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A B S T R A C T

The complexity of reality has driven the evolution of Fuzzy-Set Theory from the initial proposal made by Zadeh
in 1965, towards more complex models. Moving from a quick survey of the evolution of Fuzzy-Set Theory, this
paper highlights the aspects that are common to many Fuzzy-Set Models, in order to define a meta-model that
is capable of providing a unified view to a wide variety of fuzzy-set models. In particular, this work focuses
the attention on the family of ‘‘Multi-grade Fuzzy Sets’’, which are fuzzy sets characterized by more than one
degree.

The lack of tools capable of querying the large amount of data that are nowadays available in NoSQL
databases, has pushed us to devise the J-CO Framework: it is a platform-independent tool that is capable to
manage, transform and query collections of JSON documents; the J-CO Framework relies on J-CO-QL+, which
is a high-level, general-purpose language with soft-querying capabilities. The latest advancements of J-CO-QL+
allow for defining and exploiting user-defined Multi-grade Fuzzy-Set Models and Operators. In the paper, a
case-study demonstrates the effectiveness of the J-CO Framework in performing a non-trivial soft query based
on a Multi-grade Fuzzy-Set Model defined by the user.
1. Introduction

In the digital society, a plethora of information is continuously
gathered, with the aim to exploit it to understand phenomena and to
make decisions. The notion of Big Data is no longer a novelty: indeed,
a multitude of data sets can be collected and provided to end-users
through various channels; in particular, one of the most commonly
used format to represent Big Data is JSON (acronym for JavaScript
Object Notation, see [1]), which allows for representing data with
complex structures in an easy-to-manage way. The advent of JSON has
been so disruptive that a specific category of NoSQL databases has
been developed to manage collections of JSON documents; a DBMS
(DataBase Management System) belonging to this category is named
‘‘JSON Document Store’’ (the most well-known example is MongoDB,
see [2]).

The variety of data sets that can be collected as JSON data sets
requires ‘‘flexible tools’’ that are able to query and integrate JSON data
sets, possibly coming from various sources and storage systems. The
concept of ‘‘flexibility’’ could be interpreted in several ways: (i) ability
to deal with heterogeneous structures; (ii) ability to manage registry
data and geo-tagging; (iii) ability to express imprecise concepts and
conditions. The latter ability is generally known as ‘‘soft querying’’: it
is characterized by the fact that data items are ranked on the basis of
their degree of satisfaction of ‘‘soft conditions’’. Usually, soft querying
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relies on ‘‘Fuzzy-Set Theory’’, introduced by Zadeh [3] to tackle typical
issues of classical Boolean logic.

The J-CO Framework is a software tool, developed at University of
Bergamo (Italy), that provides all the three above-mentioned capabil-
ities: (i) the J-CO Framework is able to acquire JSON data sets from
various sources and provides a query language, named J-CO-QL+, that
allows users to specify complex queries and transformations on possibly
heterogeneous JSON data sets (see [4]); (ii) it natively deals with
registry data and geo-tagging in JSON data sets (see [5]); (iii) J-CO-
QL+ provides sophisticated soft-querying capabilities, by supporting the
evaluation of membership to multiple fuzzy sets of JSON documents.
In particular, as far as this last point is concerned, in various works
(see [6,7]), it has been shown that J-CO-QL+ is an effective tool for
performing complex soft queries on large JSON data sets, by exploiting
classical fuzzy sets.

However, in the literature several extensions to classical fuzzy sets
have been proposed; Section 2.1 presents a survey of these extensions,
and it can be observed that all of them are characterized by the fact
that they give an item in the universe 𝑈 more than one degree (for
example, ‘‘membership’’ degree and ‘‘non-membership’’ degree), while
the classical model considers only the ‘‘membership degree’’. In this
work, the models considered of interest are Intuitionistic Fuzzy Sets,
Neutrosophic Fuzzy Sets and Pythagorean Fuzzy Sets; based on their
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common characteristics, they can be considered as Multi-grade Fuzzy
Sets, because items are given multiple yet crisp degrees. Differently, the
family of extensions said Type-2 Fuzzy Sets introduces the idea of fuzzy
membership degree.

In a previous work [8], it has been explored the capability of J-CO-
QL+ of dealing with Intuitionistic Fuzzy Sets without a specific support.
That study provided the idea that it was possible to conceive an
extension of the language to ‘‘manage multi-grade fuzzy sets’’, provided
that a solid meta-model was defined.

The contribution of this paper is to present a unified meta-model for
multi-grade fuzzy-set models; the goal of this meta-model is to provide
a common formal framework that gives a unified view of existing (and
future) models based on multiple crisp degrees. Based on the presented
meta-model, novel constructs have been introduced in J-CO-QL+ to
upport the definition of multi-grade models and operators to operate
n them, in order to provide analysts with a real and effective tool
o experiment with the exploitation of various fuzzy-set approaches
o query JSON data sets. With the presented extensions, the J-CO
ramework (and J-CO-QL+) has actually provided a unique pool of
eatures that it is not possible to find in any of the few tools that deal
ith fuzziness in JSON data sets.

The paper is organized as follows. Section 2 provides the back-
round from which this work has originated; in particular, Section 2.1
rovides the review about different models for fuzzy sets, while Sec-
ion 2.2 briefly summarizes the literature about soft querying on JSON
ata sets. Section 3 presents the formal contribution of the paper:
ection 3.1 formally defines the meta-model for multi-grade fuzzy-
et models; Section 3.2 shows how to formalize popular multi-grade
odels. Section 4 briefly presents the J-CO Framework and its charac-

eristics that are relevant for this paper, and Section 5 shows the novel
onstructs that have been introduced in J-CO-QL+ to effectively define
nd deal with multi-grade fuzzy-set models to process JSON data sets.
inally, Section 6 draws the conclusions.

. Background

This section presents the background of the work proposed in this
aper. First of all, a review of models for fuzzy sets that inspired this
ork is reported in Section 2.1; then, previous research works on soft
uerying JSON data sets are briefly introduced in Section 2.2.

.1. Review of models for fuzzy sets

The basic contribution of this section is to review the different
odels for fuzzy sets that have been proposed in the literature. Al-

hough this review is not exhaustive, it actually inspired the scientific
ontribution of this paper.

.1.1. Classical fuzzy sets
Zadeh introduced the ‘‘Fuzzy-Set Theory’’ in 1965 (see [3,9]) to

vercome the limitations of classical Boolean logic applied to natural-
anguage predicates. If the set of Historical Cars is defined as the set of
ars whose age is over 30 years old, should a 29 year-old car be considered
s new? The basic idea of Zadeh is to associate a membership value
in the continuous range of [0, 1]) to model the belonging degree of an
ntity to a specific set, hereinafter denoted as fuzzy set. So, while it can
e possible to associate a membership value of 1.0 to a 31 year old car
o indicate that it fully belongs to the fuzzy set of Historical Cars, and a
embership value of 0.0 to a 5 year old car to indicate that it does not

elong to the fuzzy set of Historical Cars, it is also possible to associate
membership value of 0.8 to a 28 year old car to indicate that it is

uite old but not as much as to be considered fully historical.
A fuzzy set can be formally defined as follows.
2

efinition 1. Consider a universe 𝑈 . The set

= { ⟨ 𝑥, 𝜇𝐴(𝑥) ⟩ | 𝑥 ∈ 𝑈 }

is said Fuzzy Set. The function 𝜇𝐴(𝑥) ∶ 𝑈 → [0, 1] is the ‘‘membership
degree’’ of the item 𝑥 to the fuzzy set 𝐴, in that it represents the degree
(extent) with which the item 𝑥 belongs to 𝐴.

The same entity can belong to different fuzzy sets. As an example, in
ddition to the fuzzy set of Historical Cars, it is also possible to define

the fuzzy set of Fast Cars, which collects cars that are particularly fast.
Notice that ‘‘Historical Cars’’ and ‘‘Fast Cars’’ linguistically charac-

terize an item in the two fuzzy sets. So, if someone is looking for ‘‘cars
that are historical and fast ’’, they can play the role of ‘‘linguistic predi-
cates’’, by which it is possible to formulate a ‘‘linguistic condition’’, also
said ‘‘soft condition’’. The soft condition that characterizes historical
and fast cars can be expressed as:

‘‘Historical and Fast Cars’’ = ‘‘Historical Cars’’ AND ‘‘Fast Cars’’

by which it is possible to characterize the fuzzy set of Historical and Fast
Cars.

However, since it is a derived fuzzy set, a ‘‘fuzzy-logic algebra’’ is
necessary, so as to extend the common logical operators NOT, AND and
OR. A widely accepted definition is the following.

Definition 2. Given the universe 𝑈 , two fuzzy sets 𝐴 and 𝐵 and an
item 𝑥 ∈ 𝑈 , the following relations hold:

• 𝐶 = NOT 𝐴 ⟹ 𝜇𝐶 (𝑥) = 1 − 𝜇𝐴(𝑥)
• 𝐶 = 𝐴 AND 𝐵 ⟹ 𝜇𝐶 (𝑥) = 𝑚𝑖𝑛 (𝜇𝐴(𝑥), 𝜇𝐵(𝑥))
• 𝐶 = 𝐴 OR 𝐵 ⟹ 𝜇𝐶 (𝑥) = 𝑚𝑎𝑥 (𝜇𝐴(𝑥), 𝜇𝐵(𝑥))

here 𝜇𝐴, 𝜇𝐵 and 𝜇𝐶 denote the membership degrees to the fuzzy sets
, 𝐵 and 𝐶, respectively.

According to Definition 2, an interesting role is given to the operator
OT, which can be associated to the complementary concept of non-
embership degree (denoted as 𝜈): given a fuzzy set 𝐴, an item 𝑥 and

ts membership degree 𝜇𝐴(𝑥) to 𝐴, 𝜈𝐴(𝑥) = 1 − 𝜇𝐴(𝑥) represents the
xtent with which the item 𝑥 does not belong to 𝐴; in the model of
lassical fuzzy sets, it is automatically derived from the membership
egree, based on the principle of ‘‘excluded middle’’ (see [10]), i.e., the
egree of ‘‘non membership’’ to 𝐴 is necessarily 1 − 𝜇𝐴(𝑥).

.1.2. Intuitionistic Fuzzy Sets
The considerations made about the degree of non-membership led

any researchers to conceive several extensions of the classical model
n which the principle of excluded middle does not hold.

In 1983, Atanasov extended the model of classical fuzzy sets by
ntroducing the concept of Intuitionistic Fuzzy Set, starting from the
onsideration that there are situations where uncertainty does not allow
o automatically assign the complement of the membership degree to
he non-membership degree (see [10–12]). Intuitionistic Fuzzy Sets are
ormally defined as follows.

efinition 3. Consider a universe 𝑈 . The set

= { ⟨𝑥, 𝜇𝐴(𝑥), 𝜈𝐴(𝑥) ⟩ | 𝑥 ∈ 𝑈 ∧ 𝛩𝐴(𝑥) }

s said Intuitionistic Fuzzy Set. The functions 𝜇𝐴(𝑥) ∶ 𝑈 → [0, 1] and
𝐴(𝑥) ∶ 𝑈 → [0, 1], represent, respectively, the ‘‘membership degree’’
nd the ‘‘non-membership degree’’ of the item 𝑥 to 𝐴. For them, the
onstraint 𝛩𝐴(𝑥) ≡ (0 ≤ 𝜇𝐴(𝑥) + 𝜈𝐴(𝑥) ≤ 1) must hold.

The degree 𝜋𝐴(𝑥) = 1 − 𝜇𝐴(𝑥) − 𝜈𝐴(𝑥) is the indeterminacy degree:
t denotes the degree that it is not possible to characterize neither
s membership nor as non-membership; the degree 𝜋𝐴(𝑥) is also said
‘hesitation’’.
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In the classical model, 𝜈𝐴(𝑥) was derived from 𝜇𝐴(𝑥); in the model
of Intuitionistic fuzzy sets, 𝜈𝐴(𝑥) is not derived, while 𝜋𝐴(𝑥) is a derived
degree.

The definition of the new model of Intuitionistic Fuzzy Sets requires
a new definition of the operators NOT, AND and OR, in which the two
different degrees 𝜇(𝑥) and 𝜈(𝑥) are explicitly considered.

Definition 4. Given the universe 𝑈 , two Intuitionistic Fuzzy Sets 𝐴
and 𝐵 and an item 𝑥 ∈ 𝑈 , the following relations hold:

• 𝐶 = NOT 𝐴 ⟹

{

𝜇𝐶 (𝑥) = 𝜈𝐴(𝑥)
𝜈𝐶 (𝑥) = 𝜇𝐴(𝑥)

• 𝐶 = 𝐴 AND 𝐵 ⟹

{

𝜇𝐶 (𝑥) = 𝑚𝑖𝑛(𝜇𝐴(𝑥), 𝜇𝐵(𝑥))
𝜈𝐶 (𝑥) = 𝑚𝑎𝑥(𝜈𝐴(𝑥), 𝜈𝐵(𝑥))

• 𝐶 = 𝐴 OR 𝐵 ⟹

{

𝜇𝐶 (𝑥) = 𝑚𝑎𝑥(𝜇𝐴(𝑥), 𝜇𝐵(𝑥))
𝜈𝐶 (𝑥) = 𝑚𝑖𝑛(𝜈𝐴(𝑥), 𝜈𝐵(𝑥))

where 𝜇𝐴, 𝜇𝐵 and 𝜇𝐶 denote the membership degrees to the fuzzy
sets 𝐴, 𝐵 and 𝐶, respectively; similarly, 𝜈𝐴, 𝜈𝐵 and 𝜈𝐶 denote the
non-membership degrees to the fuzzy sets 𝐴, 𝐵 and 𝐶, respectively.

2.1.3. Neutrosophic Fuzzy Sets
An extension of Intuitionistic Fuzzy Sets was proposed in 1996 by

Smarandache (see [13,14]). This is the model of Neutrosophic Fuzzy Sets.
It is formally defined hereafter.

Definition 5. Consider a universe 𝑈 . The set

𝐴 = { ⟨ 𝑥, 𝜇𝐴(𝑥), 𝜈𝐴(𝑥), 𝜋𝐴(𝑥) ⟩ | 𝑥 ∈ 𝑈 }

is named Neutrosophic Fuzzy Set. The functions 𝜇𝐴(𝑥) ∶ 𝑈 → [0, 1],
𝜈𝐴(𝑥) ∶ 𝑈 → [0, 1], and 𝜋𝐴(𝑥) ∶ 𝑈 → [0, 1] represent, respec-
tively, the ‘‘membership degree’’, the ‘‘non-membership degree’’ and
the ‘‘indeterminacy degree’’ of the item 𝑥 to 𝐴.

The reader can notice that, now, 𝜋𝐴(𝑥) is no longer a derived degree.
Furthermore, the constraint 𝛩(𝑥) ≡ (0 ≤ 𝜇(𝑥) + 𝜈(𝑥) ≤ 1) has been
removed; as a consequence, only the trivial constraint 0 ≤ 𝜇(𝑥) + 𝜈(𝑥) +
𝜋(𝑥) ≤ 3 holds (i.e., 𝜇(𝑥), 𝜈(𝑥) and 𝜋(𝑥) are completely independent
from each other).

For the sake of brevity, the definitions of the operators NOT, AND
and OR (as in Definitions 2 and 4) are not reported, but it should be
clear that, for each new multi-grade model of Fuzzy Sets, a definition
of the logical operators should be provided; the reader can refer to
Section 3.2, where a precise formalization of the logical operators for
Neutrosophic fuzzy sets is reported in Model 4. In this regard, it is
interesting to notice that Smarandache [15] provides the definition
of two different operators OR (i.e., INCLUSIVE OR and EXCLUSIVE
OR), together with other logical connectors such as IMPLICATION and
EQUIVALENCE.

2.1.4. Pythagorean Fuzzy Sets
A different extension of the model of Intuitionistic Fuzzy Set, named

Pythagorean Fuzzy Set, was proposed by Yager in 2013 (see [16,17]) by
replacing the constraint 0 ≤ 𝜇𝐴(𝑥) + 𝜈𝐴(𝑥) ≤ 1 with a less restrictive
constraint 0 ≤ 𝜇𝐴(𝑥)2 + 𝜈𝐴(𝑥)2 ≤ 1, which relies on the Pythagorean
distance.

Definition 6. Consider a universe 𝑈 . The set

𝐴 = { ⟨ 𝑥, 𝜇𝐴(𝑥), 𝜈𝐴(𝑥) ⟩ | 𝑥 ∈ 𝑈 ∧ 𝛩𝐴(𝑥) }

is named Pythagorean Fuzzy Set. The functions 𝜇𝐴(𝑥) ∶ 𝑈 → [0, 1] and
𝜈𝐴(𝑥) ∶ 𝑈 → [0, 1] represent, respectively, the ‘‘membership degree’’
and the ‘‘non-membership degree’’ of the item 𝑥 to 𝐴. The constraint

2 2
3

𝛩𝐴(𝑥) ≡ (0 ≤ 𝜇𝐴(𝑥) + 𝜈𝐴(𝑥) ≤ 1) must hold.
It is interesting to notice that in a Pythagorean Fuzzy Set 𝐴, it is
possible that 𝜇𝐴(𝑥) + 𝜈𝐴(𝑥) > 1, even though the constraint 𝜇𝐴(𝑥)2 +
𝜈𝐴(𝑥)2 ≤ 1 is met.

In the literature, there is not a specific definition for the concept of
hesitation (or indeterminacy).

The reader that is interested in definitions of logical operators, can
look at Model 5 in Section 3.2.

2.1.5. Refined Fuzzy Sets
An interesting evolution of the models so far presented is the con-

cept of Refined Fuzzy Set, which can be applied both to classical fuzzy
sets and to any extension considered so far. The concept was introduced
by Smarandache [18]. For the sake of clarity, only the simplest model
of Refined Fuzzy Sets is presented hereafter.

Definition 7. Consider a universe 𝑈 . The set

𝐴 = { ⟨ 𝑥, 𝜇1(𝑥), … , 𝜇𝑛(𝑥) ⟩ | 𝑥 ∈ 𝑈 ∧ 𝑛 ≥ 1 }

is said Refined Fuzzy Set. The function 𝜇𝑖(𝑥) (with 1 ≤ 𝑖 ≤ 𝑛) is named
sub-membership of type 𝑖.

The phrase ‘‘sub-membership of type 𝑖’’ is taken from [18]: it should
not be confused with the notion of ‘‘Type-2’’ fuzzy sets, i.e., fuzzy sets
in which membership degrees are not crisp values (see Section 2.1.6).
In this context, a ‘‘membership type’’ denotes a specific feature of an
entity/item 𝑥 that is evaluated in a fuzzy manner. The idea behind
Refined Fuzzy Sets is to consider several features of entities at the same
time by viewing them as a kind of ‘‘multi-dimensional fuzzy set’’, in
place of using several distinct fuzzy sets, one for each single considered
property.

The same idea is applied in [18] to Intuitionistic, Pythagorean and
Neutrosophic fuzzy sets (by having multiple non-membership degrees
and multiple indeterminacy degrees). Their usefulness is to model
‘‘multi-criteria decision-making’’. In particular, Rahman et al. [19] dis-
cusses Refined Intuitionistic Fuzzy Sets, while Saeed et al. [20] analyzes
Refined Pythagorean Fuzzy Sets.

The conclusion is that the most adopted approach for extending
classical fuzzy sets while keeping crisp values for degrees is to deal
with many degrees at the same time. For this reason, all the extensions
so far presented can be said multi-grade fuzzy sets.

2.1.6. Interval-Valued Fuzzy Sets
All the aforementioned models for fuzzy sets share one fundamental

property, i.e., degrees are crisp values. However, it may be possible
to envision that there might exist situations in which a crisp value
for (membership) degrees is not realistic (thus, a further level of
uncertainty is considered); such models of fuzzy sets are said Type-2
fuzzy sets (see [21,22]).

In particular, Turksen [23] proposed a model of Type-2 fuzzy sets in
which the membership degree is assigned to an interval, whose lower
and upper bounds are defined by two functions 𝜇𝑙(𝑥) and 𝜇𝑢(𝑥), which
respectively denote the lower and the upper bound of the membership
degree of an item 𝑥 ∈ 𝑈 to a fuzzy set. Hereafter, the formal definition
of this model is shown.

Definition 8. Consider a universe 𝑈 . The set

𝐴 = { ⟨𝑥, 𝜇𝑙
𝐴(𝑥), 𝜇

𝑢
𝐴(𝑥) ⟩ | 𝑥 ∈ 𝑈 ∧ 𝛩𝐴(𝑥) }

is said Interval-Valued Fuzzy Set. The functions 𝜇𝑙
𝐴(𝑥) ∶ 𝑈 → [0, 1]

and 𝜇𝑢
𝐴(𝑥) ∶ 𝑈 → [0, 1] represent, respectively, the ‘‘lower-bound

membership degree’’ and the ‘‘upper-bound membership degree’’ of the
item 𝑥 to 𝐴. The constraint 𝛩𝐴(𝑥) ≡ (0 ≤ 𝜇𝑙

𝐴(𝑥) ≤ 𝜇𝑢
𝐴(𝑥) ≤ 1) must hold.

As a consequence of Definition 8, also the non-membership degree

to an Interval-Valued Fuzzy Set should be derived as an interval.
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𝐴

2.1.7. Hesitant Fuzzy Sets
A more complex model is the model of Hesitant Fuzzy Sets, proposed

by Torra [24]. In this model, the uncertainty on the membership degree
is given by the different interpretations of a natural-language predicate
provided by several experts, who, consequently, might have different
opinions/perceptions. In this case, the membership degree is associated
to a set of values that can be different each others.

Definition 9. Consider a universe 𝑈 . The set

= { ⟨𝑥, ℎ𝐴(𝑥) ⟩ | 𝑥 ∈ 𝑈 }

is named Hesitant fuzzy set. The element ℎ𝐴(𝑥) is a set ℎ𝐴(𝑥) =
{ℎ𝐴1

(𝑥), ℎ𝐴2
(𝑥),…} where each function ℎ𝐴𝑖

(𝑥) ∶ 𝑈 → [0, 1] (with 0 ≤
𝑖 ≤ |ℎ𝐴(𝑥)|) represents the opinion of an expert about the membership
of the item 𝑥 to A.

Notice that ℎ𝐴(𝑥) is a set and not a vector. In other words, given two
distinct Hesitant Fuzzy Sets 𝐴 and 𝐵, it might be that |ℎ𝐴(𝑥)| ≠ |ℎ𝐵(𝑥)|,
depending on the number of involved observers. Indeed, they cannot
be assimilated to Refined fuzzy sets: an Hesitant fuzzy set relies on
multiple evaluations of the same feature made by many observers for
the same entity; a Refined fuzzy set groups together the evaluations for
many different features made by one single observer for a single entity.

Many other fuzzy-set models have been proposed since then. As
cited in [25], some of them are Spherical Fuzzy Sets, Picture Fuzzy Sets,
Cubic Fuzzy Sets. Describing all of them is out of the scope of this paper;
the interested reader can refer to the specific literature.

2.2. Soft querying on JSON document stores

The idea behind ‘‘soft querying’’ is simple: being able to express
vague and imprecise conditions to select data items from databases
based on a ‘‘partial matching’’ approach: the satisfaction degree is
expressed by the membership degree to a fuzzy set (as argued by Blair
[26]).

However, when it was conceived, the only available data model
for databases was the ‘‘relational model’’; consequently, research ef-
forts proposed extensions to SQL. As a very short summary, some
proposals kept the underlying relational model untouched (i.e., crisp);
consequently, soft concepts were introduced only at query level, by
extending the statement SELECT; in this category, it is possible to
mention SQLf (see [27–29]), FQUERY for Access (see [30,31]) and Soft-
SQL (see [32–34]). Other proposals modified the data model towards
a ‘‘fuzzy-relational model’’ (see [35,36]) for managing fuzzy values
directly within the tables; FSQL (see [37,38]) is as a representative of
this category. The interested reader can find them all in [39], in [40],
in [41], and in [42].

Novel JSON document stores (NoSQL databases specifically de-
signed to store JSON documents) could provide again fertile ground for
research on soft querying databases. Currently, in the literature there
are few works that propose fuzzy extensions to query languages for
JSON document stores. Hereafter, there is a brief presentation of them.

Abir and Amel [43] proposed fMQL, an extension of MQL (the
MongoDB query language). The extension is based on JSON documents
previously tagged with ‘‘fuzzy labels’’: a fuzzy label is equivalent to a
linguistic predicate, because it has an associated membership degree;
such labels can be referred in selection conditions. Unfortunately, only
one single fuzzy label can be associated to each single JSON document;
furthermore, the paper does not address how to define them.

The work [44] proposes a technique to translate fMQL queries into
fXML, a fuzzy language for querying XML documents. The positive
aspect of this paper is that fMQL is presented in a more extensive way
than in [43]; the negative aspect is that queries are not executed on
JSON documents but on their XML representations; furthermore, the
paper does not address how to deal with membership degrees.

Finally, Medina et al. [45] proposed an extension of the MongoDB
4

data model to support fuzzy values at the level of a single document
field. Definitely, they propose a fuzzy JSON document store, which
they have been able to implement on top of MongoDB, by exploiting
the internal support to execute JavaScript functions. To the best of the
authors’ knowledge, it can be regarded as the first attempt towards
fuzzy JSON document stores.

In comparison with the above-mentioned proposals, the
J-CO Framework and the J-CO-QL+ query language adopt a different
and unique approach. First of all, the J-CO Framework is able to acquire
data from both JSON stores and web sources, and then it is able to store
results into JSON stores. Second, it is independent of any specific JSON
store (see [4]); thus, it relies on the pure JSON data model. Third of all,
J-CO-QL+ gives complete control about fuzzy constructs, as well as it
is able to deal with multiple fuzzy sets at the same time for each single
JSON document.

3. A unified meta-model for multi-grade fuzzy-sets

Based on the review of fuzzy-set models, it can be argued that
devising a unified meta-model by which it could be possible to specify
any kind of multi-grade fuzzy-set model (such as classical fuzzy sets,
Intuitionistic Fuzzy Sets, Neutrosophic Fuzzy Sets and Pythagorean
Fuzzy Sets) could be of interest from the scientific point of view.

In the remainder of this section, the definition of the meta-model is
provided and this is the formal contribution of the paper.

3.1. The meta-model

In the following, the pool of definitions that constitute the proposed
meta-model is presented.

Definition 10 (Basic Degrees). The pool of basic degrees is a tuple

𝛥 = ⟨ 𝛿1, … , 𝛿𝑛 ⟩

with 𝑛 ≥ 1 (i.e., the pool of basic degrees is not empty).

The concept of basic extent derives from the concept of basic degrees,
as defined hereafter.

Definition 11 (Basic Extent). Consider an item 𝑥 ∈ 𝑈 and a pool of
basic degrees 𝛥. The basic extent of 𝑥 with respect to 𝛥 is a tuple

𝜉𝛥(𝑥) = ⟨ 𝑑1, … , 𝑑𝑛 ⟩

where 𝑛 = |𝛥| and 𝑑𝑖 ∈ [0, 1], for each 1 ≤ 𝑖 ≤ 𝑛. 𝜉𝛥(𝑥) can be written as
𝜉𝛥, for simplicity.

In other words, 𝜉𝛥 is the tuple of values that instantiates the basic
degrees in 𝛥.

Some fuzzy-set models encompass secondary or derived degrees,
i.e., degrees that are computed on the basis of the values for basic
degrees.

Definition 12 (Derived Degrees). Given a pool 𝛥 of basic degrees, the
pool of derived degrees is a tuple

𝛤 = ⟨ 𝛾1, … , 𝛾𝑘 ⟩

where 𝑘 ≥ 0, (i.e., the pool of derived degrees can be empty). Specifi-
cally, 𝛾𝑖 (with 1 ≤ 𝑖 ≤ 𝑘) is a pair

𝛾𝑖 ≡ 𝜂𝑖 ∶ 𝜙𝑖

where 𝜂𝑖 is the name of the derived degree (such that 𝜂𝑖 ∉ 𝛥), while
𝜙𝑖(𝜉𝛥) is the function that derives its value (from a basic extent 𝜉𝛥).

Similarly to the notion of basic extent, it is possible to conceive the

notion of derived extent.
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Definition 13 (Derived Extent). Consider an item 𝑥 ∈ 𝑈 , its basic extent
𝜉𝛥 and a pool 𝛤 of derived degrees. The derived extent of 𝑥 with respect
to 𝛤 is a tuple

𝜉𝛤 (𝑥) = ⟨𝑔1, … , 𝑔𝑘⟩

here 𝑘 = |𝛤 | and 𝑔𝑖 ∈ [0, 1], for each 1 ≤ 𝑖 ≤ 𝑘 and 𝑔𝑖 = 𝜙𝑖(𝜉𝛥). For
simplicity, 𝜉𝛤 (𝑥) can be written as 𝜉𝛤 .

In other words, 𝜉𝛤 is the tuple of values that instantiates the derived
degrees in 𝛤 .

Definition 14 (Full Extent). Given an item 𝑥 ∈ 𝑈 , its basic extent 𝜉𝛥(𝑥)
and its derived extent 𝜉𝛤 (𝑥), the (full) extent of 𝑥 is 𝜉(𝑥) = 𝜉𝛥(𝑥) ∙ 𝜉𝛤 (𝑥),
where ∙ is the concatenation operator. For simplicity, 𝜉(𝑥) can be
written as 𝜉.

Multi-grade fuzzy-set models often consider some kind of ‘‘validity
onstraint’’ on degrees.

efinition 15 (Validity Constraint). Given a pool of basic degrees 𝛥 and
a pool of derived degrees 𝛤 (derived from 𝛥), the validity constraint
denoted as 𝛩 ∶ 𝛥 ∙ 𝛤 → {𝑡𝑟𝑢𝑒, 𝑓𝑎𝑙𝑠𝑒} is a Boolean logical function on
degrees either in 𝛥 or in 𝛤 .

Finally, a fuzzy-set model provides definitions for logical operators.

efinition 16. For a fuzzy-set model 𝑀 and two fuzzy sets 𝐴 and 𝐵
efined on 𝑀 , the pool of logical operators is a tuple

= ⟨¬,∧,∨⟩

here ¬ is a unary function 𝜙(𝜉𝐴) = ⟨𝑑1 ∶ 𝜙1(𝜉𝐴),… , 𝑑𝑛 ∶ 𝜙𝑛(𝜉𝐴)⟩,
or each 𝑑𝑖 ∈ 𝛥; similarly, ∧ and ∨ are defined by a binary function
(𝜉𝐴, 𝜉𝐵) = ⟨𝑑1 ∶ 𝜙1(𝜉𝐴, 𝜉𝐵),… , 𝑑𝑛 ∶ 𝜙𝑛(𝜉𝐴, 𝜉𝐵)⟩, for each 𝑑𝑖 ∈ 𝛥.

In other words, provided two full extents 𝜉𝐴 and 𝜉𝐵 of an item 𝑥 to
two fuzzy sets 𝐴 and 𝐵 defined on the same model, evaluating 𝐴∧𝐵 (or
𝐴∨𝐵, respectively) on 𝑥 gives rise to a new extent 𝜉𝐴∧𝐵(𝑥) (or 𝜉𝐴∨𝐵(𝑥),
respectively). Similarly for ¬𝐴.

Consequently, a logical operator is defined as a ‘‘tuple of functions’’,
one for each basic degree in 𝛥; derived degrees in 𝛤 are automatically
derived (by means of functions defined in 𝛤 ).

At this point, it is possible to define the meta-model for fuzzy-set
models.

Definition 17 (Fuzzy-Set Model). A Fuzzy-Set Model is a tuple

⟨𝑁𝑎𝑚𝑒, 𝛥, 𝛤 , 𝛩, 𝛺⟩

where ‘‘𝑁𝑎𝑚𝑒’’ is the name of the fuzzy-set model.
The member ‘‘𝛥’’ is the non-empty list (or tuple) of ‘‘basic degrees’’

(see Definition 10).
The member ‘‘𝛤 ’’ is the (possibly empty) list (or tuple) of ‘‘derived

degrees’’, i.e., degrees that are automatically derived from degrees in 𝛥
(see Definition 12).

The member ‘‘𝛩’’ is a validity constraint : it is a crisp Boolean condi-
tion on degrees to have a valid extent (see Definition 15).

The member ‘‘𝛺’’ is a tuple ⟨¬,∧,∨⟩, whose members are functions
that define the logical operators ‘‘¬’’ (NOT), ‘‘∧’’ (AND), and ‘‘∨’’ (OR)
for the fuzzy-set model (see Definition 16).

In the following, given a Fuzzy-Set Model 𝑀 , the dot-notation
(e.g., 𝑀.𝛥) will be used to refer to a member of 𝑀 (e.g., the member

of ‘‘basic degrees’’).
The reader can notice that, in Definitions 11, 13 and 14, the

erm membership is not mentioned. Indeed, from the review made in
ection 2.1, it is clear that membership is just one degree; many models

relies on the degree of non-membership, and so on. Thus, generalizing,
5

given a multi-grade fuzzy-set model and a fuzzy set 𝐴 defined on this
model, the set 𝜉𝐴 of degrees determines ‘‘the extent of the item 𝑥 to the
fuzzy set 𝐴’’ (denoted as 𝜉𝐴(𝑥)).

Clearly, each single degree in 𝜉𝐴 denotes a specific dimension that
characterize the extent of 𝑥 to 𝐴. Thus, the extent is a multi-dimensional
oncept, by which it is possible to consider several fuzzy features;
onsequently, it is possible to affirm that 𝜉𝐴 is the multi-dimension extent
f 𝑥 to 𝐴 (while the single membership degree in classical fuzzy sets is

a sample of one-dimensional extent).

Definition 18 (Valid Extent). Given an item 𝑥 and its full extent 𝜉𝐴(𝑥) to
a fuzzy set 𝐴, if 𝛩(𝜉𝐴) = 𝑓𝑎𝑙𝑠𝑒, this means that its extent to the fuzzy set

is not valid; as a result, an item 𝑥 with an invalid extent is equivalent
o an item 𝑥 with an undefined (or unknown) extent to the fuzzy set 𝐴.

Finally, it is possible to conceive ‘‘operators’’ that evaluate the
xtent of an item 𝑥 to a fuzzy-set defined on a model 𝑀 , by possibly
oving from properties of 𝑥 and from its extents to other fuzzy sets

possibly of different type).

efinition 19 (Multi-grade Operator). Given a fuzzy-set model 𝑀 , a
ulti-grade operator evaluates the extent of an item 𝑥 to a fuzzy set
efined on 𝑀 . It is defined as:

(𝑝1,… , 𝑝ℎ) = ⟨𝑑1 ∶ 𝜙1(𝑝1,… , 𝑝ℎ),

… ,

𝑑𝑛 ∶ 𝜙𝑛(𝑝1,… , 𝑝ℎ)⟩,

ith 𝑑𝑖 ∈ 𝑀.𝛥. The actual value 𝑣𝑗 for a parameter 𝑝𝑗 (with 1 ≤ 𝑗 ≤ ℎ)
ould be any kind of value, including an extent to a fuzzy-set model
𝑗 (possibly different from 𝑀).

The reader can notice that a multi-grade operator can be used to
enerate extents from properties of items only, as well as it can be used
o convert extents of different fuzzy-set models into an extent to the
arget model 𝑀 .

The remainder of this section shows how classical, Intuitionistic,
eutrosophic and Pythagorean fuzzy-set models can be defined through

he meta-model introduced in Definition 17.

.2. Formalizing fuzzy-set models

The meta-model introduced in Section 3.1 can be exploited to
ormally define, in a unified way, the classical fuzzy-set model and the
ulti-grade models for Intuitionistic, Neutrosophic and Pythagorean

uzzy sets.

.2.1. Classical fuzzy sets
Based on Definition 17, the classical model for fuzzy sets can be

efined as follows.

odel 1. On the basis of Definitions 1 and 2, the classical model for fuzzy
ets is defined by the following tuple.

𝑁𝑎𝑚𝑒 ∶ "𝚌𝚕𝚊𝚜𝚜𝚒𝚌𝚊𝚕",
𝛥 ∶ ⟨ 𝜇 ⟩,

𝛤 ∶ ⟨ ⟩,

𝛩 ∶ 𝑡𝑟𝑢𝑒,

𝛺 ∶ ⟨ ¬(𝜉𝐴) ∶ ⟨ 𝜇 ∶ 1 − 𝜉𝐴.𝜇 ⟩,

∧ (𝜉𝐴, 𝜉𝐵) ∶ ⟨ 𝜇 ∶ 𝑚𝑖𝑛(𝜉𝐴.𝜇, 𝜉𝐵 .𝜇) ⟩,

∨ (𝜉𝐴, 𝜉𝐵) ∶ ⟨ 𝜇 ∶ 𝑚𝑎𝑥(𝜉𝐴.𝜇, 𝜉𝐵 .𝜇) ⟩

⟩

⟩
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In the classical model, only the concept of membership is defined;
onsequently, the member 𝛥 contains only the field 𝜇, while the mem-
er 𝛤 is empty. Consequently, the extent 𝜉𝐴 of an item 𝑥 to a classical
uzzy set 𝐴 is a tuple containing one single value; an example could be
𝙷𝚒𝚜𝚝𝚘𝚛𝚒𝚌𝚊𝚕𝙲𝚊𝚛𝚜 = ⟨𝜇 ∶ 0.9⟩.

The member 𝛩 is set to 𝑡𝑟𝑢𝑒, since there is no a specific constraint
hat the extent must satisfy.

Finally, the extended logical operators are defined: notice that they
eturn a new extent (that, for classical fuzzy sets, contains only the field
). Binary operators receive two extents (denoted as 𝜉𝐴 and 𝜉𝐵), while
he unary operator receives only one extent (denoted as 𝜉𝐴).

A little variation of this model originates from the consideration that
t is possible to derive the non-membership degree as 𝜈 = 1 − 𝜇.

odel 2. On the basis of Definitions 1 and 2, the classical model for
uzzy sets, including the derived non-membership degree, is defined by the
ollowing tuple.

𝑁𝑎𝑚𝑒 ∶ "𝚌𝚕𝚊𝚜𝚜𝚒𝚌𝚊𝚕𝙴𝚗𝚛𝚒𝚌𝚑𝚎𝚍",
𝛥 ∶ ⟨ 𝜇 ⟩,

𝛤 ∶ ⟨ 𝜈 ∶ 1 − 𝜇 ⟩,

𝛩 ∶ 𝑡𝑟𝑢𝑒,

𝛺 ∶ ⟨ ¬(𝜉𝐴) ∶ ⟨ 𝜇 ∶ 1 − 𝜉𝐴.𝜇 ⟩,

∧ (𝜉𝐴, 𝜉𝐵) ∶ ⟨ 𝜇 ∶ 𝑚𝑖𝑛(𝜉𝐴.𝜇, 𝜉𝐵 .𝜇) ⟩,

∨ (𝜉𝐴, 𝜉𝐵) ∶ ⟨ 𝜇 ∶ 𝑚𝑎𝑥(𝜉𝐴.𝜇, 𝜉𝐵 .𝜇) ⟩

⟩

⟩

In this case, Model 2 is the same as Model 1, except that a new 𝑁𝑎𝑚𝑒
is defined and the member𝛤 now contains the definition of the derived
degree 𝜈 of non-membership and its defining function. Consequently,
the extent 𝜉 of an item 𝑥 to a classical fuzzy set 𝐴 is a tuple containing
two values, such as 𝜉𝙷𝚒𝚜𝚝𝚘𝚛𝚒𝚌𝚊𝚕𝙲𝚊𝚛𝚜 = ⟨𝜇 ∶ 0.9, 𝜈 ∶ 0.1⟩.

3.2.2. Intuitionistic Fuzzy Sets
According to Definition 17, the model for Intuitionistic fuzzy sets

can be defined as follows.

Model 3. On the basis of Definitions 3 and 4, the model for Intuitionistic
fuzzy sets is defined by the following tuple.

⟨ 𝑁𝑎𝑚𝑒 ∶ "𝚒𝚗𝚝𝚞𝚒𝚝𝚒𝚘𝚗𝚒𝚜𝚝𝚒𝚌",
𝛥 ∶ ⟨ 𝜇, 𝜈 ⟩,

𝛤 ∶ ⟨ 𝜋 ∶ 1 − 𝜇 − 𝜈 ⟩,

𝛩 ∶ 0 ≤ 𝜇 + 𝜈 ≤ 1,

𝛺 ∶ ⟨ ¬(𝜉𝐴) ∶ ⟨ 𝜇 ∶ 𝜉𝐴.𝜈,

𝜈 ∶ 𝜉𝐴.𝜇 ⟩,

∧ (𝜉𝐴, 𝜉𝐵) ∶ ⟨ 𝜇 ∶ 𝑚𝑖𝑛(𝜉𝐴.𝜇, 𝜉𝐵 .𝜇),

𝜈 ∶ 𝑚𝑎𝑥(𝜉𝐴.𝜈, 𝜉𝐵 .𝜈) ⟩,

∨ (𝜉𝐴, 𝜉𝐵) ∶ ⟨ 𝜇 ∶ 𝑚𝑎𝑥(𝜉𝐴.𝜇, 𝜉𝐵 .𝜇),

𝜈 ∶ 𝑚𝑖𝑛(𝜉𝐴.𝜈, 𝜉𝐵 .𝜈) ⟩

⟩

⟩

In the Intuitionistic Fuzzy-Set model, both the concepts of member-
ship and non-membership are defined; thus, the member 𝛥 contains
both the degrees 𝜇 and 𝜈, while the member 𝛤 contains the degree 𝜋
with its defining function. Consequently, the extent 𝜉 of an item 𝑥 to an
Intuitionistic fuzzy set 𝐴 is a tuple containing three values; an example
could be 𝜉𝙷𝚒𝚜𝚝𝚘𝚛𝚒𝚌𝚊𝚕𝙲𝚊𝚛𝚜 = ⟨𝜇 ∶ 0.7, 𝜈 ∶ 0.2, 𝜋 ∶ 0.1⟩.

The member 𝛩 contains the constraint 0 ≤ 𝜇 + 𝜈 ≤ 1, and, finally,
the member 𝛺 contains the definition of the logical operators.
6

⟨

3.2.3. Neutrosophic Fuzzy Sets
According to Definition 17, the model for Neutrosophic fuzzy sets

can be defined as follows, considering that Smarandache [15] provided
two different definitions for the logical operator OR (as reported in
Section 2.1.3). In this case, it has been decided to apply both the
definitions of the operator INCLUSIVE OR to the OR and to define
a multi-grade operator, according to Definition 19, to perform the
EXCLUSIVE OR.

Model 4. On the basis of Definition 5, the model for Neutrosophic fuzzy
sets is defined by the following tuple.

⟨ 𝑁𝑎𝑚𝑒 ∶ "𝚗𝚎𝚞𝚝𝚛𝚘𝚜𝚘𝚙𝚑𝚒𝚌",
𝛥 ∶ ⟨ 𝜇, 𝜈, 𝜋 ⟩,

𝛤 ∶ ⟨ ⟩,

𝛩 ∶ 𝑡𝑟𝑢𝑒,

𝛺 ∶ ⟨ ¬(𝜉𝐴) ∶ ⟨ 𝜇 ∶ 1 − 𝜉𝐴.𝜇,

𝜈 ∶ 1 − 𝜉𝐴.𝜈,

𝜋 ∶ 1 − 𝜉𝐴.𝜋 ⟩,

∧ (𝜉𝐴, 𝜉𝐵) ∶ ⟨ 𝜇 ∶ 𝜉𝐴.𝜇 × 𝜉𝐵 .𝜇,

𝜈 ∶ 𝜉𝐴.𝜈 × 𝜉𝐵 .𝜈,

𝜋 ∶ 𝜉𝐴.𝜋 × 𝜉𝐵 .𝜋 ⟩,

∨ (𝜉𝐴, 𝜉𝐵) ∶ ⟨ 𝜇 ∶ 𝜉𝐴.𝜇 + 𝜉𝐵 .𝜇 − 𝜉𝐴.𝜇 × 𝜉𝐵 .𝜇,

𝜈 ∶ 𝜉𝐴.𝜈 + 𝜉𝐵 .𝜈 − 𝜉𝐴.𝜈 × 𝜉𝐵 .𝜈,

𝜋 ∶ 𝜉𝐴.𝜋 + 𝜉𝐵 .𝜋 − 𝜉𝐴.𝜋 × 𝜉𝐵 .𝜋 ⟩

⟩

⟩

he model is completed with the multi-grade operator 𝛷𝐸𝑋_𝑂𝑅 to describe
he EXCLUSIVE OR.

𝐸𝑋_𝑂𝑅( 𝜉𝐴, 𝜉𝐵 ) = ⟨

𝜇 ∶ 𝜉𝐴.𝜇 × (1 − 𝜉𝐵 .𝜇) + 𝜉𝐵 .𝜇 × (1 − 𝜉𝐴.𝜇)

− 𝜉𝐴.𝜇 × 𝜉𝐵 .𝜇 × (1 − 𝜉𝐴.𝜇) × (1 − 𝜉𝐵 .𝜇),

𝜈 ∶ 𝜉𝐴.𝜈 × (1 − 𝜉𝐵 .𝜈) + 𝜉𝐵 .𝜈 × (1 − 𝜉𝐴.𝜈𝐴)

− 𝜉𝐴.𝜈 × 𝜉𝐵 .𝜈 × (1 − 𝜉𝐴.𝜈) × (1 − 𝜉𝐵 .𝜈),

𝜋 ∶ 𝜉𝐴.𝜋 × (1 − 𝜉𝐵 .𝜋) + 𝜉𝐵 .𝜋 × (1 − 𝜉𝐴.𝜋)

− 𝜉𝐴.𝜋 × 𝜉𝐵 .𝜋 × (1 − 𝜉𝐴.𝜋) × (1 − 𝜉𝐵 .𝜋)

In the mode for Neutrosophic fuzzy sets, the concepts of mem-
ership, non-membership and indeterminacy are defined; thus, the
ember 𝛥 contains the fields 𝜇, 𝜈 and 𝜋, while the member 𝛤 is empty.
onsequently, the extent 𝜉 of an item 𝑥 to a Neutrosophic fuzzy set 𝐴

s a tuple containing three values; an example could be 𝜉𝙷𝚒𝚜𝚝𝚘𝚛𝚒𝚌𝚊𝚕𝙲𝚊𝚛𝚜 =
𝜇 ∶ 0.7, 𝜈 ∶ 0.8, 𝜋 ∶ 0.4⟩.

The member 𝛩 is set to true, since there is no specific constraint that
he extent must satisfy. The member 𝛺 contains the definitions of the
asic logical operators, where the operator OR is defined as INCLUSIVE
R.

Finally, the model is completed with the multi-grade operator
𝐸𝑋_𝑂𝑅, to which the 𝜉𝐴, 𝜉𝐵 extents to two Neutrosophic fuzzy sets
ust be provided to calculate the EXCLUSIVE OR.

.2.4. Pythagorean Fuzzy Sets
According to Definition 17, the model for Pythagorean Fuzzy Sets

an be defined as follows.

odel 5. On the basis of Definition 6, the model for Pythagorean fuzzy
ets is defined by the following tuple.
𝑁𝑎𝑚𝑒 ∶ "𝚙𝚢𝚝𝚑𝚊𝚐𝚘𝚛𝚎𝚊𝚗",
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Fig. 1. Components of the J-CO Framework.

𝛥 ∶ ⟨ 𝜇, 𝜈 ⟩,

𝛤 ∶ ⟨ ⟩,

𝛩 ∶ 0 ≤ 𝜇2 + 𝜈2 ≤ 1

𝛺 ∶ ⟨ ¬(𝜉𝐴) ∶ ⟨ 𝜇 ∶ 𝜉𝐴.𝜈,

𝜈 ∶ 𝜉𝐴.𝜇 ⟩,

∧ (𝜉𝐴, 𝜉𝐵) ∶ ⟨ 𝜇 ∶ 𝑚𝑖𝑛(𝜉𝐴.𝜇, 𝜉𝐵 .𝜇),

𝜈 ∶ 𝑚𝑎𝑥(𝜉𝐴.𝜈, 𝜉𝐵 .𝜈) ⟩,

∨ (𝜉𝐴, 𝜉𝐵) ∶ ⟨ 𝜇 ∶ 𝑚𝑎𝑥(𝜉𝐴.𝜇, 𝜉𝐵 .𝜇),

𝜈 ∶ 𝑚𝑖𝑛(𝜉𝐴.𝜈, 𝜉𝐵 .𝜈) ⟩

⟩

⟩

In the model for Pythagorean fuzzy sets, the concepts of member-
ship and non-membership are defined; thus the member 𝛥 contains both
the degrees 𝜇 and 𝜈, while the member 𝛤 is empty (since there is no
definition for indeterminacy). Consequently, the extent 𝜉 of an item 𝑥 to
a Pythagorean fuzzy set 𝐴 is a tuple containing two values; an example
could be 𝜉𝙷𝚒𝚜𝚝𝚘𝚛𝚒𝚌𝚊𝚕𝙲𝚊𝚛𝚜 = ⟨𝜇 ∶ 0.7, 𝜈 ∶ 0.7⟩.

The member 𝛩 contains the constraint 0 ≤ 𝜇2+𝜈2 ≤ 1, and finally the
member 𝛺 contains the definitions of the logical operators, according
to the definitions provided by Yager [17].

4. The J-CO Framework

The J-CO Framework is a suite of software tools, developed at the
University of Bergamo (Italy); together with its own query language
named J-CO-QL+, it is aimed at providing analysts with a powerful
instrument to retrieve, manage, transform and integrate collections of
JSON documents.

The project has already been introduced by other papers; conse-
quently, the remainder of this section shows a quick overview of the
main characteristics of the J-CO Framework to make clear the J-CO-QL+
script exposed in Section 5.2 and to highlight the novelties introduced
with this paper. First of all, Section 4.1 presents a description of the
framework and its components. Then, Section 4.2 introduces the exe-
cution model. Finally, Section 4.3 explains how the J-CO Framework
supports fuzzy sets and soft querying. Uninteresting details for this
paper are omitted; the interested reader can refer to Bordogna et al.
[5], Psaila and Fosci [4] and Fosci and Psaila [7,46].

4.1. Components of the J-CO Framework

Fig. 1 depicts the J-CO Framework in relation to the external
services that can provide collections of JSON documents and storage
capabilities. Hereafter, the framework is presented in details.
7

Fig. 2. Example of JSON document with one membership degree.

• J-CO-QL+ Engine. This component is the core of the framework:
it actually executes scripts written in the J-CO-QL+ language. The
J-CO-QL+ Engine is able to interact with several NoSQL databases,
either internal, such as J-CO-DS, or external, such asMongoDB and
ElasticSearch, to retrieve and save JSON collections. The engine is
also able to retrieve data directly from the Internet.

• J-CO-UI. This is the interface that allows users to write J-CO-QL+
scripts, execute them and inspect results.

• J-CO-DS. This component (see [47]) is a NoSQL repository able to
store huge single documents. No query language is provided by
J-CO-DS, because the computational capability is provided by the
J-CO-QL+ Engine.

The J-CO-QL+ Engine has been designed to be independent of any
JSON storage systems (see [4]): in fact, this way J-CO-QL+ can be
designed as a powerful query language, which can provide constructs
whose execution is independent of the actual computational capabili-
ties provided (if any) by the data sources. The J-CO-QL+ Engine must
interact with external systems only for getting data sets and possibly
for storing new generated collections of JSON documents.

4.2. Execution model

The execution model of J-CO-QL+ is based upon three concepts:
collections, process state and pipeline.

A collection is a multi-set (i.e., a set with possibly multiple occur-
rences of the same item) of JSON documents.

The process state is a tuple 𝑠 = ⟨𝑡𝑐, 𝐷𝐵𝑆, 𝐹𝑂⟩, which describes the
status of the J-CO-QL+ Engine over time. In details:

• the member 𝑡𝑐 is the ‘‘temporary collection’’, which is the collec-
tion of JSON documents currently available to be processed by
the next J-CO-QL+ instruction;

• the member 𝐷𝐵𝑆 is the set of database descriptors to which the
J-CO-QL+ Engine can connect to retrieve and save collections of
JSON documents;

• the member 𝐹𝑂 is the set of ‘‘Fuzzy Operators’’. Defined through a
specific J-CO-QL+ statement, a Fuzzy Operator is able to evaluate
the membership degree to a fuzzy set of a JSON document, upon
a user-defined series of parameters, when used in a soft condition.

A J-CO-QL+ query (or script) can be seen as a sequence 𝑞 = 𝑖1 ∙…∙𝑖𝑛,
where, as in a ‘‘pipeline’’, the execution of each instruction 𝑖𝑗 modifies
one of the members of the process state. The initial process state is
𝑠0 = ⟨∅, ∅, ∅⟩ (i.e., all members are empty); then, a generic process state
𝑠𝑗 is given by the execution of the instruction 𝑖𝑗 upon the process state
𝑠𝑗−1, that is 𝑠𝑗 = 𝑖𝑗 (𝑠𝑗−1).

More details about J-CO-QL+ statements will be introduced in Sec-
tion 5.2.

4.3. Support to fuzzy sets and soft querying

This work describes the extensive improvements to the very basic
capabilities for dealing with fuzzy sets already provided by J-CO-
QL+. In fact, a JSON document represents an entity (in a universe)
that can be member of several fuzzy sets at the same time, with
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Fig. 3. Example of JSON document with multiple membership degrees.

different membership degrees. Consequently, membership degrees to
fuzzy sets should be incorporated within the same JSON document.
To this end, the J-CO-QL+ Engine exploits a special root-level field,
named ~fuzzysets. It is a flat nested document that behaves like
a ‘‘key/value’’ map: the name of each inner field denotes a fuzzy-set
name; its value, in the range [0, 1], represents the membership degree
of the document to that fuzzy set.

Fig. 2, depicts a JSON document whose membership degree to the
fuzzy set FastCars has been already evaluated (the field
~fuzzysets is highlighted by a blue box).

In J-CO-QL+ the membership of a JSON document to a fuzzy set can
be evaluated on the basis of the values of its properties (i.e., fields),
by means of a user-defined ‘‘Fuzzy Operator’’ (details will be shown in
Section 5.2).

Fuzzy Operators and fuzzy sets can be exploited in soft-conditions
to evaluate the membership of the JSON document to fuzzy sets. To
this end, several statements in J-CO-QL+ are provided with an optional
clause CHECK FOR, in which several branches FUZZY SET are allowed,
each one to evaluate the membership to a fuzzy set by means of a
specific soft condition. Hereafter, a simple example is shown:
CHECK FOR

FUZZY SET HistoricalCars
USING isHistoricalCar(.year)

FUZZY SET HistoricalFastCars
USING HistoricalCars AND FastCars

The first branch FUZZY SET evaluates the membership degree to
he fuzzy set HistoricalCars, by means of a soft condition that
s expressed after the keyword USING; the previously declared fuzzy
perator isHistoricalCar (whose definition is not reported for the
ake of brevity) computes the membership degree on the basis of the
ield year in the JSON document.

The membership degree to the fuzzy set HistoricalFastCars
s evaluated in the second branch FUZZY SET by means of the soft
ondition ‘‘HistoricalCars AND FastCars’’.

Fig. 3 depicts the same JSON document shown in Fig. 2, after the
valuation of the soft conditions in the example. Notice that the field
fuzzysets now also contains the membership degrees to the fuzzy
ets HistoricalCars and HistoricalFastCars.

. Novel constructs for defining and processing multi-grade Fuzzy-
et models in J-CO-QL+

This section presents the final contribution of the paper, i.e., novel
onstructs for dealing with multi-grade fuzzy-set models in J-CO-QL+.
irst of all, a plausible case study is described. Then, the novel con-
tructs provided by the J-CO-QL+ language are illustrated.

.1. Case study

Suppose that a market-research company, named ACME, has to
arry out a survey about the effectiveness of marketing campaigns on a
eries of products. For each product, the company prepares an internet
uestionnaire to ask people for their opinion about various topics. Each
opic can be associated to a question for the participants. For instance,
8

if the product is an item of clothing, ACME could ask: (i) ‘‘Is the item
uitable for doing sport?’’ (ii) ‘‘Is the item suitable for a fancy dinner?’’

(iii) ‘‘Did you like the commercial on TV?’’. For each topic, the possible
answers are YES, NO, and I DON’T KNOW (idk). Under the hypothesis
that people could be completely ‘‘non-rational’’, the participants to the
survey are free to select, for each topic, one, or two, or even all the
three possible answers. They are also free to choose not to answer to a
topic.

At the end of the survey, ACME collects all the data and, for each
topic, calculates the percentage of answers YES, of answers NO, and of
nswers I DON’T KNOW, on the basis of the number of participants. So,
ccording to the hypothesis of non-rationality, for each topic there is
triplet of percentages, such as (67.2%, 45.6%, 73.3%) for, respectively,

the answers YES, NO, and I DON’T KNOW. Notice that the three
percentages are completely independent; thus, their sum can possibly
be greater than 100%. This characteristic strongly reminds the Neutro-
sophic model: indeed, according to Definition 5, the answers to each
topic can be easily mapped to the degrees of a Neutrosophic fuzzy set.
In particular, the percentage of answers YES can be associated to the
membership degree 𝜇, the percentage of answers NO can be associated
to the non-membership degree 𝜈, and the percentage of answers I
DON’T KNOW can be associated to the indeterminacy degree 𝜋.

As a final result of the survey, ACME obtains a collection of JSON
documents, one for each product, reporting the data of the product
and the percentages of the answers to each topic. Fig. 4 shows a
sample document: the document reports the identifier of the product
(the field productId), the name of the product (the field name) and
other properties like category, brand and price. Moreover, the
document also reports a series of structured fields, with a name that is
based on the pattern ‘‘eval⟨𝑇 𝑜𝑝𝑖𝑐_𝑁𝑎𝑚𝑒⟩’’, one for each topic of the
survey, that contain the percentage of answers YES (the sub-field yes),
the percentage of answers NO (the sub-field no) and the percentage of
answers I DON’T KNOW (the sub-field idk). Thus, the answers to the
three example topics presented before about the suitability of a product
for sport or for a fancy evening, and the appreciation of commercials on
TV, can be contained in the three structured fields named, respectively,
evalSporty, evalFancy and evalCommercial. In Fig. 4, the
three fields are highlighted by colored boxes.

Suppose now that, at the end of the survey, ACME is committed by
ts clients to perform the following query:

uery 1. Perform a query on the data set so as to discover ‘‘those
products that are suitable for doing sport OR (i.e., EXCLUSIVE OR) for a
fancy evening, AND whose commercials were particularly appreciated’’.

This is a ‘‘soft query’’ that is based on the Neutrosophic model.

5.2. J-CO-QL+ script

This section shows how Query 1 can be executed by a J-CO-
QL+ script that exploits the novel constructs to deal with multi-grade
fuzzy-set models. The script is divided in three parts:

- the first part, as reported in Listing 1 and discussed in Sec-
tion 5.2.1, shows how to define a Fuzzy-Set Model;

- the second part, as reported in Listing 2 and discussed in Sec-
tion 5.2.2, shows how to define novel Fuzzy Operators;

- the third part, as reported in Listing 3 and discussed in Sec-
tion 5.2.3, shows how to apply Fuzzy-Set Models and Fuzzy Operators
in order to perform a non-trivial soft query.

5.2.1. Defining a fuzzy-set model
As anticipated in Section 5.1, the Neutrosophic model presented in

Definition 5 is the fuzzy-set model that better describes the answers
to a topic in the survey about products, under the hypothesis of ‘‘non-
rationality’’. In this case, Listing 1 provides a modified version of the
Neutrosophic model, enriched with three derived degrees reporting,
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Fig. 4. Example of starting document for the J-CO-QL+ script.

respectively, the complement of the membership, non-membership and
indeterminacy degrees of the standard Neutrosophic model. The model
defines the logical operators NOT, AND, and OR (in its inclusive version)
as defined in [15].

Hereafter, Listing 1 is presented in details.

• The instruction CREATE FUZZY SET MODEL on Line 1 defines
a novel Fuzzy-Set Model named neutrosophic. The clause
DEGREES defines three basic degrees (see Definition 10) named
mu, nu, and pi that denote, respectively, the membership degree
𝜇, the non-membership degree 𝜈, and the indeterminacy degree
𝜋 of the formal Neutrosophic model defined in Definition 5 and
formalized in Model 4.
The subsequent clause DERIVED DEGREES defines three derived
degrees: the degree muc (short name for ‘‘mu complement’’),
calculated as 1 - mu; the degree nuc (short name for ‘‘nu com-
plement’’), calculated as 1 - nu; the degree pic (short name
for ‘‘pi complement’’), calculated as 1 - pi. They represent,
respectively, the complements of the degrees 𝜇, 𝜈, and 𝜋 of the
formal Neutrosophic model. Remember that basic degrees give
rise to the basic extent (Definition 11), from which the derived
extent (Definition 13) is automatically derived; basic extent and
derived extent constitute the full extent (see Definition 14).
Then, the clause OPERATOR NOT defines the operator NOT : in
detail, it specifies how to calculate the basic extent by applying
9

the operator to the full extent of an item of a Neutrosophic
fuzzy set. In this case, a full extent to a Neutrosophic fuzzy
set is received as an implicit parameter, whose name is x; the
following clauses EVALUATE report the expressions to calculate,
respectively, the basic degrees mu, nu, and pi (derived degrees
are automatically computed from basic degrees, as defined in the
clause DERIVED DEGREES).
The following clause OPERATOR AND defines the operator AND
for an item in a couple of Neutrosophic fuzzy sets. In this case,
two implicit parameters are received, named x and y, whose
values are the full extents to two fuzzy sets of the model under
definition. The clauses EVALUATE specifies how to calculate,
respectively, the basic degrees mu, nu, and pi.
Similarly, the clause OPERATOR OR defines the operator (INCLU-
SIVE) OR (see Model 4).

Notice the dot-notation to reference a degree (e.g., x.mu) in an
xtent and the exploitation of derived degrees to make expressions
asier to write (e.g., y.muc).

The statement CREATE FUZZY SET MODEL is the first novel con-
truct that has been added to J-CO-QL+ to manage multi-grade fuzzy-set
odels.

.2.2. Defining fuzzy operators

In J-CO-QL+, a fuzzy operator is a key tool to write soft conditions,
because it allows for evaluating extents (memberships, for the classical
model) to fuzzy sets, based on entity properties (i.e., document fields)
and to work on extents to possibly different fuzzy-set models.

Listing 2 defines three fuzzy operators: the first one builds the
extent to a Neutrosophic fuzzy set from three numerical parameters; the
second fuzzy operator evaluates the extent for the operator EXCLUSIVE
OR between the extents to two Neutrosophic fuzzy sets (according
to the definition provided by Smarandache [15]); finally, the fuzzy
operator on Line 4 provides a method to summarize/collapse the extent
to a Neutrosophic fuzzy set into the membership to a classical fuzzy set.
Hereafter, the fuzzy operators are presented in details.
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• The instruction CREATE neutrosophic FUZZY OPERATOR on
Line 2 defines a fuzzy operator named Neutrosophify, which
returns the extent to a Neutrosophic fuzzy set according to the
model neutrosophic that was defined on Line 1 (Listing 1).
The goal of this operator is to generate the extent to a Neu-
trosophic fuzzy set from three real numbers, named m, n and
p that are received as parameters, as specified in the clause
PARAMETERS.
The clause PRECONDITION verifies that every parameter is in
the range [0, 100]; if not satisfied, the fuzzy operator cannot be
applied.
The clauses EVALUATE compute the basic degrees mu, nu, and
pi of the fuzzy-set model neutrosophic. In particular, the
degree mu (nu, and pi, respectively) is obtained by dividing the
parameter m (n and p, respectively) by 100.

• The instruction CREATE neutrosophic FUZZY OPERATOR
on Line 3 computes the operator EXCLUSIVE OR for the Neu-
trosophic model. The operator is named ExclusiveOR and
returns the extent to a fuzzy set according to the fuzzy-set model
neutrosophic defined on Line 1 (Listing 1).
The clause PARAMETERS specifies that the operator must receive
the extents to two neutrosophic fuzzy sets, as parameters
named x and y.
Since there is no PRECONDITION to verify, the clauses
EVALUATE immediately evaluate, respectively, the basic degrees
mu, nu, and pi of the resulting extent to a neutrosophic fuzzy
set.

• The instruction CREATE FUZZY OPERATOR on Line 4 evaluates
the membership degree to a classical fuzzy set (notice the ab-
sence of the model name between the keywords ‘‘CREATE’’ and
‘‘FUZZY’’).
The operator is named FuzzifyNeutrosophic and its goal is
to summarize the extent to a Neutrosophic fuzzy set in a single
membership degree to a classical fuzzy set.
The clause PARAMETERS defines the x parameter, which has to
receive the extent to a Neutrosophic fuzzy set.
The clause EVALUATE specifies a mathematical expression to
summarize/collapse degrees in x into one single degree; notice
that it enhances the role of the degree mu when associated to low
values of the degrees nu and pi.
The result of the expression in the clause EVALUATE is used as
𝑥-axis value against the polyline function defined by the clause
POLYLINE. The polyline function is depicted in Fig. 5: notice
that it boosts values in the range [0.5, 1], while it penalizes val-
ues lower than 0.5. The corresponding 𝑦-axis value is the final
membership degree provided by the operator.
Notice that this is the form of the statement CREATE FUZZY
OPERATOR that was available before extending the language with
multi-grade models. Indeed, the classical fuzzy-set model is still
natively defined in J-CO-QL+, thus it does not need be declared
in advance to be used.

To conclude this sub-section, a quick note about the clauses
POLYLINE: each clause EVALUATE, in an instruction CREATE FUZZY
OPERATOR, either classical or multi-grade, can be followed by an
optional clause POLYLINE to determine the final degree. If no clause
POLYLINE is present, a default [(0, 0), (1, 1)] polyline is considered.

5.2.3. Performing a soft query in J-CO-QL+ with multi-grade fuzzy sets
Listing 3 shows how to exploit the fuzzy-set model and the fuzzy

operators declared in Listings 1 and 2 to perform a non-trivial soft
query.
10
Fig. 5. Polyline function defined in the fuzzy operator FuzzifyNeutrosophic.

Hereafter, each instruction is presented in details.

• The instruction USE DB on Line 5 connects to a database named
MarketSurvey managed by a J-CO-DS server (see Section 4.1)
running on the local machine.

• The instruction GET COLLECTION on Line 6 retrieves a collection
of JSON documents, named ProductReviews, containing the
data collected by ACME at the end of the survey. Fig. 4 shows an
example of document in the collection. The acquired collection
becomes the temporary collection of the process (see Section 4.2).

• The role of the instruction FILTER on Line 7 is to select and
transform the documents in the current temporary collection in
order to perform the soft query committed to ACME.
Fig. 6 shows how the execution of the instruction FILTER mod-
ifies the document in Fig. 4.

– The clause CASE WHERE selects those documents, in the
input temporary collection, holding the root-level structured
fields evalFancy, evalSporty and evalCommercial,
needed to perform the soft query. Indeed, collections of
JSON documents can be heterogeneous; thus, it is necessary
to focus on documents having the fields to process.
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– In the following section GENERATE, the clause CHECK FOR
adds the root-level field ~fuzzysets with the extents to
the fuzzy sets declared in the following branches FUZZY
SET. In Fig. 6, the field ~fuzzysets is highlighted by a
black-dashed box.

– The first branch neutrosophic FUZZY SET adds the
extent to a neutrosophic fuzzy set named fancy. The
extent is generated by the soft condition specified by the
clause USING, by exploiting the operator
Neutrosophify defined on Line 2 (Listing 2) to which the
values of the sub-fields evalFancy.yes,
evalFancy.no, and evalFancy.idk are passed as ac-
tual parameters. In Fig. 6, the extent to the Neutrosophic
fuzzy set fancy is highlighted by a red box: notice the sub-
field type that specifies the fuzzy-set model
"neutrosophic"; also notice that every other sub-field is
related to a basic or derived degree of the fuzzy-set model
neutrosophic.

– The second branch neutrosophic FUZZY SET evalu-
ates the extent to a second neutrosophic fuzzy set
named sporty in the same way, by passing the values of
the sub-fields evalSporty.yes, evalSporty.no and
evalSporty.idk to the operator Neutrosophify. In
Fig. 6, the extent to the sporty Neutrosophic fuzzy set is
highlighted by a blue box.

– The extent to a third neutrosophic fuzzy set, named
appreciation, is evaluated by the third branch
neutrosophic FUZZY SET; the soft condition in the
clause USING passes the values of the sub-fields yes, no,
and idk in the field evalCommercial to the opera-
tor Neutrosophify as actual parameters. In Fig. 6, the
extent to the neutrosophic fuzzy set appreciation is
highlighted by a green box.

– The fourth branch FUZZY SET evaluates the extent to a
neutrosophic fuzzy set named efficacy, by exploiting
the operator AND of the fuzzy-set model neutrosophic,
defined on Line 1 (Listing 1), as well as the fuzzy operator
ExclusiveOR defined on Line 3 (Listing 2), to which the
extents to the Neutrosophic fuzzy sets sporty and fancy
are provided by the built-in function EXTENT.
In Fig. 6, the extent to the Neutrosophic fuzzy set
efficacy is highlighted by a yellow box.
Notice that the Neutrosophic fuzzy set efficacy actually
corresponds to Query 1.

– The last branch FUZZY SET evaluates the membership de-
gree to a classical fuzzy set named wanted; the soft condi-
tion in the clause USING exploits the operator
FuzzifyNeutrosophic defined in Line 6 (Listing 2)
to summarize the extent to the Neutrosophic fuzzy set
efficacy into a classical fuzzy set. In Fig. 6, the fuzzy
set wanted is shown at the end of the field ~fuzzysets.
Notice that, in the case of the classical fuzzy-set model, the
corresponding field is not structured but its value repre-
sents directly the membership degree. This solution was the
approach that was adopted before introducing multi-grade
models in J-CO-QL+.

– The clause ALPHACUT selects those documents whose mem-
bership degree to the fuzzy set wanted is no less than
0.7.

• Finally, the instruction SAVE AS on Line 8 saves the resulting
collection into a new collection named ProductEvaluations
in the MarketSurvey database.

Summarizing, the novelties introduced in the J-CO-QL+ language
and in the data model are listed hereafter.
11
Fig. 6. Example of output document for the J-CO-QL+ script.

• The novel statement CREATE FUZZY SET MODEL allows for
defining a multi-grade fuzzy-set model.

• The statement CREATE FUZZY OPERATOR has been extended
and now is CREATE [model] FUZZY OPERATOR; this allows for
separately specifying each single basic degree. If model is missing,
it downgrades to the original version for classical fuzzy sets.

• Within the clause CHECK FOR, the former FUZZY SET name
has evolved as [model] FUZZY SET name, so as it is able to
specify a soft condition on the specified model and generate
the corresponding extent; if model is missing, the target model
is the classical fuzzy-set model, as before the introduction of
multi-grade fuzzy-set models.

• Finally, in the root-level field ~fuzzysets in JSON documents,
the internal sub-fields are able to represent extents of multi-grade
fuzzy sets, as nested sub-documents.
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6. Conclusions and future work

The paper presented a quick survey about the evolution of Fuzzy-Set
Theory from the first classical model provided by Zadeh in 1965, to-
wards more complex models. The attention is mostly focused on multi-
grade fuzzy sets and, in particular, the Intuitionistic, Neutrosophic and
Pythagorean fuzzy-set models are presented. Interval-Valued fuzzy sets
(a particular case of Type-2 Fuzzy Sets) and Hesitant fuzzy-sets are also
discussed, but they are not considered in the remainder of the paper.

Each model was formally presented, in order to let common aspects
emerge. As a result, many models can be classified as ‘‘Multi-grade
Fuzzy-Set Models’’, in that they are based on multiple degrees, such
as membership and non-membership.

Subsequently, a meta-model for describing multi-grade fuzzy-set
models and their operators in a unified way has been proposed. To
show the goodness of the proposal, the meta-model has been used
to provide a description of classical, Intuitionistic, Neutrosophic and
Pythagorean fuzzy-set models and some possible variations; clearly, the
meta-model can be applied to any user-defined multi-grade fuzzy-set
model.

Finally, the latest novelties introduced in the J-CO Framework and
in the J-CO-QL+ query language have been presented. These novelties
allow users to define novel multi-grade fuzzy-set models and operators
to perform advanced soft querying through J-CO-QL+ scripts.

A plausible case study was presented, to show how to perform a
on-trivial soft query through a user-defined fuzzy-set model (namely,
n extension of the Neutrosophic model). Indeed, a few J-CO-QL+

instructions allowed for defining the novel fuzzy-set model, three fuzzy
operators and actually performing the soft query on a collection of
JSON documents previously stored within a JSON repository.

To the best of the authors’ knowledge, the proposal introduced
by this paper is the first attempt to define a generic meta-model, to-
gether with its implementation within a real software tool for defining
fuzzy-set models and exploit them in practical activities.

The J-CO Framework is under a continuous evolution, through
which novel features are continuously added. Thus, it is possible to
foresee some future developments. The most obvious one is to extend
the proposed meta-model, so as to capture a wider range of fuzzy-
set models, including Hesitant and Type-2 Fuzzy sets; additionally, the
extensions to the meta-model will give rise to further extensions of
J-CO-QL+.

However, for some multi-grade models (such as Intuitionistic Fuzzy
Sets) complex transformations based on aggregations have been pro-
posed in the literature, which imply the aggregation of membership
and non-membership degrees of multiple items (documents); to achieve
this goal, a specific statement for defining fuzzy aggregators, which
constitutes a missing feature in the current version of J-CO-QL+, is
about to be introduced.

Finally, a library of scripts with the definitions for the most com-
mon multi-grade models will be published, so as to allow users to
incorporate and use them within their soft queries.

The J-CO Framework is available on a public GitHub repository.1
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