the lockdown the slope was just
above 0 in all macro-regions.17 Since the overall estimated effect of lockdown is given by
eα1+α3−1, we obtain that the ban has generated a weekly estimated percentage reduction
in available seats varying between -5% (AS3, Central East Asia), and -41% (Oceania).
Western Europe and North America have, respectively, -36% and -21%. Latin America
has -32%, and Eastern Europe -25%.18 Therefore, the evidence confirms a general severe
impact of the lockdown, especially for Western Europe and Oceania. The estimated co-
efficient of the COVID-19 cases variable (i.e., lcase) is, when significant, always negative
with an estimated elasticity (on available seats) between -2% (LA) and -5% (AF).

The results of the ITS model applied to the full sample are shown in Table 2.8. As be-
fore, the autoregressive and moving average components are selected using the Hyndman-
Khandakar algorithm Hyndman and Athanasopoulos (2018). The estimated coefficients

17This means that the statistical model, in fitting the data, adjusts the trend for this important variation
of the slope (and, above all, with a change of sign) by increasing the level.

18The relatively small weekly percentage reduction in AS3 might be explained by the longer lockdown
period in China.
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AF AS1 AS2 AS3 EU1 EU2 LA ME NA OC
Dependent variable: lseats

Constant 14.81∗∗∗ 15.25∗∗∗ 15.94∗∗∗ 16.75∗∗∗ 16.82∗∗∗ 14.95∗∗∗ 15.83∗∗∗ 15.39∗∗∗ 16.87∗∗∗ 14.80∗∗∗
(1,087.67) (1,045.23) (770.95) (871.97) (226.94) (108.17) (1013.06) (668.28) (716.95) (1898.02)

t 0.001∗∗∗ 0.001∗∗∗ 0.001∗∗∗ 0.001∗∗∗ 0.001 0.002∗ 0.001∗∗∗ 0.0002 0.001∗∗∗ -0.0003
(8.86) (10.17) (0.0002) (7.76) (1.25) (2.26) (6.06) (1.02) (3.69) (3.62)

L 49.95∗∗∗ 48.31∗∗∗ 46.83∗∗∗ 10.88∗ 98.85∗∗∗ 64.25∗∗∗ 85.69∗∗∗ 50.75∗∗∗ 51.54∗∗ 117.81∗∗∗
(12.08) (11.06) (12.27) (2.20) (15.24) (29.47) (21.06) (16.35) (20.62) (25.45)

t · L -0.23∗∗∗ -0.22∗∗∗ -0.21∗∗∗ -0.05∗ -0.45∗∗∗ -0.29∗∗∗ -0.39∗∗∗ -0.23∗∗∗ -0.23∗∗ -0.53∗∗∗
(-12.07) (-11.10) (-12.31) (-2.23) (-15.16) (-29.45) (-21.10) (-16.34) (-20.58) (-25.40)

lcase -0.05∗∗∗ -0.01 -0.04∗∗∗ -0.04∗∗∗ -0.03∗∗∗ -0.01 -0.02∗∗∗ -0.02∗∗∗ 0.001 -0.04
(-5.93) (-1.17) (-10.39) (-11.82) (-3.31) (-1.29) (-3.56) (-5.08) (0.28) (-7.20)

ARIMA error model
L.AR 1.16∗∗∗ 1.64∗∗∗ 0.94∗∗∗ 1.17∗∗∗ 1.52∗∗∗ 0.75∗∗∗ 0.51∗∗∗

(10.20) (20.41) (39.73) (13.33) (20.77) (14.16) (4.10)

L2.AR -0.94∗∗∗ -0.78∗∗∗ -0.53∗∗∗ -0.97∗∗∗
(-12.88) (-5.23) (-6.08) (-6.96)

L3.AR -0.44∗∗ -0.02
(-2.77) (-0.15)

L4.AR 0.45∗∗ 0.27∗∗
(2.97) (2.79)

L5.AR 0.15
(0.09)

L.MA 0.21+ 1.23∗∗∗ 0.98∗∗∗ 0.94∗∗∗ 0.98∗∗∗
(1.74) (22.21) (32.30) (10.90) (8.90)

L2.MA 0.41∗∗ -0.06 0.99∗∗∗ 0.36∗∗∗ 0.31∗
(3.14) (-0.62) (27.59) (3.47) (2.30)

L3.MA 0.47∗∗ -0.50∗∗∗ 0.90∗∗∗ -0.55∗∗∗
(4.07) (0.09) (25.58) (-5.09)

L4.MA -0.73∗∗∗
(-7.94)

L5.MA -0.26∗∗
(-3.09)

Seasonal effects, s = 52
L.AR 0.50∗∗∗ -0.11 0.19+ 0.51∗∗∗ 0.57∗∗∗ 0.46∗∗∗

(5.66) (-0.85) (1.70) (4.66) (6.60) (4.84)

L.MA 0.52∗∗ 0.57∗∗ 0.55∗∗∗ 0.49∗∗∗
(3.12) (3.25) (5.06) (4.82)

N 182 182 182 182 182 182 182 182 182 182
AIC -858.84 -617.37 -807.46 -656.56 -680.99 -818.37 -823.07 -847.46 -809.65 -926.71
t statistics in parentheses
+ p < 0.1, ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Table 2.7: SARIMA ITS model of the lockdown effect in different macro-regions, obser-
vations until 21st April 2020
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for the trend t variable once that the post lockdown period is taken into account are
positive and significant in many macro-regions, and equal to about a +0.1% weekly per-
centage increase. A non-significant trend coefficient is observed for Western Europe, Latin
and North America, and Oceania. The change in the level given by the coefficient of the
variable L is different across macro-regions. Africa, Central Southern Asia (AS1), and
Central Eastern Asia (AS3) have a negative and significant coefficient, while Eastern Eu-
rope, Latin and North America, and Oceania have a positive and significant coefficient.
No change in the trend level is observed for South Eastern Asia (AS2), Western Europe
(EU1), and Middle East. The change in the trend slope is positive and significant in
Africa, Central Southern Asia (AS1), and Central Eastern Asia (AS3), while it is nega-
tive and significant in Eastern Europe (EU2), Latin America (LA), North America (NA),
and Oceania (OC). There is no effect on the trend slope in South Eastern Asia (AS2),
Western Europe (EU1), and Middle East (ME). Hence, we have three different groups of
aggregate effects on the trend of activity in air transport. First, Africa, Central South-
ern Asia (AS1) and Central Eastern Asia (AS3) have a decrease in the level due to the
initial lockdown shock (α̂2 is negative), and then a positive recovery since their weekly
trend has an upward slope (α̂3 is positive). These macro-regions have instead a negative
slope with data until April 2020. During Summer 2020 they started a positive weekly
trend. The second group is composed by Eastern Europe (EU2), Latin America (LA),
North America (NA), and Oceania (OC). They combine a positive α̂2 and a negative α̂3.
These estimated coefficients have the same sign of Table 2.7. The magnitude of α̂2 is now
much lower while the absolute value of α̂3 is small, i.e., they have also a milder weekly
percentage reduction. These combined effects indicate that the recovery initiated in the
Summer 2020 was not strong enough to change the trend slope, and that its sharp change
due to the lockdown has not been absorbed yet. The third group is composed by South
Eastern Asia (AS2), Western Europe (EU1), and Middle East (ME). They have only a
positive trend, i.e., α̂1 > 0, and a negative estimated elasticity for the number of COVID
cases. In these macro-regions the positive trend before the outbreak has been severely
deflected by the spread of the virus, and this effect captures anything else, including the
lockdown. α̂2 is nearly 0, as well as α̂3. In April 2020 α̂2 is positive and very high while α̂3

is negative and also quite large. By extending data until September 2020 these two effects
are completely absorbed by the COVID-19 cases, with an elasticity varying between -6%
and -8% weekly.
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AF AS1 AS2 AS3 EU1 EU2 LA ME NA OC
Dependent variable: lseats

Constant 14.81∗∗∗ 15.20∗∗∗ 15.96∗∗∗ 16.75∗∗∗ 16.83∗∗∗ 14.93∗∗∗ 15.89∗∗∗ 15.36∗∗∗ 16.90∗∗∗ 14.85∗∗∗
(388.96) (948.82) (435.56) (148.22) (141.60) (141.78) (79.63) (984.91) (258.54) (96.76)

t 0.001∗∗∗ 0.002∗∗∗ 0.001∗∗ 0.0001∗∗∗ 0.0003 0.002∗ -0.0002 0.0004∗∗ 0.0002 -0.0005
(3.31) (12.09) (3.14) (11.86) (0.25) (2.06) (-0.15) (2.88) (0.43) (-0.41)

L -5.70∗∗ -2.45∗ -0.32 -5.75∗∗∗ 1.02 11.06∗∗ 28.99∗∗∗ 0.3691 13.50∗∗ 20.89∗∗∗
(-2.76) (-2.25) (-0.25) (-10.97) (0.14) (2.71) (4.15) (0.22) (3.19) (4.40)

t · L 0.03∗∗ 0.009+ 0.0003 0.03∗∗∗ -0.004 -0.05∗∗ -0.13∗∗∗ -0.002 -0.06∗∗ -0.09∗∗∗
(2.83) (1.65) (0.05) (10.86) (-0.13) (-2.72) (-4.18) (-0.32) (-3.17) (-4.32)

lcase -0.15∗∗∗ -0.05∗∗∗ -0.06∗∗∗ 0.04∗∗∗ -0.08+ 0.01 0.08∗∗ -0.07∗∗∗ -0.002 -0.03
(-10.79) (-3.90) (-7.06) (-15.50) (-1.70) (0.47) (3.05) (-8.39) (-0.10) (-1.15)

ARIMA error model

L.AR -0.03 -0.60∗∗∗ 0.85∗∗∗ 1.37∗∗∗ 1.42∗∗∗ 0.44∗∗∗ 1.83∗∗∗ 1.91∗∗∗ 2.07∗∗∗
(-0.38) (-4.26) (19.53) (17.47) (13.17) (6.14) (45.86) (38.96) (28.15)

L2.AR 0.49∗∗∗ -0.48∗∗∗ -0.05 1.30∗∗∗ -0.88∗∗∗ -0.94∗∗∗ -1.61∗∗∗
(4.59) (-4.45) (-0.30) (19.25) (-24.97) (-20.83) (-10.15)

L3.AR 0.23∗ 0.24∗ -0.41∗∗∗ -0.29∗∗ 0.60∗∗
(2.44) (2.14) (-5.90) (2.80) (3.28)

L4.AR -0.19∗∗ -0.36∗∗ -0.69∗∗∗ -0.01
(-2.62) (-3.14) (-10.70) (-0.05)

L5.AR 0.14+ 0.17∗ -0.10
(1.93) (2.39) (-1.42)

L.MA 1.22∗∗∗ 1.11∗∗∗ 0.92∗∗∗ -0.54∗∗∗ 0.91∗∗∗ -0.90∗∗∗ -0.61∗∗∗
(30.25) (7.25) (14.08) (-4.81) (32.71) (-22.29) (-6.84)

L2.MA 0.87∗∗∗ 0.21+ 0.43∗∗∗
(11.74) (1.68) (6.22)

L3.MA -0.22∗ -
(-2.30)

L4.MA 0.19∗
(2.10)

Seasonal effects, s = 52

L.AR 0.18 0.23∗ 0.31∗∗ 0.18 0.41∗∗∗
(1.54) (1.98) (2.96) (1.46) (4.48)

L.MA 0.30∗∗
(2.58)

N 246 246 246 246 246 246 246 246 246 246
AIC -825.55 -504.63 -831.14 -987.32 -509.37 -678.96 -708.95 -690.94 -894.86 -751.30
t statistics in parentheses
+ p < 0.1, ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Table 2.8: SARIMA ITS model of post-lockdown effect in different macro-regions, obser-
vations until 8th September 2020

We have performed some diagnostic tests to address the possible identification prob-
lems regarding the results shown in Table 2.8. The post-estimation diagnostic analysis
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consists in plotting the residuals autocorrelation functions and implementing a Liung-Box
test. Figure 2.7 in the Appendix shows the residuals plot for two representative macro-
regions, Western Europe and North America, together with their histogram plots and the
autocorrelation functions (AFC). The distribution is normal and the ACF only in North
America has just three spikes outside the 95% confidence interval. The Liung-Box test
has a null hypothesis that the errors are independently distributed, and it is shown in
Table 2.9.

AF AS1 AS2 AS3 EU1 EU2 LA ME NA OC
Q∗ 52.6 48.9 84.3 44.9 32.6 51.8 74.9 55.0 62.3 42.8
P -value 0.06 0.13 0.00 0.35 0.72 0.08 0.00 0.08 0.10 0.27
H0 N.R. N.R. R. N.R. N.R. N.R. R. N.R. N.R. N.R.
Legend: Q∗ Liung-Box statistics; N.R. = H0 not rejected; R. = H0 rejected

Table 2.9: SARIMA ITS model diagnostic tests

In all macro-regions we do not reject the null hypothesis that errors are independently
distributed. The only exceptions are South Eastern Asia (AS2) and Latin America (LA).
Hence, for these two macro-regions we estimate an ITS SARIMA model with d = 1, i.e.,
a first difference in time periods. With these settings the Liung-Box test gives Q∗ =

51.45, P = 0.11 for AS2, and Q∗ = 51.70, P = 0.08 for LA. The portmanteau test shows
that with d = 1 errors are independently distributed. Coefficients’ results are shown in
Table 2.11 in the Appendix. In South Eastern Asia COVID-19 cases are the only variable
affecting the trend, while Latin America has a strong negative weekly change in the slope
of the trend.

The ITS model makes it possible to derive a counterfactual trend to be compared to
the observed data in order to get a more truthful estimate of the quantitative impact
of the lockdown. Figure 2.4 presents such a comparison. The green line represents the
observed time series, while the red dashed line presents the counterfactual time series.
The comparison is carried out for each of the 10 macro-regions. By inspection of Figure
2.4, it is clear that the estimated counterfactual time series is growing in all macro-regions
except in Latin America (LA), South Eastern Asia (AS2), and Oceania.

The real effect of lockdown is the difference between the counterfactual and the ob-
served level. This effect can be decomposed into two sub-effects, namely the difference
between observed and past data and the difference between past and predicted data in the
absence of lockdown. In order to highlight these two components, the computation of the
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real effect is based on index numbers and is computed as follows in Table 2.10. First, we
identify, as a base equal to 100, the week of 29th October 2019 (i.e., a period well before
any possible confounding effect due to COVID-19). Then, we compute (i) the difference
between the observed level and our base and (ii) the difference between our base and the
predicted seats at specific weeks of interest. Finally, we obtain the real effect as the sum
of these two differences for each macro-region in each week of interest.

In Western Europe the real impact of the lockdown in May 2020 is -101.37 basis points,
around further 12 basis points reduction than those observed (i.e., -88.87). In September
the real effect is -71.93 points, while the observed series has only a -47.70 reduction.
The loss has been about 24 additional points compared to that observed with historical
data. In Eastern Europe the impact in May is -84.73, almost 15 points greater than those
observed. In September 2020 the real loss is -61.85, about 33 points greater than the
observed loss. In North America the real impact in May is -84.89, 9 points greater than
that observed; in September the loss is -54.26, 6 points greater than the observed loss.
In Latin America there is a real impact in May of -84.24 points, almost equal to that
observed; in September the loss is -61.99, just a little less than the observed one (-63.57).
In Oceania the actual impact is slightly less than the estimated one: in September the real
loss is -72.48, the observed one -74.89. In Africa, the real impact in September is -74.78
points, 11 more than those of the observed historical series. In the Asian continent, the
largest estimated impact is in the Middle East, a reduction in September of 69.33 points,
about 12 greater than those of the observed time series. The macro-region with the least
estimated effect is Central Eastern Asia (which includes China), with -29.42 points in
September, about 10 greater than the observed reduction. In Central and South Asia a
real impact of -65.68 basis points is estimated in September, about 7 points larger than
the observed effect, while in South East Asia the reduction is -63.16 points in September,
less than 2 additional points if compared to the observed time series. Once again it is
confirmed that the greatest impact was in Europe, but significant differences are also
recorded for Central Eastern Asia, North America, Africa, and Middle East. To sum up,
the counterfactual analysis shows that air transportation incurred a higher loss in the
volumes of activity than that computed using observed data, on average equal to +10%.
This evidence confirms that the impact of COVID-19 has been very strong and amplifies
the warnings regarding the economic sustainability of the industry.

We have performed a robustness analysis by checking whether the counterfactual anal-
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AF AS1 AS2 AS3 EU1 EU2 LA ME NA OC
Index counterfactual 7 Apr 102.81 102.77 103.28 106.31 108 104.65 100.98 105.57 107.44 102.5
time series Base = 100 5 May 99.37 103.39 101.08 106 112.5 114.54 98.25 102.97 107.99 93.96
29 Oct. 2019 2 Jun 102.46 104.59 103.57 105.31 119.85 127 99.03 107.97 111.54 94.08

7 Jul 109.84 105.57 104.36 111.8 123.53 135.331 106.49 109.48 115 104.66
4 Aug 111.94 106.43 103.71 114.17 122.8 137.13 104.53 111.34 115.13 99.09
1 Sep 111.05 106.97 101.61 109.75 124.24 133.6 98.41 112.1 106 97.5

Difference between 7 Apr 2.81 2.77 3.28 6.31 8 4.65 0.98 5.57 7.44 2.5
counterfactual and 100 5 May -0.63 3.39 1.08 6 12.5 14.54 -1.75 2.97 7.99 -6.04

2 Jun 2.46 4.59 3.57 5.31 19.85 27 -0.97 7.97 11.54 -5.92
7 Jul 9.84 5.57 4.36 11.8 23.53 35.33 6.49 9.48 15 4.66
4 Aug 11.94 6.43 3.71 14.17 22.8 37.13 4.53 11.34 15.13 -0.91
1 Sep 11.05 6.97 1.61 9.75 24.24 33.6 -1.59 12.1 6 -2.5

Index observed 7 Apr 28.25 23.77 35.80 49.25 11.02 34.75 26.01 33.28 48.15 14.05
time series Base = 100 5 May 21.2 30.73 29.38 57.7 11.13 29.82 14.01 21.35 23.1 10.1
29 Oct. 2019 2 Jun 19.95 32.09 44.35 66.3 12.07 40.81 17.57 31.27 29.08 15.2

4 Aug 31.69 36.81 40.21 83.52 55.8 77.89 29.73 39.81 55.02 25.5
1 Sep 36.27 41.29 38.45 80.33 52.3 71.75 36.43 42.77 51.74 25.02

Difference between 7 Apr -71.75 -76.23 -64.2 -50.75 -88.98 -65.25 -73.99 -66.72 -51.85 -85.95
observed and 100 5 May -78.8 -69.27 -70.62 -42.3 -88.87 -70.18 -85.99 -78.65 -76.90 -89.9

2 Jun -80.05 -67.91 -55.65 -33.70 -87.93 -59.19 -82.43 -68.73 -70.92 -84.8
7 Jul -77.95 -66.27 -60.84 -29.49 -63.59 -37.30 -73.97 -66.37 -47.65 -73.81
4 Aug -68.31 -63.19 -59.79 -16.48 -44.2 -22.11 -70.27 -60.19 -44.98 -74.5
1 Sep -63.73 -58.71 -61.55 -19.67 -47.7 -28.25 -63.57 -57.23 -48.26 -74.98

Real lockdown effect 7 Apr -74.56 -79 -67.48 -57.05 -96.98 -69.90 -74.97 -72.28 -59.29 -88.44
5 May -78.17 -72.66 -71.7 -48.29 -101.37 -84.73 -84.24 -81.62 -84.89 -83.86
2 Jun -82.51 -72.5 -59.22 -39.01 -107.77 -86.19 -81.47 -76.7 -82.46 -78.87
7 Jul -87.79 -71.84 -65.2 -41.29 -87.12 -72.63 -80.45 -75.86 -62.65 -78.47
4 Aug -80.25 -69.62 -63.5 -30.65 -67 -59.25 -74.8 -71.53 -60.11 -73.58
1 Sep -74.78 -65.68 -63.16 -29.42 -71.93 -61.85 -61.99 -69.33 -54.26 -72.48

Table 2.10: Observed and real impact of lockdown on air transportation

ysis might be affected by the presence of some confounding events that modify substan-
tially the trend before the COVID-19 outbreak. For instance, during 2019 the Boeing 737
MAX was grounded in March 2019 after two crashes with a 346 death toll, due to techni-
cal problems. Hence, we have estimated a version of the ITS SARIMA model taking into
account for the B737 MAX grounding, including the dummy 737MAX, equal to 1 since
March 2019. The results are shown in Table 2.12 in the Appendix at the end of the paper.
The estimated coefficient is never significant with the only exception of AS2 macro-region.
In that area the trend had a downward decrease already in 2019. This suggests that the
counterfactual analysis for AS2 is slightly overestimated, while the B737 MAX grounding
has no effect in all other macro-regions.

The evidence reported in this contribution confirms that the pandemic crisis due to
COVID-19 has had a disruptive effect on the air transport sector. The latter is amplified
once a more sophisticated counterfactual analysis is implemented. The thriving growth
prospects announced by various sources have had to deal with a dramatic downsizing due
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to an exogenous shock of unimaginable proportions. As we have tried to show, the effects
of the lockdown have been severe and even greater than those observed. The differences
between the time series in the absence of lockdown (obtained through counterfactual
analysis) and the time series of the volumes of air services observed are significant. The
resilience that the air transport sector has shown in previous global crises (terrorist at-
tacks, financial crisis, etc.) is being severely tested. The reduction estimated by ICAO of
about 80% less passengers in 2020 (ICAO, 2020) could be even greater in some parts of
the world, such as in Europe.

2.5 Conclusions

The aim of this work is to quantify the destructive impact that the pandemic crisis caused
by COVID-19 has had on air transport worldwide. To do this, a time series ITS SARIMA
econometric model is estimated and a counterfactual analysis i performed. This approach
allows to measure the impact of the lockdown by comparing the observed trend of sector’s
business volumes to a counterfactual time series that represents the development trend
in the absence of the crisis. In this way it is possible to estimate the real impact of the
lockdown, and therefore to correct the measures that various bodies in the sector (e.g.,
ICAO (2020)) have calculated on the basis only of the observed data.

The empirical evidence confirms that the impact on the air transport sector of the
pandemic crisis and of the subsequent lockdown to the economy has been dramatic, and
of a size never previously recorded. In all the world’s macro-regions the estimated real
effect is a reduction in air transportation activity greater than 80% in May 2020 compared
with October 2019, and of about 70% in September 2020. The impact has been milder
in China and Eastern Asia (-29%) and in North America (-54%). The counterfactual
analysis allows to estimate that the real effect of COVID-19 is on average 10% greater
than the observed figures.

We also find that the negative effect of COVID-19 is greater for intercontinental con-
nections than for domestic ones, about 22% additional reduction. Moreover, the reduction
in available seats has been greater for FSCs than LCCs (about +8%), that appear being
more resilient to the crisis. Last, the recovery during Summer 2020 has been moderate
and it may be due to a decrease in passengers’ willingness to travel, with potential long-
lasting effects. Indeed we provide some initial evidence that, after the lockdown, bookings
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are still very low, and that it likely that airlines will be harmed by lower load factors.
These results suggest that airline sustainability may currently be at high risk. In

addition to the lost earnings associated with the forced closure of the connections, there
is also the possibility, far from remote, that long-distance flights, which guaranteed the
greatest source of earnings especially thanks to business customers, may be drastically
reduced in the future.

The air transport sector is under a great pressure running the high risk of heavy losses
in year 2020, probably close to the higher range of the forecast formulated by ICAO,
that is about USD 350-420 billion. But this estimate must certainly be increased if we
consider the entire vertical air transport channel, given that the significant reductions in
the volumes of air transportation activities estimated in our work generate immediate
losses also to the airport sector, and, due to the likely block of new orders planes by
airlines, also for manufacturers, in particular Airbus and Boeing.

These scenarios make public intervention in support of the airlines highly likely, with
an entry of national governments into the capital. In this case, a further problem could
arise: given that the capacity of public intervention is not the same in all countries, the
airlines with economically stronger governments could have an advantage. In this case
the industry may face a significant distortion, because the post-lockdown restructuring
phase would take place in the absence of that level-playing field conditions that inspire
policy makers and international air transport organizations.

In this work it was not possible to estimate the change in the demand for air trans-
portation due to lack of data- Bookings and price data are released by OAG Traffic
Analyzer with a 3-months lag; hence, at the moment we have not enough observation to
implement an econometric model. Moreover, we could not study the impact on cargo,
since data are not available. Regarding our econometric approach, the ITS model can be
enriched when more observations regarding the post lockdown period will be available,
possibly adding other explanatory variables, such as international trade and e-commerce
volumes. These extensions are left for future research.

Appendix
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AS2 LA
Dependent variable: lseats first difference
t -0.001 0.008

(-0.21) (1.10)
L 0.27 96.91∗∗∗

(0.09) (13.46)
t · L -0.002 -0.44∗∗∗

(-0.15) (-7.25)
lcases -0.03∗∗∗ -0.004

(-2.14) (-0.17)
ARIMA error model

L.AR -0.12 -0.46∗∗∗
(-0.14) (-6.42)

L2.AR 0.34 0.72∗∗∗
(1.12) (8.72)

L3.AR -0.02 0.41∗∗∗
(-0.10) (4.57)

L4.AR 0.02
(0.21)

L5.AR 0.28∗∗∗
(3.81)

L.MA 0.22 0.87∗∗∗
(0.26) (23.45)

L2.MA -0.15
(-0.39)

Seasonal effects, s = 52
L.AR 0.22∗∗

N 245 245
AIC -814.43 -726.67
Q∗ 51.45 51.70
P -value 0.11 0.08
t statistics in parentheses
** p < 0.01, *** p < 0.001
Q∗ Liung-Box statistics

Table 2.11: SARIMA ITS model with d = 1
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Figure 2.4: Counterfactual analysis: no COVID-19 cases and no subsequent lockdown
effect
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AF AS1 AS2 AS3 EU1 EU2 LA ME NA OC
Dependent variable: lseats

Constant 14.82∗∗∗ 15.17∗∗∗ 15.95∗∗∗ 16.83∗∗∗ 16.82∗∗∗ 14.91∗∗∗ 15.88∗∗∗ 15.37∗∗∗ 16.89∗∗∗ 14.84∗∗∗
(370.40) (851.82) (426.60) (148.85) (130.63) (147.28) (105.61) (201.20) (259.95) (73.48)

t 0.001∗ 0.002∗∗∗ 0.001∗∗ 0.00004 0.0004 0.002∗ 0.0001 0.0002 0.0003 −0.0003
(2.33) (11.26) (3.06) (0.04) (0.41) (2.49) (0.12) (0.29) (0.64) (−0.23)

L −5.70∗∗ −3.51∗∗ −0.36 −1.39 1.32 10.48∗∗ 7.05 3.10 13.45∗∗ 20.42∗∗∗
(−2.69) (−3.10) (−0.28) (−0.53) (0.18) (2.62) (1.56) (1.29) (3.18) (4.08)

t · L 0.03∗∗ 0.02∗∗ 0.0004 0.01 −0.01 −0.05∗∗ −0.03 −0.01 −0.06∗∗ −0.09∗∗∗
(2.76) (2.72) (0.08) (0.47) (−0.17) (−2.63) (−1.60) (−1.33) (−3.16) (−3.99)

lcase −0.15∗∗∗ −0.08∗∗∗ −0.06∗∗∗ 0.004 −0.08+ 0.01 −0.03 −0.05∗∗ −0.002 −0.02
(−10.58) (−5.70) (−7.23) (1.27) (−1.69) (0.24) (−0.82) (−2.70) (−0.10) (−0.91)

max 0.04 −0.09∗∗ −0.02 −0.002 −0.04 −0.07 −0.05 −0.01 −0.02 −0.05+
(1.39) (−3.11) (−0.62) (−0.08) (−0.58) (−1.33) (−1.43) (−0.21) (−0.63) (−1.78)

ARIMA error model

L.AR −0.04 0.84∗∗∗ 0.95∗∗∗ 1.38∗∗∗ 1.42∗∗∗ −0.90∗∗∗ 0.02 1.91∗∗∗ 1.58∗∗∗
−(0.49) (18.98) (29.95) (17.59) (13.04) (−16.08) 0.23) (39.45) (23.23)

L2.AR 0.47∗∗∗ −0.47∗∗∗ −0.04 0.72∗∗∗ 0.75∗∗∗ −0.94∗∗∗ −0.64∗∗∗
(5.65) (−4.42) (−0.28) (8.57) (9.23) (−21.14) (−9.70)

L3.AR 0.26∗∗ 0.24∗ −0.42∗∗∗ 0.82∗∗∗
(3.08) (2.15) (−5.97) (13.61)

L4.AR −0.18∗∗ −0.37∗∗
(−2.67) (−3.19)

L5.AR 0.14+
(1.95)

L.MA 1.24∗∗∗ 0.33∗∗∗ 0.63∗∗∗ −0.55∗∗∗ 2.30∗∗∗ 1.09∗∗∗ −0.61∗∗∗ 0.53∗∗∗
(30.10) (5.85) (8.13) (−4.79) (35.41) (11.02) (−6.87) (7.15)

L2.MA 0.91∗∗∗ 0.24∗ 2.24∗∗∗ 0.30∗
(16.03) (2.40) (15.03) (2.24)

L3.MA −0.23∗∗ 1.43∗∗∗
(−2.91) (9.88)

L4.MA 0.53∗∗∗

Seasonal effects, s 0 52

L.AR 0.18 0.24∗ 0.34∗∗ 0.28∗ 0.41∗∗∗
(1.49) (2.05) (3.24) (2.31) (4.50)

L-MA 0.40∗∗∗
(3.56)

N 246 246 246 246 246 246 246 246 246 246
AIC −825.17 −483.57 −829.52 −985.32 −507.70 −678.69 −718.66 −680.15 −893.25 −751.92
t statistics in parentheses
+ p < 0.1, ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Table 2.12: ITS SARIMA model with Boeing737 MAX grounding
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Chapter 3

Aiding airlines for the benefit of

Whom? An applied game-theoretic

approach

3.1 Introduction 1

This paper investigates how different government support programs provided to airlines
during the COVID-19 pandemic affects competition in the European airline industry.
The recent Covid-19 pandemic re-opened the necessity to discuss the rescue of financially
distressed companies through government state aid. Over the last decades, policymakers
have been discussing the challenging decision whether to allow firms to file for bankruptcy
or to save them using taxpayers money. The trend over the last few years has tended
towards the latter choice (Jackson et al., 2020) when faced with an exogenous shock.
Bailing out a firm consists of an ex post measure that acts to provide financial relief to
a company that is facing a liquidity crisis in order to accelerate recovery. During na-
tional or international emergencies, regulators may be urged to rescue a firm or an entire
industry, through the use of public funds. Academics and decision makers have always
seen bailouts as unfair aid instruments, resulting from failures in the capital markets that
prevent firms from accessing lines of credit. The most frequently adopted fiscal stimuli
include the provision of grants, deferral of taxes, loan issuances or government equity

1This chapter is based on the joint work with Nicole Adler. The paper has been submitted to the
European Journal of Operational Research on Jul 15, 2022 and it is currently under review.
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injections. The latter instrument is rarely applied to bail out firms due to the distorting
effect induced by government participation as a firm stakeholder (DG Competition, 2008).
However, in the specific event that a firm cannot sustain the burden of additional debt, it
may rely on equity instruments as a bailout method in place of bankruptcy (Megginson
and Fotak, 2021). The government aid scheme should be carefully evaluated and designed
to prevent moral hazard behaviours whilst ensuring adequate government remuneration.
The bailout of the US auto-industry in 2008 has proven that government intervention
could result in an effective stimulus for a distressed industry and that governments may
recover the money borrowed (Goolsbee and Krueger, 2015). An optimal bailout policy
should be applied systematically to all firms in the industry, preventing large companies
from pursuing risky practices protected by the "too big to fail" paradigm (Bianchi, 2016).
Despite several crisis over the past decades, including the financial crisis of 2008, an op-
timal bailout mechanism has not yet been defined. Another crucial aspect when defining
bailout policy is to identify only the liquidity constrained firms that will be capable of
repaying the aid over time. However, the process of distinguishing such companies is
difficult, particularly under the time pressures caused by a sudden crisis.

Recently, several heterogeneous industries have required state support, ranging from
the automobile sector to the banking system. Among these distressed industries, the
airline sector has shown continuous vulnerability to shocks due to the high debt expo-
sure. Multiple exogenous events have affected the aviation industry: the 9/11 terrorist
aggression, the 2008 financial crisis and epidemics such as the recent Covid-19 outbreak.
Regulators have the task of weighing the benefits of bailing out airlines and preserving
connectivity for the economic and societal benefits with the risks of endangering taxpayer
money and distorting competition. This decision process is made more difficult due to
the specific characteristics of the airline industry, which include sovereignty, safety and
military concerns as well as multiple business models that compete in a subset of mar-
kets. Another layer of complexity is imposed by the lack of cooperation among policy
makers in civil aviation, leaving each country with the possibility of enacting autonomous
measures. These sovereign decisions generate fragmented policies that potentially result
in market inefficiencies and competitive distortions both regionally and internationally.
For example, over the last decade, there has been much discussion over the policies of the
Middle East as compared to the US and Europe (Tretheway and Andriulaitis, 2015).

The Covid-19 pandemic offers a convenient case study to apply and validate our model
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specification in the context of the European Union. Specifically, the Coronavirus pandemic
has disrupted the entire world economy. Governments enforced national lockdowns which
severely affected economic activities. As a consequence of these measures, the aviation
industry was one of the more severely affected sectors, with thousands of flights can-
celled and billions of dollars in lost revenue. Forecasts estimate that the industry will
take years to fully recover and reach the traffic levels offered before the outbreak of the
virus. In 2020, the entire industry faced an overall loss of profits of more than 80%,
from both domestic and international flights (Pearce, 2020), which has been estimated
at approximately $ 372 bn in 2020 (ICAO, 2020). Furthermore, prior to the pandemic,
most airlines were in distress due to their leveraged financial position. The debt level,
higher than market investment grade (ICAO, 2020), discouraged potential investors and
reduced access to traditional lines of credit during the pandemic. After the lockdowns
were lifted, the demand for air travel has shown slow signs of recovery, for the most part
sustained by domestic markets (Andreana et al., 2021). This has highlighted the absence
of a sharp rebound in passenger demand, suggesting that a full recovery will take several
years. Since the beginning of the pandemic, 34 legacy and low-cost operators have already
been hit by bankruptcy (CAPA, 2021). Given the difficulties and bleak projections for
the aviation industry, liquidity remains an issue and many carriers face the risk of debt
and bankruptcy. European governments, using public resources, re-wrote the rules and
adopted several measures to provide financial aid, including grants, loans, recapitalization
and tailored hybrid instruments. Although a public bailout of a Member State requires
the authorisation of the European Commission, each country decided on the type of finan-
cial aid and its size. This characteristic raises concerns that Member States have chosen
a financial instrument in order to increase the market power of domestic carriers at the
expense of fair competition (de Jong et al., 2019).

3.1.1 Aviation literature

Bankruptcies and government support for distressed airlines have long been a topic of
academic interest (Borenstein and Rose, 1995, 2003; Ciliberto and Schenone, 2012a,b).
Borenstein and Rose (1995) analyze pricing strategies of airlines under Chapter 11 protec-
tion, using an econometric approach. Starting from the industry claim that bankruptcy
protected carriers are harmful to the entire industry due to price-cutting behaviours, they
prove that the modest price reduction occurs before any government intervention. They
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show how protected airlines experience a decline in market share, despite the lower fares,
induced by declines in demand for distressed carriers which are perceived as lower quality
service providers. In Borenstein and Rose (2003), the authors extend the investigation to
the impact of airlines filing for Chapter 11 protection on aggregate air service. They find
that carriers under protection tend to reduce their operations, which is particularly sig-
nificant for midsize airports. The possible bankruptcy of an airline with a relatively high
share of flights at the airport would result in a severe contraction of air service. Ciliberto
and Schenone (2012b), following the previous works of Borenstein and Rose (1995, 2003),
explore the impacts induced by a competitor airline facing bankruptcy filing and protec-
tion on the industry. The results of their work highlight how network carriers affected by
bankruptcy decrease airfares and offered capacity. In addition, Ciliberto and Schenone
(2012a), focus on vertical differentiation by investigating the variation in service quality
as defined through flight delays, cancellations and aircraft age, for airlines under Chapter
11 protection. They do not find any significant improvement in the quality of the service
after a government restructuring.

Airline competition and network strategies have been widely discussed in the opera-
tions research literature since the beginning of the 1990s (Hansen, 1990; Hong and Harker,
1992; Dobson and Lederer, 1993; Hendricks et al., 1999; Adler, 2001, 2005; Vaze and Barn-
hart, 2012; Hansen and Liu, 2015; Adler et al., 2021; Wang et al., 2022). Among these
works, Hansen (1990) defines a non-cooperative framework in which airlines compete in
frequency, keeping prices fixed, in a hub-and-spoke network. Market share was defined
by a discrete choice model that accounts for passenger preferences. A point of quasi-
equilibrium was found that resembled the state of the market. Hong and Harker (1992)
proposed a two-stage market model that addresses oligopolistic competition. In this
framework, airlines compete over flight allocations, fares, itineraries and landing rights,
assuming the carriers’ networks as given, by developing two models of competition. The
first model assumes exogenous slot allocation, whereas the second internalises this de-
cision. Dobson and Lederer (1993) analyze airline competition in terms of airfares and
scheduled flight frequencies by developing a two-stage game framework in which the equi-
librium is derived considering one type of passenger and symmetric hub-spoke networks.
Under the assumption of a fixed plane size and no traffic originating from the hub, they
develop a heuristic and find a solution for a small network, proving the feasibility for real-
istic large-scale implementation. Hendricks et al. (1999) investigate the effects of different
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behaviours between competing airlines in a hub-and-spoke network, by developing a two-
stage game. Under the assumptions of infinite seat capacity and no shared itineraries,
they show that aggressive competition results in a monopoly outcome. In this case, the
monopolistic airline is driven to develop a hub-spoke network. On the other hand, in
a duopoly equilibrium in which both carriers select a hub-spoke structure, neither air-
line has an advantage over the competitor. Adler (2001, 2005) investigates competition
between hub-spoke networks using a two-stage, non-cooperative game. Following this
specification, in the first stage airlines select their network and in the second stage, they
compete in frequencies and prices, taking into account multiple passenger types. Vaze
and Barnhart (2012) develop a game-theoretic competition model for service frequency
when airport slots are constrained. They show that, given the airport capacity require-
ments, a profitable schedule can be obtained while accommodating all passenger demand.
Following the modelling formulation proposed in Vaze and Barnhart (2012), Wang et al.
(2022) develop an equilibrium programming model to address airline frequency competi-
tion under slot-constrained airports and consider balanced flow. They prove that a Nash
equilibrium may not always exist in pure strategy but always exists in mixed-strategy
equilibrium. By formulating a mixed-strategy programming model, they analyse the im-
pact of different strategies on profits under different scenarios. Hansen and Liu (2015)
design two models able to predict competition between two symmetric airlines when they
only differ in the structure of how they compete in frequency. By implementing a nested
logit specification, they found consistent results between their analytical framework and
empirical evidence. To summarize, Adler et al. (2021) propose a comprehensive review of
game-theoretic models applied to transportation markets.

The impact of airline decisions on social welfare, when facing competition, has been
addressed in several publications (Schipper et al., 2007; Adler et al., 2010). Schipper
et al. (2007) simulate the impact of airline competition on social welfare, focusing on the
Amsterdam-Maastricht corridor. They develop a two-stage model in which airlines set
prices and frequencies. They find welfare gains when low-cost carriers enter a deregulated
market, due to lower fares and higher service frequencies. Adler et al. (2010) develop a
dynamic game in which airlines compete between themselves and also against high-speed
rail operators, in terms of fares and service frequency. They solve the resulting non-linear
maximization problem, applied to the European Union context and assess the overall im-
pact on social welfare.
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The literature analyzing the impact of the pandemic support mechanisms on airline
competition is still scant (Abate et al., 2020; Zhang and Zhang, 2021). Abate et al. (2020)
propose an exploratory analysis on the impact of direct government support measures on
the airline industry. They describe the different forms of aid available to airlines, examin-
ing the effect on air connectivity and the environmental dimension. Their work suggests
that government bailout decisions were mainly motivated by connectivity preservation
which ignores preexisting policies to limit the impact of aviation environmental external-
ities. Zhang and Zhang (2021) discuss government interventions on airline bankruptcies,
with an application to Virgin Australia. The authors highlight that the preferred funding
channel should be the private market, but warn of the potential social costs resulting from
the failure to reach such an agreement in the private market.

3.1.2 Bailout mechanisms literature

How to optimally bail out a distressed firm has been long discussed in the academic lit-
erature. Most of these studies theoretically investigate the impact of bailout mechanisms
specifically on the banking and financial systems (Diamond and Rajan, 2002; Gorton
and Huang, 2004; Diamond and Rajan, 2005; Philippon and Skreta, 2012; Bianchi, 2016;
Chari and Kehoe, 2016; Wollmann, 2018; Pandolfi, 2022). Diamond and Rajan (2002)
warn about the risk associated with a partial rescue of the bank system and how the
aggregate liquidity constraints and its excess of demand can lead to a systemic default.
Gorton and Huang (2004) develop a theoretic model to include moral hazard behaviour.
The results of their model suggest that a well defined government bailout is able to elim-
inate the moral hazard and obtain an efficient social outcome. Bianchi (2016) finds that
the only way to efficiently bailout an industry during a crisis, when hazardous behaviours
may arise, is to systemically rescue all the distressed firms in the sector. Adopting a
different perspective, Chari and Kehoe (2016) build their work from the intuition that
bailouts are the source of inefficiencies rather than a cure for them. They show in their
dynamic model that an optimal mechanism can be achieved by allowing governments to
exert a more stringent, ex ante authority and commitment.

Liquidity shortage and insolvency can lead to contagion between endangered and
healthy firms, increasing the risk of a systemic meltdown. This effect is modelled in
Diamond and Rajan (2005). The authors develop an equilibrium model able to incorpo-
rate the interaction between insolvency and scarce liquidity as the cause of contagion in
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the banking system. They show that government intervention, whether in the form of
liquidity injection or recapitalization, can prevent a systemic collapse if the institution
financed remains solvent. If the rescued bank is not able to ensure enough liquidity, it
would trigger an excess of new recapitalization, spreading the contagion across healthy
institutions. Adopting an operations research approach, Klages-Mundt and Minca (2022)
investigate the optimal intervention to a shock in a specific type of financial network.
They apply approximation algorithms to the NP-hard problem of a network subject to
an intervention scheme and show that it is possible to bail out a set of firms to obtain the
maximal value.

The design of an optimal government mechanism to bail out an industry, consider-
ing an outside market, has been addressed in Philippon and Skreta (2012). The results
obtained from their theoretical model show the impossibility of improving investment
schemes using cost-less interventions and the ability to define an ex ante, optimal inter-
vention by assessing borrowing rates outside the market. They also highlight the irrel-
evancy of the size of the intervention, the efficiency of debt-like bailout and that there
is no linkage between the cost of implementing the intervention and the private market.
Wollmann (2018) in his structural model investigates the change in the product offering
given an industry shock. Assessing the bailout schemes provided to the auto industry in
2009, he finds that the ability to adjust vehicle production impacts firms operating re-
sults substantially. Pandolfi (2022) addresses the design of an optimal rescue mechanism
for banks considering the availability of bail-in instruments alongside bailouts. He finds
that, in presence of a low moral hazard and liquidation option, the optimal policy is a
combination of recapitalization (bail-in) and taxpayers’ money from a bailout.

3.1.3 Contribution

Given the limited literature that could shed light on the implications of financial aid pack-
ages on competition in network based industries, this research aims to develop an applied
game-theoretic model to investigate the equilibrium outcome of the aviation transport
market, when competition may be distorted by government bailout mechanisms. Specif-
ically, we develop a single-stage, game-theoretic framework in which governments rescue
airlines by offering different forms of financial aid and carriers subsequently compete
through a market share model that maximises their best response function. Airline de-
cision variables include service frequency, airfares for business and economy passengers
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per origin-destination served and the number of aircraft to operate. We solve the game
iteratively until we find the transport equilibrium outcome. Then we estimate the social
welfare by calculating consumer, producer and government surpluses. Consequently, we
investigate the implications of the varying types of bailouts on overall welfare.

To the best of our knowledge, the model presented in this paper is the first to inves-
tigate the effect of government bailouts on airline competition adopting a game-theoretic
approach. In this sense, our work contributes and enriches the literature on applied game-
theoretic methodology. The insights provided by this research and the model we develop
could guide policymakers in taking more consistent ex ante decisions by predicting their
impact on the entire industry. Moreover, we introduce into the modelling process the
strategic decisions for an airline to potentially ground part of its fleet in order to reduce
operating expenditures in a period of financial distress. This element of novelty enables
an analysis of the competitive interactions that is different from "business as usual". Our
results shed light on the competitive implications of the uncoordinated responses enacted
by the European Union with respect to the Covid-19 outbreak. Finally, the insights
provided by this research could be relevant to other distressed sectors characterized by
the presence of multiple, competing firms that interact through a network structure. In
particular, this approach could be applied ex ante to a single firm in order to test the
effectiveness of potential bailout schemes, independent of the status of the specific indus-
try. Consequently, it is possible to obtain insights on any competitive distortions should
the rescue mechanism be targeted to a specific firm instead of a systemic bailout.

The plan of the paper is as follows. Section 3.2 develops the model framework and
solution method. In section 3.3 we present the data and numerical results of the model
applied to the European aviation market in light of the Covid-19 pandemic. Section 3.4
discusses the conclusions of our work and suggests potential future research directions.

3.2 Methodology

In this section, we develop a single-stage, dynamic, Nash game framework in which the
players maximize their profits given their network structure and the decisions of their
competitors. We begin by defining the network typology and then specify the utility
function of passengers over which we develop a market share model that defines airline
competition. Subsequently, we specify the airline cost functions and multiple, potential
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bailout repayment schemes. We combine these elements into our mathematical formu-
lation and, using a non-linear optimization algorithm, we solve the game iteratively. In
Table 3.1 we define the notation used throughout the paper.

Table 3.1: Notation
Sets and Indices
A: Set of airlines; indexed by a
H: Set of flight types (i.e short-haul and long-haul); indexed by h
K: Set of legs served by airline a in the itinerary from i to j for flight type h; indexed by kh

N : Set of airports nodes; indexed by i, j
S: Set of passenger types; indexed by s
Parameters
Ba: Net present value of the bailout repayment for airline a ∈ A
β0s: Direct connection parameter in the utility function for passenger type s ∈ S
β1s: Frequency parameter in the utility function for passenger type s ∈ S
β2s: Airfare parameter in the utility function for passenger type s ∈ S
β3s: Travel time parameter in the utility function for passenger type s ∈ S
Ck: Cost for airline a ∈ A to serve leg k ∈ K per km flown
ch: Conversion parameter in the cost functions for flight type h ∈ H
dijs: Potential Demand between nodes i ∈ N and j ∈ N for passenger type s ∈ S
δija = 1 if the connection between i ∈ N and j ∈ N for airline a ∈ A is direct, 0 otherwise
ϵijsa: Random component of utility between nodes i ∈ K and j ∈ K for passenger type s ∈ S of airline a ∈ A
f̄h: Average utilization frequency for flight type h ∈ H
GCDk: Great Circle Distance of leg k ∈ K
MCPF : Marginal cost of public funds
ζ: Interest rate on loan
ϕ: Taxation on airline profits
r: Bailout discount rate
ηt: Interest rate on equity increasing over time t
ρ: Government remuneration as dividends
Sk: Number of seats available on leg k ∈ K
τija: Travel time between i ∈ N and j ∈ N for airline a ∈ A
T : Time period at which the aid is fully repaid
Decision variables
fka: Service frequency on leg k ∈ K of airline a ∈ A
pijsa: Fare set on itinerary from i ∈ N to j ∈ N per passenger type s ∈ S of airline a ∈ A
Fha: Fleet size deployed for flight type h ∈ H by airline a ∈ A (i.e. number of narrow and wide-body jets)
Auxiliary variables
MSijsa(fka, pijsa): Market share from i to j per passenger type s ∈ S of airline a ∈ A as a function of frequency and airfare
ψ(Fha): Size of aid as a function of fleet size for airline a ∈ A
Vijsa: Systematic component of utility between nodes i ∈ N to j ∈ N per passenger type s ∈ S of airline a ∈ A
zija: Minimum frequency over an indirect itinerary from i ∈ N to j ∈ N for airline a ∈ A

3.2.1 Network specifications

The network in our model, G(N ,K), is based on a hub-and-spoke structure, which allows
carriers to maintain an airport base, namely the hub, and several directly connected
airports as spokes, or to operate a point-to-point network between nodes. With respect to
supply we make the following four assumptions. We assume that only one type of aircraft
is used per arc type kh, according to long-haul and short-haul flights. Based on the data,
the legacy carriers use hub-spoke networks to serve both long and short-haul connections
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whereas the low cost carriers serve short-haul alone on a fully connected network. Given
the limited number of itineraries connecting through two or more stops, we assume that
the number of arcs belonging to an itinerary is bounded to a maximum of two for all
airlines. Under this network formulation, we model both direct and indirect itineraries.
Furthermore, the network structure is assumed to be static in that the airlines’ choice
of network typology does not change. This assumption prevents airlines from acquiring
slots at additional airports to serve new routes, however the solution may lead an airline
to stop serving a connection by setting its frequency to zero.

3.2.2 Demand and market share functions

With respect to the demand-side, we define potential passenger demand between origin
and destination pairs (i, j) per type of passenger s, namely business or economy. In our
model, travellers select their preferred alternative among carriers based on the assumption
of utility maximisation. Following the discrete choice models proposed by McFadden
et al. (1973) and developed further in Ben-Akiva and Lerman (1985), we specify the
utility function Uijsa as a composition of systematic Vijsa and random ϵijsa components.
The systematic part of the alternative provided by airline a is defined, according to the
type of passenger s, for each origin i and destination j pair depending on the itinerary
specifications, as shown in Eq.(3.1).

Vijsa = β0sδija + β1sln(1 +min{fkh′a}) + β2spijsa + β3sτija, ∀i, j ∈ N , s ∈ S, (3.1)

where
K′ = {kh′|kh′ are the legs composing itinerary i, j ∈ N}

In the systematic utility function (Eq.(3.1)), β0s, β1s, β2s and β3s are the parameters of
the utility components, δija indicates whether the route is connected directly or indirectly
by the airline assuming a value of 1 or 0 respectively, pijsa and fhk′a are the airfare and
service frequency, respectively, that carrier a sets per itinerary, and τija represents the
travel time in minutes for the origin-destination connection. This means that a service
frequency fka = 1 implies that airline a operates a single flight on leg k in a month.
The use of these four elements in the definition of passenger utility functions captures
the most important drivers in the decision process. As highlighted in Hansen (1990), the
use of a natural logarithm to represent the utility component associated with frequency
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accounts for the marginal decrease in value related to additional flights. Furthermore,
since the origin and destination airports may be linked through a one-stop connection
over a hub, the minimum value of the service frequencies of the set of legs in the itinerary
is considered to model the bottleneck effect of a specific leg on the itinerary. The last
two components of Eq.(3.1) are the dis-utilities induced by the airfare and by the travel
time of airline a on the route connecting i to j. These are the variables most commonly
used in the literature on game-theoretic models (Hansen, 1990; Hansen and Liu, 2015;
Cadarso et al., 2017). More variables can be added, such as punctuality rate and takeoff
and landing times (Garrow, 2016; Mumbower et al., 2014). However, the inclusion of
more variables comes at the expense of higher complexity and computational time. The
random components of the utility function are assumed to follow a Gumbel distribution
and to be independent and identically distributed (i.i.d.).

Given the specification of the passenger utility function, a market share model is
calculated as a multinomial logit function (MNL), as shown in Eq.(3.2).

MSijsa =
eVijsa

eV0 +
∑
a′∈A

eVijsa′
(3.2)

where a′ includes the set of all airlines operating directly or indirectly on the route (i, j)

and V0 represents the utility when the passenger does not fly. It is important to note that,
given the formulation in Eq. (3.2), the market share values range from 0 to 1. Passengers
may decide to not fly if the utility associated with the alternatives offered by the airlines
is less than that related to the decision not to fly. The no-fly option choice represents the
price elasticity of demand and prevents airlines from setting excessively high airfares. We
assume that the no-fly option is characterised by a utility equal to zero. The sum of each
market share, given the option to not fly, will be less than or equal to 1. Formally:

0 ≤MSijsa ≤ 1, ∀i, j ∈ N , s ∈ S (3.3)

∑
a′∈A

MSijsa′ ≤ 1, ∀i, j ∈ N , s ∈ S (3.4)

MNL models also present shortcomings. In particular, the independence from irrel-
evant alternatives (IIA) property requires that the relative choice probabilities between
two alternatives is independent from the existence of an additional alternative in the
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choice set. However, this requirement is generally considered too restrictive for modelling
purpose (Cao et al., 2022).

3.2.3 Operating costs

The costs incurred by carriers include both operating and fixed components. Swan and
Adler (2006) found that direct operating costs may be expressed as a function of aircraft
capacity and great circle distance, GCDk, between the two airports connected by arc kh.
They propose two equations, one for short-haul flights, mainly operated by narrow-body
aircraft, and one for wide-body movements, usually employed in long-haul arc connec-
tions. The cost functions are multiplied by two to take into account the round-trip nature
of the flights. Moreover, we use a conversion parameter ch to account for the currency
conversion rate (from $ to e) and update the functions to 2019 cost per available seat
kilometre (CASK) values per flight type h. We account for ultra-low-cost carriers by
adding an additional equation in which the short-haul operating costs are halved, based
on data analyzed in 2019.

C legacy
ks = 2(GCDks + 722)(Sks + 104)$0.019ch (3.5)

C lcc
ks = (GCDks + 722)(Sks + 104)$0.019ch (3.6)

Ckl = 2(GCDkl + 2200)(Skl + 211)$0.0115ch (3.7)

where,

Kl = {kl|kl are the long-haul legs}

Ks = {ks|ks are the short-haul legs}

3.2.4 Bailout repayments

The airline industry had a severe liquidity problem and inability to cover the fixed costs,
in line with the fact that they could not continue to provide the service. Given the
absence of a stream of revenue, the bailouts provided did not exceed the minimum needed
to ensure the viability of airlines and did not go beyond covering fixed costs. However,
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once the crisis has passed, airlines are left with the debt they must repay. Several types of
bailout mechanism could be applied to rescue carriers. Consequently, depending on the
type of assistance provided, a different repayment scheme Ba is included in the airline’s
objective function. We model three repayment schemes, namely grants, loans and equity
ownership. In the case of grants, no repayment is required. In the case of loans and
equity instruments, the reimbursement from this intervention has been modelled as the
net present value of the aid repayment scheme discounted by a rate r. The interest
rate ζ on the loan is set according to the repayment date. In the case of government
intervention through equities, the remuneration and exit strategies are defined such that
the beneficiary of the recapitalization is incentivized to repurchase the shares. This is
achieved by setting a level of remuneration for the nominal investment that increases over
time at an annual interest rate of ηt and an adequate government remuneration ρ in the
form of dividends.2 Given these characteristics, the net present value function of the
bailout repayment scheme assumes one of the following forms:

Ba =


0 ⇐⇒ Grant
T∑
t=1

ψ(Fha)
T

ζ
(1+r)t

⇐⇒ Loan
T∑
t=1

ψ(Fha)
T

ηt
(1+r)t

+ πρ
(1+r)T

⇐⇒ Equity

(3.8)

where ψ(Fha) is the size of the aid provided to the airline as a function of the fleet deployed
when the airline is rescued through a loan or equity and is assumed to remain constant
when a grant is received. Specifically, grants are generally provided to small-scale airlines
characterized by a fleet composed of a few aircraft. Hence, any reduction in their fleet size
will result in a suspension of most of their operations and a consequent airline default.
T is the last period in which the carrier completes the bailout repayment (or defaults).
A bankruptcy manifests in the case when the airline is not able to perform any opera-
tions and its profits turn negative. The instruments provided by European Commission
and modelled in our framework, take into account the uncertainty caused by the pan-
demic through different repayment time and interest rates. Specifically, loans generally
are provided when the duration of the debt is shorter compared to the time needed to

2Modelling market fluctuations during the period in which airlines buy back their equities is out of
the scope of this research. Consequently, we assume that holding equities of airlines, governments are
remunerated only through interest rates and dividends.
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fully buyout the shares of a recapitalizations. Equity injections are substantially more
expensive than loans but they allow for complex and protracted restructuring process.

3.2.5 Mathematical formulation

The competitive airline industry is modelled as a Nash non-cooperative game in which
carriers maximise their profits, given other airlines’ best response functions, until the
iterative solutions of the optimization problems converge to an equilibrium. Each airline’s
profit function assumes the form of revenue minus cost and the three decision variables
are airfares, flights frequencies and the fleet size in the case of a loan or equity bailout.
Given the cost function, bailout repayment scheme and multinomial market share model,
the non-linear profit function assumes the following form:

Max
pijsa,fka,Fha

πa =

[∑
i,j

i ̸=j

∑
s

MSijsa(fka, pijsa)dijspijsa −
∑
kh

Ckh(GCDk, Skh)fka

]
(1− ϕ)
(1 + r)T

−Ba(Fha)

(3.9)

where MSijsa is the market share for an itinerary connecting i to j for passenger type
s operated by the airline, dijs is the potential demand observed between i and j per
passenger type s, Skh is the aircraft seat capacity on the kh arc and ϕ is the corporate
taxation level on airline profits.

The objective function is subject to the constraints (3.10)-(3.17). All constraints are
linear except for (3.10) and (3.13).

MSijsa =
eVijsa(fka,pijsa)

eV0 +
∑
a′∈A

eVijsa′ (fka′ ,pijsa′ )
∀ i, j ∈ N , s ∈ S (3.10)

zija ≤ fω′a ∀ i, j ∈ N , ω′ ∈ Ω′ (3.11)

zija ≤ fω′′a ∀ i, j ∈ N , ω′′ ∈ Ω′′ (3.12)
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∑
i′,j′∈N ′

∑
s

di′j′sMSi′j′sa ≤ Skhfka, ∀ kh ∈ K (3.13)

∑
kh

fkha ≤ f̄hFha, ∀ h ∈ H (3.14)

fka ≥ 0, ∀ kh ∈ K (3.15)

pijsa ≥ 0, ∀ i, j ∈ N , s ∈ S (3.16)

Fha ≥ 0, ∀ h ∈ H (3.17)

where,

N ′ = {i′, j′|i′, j′ are the itineraries passing through arc kh}

Ω′ = {ω′|ω′ is the first arc of the itinerary i, j ∈ N}

Ω′′ = {ω′′|ω′′ is the second arc of the itinerary i, j ∈ N}

Constraint (3.10) defines the market share following the multinominal formulation de-
scribed in Equation (3.2). Since the passenger utility is not a continuous function due to
the presence of a minimum, we overcome this discontinuity by linearising the functions
using constraints (3.11)-(3.12). Equation (3.13) represents the constraint of the aircraft
capacity. This bound ensures that the demand served by airlines never exceed the seat
availability offered on the leg. Equation (3.14) specifies that each airline’s service fre-
quency is bounded by their fleet size Fha and the average utilization rate f̄h according to
flight type h. Constraints (3.15)-(3.17) specify the domain of the decision variables. Given
the strategic nature of this analysis, we assume that all decision variables are continuous,
which is clearly a simplification, that undertaken the purpose of reducing complexity.
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The resulting program, despite the linearisation enforced through constraints (3.11)-
(3.12), is still highly non-linear in its objective function and constraints. To find a solution
to the non-linear programming maximisation problem, a primal dual-interior point algo-
rithm with a filter line search method is applied. This procedure, proposed by Wächter
and Biegler (2006) and implemented in the IPOPT routine, solves nonlinear programs
with double differentiable objectives and constraints. We note that the optimal solution
found through this algorithm may converge to a local rather than global optimum. To
guarantee the robustness of the results obtained, we perform a sensitivity analysis of the
equilibrium solution by initialising the program with different control sequences.

3.2.6 Game-theoretic competition

The mathematical program in Eq.(3.9)-(3.17) is embedded into a single-stage dynamic
game, where airlines compete given their network structure. The set of players is rep-
resented by all airlines operating in the market. Carriers may decide to stop serving
existing connections by setting a frequency equal to zero but are not permitted to change
the nodes they serve. The Nash equilibrium is obtained as a result of an iterative algo-
rithm, where the mathematical program is solved sequentially for each player of the game
and where the values of the decision variables of each iteration are used as input for the
next iteration. A cycle is defined when a solution of the mathematical program has been
computed for all airlines. The process ends when a Nash equilibrium is found in which no
player has an incentive to deviate from his best response to the other players’ strategies.
We set an exit threshold of less than 1% between the values of the objective function for
each airline in the set of players between two consecutive iterations. The pseudo-code of
the solution process is described in Algorithm 1.

In this framework, the focus is entirely devoted to airlines, as they are the only player
considered in the game. However, since the service frequency, airfares and itinerary char-
acteristics (directness of the flight and elapsed travel time) determine the travellers’ utility,
passengers play an indirect role in the game. The government sets the rules of the bailout
at the beginning of the game and receives remuneration (or not in the case of grants or
should the airline enter bankruptcy if the profits are non positive) according to the scheme
chosen.
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Algorithm 1 Solve the game
1: Start
2: Initialise values of competitors’ decision variables and their network characteristics
3: condition← false
4: iterator ← 1
5: Create an empty list candidate to store possible solutions
6: while condition == false do:
7: cycle:
8: for a in airline do:
9: Solve the mathematical program for a using IPOPT

10: Store solution in candidate
11: Airline a moves to set of competitors while airline a+ 1 leaves
12: if (iterator > 1) & (candidate[iterator] − candidate[iterator − 1] ≤ threshold)

then:
13: condition← true
14: solution← candidate[iterator]

15: iterator ← iterator + 1

16: return solution
17: Stop

3.2.7 Social welfare analysis

To analyse the impacts of airline bailouts on overall social welfare, we define the welfare
function as the sum of consumer, producer and government surpluses. Formally, the
welfare function is expressed as in Eq.(3.18).

W =
∑
a

πa +
∑
i,j,s

dijsln

 1

β2a
e

(∑
a′
Vijsa′

)+
∑
a

(ϕπ
′

a +Ba)MCPF (3.18)

The first term represents airline profits, the second is the surplus of travellers derived from
the logsum of the logit function (Small and Rosen, 1981) and the last term represents the
government income from taxation and bailout remuneration. π′

a is the airline profit net
of bailout repayment and MCPF is the marginal cost of public funds.

3.3 European case study

In this section, we first discuss the bailout scheme structure approved by the European
Commission, then the airlines’ network topology, the data analysed to set the values of
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the parameters and finally, the results of the analysis. The structure of the results is based
on multiple scenarios in which different European Member States invest in the airlines
according to the multiple bailout schemes in order to understand their impact on the new
competitive equilibria outcomes.

3.3.1 Bailout schemes during Covid-19

To respond to the severe impact caused by the covid pandemic, governments have pro-
vided aid packages that support firms during liquidity shortages. The two main bailout
schemes were the CARES Act (116th Congress, 2020) in the US and the Temporary
Framework for the European Union (TFEU) (European Commission, 2021). Since our
interest is focused on the European aviation market, we describe the TFEU in detail.
Airline bailouts approved under this scheme are reported in appendix A according to the
Member State. Given the limited resources available to the European Union, the Mem-
ber States individually chose the support measure and its financial magnitude, following
the rules set by the European Commission. The TFEU suggests several ways to bailout
firms facing the risk of bankruptcy: providing aid in the form of a direct grant, guaran-
tees or subsidised public loans, equity injection, deferral of taxes, hybrid instruments and
state recapitalisation. In this research, we focus on the three most prevalent instruments,
namely grants, loans and equity investments.

Direct grants, consisting of a lump sum transfer without any repayment, represent the
easiest and fastest support measures for firms. Loan-based instruments are designed with
a horizon of a maximum of six years from the date that the financial injection is received.
The aid is subject to an increasing interest rate over time, depending on the repayment
period as reported in Table 3.2.

Table 3.2: TFEU interest rates on loan

Time since loan received 1 year 2-3 years 4-6 years
Interest rate 0.5% 1.0% 2.0%

Government support in the form of equity or hybrid instruments is undertaken through
the purchase of newly issued shares and (re)introduces the State as a firm shareholder.
We model only equity-based schemes and do not include hybrid instruments due to their
specificity. The interest rate of the equity instrument is increasing over time as shown in
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Table 3.3. Under this setting, firms are allowed to buy back their shares from the State
at any time, repaying the initial nominal investment plus the relevant annual interest rate
and paying dividends only in relation to the State.

Table 3.3: TFEU interest rate on equity

Time since equity received 1 year 2-3 years 4-5 years 6-7 years 8 or more years
Interest rate 4.5% 5.5% 7.0% 9.0% 9.5%

Although the cost of equity is higher than that of the loan, it does provide the airline
with a longer time frame to repay the investment. Given the fact that at the beginning of
a crisis, there is a lot of uncertainty as to the length of time required to return to business
as usual, this is an advantage over the alternative bailout schemes.

3.3.2 Network and Players

The model proposed in Section 3.2 is tested on a real scaled network served by ten com-
peting airlines, over a 12 nodes network, as depicted in Figure 3.1. Four European carriers
are modeled including two legacy carriers and two low cost carriers. The remaining six
airlines are non-European and fly from their respective hubs to the six European nodes.
This is clearly a simplification of the market hence we define all non-European nodes
and one European node as "macro-region". A macro-region is defined as a representative
agglomerated market capturing the demand from and to the major European cities. In
particular, we define six macro-regions outside Europe, North America, Latin America,
Africa, Middle East, Asia and Oceania, and the Europe macro-region in order to cap-
ture the connections between each of the major European cities and all other possible
destinations (origins) within Europe. Table 3.4 summarises the airlines and nodes in the
network. Accordingly, both long-haul and short-haul competition is considered. The net-
works depicted in Figure 3.1 include both hub-and-spoke and point-to-point networks,
where adjacent nodes are connected by numbered route arcs. We include British Airways
with a hub in London and Lufthansa with a hub in Frankfurt to represent the legacy car-
riers in the case study. We assume that Ryanair serves all European destinations through
the European macro-region and Easyjet serves a fully connected European network, both
representing low cost carriers. To locate the node belonging to a macro-region and com-
pute the distance and travel time between the other nodes, we use the region centroid. We
note that the network allows both direct and indirect connections between each node pair.

58



Figure 3.1: 12-node network with 10 competing airlines
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For the case study, we selected the largest airlines belonging to the macro-regions and
European Member States. The aim is to minimize the size of the game for computational
simplicity but ensure a sufficiently rich description of the market that conclusion may be
drawn.

3.3.3 Parameters

Here we define values for the parameters used in our model. First we discuss the airlines,
subsequently demand and finally the aid packages. We describe the values used for the
three bailout types and the time horizon for the repayment.

The distance between two nodes, GCDk, is computed as the great circle distance be-
tween two nodes in kilometers. In a similar fashion we compute the the elapsed travel
time in minutes. We assume an average of eight block hours per day for long-haul flights
in addition to ground and maintenance operations, which permits one flight on a repre-
sentative day. Consequently, 30 flights are operated on average in a representative month
for a long-haul, wide-body aircraft. In a similar manner, we assume that two short-haul
connections are possible, resulting in an average of 60 flights per month for a short-haul,
narrow-body aircraft. We define the seat capacity according to two reference aircraft, one
for each type of operation. Specifically, we assume that short-haul flights are operated
using a Boeing 737 aircraft configured to accommodate 180 seats while long-haul connec-
tions are operated using a Boeing 777 accommodating 375 passengers. The conversion
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Table 3.4: Cities, macro-regions and carriers in our network

City/Macro-region Hub carrier (IATA code) LCC operating (IATA code)
London British Airways (BA)

Ryanair (FR), Easyjet (U2)

Frankfurt Lufthansa (LH)
Amsterdam -
Madrid -
Milan -
Europe Ryanair (FR)
North America American Airlines (AA) -
Latin America Latam (LA) -
Africa Ethiopian Airlines (ET) -
Middle East Emirates (EK) -
Asia China Eastern Airlines (MU) -
Oceania Qantas (QF) -

parameter ch converts the currency in the cost function to Euros and to actualize the
parameters in Eq.(3.5)-(3.7) to reflect the CASK values reported in the 2019 airlines’ per-
formance reports. In the cost function ch = 0.0361 for short-haul flights and ch = 0.0265

for long-haul flights.
Demand levels are computed using 2019 traffic data from the Official Aviation Guide

(OAG). Due to the highly seasonal trend in the pattern of aviation traffic, we calculated
the demand as the average number of passengers during the months of February and
August, the off-peak and peak month, respectively. Given the predominant nature of
flights as round-trips and in order to shorten computational time, demand is assumed to
be symmetric between each origin and destination pair. A load factor of 80% is assumed
for of both business and economy class passengers for legacy carriers while this value is
increased to 90% for LCCs in order to represent the higher load factors that character-
ize these airlines. The coefficient values in the multinomial logit model are reported in
Table 3.5, according to two types of passengers s and whether the flight is continental or
intercontinental. Starting from the coefficients published in the aviation literature (Adler
et al., 2014a; Birolini et al., 2020) and reported in Appendix B, we calibrate these values
by minimizing the error between the model estimates and the observed values in 2019, a
period absent of any exogenous shock, in terms of fare, frequency and fleet size.

The magnitude of the aid is a function of the size of the airline. Consequently, the
size of the bailout is estimated linearly, through an ordinary least squares (OLS) regres-
sion, using airlines’ fleet size as a proxy for the carrier size. The regression is presented
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Table 3.5: Multinomial logit parameters

Continental Intercontinental
Economy Business Economy Business

Direct flight (β0s) 0.490 0.560 0.460 0.510
Service frequency (β1s) 0.610 0.690 0.700 0.773
Air fare (β2s) −0.0252 −0.0096 −0.00182 −0.00072
Travel time (β3s) −0.007 −0.014 −0.0007 −0.0010

Table 3.6: Bailout composition in scenario analysis
Baserun Grant-Grant Loan-Loan Equity-Equity Grant-Loan Grant-Equity Loan-Equity

British Airways - Grant Loan Equity Grant Grant Loan
Lufthansa - Grant Loan Equity Loan Equity Equity
Others - Loan Loan Loan Loan Loan Loan

in Figure 3.2 and the specific details in appendix A. The magnitude of the bailouts cor-
respond to an average of e 12.47 million per aircraft3. The interest rate for loans, ζ, is
set at 2% and for equity, ηt, increasing over time up to 9%, both consistent with the rules
of the European Commission (2021). The time horizon T for the analysis is set to six
years, in line with most of the industry forecasts (ICAO, 2020; Airbus, 2022). We assume
that airline demand will completely recover to pre-Covid-19 levels by 2025 in line with
expectations (Airbus, 2022). Corporate taxation on airline profits is assumed to be 20.6%
rate, as specified in the OECD (2020) report. The discount rate r of the bailout is defined
according to the DG Competition (2008) report, and is set at a 2% level.

3.3.4 Results

We apply our model to seven different scenarios characterized by combinations of bailouts
in order to explore the effects of the mix of bailout schemes on airline competition and
social welfare. Scenarios are reported in Table 3.6. Without state aid, the European
airlines would probably have not survived the pandemic, hence we focus on scenarios in
which carriers receive a bailout. Many of the airlines that did not receive bailout either
went bankrupt or filed for Chapter 11 protection (Avianca, Latam, Air Italy, Flybe, etc.).
The pandemic caused the government to intervene, which in turn forced the airlines to
stop operating in most cases. Specifically, we show how the two main European legacy
carriers, British Airways (BA) and Lufthansa (LH), compete between themselves and all

3We are aware that using only the fleet size as a proxy for the bailout can pose some limitations.
However, we aim to keep the model as general as possible and using fleet size we indirectly endogenise
bailout magnitude as an airline decision.
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Figure 3.2: OLS regression of bailout magnitude on airlines’ fleet size
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other carriers, under different bailout provisions. LCCs and non-European legacy carriers
receive the actual bailout provided across all the scenarios besides the Baserun. Figures
3.3 to 3.5 and Table 3.8 present the results in terms of airline profits, airfares, service
frequency and fleet size under the different scenarios. The baserun scenario validates the
model by checking 2019 values in the absence of any type of bailout. Consequently, we
analyse all the potential scenarios of different combinations of bailouts. We initialize our
algorithm using 50 different randomly generated control sequences and we find consistent
results across all cases (Table 3.7).

The scenario in which both legacy European operators receive a bailout through a
grant, the Grant-Grant case, exhibits an increase in airline profits because the fiscal stim-
ulus is not subject to any repayment mechanism. This scenario resembles the structure
of the baserun case and does not alter the competition in the industry since both airlines
receive the same type of bailout which is not passed on to the passengers, rather simply
increases profits.
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Table 3.7: Average Baserun values and maximum percentage variation (in brackets) of
objective and decision variables of BA in 50 randomly generated control sequences

Profits (em) Fares Frequencies Fleet

298
Long-haul Short-haul

463
Long-haul Short-haul

Business Economy Business Economy
(0.0025) 3,080 1,595 355 254 (0.0005) 113 63

(0.0042) (0.0001) (0.0003) (0.0005) (0.0008) (0.0006)

Figure 3.3: European legacy carriers’ monthly profits and market share
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The scenario in which both airlines receive a loan, the Loan-Loan case, shows that
both carriers are slightly less profitable than the Baserun case. This result is caused by
a decrease in service frequencies due to the decision to ground part of their fleet in order
to reduce operating expenses. Given this decision, the carriers experience a homogeneous
decline in their market shares, which the non-European operators serve instead.

In the Equity-Equity setting, both European legacy carriers are subject to the buy-
back of their shares and repayment of interest to the government. In this scenario, airlines
report a severe reduction in profits of more than 60%. To contain costs, the two carri-
ers ground most of their fleet, resulting in a sharp decrease in service frequency. In this
scenario, airlines increase fares in both short and long-haul markets. These combined
decisions show that airlines tend to focus more on the less competitive long-haul market,
giving up market share on intra-continental routes when subjected to severe financial
distress. It would appear that loan provision is relatively preferable for both airlines as
compared to equity, although this depends on the assumption that the bailouts will be
repaid within six years. If this were to prove insufficient, then the more expensive but
longer term equity schemes might prove necessary.

The results suggest that government aid in the form of a grant, when the compet-
ing legacy carrier is subject to the repayment of a loan, as in the scenario Grant-Loan,
distorts the competitive outcome. The airline given a loan is penalised compared to the
airline receiving a grant, and is forced to reduce expenditures by decreasing the number
of flights offered and reducing the size of its fleet. As a result of this distortion, the carrier
subject to a loan increases the airfare in both short and long-haul markets in an attempt
to increase revenues. The unbalanced bailout setting leads all carriers to acquire market
shares at the expense of the airline that receives the loan.

A similar result, but greater in magnitude, is obtained when one of the two European
legacy airlines receives a bailout in the form of a grant and the competitor is financed using
equity instruments as in the Grant-Equity scenario. This combination of bailouts is the
most competition distorting, leading to a severe contraction in profits and fleet size and
an increase in airfares in the more competitive short-haul market for the carrier subject
to the equity burden. The distortion results in the disappearance of the equity-financed
carrier from the European short-haul market.

In the scenario Loan-Equity, that most closely resembles the British Airways - Lufthansa
markets, the carrier receiving a loan takes advantage of the better financial position and
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Table 3.8: Percentage variation in average airfares compared to Baserun
Baserun (e m) Grant-Grant (%) Loan-Loan (%) Equity-Equity (%) Grant-Loan (%) Grant-Equity (%) Loan-Equity (%)

Long haul
BA LH BA LH BA LH BA LH BA LH BA LH BA LH

Business 3,080 2,984 1 1 2 2 7 7 2 1 8 2 8 3
Economy 1,595 1,566 1 1 4 4 17 19 2 3 5 17 7 17

Short haul
BA LH BA LH BA LH BA LH BA LH BA LH BA LH

Business 356 341 0 1 11 13 60 84 1 12 5 82 15 82
Economy 254 230 -1 -2 15 20 90 136 -1 20 -2 136 17 136

exploits market power with respect to the recapitalised airline. The partially renation-
alized airline is forced to ground most of its fleet in order to contain expenditures and
decreases service frequency accordingly. As in the previous scenario, the recapitalised
airline increases short-haul and long-haul fares. The carrier under greater distress thus
continues to compete on the more profitable inter-continental markets, giving up most of
the continental operations.

The comparison between European legacy airlines and LCCs, shown in fig 3.5, high-
lights the impact of the mixed use of bailout schemes on the subsequent competitive
equilibria outcome on the intra-European market. This is motivated by the financial
burden on the legacy carriers of repaying the bailout, since they were already under com-
petitive pressure before the exogenous pandemic shock. The LCC market share may grow
from 40% prior to the pandemic to above 60% in specific scenarios.

Once the equilibria have been computed for the seven scenarios, we evaluate the pas-
sengers, airlines and government surpluses and the overall social welfare, as shown in
Equation (3.18). Specifically, we compare the six scenarios in which a bailout is provided
to airlines against the Baserun case in the absence of any scheme. We note that during
the Covid-19 pandemic, grant stimuli have been provided to small carriers alone and are
of a marginal magnitude compared to the loans and equity offered to legacy airlines (ap-
pendix A). Due to the onerous nature of this type of aid on taxpayers, we consider it to
be an unfeasible mechanism for bailing out large airlines. Table 3.9 presents the variation
across the three welfare components as a function of the scenario analyzed. Our analysis
suggests that airline surplus increases in all scenarios involving the use of a grant. This
is especially visible in the scenario in which both airlines receive a grant, Grant-Grant,
in which carriers benefit from government intervention and increase their profits by up
to 25%. Conversely, airlines are worse of when subject to the repayment of interest on
the bailout, particularly when they are subject to the repayment of an equity scheme. In
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Figure 3.4: Long-haul fleet (left) and short-haul (right) for the two European legacy
carriers
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Figure 3.5: Market share of legacy and LCC carriers in the short-haul markets
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Table 3.9: Variation in the social welfare components
Baserun (e m) Grant-Grant (%) Loan-Loan (%) Equity-Equity (%) Grant-Loan (%) Grant-Equity (%) Loan-Equity (%)

Airline surplus 671.86 24.87 -8.49 -55.49 9 -2.06 -21.95
Consumer surplus 3623.71 -16.23 -21.18 -45.57 -19.24 -35.58 -36.88
Government surplus 226.07 -37.79 103.9 300.26 32.36 96.91 174.48
Social welfare 4521.65 -11.2 -13.04 -29.75 -12.46 -23.97 -24.09

the scenario Equity-Equity, in which the highest variation occurs, airlines are worse off by
55% compared to the Baserun case. Our results suggest that bailing out carriers with a
debt or equity instrument, results in a loss of welfare for passengers too. This downturn
in surplus is driven by the increases in airfares and by the reductions in service frequen-
cies, impacting the perceived utility from flying. This reduction is particularly severe
in the Equity-Equity scenario, suggesting a reduction of 46% in passenger surplus. The
government surplus is positive in all the intervention scenarios with the exception of the
case when both airline are rescued through a grant (Grant-Grant) hence are not subject
to any repayment. Notably, our analysis suggests that the most profitable scenario for
the government is renationalization of the airline, enabling government participation in
airline dividends and financial inflows through the interest rate repayment. This scenario
results in a 300% increase in surplus compared to the Baserun case. Our welfare analysis
suggests that the most distorting scenario is that in which both airlines are renationalized
through equity, reaching a loss in welfare up to 30% compared with the Baserun scenario.
However, the airlines are likely to survive thus ensuring the repayment of the taxpayers’
bailouts. In summation, our analysis suggests that the optimal intervention, which also
ensures a level playing field, may be to provide loans to all carriers. This intervention re-
sults in a marginal loss of 13% in social welfare compared to the Baserun scenario and it is
mainly driven by the slight contraction in airline profits and passenger surplus. However,
these negative variations are compensated by an increase in government surplus from the
repayment of bailout interests. Despite the drop in social welfare caused by the failure
of an entire industry due to an exogenous shock, governments need to make a decision
whether public money should help the industry during the pandemic. This form of in-
surance balances the substantial risk of private firms with the general public, assuming
that the date and duration of the exogenous shock cannot be predicted. Overall, if the
general public share the risk of the pandemic, they found they there will better off given
that airlines survive and repay the interests on their debt. The results of our model are
reflected in what happened in the real world (Darroch et al., 2022).
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3.4 Conclusions and future directions

In this research, we develop a game-theoretic model capable of representing the competi-
tion between airlines under different government aid packages. In our model formulation,
not only do carriers strategically set service frequency and airfares, but they also select
the number of aircraft to operate. We apply our model to the recent Covid-19 outbreak
in order to assess the potential market distortions induced by state aid. We develop an
algorithm that estimates the Nash equilibria across seven scenarios, characterized by dif-
ferent combinations of bailouts.

Our analysis suggests out that the airline industry has been severely affected by the
uncoordinated provision of state aid, leading to an unlevel playing field for the European
carriers and a likely welfare reduction of approximately 24%. In particular we compare
two airlines of similar size prior to the pandemic, and show that unequal bailout policies
will likely disrupt the profitability and structure of the two carriers. Successively, results
have shown that it is possible to achieve a socially preferable outcome through a coordi-
nated and homogeneous bailout mechanism across the Member States. Our findings are
consistent with the results of the analysis of Bianchi (2016). We demonstrate that the
European Commission would have been more efficient in requiring all carrier bailouts to
be in the form of loans hence limiting the negative effects on social welfare. Furthermore,
our analysis suggests that the financial burden of any type of aid on European legacy
carriers results in a gain in market share for LCCs operating short-haul flights within
Europe. This highlights how the rescue policies enforced autonomously by European
Member States may harm their flag carriers, to the advantage of low-cost operators in the
European market and of non-European airlines in the long-haul market. As Kahn (1988)
and Rose (2012) emphasised, deregulation of the airline industry has been a success in
terms of efficiency and competition. The inefficiencies we highlight are the result of the
failures drawing from additional government interventions.

Future directions for research consist of several options since this paper represents the
first attempt to model the bailout in the airline industry in a competitive game-theoretic
network environment. It could be interesting to evaluate the effects that government in-
volvement, as an airline shareholder, may have on carrier decisions to act in the country’s
interest, departing from the assumed profit maximisation strategy paradigm. It would
also be interesting to address the impact of bailouts on the strategic behaviour of carriers
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within alliances and the possible reshaping of interline and codeshare agreements. Another
interesting research question would be to assess the impact of the market equilibrium on
the aviation supply chain, including airports and air navigation service providers.
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Appendix A

Government support for airlines in Europe

Country Airline Aid size (e m) Type of aid
Austria Austrian Airlines 450 Grant and Loan
Austria Condor 550 Loan
Belgium Brussels Airlines 290 Loan
Croatia Croatia Airlines 11.7 Grant
Estonia Nordica 30 Equity
Latvia Air Baltic 250 Equity
Finland Finnair 1,237 Equity
France Air France 8,000 Loan and Equity
France Corsair 141 Grant
Germany Lufthansa 6,840 Loan and Equity
Germany TUI 3,526 Loan
Greece Aegean 120 Grant
Italy Alitalia 297 Grant
Netherland KLM 3,400 Loan
Norway Norwegian 277 Loan
Norway Wideroe 121 Loan
Poland Lot 750 Loan and Equity
Portugal SATA 133 Loan
Portugal TAP 1,200 Loan
Romania Blue Air 62 Loan
Romania TAROM 19.3 Loan
Spain Air Europa 475 Not confirmed
Spain Iberia 750 Loan
Spain Vueling 260 Loan
Sweden, Denmark SAS 1,130 Equity
Switzerland Swiss (Lufthansa) 1,420 Loan
UK British Airways 2,553 Loan
UK Easyjet 2,240 Loan
UK Ryanair 670 Loan
UK Wizz air 344 Loan

Source: self collected from European Commission (2021)

Appendix B

Logit coefficients used in other studies as starting point for model calibration

70



Birolini et al (2020) Adler et al (2014)
Selected variables All Medium-haul Long-haul Selected variables European routes International routes

Business Leisure Business Leisure
Frequency 0.011 0.0104 0.0111 ln (log frequency) 0.5220 0.4005 0.4176 0.1602
Price (IV) -0.0159 -0.0171 -0.0012 Total price -0.0018 -0.0043 -0.0003 -0.0018
Flight time -0.0054 -0.0113 -0.004 Total trip time -0.15 -0.053 -0.0050 -0.0018
Type of service 2.5921 2.232 2.4272
Inclusive value 0.6971 0.8307 0.7516
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Chapter 4

Competing on emissions charges

4.1 Introduction 1

Despite the increased understanding in recent years of the negative impacts derived from
emissions produced by industries, an effective and globally accepted emissions curbing
mechanism has not yet been implemented. Many governments developed unilateral emis-
sions reduction schemes, often in the form of taxes or cap-and-trade policies, to regulate
emissions production and to reduce the negative effects of climate change. However,
the lack of coordination among countries’ policymakers generates sub-optimal outcomes.
A clear example is given by the presence of multiple, overlapping policies to address
aviation emissions, such as the European Emissions Trading Scheme (EU-ETS) applied
alongside Member States’ ticket taxes and the Carbon Offsetting and Reduction Scheme
for International Aviation (CORSIA). Another source of inefficiency arising from the lack
of coordination between countries manifests itself in the form of emissions leakage from
heavily regulated countries to those jurisdictions or sectors in which schemes are less strict
or non-existent (Baylis et al., 2013; Nordhaus, 2015; Perino et al., 2019). Furthermore,
other market failures such as firms’ market power will result in a departure from the
standard first-best formulation in which government intervention can address negative
externalities by imposing a Pigouvian tax, even in the presence of perfect coordination
between regulators (Pels and Verhoef, 2004).

This calls for a game-theoretic framework to analyse how non-cooperative regulators at
different administrative levels will set environmental policies strategically and how firms

1This chapter is based on the joint work with Nicole Adler and Gerben de Jong.
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will subsequently react to these mechanisms. Given the complexity and numerous forces
in the aviation industry, there is a need to represent a realistic framework capable of
including these exogenous components. We will focus on the case of airline environmental
regulation because the concerns about the impact of aviation emissions are rapidly growing
in policymakers’ interest and the fragmentation in the aviation environmental regulatory
setting offers the right context to be analysed using a game-theoretic approach.

Among the different sectors, the transport industry is one of the largest sources of
pollution, accounting for approximately 37% of the carbon produced. Within the trans-
portation domain, the aviation industry currently produces 5% of the worldwide anthro-
pogenic carbon dioxide (CO2) emissions, and this is expected to continue to increase by
2050 if air transport continues to grow following this trend (Lee et al., 2021; Kwan and
Rutherford, 2015). In the absence of global environmental regulation, decision-makers at
the local, national and supra-national levels have mandated various environmental policies
in an attempt to control aviation emissions (Larsson et al., 2019). However, the extent
and environmental efficiency of these measures differ significantly between countries. Fur-
thermore, since airlines operate globally, policy makers need information on how airlines
respond to different (sometimes overlapping) policies, to ensure that their interventions
balance the carbon footprint of aviation with its wider economic and connectivity benefits.

To mitigate the aviation environmental footprint two market-based policies are cur-
rently in place: the EU-ETS and the Carbon Offsetting and Reduction Scheme for Inter-
national Aviation (CORSIA), proposed by the International Civil Aviation Organisation
(ICAO). The initial scope of the ETS required all airlines serving airports in the Euro-
pean Economic Area (EEA) to acquire emission allowances, but flights to and from the
non-EEA were excluded after facing substantial opposition (Leggett et al., 2012). COR-
SIA was developed with the goal of compensating aviation emissions and reaching carbon
neutral growth starting from 2020 on international routes, but is currently still in its
voluntary pilot phase. Under this global policy, carriers can commit to compensating the
tons of carbon they produce through emission abatement projects. In addition to these
market-based policies, some EU member states have implemented ticket taxes (Faber and
Huigen, 2018). These taxes usually do not differentiate between the emission efficiency
of aircraft and therefore provide limited incentives for airlines to replace their fleets or
change their operations, although they may affect network decisions (e.g., destinations
and frequencies). Finally, at the most local level, around 60% of the airports in Europe
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levy environmental charges to foster airlines to acquire quieter and lower-emission air-
craft (European Commission, 2017; EASA, 2019). With some exceptions (Sweden), these
charges focus on local pollutants and do not consider global climate impacts.

The literature on environmental emission charges and pollution curb mechanisms has
grown largely in the last decades (Marron and Toder, 2014; Nordhaus, 2015, 2018; Stiglitz,
2019). Marron and Toder (2014) give insight into how a carbon tax should be implemented
and administered to work efficiently, focusing on the optimal usage of generated revenues.
In his paper on Climate Clubs, Nordhaus (2015) examines the conditions that allow
the existence of cooperation among countries in curbing emissions, avoiding free-riding.
The results of his work show the non-existence of a climate coalition without sanctions
on international trade. In his consequent paper, Nordhaus (2018) proposes a model to
assess the uncertainties related to climate change and take them into account in policy
implementations. He shows that by introducing uncertainty into existing emissions curb
mechanisms, at the current abatement level it would be impossible to meet the 2◦C

temperature increase target in 2050 as ratified in the Paris Agreement. Stiglitz (2019)
revises the implications of the Stern-Stiglitz report by considering also redistributional,
innovation, and uncertainty concerns. He shows that the non-discriminating carbon price
estimated in the report, despite not considering the aforementioned concerns, will still
result in a welfare increase if applied in defining environmental policy. Timilsina (2022)
provides a comprehensive literature review of studies on carbon charges since the 1970s
by classifying the literature by the adopted methodology.

Sgouridis et al. (2011) analyse the impact of five different emission policies on civil
aviation. Through simulations, they found that none of the five policies can maintain the
demand level while reducing the emissions on its own, but an overall positive effect is
reached if the policies are combined. Kahn and Nickelsburg (2016) address the impact of
fuel prices on the composition and utilisation of the airline fleet in an empirical way. They
document that in periods when real jet fuel prices are higher, airlines substitute miles flown
to more fuel-efficient aircraft, scrap older fuel-inefficient planes earlier and fly all aircraft
at a lower speed. The study by Oesingmann (2022) assesses the effect of ETS on aviation
demand. Using a Poisson pseudo-maximum likelihood framework in conjunction with a
gravity model, the author found no significant effect of EU ETS in dampening demand
and reducing emissions. The author also controls for the effect of additional aviation
taxation and found a negative impact on the passenger demand. Fageda and Teixido-
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Figueras (2020) explore the effects of EU ETS on aviation supply assessing the impact
of carbon pricing on the aviation industry considering several countries. They found
that EU ETS can reduce the expansion of air traffic in terms of service frequency and
drives airlines toward operating through aircraft with higher capacity. In a recent paper,
de Jong (2022) investigates how the EU-ETS instigates airlines fleet replacement and the
consequent net environmental benefits. Using a survival analysis approach, he shows that
the incomplete implementation of the EU ETS (only on intra-European routes) leads to
the positive effects of a fleet upgrade for smaller, short-haul aircraft being compensated by
a longer utilisation of the more bigger and more polluting long-haul aircraft, generating
an additional form of carbon leakage.

Game-theoretic competition among airlines has been addressed in several works since
the early 1990s in terms of theoretical and computational contributions (Hansen, 1990;
Hong and Harker, 1992; Dobson and Lederer, 1993; Hendricks et al., 1999; Adler, 2005;
Adler et al., 2010; Vaze and Barnhart, 2012; Adler et al., 2014b). Among these works, the
study by Hansen (1990) defines a non-cooperative game where airlines compete in service
frequency within a hub-and-spoke network. Passengers’ preferences allow for deriving
market shares by using a discrete choice model. A market-resembling point of quasi-
equilibrium is found. Dobson and Lederer (1993) develops a two-stage game framework
in which the equilibrium is derived considering only one type of passenger and symmetric
hub-spoke networks, in a context where airlines choose airfares and service frequency.
Under the assumption of a fixed plane size and no traffic originating from the hub, they
develop a heuristic and found a solution for a small size problem. Adler (2005) studies
competition between hub-spoke networks using a non-cooperative two-stage game setting.
In this framework, airlines select which destinations to serve in the first stage, while, in
the second stage, they compete in service frequency and airfares. Adler et al. (2010) and
Adler et al. (2014b) include a nested-logit model, based on discrete choice formulations,
to define market shares for the airlines competing in the game, starting from passengers’
demand and assess the competition between airlines and other transport modes.

Due to growing interest in aviation-related emission mitigation measures, an increas-
ing body of literature addresses the impact on airline competition resulting from the
implementation of environmental policies aimed at reducing aviation emissions. The po-
tential emission savings and competitive effects of these policies have so far been studied
without considering airline responses, rather than assuming that airline fleets and net-
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works remain fixed. Yuen and Zhang (2011) explore the effects on competition induced
by unilateral greenhouse gas regulations. By developing a two-stage model, they show
that emissions regulations affect more domestic carriers than foreign ones and can result
in an environmentally inefficient network structure. The work proposed by Brueckner and
Zhang (2010) sheds light on the implication of an aeronautical charge on competing air-
lines as a duopoly, taking into account travellers’ preferences, airline characteristics, and
network structure. They found that an environmental charge has a positive effect on over-
all welfare, making airlines seek more fuel-efficient aircraft and redistributing their fleet,
fares, and network more efficiently. Vespermann and Wald (2011) analyse the impacts
derived from the inclusion of the aviation industry in the European ETS mechanism. By
adopting a simulation approach, they show that emissions mitigation and competition dis-
tortion are mainly driven by the price of carbon allowances. Sheu and Li (2014) proposed
a game-theoretic analysis to investigate the impact on airline competition in a duopoly
when EU ETS carbon allowances and the possibility of long-term environmental efficiency
investments are introduced. They find equilibrium strategies, both analytically and nu-
merically, in a symmetric duopoly environment for different allowances and investment
scenarios. Zheng et al. (2019) define a theoretical framework to investigate the propensity
that airlines have to collude and form cartels to purchase carbon offsets. They allow for
two types of market-based mechanisms, legally binding and non-binding, and found that
airlines are more willing to collude in offset purchases under the latter mechanism.

Competition between transport regulators is an area that has not been explored ex-
tensively in the literature. Most of the papers in the literature are related to regulatory
competition in terms of congestion pricing. Pels and Verhoef (2004) explore the impact of
congestion charges at two airports located in different countries. Using a stylised analyt-
ical model, they proved that applying directly a Pigouvian tax is detrimental to welfare
and that an optimal congestion policy requires addressing airlines’ market power first.
They test their model by taking into account both coordinated and competing regula-
tors, which aim to maximise their network welfare by setting a congestion toll. In the
coordinate regulators’ case, they show that, given airlines’ market power exceeding the
congestion effect, the optimal toll assumes a negative value for a subsidy to maximise
welfare. Differently, in the uncoordinated scenario, the regulator enters a tax competi-
tion raising charges above the congestion produced, resulting in an overall welfare loss.
Similarly, Silva et al. (2014) analyse airline competition when tolls per passenger and
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per route congestion are taken into account. Specifically, they model congestion tolls as
the result of competition between welfare-maximising regulators. They found that the
socially optimal welfare allocation can be different from the regulated one due to market
inefficiencies. Moreover, they prove this efficiency gap for both the first and second-best
structures. The review of the literature done in De Borger and Proost (2012) offers an
overview of the papers that address the competition of horizontal and vertical regulators
in the transport sector.

The aviation industry is severely pervaded by market distortions that interfere with an
efficient output. Brueckner (2002) explore how the market power can lead to sub-optimal
congestion correction policies, resulting in a welfare reduction. The exploitation of the
structure of the airline network, that is, hub-and-spoke and point-to-point operations,
can distort an optimal allocation (Brueckner et al., 1992; Borenstein, 1989). Brueckner
et al. (1992) in their paper investigates how economies of densities resulting from a hub-
and-spoke concentration affect airlines fares. They prove that this network structure
leads to lower fares for the spokes served from the hub. In addition to this variation
in the fares at the destination points, Borenstein (1989) shows that the airlines that
dominate a hub exert market power by increasing the prices for passengers departing
from these airports. Another distortion playing an important role is the Mohring effect
(Mohring, 1972). This phenomenon, prevalent in the urban transport sphere, has not
been extensively addressed in the aviation literature. The Mohring effect happens when
an increase in service frequency increases also travellers’ utility. Consequently, the demand
increases, requiring an even higher frequency to serve it, generating a positive feedback
effect. Distortions can also arise from carbon leakage across regions (Perino et al., 2019;
Carbone, 2013). This effect will redirect most pollutant operations toward less-regulated
jurisdictions and undermine the effectiveness of carbon policies.

The contribution of this paper is to develop a game-theoretic model that helps to assess
the impact of environmental policies on the aviation industry, taking into account both
airline and regulatory competition. Specifically, our model considers how airlines respond
to policies instigated by multiple, non-cooperative policymakers at different administra-
tive levels that set rules according to their objectives. More in-depth, our model gives the
possibility to analyse and understand policy implications deriving from the competition
of multiple regulators and comparing them to the implementation of a global scope pol-
icy. Furthermore, we investigate how overlapping policies imposed by different regulators
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interact with each other and their combined effect on welfare. We identify the case in
which a carbon charge may result effectively and those in which the implementation of
such a policy would fail due to the divergence in regulator objectives. To the best of our
knowledge, this game represents a novelty in the (air) transportation literature.

Table 4.1: Literature
Type of Network Airlines Environment Demand Analytical/ Regulators Aircraft version

competition structure entry/exit function Numerical competition environmentally efficient
Borenstein (1989) Price HS No No Exogenous Empirical No No
Hansen (1990) Price/Freq. HS/FC No No ML Numerical No No
Brueckner et al (1992) Price HS No No Exogenous Empirical No No
Hong & Harker (1992) Price/Freq. FC No No ML Numerical No No
Dobson & Lederer (1993) Price HS No No ML Numerical No No
Hendricks et al (1999) Price HS Entry No Linear Analytical No No
Brueckner (2002) Price/Freq. - No No - Analytical No No
Pels & Verhoef (2004) Freq./Tax FC No No Linear Analytical Yes No
Adler (2005) Price/Freq. HS Exit No ML Numerical No No
Adler et al (2010) Price/Freq. HS Exit Yes NL Numerical No No
Brueckner & Zhang (2010) Price/Freq./Eff./Load HS/FC No Yes Linear Analytical No Yes
Yuen & Zhang (2011) Freq./Tax HS No Yes Linear Analytical Yes No
Vespermann & Wald (2011) - - No Yes Endogenous Numerical No Yes
Vaze & Barnhart (2012) Freq. HS No No S-curve Numerical No No
Silva et al (2014) Freq./Pax./Size/Tax. HS No No Linear Analytical Yes No
Adler et al (2014) Price/Freq./Size HS/FC No No NL Numerical No No
Sheu & Li (2014) Price - No Yes Linear Analytical No No
Zheng et al (2019) Freq./Allowances - No Yes Linear Analytical No No
Our paper Price/Freq./Tax HS/FC Exit Yes ML Numerical Yes Yes

The remainder of this paper is structured as follows. In section 4.2 we formally define
our model with all the elements that characterise it. In section 4.3 we present an appli-
cation of our model to a representative global network. Concluding remarks are provided
in section 4.4.

4.2 Methodology

In this section, we define our game-theoretic model as a two-stage Nash game with perfect
information. The set of players in the first stage is characterised by the different regulators
composed of the governments of the countries in which airlines are based and/or supra-
national decision-makers, i.e. ICAO and EU. In the first stage, each regulatory body
aims to maximise the social welfare of the area of its interest by deciding the level of
environmental taxation applied. By setting a higher environmental tax, the regulator
can reduce (global) environmental damages, but this may come at the costs of (local)
consumer and producer surplus. Consequently, regulators compete on the entire level
of emissions produced considering how much they are susceptible to the environmental
damage resulting from these emissions. In the second stage, airlines compete with each
other in price and service frequency through their best response functions, pursuing profit
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maximisation. To respond to changes in the climate policies environment, airlines can
scrap inefficient aircraft and replace them with more environmentally friendly ones, fly
their high-emission aircraft less, reallocate their high-emission aircraft to routes with less
environmental taxation or reduce frequencies on regulated routes.

Table (4.2) summarises the notation used throughout the paper.

Table 4.2: Notation

Sets and Indices
A: Set of airlines; indexed by a
H: Set of the type of flight (i.e. Short and long haul flight); indexed by h
K: Set of all legs in the network; indexed by k
N : Set of airports nodes; indexed by i, j
R: Set of regulators; indexed by r
T : Set of passenger types; indexed by t
V : Set of aircraft versions; indexed by v
Parameters
β0t: Direct connection parameter in the utility function for passenger type t choosing airline a
β1t: Frequency parameter in the utility function for passenger type t choosing airline a
β2t: Price parameter in the utility function for passenger type t choosing airline a
β3t: Time parameter in the utility function for passenger type t choosing airline a
Cka: Cost for airline a to serve leg k
dijt: Demand between nodes i and j for passenger type t
δija 1 if the connection between i and j operated by a is direct, 0 otherwise
ϵijta: Random component of utility between nodes i and j for passenger type t and airline a
f̄h: Average utilization of aircraft in the time period by type of flight h
γk: Great circle distance of leg k
skv: Seats available on flights served by a on leg k per aircraft version v
ϕhv: Fuel consumption of aircraft version v for aircraft type h
ψ: Fuel price in dollar per ton of kerosene
ohv: Ownership cost for aircraft type h version v
co2: Conversion factor between fuel consumption and co2 produced
opcs: Share of operating costs without fuel and ownership costs
ρhv: Initial purchase price of an aircraft of type h version v
σhv: Salvage value of an aircraft of type h version v at the end of the time period
i: Interest rate
n: Time periods
ξ: social cost of carbon
Decision variables
θr: Fuel tax imposed by regulator r
fka: Service frequency on leg k for airline a
pijta: Fare set for itinerary from i to j and passenger type t for airline a
xhva: Number of aircraft owned of type h version v for airline a
Auxiliary variables
mijta(fka, pijta): Market share of airline a for itinerary from i to j and passenger type t
Vijta: Systematic component of utility between nodes i to j per passenger type t of airline a
zija: Minimum frequency over an indirect itinerary from i to j for airline a
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4.2.1 Network design

We define a hub-and-spoke network, G(N ,K), in which each carrier has a hub base in
its home country. Each airport represents a node of the network belonging to the set N .
The hubs are connected to the spokes through ordered legs within the set K, allowing
indirect connections between the spokes passing through the hub airport. In the current
setting, airlines do not cooperate with code-sharing behaviours or interlining practises.

Given the network configuration, airlines are subject to different levels of climate poli-
cies imposed by regulators. Specifically, we aim to analyse different regulatory settings
allowing for both a multi-regulator competitive environment and a single-regulator mo-
nopolistic setting. Given the network of our model, regulators set a carbon tax on each
ton of CO2 generated by a flight departing from an airport under their authority, taking
into account the variant of the aircraft (i.e., emission efficiency) so as to incentivise the
usage of more efficient aircraft.

The sets belonging to the influence area of a specific regulator are defined as:

N r = {ir, jr|ir, jr ∈ N , ir and jr are nodes in the area regulated by r}

Ar = {ar|ar ∈ A, ar is an airline based in the area regulated by r}

Kr = {kr|kr ∈ K, kr is a network leg served by an airline based in an area regulated by r}

4.2.2 First stage

In the first stage, regulators aim to maximise the social welfare of the area under their
influence. Welfare is defined over four main components: passenger surplus, producer
profits, environmental damages and governmental income from environmental taxation.
Formally, the social welfare function is defined as follows

Max
θr

SWr =
∑
irjt

dirjt
1

−β2t
ln

(
e
V0+

∑
a
Virjta(f

∗
kva,p

∗
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s.t.

−∞ < θr < +∞ ∀ r ∈ R (4.2)

where
εkv = γkϕhvco2

is the ton of CO2 produced on a flight leg k by a specific version of aircraft v.

In Eq.(4.1) the first element represents the consumer surplus, expressed as the log-sum
of the utility of passengers departing from regulator jurisdiction 2, and the second is the
profit generated by airlines based in the regulator area, the third is the income from the
carbon charge imposed on CO2 generated on the regulated legs, and the last element
expresses the share ηr of the overall social cost of emissions that affect the regulator.
The decision variable for the regulatory entity is the value θr to charge for each ton of
carbon originating from a flight departing from its jurisdiction, taking into account the
airline’s responses to carbon charges in the second stage. Eq.(4.2) express the domain
of the carbon charge. In the case of a negative value, the charge assumes the form of a
subsidy to airlines.

4.2.3 Regulators competition

Regulators compete to maximise their social welfare taking into account environmental
damage. The aviation industry of each regulator contributes to the total amount of
emissions produced. However, not all regions are affected in the same way by emissions.
Specifically, we allow for different degrees of risk exposure through the ηr parameter. In
this way, regulators that are interested in their region’s climate damage have the incentive
to free-ride on the emissions reduction achieved by the actions of regulators of more
climate-vulnerable regions. All CO2 emissions generated by civil aviation bear a social
cost common to all regulatory bodies, namely the social cost of carbon and represented by
the parameter ξ. This social cost is homogeneous between regions given the global impact
of carbon emissions on the environment. Consequently, regional regulators not only take

2Given that the consumer surplus is computed considering only passengers departing from airports in
regulator jurisdiction, consumer surplus of trans-Atlantic passenger is accounted half for each regulator
if we assume roundtrip flights.
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into account damage to their regions, but they also influence other regions’ climate damage
through their decisions. In our game, regulators can trade off environmental externalities
with their region passengers’ surplus and carriers’ profits by deciding the level of taxation
on CO2 in their jurisdiction. In this way, the regulator’s decision is strictly connected to
other regulators’ actions and forming competition at a regulatory level. The results of
this first-stage competition are inherited in the second stage by the competing airlines.

4.2.4 Market share model

We assume that passengers are utility maximisers in selecting the airline and itinerary for
their travel. According to McFadden (1974) utility can be decomposed into a systematic
element, Vijsa and a random one, ϵijsa, as follows:

Uijta = Vijta + ϵijta, ∀i, j ∈ N , t ∈ T , a ∈ A (4.3)

The systematic component is defined as follows:

Vijta = β0tδija + β1tln

(
1 + min

k∗∈K∗
(fk∗a)

)
+ β2tpijta + β3tτija, (4.4)

∀i, j ∈ N , t ∈ T , a ∈ A

where δija is the component of utility associated with a direct connection, the second term
represents the utility of a higher service frequency, the third element is the disutility of
paying the ticket fare, and the last represents the loss of utility generated by the travel time
τija. As Hansen (1990) suggested in his work, the use of frequency logarithms is suitable
to represent the decreasing return of utility of a higher service frequency. This element
represents the Mohring in the utility function. effect Moreover, we use the minimum
frequency among all the legs composing an itinerary to select the frequency that acts
as the bottleneck of the full route. Moreover, we define the set of legs belonging to an
itinerary and the set of regulators with jurisdiction on a node as:

K∗ = {k∗|k∗ ∈ K is a network leg belonging to itinerary i, j for airline a}

The random component is assumed to be independently and identically distributed
according to a Gumbel distribution. Consequently, demand can be split between airlines
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into their market shares through a multinomial logit model (MNL):

mijta =
eVijta

eV0 +
∑
a′∈A

eVijta′
, ∀i, j ∈ N , t ∈ T , a ∈ A (4.5)

where the term V0 is the utility associated with the outside option from fly, specific for
each market.

4.2.5 Airline operating costs

According to Swan and Adler (2006), the direct operating cost of the airline can be
defined through a cost function that differentiates between long- and short-haul flights.
We modify this function to unravel the components of fuel, ownership, and remaining
operating costs. The reason why we do this process is two-fold. First, by separating fuel
costs, we can better tailor the cost functions to represent more accurately the increased
share of fuel costs in the airline operating costs by using recent fuel prices. Secondly,
we also need to separate ownership costs because they depend on the number of aircraft
deployed, which is a decision variable for the airline. Thus, we define ownership costs
directly in the objective function of the airline. We actualise the costs at the 2019 values
to take into account the increase in inflation and the variation in operating costs in recent
years and to convert the value of the function from the dollar to the euro. Furthermore,
we account for low-cost carriers by assuming that they face half of the operating costs
incurred by legacy airlines.

Ckv =

[ψϕhvγk + opcs(γk + 722)(skv + 104)$0.019 if k ∈ Ks

[ψϕhvγk + opcs(γk + 2200)(skv + 211)$0.0115 if k ∈ Kl
(4.6)

where
Ks = {ks|ks ∈ K are the short-haul legs served}

Kl = {kl|kl ∈ K are the long-haul legs served}

The first element of Eq.(4.6) specifies the cost of fuel. This is a major component of
airline operating costs representing around 30% of costs (IATA, 2019). It is computed
considering the distance of the flight γk, the fuel consumption ϕhv of the flight according
to its type and the version of the aircraft, and the price of a ton of fuel ψ based on the
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2019 values. The second term of the function represents the operating costs, excluding
fuel and ownership costs. We compute this element by weighing the function by the share
of the cost components they address in Swan and Adler (2006) and excluding ownership
and fuel costs. Under this definition, the operating costs of each flight solely depend on
the characteristics of the leg and the specific version of the aircraft used.

4.2.6 Ownership costs

The monthly cost of owning an aircraft is approximated by the equivalent annual capital
costs divided by the number of months per year:

ohv =
(ρhv − σhv)

(
i(1+i)n

(1+i)n−1

)
+ σhvi

12
(4.7)

where ρ is the initial purchase price of an aircraft; σ is the salvage value at the end of
the n-year time period; and i is the interest rate. We select four (most) commonly used
aircraft models as reference models for the different types of aircraft in our game (see
Table 4.4).3 The purchase prices of these aircrafts are based on the average list prices
published on the websites of aircraft manufacturers (Airbus, 2018; Boeing 2022). Salvage
values are derived by assuming straight-line depreciation in 30 years, with a service life
of 20 years – that is, the salvage value is equal to one third of the purchase price. We
assume an interest rate i of 10%. We further assume a discount factor on the purchase
price of an aircraft. The offering of a discount on the retail price of the aircraft to airlines
is a common practise in the aviation industry. However, this is airline private information
and is the result of a negotiation process between airlines and aircraft manufacturers.

4.2.7 Second stage

In the second stage, airlines aim to maximise profits given the environmental charges
imposed by regulators at different geographical levels. Each airline strategically sets the
service frequency of each version of the aircraft fkva on the leg of the network, the fares
pijta on the routes between an origin and destination and selects the optimal number and
version of the aircraft xhva to operate their chosen flight network. Given this setting, the
objective function for airlines can be modelled in the following way:

3Using competing models does not lead to materially different capital cost values.
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Max
pijta,fkva,xhva

πa =
∑
i,j,t

i ̸=j

dijtamijtapijta −
∑
k,v

Ckvfkva

−
∑
kr,v

εkrvθrfkrva −
∑
h,v

ohvxhva (4.8)

where mijsa is the market share function specified in (4.5) and represents the share of
demand served by a specific airline for each pair of cities and type of passengers, Ckv
represents the operating costs, defined in Eq.(4.6), incurred by the airline to serve a
specific leg, ohv is the monthly ownership cost of the version of the type of aircraft h
v and xhv is the number of aircraft of type h and version v that the carrier decided to
operate on its network. Airlines can decide whether to internalise regulator charges or
pass them on to passengers by increasing airfares and/or adapting accordingly to service
frequency and fleet mix.

The second-stage problem is subject to constraints (4.9)–(4.16).

mijta =
eVijta(fkva,pijta)

eV0 +
∑
a′∈A

eVijta′ (fkva′ ,pijta′ )
, ∀ i, j ∈ N , t ∈ T , a ∈ A (4.9)

zija ≤ fω′va ∀ i, j ∈ N , ω′ ∈ Ω′ (4.10)

zija ≤ fω′′va ∀ i, j ∈ N , ω′′ ∈ Ω′′ (4.11)∑
i◦,j◦,t

di◦j◦tmi◦j◦ta ≤
∑
v

skvfkva ∀ k ∈ K (4.12)

∑
kh

fkhva ≤ f̄hxhva ∀ h ∈ H, v ∈ V (4.13)

fkva ≥ 0, ∀ k ∈ K, v ∈ V (4.14)

pijta ≥ 0, ∀ i, j ∈ N , t ∈ T (4.15)

xhva ≥ 0, ∀ h ∈ H, v ∈ V (4.16)

where,
N ◦ = {i◦, j◦|i◦, j◦ are the itineraries passing through arc k}

Ω′ = {ω′|ω′ is the first arc of the itinerary i, j ∈ N}
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Ω′′ = {ω′′|ω′′ is the second arc of the itinerary i, j ∈ N}

Eq. (4.9) specifies the multinominal logit model as the market share function in the
objective function of the airline. Constraints (4.10) and (4.11) represent a linearisation
of the minimum frequency of indirect flights in the utility function in Eq. (4.4). These
constraints are needed to avoid discontinuities in the market share function during the
solution process. Eq. (4.12) is the capacity constraint and ensures that the demand
served by an airline meets the availability of seats offered on the specific leg considering all
possible itineraries offered by the airline and using the leg. Constraint (4.13) restricts the
number of flights operated to be less than the average service frequency, differentiating
between long- and short-haul flights. Constraints (4.14) to (4.16) represent the lower
bounds for the decision variables.

4.2.8 Game-theoretic competition and algorithm

The competition framework for regulators and airlines is structured as an extensive game
with complete and perfect information (Osborne and Rubinstein, 1994). In this model,
the players make strategic decisions sequentially in two stages. This framework allows
players to define their strategies in the stage in which they are required to play an action,
relaxing the restriction of selecting strategies only in the initial phase of the game. This
allows second-stage players to decide their strategy in response to the decisions of first-
stage players. The players p of the game are regulators, in terms of the first stage and
all the airlines in the second stage. Formally, the set of players is P = {R,A}. The
game is defined over a set of histories, where each element of the history is an action.
The set of histories is Φ and every action after a non-terminal history φ belongs to the
set of actions Λ(φ) = {λ : (φ, λ) ∈ Φ}. The actions of the regulators, in the first stage,
are represented by the environmental charges imposed on airlines, while, in the second
stage, the airlines react by choosing service frequency, ticket fares and the number of new
and old versions of aircraft to deploy.4 At each non-terminal history is assigned a player
through a function P (·), where P (φ) is the player after the history φ. The last element
is the preference relationship (≿player) over payoffs for each player, which in our case are
social welfare for the regulators and profits for the airlines. The entire game is defined as

4While airlines network is assumed as fixed in the game, airlines can indirectly decide to stop operating
a connection by choosing a frequency of zero. This allows carriers to endogenously decide whether to
continue serving a market or not.
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Γ = ⟨P ,Φ, P, (≿player)⟩.
It is possible to solve this two-stage simultaneous game using a Kuhn-Zermelo type of

backward induction algorithm (Schwalbe and Walker, 2001), as described in Alg. (2). The
algorithm starts by initialising the values for the first and second stages. Successively, the
algorithm computes the sub-game perfect Nash equilibrium (SPNE) for the second stage
by solving the mathematical program for all airlines in the set of airlines A, which we
refer to as a cycle. Once the SPNE has been computed in the second stage, the algorithm
solves the problem in the first stage for all regulators in the set R. Specifically, after each
first-stage computation, a new cycle needs to be computed with the updated values for the
charges. When an SPNE is found at each stage, the equilibrium of the game is reached.
Following the consistent approach used in Adler et al. (2022) our algorithm performs a
space search for a point grid around each iteration optimal solution. This means that
we compute the second stage solution for all the points around the initial guess and we
select the strategic decision that is maximising the regulator’s social welfare. Repeating
this approach iteratively and consistently shrinking the grid radius every time the best
response for the regulators is found.

It is important to note that, even if the existence of an SPNE is assured in the extensive
games with perfect information by the Kuhn theorem Kuhn (1953), due to the high non-
linearity of the objective functions it is not possible to ensure that the solution found
is a global optimum. Consequently, the robustness of the results is tested by selecting
different starting points and sequences of players within each specific set of players.

Another important aspect to highlight is that, although passengers are not well defined
players in our game, their decisions are pivotal to airline objectives in the second stage of
the game. In particular, airlines compete to obtain a higher market share of passengers
in the markets they serve to increase their revenues. Hence, the market share function
indirectly endogenizes passengers’ decision of which flight alternative to choose.

4.3 Case study

We validate our model on a representative network considering two world regions, namely
North America and Europe. The nodes that compose the network are depicted in Fig.
(4.1). Specifically, our network is made up of 22 nodes, divided equally between the
two regions. This network configuration allows for domestic flights within a region and
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Algorithm 2 Solve the two-stage game (pseudo code)
1: Start
2: initialise values of competitors’ decision variables and their network characteristics,

for both regulators and airlines
3: while first stage solution > optimal threshold do:
4: while first stage solution is not a best response for all regulators do:
5: for each regulator do:
6: create point grid around previous first stage solution
7: for each point in the grid do:
8: while second stage solution not a best response for airlines do:
9: for each airline do:

10: solve the mathematical program using IPOPT
11: assess whether the second stage solution is a best response for all

airlines
12: return second stage solution
13: return second stage solution for each point
14: select the point that maximizes welfare
15: return first stage solution for each regulator
16: shrink the grid radius
17: return first and second stage solutions
18: Stop

trans-Atlantic connections between the two regions. Nodes in our network are selected
to represent 9% of the monthly demand within the two regions and the trans-Atlantic
(TRA) market. Moreover, the average distances between nodes are in line with the actual
ones (i.e., EU: 1250 km, NA: 2076 km, TRA: 6959 km). Trans-Atlantic connections are
operated by legacy carriers operating through their hubs. We define six hub airports, one
for each airline, assigned equally between Europe and North America. Specifically, we
select Frankfurt, London, and Paris as European hubs for Lufthansa, British Airways,
and Air France, respectively. Similarly, Toronto, New York, and Atlanta are the North
American hubs for Air Canada, American Airlines, and Delta. Low-cost carriers operate
point-to-point within the regions. We identify SouthWest, Spirit, and JetBlue as North
American LCCs while Ryanair, Easyjet, and WizzAir are their European counterparts.

We define three regulators, two of them exerting authority on a single region and
a global one with jurisdiction over both regions. Given the round-trip assumption of
flights, regional connections are subject twice to regulator charges, while to trans-Atlantic
connections, both regulator charges are applied. Furthermore, in the scenario in which the
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global regulator is introduced, all operations are also subject to his charge. We assume a
social cost of carbon ξ equal to 200 EUR, according to the latest IPCC reports (Pörtner
et al., 2022).

Figure 4.1: Selected nodes in North America and Western Europe.

4.3.1 Data

We retrieve data on 2019 passengers’ demand, airlines’ ticket fares, service frequencies, and
aircraft type from the Official Aviation Guide (OAG). The monthly demand is reported
in Table (4.3) for business and economy passengers and according to the different regions.
By choosing 2019 as the reference year, we avoid distortion induced by the Covid-19
pandemic. To move from actual to potential demand, we increase the value of the traffic
by 20%. We identify four variants of aircraft, two for short-haul flights and two for
long-haul ones. The aircraft purchase and salvage values, retrieved from manufacturer
websites, are reported in Table (4.4). We assume a discount factor of 25% on the retail
price. Since the magnitude of the discount is private information of manufacturers and
specific to each airline, we select this discount level as half of the maximum discount level
applied by Airbus5.

The coefficients used in the multinomial logit model are reported in Table (4.5). We
calibrate utility parameters startinin the caseg from estimates in the literature (Adler
et al., 2010), in order to replicate actual 2019 results in the baseline scenario described in

5The discount values applied by Airbus are computed by comparing annual report information on
aircraft prices and quantity sold, with the operating revenues.
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Table 4.3: Monthly demand, two-way

Business Economy Tot.
EU 295,062 4,681,656 4,976,716
NA 354,987 5,504,787 5,859,774
Trans-Atl. 66,405 397,356 463,761
Tot. 716,453 10,583,798 11,300,251

Table 4.4: Aircraft purchase and salvage values

h, v ρ ($ M) σ ($ M) Reference model Fuel (ton/km) Seats (LCC)
short, old 100 33.33 A320ceo 4 180 (189)
short, new 110 36.30 A320neo 3 180 (189)
long, old 345 113.85 B777 8 350 (-)
long, new 370 122.10 A350 7 350 (-)

the following section (Sec.(4.3.2)). The outside option is normalised to 0.4 for European
domestic consumers, to −2.8 for North American passengers, and to 1.3 for trans-Atlantic
flights. These values reflect well-known patterns, such as a higher price sensitivity for
leisure, a greater value for frequency and directness for business, etc. including some
references to well-known studies (Berry and Jia, 2010).

Table 4.5: Logit coefficients

European North American Trans-Atlantic
Business Economy Business Economy Business Economy

Directness (β0) 0.5600 0.4900 0.5600 0.4900 0.5100 0.4600
Frequency 0.9660 0.8540 0.9660 0.8540 1.0820 0.9700

Price -0.0154 -0.0508 -0.0110 -0.0363 -0.0008 -0.0018
Travel time -0.0140 -0.0070 -0.014 -0.0070 -0.0010 -0.0007

Outside option 0.4 -2.8 1.3

4.3.2 Results

The mathematical program resulting from the game belongs to general non-linear pro-
gramming problems. We use the IPOPT solver (Wächter and Biegler (2006)) to find the
second stage equilibrium. To find an equilibrium in the first stage, we rely on our space
search algorithm described in the previous section.
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Baseline scenario

After having defined the regulatory mechanisms, we compare the results obtained from
our model with the outcomes of a counterfactual scenario. We define a Baseline sce-
nario in the absence of any charge in the North American region and a carbon charge
θEU = 22 applied to all intra-European flights. This scenario aims to replicate the 2019
values taking into account also a European carbon charge to replicate the scope of the
EU-ETS scheme. Using this scenario, we validate our model and the parameterisation
used. Specifically, we compare Cost per Available Seat Kilometer (CASK), Revenue per
Available Seat Kilometer (RASK) and passengers carried with the real word values ob-
tained from airlines’ annual reports and OAG data. Validation results are reported in
Table (4.7). Our model produces estimates that are close to the real-world ones for both
legacy and low-cost carriers, thus validating our modelling approach.6 Results from the
baseline case, reported in Table (4.6), show that, despite the higher demand in North
America, the European market generates a greater surplus for passengers and its airlines
than the American one. This discrepancy between the two regions is due to the disutility
faced by American passengers who pay a higher ticket fare than European travellers and
have a regional network characterized by longer distances. Thus, higher fares are the re-
sult of the higher operating costs in North America and the presence of fewer alternatives,
resulting in passengers locked in by the airline system and paying more than Europeans.
The averages for the fares and service frequencies are reported in the Appendix (4.11).
Given the higher demand in North America, both LCCs and legacy carriers operate more
flights in this region compared to European ones. As a result of higher fares and higher
demand, American carriers are more profitable than European ones, despite the higher
operating costs incurred by American airlines. North American operations result in emis-
sions that are more than double those generated by European movements. However, since
we assumed that the impacts of emission are equally distributed between the two regions,
the difference in environmental damage between the two regions is zero. As such, our
baseline suggests that North Americans have been free-riding on the EU (and the EU
ETS) in 2019. In the baseline scenario, our model predicts that 80% of the potential
market is served while the remaining 20% of the passengers decide not to fly, consistent

6Small discrepancies between our estimates and the actual values are due to the difficulty in replicating,
in a single model and a representative network, different cost structures used by regular and low-cost
carriers.
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with the increase in potential demand.

Table 4.6: Baseline scenario

Baseline
EU NA ∆ NA-EU

θr (e ) 22 0 -22
Government surplus (e M) 8 0 -8
Emissions (e M) -110 -110 0
Consumer surplus (e M) 942 683 -259
Producer surplus (e M) 102 139 37
Welfare (e M) 942 712 -231

Table 4.7: Validation (real world values in brackets)

CASK (e c) RASK (e c) Demand, two-way (pax. M)
EU legacy 7.2 (7.1) 9.1 (7.7) EU NA TRA
NA legacy 6.4 (6.4) 7.9 (8.7)

4.7 (4.7) 5.7 (4.9) 0.5 (0.4)EU LCC 4.2 (4.3) 5.3 (4.8)
NA LCC 5.3 (5.9) 6.2 (6.5)

Competing regulators

We now define a scenario in which two regulators, based in different regions, compete by
setting emission charges on each flight departing from their jurisdiction. We assume that
one regulator sets charges for all departing flights from North America, and similarly, one
regulator charges all departing operations from Europe. We name this scenario 2REG.
Given the round-trip assumption of each flight, operations within a region are charged
twice by the same regulator; instead, trans-Atlantic flights are subject to both regulators’
charges, one per direction. The results of our model for this scenario are reported in Table
(4.8). We observe that competing regulators decide to free-ride on each other, resulting
in charges that are much lower than the social cost of carbon. In this way, regulators
protect the surplus of both passengers and carriers under their jurisdiction. This effect is
dominating the other forces in our game and prevent regulators from starting a tax war in
an attempt to extract surplus from the opponent region trans-Atlantic passengers. This
outcome is particularly visible due to the discrepancy between the amount charged by the
European and the North American regions. Specifically, the price elasticity of the demand
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for European passenger is lower than the one of North-American passenger. As Barnett
(1980) shows, in presence of market power, the optimal charge will be lower than the social
cost imposed by the externality given the distortion in output level. In fact, the more
the demand is inelastic, the more the charge would be close to the Pigouvian tax. Since
European passengers show a more inelastic demand, Europe is charging consistently more
than North America. In addition, airlines are able to increase the share of fuel efficient
aircraft in their fleet, resulting in a reduction of the social cost. This results in an increase
of the effectiveness of carbon charges in a market already affected by distorting forces.
In fact, the results from this competing regulators case closely reflect the actual charges
imposed by the Europeans (EU ETS price of 22) and the North Americans (zero) in
the real world in 2019. For the American regulator, a higher charge would be welfare
detrimental given the higher operating cost of regional carriers and the lower surplus of
passengers resulting from higher fares. In Europe, where airfares and distances are lower
and there are more alternatives to fly, the regulator is much more eager to set a higher
charge. The gain of regulators from charges is visible in the government surplus of the
respective region, which increases compared to the baseline scenario. As a consequence
of the implementation of the policies, airlines respond by slightly increasing airfares and
moderately reducing service frequency (4.13). This small reduction in frequencies also
generates a small contraction in the carbon emission generated across the entire network.
Overall welfare is in line with the one in the baseline scenario, highlighting how the
implementation of a corrective policy in the presence of the possibility of free-riding results
in an ineffective way of addressing a negative externality.

Table 4.8: Two-regulator scenario

Baseline 2 REG ∆
EU NA EU NA EU NA

θr (e ) 22 0 38 4 16 4
Government surplus (e M) 8 0 14 3 6 3
Emissions (e M) -110 -110 -109 -109 1 1
Consumer surplus (e M) 942 683 936 678 -6 -4
Producer surplus (e M) 102 139 101 139 -1 -0
Welfare (e M) 942 712 943 711 0 -1
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Single regulator

The second scenario we explore is the one in which a single entity regulates both regions.
In this setting, a global regulator defines a single charge per ton of CO2 generated that
applies to all flights. We name this scenario 1 REG and our model results are reported in
Table (4.9). Given the presence of a single regulator, in this setting, there is no possibility
of free-riding on other regulators, since the single regulator is fully responsible for all gen-
erated emissions (ηr = 1). The results of our model show that the optimal charge set by
the regulator is much lower compared to the expected Pigouvian tax, which should com-
pensate solely for the CO2 produced. This result is in line with the standard economics
literature. In fact, this value is lower than the social cost of carbon due to the market
power of airlines and the Mohring effect. Market power arises in the presence of an airline
dominant position that allows the carrier to increase prices while still capturing a signif-
icant share of passengers. As a consequence of higher fares imposed by airlines market
power. The Mohring effect generates a more than proportional increase in utility given an
increase in service frequencies, resulting in a feedback effect increasing passenger demand.
The economic literature predicts that these combined effects should call for a charge lower
than the Pigouvian tax. It is particularly important to note that, in our framework, a
regulator is not able to discriminate between itineraries and the charge is the same for
all operations. The absence of this discrimination element may result in a suboptimal
charge setting. As a result of this global scope policy, we observe a slight departure from
the baseline scenario. Specifically, as a consequence of this marginal global charge, we
do not observe changes in airlines’ strategies (4.12). Specifically, fares, fleet composition
and service frequency resemble the value obtain in the baseline scenario throughout all
markets in airlines network. With regard to the environment, the imposition of a charge
also on the North American market leads to a small reduction in the emission generated.
We observe that social welfare remains unchanged. The charge imposed by the world
regulator lies between the two set by those set by competing regulators. This implies
that even a coordinated mechanism which adopts solely a carbon tax equal across regions
is not necessarily welfare improving. Specifically, the regional regulator can address the
heterogeneity of passenger preferences and climate vulnerability of their region with a
tailored carbon charge. These results highlight how even in the absence of free riding and
carbon leakage, market distortions lead to ineffective environmental policies in the case
regulators have a carbon charge as the sole instrument to reduce emissions.
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Table 4.9: Single regulator scenario

Baseline 1 REG ∆
EU NA Sum REG

θr (e ) 22 0 22 8 -14
Government surplus (e M) 8 0 8 10 1
Emissions (e M) -110 -110 -220 -219 1
Consumer surplus (e M) 942 683 1,624 1,623 -2
Producer surplus (e M) 102 139 241 241 -0
Welfare (e M) 942 712 1,654 1,655 0

Overlapping policies

The last scenario we explore is the one in which our model is applied to a context in which
three competing regulators, one per region plus a global scope regulator with jurisdiction
over the entire network. We named this scenario Overlapping given the overlap in scope of
the policies, and we report the results in Table (4.10). More in detail, the third regulator
is fully responsible for all carbon generated, the producer surplus of all airlines, and is
interested in the consumer surplus of all passengers in the network. All the revenues
collected by the world regulator are redistributed to the two regions’ regulators according
to the flights departing from the region. Henceforth, regional regulators take into account
the extra revenues from the world regulator in their objectives. More specifically, regional
regulators now take into account also the redistribution of world regulator revenues in the
third term of Eq.(4.1). Under this setting all flights are subject to the charge imposed
by the global regulator on top of the one applied by each region regulator, resulting in
double taxation. Similarly to the two competing regulators scenario, in this case charges
also assume a value close to the baseline scenario and substantially far from the expected
Pigouvian taxation reflecting the social cost of carbon. As in the 2REG scenario, also
in this case we observe a reduction in the level of emissions generated thanks to the
introduction of a third regulator. However, the magnitude of this reduction is marginal.
This combined effect outweighs the negative externalities imposed by carbon emissions.
Regarding airlines, our results show a moderate increase in airfares and a slight contraction
in service frequencies compared to the counterfactual scenario (4.14). The moderate
charges imposed on airlines have a small effect on the fleet replacement rate of the older
version of aircraft deployed by airlines. These results seems to follow the case of the
two competing regulators. Fares, frequencies and fleet mix are in line with the baseline
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case in both regional and trans-Atlantic markets.The outcomes of this scenario are the
result of both free-riding behaviours combined with regulator protectionism consumer and
producer surplus. These distortions at the regulatory level have the effect of undermining
the effectiveness of environmental policies.

Table 4.10: Overlapping policies scenario with global scope charge

Baseline Overlapping
EU NA EU NA WR

θr (e ) 22 0 28 2 2
Government surplus (e M) 8 0 12 3 -
Emissions (e M) -110 -110 -110 -110 -
Consumer surplus (e M) 942 683 929 646 -
Producer surplus (e M) 102 139 100 135 -
Welfare (e M) 942 712 931 675 -

4.4 conclusions and future directions

In this paper, we develop a two-stage model capable of representing competition between
regulators and airlines under different emission charges. In our model formulation, reg-
ulators compete by strategically selecting the carbon emissions charge that maximises
their welfare, taking into account passengers, carriers, and environmental impact. As a
consequence of the carbon charge, carriers strategically set the service frequency, airfares,
and the number and version of the aircraft to operate. We apply our model to the differ-
ent scenarios to assess the implications of regulators’ competition and cooperation. More
in dept, we shed light on the implication of addressing environmental externality in an
economically distorted market, such as the aviation industry. Specifically, we develop
an algorithm that estimates the Nash equilibria of a two-stage game across scenarios,
characterised by different combinations of regulatory settings.

By comparing scenarios with a 2019 baseline case, we assess the impacts of the differ-
ent regulators’ interactions on welfare and the environment. Our analysis suggests that
imposing an environmentally optimal carbon charge on the aviation industry can lead
to unexpected and welfare-detrimental outcomes. Specifically, we have assessed that the
carbon charge imposed by a single regulator results in a level that is well below the social
impact of emissions. This environmental sub-optimal result is driven by the existence
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of severe market distortions affecting the outcome of the emission curbing policy. We
further show that when regulators are free to set their charges, they enter into a welfare-
detrimental free-riding competition and regional surplus protectionism, which undermine
the effectiveness of the mechanism. We find similar outcomes in the scenario with three
competing regulators in which a global-scope policy overlaps with the two regional ones.
The outcomes we present in our paper are the result of several distorting forces in the avi-
ation industry. More in depth, our results find theoretical evidence also in the literature
related to different aviation externalities (Brueckner, 2002; Pels and Verhoef, 2004; Silva
et al., 2014) and offer an explanation behind the reasons for the absence of an international
cooperative carbon policy.

Future directions for research consist of several options since this paper represents the
first attempt to model environmental regulators’ competition in the airline industry in
a competitive game-theoretic network environment. Some of the assumptions we made
can be relaxed in future work. An interesting extension of our model would be to allow
regulators to price discriminate at the route level by setting a specific charge for each
connection. However, this will result in a much more complex model that can easily turn
out to be intractable. A further extension of our model can include an extra layer of
players characterised by profit-maximising airports, turning the model into a three-stage
game where local airports act as a middle layer between regulators and airlines. Finally,
we focus our paper on carbon emissions. However, our model can also be extended to
consider local externalities, such as heavy pollutants and aircraft noise.

4.5 Appendix
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Table 4.11: Average airline prices and frequencies in the baseline scenario

Airline Price s-h. lei. Price s-h. bus. Price l-h. lei. Price l-h. bus. Freq. s-h Freq. l-h
Legacy

EU
LH 75 136 773 1,532 101 24
BA 71 130 787 1,644 158 39
AF 73 133 788 1,625 149 41

NA
AC 144 250 781 1,590 125 30
AA 140 240 812 1,700 172 41
DL 138 253 752 1,495 74 17

LCC

EU
U2 50 111 - - 149 -

FR 50 111 - - 149 -
WZ 50 111 - - 149 -

NA
WN 114 215 - - 195 -
NK 114 215 - - 195 -
B6 114 215 - - 195 -

Table 4.12: Average airline prices and frequencies in the 1REG scenario

Airline Price s-h. lei. Price s-h. bus. Price l-h. lei. Price l-h. bus. Freq. s-h Freq. l-h
Legacy

EU
LH 75 135 772 1,531 102 24
BA 71 130 786 1,643 159 39
AF 72 132 786 1,625 150 41

NA
AC 144 251 781 1,590 124 30
AA 140 242 812 1,700 172 41
DL 139 255 752 1,495 74 17

LCC

EU
U2 49 110 - - 148 -
FR 49 110 - - 148 -
WZ 49 110 - - 148 -

NA
WN 114 216 - - 194 -
NK 114 216 - - 194 -
B6 114 216 - - 194 -
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Table 4.13: Average airline prices and frequencies in the 2REG scenario

Airline Price s-h. lei. Price s-h. bus. Price l-h. lei. Price l-h. bus. Freq. s-h Freq. l-h
Legacy

EU
LH 76 137 777 1,536 101 24
BA 72 131 790 1,647 158 39
AF 73 134 791 1,629 149 41

NA
AC 144 250 782 1,591 124 30
AA 140 241 812 1,700 171 40
DL 138 254 754 1,496 73 17

LCC

EU
U2 51 111 - - 147 -
FR 51 111 - - 147 -
WZ 51 111 - - 147

NA
WN 114 216 - - 194 -
NK 114 216 - - 198 -
B6 114 216 - - 194 -

Table 4.14: Average airline prices and frequencies in the Over scenario

Airline Price s-h. lei. Price s-h. bus. Price l-h. lei. Price l-h. bus. Freq. s-h Freq. l-h
Legacy

Corsia

EU
LH 77 139 803 1,564 104 25
BA 73 133 813 1,675 166 40
AF 75 136 816 1,658 156 42

NA
AC 148 259 794 1,604 124 30
AA 145 251 817 1,702 170 40
DL 143 263 779 1,523 75 15

LCC

Corsia

EU
U2 53 114 - - 155 -
FR 53 114 - - 155 -
WZ 53 114 - - 155 -

NA
WN 118 220 - - 207 -
NK 118 220 - - 200 -
B6 118 220 - - 200 -

99



0 1000 2000 3000 4000 5000
Social cost of carbon

5000

10000

15000

20000

25000

30000

35000

40000

Su
m

 o
f f

re
qu

en
cie

s r
eg

io
na

l

250

500

750

1000

1250

1500

1750

2000

Su
m

 o
f f

re
qu

en
cie

s t
ra

ns
-a

tla
nt

ic

EU
NA
TA

0 1000 2000 3000 4000 5000
Social cost of carbon

1

2

3

4

5

6

Pa
ss

en
ge

rs
 re

gi
on

al
 (M

)

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

Pa
ss

en
ge

rs
 tr

an
s-

at
la

nt
ic 

(M
)

EU
NA
TA

0 1000 2000 3000 4000 5000
Social cost of carbon

0

100

200

300

400

500

600

700

Em
iss

io
ns

 re
gi

on
al

 (M
tC

O2
)

50

100

150

200

250

300

Em
iss

io
ns

  t
ra

ns
-a

tla
nt

ic 
(M

tC
O2

)

EU
NA
TA

Figure 4.2: Sensitivity analysis over the social cost of carbon
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Chapter 5

Conclusions

This thesis analyzes competition at a different level in the presence of market distortions
in the aviation industry. In particular, the thesis focuses on the distortion introduced in
the airline market by the COVID-19 pandemic and on the implications of environmental
policies implemented by competing regulators in a distorted aviation market.

Chapter 2 explores the disruptive impact that the COVID-19 pandemic had on the air
transport industry. The empirical analysis uses a time-series ITS SARIMA econometric
approach to estimate pandemic effects and compare the results to a counterfactual sce-
nario in the absence of any distortion. This approach allows to disentangle the specific
distorting effect imposed by the lockdown. Empirical results show that the real impact on
the air transport sector of the pandemic in all macroregions of the world reached a level
greater than 80% in May 2020 before the pandemic occurs and about 70% in September
2020. Thanks to a counterfactual analysis, the results highlight that the actual impact of
the pandemic is on average greater than the reported observations. Specifically, this effect
is predominant in intercontinental operations. Furthermore, the contraction in operations
is larger for legacy carriers than for low-cost ones. The results of Chapter 2 highlight that
airline survivability can be severely endangered during the pandemic. The airline indus-
try calls for government intervention to support the heavy losses experienced. Given the
asymmetric provision of public funds, airlines supported by economically strong govern-
ments may have a competitive advantage. This new source of distortion may undermine
the level playing field in the aviation industry.

In Chapter 3 competition between airlines under different government bailout pro-
grams is analyzed by adopting a game-theoretic approach. Following the results of Chap-
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ter 2, the model is applied to the COVID-19 outbreak to assess potential distortions
motivated by the asymmetric bailout provision. The results of the model are the outcome
of seven scenario analyzes in which a Nash equilibrium is found for different combinations
of state aid. As the main result of this analysis, evidence is found that the airline sector
has been severely distorted by the uncoordinated provision of bailouts. In particular, by
applying a counterfactual analysis, the proposed model compares the impact on major
airline competition of government aids with a reference case in absence of any distortion.
The analysis shows that various bailout programs disrupt the profitability and operations
of carriers. More specifically, results show the presence of an uneven playing field for
European airlines and a welfare contraction for society. Consequently, evidence is shown
of the existence of a socially preferable outcome. The most efficient outcome is achieved
through a coordinated and homogeneous government aid package across all European
Member States. These results are also strongly supported by evidence in the literature.
Furthermore, results suggest that low-cost carriers will benefit from the financial burden
on European legacy airlines, expanding their market share in the intra-European region
at the expense of European flag carriers. As the main takeaway of this paper, the un-
coordinated provision of state aid by the European Commission during the COVID-19
pandemic may have distorted the aviation market, causing backlash against European
flag carriers. The results suggest that a coordinated provision of bailouts in the form of
loans across all Member States would have limited the negative impacts on social welfare.

By expanding the model proposed in Chapter 3, Chapter 4 explores regulatory com-
petition alongside the interaction of airlines when different charges are applied to the
production of carbon emissions. The paper develops a two-stage game which allows reg-
ulators to compete on the environment as a public good by setting an emission charge
for their jurisdiction pursuing welfare maximization. Consequently, airlines compete to
maximize their profits, given the emission charges imposed by regulators in the first stage.
The proposed algorithm finds a Nash equilibrium for different regulator configurations,
allowing to explore different policy interactions. As a consequence of this multiple con-
figurations framework, the paper sheds light on how free-riding behaviors combined with
the distortions pervading the aviation industry may undermine the effectiveness of emis-
sions reduction mechanisms. By comparing scenarios with a counterfactual case before
the COVID-19 pandemic, the analysis highlights that defining an environmentally op-
timal carbon policy in a distorted industry, such as the aviation sector, may result in
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suboptimal welfare outcomes. To prove the robustness of these findings, the model has
been applied to three different regulator configurations. In the case where the charge is
imposed by a single regulator in the absence of free-riding possibilities, the results show
that the charge is lower than the social cost of carbon. This departure from the expected
Pigouvian taxation highlights how the charge also corrects for distortions typical of the
aviation industry, such as market power and the Morhing effect. Therefore, a possible
reduction in emissions comes at the expense of a consumer and producer surplus. Fur-
thermore, the model is applied to a scenario in which two regulators compete in welfare
maximization and have the possibility of free-riding on each other. Results show that a
regulator will free-ride on the opponent one if he can protect the consumer and producer
surplus of its region, undermining the effectiveness of the environmental policy. Similar
outcomes also characterized the case of competing regulators with a global scope over-
lapping policy. The outcomes of this paper offer a possible explanation of the reasons
for the absence of agreement in defining an efficient and effective carbon policy among
international institutions.

In the end, regulatory authorities are required with defining a policy setting that
preserve competition among airlines both in domestic and on international connections
avoiding detrimental outcome on the welfare of the entire society. When implementing
such setting, regulators should be aware of the whole spectrum of industry distortions.
This means to take into account of both negative and positive externalities, such as envi-
ronmental impacts, and of different industry conditions like carriers market power position
or asymmetric government support. This thesis helps towards a better understanding of
the latter of these imperfections, but it is important to stress that policy makers needs to
be informed about these other imperfections as well. This thesis highlights the importance
for policy makers wishing to shape effective air policies and for carriers seeking to operate
efficient international operations to keep up with changing dynamics and changes that af-
fect air competition in a deregulated international markets. The results described in this
thesis provide possible directions that are relevant to accomplish this difficult challenge.
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