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A B S T R A C T

In this paper, we present a robust spatiotemporal statistical methodology that is capable of accurately
forecasting traffic in the flood-prone area of the Mandolossa in the Province of Brescia (Italy). An innovative
combination of two sources of mobile phone data is proposed to obtain an extremely accurate representation
of the flows of people passing by the streets directly linked to the risky area. Three types of flows have been
considered: outflows (from the flood-prone area to the neighborhood), inflows (from the neighborhood to
the flood-prone area), and internal flows (within the flood-prone area). The three flows are assumed to be
dependent on each other and are modeled using a vector autoregressive approach. We found evidence of both
weekly and daily seasonal components in the time series. To capture the seasonality, a dynamic harmonic
regression component has been included, where the optimal number of Fourier bases in the periodic functions
has been chosen according to a criterion based on the Akaike Information Criteria. On the other side, the set
of autoregressive parameters has been defined in such a way as to represent the time period necessary for
the mobile phone company to observe, process, and release the data. The forecasting ability of the model has
been assessed using blocked k-folds cross-validation along with the mean absolute percentage error and the
hit rate. Though the model performs better for non-summer days, we found that it satisfactorily forecasts both
the number and the level of people moving.
1. Introduction

Monitoring and forecasting people’s mobility in metropolitan areas
is crucial for several aspects of life in smart cities and is therefore
gaining increasing interest in literature [1]. In this paper, we pro-
pose a robust spatiotemporal statistical methodology that is capable
of accurately estimating and forecasting traffic in the flood-prone area
on the western outskirt of the city of Brescia (Italy). In particular,
we contribute to the literature by proposing an innovative approach
of combining different types of mobile phone data to obtain small-
area estimates of the flows of people. This study considers themes
that are very important today, such as the monitoring-optimization of
traffic networks and the smart infrastructures for sustainable mobility
(Mission 3 of the Italian NRRP, National Recovery and Resilience Plan),
which is part of the Next Generation EU (NGEU) Programme. These
themes are also very connected to three United Nations SDGs (Sustain-
able development goals): 9—Industry, innovation, and infrastructure;
11—Sustainable cities and communities; 13—Climate action. This work
aims at supporting regulators by providing information useful to man-
age potentially harmful situations and avoid human losses. Indeed,
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natural disasters have huge socio-economic consequences and their
immediate effects on fragile environments include loss of human lives,
as well as severe impacts on health and wealth.

Traditional data sources, such as censuses, are often inadequate for
the study of people’s dynamics due to their static nature, slow update,
and excessive costs. Moreover, smart cities present emerging forms of
mobility and time variations in the use of urban spaces. In contrast,
mobile phone data allow for a dynamic and fine-grained representation
of human activities and are becoming increasingly essential to the
analysis of social, economic, and environmental phenomena in urban
areas. Information and Communication Technologies (ICT) have been
widely adopted for the analysis of smart cities and urban systems [2]
to improve the well-being and quality of life. The analytical processing
of ICT data can be used, for example, in supporting the optimization
of traffic flows or tracking real-time citizens’ positions. Reinolsmann
et al. [3] use big data collected by ICT and multivariate statistical
methods useful to implement real-time and strategic traffic manage-
ment solutions. They support Advanced Traveller Information Systems
that can be integrated with Advanced Driving Assistance Systems at
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the local level. Nowadays, modern sources of mobile phone data are
increasingly combined with satellite and sensor technologies (e.g., [4])
to produce dynamic information related to the density of people’s
presences [5] and movements [6]. This approach allows investigating
issues of great relevance, such as the monitoring of the impact of social
and cultural events [7], the variability in the distribution of presences
in the neighborhoods of a large city [8], the seasonality of the second
homes in a tourist area [9], or the increase of remote working in
sparsely populated areas [10]. The use of mobile phone data is not new
to the natural risk literature as well. For example, Balistrocchi et al.
[11] developed spatiotemporal dynamic maps of flood exposure using
mobile phone data about crowding.

Here, we focus our attention on the estimation of traffic intended as
the number of people moving and propose an innovative combination
of two sources of mobile phone data to obtain an accurate repre-
sentation of people’s movements, namely the Origin–Destination (OD
hereafter) and the ‘‘Minimization of Drive Test’’ (MDT hereafter) data.
The former type of data has already been used in various statistical ap-
plications in the literature, while the MDT data are collected using new
technology. It is worth noting that, at the current moment, MDT data
have not yet found many applications beyond network engineering, and
their statistical application in natural risk management constitutes a
further novelty of our approach. Specifically, OD data represent the
flows of people from an ‘‘Area di CEnsimento’’ (ACE hereafter) to
another from September 2020 to August 2021 at hourly intervals, while
the MDT data at our disposal represents the location of phone users in a
15-minute interval with high accuracy (approximately 10 m) and refer
to 5 days of November 2021. As we will discuss in detail in Section 2.2,
the MDT data only represents a sample of TIM users, but the accurate
geolocation allows us to identify the devices that are located on the
streets by putting the MDT signals on a street map. In this respect, we
refer to the methodology developed by Perazzini et al. [12], where the
MDT data has been used to infer the traffic intensity in small areas, and
we extend it to the estimation of the proportion of traffic flows related
to the flood-prone area in an ACE. Then, the resulting ratios are applied
to the OD data as weights, in such a way as to obtain the traffic flows
at risk. The combination of these two pieces of information allows us
to produce statistical estimation and forecast of traffic flows for short
time intervals at the ‘‘small area’’ level.

In the proposed analysis, we apply the modeling strategy presented
by Metulini and Carpita [13], who developed a vector autoregressive
model with exogenous variables to analyze OD data and forecast traffic
flows between specific ACEs subjected to flood risk. In that work, the
authors investigated Cellatica (one of the ACEs located in the Man-
dolossa flood risk area), which is the ACE with the largest intersection
with the flood-prone area of the Province of Brescia, and the flows of
people that link it to the neighboring ACEs. Here, we consider all the
ACEs among which the flood-risk area spans, and we limit our attention
to the flows passing by the streets directly linked to the risky area. This
allows us to considerably improve the representation of traffic flows
at risk. It is worth noticing that, without the methodological strategy
proposed in this work, it would not be possible to restrict attention to
the flood-prone area and estimate or forecast the flows at risk. The OD
data are available for fairly large areas, i.e. the ACEs, and do not allow
for estimating traffic flows in a small area exposed to flood risk that
expands over limited portions of 4 ACEs. Therefore, the advantage of
the proposed methodology consists of a considerable improvement in
the degree of geographical resolution of the estimates.

Particular attention has been dedicated to modeling the seasonal
component of the traffic flows time series that show a consistent
daily trend with less pronounced daily peaks during holidays and
weekends. Many applications related to the modeling of traffic with
complex seasonality using mobile data can be found in the literature
(e.g., 14–17). Here, we refer to [13] and model seasonality through
a dynamic harmonic regression model [18] with daily and weekly
2

periodic functions modeled using a proper combination of Fourier
bases. We identify the optimal number of Fourier bases in the periodic
functions by minimizing the Akaike Information Criteria. Moreover,
the autoregressive components of the model are chosen in such a way
as to represent the time necessary for the mobile phone company to
observe, process, and release the data. This choice allows the model
to be adopted by regulators in the Province of Brescia for monitoring
traffic in the flood-prone area and to promptly activate actions for
traffic control in case of danger. Notably, the chosen methodology is
inherently data-driven, and none of the existing alternative methods
for analyzing traffic time series correspond directly to it. The most
analogous approaches pertain to a subset of methodological strategies
that are rooted in autoregressive models tailored for the scrutiny of
time series data. For instance, Guo et al. [19] introduced a strategy
employing multiplicative seasonal autoregressive integrated moving
averages. Pursuing the same objective, Tran et al. [20,21] embraced
a strategy constructed upon the underpinnings of generalized autore-
gressive conditional heteroscedasticity. These studies lean on ARIMA
models, which find limited applicability to our specific case study due
to the constraints imposed by the availability of OD data. Additionally,
the diagnostic assessments of individual time series lend support to
the adoption of an ARMA model with a negligible MA component,
consequently resulting in its exclusion from our model. Similarly, the
incorporation of the DHR arises from the need to capture complex
seasonality patterns that prominently manifest within our dataset.

Since the utility of our model pertains to its adoption by the local
authorities under the circumstances of critical meteorological forecasts,
we focus on short-term forecasting. Indeed, meteorological forecasts,
particularly those pertaining to significant occurrences such as flood-
ing, exhibit a notable limitation in terms of both their availability and
reliability, extending merely over a temporal horizon ranging from a
few days to a matter of hours. Consequently, our research is oriented
towards an investigation within this temporal constraint. We assess the
forecasting ability of the model using a blocked k-folds cross-validation
strategy, which preserves the temporal structure of our dataset. The
forecasting accuracy is evaluated using the symmetric mean absolute
percentage error and the hit rate. Though the model performs better
for non-summer days, we find that it satisfactorily forecasts the number
of people moving and achieves from good to excellent performance
(depending on the period of the year) in forecasting the level of people
moving (i.e., high, moderate, low), to which we refer as traffic intensity
for simplicity.

The paper organizes as follows. Section 2 presents the data used.
Section 3 describes the weighting strategy. Section 4 applies the weights
and shows some preliminary evidence on the traffic flow time series.
Section 5 describes the model. Section 6 presents results and discusses
the model’s forecasting performance. Section 7 concludes.

2. Data

In this work, different sources of data have been combined. In
particular, we used two types of mobile phone data: OD and MDT data,
provided by the TIM company, which is currently the largest operator
in Italy. The OD data represent the flows of people from one ACE to
another between September 2020 and August 2021 on an hourly basis.
The MDT data provides the accurate location of users in 15 min during
5 days of November 2021. As one can notice, the two databases cover
slightly different periods of observation. Indeed, MDT data require
particular technologies to be activated and tested in loco before data
collection. For this reason, the data collection process is costly and takes
time, and the produced MDT datasets typically cover short periods. To
overcome this issue and preserve the representativeness of the analysis,
days for MDT data collection have been carefully chosen in such a way
as to represent a typical week. Moreover, they have been used to infer
the proportions of users on streets linked to the flood-prone area and

applied to the OD data as weights.



Socio-Economic Planning Sciences 90 (2023) 101747S. Perazzini et al.

y
M
o
d

2

O
b
B
f
O
d

Table 1
Summary statistics of the OD data. Inflows from the other 3 + 38 ACEs (in), outflows to the other 3 + 38 ACES (out), and internal
flows (int) are reported for the 4 ACEs exposed to flood risk (Cellatica, Gussago, Rodengo Saiano, Brescia North-West). Reported values
are from first to last row: minimum, 1st quartile, median, mean, 3rd quartile, and maximum.

Cellatica Gussago Rodengo Saiano Brescia NW

out in int out in int out in int out in int

Min. 0 0 29 0 0 157 0 0 73 0 0 63
1st Qu. 1 1 194 3 3 672 1 1 324 4 4 458
Median 3 3 625 10 11 2218 4 5 1134 11 11 1435
Mean 34 34 578 94 94 2036 51 51 1012 74 74 1359
3rd Qu. 9 9 894 34 34 3205 20 20 1575 36 36 2169
Max. 1731 1731 1731 6180 6180 6180 2812 2812 2812 3837 3837 3837
Three additional sources of information were needed for the anal-
sis, especially for the definition of the weighting system based on
DT data: the map of the administrative boundaries of the Province

f Brescia, the flood map, and a street map. The following subsections
escribe, in order, the OD, MDT, and other open-source data.

.1. Origin–destination flow data

The main source of data used for this analysis is the mobile phone
D flows. The database reports one year of observations (from Septem-
er 1st, 2020 to August 31st, 2021) in the ACEs of the province of
rescia. The data can be used to represent the traffic flows 𝑓𝑙𝑜𝑤𝑖𝑗,𝑡
rom the ACE 𝑖 to the ACE 𝑗 in the 𝑡th hour of a day. Specifically, the
D data refers to the number of phone SIM cards that were retrieved
uring a 1-hour interval by the antenna in a given ACE 𝑖 and, after five

or more minutes, by the antenna in ACE 𝑗. It is worth noticing that
the position of the SIM cards is retrieved at regular intervals of 5 min -
i.e., at minutes [00–05),[05–10), . . . [55,60) - and only the first arrival
location registered during the 5-minutes interval is considered. Let us
consider, for instance, the one-hour time interval 𝑡 corresponding to
8:00–8:59 AM on January 1st, 2021. Suppose that a SIM card arrives
in 𝑖 and then moves to 𝑗 between 8:00 and 8:04 AM of that day, and
then arrives at 𝑧 between 8:05–8:09 AM of the same day. The SIM card
is counted in 𝑓𝑙𝑜𝑤𝑖𝑧,𝑡, but is not taken into account in 𝑓𝑙𝑜𝑤𝑖𝑗,𝑡 nor in
𝑓𝑙𝑜𝑤𝑗𝑧,𝑡. This can lead to a potential underestimation of the flows in
small ACEs requiring less than 5 min to be crossed.

For each time interval 𝑡, the database collects the flows in a square
(non-symmetric) matrix of dimension 𝑁 × 𝑁 , where 𝑁 is the number
of ACEs in the province of Brescia and is equal to 235, rows represent
the ACE of departure and columns the ACE of arrival. Note that the
diagonal represents the internal flows, which are the flows departing
from and arriving in ACE 𝑖. For each time 𝑡 and each ACE 𝑖, three
types of flows can therefore be distinguished: flows arriving in 𝑖, flows
departing from 𝑖, and internal flows from 𝑖 to 𝑖. Overall, the database
is constituted by 24 × 365 = 8, 760 square matrices of dimension 235 𝑥
235, each representing a time interval 𝑡.

The database refers to SIM cards connected to the TIM network,
including the foreigner SIM cards connected to the roaming. Two types
of cards can be distinguished: human SIM (about 85% of the total SIM)
and M2M technology machine SIM (about 15%). Since a user might
have both a human SIM and some devices with an M2M machine SIM,
we restricted our attention to human SIMs to avoid double counting
of users. As we will discuss in Section 2.3, we focus our attention on
the flows from/to 4 ACEs exposed to flood risk to/from 38 selected
neighboring ACEs that display a limited amount of zero flows. Table 1
shows the summary statistics of these flow data.

2.2. MDT signal data

MDT signal data have been collected using a recent technology
called the ‘‘Minimization of Drive Test’’. This new technology allows for
considerably high accuracy (approximately 10 m) in users’ geolocation.
The MDT data has been only recently made available by TIM and for the
moment has found only a few applications in the academic literature,
3

mostly for technical control of telephone networks in the field of
network engineering. In [12], we proposed an innovative application
of MDT data for the definition of traffic indicators. In this paper, we
extend our previous work by estimating the portion of phone users
on streets that are located in or that are directly connected to the
flood-prone area.

The MDT technology registers geo-referenced radio measurements
of signals transmitted over the 3G/4G mobile network from/to terminal
devices with GPS enabled. Each signal corresponds to either a phone
call, a text message, internet browsing, or a technical operation on the
network (e.g., location update). The MDT data tracking is currently
not part of the standard data collections of mobile phone operators.
Therefore, the signals are collected ad hoc during specific campaigns
organized over a pre-selected area and period of time. The MDT data
at our disposal refers to devices with the SIM card associated with
the TIM company in a rectangular area of approximately 150 𝑘𝑚2

around the Mandolossa region during 5 days of November 2021—
namely Wednesday 10, Friday 19, Saturday 20, Sunday 21, Monday 22.
The days of observation were carefully chosen to represent a typical
week. The detection of MDT signals requires particular technologies
to be activated, and the collection of such data is time-consuming
and expensive. So, the first day – Wednesday 10 – was sampled,
and, once assessed the adequacy of the data to the analysis, due to
budget limit, other 4 days of detection were chosen to characterize the
temporal dynamics in the whole typical week. The choice, therefore,
fell primarily on the two days of the weekend due to the particular
dynamics associated with the closure of work and school activities.
Then, the remaining 3 days refer to the beginning of the week, the
central part of the working days, and the pre-weekend (i.e., Monday,
Wednesday, Friday) in such a way as to characterize the dynamic
during the working days.

For each day, the database reports 96 times of observation corre-
sponding to four 15-minute intervals per hour (i.e., for each hour of
each day, we have observations at minutes: 00–14, 15–29, 30–44, 45–
59). Ten times of observation are missing and have been replaced by
the average value of the other intervals of the same hour of the day,
namely: 04:30–04:44 in the five days; 23:30–23:44, 23:45–23:59 for
Monday and Wednesday; 00:00–00:14 on Friday. For each time inter-
val, the MDT technology registered signals and assigned them to the
cells of a grid of pixels measuring 10 meters on each side and identified
by a pair of longitude-latitude coordinates. The database reports the
total number of signals sent or received during a 15 min-interval in a
cell of the grid where at least one signal has been generated. As an
example, a time interval of the database is shown in Fig. 1. Overall,
the database reports signals for 274,005 cells of the grid and 470 time
intervals.

A few aspects should be carefully evaluated when analyzing MDT
data. First, a device can receive or send multiple MDT signals at a time.
As shown in the first column of Table 2, the number of MDT signals
registered in 15 min in a pixel (i.e., a 100 𝑚2 area) varies considerably
and may also take extremely high values. Therefore, the number of
MDT signals cannot be used to represent the number of individuals in
the considered pixel. This is particularly evident if we consider that

only about 10% of current electronic devices produce MDT signals and
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Fig. 1. MDT data signals for the time interval 00:00-00:14 AM of November 10th,
2021. The red line represents the border of the rectangular area captured by TIM. The
points represent the cells of the pixel grid for which at least one MDT data signal was
detected in the time interval.

therefore the database represents a sample of a much wider population.
To overcome this issue, we instead consider the number of cells of
the pixel grid from which signals originated in an area. As shown
in the second column of Table 2, we find that these values better
represent the dimension of the observed sample of individuals in the
ACEs intersecting the flood-prone area. This hypothesis is particularly
reasonable in our framework of analysis because, as we will show in
Section 3, MDT data signals are used as a proxy for street users to
capture the flows that are critical for flood emergency management.
For this purpose, we restrict our attention to people located on the
streets who are likely to move and not stay in a cell for a long time.
The limited sample size makes it very unlikely for two devices to
simultaneously be in the same small street cell of the grid. Therefore,
though a signal cannot be traced back to the device from which it
has been generated, we conclude that cells approximate the number of
users in the 15-minute interval better than the number of MDT signals.

2.3. Administrative boundaries, flood maps, and street maps

A necessary preliminary step for the analysis is the selection of
the area of interest. We considered the flood risk map with time
to return equal to 20 years and identified the ACEs in the flood-
prone area by overlaying the risk map to the map of administrative
boundaries released by ISTAT and available at https://www.istat.it/it/
archivio/104317. We found that the flood-prone area is located in the
Mandolossa region and extends through 4 ACEs: Gussago, Cellatica,
Rodengo Saiano, Brescia Mandolossa (which has been obtained by
merging two ACEs in the north-west of Brescia). In addition, Metulini
and Carpita [13] identifies other 38 ACEs in the neighborhood that
account for 84% of the total flows from/to the four ACEs of interest. We
restrict our attention to these two groups of ACEs, which we consider
4

Table 2
Summary statistics of the MDT data. The first column refers to the
number of signals in a 15-minute interval in a pixel. Note that only
pixels from which at least one MDT signal originated in the 15-minute
interval. The second column refers to the number of pixels from which
at least one MDT signal originated during a 15-minute interval in an
ACE that intersects the flood-prone area. Reported values are from first
to last row: minimum, 1st quartile, median, mean, 3rd quartile, and
maximum.

Number of
signals in a pixel

Number of pixels originating
MDT signals in an ACE

Min. 1 1
1st Qu. 2 63
Median 4 170
Mean 16 233
3rd Qu. 10 392
Max. 4430 895

separately. The two groups of selected ACEs are shown in Fig. 2: the one
intersecting the flood-prone area is represented by the green polygon,
and the one composed of the 38 neighboring ACEs is reported in light
blue. The Figure also illustrates the different flows of people analyzed
in the present work. Indeed, three types of flows can be distinguished
between the two macro-areas: outflows (from the flood-prone ACEs to
the neighboring ACEs), inflows (from the neighborhood to the flood-
prone ACEs), and internal flows (between the ACEs in the flood-prone
area). It is worth noticing that the latter type of flow is constituted
by both flows of people moving from one ACE of the Mandolossa to
another (e.g., from Gussago to Cellatica) and flows of people moving
within an ACE (e.g., from Gussago to Gussago). Lastly, the identified
area subjected to flood risk (map with time to return equal to 20 years)
is depicted in blue.

The last data source needed for the proposed analysis is a detailed
road network map. The MDT data, as we will discuss in Section 3,
was used to estimate the portion of traffic flows in the flood-risk area
per each of the four ACEs. To do so, we first have to identify the
MDT data signals that originated from streets and this can be done by
comparing the MDT pixel grid with the street map of the area. We refer
to the street map defined in [12], which is obtained by merging two
maps released by the Lombardy Region for the Province of Brescia: the
‘‘DataBase Topografico Regionale’’1 and the ‘‘Uso e copertura del suolo
della Regione Lombardia 2018’’. This map has been chosen for two
main reasons. First, it does not represent roads as lines but as polygons
and shows the width of the roadway. Indeed, this allows for identifying
the cells of the MDT grid that correspond to streets. Second, it provides
a comprehensive representation of the road network that none of the
other official polygon-based maps available for the Province achieves.

3. Definition of the weighting strategy

The OD data capture the flows of people in the four ACEs of the
Mandolossa region, but only a portion of the flows concerns the flood-
prone area. To capture the flows that are critical for flood emergency
management, we computed the ratios of users on the streets of an
ACE that are located in the flood risk area. The ratios have then
been applied to the OD database as weights and flows 𝑓𝑙𝑜𝑤𝑖𝑗,𝑡 have
been adjusted accordingly. So, to restrict the analysis to traffic flows
potentially exposed to floods, we compute the ratio of phone users
on streets that pass by the flood-prone area for each of the 4 ACEs
of interest and for the aggregated area constituted by them. To this
scope, we consider the MDT data signals for the high accuracy in users’
geolocation. The process that led to the construction of the weights is
extensively described in Appendix, and can be briefly summarized as
follows:

1 We refer to the version updated in 2021.

https://www.istat.it/it/archivio/104317
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Fig. 2. Map of the ACEs of the Mandolossa (light green) and the neighboring ACEs (light blue). The arrows represent the three flows investigated, the blue polygon reports the
flood risk map at 20 years’ time to return.
Fig. 3. Weights construction, steps 1–3. Left: Step 1—Selection of the MDT data corresponding to the four ACEs of interest. The black lines represent the area of the four ACEs,
and the red border indicates the area captured by TIM. Center: Step 2—Identification of the area critical for flood emergency management. The map reports the four ACEs (thick
black borders), the SCEs that constitute them (fine black borders), the flood risk map (blue), the 500 meters buffer applied to the flood risk map (light blue), and the critical
SCEs (green). Right: Step 3—Street map and identification of the streets critical for flood emergency management. The map represents the four ACEs (black borders), the flood
risk map (blue), the critical area (green), the map of the streets (orange), and the selection of streets that are considered critical for flood risk management (red).
1. The MDT data signals have been restricted to the phone signals
in the four ACEs of interest (left map of Fig. 3).

2. 104 ‘‘Sezioni di CEnsimento’’ (SCEs hereafter) – which are sub-
divisions of the ACEs – that are less than 500 meters far from
the flood-prone area were identified as critical for flood man-
agement (central map of Fig. 3).

3. We compared the MDT data signals to the street map and further
restricted them to the phone signals that originated from streets.
Then, we identified the streets passing by the SCEs critical for
5

flood risk management (identified in step 2) that connect the
risky area to the 38 neighboring ACEs (right map of Fig. 3).

4. For each ACE and each time of observation we counted the
number of grid cells that generated MDT signals corresponding
to streets (e.g., left map of Fig. 4).

5. Among the cells identified in step 5, we counted the number of
those corresponding to the streets related to the flood-prone area
for each ACE and each time of observation (e.g., right map of
Fig. 4).
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Fig. 4. Weights construction, steps 4–5. The maps represent the ACE ‘‘Brescia Mandolossa’’ (black border) and refer to the time interval corresponding to November 10th,
12:00–12:14 PM. Left: Step 4 - Identification of the MDT grid cells corresponding to streets. The map reports the street map of the ACE (orange) and the cells of the pixel grid
in the ACE from which MDT signals originated in the time interval (points). The MDT cells are colored green if they correspond to streets, and gray if not. Right: Step 5 -
Identification of the MDT cells corresponding to critical streets. The map reports the flood risk area (blue), the area critical for flood emergency management (green), the road
network of the ACE (red and orange), and the on-streets-MDT cells from which signals originated during the time interval (points). Red polygons represent the streets that are
critical for flood emergency management, while orange polygons report the rest of the streets. Blue points identify the cells that correspond to critical streets, and green points
represent all the other on-street cells of the grid.
6. We found that the number of MDT cells that originated signals
on streets is very low during the night and that the number
can vary considerably during the day. Therefore, 6 intervals
of 4 h have been considered, namely: 0:00–3:59, 4:00–7:59,
8:00–11:59, 12:00–15:59, 16:00–19:59, and 20:00–23:59.

7. The weights have been computed for each of the 6 time intervals
as:

𝐼.𝑀𝐷𝑇𝑖𝑡 =
MDT signals from streets connecting the flood-prone area𝑖𝑡

MDT signals from streets𝑖𝑡
,

(1)

where 𝑖 indicates either Brescia Mandolossa, Cellatica, Gussago,
Rodengo Saiano. Similarly, we computed the ratio for the aggre-
gated area.

Fig. 5 reports the resulting ratio separately for the four ACEs of
the Mandolossa and over different weekdays and times of the day.
The ratios appear fairly constant among the intervals and the 5 days
observed. This evidence suggests that the proportion of traffic of an
ACE that passes by the flood-prone area is quite stable.2 For this reason,
we compute the weight for each ACE 𝑖 𝐼.𝑀𝐷𝑇 𝑖 as the average value
of the ratios of the 5 time intervals in the 5 days. The ratios 𝐼.𝑀𝐷𝑇 𝑖
represent the percentage of phone users on the streets that are critical
for flood management, and can therefore be interpreted as the portion
of traffic of the ACE potentially exposed to floods. The indicator is equal
to 20% for Brescia Mandolossa, 75% for Cellatica, 40% for Gussago,
and 10% for Rodengo Saiano. In addition, the ratio for the aggregated
area constituted by the 4 ACEs has been computed and the obtained
value is 𝐼.𝑀𝐷𝑇 𝑎𝑔𝑔 = 30%.

2 In this respect, it is worth noticing that the critical areas of the ACEs en-
compass a diverse array of road classifications (i.e., primary, secondary, local,
etc. . . ). Moreover, the flood-prone area exhibits a compositional homogeneity
in land use akin to the remaining part of the ACEs, featuring commercial,
residential, industrial settlements, and green areas. For this reason, ratios can
be assumed constant among the different months of the year.
6

4. Data pre-processing and preliminary evidence

The MDT ratios computed in Section 3 have been applied to the OD
data flows. To obtain the traffic flows in the flood-prone area at time 𝑡
between 𝑖 and 𝑗, where the 𝑖th ACE intersects the flood risk map of the
Mandolossa and 𝑗 is one of the other 38 neighboring ACEs, the weights
were applied as follows:

𝐼𝑛𝑓𝑙𝑜𝑤𝑡 =
∑

𝑖

(

𝐼.𝑀𝐷𝑇𝑖 ×
∑

𝑗
𝑓𝑙𝑜𝑤𝑖𝑗,𝑡

)

,

𝑂𝑢𝑡𝑓 𝑙𝑜𝑤𝑡 =
∑

𝑖

(

𝐼.𝑀𝐷𝑇𝑖 ×
∑

𝑗
𝑓𝑙𝑜𝑤𝑗𝑖,𝑡

)

.

(2)

For the internal flow, the MDT ratio was applied to the sum of 𝑓𝑙𝑜𝑤𝑠𝑖𝑖,𝑡
and 𝑓𝑙𝑜𝑤𝑠𝑖𝑗,𝑡 where 𝑖 and 𝑗 are both ACEs intersecting the flood risk
map of the Mandolossa:

𝐼𝑛𝑡𝑒𝑟𝑛𝑎𝑙𝑓 𝑙𝑜𝑤𝑡 = 𝐼.𝑀𝐷𝑇 𝑎𝑔𝑔 ×
∑

𝑖

(

𝑓𝑙𝑜𝑤𝑖𝑖,𝑡 +
∑

𝑗≠𝑖
𝑓𝑙𝑜𝑤𝑖𝑗,𝑡

)

. (3)

The time series of the obtained inflows, outflows, and internal flows
have been analyzed. In general, we observe that all the flows increase
up to a certain hour in the morning, remain constant until the mid-
afternoon, and decrease in the evening. Some seasonal effects emerged.
In particular, exploiting the findings in [5] about the clustering of days,
we compared traffic dynamics between summer and non-summer days,
and between weekends and weekdays. As shown in Fig. 6, the number
of people moving is on average higher during the midweek than on
the weekends. It could also be noted that traffic decreases at lunchtime
on the weekends. Finally, it emerges that traffic is on average lower
in summer. All those pieces of evidence emerge on all the considered
flows (inflows, outflows, and internal flows).

Strong daily patterns emerge in the AutoCorrelation Function (ACF)
and in the Partial ACF (PACF), which are shown in Fig. 7 for time lags
up to 168 h (one week). The ACFs (top charts) clearly show a daily
periodicity with picks of positive autocorrelation at lags 24, 48, 72, . . . ,
and picks of negative autocorrelation at lags 12, 36, 60, . . . . The PACFs
(bottom charts) show strong partial autocorrelation at lags 24, 48, 72,
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Fig. 5. Ratios 𝐼.𝑀𝐷𝑇𝑖𝑡 in the four selected ACEs and over the six time intervals of 4 h length.
Fig. 6. Curves of daily time series of traffic flows, grouped by periods of the year (median values). Weekdays (in red), weekdays of summer (July and August, green), weekends
(blue), and weekends of summer (July and August, purple). Inflows (left), outflows (middle), and internal flows (right).
𝐼
𝑝

𝐅

. . . . The patterns appear very similar for the inflows, outflows, and
internal flows. In addition, an additive decomposition of the time series
using the Seasonal-Trend decomposition with LOcally Estimated Scatter
plot Smoothing (ST with LOESS, or simply STL 22) has been performed.
The original time series of inflows, outflows, and internal flows have
been addictively decomposed in trend (trend), daily seasonal pattern
(season_24), weekly seasonal pattern (season_168), and a residual
term (remainder). For this analysis, we used the R packages for
time series by Hyndman and Killick [23], and the results are shown in
Fig. 8. It emerges that the three flows show consistent daily and weekly
seasonality, though the former is stronger.

It is worth stating that anomalous traffic dynamics were observed
during holidays, namely: January, 1st and 6th (Epiphany), April, 4th
(Easter), April, 5th, April, 25th, May, 1st, June, 2nd, August, 15th (mid-
August public holiday), December, 8th (Immaculate Conception), 25th
(Christmas), 26th (S. Stefano) and 31th. Therefore, as a preliminary
step, holidays have been replaced by the corresponding weekday of the
previous week. If the latter corresponds to a holiday itself, the corre-
sponding nearest previous non-holiday weekday is taken. For example,
January 1st, 2021 was Friday, and the previous Friday was December,
25th 2020, which was a holiday as well. Therefore, December 18th was
taken.
7

5. The model

To model the daily and weekly seasonality of the inflows, out-
flows, and internal flows of the Mandolossa flood-prone area and
describe the dependence structure among the three, we refer to [13]
and adopt a Vector AutoRegressive model with eXogenous variables
(VARX hereafter) to capture the dependence within each flow and the
interdependence among the three flows, combined with a Dynamic
Harmonic Regression (DHR hereafter) model that captures the complex
seasonality through a combination of Fourier bases. This approach is
particularly suitable to our data since the observed time series show
seasonal patterns that do not appear to change over time.

Let us define the vector of flows of the flood-prone area 𝐅𝐥𝐨𝐰𝑡 =
[𝐼𝑛𝑓𝑙𝑜𝑤𝑡, 𝑂𝑢𝑡𝑓 𝑙𝑜𝑤𝑡, 𝐼𝑛𝑡𝑒𝑟𝑛𝑎𝑙𝑓 𝑙𝑜𝑤𝑡]′ with 𝐼𝑛𝑓𝑙𝑜𝑤𝑡, 𝑂𝑢𝑡𝑓𝑙𝑜𝑤𝑡, and
𝑛𝑡𝑒𝑟𝑛𝑎𝑙𝑓 𝑙𝑜𝑤𝑡 defined as in Eqs. (2)–(3). We model 𝐅𝐥𝐨𝐰𝑡 as a VARX(𝑝𝑑 ,
𝑤):

𝐥𝐨𝐰𝑡 = 𝝂 +
𝑝𝑑
∑

ℎ𝑑=1
𝐀ℎ𝑑𝐅𝐥𝐨𝐰𝑡−24×ℎ𝑑 +

𝑝𝑤
∑

ℎ𝑤=1
𝐀ℎ𝑤𝐅𝐥𝐨𝐰𝑡−168×ℎ𝑤 + 𝐁𝐱𝑡 + 𝝐𝑡 (4)

where 𝝂 is a constant vector of length 3, 𝑝𝑑 and 𝑝𝑤 are, respectively, the
daily and the weekly autoregressive parameters, 𝐀ℎ𝑑 and 𝐀ℎ𝑤 are two

3 × 3 matrices of coefficients to be estimated, and 𝝐𝑡 is the 3 × 1 vector
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Fig. 7. ACF (top) and PACF (bottom) for time lags up to one week (168 h). From left to right: Inflows, Outflows, Internal flows.
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of the error terms at time 𝑡; 𝐱𝑡 is the vector of the 𝑙 exogenous variables
at time 𝑡, and 𝐁 is the 3 × 𝑙 matrix of coefficients of the exogenous
variables, so that 𝐁𝐱𝑡 is a 3 × 1 vector. Note that the model assumes that
the 3 dependent variables (i.e., inflows, outflows, and internal flows) at
time 𝑡 are related to each other.

Since the OD data are not ‘‘real-time’’ data and TIM is able to
provide them at least 24 h after they have been collected, lags of less
than 24 h are neglected. In this respect, the lag corresponding to 𝑝𝑑 = 1
is the lag 24 (same hour of the previous day) and the lag corresponding
to 𝑝𝑤 = 1 is the lag 24 × 7=168 (same hour on the same weekday of
the previous week).

To capture the seasonality of traffic flows, we model 𝐁𝐱𝑡 as a
DHR(𝐾𝑑 , 𝐾𝑤) [18]. More specifically, the 𝑟th element of the vector
𝐁𝐱𝑡 is equal to a combination of daily (𝑑) and weekly (𝑤) periodic
functions:

𝛽(𝑟)0 +
𝐾𝑑
∑

𝑘𝑑=1
[𝛼(𝑟)

𝑘𝑑
𝑠𝑘𝑑 (𝑡) + 𝛾 (𝑟)𝑘𝑑

𝑐𝑘𝑑 (𝑡)] +
𝐾𝑤
∑

𝑘𝑤=1
[𝛼(𝑟)

𝑘𝑤
𝑠𝑘𝑤 (𝑡) + 𝛾 (𝑟)𝑘𝑤

𝑐𝑘𝑤 (𝑡)] , 𝑟 = 1, 2, 3 ,

𝑠𝑘𝑎 (𝑡) = 𝑠𝑖𝑛
(

2𝜋𝑘𝑎𝑡
𝑚𝑎

)

, 𝑐𝑘𝑎 (𝑡) = 𝑐𝑜𝑠
(

2𝜋𝑘𝑎𝑡
𝑚𝑎

)

, 𝑎 = 𝑑,𝑤 ,

(5)

where 𝛽0 is a constant term, 𝐾𝑑 and 𝐾𝑤 are the optimal numbers of
Fourier bases for the daily and the weekly pattern respectively, 𝛼𝑘 and
𝑘 are regression coefficients to be estimated, 𝑚𝑤 = 24 × 7 = 168 is the
eekly seasonal period, and 𝑚𝑑 = 24 is the daily seasonal period. Note

hat 𝛽0, 𝛼𝑘 and 𝛾𝑘 are allowed to assume different values in the three
lements of 𝐁𝐱𝑡. It is worth noting that the DHR model requires, for
ach equation of the VARX model, 2 × 𝐾𝑑 parameters to estimate for
he daily pattern and 2 ×𝐾𝑤 for the weekly pattern.

. Results

In this section, we discuss the application and results of the model
escribed in Eqs. (4)–(5) on the traffic flows of the flood-prone area of
rescia. We refer to the inflows, outflows, and internal flows adjusted
8

9

by the MDT ratios of users on critical streets as in Eqs. (2)–(3). The fol-
lowing subsections discuss respectively the identification of the number
of parameters and the forecasting performance of our model.

6.1. Specification of the model

Four numbers must be chosen in our model: the optimal number of
autoregressive parameters 𝑝𝑑 and 𝑝𝑤 in Eq. (4) and the optimal number
of Fourier bases 𝐾𝑑 and 𝐾𝑤 in Eq. (5). We first identify 𝐾𝑑 and 𝐾𝑤
following the approach by Metulini and Carpita [24]: first, for each
time series, we consider a univariate DHR model with no explanatory
variables nor autoregressive or moving average terms and select 𝐾𝑑
between 1 and 𝑚𝑑∕2 using the AIC; then, we include the selected
𝐾𝑑 daily Fourier basis in the univariate DHR model and choose 𝐾𝑤
between 1 and 𝑚𝑤∕2 using the AIC. The procedure has been repeated
separately on inflows, outflows, and internal flows. Considering a trade-
off between model simplicity and performance, the solution with 𝐾𝑑 =

for the daily component and 𝐾𝑤 = 6 for the weekly component for
ll flows appears accurate.

To identify the autoregressive parameters, we set 𝐾𝑑 = 7 and 𝐾𝑤 = 6
nd choose the values 𝑝𝑑 and 𝑝𝑤 using the approach proposed by [13]

which is based on the AIC. As a result, we obtain 𝑝𝑑 = 3 and 𝑝𝑤 = 4. So,
he chosen model is a VARX(𝑝𝑑 = 3, 𝑝𝑤 = 4) with DHR(𝐾𝑑 = 7, 𝐾𝑤 = 6)
omponents as exogenous variables.

Some dummies have been included as exogenous variables in the
odel: monthly dummies to control for the possible presence of changes

n average levels between months (e.g., higher average traffic flows in
specific month); and weekdays dummies to control for the possible

resence of changes in average levels between weekdays.
The estimation of the final VARX model with DHR components

as been performed using the least squares method3. To this aim, we
se the functions VARX and VARXpred in the R package MTS [25].

3 For technical reasons due to the provider TIM, data for September, 2nd,
020 were not available and have been replaced by the data for September,
th, 2020, i.e. the same day of the following week.
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Fig. 8. STL with LOESS, trend, daily and weekly patterns, and remainder component. 1 year of data: from September 1st, 2020 to August 31st, 2021. From top to bottom: Inflows,
utflows, Internal flows.
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esults are reported in Table A.1 in Appendix. We do not deepen the
nalysis and the interpretation of the estimated regression coefficients
ecause we are interested in forecasting accuracy only. However, it
s worth observing that, despite some of the estimated coefficients
ssociated with the autoregressive terms are not statistically significant,
e decided to keep all of them because a better forecasting performance

s achieved in this way. The analysis of estimated residuals is relevant.
he PACF of the estimated residuals, reported in the bottom-left charts
f Fig. 9, displays significant first-order autocorrelation. Moreover,
9

v

the residuals are not normally distributed (histograms in Fig. 9), but
follow a leptokurtic distribution with heavy tails instead. The possible
driver of this unfavorable evidence on the residuals might be the
restriction on using lags greater than 24 hours4 which unfortunately

4 As a robustness check, the VARX model has been also estimated replacing
he dependent variables with a Box–Cox power transformation of original
alues via maximum likelihood estimation [26]. Residuals do not show a
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Table 3
Ljung–Box test on the residuals of the inflows, outflows, and internal flows. The table
reports the values of the 𝜒2 statistic and the associated 𝑝-value for the model with
agged variables from order 2 to 40 (first two columns), and for the model with lagged
ariables from order 1 to 40 (last two columns).

Lags 2:40 Lags 1:40

𝜒2 𝑝-value 𝜒2 𝑝-value

Inflow 7388.2 <2.2e−16 11 974 <2.2e−16
Outflow 6991.9 <2.2e−16 11 684 <2.2e−16
Internal flow 4496.3 <2.2e−16 7440 <2.2e−16

cannot be relaxed. As clearly shown by the density plot and the
QQ-plots in the bottom charts of Fig. 9, the Normality assumption on
the estimated residuals is violated. Nevertheless, this does not deny
obtaining unbiased estimates of the parameters and the forecasting
asymptotic properties are maintained. It is worth noting that non-
Normal estimated residuals were also obtained in the analysis of traffic
flows in the ACE of Cellatica by Metulini and Carpita [13]. Moreover,
the ACF is exponentially decreasing and a notably significant value of
the PACF is observed at lag 1. As a result, the null hypothesis of 0
serial correlation in the Ljung–Box test is rejected (see the first two
columns of Table 3). However, these outcomes perfectly align with
expectations, given the constraints imposed by data availability on the
VARX model. Specifically, it is noteworthy that the inclusion of lag 1
in the model is precluded by these constraints. As shown in the last
two columns of Table 3, the Ljung–Box test suggests the presence of
serial correlation even when the first lag is included. Notwithstanding
this, the magnitudes of partial autocorrelations beyond lag 1 remain
remarkably low (less than 0.1), rendering them neglectable within the
scope of our analysis.

6.2. Forecasting performance of the model

This section presents a detailed discussion of the forecasting ability
of our model.

The cross-validation strategy described in [13], which is an adap-
tation of a blocked k-folds cross-validation for time series [18,27], is
applied to assess the forecasting ability of the model. According to this
methodology, from the dataset where holidays are replaced, one day
of observations is chosen as the validation set and the previous two
months of data are taken as the training set. As a result, each validation
set has sample size 𝑛𝑣 = 24 intervals of one hour, and each training set
has sample size 𝑛𝑡 = 1440 (24 observations × 60 days). We forecast
he flows in the time intervals of the validation set using the model
efined in Eqs. (4) and (5) with parameters 𝑝𝑑 = 3, 𝑝𝑤 = 4, 𝐾𝑑 = 7,
nd 𝐾𝑤 = 6 (see Section 6.1) estimated on the training set. To evaluate
he performance consistently over all the days of the year, we replicate
he analysis on different sets of training and validation samples (see
ig. 10). Note that, being data available for exactly 1 year, 88 days
from September, 1st to November 28th) cannot be validated. In fact,
he training set has 60 days and the model trains using autoregressive
ags up to 4 weeks (i.e., 𝑝𝑤 = 4), which we call lag terms set.

For each fold, the forecasts of the validation sets are then compared
ith the corresponding observed values. As an example, plots in Fig. 11

significant improvement in the distribution (results are available upon request)
and do not justify the use of a Box–Cox transformation on original data.
Moreover, we also tried introducing additional lags in the model to improve
residuals. Specifically, we considered three alternative sets of additional lags:
lags from 25 (the previous hour of the previous day) to 27, from 25 to 29,
and from 25 to 30. Unfortunately, we found that neither of these specifications
improved residuals. Moreover, we did not even find evidence of improvements
in the fitting of the model: the AIC and BIC remain substantially unchanged
when adding lags. Therefore, the here proposed model was preferred for
10

parsimony. s
show (top to bottom) the time series of observed (black) versus fore-
casted (colored) inflows, outflows, and internal flows for four validation
days: Wednesday, February 10th; Saturday, February 13th; Tuesday,
July 13th; Saturday, July 17th. To assess the accuracy of our forecasts,
we refer to two measures: the Symmetric Mean Absolute Percentage
Error (SMAPE hereafter) [28] and the Hit Rate (HR hereafter).

The SMAPE is an accuracy measure for quantitative variables and
is a variation of the MAPE [29,30] that is particularly suitable for non-
symmetrically distributed data, as this is the case. It is not affected
by variables’ scaling nor by negative or close-to −0 observations and
equally penalizes negative and positive errors.

For each validation set, we compute the SMAPE as:

𝑆𝑀𝐴𝑃𝐸 = 100
24

24
∑

𝑡=1

∣ 𝑓𝑡 − 𝑓𝑡 ∣
(∣ 𝑓𝑡 ∣ + ∣ 𝑓𝑡 ∣)∕2

(6)

where 𝑓𝑡 is the observed value of a flow at time 𝑡 (either 𝐼𝑛𝑓𝑙𝑜𝑤𝑡,
𝑂𝑢𝑡𝑓𝑙𝑜𝑤𝑡, or 𝐼𝑛𝑡𝑒𝑟𝑛𝑎𝑙𝑓 𝑙𝑜𝑤𝑡), 𝑓𝑡 is the corresponding forecasted value,
and ∣ ⋅ ∣ is the absolute value operator. The SMAPE takes values from 0
to 100. In general, a forecasting performance is considered very good
when the SMAPE is lower than 10, and fairly good when the SMAPE
takes values between 10 and 20. On the validation days in Fig. 11, we
find that the SMAPE varies from 7.5 to 23.5 for outflows, from 7.3 to
23.4 for inflows, and from 6.1 to 31.0 for internal flows. The monthly
mean and standard deviation of the SMAPE are reported for the three
flows in Table 4. As could be noticed, values do not considerably vary
among the different months observed in the validation set. The monthly
mean SMAPE ranges from approximately 8 (March) to 15 (January) for
inflows and outflows. Even better performance has been observed for
internal flows, for which the monthly mean SMAPE ranges from less
than 7 (February and April) to about 13 (July)5. Moreover, the Table
shows that the months associated with a larger standard deviation
of the SMAPE are December and January for inflows and outflows,
and July for the internal flows. Overall, these findings suggest that
the model forecasting performance is slightly weaker for January and
summer days.

In addition to the SMAPE, we evaluate the performance of the model
in forecasting traffic flows by means of HR. HR is an accuracy measure
for categorical variables and is widely adopted in the classification of
customers for credit scoring [31]. This measure allows us to assess the
ability of our model in forecasting the level of traffic intensity. Indeed,
regulators are often more interested in correctly forecasting whether
the traffic flow will be higher than a certain threshold rather than the
exact amount of people moving. Therefore, for practical applications,
our model must have a satisfactory ability to forecast the level of traffic.
We consider five categories to represent traffic levels, which we define
based on the quintiles of the related distribution, namely: very high,
high, moderate, low, and very low6. For each validation set and sepa-
rately for inflows, outflows, and internal flows, each observed value is
assigned to the corresponding category according to the distribution of
𝑓 , and each forecasted value is assigned to the corresponding category
according to the distribution of 𝑓 . The HR is then computed as:

𝐻𝑅 = 1
24

24
∑

𝑡=1
𝐼
(

𝑓𝑡 and 𝑓𝑡 belong to the same category
)

(7)

where 𝐼(⋅) is an indicator function that takes the value 1 if the
category of 𝑓𝑡 equals that of 𝑓𝑡, and 0 otherwise. The HR takes values
from 0 to 1, where 1 indicates that the forecasts perfectly match the
observed values. The monthly mean and standard deviation of the HR

5 The reported ranges of values for inflows, outflows, and internal flows do
ot account for the month of November, as it was possible to compute the
MAPE for only three days of the month.

6 The analysis has been repeated considering seven categories of traffic
lows. Results are very similar to those obtained with the five-categories

etting.
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Fig. 9. Residuals’ diagnostic: Time series of estimated residuals (top) with 95% confidence bands; ACF (center left) and PACF (center right), with 95% confidence bounds for strict
hite noise; histogram of the empirical distribution with Normal curve (bottom left) and QQ-plot for normality. Some extremely high values have been replaced with a cut-off
alue. From top to bottom: Inflows, Outflows, Internal Flows.
ave been computed for inflows, outflows, and internal flows and are
eported in Table 5. According to the HR, the model performs similarly
n different months. Average HR values range from 0.80 to 0.84 for the
nflows, from 0.74 to 0.83 for the outflows, and from 0.75 to 0.87 for
11

t

internal flows.7 Overall, these results suggest that the model provides
good accuracy in forecasting the category of traffic intensity. Similarly

7 Again, we do not consider the month of November, as only three days of
he month are available for the performance evaluation.
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Fig. 10. Illustration of the blocked k-folds cross validation adopted.
Table 4
Mean and standard deviation (inside brackets) of SMAPE from November 2020 to August 2021 by month. Note that SMAPE
values for November have been computed on 3 days only.

Nov Dec Jan Feb Mar Apr May Jun Jul Aug

Inflows 8.46 13.37 15.64 11.51 7.89 9.29 8.55 8.76 11.74 12.07
(4.64) (7.15) (7.92) (6.47) (4.52) (4.65) (3.88) (3.04) (5.85) (4.48)

Outflows 9.23 13.31 15.59 11.47 7.81 9.42 8.39 8.53 11.72 12.38
(5.78) (7.24) (7.96) (6.50) (4.74) (4.91) (3.88) (3.17) (5.94) (4.57)

Internal flows 4.60 7.32 9.04 6.64 7.05 6.83 7.01 8.12 12.96 9.91
(1.73) (2.63) (3.90) (3.42) (4.55) (3.10) (3.70) (3.51) (8.42) (3.67)
Table 5
Mean and standard deviation (inside brackets) of HR from November 2020 to August 2021 by month. Note that HR values
for November have been computed on 3 days only.
Series Nov Dec Jan Feb Mar Apr May Jun Jul Aug

Inflows 0.74 0.81 0.80 0.80 0.83 0.82 0.84 0.85 0.82 0.84
(0.12) (0.09) (0.09) (0.10) (0.11) (0.08) (0.07) (0.10) (0.10) (0.07)

Outflows 0.78 0.76 0.76 0.74 0.78 0.80 0.80 0.81 0.78 0.83
(0.06) (0.10) (0.07) (0.11) (0.10) (0.10) (0.11) (0.10) (0.11) (0.07)

Internal flows 0.89 0.83 0.85 0.83 0.84 0.87 0.85 0.81 0.75 0.77
(0.15) (0.07) (0.07) (0.06) (0.12) (0.07) (0.08) (0.10) (0.14) (0.09)
to the SMAPE (Table 4), the HR indicates that the model performs
better for non-summer days, though the indicator appears quite stable
over the time period.

Histograms in Fig. 12 show the distribution of HR over the set of
available validation days for inflows, outflows, and internal flows. The
distributions appear all negatively skewed, with median values larger
than 0.8. Inflows and internal flows present a pick for HR equal to 0.90,
while outflows at 0.80. The histograms also show that values of HR
lower than 0.6 (lower whisker) are obtained for a few validation sets.

At last, the days for which the model achieves poor performance
according to the HR have been investigated. Results are shown in the
box plot in Fig. 13, which reports results obtained on the validation set.
As could be noticed, most of the days corresponding to a low value of
HR (i.e., the outliers) refer to July. Nevertheless, the number of days
corresponding to a scarce forecasting performance is limited. It is worth
underlying that none of these days corresponds to holidays because of
the replacement strategy.

7. Discussion and conclusions

In this work, we address the assessment of the exposure to flooding
risk in urban areas. We focus on the number of people moving, which
we refer to as traffic flows, and present the case study of the Mandolossa
12
region, which is a flood-prone area in the Province of Brescia (Italy).
Two aspects are fundamental when analyzing traffic flows in risky
areas:

• Traffic flows are dynamic and change over time. Therefore, static
representations of human exposure are inadequate.

• Not all the people moving in the proximity of a flood-prone area
is passing by the risky areas. It is important to identify who is in
danger, and who is not.

In this work, we account for both aspects using an innovative combina-
tion of mobile phone data. The OD data flows allow us to capture traffic
dynamics over time. In particular, we distinguish between inflows,
outflows, and internal flows. The MDT signals data localize users with
10 meters accuracy and allow us to identify the portion of phone users
on streets passing by the risky area.

Traffic flows have been analyzed, and weekly and daily seasonal
patterns have been detected. To account for the two seasonal compo-
nents as well as the dependence structure among inflows, outflows,
and internal flows, we modeled traffic flows using a VARX model with
DHR components. Then, the model forecast accuracy has been assessed
using a blocked k-fold validation strategy paired with SMAPE and HR.

We found that the model satisfactorily forecasts the number of people
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Fig. 11. Plot of observed (black) versus forecasted (colored) traffic flow in the flood risk area of the Mandolossa. Validation days (from left to right): February, 10th (Wednesday),
February, 13th (Saturday), July, 13th (Tuesday), July, 17th (Saturday), year: 2021. From top to bottom: Inflows, Outflows, Internal flows.

Fig. 12. Histogram of the distribution of the HR computed over the 277 days of the dataset. From left to right: Inflows, Outflows, Internal flows.
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Fig. 13. Box plot of the HR computed over the 277 days of the dataset. The upper (lower) whisker represents the third (first) quartile plus (minus) 1.5 times the interquartile
ange. Days corresponding to extreme values of the HR are labeled in blue. From left to right: inflows, outflows, internal flows.
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oving and achieves a good performance in forecasting the level of
raffic intensity (i.e., very high, high, moderate, low, very low), though
t performs better on non-summer days.

The proposed model can be used by regulators for monitoring the
xposure of people to potentially harmful situations with reasonable
dvance. This information may support policymakers in evaluating
hich actions are more appropriate given the hazard, vulnerability, and
xposure of the area. In particular, it provides information that local
uthorities can use to promptly activate crowding control actions aimed
t preventing human losses and injuries. If combined with information
bout residents, it allows authorities to estimate the number of people
o be evacuated in an emergency. However, exposure to flood risk is
omplex and multifaceted. Indeed, the number of people moving over
he exposed area is just an important element in a much more complex
ramework. An interesting advancement that could be evaluated for
uture developments may concern the estimation of vehicular traffic.
eople in transit can be spread over a different number of vehicles.
nformation on vehicular traffic and the number of people on the move
an be used jointly to evaluate and implement traffic viability control
easures such as the preventive closure of the access roads to the risky

rea.
The main limitation of the presented work lies in the availability

f mobile phone data. Current technology does not allow for real-
ime data. The data is provided the day after being observed and,
or this reason, we were forced to exclude flows’ lags of less than
4 h from the model. However, thanks to the fast advancements in
echnologies (e.g., 5G network), this limit will likely be overcome in
he next future. When this happens, it will be possible to use mobile
hone data to produce real-time estimates of people on the move. In
urn, this information can be used for early warning systems. In this
espect, the adoption of mobile data is very promising as it would make
t possible to significantly contain the development and operating costs.
urrent early warning systems are based on very expensive engineering

nstruments which need to be installed ad-hoc and require adequate
aintenance over time. On the contrary, the mobile phone network

s already well distributed throughout the territory and would not
equire specific installation or maintenance interventions. Thus, despite
he current limitations, this work has even greater relevance when
onsidering possible future implications.

As a further development, the model might be improved by account-
ng for the specific characteristics of the non-Normal residuals. For
xample, skewed-student-t innovations might be assumed to account
or skewness and high kurtosis and a GARCH model might be adopted
o capture the time-varying variance of the residuals. Alternatively,
he information on the heavy tails might be used to cluster areas
here intense traffic simultaneously occurs. Furthermore, there exists

he opportunity to delve into alternative models aimed at the fore-
asting of traffic flow. The selection of the VARX model with DHR
omponents was made based on its adeptness in capturing complex sea-
onality while retaining its suitability within a multivariate framework.
onetheless, it is worth noting that despite the increased complexity in
14

b

their application to multivariate analyses, the exploration of VARMA
and ETS models could also be contemplated. Moreover, alternative
treatments of seasonality might also be considered. Here, we apply a
methodology that jointly estimates flows and seasonality. This choice
is motivated by the fact that the three types of flow exhibit strong
correlations as well as strong autocorrelation. It might be interesting
to investigate seasonality outside the model by seasonally adjusting
the series and fitting a VAR model. Moreover, additional explanatory
variables might be introduced, such as the census population of both
the ACEs of origin and destination, or weather variables, such as
temperature or level of precipitation, due to the relationship between
floods and meteorological measures.
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Table A.1
Results of the VARX(𝑝𝑑 = 3, 𝑝𝑤 = 4) with a DHR(𝐾𝑑 = 7, 𝐾𝑤 = 6) component.
Endogenous variable Inflow (s.e.) Outflow (s.e.) Internal flow (s.e.)

inflow_AR(1)_day 0.570 (0.061) 0.414 (0.061) 0.264 (0.118)
inflow_AR(2)_day −0.098 (0.062) −0.103 (0.063) −0.066 (0.121)
inflow_AR(3)_day −0.010 (0.062) −0.049 (0.063) −0.169 (0.121)
outflow_AR(1)_day −0.256 (0.060) −0.095 (0.060) −0.403 (0.116)
outflow_AR(2)_day −0.029 (0.060) −0.031 (0.060) −0.118 (0.117)
outflow_AR(3)_day 0.082 (0.062) 0.112 (0.063) 0.077 (0.121)
internal_flow_AR(1)_day 0.030 (0.062) 0.029 (0.063) 0.381 (0.121)
internal_flow_AR(2)_day 0.049 (0.059) 0.051 (0.060) 0.124 (0.115)
internal_flow_AR(3)_day 0.015 (0.009) 0.019 (0.009) 0.162 (0.018)
inflow_AR(1)_week 0.246 (0.009) −0.041 (0.009) 0.149 (0.018)
inflow_AR(2)_week 0.008 (0.009) −0.145 (0.009) −0.025 (0.018)
inflow_AR(3)_week 0.180 (0.009) 0.044 (0.009) 0.245 (0.017)
inflow_AR(4)_week 0.132 (0.055) 0.038 (0.055) 0.180 (0.107)
outflow_AR(1)_week 0.074 (0.056) 0.368 (0.056) −0.057 (0.109)
outflow_AR(2)_week 0.030 (0.053) 0.189 (0.053) 0.015 (0.103)
outflow_AR(3)_week 0.004 (0.053) 0.140 (0.054) −0.010 (0.104)
outflow_AR(4)_week −0.052 (0.054) 0.044 (0.054) −0.061 (0.105)
internal_flow_AR(1)_week −0.059 (0.051) −0.062 (0.051) 0.121 (0.099)
internal_flow_AR(2)_week 0.003 (0.009) 0.000 (0.009) 0.054 (0.018)
internal_flow_AR(3)_week −0.027 (0.010) −0.026 (0.010) −0.004 (0.019)
internal_flow_AR(4)_week −0.003 (0.009) −0.003 (0.009) 0.017 (0.018)

exogenous variable outflow (s.e.) inflow (s.e.) internal flow (s.e.)

sin_day_1 −50.647 (8.908) −41.909 (8.990) −149.059 (17.349)
cos_day_1 −73.328 (8.447) −72.018 (8.524) −183.885 (16.450)
sin_day_2 −14.188 (3.580) −16.070 (3.613) −64.125 (6.972)
cos_day_2 −9.015 (2.463) −9.535 (2.485) 1.559 (4.797)
sin_day_3 17.476 (2.775) 16.328 (2.800) 39.824 (5.403)
cos_day_3 7.020 (3.523) 11.478 (3.556) 2.408 (6.862)
sin_day_4 2.570 (2.009) 2.659 (2.027) −4.066 (3.912)
cos_day_4 −0.693 (2.769) −3.913 (2.795) −15.203 (5.393)
sin_day_5 −8.219 (2.091) −8.222 (2.110) −9.158 (4.072)
cos_day_5 0.001 (1.923) −0.069 (1.941) −1.656 (3.745)
sin_day_6 0.030 (1.932) −0.262 (1.950) 2.467 (3.762)
cos_day_6 −0.170 (1.967) 0.526 (1.985) −1.654 (3.831)
sin_day_7 2.654 (2.041) 3.748 (2.060) 6.174 (3.975)
cos_day_7 −3.930 (1.965) −3.940 (1.983) −9.272 (3.827)
sin_week_1 163.312 (10.114) 157.363 (10.207) 322.871 (19.697)
cos_week_1 20.020 (10.274) 20.168 (10.368) 33.954 (20.008)
sin_week_2 −109.552 (5.709) −108.577 (5.761) −191.979 (11.118)
cos_week_2 37.770 (5.602) 37.824 (5.653) 43.589 (10.909)
sin_week_3 42.107 (3.753) 42.816 (3.787) 76.218 (7.308)
cos_week_3 −54.223 (4.109) −53.980 (4.147) −106.939 (8.003)
sin_week_4 43.265 (3.137) 42.930 (3.165) 87.501 (6.108)
cos_week_4 33.244 (3.366) 34.436 (3.397) 69.129 (6.556)
sin_week_5 −69.542 (3.133) −69.733 (3.161) −109.762 (6.101)
cos_week_5 3.196 (3.092) −0.230 (3.121) 14.329 (6.022)
sin_week_6 54.724 (2.802) 55.723 (2.828) 94.478 (5.457)
cos_week_6 −35.847 (3.077) −31.771 (3.105) −65.942 (5.992)
month (ref. January): February 64.869 (7.038) 66.002 (7.102) 52.810 (13.706)
March 18.464 (6.886) 20.391 (6.949) 28.904 (13.410)
April −0.683 (6.732) −0.783 (6.794) 0.359 (13.111)
May 40.883 (6.887) 39.275 (6.950) 59.165 (13.411)
June 65.458 (7.080) 65.504 (7.145) 92.917 (13.788)
July 68.160 (7.344) 69.405 (7.412) 55.784 (14.303)
August −34.724 (7.126) −36.678 (7.191) −144.595 (13.878)
September 25.884 (7.165) 26.603 (7.231) 6.497 (13.954)
October 108.951 (7.105) 110.412 (7.170) 139.807 (13.838)
November 16.092 (6.819) 17.361 (6.881) 35.251 (13.279)
December 106.026 (6.757) 107.372 (6.818) 13.2837 (13.158)
weekday (ref. Monday): Tuesday −48.998 (14.966) −46.302 (15.103) −61.781 (29.146)
Wednesday −87.868 (18.447) −83.178 (18.616) −179.269 (35.925)
Thursday −110.401 (20.767) −102.202 (20.957) −238.359 (40.443)
Friday −157.515 (20.982) −147.637 (21.174) −332.078 (40.862)
Saturday −87.272 (19.188) −81.322 (19.363) −187.802 (37.368)
Sunday 109.832 (15.186) 111.145 (15.325) 207.293 (29.574)

intercept 82.660 (21.072) 71.637 (21.258) 345.997 (39.537)

residual correlation matrix outflow inflow internal flow
outflow 1 0.971 0.666
inflow 0.971 1 0.664
internal flow 0.666 0.664 1

information criteria AIC: 25.795; BIC: 25.953
15
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1. Selection of the MDT data signals corresponding to the four
ACEs of interest. We compared the MDT grid of pixels with the
map of the administrative boundaries in order to identify the
phone signals related to the four ACEs of interest. The area of the
MDT database corresponding to the four ACEs that we used for
the analysis is shown in the left map of Fig. 3. This step restricted
the MDT database to 113397 cells of the pixel grid.

2. Identification of the area critical for flood emergency man-
agement. We selected the ‘‘Sezioni di CEnsimento’’ (SCEs here-
after) – which are subdivisions of the ACEs – that are critical for
flood management. The procedure for this step is shown in the
central map of Fig. 3. First, we considered the map of the 300
SCEs constituting the 4 ACEs and compared them to the flood
risk map. In the map, the SCEs and the flood maps correspond
to the black borders and the blue area respectively. To capture
all the streets passing by or linked to the flood risk area, we
applied a 500 meters-buffer to the risk map (light blue area of
the map). The selected buffer reflects the geographical accuracy
of the OD data indicated by the TIM data operator. We found
that the identified area intersects 92 SCEs, which we, therefore,
considered critical for flood risk management. Furthermore, a
graphical inspection revealed 12 additional SCEs in which there
are important routes connecting the flood-prone area to the rest
of the province of Brescia. We included them in the selection as
well. Overall, we identified 104 SCEs that define the area critical
for flood emergency management, which is reported in the map
as the green polygon.

3. Street map and identification of the streets critical for flood
emergency management. Most of the MDT cells of the pixel
grid selected in Step 1 correspond to buildings. Since we aim
at capturing traffic flows, we further need to restrict the MDT
database to the cells representing streets. We identified the
streets in the 4 ACEs by means of the street map presented
in Section 2.3. Then, we restricted our attention to the SCEs
selected in step 2 and identified the streets linked to or passing
by the flood-prone area through a graphical inspection. This step
is shown by the right map of Fig. 3, where the red polygons
represent the streets that have been identified as critical for flood
management, and the orange ones the rest of the streets in the
ACEs. As it could be noted, not all the streets in the critical area
(green polygon) have been included in the selection of critical
streets. Indeed, we restricted our attention to those directly
connected with the 20-year flood-risk map only. In practice, all
the roads in the critical area have been considered critical but
those that run along the edges of it without ever approaching
the flood-prone zone.8 This is the case, for example, of the major
road on the northwest border of the critical area. This choice is
motivated by the fact that this street runs alongside the flood-
prone area without ever entering it. The high number of grid
cells from which MDT signals originated located in it would have
distorted the estimation of traffic flows at risk and we therefore
considered it appropriate not to include it in the selection of
critical streets.

8 The impact of the chosen buffer on the resulting critical area and critical
treets has been investigated. We find that, overall, buffers of 200, 300, and
00 meters would lead to substantially the same selection of SCEs and the same
treet area results. More in detail, we find that the three buffers would reduce
he selected area of the critical street by about -8%, -5%, and -3% respectively.
oth increasing or decreasing the buffer of 100 meters just slightly modifies
he critical area. More in detail, a 400-meter buffer would lead to a decrease
n the number of selected SCEs of 3 units, while a 600-meter buffer would
ncrease it by 4 units. In either case, we get to the same selection of critical
16

treets with approximately the same road surface.
4. Identification of the MDT grid cells corresponding to streets.
We compared the MDT grid of pixels with the streets of the
four ACEs (step 3) and identified the MDT cells on streets for
each ACE and each time of observation (i.e., a 15-minute inter-
val). Since the MDT signals are georeferenced with 10 meters
accuracy, we considered ‘‘on street’’ all the cells of the grid
that are at most 10 meters far from the roadway. Overall, we
found that 54998 cells of the grid from which MDT signals were
detected correspond to streets in the four ACEs. For this step,
an illustrative example is presented in the left map of Fig. 4.
The map refers to November 10th, 12:00–12:14 PM, and the
ACE of ‘‘Brescia Mandolossa’’, but the same process has been
repeated for all the time intervals and the other 3 ACEs. Then,
for each ACE 𝑖 and each time interval 𝑡, we counted the number
of street-cells 𝑆𝐶𝑖𝑡.

5. Identification of MDT cells corresponding to critical streets.
Among the MDT grid cells on streets found in Step 4, we iden-
tified the ones corresponding to the streets critical for flood
emergency management selected in Step 3. We repeated this
procedure per each time interval and each ACE, and an example
is presented in the right map of Fig. 4. For any combination of 𝑖
and 𝑡, we counted the number of on MDT cells that correspond
to critical streets, to which we refer as 𝐶𝑆𝐶𝑖𝑡.

6. Aggregation of the data in time intervals of 4 h. The variables
𝑆𝐶𝑖𝑡 and 𝐶𝑆𝐶𝑖𝑡 obtained at steps 4 and 5 have been analyzed.
We found that the number of MDT cells that originated signals
on streets is very low during the night and that the number can
vary considerably during the day. Therefore, the total number of
MDT cells on streets and on critical streets have been aggregated
in larger time intervals. Various alternatives have been explored,
and we found the best solution in 6 intervals of 4 h, namely:
0:00–3:59, 4:00–7:59, 8:00–11:59, 12:00–15:59, 16:00–19:59,
20:00–23:59. As discussed in Section 2.2, ten 15 min-times of
observation were missing, and have therefore been replaced
with the average values of the time intervals available for the
corresponding hour.

7. Weights computation. The proportions of street-cells corre-
sponding to critical streets were computed for each ACE and
each of the 6 time intervals as:

𝐼.𝑀𝐷𝑇𝑖𝑡 =
𝐶𝑆𝐶𝑖𝑡
𝑆𝐶𝑖𝑡

(8)

where 𝑡 indicates one 4-hour interval in one day. Results are
reported in Fig. 5. The ratios for the interval 00:00-03:59 ap-
pear – again – strongly affected by the low number of signals
detected and have been neglected. The remaining ratios are
fairly constant among the intervals and the 5 days observed. We,
therefore, computed the weight for each ACE 𝑖 𝐼.𝑀𝐷𝑇 𝑖 as the
average value of the ratios of the 5 time intervals in the 5 days.
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