
����������
�������

Citation: Bassi, F.; Botti, L.A.;

Colombo, A.; Massa, F.C. Assessment

of an Implicit Discontinuous

Galerkin Solver for Incompressible

Flow Problems with Variable Density.

Appl. Sci. 2022, 12, 11229. https://

doi.org/10.3390/app122111229

Academic Editor: Artur Tyliszczak

Received: 11 October 2022

Accepted: 2 November 2022

Published: 5 November 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied  
sciences

Article

Assessment of an Implicit Discontinuous Galerkin Solver for
Incompressible Flow Problems with Variable Density
Francesco Bassi †, Lorenzo Alessio Botti, Alessandro Colombo and Francesco Carlo Massa *

Department of Engineering and Applied Sciences, Università degli Studi di Bergamo, Viale Marconi, 5,
24044 Dalmine, Italy
* Correspondence: francescocarlo.massa@unibg.it
† Retired professor.

Abstract: Multi-component flow problems are typical of many technological and engineering appli-
cations. In this work, we propose an implicit high-order discontinuous Galerkin discretization of the
variable density incompressible (VDI) flow model for the simulation of multi-component problems.
Indeed, the peculiarity of the VDI model is that the density is treated as an advected property, which
can be used to possibly track multiple (more than two) components. The interface between fluids is
described by a smooth, but sharp, variation in the density field, thus not requiring any geometrical
reconstruction. Godunov numerical fluxes, density positivity, mass conservation, and Gibbs-type
phenomena at material interfaces are challenges that are considered during the numerical approach
development. To avoid Courant-related time step restrictions, high-order single-step multi-stage
implicit schemes are applied for the temporal integration. Several test cases with known analytical
solutions are used to assess the current approach in terms of space, time, and mass conservation
accuracy. As a challenging application, the simulation of a 2D droplet impinging on a thin liquid
film is performed and shows the capabilities of the proposed DG approach when dealing with
high-density (water–air) multi-component problems.

Keywords: variable density incompressible; high-density ratio; discontinuous Galerkin; implicit
high-order time integration; density positivity; mass conservation; Gibbs-type phenomena control

1. Introduction

Multi-component flows are common in many industrial and technological processes.
Extraction and transport of hydrocarbons, liquid jet machining, coating materials, fuel sprays,
pollutants treatment, droplets dispersion, and porous media are just a few notable examples.
Over the years, many numerical strategies have been developed to deal with such flow problems.

The first examples were given by the Lagrangian [1] and arbitrary Lagrangian–Eulerian
methods [2]. The accuracies of these methods are very high but limited by the level of inter-
face deformation, which may lead to severe mesh distortions. To reduce such distortions,
front-tracking methods [3] were developed. They consider a fixed computational grid for
the bulk flow and track the interface using Lagrangian tracers. Despite being less sensible
to interface deformations, they become geometrically challenging as the deformation en-
larges. To circumvent the aforementioned issues, other strategies, based on the Eulerian
description of the flow field, were devised. In particular, the level-set method [4] and
the volume of fluid method [5] are among the most successful ones. The former exploits
the advection of a suitable function whose zero-level set denotes the interface. The latter
tracks the free surface using a volume fraction variable and a geometrical reconstruction
technique, e.g., the piecewise linear interface calculation [6].

All methods mentioned above treat the interface as a d-dimensional surface, with d
being the problem dimension. A different interface-capturing approach is provided by
diffuse interface methods [7–10], which allow the different fluid components to develop
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a thin mixing region, usually described as a smooth (but possibly sharp) variation of a
field variable. Since no reconstruction or tracking of the interface is required, complex
three-dimensional interface topologies with possible coalescence/break-up of droplets can
easily be captured with no extra cost. In this context, the variable density incompressible
(VDI) flow model [11] exhibits interesting features for the simulation of incompressible
flow problems involving immiscible fluids of different densities. The interface between
components is managed in a diffuse fashion as smooth variations of the density field. Due
to the coexistence of the divergence constraint and the mass conservation, the density
is treated as a purely advected property. Thus, it acts as a field variable, allowing it to
distinguish different components of different densities.

As is the case for any diffuse interface method, the VDI flow model needs careful
control of interface spreading to avoid meaningless descriptions of the flow problem under
investigation. Numerical methods able to deliver high-order spatial accuracy are very
attractive in this regard as they account for steep gradients of the field variable, thereby
allowing to represent a sharp diffuse interface. Among the many high-order methods
proposed in the literature, we focused on discontinuous Galerkin (DG) formulations, which
are particularly well suited in the computational fluid dynamics context [12–17]. Indeed,
they provide favorable dispersion and dissipation properties and the ability to achieve very
high accuracy even on arbitrarily shaped polytopic mesh elements [18].

In this work, we investigated some numerical challenges involved in implicit high-
order accurate DG discretizations of the VDI model introduced in [19] for the simulation
of multi-component incompressible flow problems. This discretization follows the idea
of coupling the artificial compressibility method to the VDI flow model [19–24] in order
to introduce suitable Godunov fluxes at the inter-element boundaries. In particular, the
formulation relies on the exact solution of local Riemann problems based on an artificial
compressibility perturbation of the incompressible Navier–Stokes equations. Artificial
compressibility is applied to recover a set of equations of the hyperbolic type and derive the
exact Riemann problem solution by means of standard wave patterns [25]. We stress that
the artificial compressibility acts only at the local Riemann problem level, while the set of
governing equations still lacks the pressure time derivative. The coupling between pressure
and velocity introduced by the Riemann solver allows for equal degree pressure-velocity
formulations. Moreover, thanks to this coupling, the resulting space-discretized set of
equations becomes a set of differential-algebraic equations (DAEs) of index 1, thus implicit
high-order time integration schemes can be applied [26].

The assessment of the DG-VDI formulation conducted in this work focuses on the pos-
itivity of the discrete density field, the control of the Gibbs-type phenomena emerging from
high-order representations of interfaces, and on the effectiveness of the time integration
strategy.

Density positivity is crucial when dealing with multi-component flow problems fea-
turing high-density ratios, e.g., water–air. The approach proposed in Section 3.3 consists of
defining the density variable ρ ∈ R+ as the sole function of a discretized variable denoted
as working density ρ̃ ∈ R and enforcing density positivity by introducing a suitable vari-
able transformation ρ = f (ρ̃). Since the transformation introduces additional nonlinearities,
accurate space and time integration strategies are required to guarantee mass conservation.

Gibbs-type phenomena emerge from high-order representations of sharp diffuse
interfaces between components. Taking inspiration from shock-capturing techniques for
compressible flows, we introduce an artificial mass diffusion source term within the set of
equations which is activated by spurious oscillations, see Section 3.4. Despite being treated
as a source term, this artificial diffusion is conservative since it leaves untouched the mean
value of the conserved variable within each mesh element.

In Section 3.5, the set of DAEs is integrated in time with high-order single-step multi-
stage ESDIRK schemes [27,28]. These nonlinear temporal schemes can be designed to have
optimal stability properties, thus preventing Courant-related time step restrictions.
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Section 4 presents the assessment in terms of space, time, and mass conservation
accuracies of sets of governing equations on three test cases of known analytical solutions,
and the simulation of the impingement of a 2D liquid (water) droplet on a thin film
immersed in air. In Section 5, conclusions are given.

2. Variable Density Incompressible Flow Model

Let the computational domain Ω be a subset of the d-dimensional space; the model
describing an incompressible flow of a Newtonian fluid with variable density is defined by
augmenting the set of incompressible Navier–Stokes equations

∂uj

∂xj
= 0,

ρ
Dui
Dt

= − ∂p
∂xi

+
∂τij

∂xj
+ ρgi,

(1)

with the continuity equation

∂ρ

∂t
+

∂

∂xj
(ρuj) = 0.

Suitable initial and boundary conditions must be introduced to complete the definition of
the variable density incompressible flow problem. Above (and in what follows) equations
are written in the Einstein notation and the spatial coordinates are described by means of a

Cartesian reference frame. The
D(·)
Dt

is the material derivative.
Written in conservative form, the set of equations for the variable density incompress-

ible (VDI) flow model reads

∂uj

∂xj
= 0,

∂

∂t
(ρui) +

∂

∂xj
(ρuiuj) = −

∂p
∂xi

+
∂τij

∂xj
+ ρgi,

∂ρ

∂t
+

∂

∂xj
(ρuj) = 0,

(2)

with i, j = 1, . . . , d and

τij = 2µ

[
1
2

(
∂ui
∂xj

+
∂uj

∂xi

)
− 1

3
∂uk
∂xk

δij

]
.

The body acceleration is typically constant, e.g., gravitational acceleration, while the dy-
namic viscosity can be defined as a suitable function of the density µ = µ(ρ).

The peculiar feature of the model in (2) lies in the simultaneous presence of the
continuity equation and the divergence-free constraint, which leads to a null material
derivative constraint for the density variable. In practice, the advected density variable
can be employed as a phase variable. Accordingly, in the context of incompressible flow
problems involving immiscible Newtonian fluids of different densities, e.g., water and
air, the VDI flow model allows to discriminate different components simply by means of
their different density values. Similarly, interfaces between components are identified in a
diffuse fashion as smooth (and possibly sharp) variations of the density variable.

3. Numerical Framework

The model (2) can be written in compact form as

D
∂q
∂t

+∇ · Fc(q) +∇ · Fv(q,∇q) + s(q) = 0,
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where q = {p, ρui, ρ} ∈ Rm is the vector of the m = d + 2 conservative variables, Fc, Fv ∈
Rm×d are the convective and viscous fluxes, s ∈ Rm is the source term, and D = I − J11 ∈
Rm×m is the difference matrix between the identity matrix and a single-entry matrix, which
takes into account the lack of pressure time derivative.

Alternative sets of variables, w, can be considered in place of the conservative one, q.
Whenever this occurs, the following change of variable matrix has to be defined

P(w) =
∂q(w)

∂w
,

and the compact form of (2) becomes

DP(w)
∂w
∂t

+∇ · Fc(w) +∇ · Fv(w,∇w) + s(w) = 0. (3)

Hereinafter, the generic set of variables w is denoted as the set of working variables.

3.1. Discontinuous Galerkin Discretization

We are interested in the space discretization of the VDI flow model (3) using a high-
order discontinuous Galerkin (DG) method. Let Kh = {K} denote the collection of non-
overlapping mesh elements K of the domain Ω ∈ Rd, such that

Ωh =
⋃

K∈Kh

K.

Let Fh = {F} denote the set of faces of the computational mesh Ωh. F b
h collects the faces at

the boundary of Ωh and F i
h = Fh \ F b

h the internal faces, i.e., for any F ∈ F i
h, there exist

two elements K+, K− ∈ Kh, such that F ∈ ∂K+ ∩ ∂K−.
Then, let us define the discrete polynomial space

Pk
d(Kh) =

{
vh ∈ L2(Ω) | vh |K ∈ Pk

d(K), ∀K ∈ Kh

}
,

where k ≥ 0 is an integer and Pk
d(K) denotes the restriction to K of the polynomial functions

of d variables and total degree ≤ k. For this polynomial space, a set of orthonormal and
hierarchical basis functions is computed according to [29].

By multiplying Equation (3) by an arbitrary smooth test function v = {v1, . . . , vm},
and integrating by parts, we obtain the weak formulation

∫
Ω

v ·
(

DP(w)
∂w
∂t

)
dx−

∫
Ω
∇v : [Fc(w) + Fv(w,∇w)]dx

+
∮

∂Ω
v⊗ n : [Fc(w) + Fv(w,∇w)]dx +

∫
Ω

v · s(w)dx = 0, (4)

where n is the unit vector normal to the boundary.
In order to discretize Equation (4) by means of discontinuous Galerkin methods, the

solution w and the test function v are replaced with a finite element approximation wh and a
discrete test function vh, respectively, both of which belong to [Pk

d(Kh)]
m. Accordingly, within

each mesh element K ∈ Kh each component whj, j = 1, . . . , m, of wh can be expressed as

wh j = φlWjl ,

where φl are the orthonormal and hierarchical basis functions and Wjl are the components
of the global vector W of the unknown degrees of freedom (dof), being l = 1, . . . , Nk

do f .

As a generic function, ϕh ∈ Pk
d(Kh) is double-valued over an internal mesh face and the

jump trace operator [[ϕh]] = ϕh|K+ − ϕh|K− is introduced. Whenever applied to a vector,
this operator acts component-wise.
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The DG discretization of the governing equations consists in seeking, for i = 1, . . . , Nk
do f

and j = 1, . . . , m, the components of W such that

∑
K

∫
K

φiDjaPak(wh)φl
dWkl

dt
dx

−∑
K

∫
K

∂φi
∂xb

[
Fc

jb(wh) + Fv
jb(wh,∇hwh + r([[wh]]))

]
dx

+ ∑
F

∫
F
[[φi]]nb

[
F̂c

jb
(
w±h
)
+ F̂v

jb

(
w±h , (∇hwh + ηFrF([[wh]]))

±
)]

dx

+ ∑
K

∫
K

φisj(wh)dx = 0ij. (5)

Repeated indices imply summation over ranges a, k = 1, . . . , m, l = 1, . . . , Nk
do f ,

b = 1, . . . , d. The residual of the DG discretization in (5) is a vector, in particular for
each j = 1, . . . , m and all i = 1, . . . , Nk

do f we obtain the residual entries associated with the
j-th equation of the VDI model in (3).

For the space discretization of the second-order terms, we rely on the second scheme
of Bassi and Rebay (BR2) [30,31], where the viscous numerical flux is given by

F̂
v(

w±h , (∇hwh + ηFrF([[wh]]))
±
)
= {Fv(wh,∇hwh + ηFrF([[wh]]))},

where {ϕ} = 0.5(ϕh|K+ + ϕh|K−) is the average operator. r and rF are global and local
lifting operators, respectively, and ηF is the stability parameter defined according to [31].
The convective numerical flux F̂c is computed as a Godunov flux using the exact Riemann
solvers for VDI flows proposed by Bassi et al. [22].

A further integration by parts of the equation (5) leads to the so-called strong formu-
lation [32]. In the current work, the strong formulation is adopted for the convective flux
contribution while the weak formulation is considered for the viscous flux treatment.

3.2. Riemann Solvers

The DG discretization of (3) requires the definition of suitable convective numerical
fluxes F̂c. To this end, in this work, we rely on Godunov fluxes based on the exact solution
of Riemann solvers specifically conceived for VDI flows: we consider in particular the
switched density Riemann solver (SDRS) and the exact Riemann solver (ERS) proposed
in [22]. Both solvers aim to find a solution to the d-dimensional VDI inviscid equations
split in the n-direction, where n = {n1, . . . , nd} is the unit normal at point x0 located on the
mesh skeleton, i.e., x0 ∈

⋃
F∈Fh

F.
Let xn = xini and un = uini, be the normal components of the position and velocity

vector, respectively, and let uθ = u− unn be the tangential velocity vector. The set of n-split
VDI equations

∂un

∂xn
= 0,

∂

∂t
(ρun) +

∂

∂xn

(
ρu2

n + p
)
= 0,

∂

∂t
(ρuθ) +

∂

∂xn
(ρuθun) = 0,

∂ρ

∂t
+

∂

∂xn
(ρun) = 0,

(6)

coupled with initial piece-wise constant data

[p, un, uθ , ρ](xn, t0) =

{
[pL, unL, uθ L, ρL] xn < xn0,

[pR, unR, uθ R, ρR] xn > xn0,
(7)
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is the Riemann problem we ought to find a solution to. In (7), xn0 ∈ F denotes the position
of the discontinuity at initial time t0, and the subscripts L (left) and R (right) denote the
states of the two mesh elements K+ and K− sharing F. According to the Godunov scheme
approach, the solution at the locus S = (xn − xn0)/t = 0 (vertical axis of Figure 1) is
directly employed to evaluate the convective numerical fluxes.

Since the system (6) does not fit into the framework of first-order hyperbolic conser-
vation laws, the hyperbolic wave pattern solving the Riemann problem cannot be found.
In order to overcome the issue, both SDRS and ERS rely on an artificial compressibility
perturbation of (6), which, taking inspiration from the artificial compressibility model by
Chorin [33], consists of adding a pressure time derivative to the first equation. The set of
n-split equations for the SDRS reads

1
ρ0a2

0

∂p
∂t

+
∂un

∂xn
= 0,

∂

∂t
(ρun) +

∂

∂xn

(
ρu2

n + p
)
= 0,

∂uθ

∂t
+ un

∂uθ

∂xn
= 0,

∂ρ

∂t
+ un

∂ρ

∂xn
= 0,

(8)

while the set of n-split equations for the ERS reads

1
ρ0a2

0

∂p
∂t

+
∂un

∂xn
= 0,

∂

∂t
(ρun) +

∂

∂xn

(
ρu2

n + p
)
= 0,

∂uθ

∂t
+ un

∂uθ

∂xn
= 0,

∂ρ

∂t
+

∂

∂xn
(ρun) = 0,

(9)

where ρ0 is the reference density and a0 is the artificial compressibility parameter. Fol-
lowing [22], we set a0 equal to the reference velocity employed in the definition of the
non-dimensional groups, i.e., a unitary value of the dimensionless a0. According to the
third equation in (8) and (9), the tangential component of the velocity uθ is purely advected
along the normal direction. Since this equation is just the combination of the third and
fourth equations of system (6), it does not represent a modification of the original set of
n-split equations. Moreover, we underline that SDRS enforces the divergence constraint
within the continuity equation, thus treating the density as an advected property along the
normal direction.

The solution of the two Riemann problems (8), (7) and (9), (7), obtained by coupling
the artificial compressibility perturbations of (8) with discontinuous initial data, consists
of four constant states separated by two external acoustic waves and a central contact
discontinuity, see Figure 1.



Appl. Sci. 2022, 12, 11229 7 of 25

Figure 1. Structure of the Riemann problem solution.

Depending on the external states (7), the acoustic waves can be either rarefactions
or shocks, thus entailing a change of all flow properties that are not purely advected.The
intermediate region embraced by the acoustic waves, denoted as the star region [25], is split
into a left (?L) and a right (?R) portion by the contact discontinuity, across which pressure
and normal velocity un are constant.

We refer to Appendixes A and B of [22] for a complete derivation of the solution for
the SDRS and the ERS. Interestingly, while the former requires solving a nonlinear equation
system, the latter admits an explicit solution, resulting in better computational efficiency.
As a peculiar feature of SDRS we mention that, since the density is purely advected, the
density solution at S = 0 is equal either to the left or the right initial values. Accordingly,
the density solution is guaranteed to never exceed the density values of the external states
(7). As will be pointed out in Section 3.3, this latter feature is of crucial importance when
using the Riemann solvers in combination with specific working variables w choices.

3.3. Set of Working Variables

We consider the following set of working variables

w = {p, ui, ρ̃}, (10)

which comprises the pressure p, the velocity components ui=1,...,d and the working density ρ̃,
such that ρ = f (ρ̃). Hence, in two space dimensions (d = 2) the change of the variable matrix
reads

P(w) =
∂q
∂w

=


1 0 0 0
0 ρ 0 ρρ̃u1
0 0 ρ ρρ̃u2
0 0 0 ρρ̃

,

where ρρ̃ = dρ/dρ̃.
In this work, we consider three alternatives for the definition of ρ̃, exploiting the

change of variable to enforce particular properties of the density field at the discrete level:

• linear
ρ = f1(ρ̃) = ρ̃; (11)

• exponential
ρ = f2(ρ̃) = eσs ρ̃; (12)

• hyperbolic tangent-based

ρ = f3(ρ̃) =
rρ + 1 +

(
rρ + 1

)
tanh (σsρ̃)

2rρ
. (13)
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In Equation (13), rρ = ρ+/ρ− is the maximum density ratio occurring in the density
field, with ρ+ and ρ− the maximum and minimum density values for the flow problem
at hand, respectively. In Equations (12) and (13), σs ∈ R\{0} is a scaling factor defined as
follows

σs = max

[
1

∆ρ̃
ln
(
rρ

)
, 1

]
,

where ∆ρ̃ = ρ̃(ρ+) − ρ̃(ρ−) is a user-defined range. In this work, we consider ∆ρ̃ = 1.
The max function is introduced to gracefully deal with unit density ratios. Notice that in
(11)–(13) the density has to be indented dimensionless with respect to the reference density
ρ0 = ρ+.

According to the linear transformation (11) the set of working variables falls back to
the set of primitive variables, hence no particular properties are enforced at the discrete
level. Instead, the exponential (12) and the hyperbolic tangent (13) based transformations
restrict the range of admissible density values as follows

f2(ρ̃) : R→ (0, +∞) and f3(ρ̃) : R→
(

0, 1 +
1
rρ

)
.

thereby ensuring density positivity at the discrete level. Interestingly, by controlling the
maximum density value, the hyperbolic tangent transformation in (13) also provides the
ability to limit density over/under-shoots associated with high-order approximations
of steep density gradients in multi-component flow problems. Nevertheless, it must be
clear that Gibbs-type phenomena promoting such over/under-shoots are not eliminated.
As detailed in Section 3.4, proper treatment is required to avoid simulation blow up.
Moreover, when employing the hyperbolic tangent transformation, in order to avoid failure
of the inverse transformation ρ̃ = f−1

3 (ρ), it must be ensured that ρ ∈
(
0, 1 + 1/rρ

)
.

Since the inverse transformation is applied to the density obtained from the Riemann solver
in order to retrieve the working density to be plugged into the convective numerical flux, it
is mandatory to rely on the SDRS. Indeed, as detailed in Section 3.2, only SDRS ensures
that the star region density falls within the external states limits. Note that external density
values computed from ρ̃ are within the limits by construction. Note that ERS is well suited
to be used in combination with f1(ρ̃) and f2(ρ̃) transformations.

Despite its appealing features, it is important to point out that the change of density
variable introduces strong nonlinearities within the system (3) and, hand-in-hand, in the
DG discretized problem (5). Accordingly, the conservation of relevant physical quantities
is subdued to the ability to accurately integrate the nonlinearities, in both space and time.

3.4. Shock Capturing for Material Interfaces

The VDI flow model allows dealing with incompressible flow problems involving
immiscible fluids of different densities, e.g., water and air. Different fluid components
are discriminated through the density, which acts as a phase variable, and the interface
between components is represented as a sharp variation of the density field. It is well known
that high-order discretizations are affected by Gibbs-type phenomena in the presence of
excessively sharp gradients. This might endow a lack of monotonicity at interfaces, which
must be properly controlled to avoid stability issues. In this work, we implemented a
strategy based on the introduction of artificial viscosity inspired by the approach proposed
by Persson and Peraire [34] in the context of compressible flows featuring shocks.

In the context of the VDI flow model, spurious density oscillations might occur at
contact discontinuities. Accordingly, the artificial diffusive term is introduced solely within
the continuity equation

∂ρ

∂t
+

∂

∂xj
(ρuj) =

∂

∂xj

(
νε

∂ρ

∂xj

)
.
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Nevertheless, in order to ensure that the momentum equation of (1) is actually solved, we
propose the following conservative form of the VDI flow model with artificial viscosity:

∂uj

∂xj
= 0,

∂

∂t
(ρui) +

∂

∂xj
(ρuiuj) = −

∂p
∂xi

+
∂τij

∂xj
+ ρgi + ui

∂

∂xj

(
νε

∂ρ

∂xj

)
,

∂ρ

∂t
+

∂

∂xj
(ρuj) =

∂

∂xj

(
νε

∂ρ

∂xj

)
,

(14)

with i, j = 1, . . . , d and νε is the artificial mass diffusion parameter.
In order to ensure that artificial mass diffusion is introduced only at interfaces, we

rely on a smoothness sensor based on the modal decay of the working density ρ̃ expansion.
The artificial diffusion νε is, thus, defined according to [34] as

νε =


νε0 if s < s0 − ∆s
νε0

2

[
1 + sin

(
π

2
s0 − s

∆s

)]
if s0 − ∆s ≤ s ≤ s0 + ∆s

0 otherwise.

where the smoothness sensor s is defined according to the skyline pessimization procedure
proposed by Klöckner et al. [35]. According to [35], s � 1 when the field is smooth and
s ≈ 1 when the density field exhibits abrupt variations. The user-defined parameters s0 and
∆s define the threshold triggering the introduction of artificial viscosity as well as the actual
amount of artificial viscosity introduced, which varies from 0 to νε. In this work, we set
s0 = 1, ∆s = 0.75 and νε0 = h/k, with h the mesh element size and k the DG polynomial
degree. This choice aims to introduce artificial diffusion that decreases with higher poly-
nomial degrees and smaller elements, allowing to possibly capture discontinuities as thin
layers within a single mesh element. A sufficiently high polynomial degree, namely k ≥ 4,
is required to ensure that the modal decay provides a reliable smoothness sensor.

The two additional terms related to artificial diffusion appearing in (14), one within
the continuity equation and one within the momentum equation, are discretized in space
following the idea proposed by Jaffre et al. [36]. In particular, the additional term within the
continuity equation is discretized by multiplying by an arbitrary test function, integrating
by parts and neglecting the numerical flux contributions on the inter-element boundaries.
Accordingly, the following term has to be included in (5) for the DoFs (i = 1, . . . , Nk

do f )
related to the continuity equation (j = d + 2)

∑
K

∫
K

∂φi
∂xb

νε
∂ρ

∂xb
dx. (15)

The additional term within the momentum equation is discretized in a consistent way with
respect to (15). Thus, for i = 1, . . . , Nk

do f and j = 2, . . . , d + 1, the following contribution is
included in (5)

∑
K

∫
K

∂φi
∂xb

uj−1νε
∂ρ

∂xb
dx. (16)

It is interesting to note that, despite the introduction of (15) and (16), the resulting DG
formulation is conservative. Indeed, keeping in mind that we rely on a set of hierarchical
modal basis functions, for the first degree of freedom (i = 1), it holds

∂φ1

∂xb
= 0.
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with b = 1, . . . , d. Since the first degree of freedom defines the average value of the
conservative variable in each mesh element, it is clear that the proposed DG discretization
of the artificial diffusion terms leads to a conservative formulation.

3.5. Implicit Time Integration

The numerical integration of Equation (5) by means of suitable Gaussian quadrature
rules leads to a semi-discrete system of nonlinear differential-algebraic equations that can
be compactly rewritten as follows

MP(W)
dW
dt

+ R(W) = 0, (17)

where MP(W) is the global block diagonal mass matrix derived from the discretization of
the first integral in Equation (5) and R(W) is the global residual vector pertaining to all of
the terms in Equation (5) but the first. Due to the choice of the set of working variables
(10), MP takes into account the change of variable matrix P. Thus, in two space dimensions
(d = 2), the diagonal block of the global mass matrix related to the generic mesh element K
reads

MP(W)|K =
∫

K
φiDjaPak(wh)φl dx =


0 0 0 0
0 Bρ 0 Bρρ̃u1

0 0 Bρ Bρρ̃u2

0 0 0 Bρρ̃

,

with i, l = 1, . . . , Nk
do f and j, k = 1, . . . , m. For each j, k = 1, . . . , m and all i, l = 1, . . . , Nk

do f ,
we obtain the sub-block Bχ associated with a generic quantity χ, defined as

(Bχ)i,l =

{∫
K

χφiφl dx
}

.

Notice that due to the lack of the pressure time derivative, the global mass matrix is singular.
For the sake of presentation, the matrix MP(W)|K can be written in the equivalent form

MP(W)|K = lim
γ→0


Bγ 0 0 0
0 Bρ 0 Bρρ̃u1

0 0 Bρ Bρρ̃u2

0 0 0 Bρρ̃

,

where limγ→0 Bγ = 0.
In this work, we advance the DG discretized equations (17) by using the explicit

singly–diagonally implicit Runge–Kutta (ESDIRK) schemes, a class of high-order one-step
multi-stage implicit time integration schemes. Such schemes can be designed to have
optimal stability properties (A− and L− stability) for very high orders, see [27,28] and,
thus, they allow avoiding Courant restrictions typical of explicit schemes.

Given the initial condition W0 = W
(
t0), the time integration of (17) by means of an

s−stages ESDIRK scheme leads to

Wn+1 = Wn − ∆tn
s

∑
i=1

bi
(

M−1
P R

)i
, (18)

where ∆tn = tn+1 − tn is the n-th time step size, with n ≥ 0. Each stage i = 1, . . . , s requires
solving the nonlinear system

Wi = Wn − ∆tn
i

∑
j=1

aij
(

M−1
P R

)j
, (19)
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with Wi ≈ W(tn + ci∆tn) the i-th stage solution. The system (19) can be solved by means
of an iterative Newton–Krylov method whose k-th nonlinear iteration, with k ≥ 0, requires
to find the solution ∆Wi

k of the linear system

[
I + aii∆tnM−1

P JP

]i
k

∆Wi
k = −

[
Wi

k −Wn +
i−1

∑
j=1

aij∆tn
(

M−1
P R

)j]
− aii∆tn

(
M−1

P R
)i
k
. (20)

In (20), the following definitions are introduced

Wi
k+1 = Wi

k + ∆Wi
k and JP = MP

d
dW

(
M−1

P R
)
= J− dMP

dW
M−1

P R,

with

J =
dR
dW

and MP
dM−1

P
dW

= −dMP

dW
M−1

P .

Unfortunately, the linear system (20) is not solvable in the present state. Note that the
matrix

M−1
P

∣∣∣
K
= lim

γ→0


B−1

γ 0 0 0
0 B−1

ρ 0 −B−1
ρ Bρρ̃u1 B−1

ρρ̃

0 0 B−1
ρ −B−1

ρ Bρρ̃u2 B−1
ρρ̃

0 0 0 B−1
ρρ̃

,

has one block of non-real entries, indeed B−1
γ = I/γ.

A feasible approach to circumvent the issue consists of multiplying (20) by (MP)
i
k, obtain-

ing

[
MP

aii∆tn + JP

]i
k

∆Wi
k = − (MP)

i
k

aii∆tn

[
Wi

k −Wn +
i−1

∑
j=1

aij∆tn
(

M−1
P R

)j]
− Ri

k, (21)

where it was considered that (MP)
i
k(M

−1
P )ik = I.

Notice that all the terms appearing in (21) are well defined, in particular, regardless of
the parameter γ, (MP)

i
k(M

−1
P )j

∣∣∣
K
=

=



I 0 0 0

0
(

Bρ

)i
k

(
B−1

ρ

)j
0 −

(
Bρ

)i
k

(
B−1

ρ Bρρ̃u1 B−1
ρρ̃

)j
+
(

Bρρ̃u1

)i
k

(
B−1

ρ̃

)j
0 0

(
Bρ

)i
k

(
B−1

ρ

)j
−
(

Bρ

)i
k

(
B−1

ρ Bρρ̃u2 B−1
ρρ̃

)j
+
(

Bρρ̃u2

)i
k

(
B−1

ρ̃

)j
0 0 0

(
Bρ̃

)i
k

(
B−1

ρ̃

)j

.

In order to define an s-stages ESDIRK scheme, some real coefficients are required.
The coefficients aij, bi, and ci, with i, j = 1, . . . , s, determine stability and accuracy properties
of the scheme and, in general, are defined, such that

aii = 0 i = 1
aii = const. i ≥ 2
bi = asi ∀i
ci = ∑i

j=1 aij ∀i.
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Since the first stage of an ESDIRK scheme is explicit W1 = Wn, the nonlinear system
(19) has to be solved only s− 1 times per step (for i = 2, . . . , s). Notice that the solution of
the last stage is the step solution Ws = Wn+1.

Time Step Adaptation

Time integration can be coupled with an automatic time step ∆tn adaptation strategy
designed to control the local truncation error (LTE) of the temporal scheme. The advantage
of such a choice is twofold: (i) increase the efficiency of a time integration scheme by
minimizing the computational effort to achieve a user-defined accuracy and (ii) improve
the overall time integration robustness by limiting the LTE.

Since the LTE cannot be computed directly, as the analytical solution of the problem
is (in general) unknown, an LTE estimation procedure is required. This task is usually
carried out by comparing the numerical solution Wn+1 with a less-accurate one Ŵn+1.
Accordingly, the LTE estimator is defined as

rn+1 = ‖Wn+1 − Ŵn+1‖,

where ‖ · ‖ is a user-defined norm. At each time step of an ESDIRK scheme, the less-
accurate/lower order solution, commonly referred to as the embedded solution, can be
computed by replacing the set of coefficients b in Equation (18), with a modified set b̂, as
follows

Ŵn+1 = Wn − ∆tn
s

∑
i=1

b̂i
(

M−1
P R

)i
.

At the end of each time step, the time step adaptation algorithm of [37,38] checks if
the following condition is satisfied

rn+1 < ζη, (22)

where the threshold value η of the LTE estimator and the safety factor ζ are user-defined
parameters. If (22) is verified, then the solution Wn+1 is accepted and the size of the next
time step is set as

∆tn+1 =

(
η

ψn+2

) 1
q
; (23)

otherwise, Wn+1 is rejected and the time step is recomputed, imposing

∆tn =

(
η

ψn+1

) 1
q
. (24)

The parameter q is the order of accuracy of the LTE estimator, which depends on the
particular combination of ESDIRK scheme/embedded solution considered. The estimator
constant ψ at the end of each step can be easily computed by exploiting the asymptotic behavior

ψn+1 =
rn+1

(∆tn)q . (25)

Notice that in Equation (24) the constant ψn+1 is computed in Equation (25) using
the size of the rejected time step. Conversely, the future time value ψn+2 required in
Equation (23) is unknown and must be extrapolated using information from previous time
levels. In this work, the extrapolation is based on the H211b controller, see [39,40] for
further details.

In order to improve the robustness of the adaptive algorithm, a ’bound to the maximum
time step size increase/reduction’ is enforced by a smooth limiter function,
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∆t? = ∆tn
[

1 + ξ arctan
(

∆t? − ∆tn

ξ∆tn

)]
,

where ∆t? is computed by either Equation (23) or Equation (24) in agreement with the
condition (22) and ∆t? is the new limited value for the time step size. The smooth limiter
bounds are defined through the user-defined parameter ξ. In this work, we set ζ = 5 and
ξ = 0.1. See [38,39] for additional details.

4. Numerical Results

In this section, we assess the DG-VDI flow solver on several test cases. In the first step,
the numerical accuracy of the DG space discretization is verified on the Kovasznay flow, a
steady flow test case with an analytical solution. Then, the accuracy of the ESDIRK time
integration is shown for the Guermond–Quartapelle manufactured solution. The third test
case is specifically designed for the mass conservation analysis and involves the advection
of two one-dimensional density waves, one smooth (sine wave) and one discontinuous
(square wave), featuring different values of the density ratio rρ. Afterward, the numerical
approach is applied for the simulation of a 2D droplet impingement over a thin film, where,
thanks to the stabilization approach proposed in Section 3.4, the interface between the two
fluids (water and air) is handled in a diffuse fashion.

The DG-VDI approach considered in this work is implemented within the DG solver
MIGALE [41,42]. Steady-state numerical solutions are sought by means of a Newton’s
globalization strategy named pseudo-transient continuation [43]. Unsteady computations
are integrated in time by means of the implicit fifth-order eight-stages ESDIRK scheme
(ESDIRK5(8) [27]) coupled with the time step adaptation algorithm. At each Newton
iteration of the ESDIRK stage, the linearized equations system is solved using the GMRES
method included in the PETSc library [44], with the additive Schwarz method employed as
a preconditioner.

4.1. Kovasznay Flow

The Kovasznay flow [45] is a two-dimensional steady flow past a grid of equally
spaced parallel strips described by the following non-dimensional exact solution of the
incompressible Navier–Stokes equations

p = p0 −
1
2

e2κx,

u = [1− eκx cos (2πy)]i +
κ

2π
eκx sin (2πy)j,

(26)

where p0 ∈ R is an arbitrary constant and the parameter κ depends on the Reynolds number

κ =
Re
2
−

√
Re2

4
+ 4π2.

In order to apply this test case for VDI Navier–Stokes equations, the additional solution for
the density is required

ρ = 1. (27)

The viscosity field µ is uniform and is defined as a function of the Reynolds number.
The computational domain is the bi-unit square Ω = (−0.5, 1.5)×(0, 2) and boundary
conditions are derived from the analytical solution (26) and (27) at Re = 40.

Validation of the h-convergence rates is performed based on an h-refined quadrilateral ele-
ments mesh sequence. At each refinement step, the number of cells is doubled in each Cartesian
direction (from 8× 8 to 256× 256) and we consider the first to fourth-degree DG discretization,
i.e., k = {1, 2, 3, 4}. As the analytical density field is uniform, see (27), the change of the working
variable has only a marginal influence on the numerical solution. Accordingly, only the results
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obtained with the exponential transformation (12) are reported here. Errors in the L2-norm
and h-convergence rates are tabulated in Table 1. Numerical results show a convergence
rate of k + 1 for both the velocity components and the density. The pressure, instead,
exhibits an order equal to k + 1 only for k = 1. For higher degrees, the order reduces to k.
This behavior is commonly observed for high-order DG discretization of the incompressible
Navier–Stokes equations, see e.g., [46–50]. In the incompressible and VDI flow models, the
unknown pressure plays the role of the Lagrange multiplier with respect to the divergence-
free constraint and the incompressibility constraint converges at a rate of k, which is the
same rate as the velocity gradients.

Table 1. Kovasznay test case—Pressure (p), velocity components (u, v), and working density (ρ̃)
errors computed in L2-norm with the respective order of convergence for the DG space discretization
of the polynomial degree k = {1, 2, 3, 4} on grids of 22i square elements.

i ‖ph− p‖L2 Order ‖uh− u‖L2 Order ‖vh− v‖L2 Order ‖ρ̃h− ρ̃‖L2 Order

k
=

1

3 2.01 ×10−3 – 7.91 ×10−3 – 1.54 ×10−3 – 2.11 ×10−3 –
4 5.88 ×10−4 0.89 1.90 ×10−3 2.06 4.29 ×10−4 1.84 5.49 ×10−4 1.94
5 1.58 ×10−4 1.90 4.38 ×10−4 2.12 1.07 ×10−4 2.00 1.21 ×10−4 2.18
6 4.10 ×10−5 1.95 1.02 ×10−4 2.10 2.54 ×10−5 2.07 2.55 ×10−5 2.25
7 1.05 ×10−5 1.96 2.43 ×10−5 2.07 5.99 ×10−6 2.09 5.51 ×10−6 2.21
8 2.69 ×10−6 1.96 5.90 ×10−6 2.04 1.43 ×10−6 2.06 1.25 ×10−6 2.14

k
=

2

3 2.41 ×10−4 – 4.22 ×10−4 – 1.11 ×10−4 – 1.16 ×10−4 –
4 6.46 ×10−5 0.95 5.17 ×10−5 3.03 1.56 ×10−5 2.83 1.76 ×10−5 2.72
5 1.70 ×10−5 1.93 6.53 ×10−6 2.99 2.15 ×10−6 2.86 2.36 ×10−6 2.90
6 4.41 ×10−6 1.95 8.29 ×10−7 2.98 2.87 ×10−7 2.90 3.09 ×10−7 2.94
7 1.13 ×10−6 1.97 1.05 ×10−7 2.98 3.74 ×10−8 2.94 3.98 ×10−8 2.96
8 2.86 ×10−7 1.98 1.32 ×10−8 2.99 4.78 ×10−9 2.97 5.08 ×10−9 2.97

k
=

3

3 1.46 ×10−5 – 3.45 ×10−5 – 7.77 ×10−6 – 2.11 ×10−5 –
4 1.47 ×10−6 1.66 2.33 ×10−6 3.89 5.34 ×10−7 3.86 5.49 ×10−7 3.69
5 1.56 ×10−7 3.24 1.50 ×10−7 3.96 3.61 ×10−8 3.89 1.21 ×10−8 3.72
6 1.79 ×10−8 3.12 9.45 ×10−9 3.98 2.41 ×10−9 3.90 2.55 ×10−9 3.91
7 2.16 ×10−9 3.05 5.93 ×10−10 3.99 1.58 ×10−10 3.93 5.51 ×10−10 4.06
8 2.67 ×10−10 3.02 3.72 ×10−11 4.00 1.02 ×10−11 3.95 1.25 ×10−10 4.17

k
=

4

3 1.50 ×10−6 – 1.05 ×10−6 – 2.82 ×10−7 – 6.36 ×10−7 –
4 1.13 ×10−7 1.86 3.22 ×10−8 5.03 9.57 ×10−9 4.88 2.51 ×10−8 4.66
5 7.83 ×10−9 3.86 9.93 ×10−10 5.02 3.04 ×10−10 4.97 9.11 ×10−10 4.79
6 5.13 ×10−10 3.93 3.09 ×10−11 5.01 9.47 ×10−12 5.01 2.99 ×10−11 4.93
7 3.28 ×10−11 3.97 9.66 ×10−13 5.00 2.94 ×10−13 5.01 9.12 ×10−13 5.04
8 2.08 ×10−12 3.98 3.02 ×10−14 5.00 9.13 ×10−15 5.01 2.63 ×10−14 5.12

4.2. Guermond–Quartapelle Manufactured Solution

We consider the time-dependent manufactured solution for VDI inviscid (µ = 0) flows
originally proposed by Guermond–Quartapelle [51]. The dimensionless analytical solution
is defined on the unit square Ω = (0, 1)×(0, 1) as

p = p0 + sin (x) sin (y) sin (t),

u = −y cos (t)i + x cos (t)j,

ρ = 2 + x cos (sin (t)) + y sin (sin (t)),

(28)

being p0 ∈ R an arbitrary constant. To satisfy the VDI equations at the inviscid limit, the
following body force must be added as a source term to the right-hand side of the momentum
equation
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s =+
[
ρ
(

y sin (t)− x cos2 (t)
)
+ cos (x) sin (y) sin (t)

]
i

+
[
ρ
(
−x sin (t)− y cos2 (t)

)
+ sin (x) cos (y) sin (t)

]
j.

In order to ensure a sufficiently high spatial accuracy, i.e., such that the spatial error is
below the temporal error, we consider a DG discretization of degree k = 8 on a uniform
4× 4 quadrilateral elements grid. Boundary conditions are derived from the analytical
solution (28). Since this test case does not require any particular constraint on the density
field (besides its positivity), the working density is defined according to the exponen-
tial transformation (12). Time integration is performed for one period of the test case,
t ∈ (0, 2π). The L2-projection of the analytical solution at t = 0 is employed as the initial
field. Temporal convergence analysis in Figure 2 verifies the fifth order for the ESDIRK5(8)
scheme. Errors in the L2 norm of each variable are computed at the end time t = 2π and
plotted versus the average time step ∆t.

10−2 10−1

10−11

10−9

10−7

10−5

∆t

‖φ
h
−

φ
‖ L

2

p
u
v
ρ̃

slope 5

Figure 2. Guermond–Quartapelle manufactured solution—temporal convergence analysis for each
variable using the implicit ESDIRK5(8) scheme and the time step adaptation.

4.3. Density Waves

In this section, the influence of the space and time integration accuracy on the mass
conservation property of the proposed approach is analyzed for each change in density
variable proposed in Section 3.3 on two very simple inviscid (µ = 0) test cases:

• The linear advection of a sine density wave

ρ =
rρ + 1

2rρ
+

rρ − 1
2rρ

sin
(π

5
x̆
)

;

• The linear advection of a square-density wave
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ρ =

 1
⌊

x̆ + 6
10

⌋
−
⌊

x̆ + 4
10

⌋
= 1

rρ
−1 otherwise

;

where x̆ = x− ut is the space-time coordinate, given the dimensionless uniform advection
velocity u = 1 and x ∈ Ω = (0, 10), t ∈ (0, 10). Non-dimensional pressure is set unitary
p = 1 over the entire domain Ω at t = 0 and periodic boundary conditions are imposed
at x = 0 and x = 10. Despite being one-dimensional, both test cases are computed with a
two-dimensional solver. Accordingly, the initial condition for the velocity field is u = ui
with symmetric boundary conditions imposed in span direction y ∈ (0, 1). The relative
mass conservation error is here defined as

errM =

∣∣∣∣∣M(t f )−M(t0)

M(t0)

∣∣∣∣∣,
where, trivially, the mass isM(t) =

∫
Ω ρ(t)dx and t0 = 0.

In Figure 3, we represent the relative mass conservation error achieved after one
period (t f = 10) of the sine density wave test case with the three different choices of the
change of density variable: linear (11), exponential (12) and hyperbolic tangent-based
(13), respectively denoted as f1(ρ̃), f2(ρ̃) and f3(ρ̃). The density ratio reads rρ = 2.
Space discretization is applied on a uniform grid of 10× 1 quadrangular elements us-
ing a DG polynomial approximation of degree k = 1 (left) and k = 6 (right). Time
integration is performed with the ESDIRK5(8) scheme and the time adaptation algorithm.
Since the solution is smooth, the oscillation control strategy is not active. The results sug-
gest that the behavior of the mass conservation error is not influenced by the polynomial
degree. In particular, for both k = 1 and k = 6, the linear- and the hyperbolic tangent-based
transformations ensure machine precision; in the case of the exponential transformation,
the rate of convergence is driven by the temporal scheme accuracy, i.e., 5-th order.

10−1 100
10−16

10−13

10−10

10−7

10−4

∆t

er
r M

ρ = f1(ρ̃)

ρ = f2(ρ̃)

ρ = f3(ρ̃)

slope 5

10−1 100
10−16

10−13

10−10

10−7

10−4

∆t

er
r M

ρ = f1(ρ̃)

ρ = f2(ρ̃)

ρ = f3(ρ̃)

slope 5

Figure 3. Sine density wave advection—mass conservation analysis for each choice of the change
of density variable at density ratio rρ = 2 using the implicit ESDIRK5(8) scheme. DG polynomial
approximation of degree k = 1 (left) and k = 6 (right) on a uniform mesh of 10× 1 square elements.

In Figure 4, we report the relative mass conservation error obtained after one period
(t f = 10) of the square density wave test case by imposing rρ = 2, on the left, and rρ = 800
(water–air density ratio), on the right. Here, space discretization is performed with a
DG polynomial approximation of degree six (k = 6) on a uniform 10× 1 quadrangular
elements grid. Time integration is carried out based on the ESDIRK5(8) scheme with time
step adaption. The artificial diffusion terms for spurious oscillation dampening are active
within the domain region where the density is discontinuous. With a small density ratio
(rρ = 2 on left), both exponential and hyperbolic tangent changes of density variables
show convergent behavior of the mass error for large time steps, again driven by the
temporal scheme accuracy, i.e., 5-th order. However, the mass error reaches a plateau when
considering smaller step sizes. The linear transformation still ensures mass conservation
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up to machine precision. For a high-density ratio (rρ = 800 on right), instead, the mass
error does not converge with either the f2(ρ̃) or f3(ρ̃) transformations but remains roughly
constant for different ∆t. The linear transformation leads to stability issues as spurious
oscillations at the contact discontinuities trigger negative density values.

10−2 10−1
10−15

10−12

10−9

10−6

10−3

∆t

er
r M

ρ = f1(ρ̃)

ρ = f2(ρ̃)

ρ = f3(ρ̃)

slope 5

10−2 10−1
10−15

10−12

10−9

10−6

10−3

∆t

er
r M

ρ = f2(ρ̃)

ρ = f3(ρ̃)

Figure 4. Square density wave advection—mass conservation analysis for each choice of the change
of density variable at density ratio rρ = 2 (left) and rρ = 800 (right) using the implicit ESDIRK5(8)
scheme. DG polynomial approximation of degree k = 6 on a uniform mesh of 10× 1 square elements.

The non-convergent behavior of the mass error observed in the case of the square density
wave is ascribable to the spatial integration error. Indeed, since the solution is less regular than
in the sine wave case, nonlinearities introduced by the change of density variable are more
difficult to integrate with satisfactory accuracy. In Figure 5, we replicate the error analysis of
Figure 4, increasing the degree of exactness of Gaussian quadrature rules. In particular, the
number of quadrature points is increased by factor 2 in each direction. Notice that in the case of
the small density ratio (rρ = 2) the convergent behavior is regained with small step sizes for
both exponential and hyperbolic tangent transformations. For a high-density ratio (rρ = 800),
the error is improved since the mass mismatch converges when large ∆t is considered. However,
for smaller time steps, the error still settles around 3 ×10−8 and 2 ×10−6 for f2(ρ̃) and f3(ρ̃)
transformations, respectively, thus suggesting more Gauss points are needed to reach lower
error levels. This behavior was expected since stronger nonlinearities are associated with higher
density ratios. Notice that in Figure 5, the result for the linear transformation is not shown since
it is not influenced by spatial integration accuracy.
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10−11
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10−7

10−5

10−3
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slope 5

Figure 5. Square density wave advection—mass conservation analysis for each choice of the change
of density variable at density ratio rρ = 2 (left) and rρ = 800 (right) using the implicit ESDIRK5(8)
scheme and an increased number of Gauss quadrature rule points. DG polynomial approximation of
degree k = 6 on a uniform mesh of 10× 1 square elements.

In Figure 6, the square density wave solution (rρ = 800 and k = 6) obtained after
one period with the exponential and the hyperbolic tangent changes of density variable is
compared with the reference solution. The effect of the variable transformation is clearly
noticeable. Indeed, both transformations result in a smooth density field when the density
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approaches the minimum value ρ− = r−1
ρ . Near the maximum value ρ+ = 1, instead, only

the hyperbolic tangent-based change of variable limits numerical solution over/under-
shoots, while the exponential one shows typical oscillations arising from the high-order
discretization of discontinuities.

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

x

ρ = f2(ρ̃)

ρ = f3(ρ̃)

exact sol.

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

x

ρ = f2(ρ̃)

ρ = f3(ρ̃)

exact sol.0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

x

ρ = f2(ρ̃)

ρ = f3(ρ̃)

exact sol.

Figure 6. Square density wave advection—density field after one period (t = 10) obtained using the
exponential and the hyperbolic tangent-based change of density variable at density ratio rρ = 800.
DG polynomial approximation of degree k = 6 on a uniform mesh of 10× 1 square elements.

4.4. 2D Droplet Impinging on a Thin Liquid Film

The DG-VDI solver is employed for simulating the impact of a two-dimensional droplet
on a thin liquid layer. Since we neglect the effect of the surface tension, only the early stages
of the interaction between the droplet and the film are simulated. Water (subscript w) and air
(subscript a) are subject to the gravitational field. Reynolds and Froude numbers based on
water properties, droplet diameter, and droplet initial vertical velocity are set to Re = 1000 and
Fr = 20, respectively.

As viscosity is different within the two fluids, a suitable function µ(ρ) has to be introduced.
To this end, we rely on the following definition of the mixture of kinematic viscosity

ν = νw ϕw + νa ϕa,

where ϕ is the mass fraction. Taking advantage of the definition µ = ρν and the property
ϕw + ϕa = 1, we are able to obtain

µ(ρ, ϕa) = ρνw + ρϕa(νa − νw) =
ρ

ρw
µw +

ρ

ρw
ϕa
(
rρµa − µw

)
. (29)

If we now adopt the model of a simple mixture, we are able to write

1
ρ
=

1
ρw

ϕw +
1
ρa

ϕa,

and, accordingly, we have

ϕa(ρ) =

ρw

ρ
− 1

rρ − 1
. (30)

Substituting (30) in (29), after some trivial algebraic manipulations, we finally obtain

µ(ρ) = µw

(
ρ

ρw

rρ

rµ

rµ − 1
rρ − 1

+
1
rµ

rρ − rµ

rρ − 1

)
, (31)

where rρ = ρw/ρa and rµ = µw/µa are the density and dynamic viscosity ratios, respec-
tively. The expression (31) defines a linear dependence between the dynamic viscosity
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and the density and ensures that µ > 0 provided that ρ ∈ [ρa, ρw]. However, at the dis-
crete level, such density limits are not verified with the current approach, see Section 3.3.
Nevertheless, assuming ρ > 0 (which is ensured by both exponential (12) and hyperbolic
tangent (13) transformations), it is easy to conclude that µ > 0 holds if

1 ≤ rµ ≤ rρ.

Since rρ = 800 and rµ = 50, the dynamic viscosity computed via (31) is always positive.
Given the square domain Ω = (0, 4)× (0, 4), the non-dimensional initial field is defined

as

p = 1,

u =

{
−j |x− xc| ≤ 0.5
0 otherwise

,

ρ =

{
1 |x− xc| ≤ 0.5 or y ≤ δ

r−1
ρ otherwise ,

being xc = 1.15j the droplet center and δ = 0.2 the film thickness. In practice, the smoother
function

erf(αd),

where d is the distance of any point x ∈ Ω from the (velocity or density) discontinuity,
while α ∈ R+ is a user-defined scaling parameter and is applied to spread jumps into
smooth variations of the chosen variable and avoid discontinuities within density and
velocity initial fields.

Notice that the smoother function is applied in the radial direction for the droplet and
along the vertical direction for the layer. Top and lateral domain boundaries are treated
with symmetric conditions and the bottom boundary with a no-slip wall condition.

The simulation is performed for three different computational setups of increasingly
high accuracy, denoted as A, B, and C. For each setup, a different irregular Cartesian grid is
considered. Such grids are characterized by a uniformly refined region at the bottom-left
corner, i.e., for x ∈ (0, 2)× (0, 1.8), with element dimension h = 1/15 (grid A), 1/30 (grid
B) and 1/60 (grid C), and by a coarsening region in the remaining part of the domain Ω.
The resulting mesh cardinalities for A, B, and C are 1054, 4216, and 16864, respectively.
Moreover, in each setup, a different parameter α is set in order to obtain an interface
thickness proportional to the mesh element dimension h. Accordingly, α = 25, 50, and 100
are fixed for setups A, B, and C, respectively.

In Figure 7, for each setup, we depict the vertical velocity component and the smoothed
initial density fields together with the computational mesh. Due to the high-density ratio
rρ, the hyperbolic tangent transformation (13) is applied for the change of density variable.
Space discretization is performed with a DG polynomial approximation of degree four (k = 4),
while time integration with the ESDIRK5(8) scheme and the time adaptation algorithm.

According to the boundary conditions setup, no mass can escape from the computa-
tional domain and the mass of fluids contained therein should be conserved.
However, as pointed out in Section 3.3, and clearly shown for the density waves test
case, due to the change of density variable, a mass discrepancy is introduced by space
and time integration errors. Table 2 reports (for each setup) the relative mass conservation
error computed at the simulation end time t f = 0.70 together with the average time step
size resulting from the adaptive temporal strategy. Time is made dimensionless with the
droplet diameter and droplet initial vertical velocity. Results show that despite the current
approach does not conserve the mass up to machine precision, the mass error is still small,
being lower than 3 ×10−8 for all the setups.
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Figure 7. Impinging droplet—vertical velocity component and density initial solutions and computa-
tional grid for the setup A (left), B (center), and C (right).

Table 2. Impinging droplet—average time step width and relative mass conservation error computed
at the simulation end time t f = 0.70 for each setup.

Setup ∆t errM

A 1.55 ×10−3 1.39 ×10−9

B 1.03 ×10−3 1.04 ×10−9

C 7.89 ×10−4 2.43 ×10−8

Figure 8 reports the time evolution of the droplet impingement obtained with the
three different setups. In particular, each column shows the results of setups A (left), B
(middle), and C (right), while each row represents a different time of the flow problem:
0.45, 0.50, 0.55, and 0.70 in sequence. At time 0.45 (first row), the early droplet–film in-
teraction, when both the bottom of the droplet and the top of the film start to deform,
is appreciable. At time 0.50 (second row), the generation of the lamella is observable
at the edge of the liquid–liquid contact line. Moreover, a thin layer of air is trapped
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between the droplet and the film. Then, the lamella develops and moves to the left
pushed by the droplet penetration into the thin layer, as visible at time 0.55 (third row).
The final time of the simulation 0.70 (last row) shows a fully developed lamella, which over-
looks the liquid film for a global length comparable to the droplet radius, and the entrapped
layer of air stretched between the two liquid regions. Roughly speaking, all three computa-
tional setups allow the reproduction of the flow behavior. However, a finer grid and, thus,
thinner liquid–gas interface, provides better resolution. For example, notice that C provides
reduced thickness of both the air layer and the water lamella compared to A and B setups.
The thin layer of air is nonphysical as the addition of surface tension, here neglected, would
lead to the formation of small air bubbles trapped in the water.

Figure 8. Impinging droplet—density field for setup A (left column), B (middle column) and
C (right column) at non-dimensional times 0.45, 0.50, 0.55, and 0.70 from top to bottom. Color scale
denotes water with orange and air with blue (see Figure 7 for reference).
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5. Conclusions

In this work, we investigated the numerical performance of an implicit high-order dis-
continuous Galerkin solver for variable density incompressible flow problems.
Within the VDI model, the density is treated as a purely advected property and, thus,
can be used to track possibly multiple (more than two) components. Moreover, the inter-
face between fluids is captured in a diffuse fashion as a smooth, but sharp, variation in
the density field, thus not requiring any geometrical reconstruction. A Riemann solver,
namely the SDRS or the ERS proposed in [22], is used for the definition of the Godunov
numerical fluxes. Both solvers are based on an artificial compressibility modification of the
inviscid incompressible set of equations, which introduces a pressure-velocity coupling
at the discrete level. As the DG-VDI formulation aims to deal with multi-component flow
problems featuring high-density ratios (water–air), a numerical strategy ensuring density
positivity at a discrete level was developed. The density is specified as a function of a
different variable, the so-called working density ρ̃, which is part of the set of unknowns
of the DG formulation. The change of density variable ρ = f (ρ̃) is suitably designed to
enforce the desired property on the density. As the main drawback, the variable transfor-
mation introduces strong nonlinearities that must be accurately integrated both in space
and time to guarantee mass conservation. In order to control spurious oscillations aris-
ing from the high-order polynomial description of contact discontinuities, i.e., material
interfaces, an artificial mass diffusion term is introduced within the mass and momentum
equations. The proposed implementation of such a term only modifies the higher modes of
the DG discretization within each mesh element leaving untouched the first mode, namely
the mean value of physical quantities. Time integration is performed with high-order
single-step multi-stage ESDIRK schemes with optimal stability properties, which prevent
Courant-related time step restrictions. The assessment of the approach in terms of space,
time, and mass conservation accuracy was performed for the Kovasznay test case, the
Guermond–Quartapelle manufactured solution, and sine and square density waves. Fi-
nally, the solver was successfully used for the simulation of the impingement of a 2D
liquid (water) droplet on a thin film immersed in air. Several grids with different initial
interface thicknesses, i.e., different initial density gradient magnitudes at the interfaces,
were considered and compared. Future work will further assess the proposed DG approach
to three-dimensional flow problems, possibly including the contribution of surface tension
at the material interfaces.
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SDRS switched density Riemann solver
VDI variable density incompressible
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